WO2015141344A1 - Ceramic wiring board and semiconductor device - Google Patents

Ceramic wiring board and semiconductor device Download PDF

Info

Publication number
WO2015141344A1
WO2015141344A1 PCT/JP2015/053993 JP2015053993W WO2015141344A1 WO 2015141344 A1 WO2015141344 A1 WO 2015141344A1 JP 2015053993 W JP2015053993 W JP 2015053993W WO 2015141344 A1 WO2015141344 A1 WO 2015141344A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
wiring board
less
ceramic wiring
substrate
Prior art date
Application number
PCT/JP2015/053993
Other languages
French (fr)
Japanese (ja)
Inventor
広瀬 義幸
幸愛 杉谷
胡間 紀人
剛平 豊嶋
上西 昇
Original Assignee
株式会社アライドマテリアル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アライドマテリアル filed Critical 株式会社アライドマテリアル
Priority to JP2015530212A priority Critical patent/JP5820092B1/en
Publication of WO2015141344A1 publication Critical patent/WO2015141344A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49827Via connections through the substrates, e.g. pins going through the substrate, coaxial cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/15Ceramic or glass substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4038Through-connections; Vertical interconnect access [VIA] connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/11Treatments characterised by their effect, e.g. heating, cooling, roughening
    • H05K2203/1126Firing, i.e. heating a powder or paste above the melting temperature of at least one of its constituents

Definitions

  • the present invention relates to a ceramic wiring board including a substrate formed in a plate shape with ceramic and a vertical conductive body penetrating in the thickness direction of the substrate, and a semiconductor device using the ceramic wiring substrate.
  • a vertical conduction hole (via) is formed by forming a vertical conduction hole penetrating in the thickness direction at a predetermined position of a substrate formed in a plate shape by a ceramic such as AlN, Al 2 O 3 , Si 3 N 4 , or SiC. Is used for mounting semiconductor elements.
  • the entire upper and lower conductors are made of a low-resistance metal such as Cu, Ag, or Au as a conductive material
  • the coefficient of thermal expansion between the low-resistance metal and the ceramic is greatly different.
  • local stress is applied to the solder layer and the metallized layer and the solder layer are liable to crack, and the crack causes a problem that the reliability of mounting the semiconductor element is remarkably lowered.
  • the vertical conductor is formed of a composite material containing a low resistance metal such as Cu and a high melting point metal such as W or Mo, and has a thermal expansion coefficient close to that of a ceramic substrate.
  • Patent Document 1 an upper and lower conduction hole penetrating in the thickness direction of a substrate is formed in advance on a plate body (ceramic green sheet) of a precursor that becomes a ceramic material before sintering, and a high melting point is formed there.
  • the ceramic substrate and the vertical conductive body made of the composite material filled in the vertical conductive hole of the substrate are integrated by filling the paste containing the metal and the low resistance metal and then sintering the whole. Is formed.
  • the upper and lower conductive holes are formed in the ceramic green sheet before sintering, and the paste containing the high melting point metal particles is filled therein, and then the whole is sintered, After integrally forming a porous structure made of a sintered body of a large number of high melting point metal particles filled in the vertical conduction holes of the substrate, the low resistance metal is infiltrated into the formed porous structure.
  • a vertical conductor having a composite structure in which a low-resistance metal is filled in a porous structure made of a refractory metal is formed.
  • a vertical conduction hole is formed at a predetermined position of a substrate formed by previously sintering a ceramic green sheet, and then a paste containing particles of a high melting point metal such as W or Mo is formed in the vertical conduction hole. After filling and sintering to form a porous structure made of a sintered body of a large number of high melting point metal particles, a low resistance metal is infiltrated into the formed porous structure, and the same as above A vertical conductor having a composite structure is formed. According to this forming method, the positional accuracy of the upper and lower conductive bodies can be improved compared to the previous two methods.
  • all of the conventional ceramic wiring boards provided with the upper and lower conductive bodies made of the composite material of the refractory metal and the low resistance metal have metallized layers for mounting semiconductor elements on the surface thereof. Cracks especially near the surface of the substrate due to thermal load and temperature cycle such as when forming a solder layer, mounting a semiconductor element on the formed metallized layer, solder layer, or operating the mounted semiconductor element There is a problem that the reliability is low because the metallized layer or the solder layer is easily peeled off.
  • An object of the present invention is to provide a highly reliable ceramic wiring board which is hard to cause cracks due to heat load or temperature cycle, or to peel off a metallized layer or a solder layer.
  • Another object of the present invention is to provide a highly reliable semiconductor device in which a semiconductor element is mounted on such a ceramic wiring board.
  • the present invention is selected from the group consisting of a ceramic substrate formed in the shape of a plate and having vertical conduction holes formed through the thickness direction, and Cu, Ag, and Au filled in the vertical conduction holes Ceramic comprising a vertical conductor made of a composite material comprising at least one low-resistance metal selected from the group consisting of W and Mo, and having a residual stress of 100 MPa or less It is a wiring board.
  • the present invention is a semiconductor device in which a semiconductor element is mounted on the ceramic wiring board of the present invention.
  • the present invention it is possible to provide a highly reliable ceramic wiring board which is difficult to crack due to a thermal load or a temperature cycle, or to peel off a metallized layer or a solder layer.
  • a semiconductor device having a high reliability can be provided by mounting a semiconductor element on such a ceramic wiring board.
  • the present invention includes a ceramic substrate formed in a plate shape and having vertical conduction holes formed through the thickness direction, and a group consisting of Cu, Ag, and Au filled in the vertical conduction holes of the substrate.
  • the present invention by adjusting the residual stress of the ceramic wiring substrate to a range of 100 MPa or less as described above, a crack is generated near the surface of the substrate when a thermal load or a temperature cycle is applied, or a metallized layer Further, the reliability of the ceramic wiring board can be improved by suppressing the peeling of the solder layer. This is due to the following reasons.
  • the upper and lower conductors are formed of a composite material of a refractory metal and a low resistance metal, the difference in coefficient of thermal expansion from the substrate is not only reduced, but not completely eliminated. It causes the residual stress of the wiring board.
  • the thermal load and temperature cycle described above are applied to the ceramic wiring board, causing cracks in the vicinity of the surface of the board, the metallized layer, The solder layer is easily peeled off.
  • the residual stress of the ceramic wiring board is adjusted to a range of 100 MPa or less, cracks may occur near the surface of the board even if the thermal load or temperature cycle is applied, or the metallized layer or solder layer may be peeled off. It becomes possible to make it difficult.
  • the residual stress is preferably 80 MPa or less even in the above range.
  • the lower limit of the residual stress is 0 MPa. Ideally, no residual stress remains.
  • the residual stress of such a ceramic wiring board is obtained by X-ray diffraction using a ⁇ 0.3 mm collimator at a position 0.3 mm away from the vertical conductor in the plane direction of the board, and the ceramic forming the board. It is expressed by the value obtained by the X-ray stress measurement method for calculating the stress from the Young's modulus and Poisson's ratio.
  • the ceramic wiring board of the present invention for example, a step of forming a vertical conduction hole by penetrating in a thickness direction after sintering at a predetermined position of a substrate formed by sintering a precursor such as a ceramic green sheet, Filling the formed upper and lower conductive holes with paste containing refractory metal particles, sintering a number of refractory metal particles by sintering to form a porous structure, and in the formed porous structure A step of infiltrating a low resistance metal to form a vertical conductor, It is preferable to manufacture through this.
  • the thermal conductivity of the ceramic forming the substrate is preferably 80 W / mK or more.
  • the upper limit of the thermal conductivity is not particularly limited, but is preferably 400 W / mK or less.
  • thermal expansion coefficient of the ceramic forming the substrate is 2.5 ⁇ 10 -6 / °C above, 7.0 ⁇ 10 - It is preferably 6 / ° C or lower.
  • Ceramic substrates examples include AlN, Al 2 O 3 , Si 3 N 4 , and SiC. These ceramic substrates can be formed in the same manner as before.
  • the substrate is formed by polishing the surface as necessary.
  • the sintering conditions, temperature, polishing method, and the like can be the same as in the prior art.
  • examples of the polishing method include mechanical polishing (fixed abrasive grains, loose abrasive grains), chemical mechanical polishing, and the like.
  • the hole diameter of the vertical conduction hole is preferably ⁇ 0.1 mm or more, and preferably ⁇ 0.3 mm or less.
  • the pore diameter is less than this range, it may be difficult to fill the upper and lower conductive holes with a paste containing refractory metal particles that are the basis of the porous structure.
  • a porous structure formed by filling and sintering the paste, and a vertical conductive body formed by infiltrating a low-resistance metal into the porous structure is not limited.
  • the hole diameter may be smaller than ⁇ 0.1 mm depending on the wiring arrangement in the substrate, for example, in order to improve electrical characteristics, thermal characteristics, etc.
  • the hole diameter may be larger than ⁇ 0.3 mm.
  • the upper and lower conductive holes are preferably formed later on a substrate that has been previously sintered and formed into a plate shape as described above.
  • the positional accuracy can be improved as compared with the method of drilling before sintering.
  • the positional accuracy is not limited to this, but can be about ⁇ 50 ⁇ m or less.
  • various methods such as a method using a laser, a method using a micro drill, and a method using a micro blast can be employed.
  • the vertical conduction hole can be automatically formed at a predetermined formation position by programming the formation position of the vertical conduction hole in the processing machine.
  • a resist pattern having a desired pattern is formed by a photolithographic method using a photoresist agent for blasting made of, for example, a urethane-based resin, and then blasting is performed on the resist pattern. After selectively perforating the uncovered portion, the resist is peeled off and removed to form a vertical conduction hole at a predetermined formation position.
  • the vertical conductor is formed by first sintering a large number of particles of at least one refractory metal selected from the group consisting of W and Mo in the vertical conduction hole to form a porous structure. Then, it is preferable that at least one low-resistance metal selected from the group consisting of Cu, Ag, and Au is infiltrated into the porous structure to form a composite structure.
  • the porous structure may further contain C.
  • the distribution of the particle size of the particles of the refractory metal is adjusted to obtain a stronger porous material.
  • a structure may be formed.
  • the number ratio N A (%) of particles having a maximum major axis of 1.0 ⁇ m or less (referred to as “A particles”) in a cross section of a vertical conductor formed by infiltrating a low-resistance metal into a porous structure.
  • N A + N C is 50 or more and 90 or less
  • the ratio N A / N C is 2 / It is preferable to adjust the structure of the porous structure so as to be 3 or more and 2 or less.
  • the sum N A + N C and the ratio N A / N C are determined by the following method.
  • the upper and lower conductive bodies formed are polished to expose the cross section, and then subjected to cross section polishing (CP) processing that is dry-etched with Ar plasma, and any 10 positions in the cross section are scanned using a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the C particles function to secure a large space for low resistance metal infiltration between the particles by contact between adjacent C particles.
  • the B particles having a smaller particle diameter than the C particles function to enter the space formed by the C particles and adjust the size of the space. That is, it functions to adjust the ratio of the porous structure and the low resistance metal infiltrated into the porous structure.
  • the A particles having the smallest particle size enter the gap near the contact point between the C particles and function to promote neck growth between the C particles. That is, it functions to increase the neck growth location between the C particles, improve the sinterability, and form a strong porous structure.
  • N A + N C is less than 50, there will be an excessive amount of B particles having an intermediate particle size, and many B particles will enter the space formed by the C particles, thereby narrowing the space more than necessary. There is a fear.
  • the ratio N A / N C is less than 2/3, the A particles are insufficient, so that the A particles can improve the sinterability and increase the neck growth location between the C particles to form a strong porous structure.
  • the effect of forming may be insufficient.
  • the ratio N A / N C is much smaller even in the range of less than 2/3, the number of neck growth points between the C particles is greatly reduced, and one of the high melting point metal particles is infiltrated with the low resistance metal. The part may be pushed out of the vertical conduction hole.
  • the ratio of the low-resistance metal is excessively increased, and the difference in the coefficient of thermal expansion between the upper and lower conductive bodies and the substrate is increased, so that a porous structure having sufficient strength formed integrally cannot be formed.
  • the residual stress of the ceramic wiring board may not be adjusted to a range of 100 MPa or less.
  • a large gap may be formed between the inner surface of the vertical conduction hole of the substrate and the porous structure, or the porous structure and the vertical conduction body may easily fall off the substrate.
  • the refractory metal having a thermal expansion coefficient close to that of a ceramic substrate is stronger and less likely to be deformed.
  • a porous structure can be formed.
  • the thermal expansion of the low-resistance metal is suppressed by the porous structure, and the thermal expansion coefficient of the upper and lower conductive bodies is as close as possible to the thermal expansion coefficient of the substrate. Therefore, it is possible to adjust the residual stress of the ceramic wiring board to a range of 100 MPa or less.
  • the sum N A + N C is preferably 60 or more, and more preferably 80 or less, even in the above range. Further, the ratio N A / N C is preferably 1 or more in the above range, and is preferably 1.5 or less.
  • Formation of porous structure In order to form the porous structure, the substrate after forming the vertical conduction holes is washed and dried as necessary, and then the refractory metal particles, the resin binder, and the solvent are contained in the vertical conduction holes. Fill with paste containing etc.
  • a known coating method such as screen printing, dispenser, brush coating, spin roller coating or the like can be employed.
  • the sum N A + N C and the ratio N A / N C of the number ratio N A of the A particles exposed in the cross section and the number ratio N C of the C particles are adjusted to the ranges described above.
  • the particles of the refractory metal the particles having a small average particle size that is the basis of the A particles described above, the particles having a medium average particle size that is the basis of the B particles, A combination of particles having a large average particle size is used. Then, the sum N A + N C and the ratio N A / N C may be adjusted to be in the ranges described above by adjusting the average particle size and the blending ratio of each particle.
  • the average particle diameter of the refractory metal particles is determined by allowing the air to permeate in a state where the sample tube is filled with the particles, and calculating the average particle diameter by obtaining the specific surface area from the measurement results of the flow velocity and the pressure drop.
  • it is expressed by a value measured by the Fisher method (FSSS).
  • a calculator is calculated from the porosity determined by measuring the sample height in a state where a powder sample of a predetermined true density is filled in the sample tube, and the manometer water level measured by passing constant pressure air therethrough.
  • the numerical value read on the chart is defined as the average particle diameter.
  • the resin binder examples include one or more of acrylic binder, ethyl cellulose, nitrocellulose, wax and the like.
  • various solvents that can dissolve or disperse the resin binder well and can disperse the high melting point metal particles to form a paste can be used.
  • Examples of such a solvent include at least one kind such as butyl carbitol and terpineol.
  • the composition of the paste is preferably adjusted so that a porous structure is formed in the vertical conduction holes by sintering.
  • the above composition is adjusted or the coating method is optimized in order to form a porous structure having a uniform spatial distribution as much as possible. It is preferable to do this.
  • the whole is formed by a bulk composite material having the same composite structure as the vertical conductor, that is, a composite material formed by infiltrating a low resistance metal into a porous structure made of particles of a high melting point metal.
  • a bulk composite material having the same composite structure as the vertical conductor that is, a composite material formed by infiltrating a low resistance metal into a porous structure made of particles of a high melting point metal.
  • the porous structure in the vertical conduction hole is formed by sintering high-melting point metal particles to form the porous structure or infiltrating the low-resistance metal into the formed porous structure. It is easily broken because it receives tensile stress or compressive stress from the surrounding substrate due to the change in temperature. Moreover, the residual stress of the manufactured ceramic wiring board tends to increase.
  • Low resistance metal infiltration For example, nitrogen, hydrogen, vacuum, etc. with a plate made of a low resistance metal that infiltrates the upper and lower sides of the substrate on which the porous structure is formed in the vertical conduction hole, or a plate that overlaps only one side of the substrate Heat in a non-oxidizing atmosphere above the melting temperature of the low resistance metal.
  • the melted low-resistance metal is infiltrated into the porous structure by wetting and spreading through the communicating space in the porous structure by a capillary phenomenon, thereby forming a vertical conductive body.
  • the residual stress of the ceramic wiring board can be made as small as possible even in the range of 100 MPa or less while maintaining the thermal conductivity of the upper and lower conductive bodies in a favorable range. .
  • the area ratio of the low-resistance metal is preferably 10% or more, particularly 20% or more even in the above range.
  • the area ratio of the low resistance metal is preferably 80% or less, particularly 75% or less even in the above range.
  • the area ratio of the low-resistance metal can be adjusted by adjusting the particle size distribution of the refractory metal particles that form the porous structure, the viscosity of the paste, the amount of the resin binder, and the like.
  • the particle size distribution is as described above.
  • the viscosity of the paste is reduced or the amount of the resin binder is increased to reduce the ratio of the refractory metal contained in the paste, the vertical conduction formed through the steps described above using the paste.
  • the abundance ratio of the low resistance metal contained in the body can be increased.
  • the infiltrated low-resistance metal does not sufficiently enter the porous structure, and many voids are generated in the upper and lower conductive bodies.
  • the metallized layer is formed on the surface of the substrate including the upper and lower conductors, the metallized layer and its metallization layer are not peeled off due to the generation of gas from the void. There is a risk of cracking the upper solder layer.
  • the porosity is preferably 5% or less even in the above range.
  • the porosity exceeds this range, when the thickness of the metallized layer is smaller than, for example, 0.5 ⁇ m, the metallized layer directly above the upper and lower conductors or the solder layer thereon is strongly affected by the voids described above. May cause cracks.
  • polishing method is the same as described above. That is, examples of the polishing method include the above-described mechanical polishing (fixed abrasive grains, loose abrasive grains), chemical mechanical polishing, and the like.
  • the thickness of the substrate after polishing is preferably 0.1 mm or more, particularly 0.15 mm or more, preferably 1 mm or less, particularly 0.5 mm or less, considering the balance between practical strength and volume reduction of the semiconductor device. Preferably there is.
  • the metallized layer may have a single-layer structure including only the conductive layer described below, but is usually formed in a laminated structure of at least two layers of an adhesion layer for securing adhesion to the substrate and a conductive layer for external connection. It is preferable to do this. Further, a diffusion preventing layer may be interposed between these two layers.
  • a fine pattern can be formed by a photolithographic method on a metallized layer having a single layer structure or a stacked structure.
  • the metallized layer can also be formed by a thick film method (Au, Cu, etc.). Moreover, it can also form into a film by Ni or Ni / Au plating on the pattern formed by the thick film method.
  • the metallized layer may be formed by patterning on the surface of the substrate by a screen printing method using a paste adjusted to a viscosity suitable for screen printing.
  • a resistance film such as NiCr or TaN may be formed on or near the metallized layer formed by these methods, if necessary.
  • solder layer such as AuSn
  • W particles 24 parts by mass of W particles having an average particle diameter of 1.2 ⁇ m [B10 manufactured by Allied Material Co., Ltd.] Three types of W particles having an average particle diameter of 3.1 ⁇ m (C50 manufactured by Allied Material Co., Ltd.) and 51 parts by mass of W particles having an average particle diameter of 6.0 ⁇ m [D20 manufactured by Allied Material Co., Ltd.] Mixed particles in which a total of 100 parts by mass) was mixed were used.
  • both surfaces of the substrate were polished so that the thickness of the substrate was 0.4 mm and the surface roughness Ra of both surfaces was 0.5 ⁇ m to produce a ceramic wiring substrate.
  • Cross section observation 1 The upper and lower conductors of the manufactured ceramic wiring substrate are polished to expose the cross section, and then subjected to cross section polishing (CP) processing that is dry-etched with Ar plasma. It was observed in a field of view of 90 ⁇ m ⁇ 130 ⁇ m.
  • CP cross section polishing
  • a metallized layer constituting a circuit pattern was formed on both surfaces of the manufactured ceramic wiring substrate by the following method.
  • a Ti film as an adhesion layer is 0.05 ⁇ m
  • a Pt film as a diffusion prevention layer is 0.2 ⁇ m
  • an Au film as a conductive layer is 0.1 ⁇ m.
  • a film having a thickness of 2 ⁇ m was formed in this order to form a metallized layer having a three-layer structure.
  • Film formation is carried out in accordance with a conventional method after heating the ceramic wiring substrate at 200 ° C. for 5 minutes with a halogen heater in an atmosphere of ultimate vacuum of 1 ⁇ 10 ⁇ 4 Pa in a sputtering apparatus and further performing dry cleaning with Ar plasma. did.
  • a Si device having a length of 1 mm, a width of 1 mm, and a thickness of 0.3 mm was mounted via a solder foil having a thickness of 20 ⁇ m to produce a semiconductor device.
  • Examples 2 to 29, Comparative Examples 1 to 12> A paste was prepared in the same manner as in Example 1 except that the average particle size and mixing ratio of the three types of W particles used in combination were changed, a ceramic wiring board was manufactured, a semiconductor device was manufactured, and each of the above-mentioned The test was conducted.
  • Example 30 As refractory metal particles, instead of W particles, 25 parts by mass of Mo particles having an average particle size of 1.3 ⁇ m [TMO-10 manufactured by Allied Material Co., Ltd.] 49 parts by mass of Mo particles having an average particle size of 3.3 ⁇ m [TMO-30 manufactured by Allied Material Co., Ltd.] and 26 parts by mass of Mo particles having an average particle size of 5.4 ⁇ m [TMO-50 manufactured by Allied Material Co., Ltd.] A paste was prepared in the same manner as in Example 1 except that mixed particles obtained by mixing the three types of Mo particles (100 parts by mass in total) were used, a ceramic wiring board was manufactured, a semiconductor device was manufactured, and the above-mentioned Each test of was conducted.
  • Example 32 A paste was prepared in the same manner as in Example 30 except that Ag was used as the low-resistance metal instead of Cu, and a ceramic wiring board was manufactured, a semiconductor device was manufactured, and the above tests were performed.
  • Example 1 A paste was prepared in the same manner as in Example 1 except that 100 parts by weight of W particles having an average particle diameter of 3.1 ⁇ m (C50 manufactured by Allied Material Co., Ltd.) alone were used as W particles. Were manufactured, and a semiconductor device was manufactured, and each of the above tests was performed.
  • W particles having an average particle diameter of 3.1 ⁇ m C50 manufactured by Allied Material Co., Ltd.
  • the general reliability is ranked A by setting the residual stress of the manufactured ceramic wiring board to 100 MPa or less. It has been found that the reliability of the semiconductor device can be improved by setting the reliability under more severe conditions as A to B ranks.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
  • Powder Metallurgy (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

