WO2015141442A1 - Seal member and method for producing same - Google Patents

Seal member and method for producing same Download PDF

Info

Publication number
WO2015141442A1
WO2015141442A1 PCT/JP2015/055800 JP2015055800W WO2015141442A1 WO 2015141442 A1 WO2015141442 A1 WO 2015141442A1 JP 2015055800 W JP2015055800 W JP 2015055800W WO 2015141442 A1 WO2015141442 A1 WO 2015141442A1
Authority
WO
WIPO (PCT)
Prior art keywords
ptfe
seal ring
less
compression set
fluororesin
Prior art date
Application number
PCT/JP2015/055800
Other languages
French (fr)
Japanese (ja)
Inventor
明宏 大和田
Original Assignee
株式会社リケン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社リケン filed Critical 株式会社リケン
Priority to JP2016508643A priority Critical patent/JPWO2015141442A1/en
Publication of WO2015141442A1 publication Critical patent/WO2015141442A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/32Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings
    • F16J15/3284Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings characterised by their structure; Selection of materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K3/1006Materials in mouldable or extrudable form for sealing or packing joints or covers characterised by the chemical nature of one of its constituents
    • C09K3/1009Fluorinated polymers, e.g. PTFE
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/02Sealings between relatively-stationary surfaces
    • F16J15/06Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
    • F16J15/10Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing
    • F16J15/102Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing characterised by material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/08Characterised by the construction of the motor unit
    • F15B15/14Characterised by the construction of the motor unit of the straight-cylinder type
    • F15B15/1423Component parts; Constructional details
    • F15B15/1457Piston rods
    • F15B15/1461Piston rod sealings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2215/00Fluid-actuated devices for displacing a member from one position to another
    • F15B2215/30Constructional details thereof
    • F15B2215/305Constructional details thereof characterised by the use of special materials

