WO2015141097A1 - High strength cold rolled steel sheet and high strength galvanized steel sheet having excellent ductility and bendability, and methods for producing same - Google Patents

High strength cold rolled steel sheet and high strength galvanized steel sheet having excellent ductility and bendability, and methods for producing same Download PDF

Info

Publication number
WO2015141097A1
WO2015141097A1 PCT/JP2014/084315 JP2014084315W WO2015141097A1 WO 2015141097 A1 WO2015141097 A1 WO 2015141097A1 JP 2014084315 W JP2014084315 W JP 2014084315W WO 2015141097 A1 WO2015141097 A1 WO 2015141097A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
high strength
concentration
temperature
Prior art date
Application number
PCT/JP2014/084315
Other languages
French (fr)
Japanese (ja)
Inventor
康二 粕谷
紗江 水田
二村 裕一
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to KR1020187014630A priority Critical patent/KR102165992B1/en
Priority to MX2016011756A priority patent/MX2016011756A/en
Priority to KR1020167028034A priority patent/KR20160132926A/en
Priority to US15/126,936 priority patent/US20170096723A1/en
Priority to CN201480077035.3A priority patent/CN106103768B/en
Publication of WO2015141097A1 publication Critical patent/WO2015141097A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a high strength cold rolled steel sheet and a high strength galvanized steel sheet excellent in ductility and bendability, and a method of manufacturing them. Specifically, a high strength cold rolled steel sheet excellent in ductility and bendability in a region having a tensile strength of 980 MPa or more, a high strength electrogalvanized steel sheet, a high strength galvanized steel sheet and a high strength alloyed galvanized steel sheet, The present invention relates to a manufacturing method capable of efficiently manufacturing these steel plates.
  • galvanized steel sheet a steel plate that has been subjected to There are cases where the electrogalvanized steel sheet, the galvanized steel sheet, and the alloyed galvanized steel sheet are hereinafter represented by "galvanized steel sheet". Also in these galvanized steel sheets, characteristics similar to those of high strength steel sheets are required.
  • Patent Documents 1 to 4 propose ultra-high strength cold rolled steel plates excellent in bendability.
  • the present invention has been made focusing on the above circumstances, and the object thereof is a high strength cold rolled steel sheet having a tensile strength of 980 MPa or more and excellent in ductility and bendability, and high strength galvanizing.
  • Steel sheets and methods for manufacturing them with high productivity specifically, high strength cold rolled steel sheets excellent in ductility and bendability in a region of tensile strength of 980 MPa or more, high strength electrogalvanized steel sheets, high strength galvanized steel
  • the component composition of the steel plate is, in mass%, C: 0.10% or more and 0.30% or less, Si: 1.2% or more and 3% or less, Mn: 0. 5% or more and 3.0% or less, P: more than 0% and 0.1% or less, S: more than 0% and 0.05% or less, Al: 0.005% or more and 0.2% or less, N: more than 0% 0 .01% or less and O: more than 0% to 0.01% or less, the balance being composed of iron and unavoidable impurities, and the structure at the 1/4 thickness position of the steel plate has the following (1) to (5) It has a gist to satisfy all of.
  • % means “mass%” about the component composition of a steel plate.
  • the area ratio of ferrite to the entire structure is 5% or more and less than 50%, and the balance is a hard phase.
  • the area ratio of the mixed structure of fresh martensite and retained austenite with respect to the entire structure is more than 0% and 30% or less when subjected to repeller corrosion and observed with an optical microscope.
  • the volume fraction of retained austenite to the entire structure is 5% or more, as measured by the X-ray diffraction method.
  • the hard phase comprises a mixed structure of the fresh martensite and the residual austenite; and at least one structure selected from the group consisting of bainitic ferrite, bainite, and tempered martensite.
  • a high strength electrogalvanized steel sheet in which an electrogalvanized layer is formed on the surface of the high strength cold rolled steel sheet; a hot dip galvanized layer is formed on the surface of the high strength cold rolled steel sheet
  • a high strength galvanized steel sheet Also included is a high strength galvanized steel sheet; and a high strength alloyed galvanized steel sheet having an alloyed galvanized layer formed on the surface of the high strength cold rolled steel sheet.