[Problem] To provide a ceramic wiring board having a high degree of reliability with low susceptibility to cracking due to heat load and temperature cycles and peeling of a metalization layer and a solder layer, and to provide a semiconductor device. [Solution] In the present invention, a ceramic wiring board is obtained by filling an up/down conduction hole formed through a ceramic board in the direction of thickness thereof with an up/down conductor comprising a composite material containing at least one low resistance metal selected from the group consisting of Cu, Ag, and Au, and at least one high melting point metal selected from the group consisting of W and Mo, the residual stress being 100 MPa or less. In a semiconductor device of the present invention, a semiconductor element is installed on the ceramic wiring board.

Description

セラミック配線基板および半導体装置Ceramic wiring board and semiconductor device
 本発明は、セラミックによって板状に形成された基板と、当該基板の厚み方向に貫通する上下導通体とを備えたセラミック配線基板、ならびに当該セラミック配線基板を用いた半導体装置に関するものである。 The present invention relates to a ceramic wiring board including a substrate formed in a plate shape with ceramic and a vertical conductive body penetrating in the thickness direction of the substrate, and a semiconductor device using the ceramic wiring substrate.
 例えばAlN、Al23、Si34、SiC等のセラミックによって板状に形成された基板の所定の位置に、その厚み方向に貫通する上下導通孔を形成して上下導通体(ビア)を充填したセラミック配線基板が半導体素子の搭載用等として用いられる。 For example, a vertical conduction hole (via) is formed by forming a vertical conduction hole penetrating in the thickness direction at a predetermined position of a substrate formed in a plate shape by a ceramic such as AlN, Al 2 O 3 , Si 3 N 4 , or SiC. Is used for mounting semiconductor elements.
 ところが上下導通体の全体を導電材料としてのCu、Ag、Au等の低抵抗金属で形成すると、当該低抵抗金属とセラミックの熱膨張率が大きく異なるため、半導体素子との接合等に用いるメタライズ層や半田層に局部的な応力が加わって当該メタライズ層や半田層がクラックを生じやすくなり、クラックを生じると半導体素子搭載の信頼性が著しく低下するという問題がある。また、基板自体や搭載した半導体素子に大きな熱応力が加わるおそれもある。 However, if the entire upper and lower conductors are made of a low-resistance metal such as Cu, Ag, or Au as a conductive material, the coefficient of thermal expansion between the low-resistance metal and the ceramic is greatly different. In addition, local stress is applied to the solder layer and the metallized layer and the solder layer are liable to crack, and the crack causes a problem that the reliability of mounting the semiconductor element is remarkably lowered. Moreover, there is a possibility that a large thermal stress is applied to the substrate itself or the mounted semiconductor element.
 そこで上下導通体をCu等の低抵抗金属と、W、Mo等の高融点金属とを含む複合材料によって形成して、その熱膨張率をセラミックからなる基板に近づけることが検討されている。 Therefore, it has been studied that the vertical conductor is formed of a composite material containing a low resistance metal such as Cu and a high melting point metal such as W or Mo, and has a thermal expansion coefficient close to that of a ceramic substrate.
 例えば特許文献1では、セラミックのもとになる前駆体の板体(セラミックグリーンシート)に、あらかじめ焼結前に、基板の厚み方向に貫通する上下導通孔を形成しておき、そこへ高融点金属と低抵抗金属とを含むペーストを充填したのち全体を焼結させることで、セラミック製の基板と、当該基板の上下導通孔内に充填された、上記複合材料からなる上下導通体とを一体に形成している。 For example, in Patent Document 1, an upper and lower conduction hole penetrating in the thickness direction of a substrate is formed in advance on a plate body (ceramic green sheet) of a precursor that becomes a ceramic material before sintering, and a high melting point is formed there. The ceramic substrate and the vertical conductive body made of the composite material filled in the vertical conductive hole of the substrate are integrated by filling the paste containing the metal and the low resistance metal and then sintering the whole. Is formed.
 また特許文献2では、やはり焼結前のセラミックグリーンシートに上下導通孔を形成し、そこへ高融点金属の粒子を含むペーストを充填したのち全体を焼結させて、セラミック製の基板と、当該基板の上下導通孔内に充填された、多数の高融点金属の粒子の焼結体からなる多孔質構造体とを一体に形成した後、形成した多孔質構造体中に低抵抗金属を溶浸させて、高融点金属からなる多孔質構造体中に低抵抗金属が充填された複合構造を有する上下導通体を形成している。 Further, in Patent Document 2, the upper and lower conductive holes are formed in the ceramic green sheet before sintering, and the paste containing the high melting point metal particles is filled therein, and then the whole is sintered, After integrally forming a porous structure made of a sintered body of a large number of high melting point metal particles filled in the vertical conduction holes of the substrate, the low resistance metal is infiltrated into the formed porous structure. Thus, a vertical conductor having a composite structure in which a low-resistance metal is filled in a porous structure made of a refractory metal is formed.
 特許文献3では、あらかじめセラミックグリーンシートを焼結させて形成した基板の所定の位置に上下導通孔を形成し、次いでこの上下導通孔内にW、Mo等の高融点金属の粒子を含むペーストを充填し、焼結させて多数の高融点金属の粒子の焼結体からなる多孔質構造体を形成したのち、形成した多孔質構造体中に低抵抗金属を溶浸させて、上記と同様の複合構造を有する上下導通体を形成している。この形成方法によれば、先の2方法に比べて上下導通体の位置精度を向上できる。 In Patent Document 3, a vertical conduction hole is formed at a predetermined position of a substrate formed by previously sintering a ceramic green sheet, and then a paste containing particles of a high melting point metal such as W or Mo is formed in the vertical conduction hole. After filling and sintering to form a porous structure made of a sintered body of a large number of high melting point metal particles, a low resistance metal is infiltrated into the formed porous structure, and the same as above A vertical conductor having a composite structure is formed. According to this forming method, the positional accuracy of the upper and lower conductive bodies can be improved compared to the previous two methods.
 しかし、上記各特許文献に記載のように高融点金属と低抵抗金属との複合材料からなる上下導通体を備えた従来のセラミック配線基板は、いずれもその表面に半導体素子搭載のためのメタライズ層や半田層を形成する際や、形成したメタライズ層、半田層上に半導体素子を搭載する際、あるいは搭載した半導体素子を動作させる際等の熱負荷や温度サイクルによって特に基板の表面付近にクラックを生じたり、メタライズ層や半田層が剥離したりしやすく信頼性が低いという問題がある。 However, as described in each of the above patent documents, all of the conventional ceramic wiring boards provided with the upper and lower conductive bodies made of the composite material of the refractory metal and the low resistance metal have metallized layers for mounting semiconductor elements on the surface thereof. Cracks especially near the surface of the substrate due to thermal load and temperature cycle such as when forming a solder layer, mounting a semiconductor element on the formed metallized layer, solder layer, or operating the mounted semiconductor element There is a problem that the reliability is low because the metallized layer or the solder layer is easily peeled off.
特開2000-22338号公報JP 2000-22338 A 特開平5-267849号公報JP-A-5-267849 特公平7-101724号公報Japanese Examined Patent Publication No. 7-101724
 本発明の目的は、熱負荷や温度サイクルによってクラックを生じたり、メタライズ層や半田層が剥離したりしにくく信頼性の高いセラミック配線基板を提供することにある。 An object of the present invention is to provide a highly reliable ceramic wiring board which is hard to cause cracks due to heat load or temperature cycle, or to peel off a metallized layer or a solder layer.
 また本発明は、かかるセラミック配線基板に半導体素子を搭載してなり、高い信頼性を有する半導体装置を提供することにある。 Another object of the present invention is to provide a highly reliable semiconductor device in which a semiconductor element is mounted on such a ceramic wiring board.
 本発明は、板状に形成され、その厚み方向を貫通させて上下導通孔が形成されたセラミック製の基板、および前記上下導通孔に充填された、Cu、Ag、およびAuからなる群より選ばれた少なくとも1種の低抵抗金属と、W、およびMoからなる群より選ばれた少なくとも1種の高融点金属とを含む複合材料からなる上下導通体を備え、残留応力が100MPa以下であるセラミック配線基板である。 The present invention is selected from the group consisting of a ceramic substrate formed in the shape of a plate and having vertical conduction holes formed through the thickness direction, and Cu, Ag, and Au filled in the vertical conduction holes Ceramic comprising a vertical conductor made of a composite material comprising at least one low-resistance metal selected from the group consisting of W and Mo, and having a residual stress of 100 MPa or less It is a wiring board.
 また本発明は、上記本発明のセラミック配線基板に半導体素子を搭載した半導体装置である。 Further, the present invention is a semiconductor device in which a semiconductor element is mounted on the ceramic wiring board of the present invention.
 本発明によれば、熱負荷や温度サイクルによってクラックを生じたり、メタライズ層や半田層が剥離したりしにくく信頼性の高いセラミック配線基板を提供できる。 According to the present invention, it is possible to provide a highly reliable ceramic wiring board which is difficult to crack due to a thermal load or a temperature cycle, or to peel off a metallized layer or a solder layer.
 また本発明によれば、かかるセラミック配線基板に半導体素子を搭載してなり、高い信頼性を有する半導体装置を提供できる。 Further, according to the present invention, a semiconductor device having a high reliability can be provided by mounting a semiconductor element on such a ceramic wiring board.
 《セラミック配線基板》
 本発明は、板状に形成され、その厚み方向を貫通させて上下導通孔が形成されたセラミック製の基板、および前記基板の上下導通孔に充填された、Cu、Ag、およびAuからなる群より選ばれた少なくとも1種の低抵抗金属と、W、およびMoからなる群より選ばれた少なくとも1種の高融点金属とを含む複合材料からなる上下導通体を備え、残留応力が100MPa以下であるセラミック配線基板である。
<Ceramic wiring board>
The present invention includes a ceramic substrate formed in a plate shape and having vertical conduction holes formed through the thickness direction, and a group consisting of Cu, Ag, and Au filled in the vertical conduction holes of the substrate. A vertical conductor made of a composite material including at least one low-resistance metal selected from the group consisting of W and Mo, and a residual stress of 100 MPa or less It is a certain ceramic wiring board.
 本発明によれば、上記のようにセラミック配線基板の残留応力を100MPa以下の範囲に調整することで、熱負荷や温度サイクルが加えられた際に基板の表面付近にクラックを生じたり、メタライズ層や半田層が剥離したりするのを抑制して当該セラミック配線基板の信頼性を向上できる。これは下記の理由による。 According to the present invention, by adjusting the residual stress of the ceramic wiring substrate to a range of 100 MPa or less as described above, a crack is generated near the surface of the substrate when a thermal load or a temperature cycle is applied, or a metallized layer Further, the reliability of the ceramic wiring board can be improved by suppressing the peeling of the solder layer. This is due to the following reasons.
 すなわち上下導通体を高融点金属と低抵抗金属の複合材料によって形成しても、基板との熱膨張率の差は小さくなるだけで完全になくなる訳ではなく、かかる小さな熱膨張率の差がセラミック配線基板の残留応力の原因となる。 That is, even if the upper and lower conductors are formed of a composite material of a refractory metal and a low resistance metal, the difference in coefficient of thermal expansion from the substrate is not only reduced, but not completely eliminated. It causes the residual stress of the wiring board.
 特に特許文献2、3に記載の上下導通体の形成方法では、多孔質構造体中に低抵抗金属を溶浸させる際に1000℃以上の高温に加熱しなければならないため、上記熱膨張率の差に基づいて基板および上下導通体の両方に比較的大きな応力が発生して、セラミック配線基板に残留応力として残留する。 In particular, in the method of forming the vertical conductor described in Patent Documents 2 and 3, when infiltrating a low-resistance metal into the porous structure, it must be heated to a high temperature of 1000 ° C. or higher. Based on the difference, a relatively large stress is generated in both the substrate and the upper and lower conductors, and remains as a residual stress in the ceramic wiring substrate.
 発明者の検討によると、残留応力が100MPaを超えて残留した場合、セラミック配線基板に先に説明した熱負荷や温度サイクルが加えられることによって基板の表面付近などにクラックを生じたり、メタライズ層や半田層が剥離したりしやすくなる。 According to the inventor's study, when the residual stress exceeds 100 MPa, the thermal load and temperature cycle described above are applied to the ceramic wiring board, causing cracks in the vicinity of the surface of the board, the metallized layer, The solder layer is easily peeled off.
 そしてこれらの問題を生じた場合には、当然ながら半導体素子を正常に動作させることはできなくなってしまう。 When these problems occur, it is natural that the semiconductor element cannot be operated normally.
 これに対し、セラミック配線基板の残留応力を100MPa以下の範囲に調整すると、上記熱負荷や温度サイクルが加えられても基板の表面付近にクラックを生じたり、メタライズ層や半田層が剥離したりしにくくすることが可能となる。 On the other hand, if the residual stress of the ceramic wiring board is adjusted to a range of 100 MPa or less, cracks may occur near the surface of the board even if the thermal load or temperature cycle is applied, or the metallized layer or solder layer may be peeled off. It becomes possible to make it difficult.
 なお、熱負荷や温度サイクルが加えられた際に基板の表面付近にクラックを生じたり、メタライズ層や半田層が剥離したりするのを抑制する効果をより一層向上して、セラミック配線基板の信頼性をさらに向上することを考慮すると、残留応力は、上記の範囲でも80MPa以下であるのが好ましい。 In addition, the effect of suppressing cracking near the surface of the board when a thermal load or temperature cycle is applied, or the metallized layer or solder layer from peeling off is further improved, and the reliability of the ceramic wiring board is improved. In view of further improving the properties, the residual stress is preferably 80 MPa or less even in the above range.
 また残留応力の下限は言うまでもなく0MPaである。残留応力が全く残留していないのが理想的である。 Needless to say, the lower limit of the residual stress is 0 MPa. Ideally, no residual stress remains.
 かかるセラミック配線基板の残留応力を、本発明では、上下導通体から基板の面方向に0.3mm離れた部位をφ0.3mmのコリメータを使用してX線回折した結果と、基板を形成するセラミックのヤング率およびポアソン比とから応力を算出するX線応力測定法によって求めた値でもって表すこととする。 In the present invention, the residual stress of such a ceramic wiring board is obtained by X-ray diffraction using a φ0.3 mm collimator at a position 0.3 mm away from the vertical conductor in the plane direction of the board, and the ceramic forming the board. It is expressed by the value obtained by the X-ray stress measurement method for calculating the stress from the Young's modulus and Poisson's ratio.
 本発明のセラミック配線基板は、例えば
 セラミックグリーンシート等の前駆体を焼結させて形成した基板の所定の位置に、焼結後に、その厚み方向に貫通させて上下導通孔を形成する工程、
 形成した上下導通孔内に高融点金属の粒子を含むペーストを充填し、焼成により多数の高融点金属の粒子を焼結させて多孔質構造体を形成する工程、および
 形成した多孔質構造体中に、低抵抗金属を溶浸させて上下導通体を形成する工程、
を経て製造するのが好ましい。
The ceramic wiring board of the present invention, for example, a step of forming a vertical conduction hole by penetrating in a thickness direction after sintering at a predetermined position of a substrate formed by sintering a precursor such as a ceramic green sheet,
Filling the formed upper and lower conductive holes with paste containing refractory metal particles, sintering a number of refractory metal particles by sintering to form a porous structure, and in the formed porous structure A step of infiltrating a low resistance metal to form a vertical conductor,
It is preferable to manufacture through this.
 〈基板〉
 基板を形成するセラミックとしては、半導体素子の高出力化に対応可能な高い放熱性を有する種々のセラミックが使用可能である。特に放熱性を高めるために、基板を形成するセラミックの熱伝導率は80W/mK以上であるのが好ましい。なお熱伝導率の上限は特に限定されないが、400W/mK以下であるのが好ましい。
<substrate>
As the ceramic for forming the substrate, various ceramics having high heat dissipation properties that can cope with high output of the semiconductor element can be used. In particular, in order to improve heat dissipation, the thermal conductivity of the ceramic forming the substrate is preferably 80 W / mK or more. The upper limit of the thermal conductivity is not particularly limited, but is preferably 400 W / mK or less.