Definitions

  • the present invention relates to a sealing member used for hydraulic equipment and a method for manufacturing the same.
  • a seal ring for sealing oil is used.
  • the seal ring is fitted into a shaft inserted through the housing, and seals between the housing and the shaft.
  • the seal ring can be in close contact with the housing and the shaft without any gap in order to realize high sealing characteristics between the housing and the shaft.
  • the seal ring may be formed of an elastomer having rubber elasticity.
  • Patent Documents 1 and 2 disclose a seal ring formed of an elastomer.
  • the seal ring slides back and forth with respect to the housing and shaft when the hydraulic equipment is driven. For this reason, a friction loss (friction loss) that is a driving loss due to a frictional force between the seal ring and the housing and a frictional force between the seal ring and the shaft is generated in the hydraulic device. Therefore, the seal ring preferably has high sliding characteristics in order to reduce friction loss of the hydraulic equipment.
  • elastomers are generally rich in rubber elasticity but have a high coefficient of friction. For this reason, a seal ring formed of an elastomer is easy to obtain high sealing characteristics, but it is difficult to obtain high sliding characteristics.
  • an object of the present invention is to provide a sealing member excellent in sealing characteristics and sliding characteristics and a manufacturing method thereof.
  • a sealing member is made of a composite material containing a fluorine-based elastomer and a fluorine resin.
  • the fluororesin includes polytetrafluoroethylene (PTFE), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene / hexafluoropropylene copolymer (FEP), and tetrafluoroethylene / ethylene. And at least one of copolymer (ETFE).
  • the compression set at 150 ° C. of the sealing member is 90% or less. With this configuration, it is possible to provide a sealing member having excellent sealing characteristics and sliding characteristics.
  • the composite material may include 20 wt% or more and 40 wt% or less of the fluororesin. With this configuration, it is possible to provide a seal member having a good balance between seal characteristics and sliding characteristics.
  • the particle size of the fluororesin may be 10 ⁇ m or less. With this configuration, it is possible to provide a seal member that is further excellent in sliding characteristics.
  • the seal member may be formed in a ring shape. With this configuration, it is possible to provide a seal ring having excellent sealing characteristics and sliding characteristics.
  • a fluorine-based elastomer having a compression set at 150 ° C. of 20% or less and a fluororesin are prepared.
  • the fluororesin includes polytetrafluoroethylene (PTFE), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene / hexafluoropropylene copolymer (FEP), and tetrafluoroethylene / ethylene. And at least one of copolymer (ETFE).
  • the fluorinated elastomer and the fluororesin are kneaded. The material obtained by the kneading is formed. With this configuration, it is possible to provide a manufacturing method of a sealing member that is excellent in sealing characteristics and sliding characteristics.
  • the present invention is applicable to all seal members used in hydraulic equipment. Therefore, although the shape of the seal member is arbitrary, in this embodiment, a seal ring that is a ring-shaped seal member will be described as an example of the seal member.
  • the seal ring according to the present embodiment is made of a composite material including a fluorine-based elastomer that is a base material and a fluororesin that is a filling material.
  • Fluorine-based elastomer is advantageous as a material for a seal ring because it can achieve both a small compression set and a low friction coefficient as an elastomer.
  • the compression set of the fluoroelastomer used as the base material is preferably as small as possible. Specifically, a fluorine-based elastomer having a compression set at 150 ° C. of 20% or less can be used.
  • the fluoroelastomer according to this embodiment is not particularly limited as long as it can be kneaded with a fluororesin before molding.
  • a fluorine-based elastomer include a thermosetting paste (liquid) and a thermoplastic elastomer.
  • fluorine-based elastomer examples include “SIFEL 3000 series” from Shin-Etsu Chemical Co., Ltd., “Diel G-101” from Daikin Industries, Ltd., “Cefal Soft” from Central Glass Co., Ltd., “THV” from Sumitomo 3M Limited and “AFLAS” from Asahi Glass Co., Ltd.
  • the SIFEL 3000 series of Shin-Etsu Chemical Co., Ltd. is preferable in that it has a low glass transition point and maintains stable performance in a wide temperature range of about ⁇ 50 ° C. to 200 ° C.
  • the material forming the seal ring is required to have a lower friction coefficient than that of the fluorinated elastomer. Therefore, in the present embodiment, a fluororesin having a low coefficient of friction is used as a filling material that fills the fluoroelastomer that is the base material.
  • a material that acts to reduce the friction coefficient of the fluoroelastomer, that is, to impart lubricity to the fluoroelastomer.
  • the fluororesin may be composed of one type of material or may include a plurality of types of materials.
  • fluororesin examples include polytetrafluoroethylene (PTFE), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), and tetrafluoroethylene / hexafluoropropylene copolymer (FEP). And ethylene-tetrafluoroethylene copolymer (ETFE).
  • PTFE polytetrafluoroethylene
  • PFA tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer
  • FEP tetrafluoroethylene / hexafluoropropylene copolymer
  • ETFE ethylene-tetrafluoroethylene copolymer
  • the fluororesin is preferably in the form of a powder in order to improve dispersibility with respect to the fluoroelastomer.
  • the fluororesin is preferably in the form of a fine powder having an average particle size of 10 ⁇ m or less, and more preferably 10 ⁇ m or less, in order to impart high lubricity to the fluoroelastomer.
  • the particle diameter of each particle in the fluororesin can be 10 ⁇ m or less, and the average particle diameter can be 4 to 8 ⁇ m.
  • the fluororesin preferably has a low molecular weight.
  • a low molecular weight fluororesin is advantageous for making fine powders, and is less likely to be sticky and is less likely to be fibrillated, so that high dispersibility with respect to the fluoroelastomer can be obtained.
  • PTFE is used as the fluororesin.
  • the same results as in the case of PTFE shown below can be obtained when PTFE is replaced with another fluororesin.
  • a composite material having a lower coefficient of friction than that of a fluorine elastomer alone was obtained by using PTFE having a low molecular weight and filling (adding) PTFE into the fluorine elastomer.
  • PTFE having a low molecular weight
  • a more remarkable reduction in the friction coefficient is obtained.
  • the amount of PTFE in the composite material is determined within the range of compression set that provides sufficient sealing characteristics as a seal ring.
  • the compression set at 150 ° C. of the seal ring is 90% or less, high seal characteristics of the seal ring can be ensured. Therefore, it is possible to determine the amount of PTFE in the composite material so that the compression set at 150 ° C. of the seal ring is 90% or less.
  • the compression set at 150 ° C. is 40% or less.
  • a composite material in which PTFE is added to a fluorine-based elastomer generally, as the amount of PTFE with respect to the fluorine-based elastomer increases, compression set increases and the friction coefficient tends to decrease.
  • the change in compression set with respect to the amount of PTFE is moderate when the compression set is 40% or less. That is, when the compression set is 40% or less, the friction coefficient can be satisfactorily reduced, but the adverse effect due to the increase in compression set is less likely to occur. This phenomenon is considered due to the high dispersion of PTFE in the fluorine-based elastomer.
  • the reason why high dispersion of PTFE with respect to the fluorine-based elastomer was obtained in this embodiment may be, for example, the use of PTFE powder having an average particle diameter of 10 ⁇ m or less and a low molecular weight. That is, since the PTFE powder is small, it hardly aggregates in the fluorine-based elastomer. Further, when PTFE has a low molecular weight, the initial viscosity and the initial elastic modulus are lowered, and therefore, the viscosity and the elastic modulus are less likely to increase due to rotational heat generated during mixing as compared with a high molecular weight. It is considered that PTFE is highly dispersed in the fluorine-based elastomer by these combined actions.
  • the elongation hardly changes when the compression set is 40% or less, whereas when the compression set exceeds 40%, the compression set increases. Along with this, the elongation rate decreases. This phenomenon is considered to be caused by the fact that when the amount of PTFE is increased to such an extent that the compression set exceeds 40%, the limit of the amount of PTFE in the fluoroelastomer is exceeded, and PTFE aggregation starts.
  • a seal ring formed of such a composite material has both a sufficiently low static friction coefficient and a dynamic friction coefficient, and has excellent sliding characteristics.
  • thermosetting When using a thermosetting fluorine-based elastomer as the base material, first, PTFE powder is added to the fluorine-based elastomer paste (liquid) before curing, and the fluorine-based elastomer and PTFE powder are sufficiently kneaded to obtain a kneaded body. The obtained kneaded body is poured into a mold, and the mold is heated to cure the kneaded body in the mold. After cooling the mold, a seal ring is obtained from within the mold.
  • thermoplastic fluorine-based elastomer When a thermoplastic fluorine-based elastomer is used as the base material, first, PTFE powder is added to the fluorine-based elastomer, and the fluorine-based elastomer and the PTFE powder are sufficiently kneaded to obtain a kneaded body. The obtained kneaded body is heated, and the softened kneaded body is filled into a mold. After cooling the mold, a seal ring is obtained from within the mold.
  • kneading of one liquid of a fluorine-based elastomer, two liquids of a fluorine-based elastomer, and PTFE powder was performed.
  • the kneading may be performed by using a kneader or by manual work as long as the fluoroelastomer and the PTFE powder are mixed well.
  • the kneaded body obtained by kneading was filled in a mold for a seal ring, and the mold was heated. In heating the mold, the mold was held at 150 ° C. for 5 to 10 minutes. As a result, seven types of seal rings having an outer diameter of 25.0 mm, an inner diameter of 19.6 mm, and a thickness of 3.2 mm and different amounts of PTFE were obtained.
  • FIG. 1 is a graph showing compression set of each seal ring.
  • the horizontal axis in FIG. 1 indicates the amount of PTFE. From FIG. 1, it can be seen that the compression set at 150 ° C. increases as the amount of PTFE increases.
  • the compression set at 150 ° C. exceeds 90%, sufficient seal characteristics may not be obtained in the seal ring. Referring to FIG. 1, it can be seen that when the amount of PTFE is 40% by weight or less, the compression set at 150 ° C. is 90% or less.
  • the compression set at 150 ° C. is 60% or less, better sealing characteristics can be obtained in the seal ring.
  • the amount of PTFE is 35% by weight or less, the compression set at 150 ° C. is 60% or less.
  • the compression set at 150 ° C. is 45% or less, particularly good sealing characteristics can be obtained in the seal ring.
  • the compression set at 150 ° C. is 45% or less when the amount of PTFE is 30% by weight or less.
  • each seal ring was directly used as a measurement sample, and a vertical friction wear tester was used.
  • carbon steel S45C having an average roughness Rz of 6.3 ⁇ m was used as a counterpart material for sliding the measurement sample.
  • the surface pressure of the measurement sample against the mating material is 0.65 MPa
  • the peripheral speed of the outer circumference of the measurement sample is 0.50 m / s
  • the PV value is 0.33 (MPa ⁇ m / s)
  • FIG. 2A is a graph showing the static friction coefficient of each seal ring
  • FIG. 2B is a graph showing the dynamic friction coefficient of each seal ring.
  • the horizontal axis in FIGS. 2A and 2B indicates the amount of PTFE.
  • the measurement sample in which the amount of PTFE is 40% by weight is omitted because the compression set at 150 ° C. is outside the allowable range of this example.
  • both the static friction coefficient and the dynamic friction coefficient decrease as the amount of PTFE increases.
  • the static friction coefficient decreases significantly in the region where the amount of PTFE is 20% by weight or more
  • the dynamic friction coefficient decreases significantly in the region where the amount of PTFE is 25% by weight or more.
  • both the static friction coefficient and the dynamic friction coefficient are 0.45 or less, particularly good sliding characteristics can be obtained in the seal ring.
  • FIGS. 2A and 2B it can be seen that when the amount of PTFE is 20% or more, the static friction coefficient and the dynamic friction coefficient are both 0.45 or less.
  • the amount of PTFE in the seal ring is preferably 40% by weight or less, more preferably 35% by weight or less, and particularly preferably 30% by weight or less. . Further, from the measurement results of the static friction coefficient and the dynamic friction coefficient, the amount of PTFE in the seal ring is preferably 20% by weight or more, and more preferably 25% by weight or more.
  • each seal ring was evaluated from a viewpoint other than compression set and coefficient of friction. Specifically, each seal ring was measured for Shore A hardness, tensile strength, elongation rate, and wear amount.
  • FIG. 3 is a graph showing the measurement result of Shore A hardness.
  • the horizontal axis in FIG. 4 indicates the amount of PTFE.
  • the Shore A hardness is sufficiently high at 71 even for a measurement sample made of only a fluoroelastomer having a PTFE amount of 0% by weight. Further, it can be seen that the Shore A hardness increases with an increase in the amount of PTFE. That is, a sufficiently high Shore A hardness was obtained for all measurement samples.
  • FIG. 4A is a graph showing the measurement result of tensile strength
  • FIG. 4B is a graph showing the measurement result of elongation.
  • the horizontal axis of FIGS. 4A and 4B indicates the amount of PTFE.
  • FIG. 4A shows that the tensile strength is greatly reduced in the measurement sample in which the amount of PTFE is 50% by weight.
  • the region where the amount of PTFE is 40% by weight or less good tensile strength is obtained.
  • a particularly good tensile strength was obtained with a measurement sample in which the amount of PTFE was 35% by weight or less.
  • carbon steel S45C having an average roughness Rz of 6.3 ⁇ m was used as a counterpart material for sliding the measurement sample.
  • the surface pressure of the measurement sample against the mating material is 0.65 MPa
  • the peripheral speed of the outer circumference of the measurement sample is 0.50 m / s
  • the PV value is 0.33 (MPa ⁇ m / s)
  • a one hour wear test was carried out at the expected temperature.
  • FIG. 5A is a photograph of the surface (sliding surface) of the measurement sample before the wear test
  • FIG. 5B is a photograph of the surface (sliding surface) of the measurement sample after the wear test.
  • no conspicuous sliding trace was observed, and it was confirmed that the measurement sample was smoothly sliding with respect to the counterpart material in the wear test.
  • the wear amount of the seal ring obtained by the difference between the thickness of the measurement sample before the wear test and the thickness of the measurement sample after the wear test was 13 ⁇ m, which was very small.
  • the seal ring according to the present embodiment it was confirmed that deterioration due to wear is suppressed by excellent sliding characteristics.
  • the seal ring according to this embodiment is made of only a fluorine-based elastomer and a fluororesin.
  • the main component of the seal ring is a fluoroelastomer and a fluororesin, the object of the present invention can be achieved even if the seal ring contains subcomponents such as various additives.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Sealing Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Sealing Material Composition (AREA)

Abstract

[Problem] To provide a seal member that has excellent sealing and sliding properties. [Solution] A seal member comprises a composite material that includes a fluorine-based elastomer and a fluororesin. The fluororesin includes at least one of polytetrafluoroethylene (PTFE), tetrafluoroethylene perfluoro alkyl vinyl ether copolymer (PFA), tetrafluoroethylene hexafluoropropylene copolymer (FEP), and tetrafluoroethylene ethylene copolymer (ETFE). The seal member has a compression set at 150°C of 90% or less.