  • the method for producing a high strength cold rolled steel sheet according to the present invention which has solved the above problems, is a process of hot rolling a steel sheet having the above-described composition, and wound at 500 ° C. or more and 800 ° C. or less. After holding at 800 ° C. or less for 3 hours or more, cool to room temperature, cold-roll, hold soaking in a temperature range of (Ac 1 point + 20 ° C.) to Ac 3 point, and then average cooling rate up to 500 ° C.
  • the method for producing a high strength galvanized steel sheet according to the present invention which has solved the above problems, is a process of hot rolling a steel sheet having the above-mentioned composition, and wound at 500 ° C. or more and 800 ° C. or less.
  • high strength cold rolled steel sheet and high strength galvanized steel sheet excellent in ductility and bendability even at 980 MPa or more in detail, high strength cold rolled steel sheet excellent in the above characteristics, high strength An electrogalvanized steel sheet, a high strength galvanized steel sheet, and a high strength alloyed galvanized steel sheet can be provided. Moreover, according to the manufacturing method of this invention, these steel plates can be manufactured efficiently. Therefore, the high-strength cold-rolled steel plate or the like of the present invention is extremely useful particularly in the industrial field such as automobiles.
  • FIG. 1 is a schematic explanatory view showing an example of a heat treatment pattern in the manufacturing method of the present invention.
  • the inventors of the present invention have conducted intensive studies to improve the ductility and bendability of particularly high strength cold rolled steel sheets having high tensile strength of 980 MPa or more and high strength galvanized steel sheets.
  • the ferrite phase and the hard phase in the metal structure of the steel sheet are optimized, and if segregation of Mn is appropriately controlled, high strength of 980 MPa or more is ensured. It has been found that the ductility and bendability can be improved, leading to the present invention.
  • the fraction measured by microscopic observation means the ratio to 100% of the whole structure
  • the metal structure which comprises this invention differs in the measuring method by metal structure. Therefore, when all the metal structures specified in the present invention are totaled, it may exceed 100%, but this is only by measuring residual ⁇ which constitutes a mixed structure of fresh martensite and retained austenite by optical microscope observation. It is because it is also measured by X-ray diffraction in an overlapping manner.
  • retained austenite is referred to as "remaining ⁇ ”
  • a mixed structure of fresh martensite and retained austenite is sometimes referred to as "MA (Martensite-Austenite Constituent) structure".
  • Area ratio of ferrite 5% or more and less than 50% Ferrite is a structure having an effect of improving ductility and bendability of a steel sheet.
  • the area ratio of ferrite is set to 5% or more, preferably 7% or more, and more preferably 10% or more.
  • the area ratio of ferrite is less than 50%, preferably 45% or less, more preferably 40% or less.
  • the area ratio of ferrite is a value measured by observing a 1/4 thickness position of a steel plate by a scanning electron microscope (SEM: Scanning Electron Microscope).
  • the hard phase is the texture necessary to improve tensile strength.
  • a high strength of 980 MPa or more can be achieved while soft ferrite is present within the range of the above area ratio.
  • the remaining metal structure other than ferrite needs to be a hard phase.
  • the hard phase is a phase harder than ferrite, and is, for example, at least one selected from the group consisting of bainitic ferrite, bainite, tempered martensite, and MA structure, and in the present invention, it is shown below As at least including the MA organization.
  • bainitic ferrite, bainite, and tempered martensite are values measured by SEM observation of a 1/4 thickness position of a steel plate.
  • the residual ⁇ is present in the ravine of bainitic ferrite or in the MA structure.
  • the area ratio of the MA structure is preferably 3% or more, more preferably 4% or more.
  • the area ratio of the MA structure is 30% or less, preferably 20% or less, and more preferably 15% or less.
  • the fresh martensite which comprises MA structure means the thing of the state which untransformed austenite transformed to martensite in the process which cools a steel plate from heating temperature to room temperature, and distinguishes it from the tempered martensite after heat processing. .