 また搭載する半導体素子との熱膨張率の差をできるだけ小さくするため、基板を形成するセラミックの熱膨張係数は2.5×10-6/℃以上であるのが好ましく、7.0×10-6/℃以下であるのが好ましい。 Also to minimize the difference in thermal expansion coefficient between the semiconductor element to be mounted, it is preferred thermal expansion coefficient of the ceramic forming the substrate is 2.5 × 10 -6 / ℃ above, 7.0 × 10 - It is preferably 6 / ° C or lower.
 かかるセラミックとしては、例えばAlN、Al23、Si34、SiC等が挙げられる。これらのセラミックからなる基板は従来同様に形成できる。 Examples of such ceramic include AlN, Al 2 O 3 , Si 3 N 4 , and SiC. These ceramic substrates can be formed in the same manner as before.
 すなわち、先に説明したように前駆体としてのセラミックグリーンシートを焼結させたのち、さらに必要に応じてその表面を研磨する等して基板が形成される。焼結の条件や温度、研磨方法等は従来同様とすることができる。例えば研磨方法としては機械研磨(固定砥粒、遊離砥粒)やケミカルメカニカルポリシング等が挙げられる。 That is, as described above, after sintering the ceramic green sheet as a precursor, the substrate is formed by polishing the surface as necessary. The sintering conditions, temperature, polishing method, and the like can be the same as in the prior art. For example, examples of the polishing method include mechanical polishing (fixed abrasive grains, loose abrasive grains), chemical mechanical polishing, and the like.
 〈上下導通孔〉
 上下導通孔の孔径はφ0.1mm以上であるのが好ましく、φ0.3mm以下であるのが好ましい。
<Vertical conduction hole>
The hole diameter of the vertical conduction hole is preferably φ0.1 mm or more, and preferably φ0.3 mm or less.
 孔径がこの範囲未満では、多孔質構造体のもとになる高融点金属の粒子を含むペーストを上下導通孔内に充填するのが困難になるおそれがある。一方、孔径が上記の範囲を超える場合には上記ペーストを充填し、焼結させて形成した多孔質構造体や、当該多孔質構造体中に低抵抗金属を溶浸させて形成した上下導通体がその後の工程において基板から脱落しやすくなるおそれがある。 If the pore diameter is less than this range, it may be difficult to fill the upper and lower conductive holes with a paste containing refractory metal particles that are the basis of the porous structure. On the other hand, when the pore diameter exceeds the above range, a porous structure formed by filling and sintering the paste, and a vertical conductive body formed by infiltrating a low-resistance metal into the porous structure. However, there is a possibility that it will easily fall off the substrate in the subsequent process.
 ただしペーストの粘度等を工夫する必要はあるが、例えば基板内の配線取り回し等の関係次第では孔径をφ0.1mmより小さくしてもよいし、例えば電気的な特性や熱特性等を向上するためには孔径をφ0.3mmより大きくしてもよい。 However, although it is necessary to devise the viscosity of the paste, etc., the hole diameter may be smaller than φ0.1 mm depending on the wiring arrangement in the substrate, for example, in order to improve electrical characteristics, thermal characteristics, etc. The hole diameter may be larger than φ0.3 mm.
 上下導通孔は、先に説明したようにあらかじめ焼結させて板状に形成した基板に、あとから形成するのが好ましい。これにより焼結前に孔あけ加工する方法に比べて位置精度を向上できる。例えば位置精度を、これに限定されないがおよそ±50μm以下とすることができる。 The upper and lower conductive holes are preferably formed later on a substrate that has been previously sintered and formed into a plate shape as described above. Thereby, the positional accuracy can be improved as compared with the method of drilling before sintering. For example, the positional accuracy is not limited to this, but can be about ± 50 μm or less.
 あらかじめ焼結させた基板にあとから上下導通孔を形成するためには、例えばレーザを用いる方法、マイクロドリルを用いる方法、マイクロブラストを用いる方法等の種々の方法が採用可能である。 In order to form the upper and lower conductive holes later on the previously sintered substrate, various methods such as a method using a laser, a method using a micro drill, and a method using a micro blast can be employed.
 このうちレーザやマイクロドリルを用いる方法では、上下導通孔の形成位置を加工機にプログラムすることで、自動的に所定の形成位置に上下導通孔を形成できる。 Among these, in the method using a laser or a micro drill, the vertical conduction hole can be automatically formed at a predetermined formation position by programming the formation position of the vertical conduction hole in the processing machine.
 一方、マイクロブラストを用いる方法では、例えばウレタン系樹脂等からなるブラスト用のフォトレジスト剤を用いて、フォトリソグラフ法によって所望のバターンを有するレジストパターンを形成し、その上からブラストを吹き付けてレジストで覆われていない部分に選択的に孔あけをした後、レジストを剥離し、除去することで所定の形成位置に上下導通孔を形成できる。 On the other hand, in the method using microblasting, for example, a resist pattern having a desired pattern is formed by a photolithographic method using a photoresist agent for blasting made of, for example, a urethane-based resin, and then blasting is performed on the resist pattern. After selectively perforating the uncovered portion, the resist is peeled off and removed to form a vertical conduction hole at a predetermined formation position.
 〈上下導通体〉
 上下導通体は、先に説明したようにまず上下導通孔中でW、およびMoからなる群より選ばれた少なくとも1種の高融点金属の粒子を多数焼結させて多孔質構造体を形成し、次いでこの多孔質構造体中に、Cu、Ag、およびAuからなる群より選ばれた少なくとも1種の低抵抗金属を溶浸させて複合構造に形成するのが好ましい。また多孔質構造体は、さらにCを含んでいてもよい。
<Vertical conductor>
As described above, the vertical conductor is formed by first sintering a large number of particles of at least one refractory metal selected from the group consisting of W and Mo in the vertical conduction hole to form a porous structure. Then, it is preferable that at least one low-resistance metal selected from the group consisting of Cu, Ag, and Au is infiltrated into the porous structure to form a composite structure. The porous structure may further contain C.
 かかる複合構造を有する上下導通体を備えたセラミック配線基板の残留応力を前述した100MPa以下の範囲に調整するには、高融点金属の粒子の粒径の分布を調整して、より強固な多孔質構造体を形成すればよい。 In order to adjust the residual stress of the ceramic wiring board provided with the upper and lower conductive bodies having such a composite structure to the above-described range of 100 MPa or less, the distribution of the particle size of the particles of the refractory metal is adjusted to obtain a stronger porous material. A structure may be formed.
 具体的には、多孔質構造体に低抵抗金属を溶浸させて形成した上下導通体の断面における、最大長径1.0μm以下の粒子(「A粒子」とする)の個数割合NA(%)と、最大長径5.0μm以上の粒子(「C粒子」とする)の個数割合NC(%)との和NA+NCが50以上、90以下、比NA/NCが2/3以上、2以下となるように、多孔質構造体の構造を調整するのが好ましい。 Specifically, the number ratio N A (%) of particles having a maximum major axis of 1.0 μm or less (referred to as “A particles”) in a cross section of a vertical conductor formed by infiltrating a low-resistance metal into a porous structure. ) And the number ratio N C (%) of particles having a maximum major diameter of 5.0 μm or more (referred to as “C particles”) N A + N C is 50 or more and 90 or less, and the ratio N A / N C is 2 / It is preferable to adjust the structure of the porous structure so as to be 3 or more and 2 or less.
 なお和NA+NC、比NA/NCを、本発明では下記の方法によって求めることとする。 In the present invention, the sum N A + N C and the ratio N A / N C are determined by the following method.
 すなわち形成した上下導通体を研磨して断面を露出させ、次いでArプラズマでドライエッチングするクロスセクションポリッシュ(CP)加工をした後の断面の任意の10箇所を、走査型電子顕微鏡(SEM)を用いて倍率1000倍、90μm×130μmの視野で観察した際に、当該視野内に露出した全ての高融点金属の粒子を上記A粒子、C粒子と、両者の中間の最大長径が1.0μmを超えかつ5.0μm未満の粒子(「B粒子」とする)に分類してそれぞれの個数を計数する。 That is, the upper and lower conductive bodies formed are polished to expose the cross section, and then subjected to cross section polishing (CP) processing that is dry-etched with Ar plasma, and any 10 positions in the cross section are scanned using a scanning electron microscope (SEM). When observing in a field of view of 1000 μm and 90 μm × 130 μm, all the high melting point metal particles exposed in the field of view are the above A particles and C particles, and the maximum major axis between them exceeds 1.0 μm. The particles are classified into particles of less than 5.0 μm (referred to as “B particles”) and the number of each is counted.
 この際、もともとは複数の粒子であったものが焼結工程によって粒成長して粒界が消失してしまったものは、1つの粒子として長径を計測してA粒子~C粒子のいずれであるかを分類して計数する。 At this time, what was originally a plurality of particles was grown by the sintering process and the grain boundary disappeared, and the major axis was measured as one particle and any of A particle to C particle. Classify and count.
 次いでA粒子~C粒子の総数中に占めるA粒子の個数割合NA(%)とC粒子の個数割合NC(%)を算出し、その結果から和NA+NC、比NA/NCを求める。 Next, the number ratio N A (%) of the A particles and the number ratio N C (%) of the C particles in the total number of A particles to C particles are calculated, and the sum N A + N C and the ratio N A / N are calculated from the results. Find C.
 かかる和NA+NC、比NA/NCをそれぞれ上記の範囲とすることにより、多孔質構造体を形成する高融点金属の粒子間でのネックグロースを十分に生じさせて強固な多孔質構造体を形成でき、セラミック配線基板の残留応力を100MPa以下の範囲に調整できる。 By setting the sum N A + N C and ratio N A / N C within the above ranges, neck growth is sufficiently generated between particles of the refractory metal forming the porous structure, and the porous structure is strong. A structure can be formed, and the residual stress of the ceramic wiring board can be adjusted to a range of 100 MPa or less.
 すなわちC粒子は、隣接するC粒子同士の接触によって粒子間に低抵抗金属溶浸のための大きな空間を確保するために機能する。 That is, the C particles function to secure a large space for low resistance metal infiltration between the particles by contact between adjacent C particles.
 またC粒子より粒径の小さいB粒子は、C粒子によって形成された上記空間内に入り込んで当該空間の大きさを調整するために機能する。すなわち多孔質構造体と、当該多孔質構造体中に溶浸させる低抵抗金属の比率を調整するために機能する。 Also, the B particles having a smaller particle diameter than the C particles function to enter the space formed by the C particles and adjust the size of the space. That is, it functions to adjust the ratio of the porous structure and the low resistance metal infiltrated into the porous structure.
 そして最も粒径の小さいA粒子は、C粒子同士の接触箇所の近傍の隙間に入り込んでC粒子間のネックグロースを促進させるために機能する。つまりC粒子間のネックグロース箇所を増加させ、焼結性を向上して強固な多孔質構造体を形成するために機能する。 The A particles having the smallest particle size enter the gap near the contact point between the C particles and function to promote neck growth between the C particles. That is, it functions to increase the neck growth location between the C particles, improve the sinterability, and form a strong porous structure.
 和NA+NCと比NA/NCがともに上記の範囲を満足するということは、上記A粒子~C粒子の3種の粒子の配合比を所定の範囲に規定することを意味する。 The fact that the sum N A + N C and the ratio N A / N C both satisfy the above range means that the mixing ratio of the three types of particles A to C is defined within a predetermined range.
 和NA+NCが50未満では中間の粒径のB粒子が過剰に存在することになり、C粒子によって形成された空間内に多くのB粒子が入り込んで当該空間を必要以上に狭めてしまうおそれがある。 If the sum N A + N C is less than 50, there will be an excessive amount of B particles having an intermediate particle size, and many B particles will enter the space formed by the C particles, thereby narrowing the space more than necessary. There is a fear.
 またそのため、上記空間内に十分な量の低抵抗金属を溶浸させることができずに空隙(ボイド)を生じたり、熱伝導率の高い低抵抗金属の比率が少なくなって上下導通体の熱伝導率が低下したりするといった問題を生じるおそれがある。 For this reason, a sufficient amount of low resistance metal cannot be infiltrated into the space, resulting in voids, and the ratio of low resistance metal having high thermal conductivity is reduced, so that the heat of the upper and lower conductors is reduced. There is a risk of problems such as a decrease in conductivity.
 一方、和NA+NCが90を超える場合にはB粒子が不足することになり、C粒子によって形成された空間内を当該B粒子によって適切に埋めることができないおそれがある。 On the other hand, when the sum N A + N C exceeds 90, the B particles are insufficient, and the space formed by the C particles may not be appropriately filled with the B particles.
 またそのため、上記空間内に過剰の低抵抗金属が溶浸され、上下導通体と基板との熱膨張率の差が大きくなってセラミック配線基板の残留応力を100MPa以下の範囲に調整できないおそれがある。 Therefore, excessive low-resistance metal is infiltrated in the space, and the difference in thermal expansion coefficient between the upper and lower conductive bodies and the substrate becomes large, and the residual stress of the ceramic wiring board may not be adjusted to a range of 100 MPa or less. .
 また比NA/NCが2/3未満ではA粒子が不足するため、当該A粒子による、焼結性を向上し、C粒子間のネックグロース箇所を増加させて強固な多孔質構造体を形成する効果が不十分になるおそれがある。 In addition, when the ratio N A / N C is less than 2/3, the A particles are insufficient, so that the A particles can improve the sinterability and increase the neck growth location between the C particles to form a strong porous structure. The effect of forming may be insufficient.
 またそのため、低抵抗金属の溶浸時に多孔質構造体の一部または全体が破壊されて、当該多孔質構造体の持つ高い強度に基づいて低抵抗金属の、ひいては上下導通体の膨張、収縮を抑制する効果が十分に得られなくなり、セラミック配線基板の残留応力を100MPa以下の範囲に調整できないおそれがある。 For this reason, a part or the whole of the porous structure is destroyed at the time of infiltration of the low resistance metal, and the expansion and contraction of the low resistance metal, and hence the upper and lower conductive bodies, are expanded based on the high strength of the porous structure. The suppression effect cannot be obtained sufficiently, and the residual stress of the ceramic wiring board may not be adjusted to a range of 100 MPa or less.
 また比NA/NCが上記2/3未満の範囲でも大幅に小さい場合にはC粒子間のネックグロース箇所が大幅に少なくなって、低抵抗金属の溶浸時に高融点金属の粒子の一部が上下導通孔中から押し出されてしまうおそれがある。 Further, when the ratio N A / N C is much smaller even in the range of less than 2/3, the number of neck growth points between the C particles is greatly reduced, and one of the high melting point metal particles is infiltrated with the low resistance metal. The part may be pushed out of the vertical conduction hole.
 またそのため、低抵抗金属の比率が過剰に多くなり、上下導通体と基板との熱膨張率の差が大きくなるため、一体に形成された十分な強度を有する多孔質構造体を形成できないこととあいまって、セラミック配線基板の残留応力を100MPa以下の範囲に調整できないおそれがある。 For this reason, the ratio of the low-resistance metal is excessively increased, and the difference in the coefficient of thermal expansion between the upper and lower conductive bodies and the substrate is increased, so that a porous structure having sufficient strength formed integrally cannot be formed. In combination, the residual stress of the ceramic wiring board may not be adjusted to a range of 100 MPa or less.
 一方、比NA/NCが2を超える場合にはC粒子が不足し、かつA粒子が多すぎるため、C粒子によって形成される空間が減少するとともに、A粒子同士による、空間を形成しにくいネックグロースが増加して焼結による多孔質構造体の収縮が大きくなるおそれがある。 On the other hand, when the ratio N A / N C exceeds 2, the number of C particles is insufficient and the number of A particles is too large, so that the space formed by the C particles is reduced and a space formed by the A particles is formed. There is a possibility that the neck growth which is difficult to increase and the shrinkage of the porous structure due to the sintering will increase.
 またそのため、基板の上下導通孔の内面と多孔質構造体との間に大きな隙間(ボイド)を生じたり、当該多孔質構造体や上下導通体が基板から脱落したりしやすくなるおそれがある。 For this reason, a large gap (void) may be formed between the inner surface of the vertical conduction hole of the substrate and the porous structure, or the porous structure and the vertical conduction body may easily fall off the substrate.
 これに対し和NA+NCと比NA/NCをともに先に説明した範囲に規定することで、セラミック製の基板に近い熱膨張率を有する高融点金属によって、より強固で変形しにくい多孔質構造体を形成できる。 On the other hand, by defining both the sum N A + N C and the ratio N A / N C within the above-described range, the refractory metal having a thermal expansion coefficient close to that of a ceramic substrate is stronger and less likely to be deformed. A porous structure can be formed.