Description

シール部材及びその製造方法Seal member and manufacturing method thereof
 本発明は、油圧機器に用いられるシール部材及びその製造方法に関する。 The present invention relates to a sealing member used for hydraulic equipment and a method for manufacturing the same.
 油圧式の無段変速機などの各種油圧機器が搭載された自動車が知られている。これらの油圧機器には、オイルをシールするためのシールリングが用いられる。シールリングは、例えば、ハウジングに挿通されるシャフトに嵌め込まれ、ハウジングとシャフトとの間を封止する。 An automobile equipped with various hydraulic devices such as a hydraulic continuously variable transmission is known. In these hydraulic devices, a seal ring for sealing oil is used. For example, the seal ring is fitted into a shaft inserted through the housing, and seals between the housing and the shaft.
 シールリングは、ハウジングとシャフトとの間の高いシール特性を実現するために、ハウジング及びシャフトに隙間なく密着可能であることが好ましい。このため、シールリングは、ゴム弾性を有するエラストマーで形成される場合がある。特許文献1,2には、エラストマーで形成されたシールリングが開示されている。 It is preferable that the seal ring can be in close contact with the housing and the shaft without any gap in order to realize high sealing characteristics between the housing and the shaft. For this reason, the seal ring may be formed of an elastomer having rubber elasticity. Patent Documents 1 and 2 disclose a seal ring formed of an elastomer.
特開2012-255495号公報JP 2012-255495 A 特開2013-194884号公報JP 2013-194484 A
 油圧機器が搭載された自動車では、燃費向上のため、油圧機器の駆動損失の低減が望まれている。 In automobiles equipped with hydraulic equipment, reduction of hydraulic equipment drive loss is desired to improve fuel economy.
 シールリングは、油圧機器の駆動時に、ハウジングやシャフトに対して往復摺動する。このため、油圧機器には、シールリングとハウジングとの間の摩擦力や、シールリングとシャフトとの間の摩擦力による駆動損失である摩擦損失(フリクションロス)が生じる。したがって、シールリングは、油圧機器の摩擦損失を低減するために、高い摺動特性を有することが好ましい。 The seal ring slides back and forth with respect to the housing and shaft when the hydraulic equipment is driven. For this reason, a friction loss (friction loss) that is a driving loss due to a frictional force between the seal ring and the housing and a frictional force between the seal ring and the shaft is generated in the hydraulic device. Therefore, the seal ring preferably has high sliding characteristics in order to reduce friction loss of the hydraulic equipment.
 しかしながら、エラストマーは、一般的に、ゴム弾性に富むものの、摩擦係数が高い。このため、エラストマーにより形成されたシールリングでは、高いシール特性が得られやすいものの、高い摺動特性が得られにくい。 However, elastomers are generally rich in rubber elasticity but have a high coefficient of friction. For this reason, a seal ring formed of an elastomer is easy to obtain high sealing characteristics, but it is difficult to obtain high sliding characteristics.
 以上のような事情に鑑み、本発明の目的は、シール特性及び摺動特性に優れるシール部材及びその製造方法を提供することにある。 In view of the circumstances as described above, an object of the present invention is to provide a sealing member excellent in sealing characteristics and sliding characteristics and a manufacturing method thereof.
 上記目的を達成するため、本発明の一形態に係るシール部材は、フッ素系エラストマーとフッ素樹脂とを含む複合材料から成る。
 上記フッ素樹脂は、ポリテトラフルオロエチレン(PTFE)と、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)と、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)と、テトラフルオロエチレン・エチレン共重合体(ETFE)とのうちの少なくとも1つを有する。
 上記シール部材の150℃における圧縮永久歪みが90%以下である。
 この構成により、シール特性及び摺動特性に優れるシール部材を提供することができる。
In order to achieve the above object, a sealing member according to an embodiment of the present invention is made of a composite material containing a fluorine-based elastomer and a fluorine resin.
The fluororesin includes polytetrafluoroethylene (PTFE), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene / hexafluoropropylene copolymer (FEP), and tetrafluoroethylene / ethylene. And at least one of copolymer (ETFE).
The compression set at 150 ° C. of the sealing member is 90% or less.
With this configuration, it is possible to provide a sealing member having excellent sealing characteristics and sliding characteristics.
 上記複合材料が20重量%以上40重量%以下の上記フッ素樹脂を含んでもよい。
 この構成により、シール特性と摺動特性とのバランスが良好なシール部材を提供することができる。
The composite material may include 20 wt% or more and 40 wt% or less of the fluororesin.
With this configuration, it is possible to provide a seal member having a good balance between seal characteristics and sliding characteristics.
 上記フッ素樹脂の粒径が10μm以下であってもよい。
 この構成により、更に摺動特性に優れるシール部材を提供することができる。
The particle size of the fluororesin may be 10 μm or less.
With this configuration, it is possible to provide a seal member that is further excellent in sliding characteristics.
 上記シール部材はリング状に成形されていてもよい。
 この構成により、シール特性及び摺動特性に優れるシールリングを提供することができる。
The seal member may be formed in a ring shape.
With this configuration, it is possible to provide a seal ring having excellent sealing characteristics and sliding characteristics.
 また、本発明の一形態に係るシール部材の製造方法では、150℃における圧縮永久歪みが20%以下のフッ素系エラストマーと、フッ素樹脂とを用意する。
 上記フッ素樹脂は、ポリテトラフルオロエチレン(PTFE)と、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)と、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)と、テトラフルオロエチレン・エチレン共重合体(ETFE)とのうちの少なくとも1つを有する。
 上記フッ素系エラストマーと上記フッ素樹脂との混練を行う。
 上記混練により得られる材料を成形する。
 この構成により、シール特性及び摺動特性に優れるシール部材の製造方法を提供することができる。
In the method for manufacturing a seal member according to one embodiment of the present invention, a fluorine-based elastomer having a compression set at 150 ° C. of 20% or less and a fluororesin are prepared.
The fluororesin includes polytetrafluoroethylene (PTFE), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene / hexafluoropropylene copolymer (FEP), and tetrafluoroethylene / ethylene. And at least one of copolymer (ETFE).
The fluorinated elastomer and the fluororesin are kneaded.
The material obtained by the kneading is formed.
With this configuration, it is possible to provide a manufacturing method of a sealing member that is excellent in sealing characteristics and sliding characteristics.
 シール特性及び摺動特性に優れるシール部材及びその製造方法を提供することができる。 It is possible to provide a sealing member excellent in sealing characteristics and sliding characteristics and a manufacturing method thereof.
シールリングの圧縮永久歪みを示したグラフである。It is the graph which showed the compression set of the seal ring. シールリングの静摩擦係数を示したグラフである。It is the graph which showed the static friction coefficient of the seal ring. シールリングの動摩擦係数を示したグラフである。It is the graph which showed the dynamic friction coefficient of the seal ring. シールリングのショアA硬度を示したグラフである。It is the graph which showed the Shore A hardness of the seal ring. シールリングの引っ張り強度を示したグラフである。It is the graph which showed the tensile strength of the seal ring. シールリングの伸び率を示したグラフである。It is the graph which showed the elongation rate of the seal ring. 摩耗試験前のシールリングの表面を示した写真である。It is the photograph which showed the surface of the seal ring before an abrasion test. 摩耗試験後のシールリングの表面を示した写真である。It is the photograph which showed the surface of the seal ring after an abrasion test.
 以下、図面を参照しながら、本発明の実施形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 本発明は、油圧機器に用いられるシール部材全般に適用可能である。したがって、シール部材の形状は任意であるが、本実施形態では、シール部材の一例として、リング状のシール部材であるシールリングについて説明する。 The present invention is applicable to all seal members used in hydraulic equipment. Therefore, although the shape of the seal member is arbitrary, in this embodiment, a seal ring that is a ring-shaped seal member will be described as an example of the seal member.
 [シールリング]
 本実施形態に係るシールリングは、ベース材料であるフッ素系エラストマーと、充填材料であるフッ素樹脂とを含む複合材料から成る。
[Seal ring]
The seal ring according to the present embodiment is made of a composite material including a fluorine-based elastomer that is a base material and a fluororesin that is a filling material.
 フッ素系エラストマーは、小さい圧縮永久歪みと、エラストマーとしては低い摩擦係数とを両立可能な点においてシールリング用の材料として有利である。ベース材料として用いるフッ素系エラストマーの圧縮永久歪みはなるべく小さいことが好ましい。具体的には、150℃における圧縮永久歪みが20%以下であるフッ素系エラストマーを用いることができる。 Fluorine-based elastomer is advantageous as a material for a seal ring because it can achieve both a small compression set and a low friction coefficient as an elastomer. The compression set of the fluoroelastomer used as the base material is preferably as small as possible. Specifically, a fluorine-based elastomer having a compression set at 150 ° C. of 20% or less can be used.
 本実施形態に係るフッ素系エラストマーは、成形前にフッ素樹脂との混練が可能であれば特に限定されない。このようなフッ素系エラストマーとしては、例えば、熱硬化性ペースト(液体)や、熱可塑性エラストマーが挙げられる。 The fluoroelastomer according to this embodiment is not particularly limited as long as it can be kneaded with a fluororesin before molding. Examples of such a fluorine-based elastomer include a thermosetting paste (liquid) and a thermoplastic elastomer.