  • the area which was whitened when repeller corrosion was observed with an optical microscope was taken as an MA structure.
  • the composite structure of fresh martensite and residual ⁇ is measured as an MA structure.
  • the MA structure is a value measured by optical microscope observation at a 1/4 thickness position of a steel plate.
  • the area where concentration of Mn is concentrated is a cross section of a steel plate with a beam diameter of 1 ⁇ m or less and a range of 20 ⁇ m ⁇ 20 ⁇ m with an electron probe microprobe analyzer (Electron Probe) It is defined using the Mn concentration obtained by analysis using Microanalyzer, EPMA).
  • the Mn concentration in a steel plate is a Mn concentration obtained by chemically analyzing a base steel plate by inductively coupled plasma emission spectroscopy. Therefore, in the region where the Mn concentration is concentrated by 1.2 times or more of the Mn concentration in the steel plate, the measured value of the Mn concentration obtained by EPMA analysis is 1.2 times or more higher than the Mn concentration in the base steel plate. It is an area and is measured in the range of 20 ⁇ m ⁇ 20 ⁇ m.
  • ⁇ 2 ⁇ m section is a 2 ⁇ m square section, and in the present invention, an EPMA measuring range of 20 ⁇ m ⁇ 20 ⁇ m is divided into 100 sections of 2 ⁇ m square section obtained by drawing lines at intervals of 2 ⁇ m each. The area fraction of the region where the Mn concentration is 1.2 times or more higher in each section is measured, and the standard deviation is statistically determined in 100 sections.
  • a region concentrated by 1.2 times or more of the Mn concentration in the steel plate is 5 area% or more, and Mn is concentrated 1.2 times or more in a section of 2 ⁇ m It was found that the bendability is greatly improved if the standard deviation when measuring the area fraction is 4.0% or more.
  • a region concentrated 1.2 times or more of the Mn concentration in the steel plate is referred to as “a region of 1.2 times or more of the Mn concentration”, and Mn is concentrated 1.2 times or more in a section of 2 ⁇ m ⁇
  • the standard deviation when the area fraction is measured may be referred to as "the standard deviation of the area in which the Mn concentration is 1.2 times or more concentrated" or simply "the standard deviation".
  • the region with an Mn concentration of 1.2 times or more is mainly a hard phase.
  • the standard deviation increases as the segregation of Mn increases, the Mn concentration in the ferrite phase contributing to the improvement of the bendability decreases, and the hardness of the ferrite phase can be reduced.
  • the area having a Mn concentration of 1.2 times or more is 5.0 area% or more, preferably 5.2 area% or more, more preferably 5.5 area% or more.
  • the proportion occupied by the region having a Mn concentration of 1.2 times or more is too high, the Ms point of austenite may decrease and the MA structure may increase. Therefore, preferably 20 areas of a region having a Mn concentration of 1.2 times or more % Or less, more preferably 15 area% or less.
  • the standard deviation of a region in which the Mn concentration is 1.2 times or more concentrated is 4.0% or more, preferably 4.5% or more, and more preferably 5.0% or more. If the standard deviation is less than 4.0%, the distribution of Mn is insufficient and uniformly distributed, so the reduction in hardness of the ferrite phase contributing to the improvement of the bendability is insufficient.
  • the upper limit of the standard deviation is not particularly limited, and is preferably 10% or less.
  • the spheroidized hard phase can be dispersed in the ferrite phase by setting the area with an Mn concentration of 1.2 times or more to 5 area% or more and the standard deviation to be 4.0% or more, and the strength of the steel material It is possible to combine the improvement effect with the bendability improvement effect by ferrite.
  • the spheroidized hard phase is referred to as "spherical hard phase".
  • the spherical hard phase is a part of the hard phase, and is composed of bainitic ferrite, bainite, tempered martensite, an MA structure, and the like as the above-mentioned hard phase.