 またそのため、熱膨張率の大きい低抵抗金属を溶浸後に、当該低抵抗金属の熱膨張を多孔質構造体によって抑制して、上下導通体の熱膨張率を基板の熱膨張率にできるだけ近い範囲に維持することができ、セラミック配線基板の残留応力を100MPa以下の範囲に調整することが可能となる。 Therefore, after infiltrating a low-resistance metal having a large thermal expansion coefficient, the thermal expansion of the low-resistance metal is suppressed by the porous structure, and the thermal expansion coefficient of the upper and lower conductive bodies is as close as possible to the thermal expansion coefficient of the substrate. Therefore, it is possible to adjust the residual stress of the ceramic wiring board to a range of 100 MPa or less.
 しかも多孔質構造体の収縮を抑制して空隙や脱落が生じるのを防止したり、上下導通体の熱伝導率を良好な範囲に維持したりすることも可能となる。 In addition, it is possible to suppress the shrinkage of the porous structure to prevent voids and dropouts, and to maintain the thermal conductivity of the upper and lower conductive bodies in a favorable range.
 なお、かかる効果をより一層向上することを考慮すると、和NA+NCは上記の範囲でも60以上であるのが好ましく、80以下であるのが好ましい。また比NA/NCは上記の範囲でも1以上であるのが好ましく、1.5以下であるのが好ましい。 In consideration of further improving this effect, the sum N A + N C is preferably 60 or more, and more preferably 80 or less, even in the above range. Further, the ratio N A / N C is preferably 1 or more in the above range, and is preferably 1.5 or less.
 (多孔質構造体の形成)
 多孔質構造体を形成するには、上下導通孔を形成後の基板を必要に応じて洗浄して乾燥させたのち、当該上下導通孔内に、高融点金属の粒子、樹脂結合剤、および溶剤等を含むペーストを充填する。充填方法としては、スクリーン印刷やディスペンサ、刷毛塗り、スピンローラー塗り等の周知の塗布方法が採用できる。
(Formation of porous structure)
In order to form the porous structure, the substrate after forming the vertical conduction holes is washed and dried as necessary, and then the refractory metal particles, the resin binder, and the solvent are contained in the vertical conduction holes. Fill with paste containing etc. As a filling method, a known coating method such as screen printing, dispenser, brush coating, spin roller coating or the like can be employed.
 高融点金属の粒子としては、断面に露出したA粒子の個数割合NAとC粒子の個数割合NCとの和NA+NCおよび比NA/NCがそれぞれ先に説明した範囲に調整された上下導通体を形成するために、例えば平均粒径の異なる複数種の粒子を併用するのが好ましい。 As the high melting point metal particles, the sum N A + N C and the ratio N A / N C of the number ratio N A of the A particles exposed in the cross section and the number ratio N C of the C particles are adjusted to the ranges described above. In order to form the upper and lower conductive bodies, it is preferable to use, for example, a plurality of types of particles having different average particle sizes, for example.
 具体的には高融点金属の粒子として、先に説明したA粒子のもとになる平均粒径の小さい粒子と、B粒子のもとになる平均粒径が中程度の粒子と、C粒子のもとになる平均粒径の大きい粒子とを併用する。そして各粒子の平均粒径や配合割合を調整することで、上記和NA+NCおよび比NA/NCを、それぞれ先に説明した範囲となるように調整すればよい。 Specifically, as the particles of the refractory metal, the particles having a small average particle size that is the basis of the A particles described above, the particles having a medium average particle size that is the basis of the B particles, A combination of particles having a large average particle size is used. Then, the sum N A + N C and the ratio N A / N C may be adjusted to be in the ranges described above by adjusting the average particle size and the blending ratio of each particle.
 なお高融点金属の粒子の平均粒径を、本発明では試料管に粒子を充填した状態で空気を透過させて、流速と圧力降下の測定結果から比表面積を求めて平均粒径を算出する透過法のうち、フィッシャー法(FSSS)によって測定した値でもって表すこととする。 In the present invention, the average particle diameter of the refractory metal particles is determined by allowing the air to permeate in a state where the sample tube is filled with the particles, and calculating the average particle diameter by obtaining the specific surface area from the measurement results of the flow velocity and the pressure drop. Among the methods, it is expressed by a value measured by the Fisher method (FSSS).
 すなわちフィッシャー法では、所定の真密度の粉末試料を試料管に充填した状態で試料高さを測定して求めた空隙率と、そこへ定圧空気を通過させて測定したマノメータ水位とから、カルキュレータチャート上で読み取った数値を平均粒径とする。 That is, in the Fischer method, a calculator is calculated from the porosity determined by measuring the sample height in a state where a powder sample of a predetermined true density is filled in the sample tube, and the manometer water level measured by passing constant pressure air therethrough. The numerical value read on the chart is defined as the average particle diameter.
 樹脂結合剤としては、例えばアクリルバインダ、エチルセルロース、ニトロセルロース、ワックス等の1種または2種以上が挙げられる。 Examples of the resin binder include one or more of acrylic binder, ethyl cellulose, nitrocellulose, wax and the like.
 また溶剤としては、樹脂結合剤を良好に溶解または分散させるとともに、高融点金属の粒子を良好に分散させてペーストを形成しうる種々の溶剤が使用可能である。 Further, as the solvent, various solvents that can dissolve or disperse the resin binder well and can disperse the high melting point metal particles to form a paste can be used.
 かかる溶剤としては、例えばブチルカルビトール、テルピネオール等の少なくとも1種が挙げられる。 Examples of such a solvent include at least one kind such as butyl carbitol and terpineol.
 樹脂結合剤、および溶剤の配合割合は通常、高融点金属の粒子100質量部あたり、樹脂結合剤が1質量部以上、3質量部以下、溶剤が3質量部以上、15質量部以下であるのが好ましいが、上下導通孔へのペーストの充填性や、脱バインダ処理時の残炭量等を考慮して両成分の配合割合をこれらの範囲外とすることも可能である。 The blending ratio of the resin binder and the solvent is usually 1 to 3 parts by mass of the resin binder and 3 to 15 parts by mass of the solvent per 100 parts by mass of the high melting point metal particles. However, it is possible to make the blending ratio of both components out of these ranges in consideration of the filling property of the paste into the upper and lower conductive holes, the amount of remaining carbon during the binder removal treatment, and the like.
 ペーストの組成は、焼結によって上下導通孔内で多孔質構造体が形成されるように調整するのが好ましい。また溶浸後の低抵抗金属と高融点金属の分布に偏りを生じないためにできる限り空間の分布の均一な多孔質構造体を形成するべく、上記組成を調整したり塗布方法を最適化したりするのが好ましい。 The composition of the paste is preferably adjusted so that a porous structure is formed in the vertical conduction holes by sintering. In addition, in order to avoid unevenness in the distribution of the low resistance metal and the high melting point metal after the infiltration, the above composition is adjusted or the coating method is optimized in order to form a porous structure having a uniform spatial distribution as much as possible. It is preferable to do this.
 調製したペーストを上下導通孔に充填後は、焼結に先立って例えば窒素、水素、真空等の非酸化性雰囲気中で加熱してペースト中の樹脂分を除去する脱バインダ処理をするのが好ましい。脱バインダ処理の温度は300℃以上、1000℃以下であるのが好ましく、時間は0.5時間以上、40時間以下であるのが好ましい。 After filling the prepared paste into the upper and lower conductive holes, it is preferable to remove the resin in the paste by heating in a non-oxidizing atmosphere such as nitrogen, hydrogen or vacuum prior to sintering. . The temperature of the binder removal treatment is preferably 300 ° C. or more and 1000 ° C. or less, and the time is preferably 0.5 hours or more and 40 hours or less.
 次に窒素、水素、真空等の非酸化性雰囲気中で高融点金属を焼結させる。一般に焼結温度は600℃以上、1300℃以下であるのが好ましく、焼結時間は0.5時間以上、10時間以下であるのが好ましい。 Next, the refractory metal is sintered in a non-oxidizing atmosphere such as nitrogen, hydrogen or vacuum. In general, the sintering temperature is preferably 600 ° C. or more and 1300 ° C. or less, and the sintering time is preferably 0.5 hours or more and 10 hours or less.
 上記の脱バインダ処理と焼結によってペースト中の樹脂分が除去されるとともに、焼結時の粒成長によって高融点金属の粒子同士が隣接するもの同士繋がっている状態、すなわち粒子同士がネックグロースした状態となり、なおかつその内部に上記樹脂分が除去されて低抵抗金属が溶浸される連通する空間が形成されて、三次元網目状構造の多孔質構造体が形成される。 The resin component in the paste is removed by the above binder removal and sintering, and the particles of the high melting point metal are connected to each other by the grain growth during sintering, that is, the particles are neck-grown. In addition, a space in which the resin component is removed and a low-resistance metal is infiltrated is formed in the interior, and a porous structure having a three-dimensional network structure is formed.
 なお上下導通孔の内面には、多孔質構造体の形成に先立って、例えばTi、W、Mo等からなる金属層を形成してもよい。かかる金属層を形成すると、ペーストの焼結時に、当該金属層と高融点金属の粒子との間でもネックグロースを生じて基板に対する多孔質構造体の接合強度を向上でき、当該多孔質構造体や上下導通体が基板から脱落したりするのをより一層確実に防止できる。 Note that a metal layer made of, for example, Ti, W, Mo, or the like may be formed on the inner surface of the vertical conduction hole prior to the formation of the porous structure. When the metal layer is formed, neck paste growth occurs between the metal layer and the refractory metal particles during sintering of the paste, so that the bonding strength of the porous structure to the substrate can be improved. It is possible to more reliably prevent the vertical conductor from falling off the substrate.
 金属層は、例えばスパッタ法、真空蒸着法等の物理蒸着法によって形成できる。 The metal layer can be formed by physical vapor deposition such as sputtering or vacuum vapor deposition.
 ちなみに全体が上下導通体と同様の複合構造を有するバルクの複合材、すなわち高融点金属の粒子からなる多孔質構造体中に低抵抗金属を溶浸させて形成される複合材によって全体が形成される基板では、先述した和NA+NCや比NA/NCを所定の範囲に規定しなくても種々の問題が生じるおそれはない。 By the way, the whole is formed by a bulk composite material having the same composite structure as the vertical conductor, that is, a composite material formed by infiltrating a low resistance metal into a porous structure made of particles of a high melting point metal. In such a substrate, there is no possibility that various problems will occur even if the above-mentioned sum N A + N C and ratio N A / N C are not specified within a predetermined range.
 これは高融点金属の粒子を10GPa程度の高い圧力でプレスして多孔質構造体の前駆体としてのプレス体を形成した後に焼結させて当該多孔質構造体を形成しており、粒子同士の密着性が高く焼結時にネックグロースを生じやすいためである。 This is because the high melting point metal particles are pressed at a high pressure of about 10 GPa to form a press body as a precursor of the porous structure, and then sintered to form the porous structure. This is because the adhesiveness is high and neck growth is likely to occur during sintering.
 これに対し本発明における、微細な上下導通孔内で多孔質構造体を形成する工程では、先に説明したように高融点金属の粒子を含むペーストを、スクリーン印刷やディスペンサ、刷毛塗り、スピンローラー塗り等の塗布方法によって充填しているため、殆ど圧をかけることができないか、かけることができたとしても数10MPa程度でしかなく、粒子同士を強く密着させることはできない。 On the other hand, in the step of forming the porous structure in the fine vertical conduction hole in the present invention, as described above, the paste containing the particles of the refractory metal is applied to the screen printing, the dispenser, the brush coating, the spin roller. Since it is filled by a coating method such as coating, the pressure can hardly be applied, or even if it can be applied, it is only about several tens of MPa, and the particles cannot be strongly adhered to each other.
 その上、上下導通孔内の多孔質構造体は、高融点金属の粒子を焼結させて当該多孔質構造体を形成する際や、形成した多孔質構造体中に低抵抗金属を溶浸させる際の温度変化によって周囲の基板から引っ張り応力や圧縮応力を受けるため破壊されやすい。また製造されるセラミック配線基板の残留応力が大きくなりやすい。 In addition, the porous structure in the vertical conduction hole is formed by sintering high-melting point metal particles to form the porous structure or infiltrating the low-resistance metal into the formed porous structure. It is easily broken because it receives tensile stress or compressive stress from the surrounding substrate due to the change in temperature. Moreover, the residual stress of the manufactured ceramic wiring board tends to increase.
 そのため本発明では、バルクの複合材の作製とは異なってネックグロースを促進させるべく、先に説明したように高融点金属の粒子の粒径の分布などを調整する必要がある。つまり本発明の課題は、微細な上下導通孔内で多孔質構造体、ひいては上下導通体を形成する際に特有の課題である。 Therefore, in the present invention, unlike the production of the bulk composite material, it is necessary to adjust the particle size distribution of the refractory metal particles as described above in order to promote neck growth. That is, the subject of this invention is a subject peculiar when forming a porous structure and by extension, a vertical conduction body in a fine vertical conduction hole.
 (低抵抗金属の溶浸)
 例えば上下導通孔内に多孔質構造体を形成した基板の上下を溶浸する低抵抗金属からなる板で挟むか、あるいは基板の片面にのみかかる板を重ねた状態で窒素、水素、真空等の非酸化性雰囲気中で、低抵抗金属の溶融温度以上に加熱する。
(Low resistance metal infiltration)
For example, nitrogen, hydrogen, vacuum, etc. with a plate made of a low resistance metal that infiltrates the upper and lower sides of the substrate on which the porous structure is formed in the vertical conduction hole, or a plate that overlaps only one side of the substrate Heat in a non-oxidizing atmosphere above the melting temperature of the low resistance metal.
 そうすると溶融した低抵抗金属が多孔質構造体内の連通した空間を毛細管現象によって濡れ広がることで多孔質構造体中に溶浸されて上下導通体が形成される。 Then, the melted low-resistance metal is infiltrated into the porous structure by wetting and spreading through the communicating space in the porous structure by a capillary phenomenon, thereby forming a vertical conductive body.
 一般に溶浸温度は900℃以上、1500℃以下であるのが好ましく、溶浸時間は0.1時間以上、3時間以下であるのが好ましい。 In general, the infiltration temperature is preferably 900 ° C. or more and 1500 ° C. or less, and the infiltration time is preferably 0.1 hours or more and 3 hours or less.
 (低抵抗金属の面積比率、および空隙率)
 上下導通体の熱膨張率は、高融点金属からなる多孔質構造体中に溶浸された低抵抗金属の存在比率で決まる。
(Area ratio of low resistance metal and porosity)
The coefficient of thermal expansion of the vertical conductor is determined by the abundance ratio of the low resistance metal infiltrated into the porous structure made of the high melting point metal.
 かかる存在比率を、本発明では形成した上下導通体を研磨して断面を露出させ、次いでArプラズマでドライエッチングするクロスセクションポリッシュ(CP)加工をした後の断面の任意の10箇所において、SEMを用いて倍率250倍、350μm×500μmの視野で観察した際に、当該視野内に露出した多孔質構造体の面積S1、および低抵抗金属の面積S2を計測し、両面積S1、S2から、式(1):
 面積比率(%)=S2/(S1+S2)×100   (1)
によって求めた面積比率でもって表すこととする。
In such an abundance ratio, in the present invention, the formed vertical conductor is polished to expose the cross section, and then subjected to cross section polish (CP) processing in which dry etching is performed with Ar plasma. When observed in a field of view having a magnification of 250 times and 350 μm × 500 μm, the area S 1 of the porous structure exposed in the field of view and the area S 2 of the low-resistance metal are measured, and both areas S 1 , S From 2 , formula (1):
Area ratio (%) = S 2 / (S 1 + S 2 ) × 100 (1)
It will be expressed by the area ratio obtained by.
 かかる面積比率は3%以上であるのが好ましく、88%以下であるのが好ましい。 The area ratio is preferably 3% or more, and preferably 88% or less.
 低抵抗金属の面積比率がこの範囲未満では、多孔質構造体中に形成された空間を低抵抗金属によって完全に埋めることができずボイドが残ってしまうおそれがある。 If the area ratio of the low-resistance metal is less than this range, the space formed in the porous structure cannot be completely filled with the low-resistance metal, and voids may remain.
 そのため、熱伝導率の高い低抵抗金属の比率が少なくなることと相まって上下導通体の熱伝導率が低下するおそれもある。 Therefore, there is a possibility that the thermal conductivity of the upper and lower conductors may be lowered in combination with the decrease in the ratio of the low resistance metal having a high thermal conductivity.
 一方、低抵抗金属の面積比率が上記の範囲を超える場合には、相対的に高融点金属の比率が少なくなるため、当該高融点金属によって強固な多孔質構造体を維持することができず、多孔質構造体の持つ高い強度に基づいて低抵抗金属や上下導通体の膨張、収縮を抑制する効果が十分に得られない傾向がある。 On the other hand, when the area ratio of the low-resistance metal exceeds the above range, the ratio of the refractory metal is relatively reduced, so that a strong porous structure cannot be maintained by the refractory metal, Based on the high strength of the porous structure, there is a tendency that the effect of suppressing the expansion and contraction of the low-resistance metal and the vertical conductor is not sufficiently obtained.