 本実施形態で採用可能なフッ素系エラストマーとしては、例えば、信越化学工業株式会社の「SIFEL3000シリーズ」や、ダイキン工業株式会社の「Diel G-101」や、セントラルガラス株式会社の「セフラルソフト」や、住友スリーエム株式会社の「THV」や、旭硝子株式会社の「AFLAS」が挙げられる。 Examples of the fluorine-based elastomer that can be used in the present embodiment include “SIFEL 3000 series” from Shin-Etsu Chemical Co., Ltd., “Diel G-101” from Daikin Industries, Ltd., “Cefal Soft” from Central Glass Co., Ltd., “THV” from Sumitomo 3M Limited and “AFLAS” from Asahi Glass Co., Ltd.
 特に信越化学工業株式会社のSIFEL3000シリーズは、ガラス転移点が低く、―50℃~200℃程度の広い温度範囲において安定した性能が維持される点で好ましい。 In particular, the SIFEL 3000 series of Shin-Etsu Chemical Co., Ltd. is preferable in that it has a low glass transition point and maintains stable performance in a wide temperature range of about −50 ° C. to 200 ° C.
 充分に高い摺動特性を有するシールリングを得るために、シールリングを形成する材料にはフッ素系エラストマーよりも更に低い摩擦係数が要求される。そこで、本実施形態では、ベース材料であるフッ素系エラストマーに充填する充填材料として、低摩擦係数であるフッ素樹脂が用いられる。 In order to obtain a seal ring having sufficiently high sliding characteristics, the material forming the seal ring is required to have a lower friction coefficient than that of the fluorinated elastomer. Therefore, in the present embodiment, a fluororesin having a low coefficient of friction is used as a filling material that fills the fluoroelastomer that is the base material.
 フッ素樹脂としては、フッ素系エラストマーの摩擦係数を低減させるように、つまりフッ素系エラストマーに潤滑性を付与するように作用する材料が選択される。フッ素系樹脂は、1種類の材料により構成されていても、複数種類の材料を含んでいてもよい。 As the fluororesin, a material is selected that acts to reduce the friction coefficient of the fluoroelastomer, that is, to impart lubricity to the fluoroelastomer. The fluororesin may be composed of one type of material or may include a plurality of types of materials.
 本実施形態で採用可能なフッ素樹脂としては、例えば、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)、エチレン・テトラフルオロエチレン共重合体(ETFE)などが挙げられる。 Examples of the fluororesin that can be used in this embodiment include polytetrafluoroethylene (PTFE), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), and tetrafluoroethylene / hexafluoropropylene copolymer (FEP). And ethylene-tetrafluoroethylene copolymer (ETFE).
 特に、PTFE、PFA、FEP、及びETFEのうちの少なくとも1つを有するフッ素樹脂を用いた場合に、シールリングの摺動特性が向上することが確認されている。 Particularly, it has been confirmed that the sliding characteristics of the seal ring are improved when a fluororesin having at least one of PTFE, PFA, FEP, and ETFE is used.
 また、フッ素樹脂は、フッ素系エラストマーに対する分散性を向上させるため、粉末状であることが好ましい。更に、フッ素樹脂は、フッ素系エラストマーにより高い潤滑性を付与するために、平均粒径が10μm以下の微粉末状であることが好ましく、各粒子の粒径が10μm以下であることが更に好ましい。具体的には、フッ素樹脂における各粒子の粒径を10μm以下とし、平均粒径を4~8μmとすることができる。 In addition, the fluororesin is preferably in the form of a powder in order to improve dispersibility with respect to the fluoroelastomer. Furthermore, the fluororesin is preferably in the form of a fine powder having an average particle size of 10 μm or less, and more preferably 10 μm or less, in order to impart high lubricity to the fluoroelastomer. Specifically, the particle diameter of each particle in the fluororesin can be 10 μm or less, and the average particle diameter can be 4 to 8 μm.
 更に、フッ素樹脂は、低分子量であることが好ましい。低分子量のフッ素樹脂は、微粉末化に有利であるとともに、粘つきが発生しにくく、かつ、線維化しにくいためフッ素系エラストマーに対する高い分散性が得られる。以下、フッ素樹脂としてPTFEを用いた例について説明するが、PTFEを他のフッ素樹脂に代えた場合についても、以下に示すPTFEの場合と同様の結果が得られる。 Furthermore, the fluororesin preferably has a low molecular weight. A low molecular weight fluororesin is advantageous for making fine powders, and is less likely to be sticky and is less likely to be fibrillated, so that high dispersibility with respect to the fluoroelastomer can be obtained. Hereinafter, an example in which PTFE is used as the fluororesin will be described. However, the same results as in the case of PTFE shown below can be obtained when PTFE is replaced with another fluororesin.
 本実施形態では、低分子量のPTFEを用い、フッ素系エラストマーにPTFEを充填(添加)することにより、フッ素系エラストマー単体よりも低い摩擦係数の複合材料が得られた。この複合材料では、PTFEの量が20重量%以上の場合に、より顕著な摩擦係数の低下が得られている。 In this embodiment, a composite material having a lower coefficient of friction than that of a fluorine elastomer alone was obtained by using PTFE having a low molecular weight and filling (adding) PTFE into the fluorine elastomer. In this composite material, when the amount of PTFE is 20% by weight or more, a more remarkable reduction in the friction coefficient is obtained.
 この複合材料では、PTFEの量が多いほど、摩擦係数が低下するものの、圧縮永久歪みが増大してしまう。本実施形態では、シールリングとして充分なシール特性が得られる圧縮永久歪みの範囲内で、複合材料におけるPTFEの量が決定される。 In this composite material, as the amount of PTFE increases, the coefficient of friction decreases, but the compression set increases. In the present embodiment, the amount of PTFE in the composite material is determined within the range of compression set that provides sufficient sealing characteristics as a seal ring.
 具体的には、シールリングの150℃における圧縮永久歪みが90%以下である場合に、シールリングの高いシール特性を確保することができる。したがって、シールリングの150℃における圧縮永久歪みが90%以下となるように、複合材料におけるPTFEの量を決定することが可能である。 Specifically, when the compression set at 150 ° C. of the seal ring is 90% or less, high seal characteristics of the seal ring can be ensured. Therefore, it is possible to determine the amount of PTFE in the composite material so that the compression set at 150 ° C. of the seal ring is 90% or less.
 本実施形態では、150℃における圧縮永久歪みが20%以下であるフッ素系エラストマーを用いることにより、複合材料におけるPTFEの量を40重量%まで増加させた場合にも、シールリングの150℃における圧縮永久歪みを90%以下に抑えることができている。なお、複合材料におけるPTFEの量を50重量%まで増加させた場合には、シールリングの150℃における圧縮永久歪みが95%まで増大した。 In this embodiment, even when the amount of PTFE in the composite material is increased to 40% by weight by using a fluorine-based elastomer whose compression set at 150 ° C. is 20% or less, compression of the seal ring at 150 ° C. Permanent distortion can be suppressed to 90% or less. In addition, when the amount of PTFE in the composite material was increased to 50% by weight, the compression set at 150 ° C. of the seal ring increased to 95%.
 また、本実施形態に係る複合材料では、150℃における圧縮永久歪みが40%以下であることが特に好ましい。フッ素系エラストマーにPTFEを添加した複合材料では、一般的に、フッ素系エラストマーに対するPTFEの量の増加に伴い、圧縮永久歪みが増加し、摩擦係数が低下する傾向が見られる。その点、本実施形態において、PTFEの量に対する圧縮永久歪みの変化は、圧縮永久歪みが40%以下である場合に緩やかとなることが確認されている。つまり、圧縮永久歪みが40%以下である場合に、摩擦係数の低下が良好に得られる一方で、圧縮永久歪みの増加による悪影響が生じにくい。この現象は、フッ素系エラストマーに対してPTFEが高分散していることに起因するものと考えられる。 In the composite material according to the present embodiment, it is particularly preferable that the compression set at 150 ° C. is 40% or less. In a composite material in which PTFE is added to a fluorine-based elastomer, generally, as the amount of PTFE with respect to the fluorine-based elastomer increases, compression set increases and the friction coefficient tends to decrease. In this regard, in this embodiment, it has been confirmed that the change in compression set with respect to the amount of PTFE is moderate when the compression set is 40% or less. That is, when the compression set is 40% or less, the friction coefficient can be satisfactorily reduced, but the adverse effect due to the increase in compression set is less likely to occur. This phenomenon is considered due to the high dispersion of PTFE in the fluorine-based elastomer.
 本実施形態においてフッ素系エラストマーに対するPTFEの高分散が得られた理由としては、例えば、平均粒径が10μm以下で、かつ、低分子量のPTFE粉末を用いたことなどが考えられる。つまり、PTFE粉末が小さいことにより、フッ素系エラストマー内において凝集しにくくなる。また、PTFEが低分子量であると、初期粘性と初期弾性率が低くなるため、高分子量である場合に比べて混合中に発生する回転熱による粘性及び弾性率の増大が生じにくくなる。これらの複合作用によって、PTFEがフッ素系エラストマーに高分散したものと考えられる。 The reason why high dispersion of PTFE with respect to the fluorine-based elastomer was obtained in this embodiment may be, for example, the use of PTFE powder having an average particle diameter of 10 μm or less and a low molecular weight. That is, since the PTFE powder is small, it hardly aggregates in the fluorine-based elastomer. Further, when PTFE has a low molecular weight, the initial viscosity and the initial elastic modulus are lowered, and therefore, the viscosity and the elastic modulus are less likely to increase due to rotational heat generated during mixing as compared with a high molecular weight. It is considered that PTFE is highly dispersed in the fluorine-based elastomer by these combined actions.
 更に、フッ素系エラストマーにPTFEを添加した複合材料では、圧縮永久歪みが40%以下の場合には伸び率がほとんど変化しないのに対し、圧縮永久歪みが40%超えると、圧縮永久歪みの増大に伴って伸び率が低下してしまう。この現象は、圧縮永久歪みが40%を超える程度にまでPTFEの量を増加させると、フッ素系エラストマーにおけるPTFEの量の限界を超え、PTFEの凝集が開始することに起因するものと考えられる。 Further, in the composite material in which PTFE is added to the fluoroelastomer, the elongation hardly changes when the compression set is 40% or less, whereas when the compression set exceeds 40%, the compression set increases. Along with this, the elongation rate decreases. This phenomenon is considered to be caused by the fact that when the amount of PTFE is increased to such an extent that the compression set exceeds 40%, the limit of the amount of PTFE in the fluoroelastomer is exceeded, and PTFE aggregation starts.