  • the spherical hard phase in the ferrite phase should be as small as possible, and preferably has an aspect ratio of 3 or less, more preferably 2.5 or less, still more preferably 2 or less. Preferably it is 2 micrometers or less, More preferably, it is 1.8 micrometers or less, More preferably, it is 1.5 micrometers or less. Further, in order to exert the above effect, the spherical hard phase is preferably 0.70% by volume or more, more preferably 0.75% by volume or more, still more preferably 0.80% by volume or more with respect to the above hard phase. Do.
  • the Mn concentration in the ferrite is 0.90 times or less of the Mn concentration in the steel sheet If the Mn concentration in the ferrite phase is too high, the hardness of the ferrite phase can not be sufficiently reduced and the bendability is deteriorated.
  • the Mn concentration of Mn needs to be lower than the Mn concentration in the steel sheet. Therefore, the Mn concentration in the ferrite phase is 0.90 times or less, preferably 0.85 times or less, more preferably 0.80 times or less of the Mn concentration in the steel sheet.
  • the Mn concentration in the ferrite is preferably 0.3 times or more of the Mn concentration in the steel sheet, Preferably, it is 0.4 times or more.
  • the Mn concentration in the ferrite phase can be measured by EPMA.
  • the volume ratio of residual ⁇ to the entire structure 5% or more
  • the residual ⁇ is deformed by strain when processing a steel sheet, and can transform to martensite to ensure good ductility and harden the deformed portion during processing This is a structure necessary to improve the strength-ductility balance of the steel sheet because it has the effect of promoting the strain concentration and suppressing the concentration of strain.
  • the volume ratio of residual ⁇ is preferably 5% or more, more preferably 6% or more, and still more preferably 7% or more.
  • the upper limit of the volume fraction of residual ⁇ is not particularly limited, but is at most 20% or less within the range of the component composition and production conditions of the present invention.
  • the residual ⁇ is a value measured by X-ray diffractometry at a quarter thickness of the steel plate.
  • the residual ⁇ is contained between the lass of bainitic ferrite or in the MA structure.
  • the effect of the residual ⁇ is exerted regardless of the present form, so in the present invention, the residual ⁇ which can be confirmed when measured is taken as the residual ⁇ regardless of the present form.
  • C 0.10% or more and 0.30% or less C is an element necessary for securing the strength and enhancing the stability of the residual ⁇ .
  • the C content is 0.10% or more, preferably 0.12% or more, more preferably 0.15% or more.
  • the C content is preferably 0.30% or less, preferably It is 0.26% or less, more preferably 0.23% or less.
  • Si 1.2% or more and 3% or less Si is an element that contributes to the strengthening of steel as a solid solution strengthening element. In addition, it is an element effective in suppressing the formation of carbides, effectively acting on the formation of residual ⁇ , and securing an excellent TS ⁇ EL balance.
  • the Si content is 1.2% or more, preferably 1.35% or more, more preferably 1.5% or more.
  • the Si content is 3% or less, preferably 2.8% or less, and more preferably 2.6% or less.
  • Mn 0.5% or more and 3.0% or less
  • Mn is an element that improves the hardenability and contributes to the strengthening of the steel sheet. It is also an element that effectively acts to stabilize ⁇ and generate residual ⁇ .
  • the Mn content is 0.5% or more, preferably 0.6% or more, more preferably 1.0% or more, further preferably 1.5% or more, further Preferably, it is 2.0% or more.
  • the Mn content is 3.0% or less, preferably 2.8% or less, more preferably 2.6% or less.
  • P more than 0% and 0.1% or less P is an element which is contained unavoidable and is an element which degrades the weldability of a steel plate. Therefore, the P content is 0.1% or less, preferably 0.08% or less, and more preferably 0.05% or less.
  • the lower limit is not particularly limited because the P content is preferably as small as possible, but the industrially lower limit is 0.0005%.
  • S more than 0% and 0.05% or less S, like P, is an element that is inevitably contained and is an element that degrades the weldability of a steel plate. Moreover, S forms a sulfide type inclusion in a steel plate, and becomes a cause of reducing the workability of a steel plate. Therefore, the S content is 0.05% or less, preferably 0.01% or less, and more preferably 0.005% or less.
  • the lower limit is not particularly limited because the S content is preferably as small as possible, but the industrially lower limit is made 0.0001%.