 また熱膨張率の大きい低抵抗金属の比率が過剰に多くなり、上下導通体と基板との熱膨張率の差が大きくなる傾向もある。 Also, the ratio of the low resistance metal having a large coefficient of thermal expansion tends to be excessive, and the difference in coefficient of thermal expansion between the vertical conductor and the substrate tends to increase.
 そのためこの2つの傾向により、セラミック配線基板の残留応力を100MPa以下の範囲に調整できないおそれがある。 Therefore, there is a possibility that the residual stress of the ceramic wiring board cannot be adjusted to a range of 100 MPa or less due to these two tendencies.
 これに対し、低抵抗金属の面積比率を上記の範囲とすることにより、上下導通体の熱伝導率を良好な範囲に維持しながら、セラミック配線基板の残留応力を100MPa以下の範囲でもできるだけ小さくできる。 On the other hand, by setting the area ratio of the low-resistance metal in the above range, the residual stress of the ceramic wiring board can be made as small as possible even in the range of 100 MPa or less while maintaining the thermal conductivity of the upper and lower conductive bodies in a favorable range. .
 なお上下導通体に、例えば180W/mK以上の高い熱伝導率を付与することを考慮すると、低抵抗金属の面積比率は、上記の範囲でも10%以上、特に20%以上であるのが好ましい。またセラミック配線基板の残留応力を100MPa以下の範囲でもより一層小さくすることを考慮すると、低抵抗金属の面積比率は、上記の範囲でも80%以下、特に75%以下であるのが好ましい。 In consideration of imparting a high thermal conductivity of, for example, 180 W / mK or more to the vertical conductor, the area ratio of the low-resistance metal is preferably 10% or more, particularly 20% or more even in the above range. In consideration of further reducing the residual stress of the ceramic wiring board even in the range of 100 MPa or less, the area ratio of the low resistance metal is preferably 80% or less, particularly 75% or less even in the above range.
 低抵抗金属の面積比率は、多孔質構造体のもとになる高融点金属の粒子の粒径の分布やペーストの粘度、樹脂結合剤の量等を調整することで調整できる。粒径の分布については先に説明したとおりである。 The area ratio of the low-resistance metal can be adjusted by adjusting the particle size distribution of the refractory metal particles that form the porous structure, the viscosity of the paste, the amount of the resin binder, and the like. The particle size distribution is as described above.
 またペーストの粘度を下げたり樹脂結合剤の量を多くしたりして、ペースト中に含まれる高融点金属の比率を下げると、当該ペーストを用いて先に説明した工程を経て形成される上下導通体中に含まれる低抵抗金属の存在比率を増加させることができる。 Also, when the viscosity of the paste is reduced or the amount of the resin binder is increased to reduce the ratio of the refractory metal contained in the paste, the vertical conduction formed through the steps described above using the paste. The abundance ratio of the low resistance metal contained in the body can be increased.
 また低抵抗金属の面積比率を測定したのと同じ視野内に露出した、当該低抵抗金属が充填されていないボイドの面積S3と、前記面積S1、S2とから、式(2):
 空隙率(%)=S3/(S1+S2+S3)×100   (2)
によって求められる空隙率は10%以下であるのが好ましい。
Further, from the area S 3 of the void that is exposed in the same field of view as the area ratio of the low-resistance metal and is not filled with the low-resistance metal, and the areas S 1 and S 2 , the formula (2):
Porosity (%) = S 3 / (S 1 + S 2 + S 3 ) × 100 (2)
Is preferably 10% or less.
 空隙率がこの範囲を超える場合には、溶浸させた低抵抗金属が多孔質構造体中に十分に回り込んでおらず、上下導通体内に多くのボイドが生じていることになる。そして、例えば上下導通体を含む基板の表面上にメタライズ層を形成した際に、ボイドからのガス発生によってメタライズ層の密着強度が弱くなって剥がれてしまったり、剥がれないまでも、メタライズ層やその上の半田層等にクラックを生じたりするおそれがある。 When the porosity exceeds this range, the infiltrated low-resistance metal does not sufficiently enter the porous structure, and many voids are generated in the upper and lower conductive bodies. For example, when the metallized layer is formed on the surface of the substrate including the upper and lower conductors, the metallized layer and its metallization layer are not peeled off due to the generation of gas from the void. There is a risk of cracking the upper solder layer.
 なお空隙率は、上記の範囲でも5%以下であるのが好ましい。空隙率がこの範囲を超える場合には、メタライズ層の厚みが例えば0.5μmより小さい場合に、上述したボイドの影響を強く受けて上下導通体の直上のメタライズ層やその上の半田層等にクラックを生じるおそれがある。 Note that the porosity is preferably 5% or less even in the above range. When the porosity exceeds this range, when the thickness of the metallized layer is smaller than, for example, 0.5 μm, the metallized layer directly above the upper and lower conductors or the solder layer thereon is strongly affected by the voids described above. May cause cracks.
 なおボイドは上下導通体内に空隙として生じる場合もあるし、上下導通体と基板との界面で隙間として生じる場合もある。ここでは空隙だけでなく界面に生じる隙間の面積比率も空隙率に含めることとする。 Note that the void may be generated as a gap in the vertical conductor, or may be generated as a gap at the interface between the vertical conductor and the substrate. Here, not only the gap but also the area ratio of the gap generated at the interface is included in the void ratio.
 空隙率の下限はいうまでもなく0%である。全くボイドのないのが理想的である。 Needless to say, the lower limit of the porosity is 0%. Ideally, there should be no voids.
 (研磨)
 低抵抗金属を溶浸後の基板の表面を必要に応じて研磨することにより、本発明のセラミック配線基板が製造される。
(Polishing)
The ceramic wiring substrate of the present invention is manufactured by polishing the surface of the substrate after infiltrating the low-resistance metal as necessary.
 研磨方法は前記と同様である。すなわち研磨方法としては、先述した機械研磨(固定砥粒、遊離砥粒)やケミカルメカニカルポリシング等が挙げられる。 The polishing method is the same as described above. That is, examples of the polishing method include the above-described mechanical polishing (fixed abrasive grains, loose abrasive grains), chemical mechanical polishing, and the like.
 研磨後の表面粗さ(粗さ曲線の算術平均粗さ)Raは0.01μm以上、特に0.02μm以上であるのが好ましく、1μm以下、特に0.5μm以下であるのが好ましい。 The surface roughness (arithmetic mean roughness of the roughness curve) Ra after polishing is preferably 0.01 μm or more, particularly 0.02 μm or more, and preferably 1 μm or less, particularly 0.5 μm or less.
 研磨後の表面粗さRaがこの範囲未満では、いわゆるアンカー効果によるメタライズ層の密着性向上効果が不十分になるおそれがある。一方、研磨後の表面粗さRaが上記の範囲を超える場合には、均一な厚みのメタライズ層を形成するのが困難になるおそれがある。 If the surface roughness Ra after polishing is less than this range, the effect of improving the adhesion of the metallized layer by the so-called anchor effect may be insufficient. On the other hand, when the surface roughness Ra after polishing exceeds the above range, it may be difficult to form a metallized layer having a uniform thickness.
 研磨後の基板の厚みは、実用的な強度と、半導体装置の容積減少との兼ね合いを考慮すると0.1mm以上、特に0.15mm以上であるのが好ましく、1mm以下、特に0.5mm以下であるのが好ましい。 The thickness of the substrate after polishing is preferably 0.1 mm or more, particularly 0.15 mm or more, preferably 1 mm or less, particularly 0.5 mm or less, considering the balance between practical strength and volume reduction of the semiconductor device. Preferably there is.
 《半導体装置》
 本発明は、上記本発明のセラミック配線基板に半導体素子を搭載した半導体装置である。
<Semiconductor device>
The present invention is a semiconductor device in which a semiconductor element is mounted on the ceramic wiring board of the present invention.
 詳しくは、例えば本発明のセラミック配線基板の上下両側の、上下導通体を含む両表面にそれぞれメタライズ層を形成するとともに、少なくとも一方の表面のメタライズ層上にさらに半田層を介して半導体素子を搭載することで半導体装置が構成される。 Specifically, for example, a metallized layer is formed on both surfaces of the ceramic wiring board of the present invention on both the upper and lower sides including the upper and lower conductive bodies, and a semiconductor element is mounted on the metallized layer on at least one surface via a solder layer. Thus, a semiconductor device is configured.
 (メタライズ層)
 メタライズ層は、先に説明したように上下導通体を形成し、さらに必要に応じて前述した所定の表面粗さRaとなるように研磨した基板の表面に形成される。
(Metalized layer)
As described above, the metallized layer is formed on the surface of the substrate on which the upper and lower conductive bodies are formed, and further polished to have the above-described predetermined surface roughness Ra as necessary.
 メタライズ層は、以下に説明する導電層のみの単層構造としてもよいが、通常は、基板に対する密着性を確保するための密着層と外部接続用の導電層の少なくとも2層の積層構造に形成するのが好ましい。またこの両層間に拡散防止層を介在させてもよい。 The metallized layer may have a single-layer structure including only the conductive layer described below, but is usually formed in a laminated structure of at least two layers of an adhesion layer for securing adhesion to the substrate and a conductive layer for external connection. It is preferable to do this. Further, a diffusion preventing layer may be interposed between these two layers.
 密着層は、例えばTi、Cr、NiCr、Ta、Nb、TiW、およびこれらの化合物等によって厚みおよそ0.05μm以上、1.0μm以下に形成される。形成方法は、例えばスパッタ法、真空蒸着法等の物理蒸着法や湿式めっき法等が挙げられる。 The adhesion layer is formed to have a thickness of about 0.05 μm or more and 1.0 μm or less using, for example, Ti, Cr, NiCr, Ta, Nb, TiW, and compounds thereof. Examples of the forming method include physical vapor deposition such as sputtering and vacuum vapor deposition, and wet plating.
 また拡散防止層は、例えばPt、Pd、Cu、Ni、Mo、NiCr等によって厚みおよそ0.1μm以上、10μm以下に形成される。形成方法は、例えばスパッタ法、真空蒸着法等の物理蒸着法や湿式めっき法等が挙げられる。 Further, the diffusion preventing layer is formed with a thickness of about 0.1 μm or more and 10 μm or less by, for example, Pt, Pd, Cu, Ni, Mo, NiCr or the like. Examples of the forming method include physical vapor deposition such as sputtering and vacuum vapor deposition, and wet plating.
 さらに導電層は、例えばAg、Al、Au等によって、厚みおよそ0.1μm以上、10μm以下に形成される。形成方法は、例えばスパッタ法、真空蒸着法等の物理蒸着法や湿式めっき法等が挙げられる。 Further, the conductive layer is formed with a thickness of about 0.1 μm or more and 10 μm or less, for example, with Ag, Al, Au or the like. Examples of the forming method include physical vapor deposition such as sputtering and vacuum vapor deposition, and wet plating.
 単層、積層のいずれの構造のメタライズ層も、フォトリソグラフ法によって微細パターン形成できる。 A fine pattern can be formed by a photolithographic method on a metallized layer having a single layer structure or a stacked structure.
 またメタライズ層は、厚膜法(Au、Cu等)によって形成することもできる。また厚膜法で形成したパターン上にNiやNi/Auめっきによって成膜することもできる。 The metallized layer can also be formed by a thick film method (Au, Cu, etc.). Moreover, it can also form into a film by Ni or Ni / Au plating on the pattern formed by the thick film method.
 またメタライズ層を、スクリーン印刷に適した粘度に調整したペーストを用いたスクリーン印刷法によって基板の表面にパターニングして形成してもよい。 Further, the metallized layer may be formed by patterning on the surface of the substrate by a screen printing method using a paste adjusted to a viscosity suitable for screen printing.
 この方法によるメタライズ層の厚みは、スクリーン印刷に用いるペーストの粘度等を調整することで例えば5μm程度から100μm以上まで任意に変更できる。中でも20μm程度が一般的であるが、大電流を投入する場合は100μm以上としても構わない。 The thickness of the metallized layer by this method can be arbitrarily changed from, for example, about 5 μm to 100 μm or more by adjusting the viscosity of the paste used for screen printing. Of these, about 20 μm is common, but when a large current is applied, it may be 100 μm or more.
 またこの方法で形成したメタライズ層を、必要に応じて研磨や化学エッチングをすることによってさらにパターン形成してもよい。またメタライズ層上にさらにNiやNi/Auめっきによって成膜してもよい。 Further, the metallized layer formed by this method may be further patterned by polishing or chemical etching as necessary. Further, a film may be formed on the metallized layer by Ni or Ni / Au plating.
 これらの方法で形成するメタライズ層上やその近傍には、必要に応じてNiCrやTaN等の抵抗膜を形成してもよい。 A resistance film such as NiCr or TaN may be formed on or near the metallized layer formed by these methods, if necessary.
 なおメタライズ層は、半導体装置の構造等によっては、以上で説明したパターン形成をせずにベタ面としてもよい。 The metallized layer may be a solid surface without the pattern formation described above depending on the structure of the semiconductor device.
 また、先に説明したように少なくとも一方の表面のメタライズ層上には半導体素子搭載のためにさらにAuSn等の半田層をパターン形成するのが好ましい。 Further, as described above, it is preferable to pattern a solder layer such as AuSn on the metallized layer on at least one surface for mounting a semiconductor element.
 通常、1枚の基板上には半導体装置となる領域が複数形成され、メタライズ層および半田層の形成まで完了した状態でダイシングやレーザ等の周知の方法で個々の領域ごとに切り分けたのち、所定の位置に半導体素子が搭載される。ただし半導体素子の搭載後に領域ごとに切り分けてもよい。 Usually, a plurality of regions to be a semiconductor device are formed on a single substrate, and after the formation of the metallized layer and the solder layer is completed, each region is separated by a well-known method such as dicing or laser, and then predetermined. A semiconductor element is mounted at the position. However, it may be divided for each region after mounting the semiconductor element.
 半導体素子の搭載には、AuSn半田を用いたダイボンド法等の、従来公知の種々の方法がいずれも採用可能である。 For mounting the semiconductor element, any of various conventionally known methods such as a die bonding method using AuSn solder can be employed.
 (半導体素子)
 半導体素子は特に限定されるものではなく、例えばSi、GaAs、InP、GaN、SiC等からなる種々の半導体素子が搭載可能である。半導体素子のサイズも特に限定されない。
(Semiconductor element)
The semiconductor element is not particularly limited, and various semiconductor elements made of, for example, Si, GaAs, InP, GaN, SiC, or the like can be mounted. The size of the semiconductor element is not particularly limited.
 〈実施例1〉
 (上下導通孔の形成)
 市販のAlN焼結体製の基板を切断し、研磨して縦100mm×横100mm×厚み0.5mmに加工した。
<Example 1>
(Formation of vertical conduction holes)
A substrate made of a commercially available AlN sintered body was cut, polished, and processed into a length of 100 mm × width of 100 mm × thickness of 0.5 mm.
 次いでこの基板に、YAGレーザを用いてφ0.3mmの上下導通孔を縦35個×横80個の計2800個形成した。隣接する上下導通孔の中心間距離は縦方向を2.5mm、横方向を1.0mmとした。形成した上下導通孔の位置精度を工具顕微鏡を用いて測定したところ±20μmであった。 Next, a total of 2800 vertical and vertical conduction holes of φ0.3 mm were formed on this substrate using a YAG laser, 35 vertical x 80 horizontal. The distance between the centers of adjacent upper and lower conduction holes was 2.5 mm in the vertical direction and 1.0 mm in the horizontal direction. When the positional accuracy of the formed vertical conduction hole was measured using a tool microscope, it was ± 20 μm.
 (多孔質構造体用のペーストの調製)
 高融点金属としてのW粒子100質量部に、樹脂結合剤としてのアクリルバインダ2質量部、および溶剤としてのブチルカルビトール5質量部を配合し、分散させてペーストを調整した。
(Preparation of paste for porous structure)
A paste was prepared by blending 100 parts by mass of W particles as a refractory metal with 2 parts by mass of an acrylic binder as a resin binder and 5 parts by mass of butyl carbitol as a solvent and dispersing them.
 なおW粒子としては、
 平均粒径1.2μmのW粒子〔(株)アライドマテリアル製のB10〕24質量部、
 平均粒径3.1μmのW粒子〔(株)アライドマテリアル製のC50〕51質量部、および
 平均粒径6.0μmのW粒子〔(株)アライドマテリアル製のD20〕25質量部
の3種(計100質量部)を混合した混合粒子を用いた。
As W particles,
24 parts by mass of W particles having an average particle diameter of 1.2 μm [B10 manufactured by Allied Material Co., Ltd.]
Three types of W particles having an average particle diameter of 3.1 μm (C50 manufactured by Allied Material Co., Ltd.) and 51 parts by mass of W particles having an average particle diameter of 6.0 μm [D20 manufactured by Allied Material Co., Ltd.] Mixed particles in which a total of 100 parts by mass) was mixed were used.
 (多孔質構造体の形成)
 上下導通孔を形成した基板をイソプロパノール(IPA)に浸漬して超音波洗浄し、エアブローしてIPAを飛散させた後、オーブン炉で100℃×10分間の加熱をして乾燥させた。
(Formation of porous structure)
The substrate having the upper and lower conductive holes formed therein was immersed in isopropanol (IPA), ultrasonically cleaned, air blown to scatter IPA, and then dried by heating at 100 ° C. for 10 minutes in an oven furnace.