 以上述べたように、本実施形態に係る複合材料では、PTFEの量を圧縮永久歪みが40%以下となる量に抑えることにより、圧縮永久歪みの増大及び伸び率の低下を効果的に抑制しつつ、摩擦係数を良好に向上させることが可能である。 As described above, in the composite material according to the present embodiment, by suppressing the amount of PTFE to an amount at which the compression set is 40% or less, an increase in compression set and a decrease in elongation are effectively suppressed. However, the coefficient of friction can be improved satisfactorily.
 このような複合材料で形成したシールリングでは、静摩擦係数及び動摩擦係数のいずれも充分に低く、優れた摺動特性が得られている。 A seal ring formed of such a composite material has both a sufficiently low static friction coefficient and a dynamic friction coefficient, and has excellent sliding characteristics.
 [シールリングの製造方法]
 (熱硬化)
 ベース材料として熱硬化性フッ素系エラストマーを用いる場合、まず硬化前のフッ素系エラストマーペースト(液体)にPTFE粉末を添加し、フッ素系エラストマーとPTFE粉末とを充分に混練して混練体を得る。そして、得られた混練体を金型に注入し、金型を加熱することにより金型内の混練体を硬化させる。金型を冷却した後に、金型内からシールリングが得られる。
[Seal ring manufacturing method]
(Thermosetting)
When using a thermosetting fluorine-based elastomer as the base material, first, PTFE powder is added to the fluorine-based elastomer paste (liquid) before curing, and the fluorine-based elastomer and PTFE powder are sufficiently kneaded to obtain a kneaded body. The obtained kneaded body is poured into a mold, and the mold is heated to cure the kneaded body in the mold. After cooling the mold, a seal ring is obtained from within the mold.
 (射出成形)
 ベース材料として熱可塑性フッ素系エラストマーを用いる場合、まずフッ素系エラストマーにPTFE粉末を添加し、フッ素系エラストマーとPTFE粉末とを充分に混練して混練体を得る。そして、得られた混練体を加熱し、軟化した混練体を金型に充填する。金型を冷却した後に、金型内からシールリングが得られる。
(injection molding)
When a thermoplastic fluorine-based elastomer is used as the base material, first, PTFE powder is added to the fluorine-based elastomer, and the fluorine-based elastomer and the PTFE powder are sufficiently kneaded to obtain a kneaded body. The obtained kneaded body is heated, and the softened kneaded body is filled into a mold. After cooling the mold, a seal ring is obtained from within the mold.
 [シールリングの作製]
 本実施例では、フッ素系エラストマーとして、ショアA硬度が高く、耐圧性に優れる信越化学工業株式会社の「SIFEL3705A/B」を用いた。このフッ素系エラストマーは、二液タイプの熱硬化性ペーストである。PTFE粉末の平均粒径は4μmとした。PTFEの量は、0,10,20,25,30,35,40重量%の7通りとした。
[Production of seal ring]
In this example, “SIFEL3705A / B” manufactured by Shin-Etsu Chemical Co., Ltd., which has high Shore A hardness and excellent pressure resistance, was used as the fluorine-based elastomer. This fluorine-based elastomer is a two-component thermosetting paste. The average particle size of the PTFE powder was 4 μm. The amount of PTFE was 7 types of 0, 10, 20, 25, 30, 35, and 40% by weight.
 まず、フッ素系エラストマーの一液と、フッ素系エラストマーの二液と、PTFE粉末との混練を行った。この混練は、フッ素系エラストマーとPTFE粉末とが良好に混ざり合えばよく、混練機を用いて行っても、手作業で行ってもよい。次に、混練により得られた混練体をシールリング用の金型に充填し、金型の加熱を行った。金型の加熱では、150℃にて5~10分保持した。これにより、外径25.0mm、内径19.6mm、厚さ3.2mmの、PTFEの量が異なる7種類のシールリングが得られた。 First, kneading of one liquid of a fluorine-based elastomer, two liquids of a fluorine-based elastomer, and PTFE powder was performed. The kneading may be performed by using a kneader or by manual work as long as the fluoroelastomer and the PTFE powder are mixed well. Next, the kneaded body obtained by kneading was filled in a mold for a seal ring, and the mold was heated. In heating the mold, the mold was held at 150 ° C. for 5 to 10 minutes. As a result, seven types of seal rings having an outer diameter of 25.0 mm, an inner diameter of 19.6 mm, and a thickness of 3.2 mm and different amounts of PTFE were obtained.
 [PTFEの量の検討]
 シールリングにおけるPTFEの量について、圧縮永久歪み及び摩擦係数の観点から検討した。具体的には、各シールリングについて、150℃における圧縮永久歪み、静摩擦係数、及び動摩擦係数の測定を行った。
[Examination of the amount of PTFE]
The amount of PTFE in the seal ring was examined from the viewpoint of compression set and coefficient of friction. Specifically, the compression set, static friction coefficient, and dynamic friction coefficient at 150 ° C. were measured for each seal ring.
 (圧縮永久歪みの測定)
 本測定の測定サンプルとしては、射出成型により得られた、長さ5mm、幅15mm、厚さ2mmの試験片を用いた。
(Measurement of compression set)
As a measurement sample for this measurement, a test piece having a length of 5 mm, a width of 15 mm, and a thickness of 2 mm obtained by injection molding was used.
 本測定では、まず、スペーサにより挟んだ測定サンプルを、スペーサ間に加圧力を加えることにより25%圧縮し、150℃で100時間保持した。その後、スペーサ間の加圧力を解除し、測定サンプルを室温で30分間静置した。150℃における圧縮永久歪みを、以下の式により算出した。
 (150℃における圧縮永久歪み)=[(t-t)/t-t]×100 [%]
 (ここで、t:試験前の測定サンプルの厚さ(mm)、t:スペーサの厚さ(mm)、t:試験後(室温で30分静置した後)の測定サンプルの厚さ(mm)である。)
In this measurement, first, a measurement sample sandwiched between spacers was compressed by 25% by applying a pressure between the spacers and held at 150 ° C. for 100 hours. Thereafter, the applied pressure between the spacers was released, and the measurement sample was allowed to stand at room temperature for 30 minutes. The compression set at 150 ° C. was calculated by the following formula.
(Compression set at 150 ° C.) = [(T 0 −t 2 ) / t 0 −t 1 ] × 100 [%]
(Where, t 0 : thickness of the measurement sample before the test (mm), t 1 : thickness of the spacer (mm), t 2 : thickness of the measurement sample after the test (after standing at room temperature for 30 minutes) (Mm)
 図1は各シールリングの圧縮永久歪みを示すグラフである。図1の横軸はPTFEの量を示している。図1から、150℃における圧縮永久歪みは、PTFEの量の増加に伴って増大することがわかる。 FIG. 1 is a graph showing compression set of each seal ring. The horizontal axis in FIG. 1 indicates the amount of PTFE. From FIG. 1, it can be seen that the compression set at 150 ° C. increases as the amount of PTFE increases.
 一方で、150℃における圧縮永久歪みが90%を超える場合には、シールリングにおいて充分なシール特性が得られない場合がある。図1を参照すると、PTFEの量が40重量%以下の場合に、150℃における圧縮永久歪みが90%以下となることがわかる。 On the other hand, if the compression set at 150 ° C. exceeds 90%, sufficient seal characteristics may not be obtained in the seal ring. Referring to FIG. 1, it can be seen that when the amount of PTFE is 40% by weight or less, the compression set at 150 ° C. is 90% or less.
 また、150℃における圧縮永久歪みが60%以下である場合に、シールリングにおいてより良好なシール特性が得られる。図1を参照すると、PTFEの量が35重量%以下の場合に、150℃における圧縮永久歪みが60%以下となることがわかる。 Further, when the compression set at 150 ° C. is 60% or less, better sealing characteristics can be obtained in the seal ring. Referring to FIG. 1, it can be seen that when the amount of PTFE is 35% by weight or less, the compression set at 150 ° C. is 60% or less.
 更に、150℃における圧縮永久歪みが45%以下である場合に、シールリングにおいて特に良好なシール特性が得られる。図1を参照すると、PTFEの量が30重量%以下の場合に、150℃における圧縮永久歪みが45%以下となることがわかる。 Furthermore, when the compression set at 150 ° C. is 45% or less, particularly good sealing characteristics can be obtained in the seal ring. Referring to FIG. 1, it can be seen that the compression set at 150 ° C. is 45% or less when the amount of PTFE is 30% by weight or less.
 (静摩擦係数及び動摩擦係数の測定)
 本測定では、各シールリングをそのまま測定サンプルとし、縦型摩擦摩耗試験機を用いた。
(Measurement of static friction coefficient and dynamic friction coefficient)
In this measurement, each seal ring was directly used as a measurement sample, and a vertical friction wear tester was used.
 本測定では、測定サンプルを摺動させる相手材として平均粗さRzが6.3μmの炭素鋼S45Cを用いた。本測定は、測定サンプルの相手材に対する面圧を0.65MPaとし、測定サンプルの外周の周速を0.50m/sとし、PV値を0.33(MPa・m/s)として、油中で成り行き温度にて行った。 In this measurement, carbon steel S45C having an average roughness Rz of 6.3 μm was used as a counterpart material for sliding the measurement sample. In this measurement, the surface pressure of the measurement sample against the mating material is 0.65 MPa, the peripheral speed of the outer circumference of the measurement sample is 0.50 m / s, the PV value is 0.33 (MPa · m / s), At the expected temperature.
 図2Aは各シールリングの静摩擦係数を示すグラフであり、図2Bは各シールリングの動摩擦係数を示すグラフである。図2A及び図2Bの横軸はPTFEの量を示している。なお、図2A及び図2Bにおいて、PTFEの量が40重量%である測定サンプルは、150℃における圧縮永久歪みが本実施例の許容範囲外であるため省略されている。 FIG. 2A is a graph showing the static friction coefficient of each seal ring, and FIG. 2B is a graph showing the dynamic friction coefficient of each seal ring. The horizontal axis in FIGS. 2A and 2B indicates the amount of PTFE. In FIG. 2A and FIG. 2B, the measurement sample in which the amount of PTFE is 40% by weight is omitted because the compression set at 150 ° C. is outside the allowable range of this example.