  • Al 0.005% or more and 0.2% or less
  • Al is an element acting as a deoxidizer.
  • the Al content is made 0.005% or more, more preferably 0.01% or more.
  • the Al content is 0.2% or less, preferably 0.15% or less, and more preferably 0.10% or less.
  • N more than 0% and 0.01% or less N is an element which is contained unavoidably, but is an element which precipitates a nitride in a steel plate and contributes to high strengthening of the steel plate.
  • the N content is preferably 0.001% or more.
  • the N content is 0.01% or less, preferably 0.008% or less, and more preferably 0.005% or less.
  • O more than 0% and 0.01% or less O is an element contained unavoidably, and when it is contained in excess, it is an element which causes a decrease in ductility and bendability at the time of processing. Therefore, the O content is 0.01% or less, preferably 0.005% or less, and more preferably 0.003% or less.
  • the lower limit is not particularly limited because the O content is preferably as small as possible, but the industrially lower limit is 0.0001%.
  • the steel sheet of the present invention satisfies the above-mentioned composition, and the balance is iron and unavoidable impurities.
  • the unavoidable impurities include, for example, the above-mentioned P, S, N, O, and tramp elements such as Pb, Bi, Sb, Sn, etc., which may be brought into steel depending on the conditions of raw materials, materials, manufacturing facilities, etc. Sometimes.
  • the following elements can be positively contained as other elements within the range not adversely affecting the action of the present invention.
  • the steel sheet of the present invention may further contain, as another element, (A) Cr: at least one selected from the group consisting of more than 0% and less than 1% and Mo: more than 0% and less than 1%, (B) at least one selected from the group consisting of Ti: more than 0% and 0.15% or less, Nb: more than 0% and 0.15% or less, and V: 0% and more than 0.15% or less, (C) at least one selected from the group consisting of Cu: more than 0% and 1% or less and Ni: more than 0% and 1% or less, (D) B: more than 0% and less than 0.005%, (E) Ca: at least one selected from the group consisting of more than 0% and 0.01% or less, Mg: more than 0% and 0.01% or less, and REM: more than 0% and 0.01% or less May be
  • A Cr: at least one selected from the group consisting of more than 0% and less than 1% and Mo: more than 0% and less than 1%
  • B
  • Cr and Mo are effective in enhancing the hardenability and improving the strength of the steel sheet Elements, which can be used alone or in combination.
  • the content of each of Cr and Mo is preferably 0.1% or more, more preferably 0.3% or more.
  • each of Cr and Mo is contained alone, it is preferably 1% or less, more preferably 0.8% or less. More preferably, it is 0.5% or less.
  • each of Cr and Mo is independently within the above upper limit, and preferably the total amount is 1.5% or less.
  • (B) at least one of Ti, Nb, and at least one selected from the group consisting of Ti: more than 0% and 0.15% or less, Nb: more than 0% and 0.15% or less, and V: more than 0% and 0.15% or less V is an element having a function of forming precipitates of carbides and nitrides in the steel plate to improve the strength of the steel plate and refining the old ⁇ grains, and can be used alone or in combination. .
  • the content of Ti, Nb and V is preferably 0.005% or more, more preferably 0.010% or more.
  • the content of each of Ti, Nb and V is preferably 0.15% or less, more preferably 0.12% or less, and still more preferably 0.10% or less.
  • Cu and Ni are elements effectively acting on formation and stabilization of retained austenite, Furthermore, it is an element also having the effect of improving the corrosion resistance, and can be used alone or in combination.
  • the contents of Cu and Ni are preferably 0.05% or more, more preferably 0.10% or more.
  • the Cu content is preferably 1% or less, more preferably 0.8% or less, still more preferably 0.5, because the hot workability deteriorates if the Cu content is excessive. % Or less.
  • the Ni content is preferably 1% or less, more preferably 0.8% or less, and still more preferably 0.5% or less.
  • the total amount is preferably 1 .5% or less, more preferably 1.0% or less.
  • (D) B more than 0% and 0.005% or less B is an element improving the hardenability, and is an element effective for stably causing austenite to reach room temperature.