 次いで上記基板の上下導通孔内に、先に調製したペーストをスクリーン印刷法によって充填したのち、窒素雰囲気中で600℃×3時間の加熱によって脱バインダ処理をし、次いで水素雰囲気中で1000℃×1時間の加熱によってWの粒子を焼結させて多孔質構造体を形成した。 Next, the paste prepared above was filled in the upper and lower conductive holes of the substrate by screen printing, and then the binder was removed by heating at 600 ° C. for 3 hours in a nitrogen atmosphere, and then 1000 ° C. in a hydrogen atmosphere. The porous particles were formed by sintering the W particles by heating for 1 hour.
 (低抵抗金属の溶浸)
 上記基板の上下を厚み0.3mmのCu板で挟んだ状態として、水素雰囲気中で1200℃×0.5時間の加熱によって上下導通孔内の多孔質構造体中に低抵抗金属としてのCuを溶浸させて、CuとWの複合構造を有する上下導通体を形成した。
(Low resistance metal infiltration)
In a state where the upper and lower sides of the substrate are sandwiched between Cu plates having a thickness of 0.3 mm, Cu as a low resistance metal is put into the porous structure in the vertical conduction hole by heating at 1200 ° C. for 0.5 hour in a hydrogen atmosphere. Infiltration was performed to form a vertical conductor having a composite structure of Cu and W.
 次いで基板の両表面を、基板の厚みが0.4mm、両表面の表面粗さRaが0.5μmになるように研磨してセラミック配線基板を製造した。 Next, both surfaces of the substrate were polished so that the thickness of the substrate was 0.4 mm and the surface roughness Ra of both surfaces was 0.5 μm to produce a ceramic wiring substrate.
 (残留応力の測定)
 製造したセラミック配線基板の残留応力を、上下導通体から基板の面方向に0.3mm離れた部位をφ0.3mmのコリメータを使用してX線回折した結果と、基板を形成するセラミックのヤング率(=280GPa)およびポアソン比(=0.24)とから応力を算出するX線応力測定法によって求めたところ68MPaであった。
(Measurement of residual stress)
The results of X-ray diffraction of the residual stress of the manufactured ceramic wiring board using a φ0.3 mm collimator at a part 0.3 mm away from the vertical conductor in the plane direction of the board, and the Young's modulus of the ceramic forming the board It was 68 MPa when calculated | required by the X-ray-stress measuring method which calculates stress from (= 280GPa) and Poisson's ratio (= 0.24).
 (断面観察1)
 製造したセラミック配線基板の上下導通体を研磨して断面を露出させ、次いでArプラズマでドライエッチングするクロスセクションポリッシュ(CP)加工をした後の断面の任意の10箇所を、SEMを用いて倍率1000倍、90μm×130μmの視野で観察した。
(Cross-section observation 1)
The upper and lower conductors of the manufactured ceramic wiring substrate are polished to expose the cross section, and then subjected to cross section polishing (CP) processing that is dry-etched with Ar plasma. It was observed in a field of view of 90 μm × 130 μm.
 そして上記視野内に露出した全ての高融点金属の粒子を先に説明したA粒子~C粒子に分類してそれぞれの個数を計数し、その結果からA粒子~C粒子の総数中に占めるA粒子の個数割合NA(%)、C粒子の個数割合NC(%)、両者の和NA+NC、および比NA/NCを求めたところ下記の結果が得られた。 Then, all refractory metal particles exposed in the field of view are classified into A particles to C particles described above, and the number of each is counted. From the results, A particles occupy the total number of A particles to C particles. The number ratio N A (%) of C, the number ratio N C (%) of C particles, the sum N A + N C of both, and the ratio N A / N C were obtained, and the following results were obtained.
 NA:37%
 NC:32%
 NA+NC:69
 NA/NC:1.16
 (断面観察2)
 製造したセラミック配線基板の上下導通体を研磨して断面を露出させ、次いでArプラズマでドライエッチングするクロスセクションポリッシュ(CP)加工をした後の断面の任意の10箇所において、SEMを用いて倍率250倍、350μm×500μmの視野で観察した際に、当該視野内に露出した多孔質構造体の面積S1、低抵抗金属の面積S2、および低抵抗金属が充填されていないボイドの面積S3を計測し、先の式(1)によって低抵抗金属の面積比率を求めたところ46%であった。また先の式(2)によって空隙率を求めたところ1%未満であった。
N A : 37%
N C : 32%
N A + N C : 69
N A / N C : 1.16
(Cross-section observation 2)
The vertical conductor of the manufactured ceramic wiring board is polished to expose the cross section, and then subjected to cross section polish (CP) processing that is dry-etched with Ar plasma, and at a magnification of 250 using SEM. When observed in the field of view of 350 μm × 500 μm, the area S 1 of the porous structure exposed in the field of view, the area S 2 of the low-resistance metal, and the area S 3 of the void not filled with the low-resistance metal Was measured and the area ratio of the low-resistance metal was determined by the previous equation (1) to be 46%. Moreover, when the porosity was calculated | required by previous Formula (2), it was less than 1%.
 (半導体装置の作製)
 製造したセラミック配線基板の両表面に、次の方法で回路パターンを構成するメタライズ層を形成した。
(Fabrication of semiconductor devices)
A metallized layer constituting a circuit pattern was formed on both surfaces of the manufactured ceramic wiring substrate by the following method.
 まずセラミック配線基板をIPAに浸漬して超音波洗浄し、エアブローしてIPAを飛散させた後、オーブン炉で100℃×10分間の加熱をして乾燥させた。 First, the ceramic wiring board was immersed in IPA, ultrasonically cleaned, air blown to scatter IPA, and then dried by heating at 100 ° C. for 10 minutes in an oven furnace.
 次にセラミック配線基板の両表面に、スパッタ装置を用いて、密着層としてのTi膜を0.05μm、次いで拡散防止層としてのPt膜を0.2μm、さらに導電層としてのAu膜を0.2μmこの順に膜形成して3層構造のメタライズ層を形成した。 Next, on both surfaces of the ceramic wiring substrate, using a sputtering apparatus, a Ti film as an adhesion layer is 0.05 μm, then a Pt film as a diffusion prevention layer is 0.2 μm, and an Au film as a conductive layer is 0.1 μm. A film having a thickness of 2 μm was formed in this order to form a metallized layer having a three-layer structure.
 膜形成は、スパッタ装置内で到達真空度1×10-4Paの雰囲気下、ハロゲンヒータでセラミック配線基板を200℃×5分間加熱し、さらにArプラズマによるドライ洗浄をしたのち常法にしたがって実施した。 Film formation is carried out in accordance with a conventional method after heating the ceramic wiring substrate at 200 ° C. for 5 minutes with a halogen heater in an atmosphere of ultimate vacuum of 1 × 10 −4 Pa in a sputtering apparatus and further performing dry cleaning with Ar plasma. did.
 次いで形成したメタライズ層の上に、縦1mm×横1mm×厚み0.3mmのSi素子を厚み20μmの半田箔を介して搭載して半導体装置を作製した。 Next, on the metallized layer thus formed, a Si device having a length of 1 mm, a width of 1 mm, and a thickness of 0.3 mm was mounted via a solder foil having a thickness of 20 μm to produce a semiconductor device.
 (信頼性試験1)
 作製した半導体装置を-40℃の低温環境下で30分間保持し、次いで120℃の高温環境下で30分間保持する操作を1サイクルとして1000サイクル繰り返す温度サイクル試験をした後、温度85℃、相対湿度85%の高温高湿環境下で1000時間保持した。
(Reliability test 1)
The fabricated semiconductor device was held for 30 minutes in a low temperature environment of −40 ° C. for 30 minutes and then held for 30 minutes in a high temperature environment of 120 ° C., followed by a temperature cycle test repeated 1000 cycles, followed by a relative temperature of 85 ° C. It was kept for 1000 hours in a high temperature and high humidity environment with a humidity of 85%.
 そして保持後の半導体装置の、セラミック配線基板の上下導通体を研磨して断面を露出させ、次いでArプラズマでドライエッチングするクロスセクションポリッシュ(CP)加工をした後の断面の任意の10箇所において、SEMを用いて倍率1000倍、90μm×130μmの視野で観察して、下記の基準で一般的な信頼性を評価したところランクAであった。 And in any 10 places of the cross section after the cross section polish (CP) processing of polishing the upper and lower conductors of the ceramic wiring board of the held semiconductor device to expose the cross section and then performing dry etching with Ar plasma, When the general reliability was evaluated according to the following criteria when observed with a SEM in a field of view of a magnification of 1000 times and 90 μm × 130 μm, it was ranked A.
 ランクA:全くクラックは見られなかった。 Rank A: No cracks were seen.
 ランクB:基板側にクラックが見られたものの、クラック長10μm以下の、機械特性に影響のないクラックのみであった。 Rank B: Although cracks were observed on the substrate side, only cracks having a crack length of 10 μm or less and having no influence on mechanical properties were found.
 ランクC:クラック長が10μmを超えかつ100μm以下の、接合特性や電気・熱特性に影響を及ぼすおそれのあるクラックが見られた。 Rank C: Cracks having a crack length exceeding 10 μm and not more than 100 μm that may affect the bonding characteristics and electrical / thermal characteristics were observed.
 ランクD:クラック長が100μmを超える大きなクラックが見られた。 Rank D: A large crack with a crack length exceeding 100 μm was observed.
 (信頼性試験2)
 上記信頼性試験1よりも厳しい条件での下記の信頼性試験を実施した。
(Reliability test 2)
The following reliability test was performed under conditions severer than the reliability test 1 described above.
 すなわち作製した半導体装置を-65℃の低温環境下で30分間保持し、次いで150℃の高温環境下で30分間保持する操作を1サイクルとして1000サイクル繰り返す温度サイクル試験をした後、温度130℃、相対湿度85%の高温高湿環境下で1000時間保持した。 That is, after the temperature cycle test was repeated for 1000 cycles, the operation of holding the manufactured semiconductor device in a low temperature environment of −65 ° C. for 30 minutes and then holding in a high temperature environment of 150 ° C. for 30 minutes, It was kept for 1000 hours in a high temperature and high humidity environment with a relative humidity of 85%.
 そして保持後の半導体装置の、セラミック配線基板の上下導通体を研磨して断面を露出させ、次いでArプラズマでドライエッチングするクロスセクションポリッシュ(CP)加工をした後の断面の任意の10箇所において、SEMを用いて倍率1000倍、90μm×130μmの視野で観察して、信頼性試験1と同じ基準で信頼性を評価したところランクAであった。 And in any 10 places of the cross section after the cross section polish (CP) processing of polishing the upper and lower conductors of the ceramic wiring board of the held semiconductor device to expose the cross section and then performing dry etching with Ar plasma, When the reliability was evaluated using the same standard as the reliability test 1 by observing in a field of view of 90 μm × 130 μm with a magnification of 1000 times using an SEM, it was ranked A.
 〈実施例2~29、比較例1~12〉
 併用する3種のW粒子の平均粒径、および混合割合を変更したこと以外は実施例1と同様にしてペーストを調製し、セラミック配線基板を製造し、半導体装置を作製するとともに、前記の各試験を実施した。
<Examples 2 to 29, Comparative Examples 1 to 12>
A paste was prepared in the same manner as in Example 1 except that the average particle size and mixing ratio of the three types of W particles used in combination were changed, a ceramic wiring board was manufactured, a semiconductor device was manufactured, and each of the above-mentioned The test was conducted.
 〈実施例30〉
 高融点金属の粒子として、W粒子に代えて、
 平均粒径1.3μmのMo粒子〔(株)アライドマテリアル製のTMO-10〕25質量部、
 平均粒径3.3μmのMo粒子〔(株)アライドマテリアル製のTMO-30〕49質量部、および
 平均粒径5.4μmのMo粒子〔(株)アライドマテリアル製のTMO-50〕26質量部
の3種のMo粒子(計100質量部)を混合した混合粒子を用いたこと以外は実施例1と同様にしてペーストを調製し、セラミック配線基板を製造し、半導体装置を作製するとともに、前記の各試験を実施した。
<Example 30>
As refractory metal particles, instead of W particles,
25 parts by mass of Mo particles having an average particle size of 1.3 μm [TMO-10 manufactured by Allied Material Co., Ltd.]
49 parts by mass of Mo particles having an average particle size of 3.3 μm [TMO-30 manufactured by Allied Material Co., Ltd.] and 26 parts by mass of Mo particles having an average particle size of 5.4 μm [TMO-50 manufactured by Allied Material Co., Ltd.] A paste was prepared in the same manner as in Example 1 except that mixed particles obtained by mixing the three types of Mo particles (100 parts by mass in total) were used, a ceramic wiring board was manufactured, a semiconductor device was manufactured, and the above-mentioned Each test of was conducted.
 〈実施例31〉
 低抵抗金属として、Cuに代えてAgを用いたこと以外は実施例1と同様にしてペーストを調製し、セラミック配線基板を製造し、半導体装置を作製するとともに、前記の各試験を実施した。
<Example 31>
A paste was prepared in the same manner as in Example 1 except that Ag was used instead of Cu as the low-resistance metal, a ceramic wiring board was manufactured, a semiconductor device was manufactured, and the above tests were performed.
 〈実施例32〉
 低抵抗金属として、Cuに代えてAgを用いたこと以外は実施例30と同様にしてペーストを調製し、セラミック配線基板を製造し、半導体装置を作製するとともに、前記の各試験を実施した。
<Example 32>
A paste was prepared in the same manner as in Example 30 except that Ag was used as the low-resistance metal instead of Cu, and a ceramic wiring board was manufactured, a semiconductor device was manufactured, and the above tests were performed.
 〈従来例1〉
 W粒子として、平均粒径3.1μmのW粒子〔(株)アライドマテリアル製のC50〕のみ100質量部を単独で用いたこと以外は実施例1と同様にしてペーストを調製し、セラミック配線基板を製造し、半導体装置を作製するとともに、前記の各試験を実施した。
<Conventional example 1>
A paste was prepared in the same manner as in Example 1 except that 100 parts by weight of W particles having an average particle diameter of 3.1 μm (C50 manufactured by Allied Material Co., Ltd.) alone were used as W particles. Were manufactured, and a semiconductor device was manufactured, and each of the above tests was performed.
 結果を表1~表3に示す。 The results are shown in Tables 1 to 3.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1~表3の実施例1~32、比較例1~12、従来例1の結果より、製造したセラミック配線基板の残留応力を100MPa以下とすることで、一般的な信頼性をAランク、より厳しい条件での信頼性をA~Bランクとして、半導体装置の信頼性を向上できることが判った。 From the results of Examples 1 to 32, Comparative Examples 1 to 12, and Conventional Example 1 of Tables 1 to 3, the general reliability is ranked A by setting the residual stress of the manufactured ceramic wiring board to 100 MPa or less. It has been found that the reliability of the semiconductor device can be improved by setting the reliability under more severe conditions as A to B ranks.
 また実施例1~32の結果より、セラミック配線基板の残留応力を上記範囲でも80MPa以下とすることにより、より厳しい条件での信頼性もAランクとして、半導体装置の信頼性をさらに向上できることが判った。 Further, from the results of Examples 1 to 32, it was found that by setting the residual stress of the ceramic wiring board to 80 MPa or less even in the above range, the reliability under more severe conditions is also ranked A, and the reliability of the semiconductor device can be further improved. It was.
 また実施例1~32、比較例1~12、従来例1の結果より、上下導通体を、高融点金属の粒子の焼結体からなる多孔質構造体中に低抵抗金属を溶浸させた複合構造とする場合、セラミック配線基板の残留応力を100MPa以下の範囲とするためには、最大長径1.0μm以下のA粒子の個数割合NA(%)と、最大長径5.0μm以上のC粒子の個数割合NC(%)との和NA+NCを50以上、90以下で、かつ比NA/NCを2/3以上、2以下とすれば良いことが判った。 In addition, from the results of Examples 1 to 32, Comparative Examples 1 to 12, and Conventional Example 1, a low resistance metal was infiltrated into a porous structure made of a sintered body of high melting point metal particles. In the case of a composite structure, in order to make the residual stress of the ceramic wiring board within a range of 100 MPa or less, the number ratio N A (%) of A particles having a maximum major axis of 1.0 μm or less and C having a maximum major axis of 5.0 μm or more. It was found that the sum N A + N C with the number ratio N C (%) of the particles should be 50 or more and 90 or less, and the ratio N A / N C should be 2/3 or more and 2 or less.
 さらに上記の複合構造とした場合に、セラミック配線基板の残留応力を80MPa以下とするためには、上記和NA+NCは上記の範囲でも60以上であるのが好ましく、80以下であるのが好ましいこと、比NA/NCは上記の範囲でも1以上であるのが好ましく、1.5以下であるのが好ましいことが判った。 Further, in the case of the above composite structure, in order to make the residual stress of the ceramic wiring board 80 MPa or less, the sum N A + N C is preferably 60 or more in the above range, and 80 or less. It was found that the ratio N A / N C is preferably 1 or more in the above range, and preferably 1.5 or less.
 また実施例1、30~32の結果より、多孔質構造体のもとになる高融点金属としてWに代えてMoを使用したり、低抵抗金属としてCuに代えてAgを使用したりしても、上記和NA+NCおよび比NA/NCを上記の範囲に設定することで、同様の結果が得られることが判った。 In addition, from the results of Examples 1 and 30 to 32, Mo was used instead of W as the high melting point metal that is the basis of the porous structure, and Ag was used instead of Cu as the low resistance metal. It was also found that the same result can be obtained by setting the above sum N A + N C and the ratio N A / N C within the above ranges.