 図2A及び図2Bから、静摩擦係数及び動摩擦係数はいずれも、PTFEの量の増加に伴って低下することがわかる。特に、静摩擦係数は、PTFEの量が20重量%以上の領域において顕著に減少することがわかり、動摩擦係数は、PTFEの量が25重量%以上の領域において顕著に低下することがわかる。 2A and 2B, it can be seen that both the static friction coefficient and the dynamic friction coefficient decrease as the amount of PTFE increases. In particular, it can be seen that the static friction coefficient decreases significantly in the region where the amount of PTFE is 20% by weight or more, and the dynamic friction coefficient decreases significantly in the region where the amount of PTFE is 25% by weight or more.
 また、静摩擦係数及び動摩擦係数がいずれも0.45以下である場合に、シールリングにおいて特に良好な摺動特性が得られる。図2A及び図2Bを参照すると、PTFEの量が20%以上の場合に、静摩擦係数及び動摩擦係数がいずれも0.45以下となることがわかる。 Also, when both the static friction coefficient and the dynamic friction coefficient are 0.45 or less, particularly good sliding characteristics can be obtained in the seal ring. Referring to FIGS. 2A and 2B, it can be seen that when the amount of PTFE is 20% or more, the static friction coefficient and the dynamic friction coefficient are both 0.45 or less.
 (PTFEの量についての考察)
 150℃における圧縮永久歪みの測定結果から、シールリングにおけるPTFEの量は、40重量%以下であることが好ましく、35重量%以下であることが更に好ましく、30重量%以下であることが特に好ましい。また、静摩擦係数及び動摩擦係数の測定結果から、シールリングにおけるPTFEの量は、20重量%以上であることが好ましく、25重量%以上であることが更に好ましい。
(Consideration of the amount of PTFE)
From the measurement result of compression set at 150 ° C., the amount of PTFE in the seal ring is preferably 40% by weight or less, more preferably 35% by weight or less, and particularly preferably 30% by weight or less. . Further, from the measurement results of the static friction coefficient and the dynamic friction coefficient, the amount of PTFE in the seal ring is preferably 20% by weight or more, and more preferably 25% by weight or more.
 [シールリングの評価]
 各シールリングについて、圧縮永久歪み及び摩擦係数以外観点から評価を行った。具体的には、各シールリングについて、ショアA硬度、引っ張り強度、伸び率、及び摩耗量の測定を行った。
[Evaluation of seal ring]
Each seal ring was evaluated from a viewpoint other than compression set and coefficient of friction. Specifically, each seal ring was measured for Shore A hardness, tensile strength, elongation rate, and wear amount.
 (ショアA硬度の測定)
 本測定の測定サンプルは、各シールリングを適当な形状に切り出すことにより作製した。各測定サンプルについて、タイプAデュロメータを用い、JIS K7215に基づき、ショアA硬度を測定した。
(Measurement of Shore A hardness)
A measurement sample for this measurement was prepared by cutting each seal ring into an appropriate shape. About each measurement sample, the Shore A hardness was measured based on JISK7215 using the type A durometer.
 図3はショアA硬度の測定結果を示すグラフである。図4の横軸はPTFEの量を示している。ショアA硬度は、PTFEの量が0重量%であるフッ素系エラストマーのみから成る測定サンプルでも71と充分に高い。更に、ショアA硬度は、PTFEの量の増加に伴って向上することがわかる。つまり、全ての測定サンプルについて充分に高いショアA硬度が得られた。 FIG. 3 is a graph showing the measurement result of Shore A hardness. The horizontal axis in FIG. 4 indicates the amount of PTFE. The Shore A hardness is sufficiently high at 71 even for a measurement sample made of only a fluoroelastomer having a PTFE amount of 0% by weight. Further, it can be seen that the Shore A hardness increases with an increase in the amount of PTFE. That is, a sufficiently high Shore A hardness was obtained for all measurement samples.
 (引っ張り強度及び伸び率の測定)
 本測定では、測定サンプルとして、射出成型により得られた、長さ75mm、幅5mm、厚さ2mmのダンベル片を用いた。引っ張り試験は、チャック間距離が20mmで、テストスピードが50mm/minである条件で行った。引っ張り強度(破断強度)は引っ張り試験における最大の応力を示し、伸び率(破断伸度)は引っ張り試験における破断時の伸び率を示す。
(Measurement of tensile strength and elongation)
In this measurement, a dumbbell piece having a length of 75 mm, a width of 5 mm, and a thickness of 2 mm obtained by injection molding was used as a measurement sample. The tensile test was performed under the conditions that the distance between chucks was 20 mm and the test speed was 50 mm / min. The tensile strength (breaking strength) indicates the maximum stress in the tensile test, and the elongation (breaking elongation) indicates the elongation at break in the tensile test.
 図4Aは引っ張り強度の測定結果を示すグラフであり、図4Bは伸び率の測定結果を示すグラフである。図4A及び図4Bの横軸はPTFEの量を示している。 FIG. 4A is a graph showing the measurement result of tensile strength, and FIG. 4B is a graph showing the measurement result of elongation. The horizontal axis of FIGS. 4A and 4B indicates the amount of PTFE.
 図4Aから、引っ張り強度は、PTFEの量が50重量%の測定サンプルでは大きく低下していることがわかる。一方、PTFEの量が40重量%以下の領域では、いずれも良好な引っ張り強度が得られている。特に、PTFEの量が35重量%以下の測定サンプルでは特に良好な引っ張り強度が得られた。 FIG. 4A shows that the tensile strength is greatly reduced in the measurement sample in which the amount of PTFE is 50% by weight. On the other hand, in the region where the amount of PTFE is 40% by weight or less, good tensile strength is obtained. In particular, a particularly good tensile strength was obtained with a measurement sample in which the amount of PTFE was 35% by weight or less.
 図4Bから、伸び率は、PTFEの量が35~50質量%の測定サンプルで大きく低下していることがわかる。つまり、PTFEの量が30重量%以下の領域では、いずれも良好な伸び率が得られている。PTFEの量が35重量%の測定サンプル及びPTFEの量が40重量%の測定サンプルの伸び率は、許容範囲内であった。また、図1においてPTFEの圧縮永久歪みが40%以下となる、PTFEの量が約29重量%以下の領域において、特に良好な伸び率が得られることが確認された。 From FIG. 4B, it can be seen that the elongation is greatly reduced in the measurement sample in which the amount of PTFE is 35 to 50% by mass. That is, in the region where the amount of PTFE is 30% by weight or less, good elongation is obtained in all cases. The elongation percentage of the measurement sample having a PTFE amount of 35% by weight and the measurement sample having a PTFE amount of 40% by weight was within an allowable range. Further, in FIG. 1, it was confirmed that a particularly good elongation was obtained in the region where the compression set of PTFE was 40% or less and the amount of PTFE was about 29% by weight or less.
 (磨耗量の測定)
 本測定では、PTFEの量が25重量%であるシールリングをそのまま測定サンプルとし、縦型摩擦摩耗試験機を用いた。
(Measurement of wear)
In this measurement, a seal ring having an amount of PTFE of 25% by weight was directly used as a measurement sample, and a vertical friction and wear tester was used.
 本測定では、測定サンプルを摺動させる相手材として平均粗さRzが6.3μmの炭素鋼S45Cを用いた。本測定は、測定サンプルの相手材に対する面圧を0.65MPaとし、測定サンプルの外周の周速を0.50m/sとし、PV値を0.33(MPa・m/s)として、油中で成り行き温度にて1時間の摩耗試験を行った。 In this measurement, carbon steel S45C having an average roughness Rz of 6.3 μm was used as a counterpart material for sliding the measurement sample. In this measurement, the surface pressure of the measurement sample against the mating material is 0.65 MPa, the peripheral speed of the outer circumference of the measurement sample is 0.50 m / s, the PV value is 0.33 (MPa · m / s), A one hour wear test was carried out at the expected temperature.
 図5Aは摩耗試験前における測定サンプルの表面(摺動面)の写真であり、図5Bは摩耗試験後における測定サンプルの表面(摺動面)の写真である。図5Bでは、目立った摺動痕が観察されず、摩耗試験において測定サンプルが相手材に対してスムーズに摺動していることが確認された。 FIG. 5A is a photograph of the surface (sliding surface) of the measurement sample before the wear test, and FIG. 5B is a photograph of the surface (sliding surface) of the measurement sample after the wear test. In FIG. 5B, no conspicuous sliding trace was observed, and it was confirmed that the measurement sample was smoothly sliding with respect to the counterpart material in the wear test.
 また、摩耗試験前の測定サンプルの厚さと摩耗試験後の測定サンプルの厚さとの差で求められるシールリングの摩耗量は13μmであり、非常に少なかった。このように、本実施形態に係るシールリングでは、優れた摺動特性により摩耗による劣化が抑制されることが確認された。 Further, the wear amount of the seal ring obtained by the difference between the thickness of the measurement sample before the wear test and the thickness of the measurement sample after the wear test was 13 μm, which was very small. Thus, in the seal ring according to the present embodiment, it was confirmed that deterioration due to wear is suppressed by excellent sliding characteristics.
 以上、本発明の実施形態について説明したが、本発明は上述の実施形態にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。 As mentioned above, although embodiment of this invention was described, this invention is not limited only to the above-mentioned embodiment, Of course, in the range which does not deviate from the summary of this invention, a various change can be added.
 例えば、本実施形態に係るシールリングはフッ素系エラストマー及びフッ素樹脂のみから成る。しかし、シールリングの主成分がフッ素系エラストマー及びフッ素樹脂であれば、シールリングに各種添加物などの副成分が含まれていても本発明の目的を達成することができる。 For example, the seal ring according to this embodiment is made of only a fluorine-based elastomer and a fluororesin. However, if the main component of the seal ring is a fluoroelastomer and a fluororesin, the object of the present invention can be achieved even if the seal ring contains subcomponents such as various additives.