  • the B content is preferably 0.0005% or more, more preferably 0.0010% or more, and still more preferably 0.0015% or more.
  • the B content is preferably 0.005% or less, more preferably 0.004% or less, and still more preferably 0.0035% or less, because boride is generated to deteriorate ductility.
  • the content of each of Ca, Mg and REM is preferably made 0.0005% or more, more preferably 0.0010% or more, alone.
  • the content of each of Ca, Mg and REM is preferably 0.01% or less, more preferably 0.008% or less, and still more preferably 0.007% or less.
  • REM is an abbreviation of a rare earth element and is a meaning including lanthanoid elements, that is, 15 elements from La to Lu, and scandium and yttrium.
  • the manufacturing method of a plated steel plate is demonstrated.
  • the method for producing a high strength cold rolled steel sheet and the method for producing a high strength galvanized steel sheet according to the present invention are as follows: “The hot rolling process of the steel sheet having the above-mentioned composition has a winding temperature of 500 ° C. or more and 800 ° C. or less.
  • annealing described later is performed on a steel sheet obtained by performing hot rolling and cold rolling on a steel satisfying the above-mentioned component composition. Do.
  • reheating is performed after the annealing.
  • a high-strength electrogalvanized steel sheet can be obtained by performing the galvanizing treatment appropriately in combination as needed.
  • reheating and hot dip galvanizing are performed.
  • a high-strength alloyed hot-dip galvanized steel sheet can be obtained by performing the alloying treatment in combination as appropriate.
  • the present invention by appropriately controlling the production conditions, it is possible to obtain a high strength cold rolled steel sheet, a high strength galvanized steel sheet, etc. having a desired structure.
  • hot rolling is performed according to a conventional method using a steel having the above-described component composition.
  • hot rolling for example, after hot rolling so that the finish rolling temperature is Ac 3 or more, winding is performed at a winding temperature of 500 ° C. or more and 800 ° C. or less. Then, after holding at 500 degreeC or more and 800 degrees C or less for 3 hours or more, it cools to room temperature and cold-rolls.
  • the cooling after finish rolling is about 500 ° C./sec at the upper limit of operation.
  • the method of manufacturing the high strength cold rolled steel sheet includes a step of reheating to a temperature range of 250 ° C. or more and 500 ° C. or less, holding the temperature range for 30 seconds or more, and cooling to room temperature. Further, in the method for producing a high strength galvanized steel sheet, after cooling to the temperature range of 500 ° C. or less, it is then reheated to a temperature range of 250 ° C. or more and 500 ° C. or less and held for 30 seconds or more in the temperature range. Galvanize in a holding time and then cool to room temperature.
  • the winding temperature is set to 500 ° C. or more, preferably 550 ° C.
  • the coiling temperature is 800 ° C. or less, preferably 750 ° C. or less, more preferably 700 ° C. It is assumed that Further, the temperature range to be maintained after winding is 500 ° C. or more, preferably 510 ° C. or more, more preferably 520 ° C. or more, further preferably 550 ° C. or more, still more preferably 580 ° C. or more.
  • the holding temperature is preferably 800 ° C. or less Is set to 780 ° C. or less, more preferably 750 ° C. or less, and still more preferably 700 ° C. or less.
  • the holding time in the temperature range is 3 hours or more, preferably 4 hours or more, more preferably 5 hours or more, still more preferably 7 hours or more, still more preferably 10 hours or more.
  • the holding time is too long, a large amount of scale, intergranular oxidation, etc. may occur on the steel plate as in the case where the coiling temperature is too high, and the acid washability may be deteriorated.
  • the following time is more preferably 60 hours or less.
  • holding at a predetermined temperature does not necessarily mean holding the same temperature at the same temperature, and it may be fluctuated as long as it is within a predetermined temperature range.
  • the temperature may be maintained within the range of the above-mentioned holding temperature, or within this range, it is intended to include changes such as temperature decrease due to temperature decrease or heating, temperature increase due to recuperation accompanying transformation.