Claims (11)

  1.  板状に形成され、その厚み方向を貫通させて上下導通孔が形成されたセラミック製の基板、および前記上下導通孔に充填された、Cu、Ag、およびAuからなる群より選ばれた少なくとも1種の低抵抗金属と、W、およびMoからなる群より選ばれた少なくとも1種の高融点金属とを含む複合材料からなる上下導通体を備え、残留応力が100MPa以下であるセラミック配線基板。 At least one selected from the group consisting of a ceramic substrate formed in the shape of a plate and having vertical conduction holes formed through the thickness direction, and Cu, Ag, and Au filled in the vertical conduction holes A ceramic wiring board comprising a vertical conductor made of a composite material including a kind of low-resistance metal and at least one refractory metal selected from the group consisting of W and Mo, and having a residual stress of 100 MPa or less.
  2.  前記残留応力は80MPa以下である請求項1に記載のセラミック配線基板。 The ceramic wiring board according to claim 1, wherein the residual stress is 80 MPa or less.
  3.  前記上下導通体は、前記高融点金属の粒子の焼結体からなる多孔質構造体中に前記低抵抗金属を溶浸させた複合構造を有し、前記上下導通体の断面の所定の視野内に露出した全ての高融点金属の粒子中の、最大長径1.0μm以下の粒子の個数割合をNA(%)、最大長径5.0μm以上の粒子の個数割合をNC(%)としたとき、前記NA、NCの和NA+NCは50以上、90以下で、比NA/NCは2/3以上、2以下である請求項1又は請求項2に記載のセラミック配線基板。 The vertical conductor has a composite structure in which the low-resistance metal is infiltrated into a porous structure made of a sintered body of particles of the refractory metal, and within a predetermined field of view of a cross section of the vertical conductor Of all the refractory metal particles exposed to N, the number ratio of particles having a maximum major axis of 1.0 μm or less was defined as N A (%), and the number ratio of particles having a maximum major axis of 5.0 μm or greater was defined as N C (%). when the N a, the sum N a + N C of N C is 50 or more and 90 or less, the ratio N a / N C is 2/3 or more, the ceramic wiring according the to claim 1 or claim 2 2 or less substrate.
  4.  前記和NA+NCは60以上、80以下である請求項3に記載のセラミック配線基板。 The ceramic wiring board according to claim 3, wherein the sum N A + N C is 60 or more and 80 or less.
  5.  前記比NA/NCは1以上、1.5以下である請求項3又は請求項4に記載のセラミック配線基板。 5. The ceramic wiring board according to claim 3, wherein the ratio N A / N C is 1 or more and 1.5 or less.
  6.  前記上下導通体の断面の所定の視野内に露出した前記多孔質構造体の面積S1、および前記低抵抗金属の面積S2から、式(1):
     面積比率(%)=S2/(S1+S2)×100   (1)
    によって求められる前記低抵抗金属の面積比率は3%以上、88%以下である請求項3~請求項5のいずれか1項に記載のセラミック配線基板。
    From the area S 1 of the porous structure exposed within a predetermined field of view of the cross section of the upper and lower conductive bodies and the area S 2 of the low-resistance metal, the formula (1):
    Area ratio (%) = S 2 / (S 1 + S 2 ) × 100 (1)
    The ceramic wiring board according to any one of claims 3 to 5, wherein the area ratio of the low-resistance metal obtained by the above is 3% or more and 88% or less.
  7.  前記所定の視野内に露出した、前記低抵抗金属が充填されていないボイドの面積S3と、前記面積S1、S2とから、式(2):
     空隙率(%)=S3/(S1+S2+S3)×100   (2)
    によって求められる空隙率は10%以下である請求項6に記載のセラミック配線基板。
    From the area S 3 of the void exposed in the predetermined visual field and not filled with the low-resistance metal, and the areas S 1 and S 2 , the formula (2):
    Porosity (%) = S 3 / (S 1 + S 2 + S 3 ) × 100 (2)
    The ceramic wiring board according to claim 6, wherein the porosity obtained by the above is 10% or less.
  8.  前記上下導通孔は焼結後の前記基板にあとから形成されている請求項1~請求項7のいずれか1項に記載のセラミック配線基板。 The ceramic wiring board according to any one of claims 1 to 7, wherein the vertical conduction hole is formed later in the sintered board.
  9.  前記基板はAlN、Al23、Si34、およびSiCからなる群より選ばれた少なくとも1種のセラミックからなる請求項1~請求項8のいずれか1項に記載のセラミック配線基板。 The ceramic wiring board according to any one of claims 1 to 8, wherein the substrate is made of at least one ceramic selected from the group consisting of AlN, Al 2 O 3 , Si 3 N 4 , and SiC.
  10.  前記上下導通孔の内径はφ0.1mm以上、φ0.3mm以下である請求項1~請求項9のいずれか1項に記載のセラミック配線基板。 The ceramic wiring board according to any one of claims 1 to 9, wherein an inner diameter of the vertical conduction hole is not less than φ0.1 mm and not more than φ0.3 mm.
  11.  前記請求項1~請求項10のいずれか1項に記載のセラミック配線基板に半導体素子を搭載した半導体装置。 A semiconductor device in which a semiconductor element is mounted on the ceramic wiring substrate according to any one of claims 1 to 10.
PCT/JP2015/053993 2014-03-19 2015-02-13 Ceramic wiring board and semiconductor device WO2015141344A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015530212A JP5820092B1 (en) 2014-03-19 2015-02-13 Ceramic wiring board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014056760 2014-03-19
JP2014-056760 2014-03-19