Claims (6)

  1.  フッ素系エラストマーと、
     ポリテトラフルオロエチレン(PTFE)と、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)と、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)と、テトラフルオロエチレン・エチレン共重合体(ETFE)とのうちの少なくとも1つを有するフッ素樹脂と
     を含む複合材料から成り、
     150℃における圧縮永久歪みが90%以下である
     シール部材。
    Fluorine-based elastomer,
    Polytetrafluoroethylene (PTFE), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene / hexafluoropropylene copolymer (FEP), tetrafluoroethylene / ethylene copolymer (ETFE) And a fluororesin having at least one of
    A seal member having a compression set at 150 ° C. of 90% or less.
  2.  請求項1に記載のシール部材であって、
     150℃における圧縮永久歪みが40%以下である
     シール部材。
    The seal member according to claim 1,
    A sealing member having a compression set at 150 ° C. of 40% or less.
  3.  請求項1又は2に記載のシール部材であって、
     前記複合材料が20重量%以上40重量%以下の前記フッ素樹脂を含む
     シール部材。
    The seal member according to claim 1 or 2,
    A sealing member in which the composite material includes 20% by weight to 40% by weight of the fluororesin.
  4.  請求項1から3のいずれか1項に記載のシール部材であって、
     前記フッ素樹脂は粒径が10μm以下である
     シール部材。
    The seal member according to any one of claims 1 to 3,
    The fluororesin has a particle size of 10 μm or less.
  5.  請求項1から4のいずれか1項に記載のシール部材であって、
     リング状に成形されている
     シール部材。
    The seal member according to any one of claims 1 to 4,
    Seal member molded in a ring shape.
  6.   150℃における圧縮永久歪みが20%以下のフッ素系エラストマーと、
      ポリテトラフルオロエチレン(PTFE)と、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)と、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)と、テトラフルオロエチレン・エチレン共重合体(ETFE)とのうちの少なくとも1つを有するフッ素樹脂と
     を用意し、
     前記フッ素系エラストマーと前記フッ素樹脂との混練を行い、
     前記混練により得られる混練体を成形する
     シール部材の製造方法。
    A fluorine-based elastomer having a compression set at 150 ° C. of 20% or less;
    Polytetrafluoroethylene (PTFE), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene / hexafluoropropylene copolymer (FEP), tetrafluoroethylene / ethylene copolymer (ETFE) And a fluororesin having at least one of
    Kneading the fluoroelastomer and the fluororesin,
    A method for producing a sealing member, wherein the kneaded body obtained by the kneading is molded.
PCT/JP2015/055800 2014-03-18 2015-02-27 Seal member and method for producing same WO2015141442A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016508643A JPWO2015141442A1 (en) 2014-03-18 2015-02-27 Seal member and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-055451 2014-03-18
JP2014055451 2014-03-18