  • cooling is performed to room temperature, but the cooling rate at that time is not particularly limited, and may be, for example, air cooling.
  • cold rolling and hot rolling pickling is performed if necessary, and cold rolling is performed at a cold rolling ratio of about 30 to 80%.
  • the soaking holding temperature is set to a temperature less than Ac 3 point, preferably Ac 3 point ⁇ 5 ° C. or less, more preferably Ac 3 point ⁇ 10 ° C. or less, still more preferably Ac 3 point ⁇ 20 ° C. or less.
  • the average temperature rising rate at the time of raising the temperature to the above-mentioned soaking holding temperature range is not particularly limited, and can be appropriately selected.
  • an average temperature rising rate of about 0.5 to 50 ° C./second may be used. .
  • the holding time in the soaking holding temperature range is not particularly limited. However, if the holding time is too short, the machined structure may remain and the ductility of the steel may decrease, so the holding time is preferably 40 seconds or more, more preferably 60 seconds or more. On the other hand, if the holding time is too long, the concentration of Mn in the austenite phase proceeds and the Ms point may decrease to increase the MA structure. Therefore, the holding time is preferably 3600 seconds or less, more preferably 3000 seconds or less Do.
  • Ac 1 point and Ac 3 point can be calculated from the following formulas (a) and (b) described in “Leslie Iron and Steel Material Chemistry”, Maruzen Co., Ltd., May 31, 1985, page 273.
  • [] indicates the content of each element in mass%, and the content of the element not contained in the steel sheet may be calculated as 0 mass%.
  • the temperature range up to 500 ° C. is cooled at an average cooling rate of 10 ° C./sec or more.
  • the average cooling rate is 10 ° C./sec or more, preferably 15 ° C./sec or more, and more preferably 20 ° C./sec or more.
  • the upper limit of the average cooling rate is not particularly limited, and may be water cooling or oil cooling.
  • the average cooling rate at 500 ° C. or less is 10 ° C./sec or more, preferably 15 ° C./sec or more, more preferably 20 ° C./sec or more.
  • the upper limit of the average cooling rate is not particularly limited, and may be water cooling or oil cooling.
  • the average cooling rate up to 500 ° C. and the average cooling rate below 500 ° C. may be the same or different, and may be appropriately adjusted within the above range.
  • the cooling stop temperature in the case of cooling at 500 ° C. or less at an average cooling rate of 10 ° C./sec or more is a temperature range of 500 ° C. or less.
  • the cooling stop temperature is set to 500 ° C. or less, preferably 400 ° C. or less, more preferably 350 ° C. or less, and still more preferably 300 ° C. or less.
  • the lower limit of the cooling stop temperature is not particularly limited, but in operation, it is up to room temperature.
  • the reheating process is divided into a method of manufacturing a cold-rolled steel sheet and a method of manufacturing a hot-dip galvanized steel sheet.
  • Reheating in the method for producing a cold rolled steel sheet After stopping cooling at the above-mentioned temperature range of 500 ° C. or less, then reheating to a temperature range of 250 ° C. or more and 500 ° C. or less, holding for 30 seconds or more and cooling to room temperature Do.
  • reheating is performed to a temperature range of 250 ° C. or more and 500 ° C. or less, and by holding for 30 seconds or more, hard phases such as martensite can be tempered and untransformed austenite can be transformed.
  • the reheating temperature is set to 250 ° C. or more, preferably 300 ° C. or more, more preferably 350 ° C. or more.
  • the reheating temperature is 500 ° C.
  • this "reheating" means heating from the cooling stop temperature to 500 ° C. or less, that is, temperature rise, as it is written. Therefore, the reheating temperature is a temperature higher than the cooling stop temperature, and even in the temperature range of 250 ° C. or more and 500 ° C. or less, isothermal holding and cooling stop with the same cooling stop temperature and reheating temperature The cooling process from temperature to lower temperatures is not included in this reheating.
  • the holding time in the reheating temperature range is too short, the hard phase can not be sufficiently tempered, and untransformed austenite can not be transformed. Therefore, the holding time is set to 30 seconds or more, preferably 50 seconds or more, more preferably 100 seconds or more, and further preferably 200 seconds or more.