Publications (1)

Publication Number Publication Date
WO2015141344A1 true WO2015141344A1 (en) 2015-09-24

Family

ID=54144324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/053993 WO2015141344A1 (en) 2014-03-19 2015-02-13 Ceramic wiring board and semiconductor device

Country Status (3)

Country Link
JP (2) JP5820092B1 (en)
TW (1) TW201541572A (en)
WO (1) WO2015141344A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10257941B2 (en) 2016-03-11 2019-04-09 Ngk Insulators, Ltd. Connection substrate
US10278286B2 (en) 2016-03-11 2019-04-30 Ngk Insulators, Ltd. Connection substrate
US11013127B2 (en) 2016-03-11 2021-05-18 Ngk Insulators, Ltd. Method for producing connection substrate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05267849A (en) * 1992-03-19 1993-10-15 Fujitsu Ltd Manufacture of ceramic multilayer circuit board
JPH05327154A (en) * 1992-05-20 1993-12-10 Kyocera Corp Wiring substrate
JP2000164992A (en) * 1998-11-26 2000-06-16 Kyocera Corp Wiring board and manufacture thereof
JP2002353576A (en) * 2001-05-28 2002-12-06 Kyocera Corp Wiring board
JP2004319531A (en) * 2002-12-18 2004-11-11 Kyocera Corp Multilayer wiring board
JP2006319314A (en) * 2005-04-13 2006-11-24 Kyocera Corp Circuit board and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05267849A (en) * 1992-03-19 1993-10-15 Fujitsu Ltd Manufacture of ceramic multilayer circuit board
JPH05327154A (en) * 1992-05-20 1993-12-10 Kyocera Corp Wiring substrate
JP2000164992A (en) * 1998-11-26 2000-06-16 Kyocera Corp Wiring board and manufacture thereof
JP2002353576A (en) * 2001-05-28 2002-12-06 Kyocera Corp Wiring board
JP2004319531A (en) * 2002-12-18 2004-11-11 Kyocera Corp Multilayer wiring board
JP2006319314A (en) * 2005-04-13 2006-11-24 Kyocera Corp Circuit board and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10257941B2 (en) 2016-03-11 2019-04-09 Ngk Insulators, Ltd. Connection substrate
US10278286B2 (en) 2016-03-11 2019-04-30 Ngk Insulators, Ltd. Connection substrate
US11013127B2 (en) 2016-03-11 2021-05-18 Ngk Insulators, Ltd. Method for producing connection substrate

Also Published As

Publication number Publication date
JP5820092B1 (en) 2015-11-24
JPWO2015141344A1 (en) 2017-04-06
JP2015195408A (en) 2015-11-05
TW201541572A (en) 2015-11-01

Similar Documents

Publication Publication Date Title
EP2942808A1 (en) Ceramic wiring substrate, semiconductor device, and method for manufacturing ceramic wiring substrate
JP5718536B2 (en) Connection structure and semiconductor device
US9215801B2 (en) Via-holed ceramic substrate, metallized via-holed ceramic substrate, and method for manufacturing the same
JP5349714B2 (en) Circuit board and electronic device having the same
KR100775454B1 (en) Composite body, wafer supporting member using the same, and method for processing wafer
EP2744310A1 (en) Wiring substrate and method for manufacturing same and semiconductor device
JP2014207482A (en) Ceramics circuit board
US6762496B2 (en) Substrate and production method therefor
US6475924B2 (en) Substrate and process for producing the same
JP5820092B1 (en) Ceramic wiring board
JP2016169411A (en) Porous silver-made sheet and metallic member conjugate using the porous silver-made sheet
EP3093882B1 (en) Electronic circuit device
JP6893593B2 (en) Bonding materials and structures using Ni nanoparticles
KR102479866B1 (en) Ceramic circuit board and its manufacturing method
JP6606514B2 (en) Conductive bonding material and conductive bonding structure using metal particles and conductive material particles
JP2009094385A (en) Semiconductor device, and manufacturing method thereof
KR20210097123A (en) Ceramics-Copper Composite, Method for Manufacturing Ceramics-Copper Composite, Ceramics Circuit Board and Power Module
WO2018190226A1 (en) Sealing structure and sealing method of through hole, and transfer substrate for sealing through hole
EP4086021A1 (en) Electroconductive joining material, joining member equipped with said electroconductive joining material, and joining method
JP5955183B2 (en) Die bond bonding structure of semiconductor element and die bond bonding method of semiconductor element
JP6122561B2 (en) Circuit board and electronic device having the same
JP6608562B2 (en) Circuit board and electronic device having the same
JP2006191124A (en) Holder for treated object, treatment apparatus and ceramic susceptor for semiconductor manufacturing apparatus
JP2000124566A (en) Metallized board
JP4408889B2 (en) Method for manufacturing ceramic-metal composite circuit board

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015530212

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15765387

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15765387

Country of ref document: EP

Kind code of ref document: A1