Publications (1)

Publication Number Publication Date
WO2015141442A1 true WO2015141442A1 (en) 2015-09-24

Family

ID=54144418

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/055800 WO2015141442A1 (en) 2014-03-18 2015-02-27 Seal member and method for producing same

Country Status (2)

Country Link
JP (1) JPWO2015141442A1 (en)
WO (1) WO2015141442A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181346A1 (en) * 2017-03-31 2018-10-04 株式会社リケン Sealing member
WO2018181351A1 (en) * 2017-03-31 2018-10-04 三宝ゴム工業株式会社 Composition for seal member, and seal member

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08512355A (en) * 1993-07-14 1996-12-24 グリーン,トウィード オブ デラウェア インコーポレイテッド Perfluoroelastomer compositions and methods
JPH11310666A (en) * 1998-04-30 1999-11-09 Ntn Corp Lubricant rubber composition and sealing member
JP2000154369A (en) * 1998-09-14 2000-06-06 Morisei Kako:Kk Composition for sealing material, and sealing material
JP2005113035A (en) * 2003-10-08 2005-04-28 Nippon Valqua Ind Ltd Method of manufacturing fluororubber sealing material
WO2006057332A1 (en) * 2004-11-26 2006-06-01 Daikin Industries, Ltd. Thermoplastic polymer composition
JP2007154043A (en) * 2005-12-05 2007-06-21 Nippon Valqua Ind Ltd Fluororubber composition and sealing material composed thereof
JP2012102272A (en) * 2010-11-11 2012-05-31 Mitsubishi Cable Ind Ltd Rubber composition, and rubber member, conveyance roller and sealing member using the rubber composition
JP2013056979A (en) * 2011-09-07 2013-03-28 Daikin Industries Ltd Crosslinkable fluororubber composition and fluororubber-molded product
JP2013082888A (en) * 2011-09-30 2013-05-09 Daikin Industries Ltd Cross-linkable fluororubber composition, fluororubber-molded article, and method for producing the article

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08512355A (en) * 1993-07-14 1996-12-24 グリーン,トウィード オブ デラウェア インコーポレイテッド Perfluoroelastomer compositions and methods
JPH11310666A (en) * 1998-04-30 1999-11-09 Ntn Corp Lubricant rubber composition and sealing member
JP2000154369A (en) * 1998-09-14 2000-06-06 Morisei Kako:Kk Composition for sealing material, and sealing material
JP2005113035A (en) * 2003-10-08 2005-04-28 Nippon Valqua Ind Ltd Method of manufacturing fluororubber sealing material
WO2006057332A1 (en) * 2004-11-26 2006-06-01 Daikin Industries, Ltd. Thermoplastic polymer composition
JP2007154043A (en) * 2005-12-05 2007-06-21 Nippon Valqua Ind Ltd Fluororubber composition and sealing material composed thereof
JP2012102272A (en) * 2010-11-11 2012-05-31 Mitsubishi Cable Ind Ltd Rubber composition, and rubber member, conveyance roller and sealing member using the rubber composition
JP2013056979A (en) * 2011-09-07 2013-03-28 Daikin Industries Ltd Crosslinkable fluororubber composition and fluororubber-molded product
JP2013082888A (en) * 2011-09-30 2013-05-09 Daikin Industries Ltd Cross-linkable fluororubber composition, fluororubber-molded article, and method for producing the article

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181346A1 (en) * 2017-03-31 2018-10-04 株式会社リケン Sealing member
WO2018181351A1 (en) * 2017-03-31 2018-10-04 三宝ゴム工業株式会社 Composition for seal member, and seal member
JP2018172547A (en) * 2017-03-31 2018-11-08 株式会社リケン Seal member
JP2018172544A (en) * 2017-03-31 2018-11-08 三宝ゴム工業株式会社 Composition for seal member and seal member
CN110770316A (en) * 2017-03-31 2020-02-07 株式会社理研 Sealing member
CN110770316B (en) * 2017-03-31 2022-08-23 株式会社理研 Sealing member

Also Published As

Publication number Publication date
JPWO2015141442A1 (en) 2017-04-06

Similar Documents

Publication Publication Date Title
JP6656854B2 (en) Seal member
US20070190284A1 (en) Melt-processable adhesives for bonding pervious fluoropolymeric layers in multilayer composites
US20070044906A1 (en) Multilayer polymeric composites having a layer of dispersed fluoroelastomer in thermoplastic
US10196576B2 (en) Water lubrication type bearing material
JP5616981B2 (en) Seal ring for continuously variable transmission
US20070045967A1 (en) Assemblies sealed with multilayer composite torsion seals having a layer of dispersed fluoroelastomer in thermoplastic
US20070048476A1 (en) Assemblies sealed with multilayer composite compression seals having a layer of dispersed fluoroelastomer in thermoplastic
US20100290726A1 (en) Plain bearing
JP5904314B2 (en) HNBR composition and cross-linked HNBR
JP5792643B2 (en) Rubber composition for sealing material and sealing material
JP2014156935A5 (en) Seal ring for continuously variable transmission
JPWO2013111643A1 (en) Oil seal for automobile
JP2008285562A (en) Self-lubricating rubber composition and sealing material using the same
JP5444420B2 (en) Seal member
JPH0445195A (en) Sliding material composition
WO2015141442A1 (en) Seal member and method for producing same
JP4894759B2 (en) PTFE resin composition
JP5018303B2 (en) Sliding member and sealing device
JP2013155846A (en) Seal ring
JP2018109149A (en) Polytetrafluoroethylene composition
JP2020070383A (en) Rubber composition for oil seal and oil seal
JP2003013042A (en) Sealant for sliding portion
JP6653678B2 (en) Seal member
JP2016156404A (en) Rubber composition, and oil seal
WO2004094528A1 (en) Polytetrafluoroethylene resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15765659

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016508643

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15765659

Country of ref document: EP

Kind code of ref document: A1