  • the upper limit of the holding time is not particularly limited, but if it is held for a long time, the productivity is lowered and the strength is lowered, so it is preferably 1500 seconds or less, more preferably 1000 seconds or less.
  • the average cooling rate at this time is not particularly limited, and is preferably 0.1 ° C./sec or more, more preferably 0.4 ° C./sec or more, preferably 200 ° C./sec or less, more preferably 150 ° C./sec or less It suffices to cool at an average cooling rate.
  • an electrogalvanized layer may be formed on the surface of the steel sheet obtained above.
  • the formation method of said electrogalvanized layer is not specifically limited,
  • the electric galvanization processing method of a conventional method is employable.
  • a method of performing an electrogalvanizing treatment by immersing in a 55 ° C. zinc solution and conducting electricity is mentioned.
  • the amount of plating adhesion per one side is also not particularly limited, and, for example, in the case of an electrogalvanized steel plate, it may be about 10 to 100 g / m 2 .
  • reheating is performed to a temperature range of 250 ° C. or more and 500 ° C. or less, and by holding for 30 seconds or more, hard phases such as martensite can be tempered and untransformed austenite can be transformed.
  • the reheating temperature is set to 250 ° C. or more, preferably 300 ° C. or more, more preferably 350 ° C. or more.
  • the reheating temperature is 500 ° C.
  • this "reheating" means heating from the cooling stop temperature to 500 ° C. or less, that is, temperature rise, as it is written. Therefore, the reheating temperature is a temperature higher than the cooling stop temperature, and even in the temperature range of 250 ° C. or more and 500 ° C. or less, isothermal holding and cooling stop with the same cooling stop temperature and reheating temperature The cooling process from temperature to lower temperatures is not included in this reheating.
  • the holding time in the reheating temperature range is too short, the hard phase can not be sufficiently tempered, and untransformed austenite can not be transformed. Therefore, the holding time is set to 30 seconds or more, preferably 50 seconds or more, more preferably 100 seconds or more, and further preferably 200 seconds or more.
  • the upper limit of the holding time is not particularly limited, but if it is held for a long time, the productivity is lowered and the strength is lowered, so it is preferably 1500 seconds or less, more preferably 1000 seconds or less.
  • the hot dip galvanizing treatment is performed within the holding time of 30 seconds or more in the reheating temperature range to form a hot dip galvanized layer on the steel sheet surface.
  • it is performed by combining hot-dip galvanizing and holding in the reheating temperature range. That is, in order to perform appropriate management such as metal structure and strength by reheating, it is necessary to perform hot dip galvanization in the above-mentioned holding time of the reheating temperature range.
  • the method for forming the hot-dip galvanized layer is not particularly limited, and a conventional hot-dip galvanizing method can be adopted.
  • the steel sheet may be dipped in a plating bath whose temperature is adjusted to the above reheating temperature range to carry out the hot dip galvanization treatment.
  • the plating time should just satisfy the above-mentioned holding time, and should just be adjusted suitably so that a desired amount of plating can be secured.
  • the plating time is preferably, for example, 1 to 10 seconds.
  • the reheating temperature in the case of only the heating and the hot dip galvanizing temperature that is, the temperature of the plating bath are different
  • the case of heating or cooling from one temperature to the other temperature may be included.
  • furnace heating, induction heating, etc. are mentioned.
  • alloying may be performed after the above-described hot dip galvanization.
  • the alloying temperature is not particularly limited, but is preferably 450 ° C. or more, more preferably 460 ° C. or more, and still more preferably 480 ° C. or more because alloying does not proceed sufficiently if the alloying temperature is too low.
  • the alloying temperature is too high, the alloying proceeds too much to increase the Fe concentration in the plating layer and the plating adhesion deteriorates, so it is preferably 550 ° C. or less, more preferably 540 ° C. or less, still more preferably It is 530 ° C. or less.
  • the time of alloying treatment is not particularly limited, and may be adjusted to obtain desired alloying.
  • the alloying treatment time is preferably 10 seconds to 60 seconds. Since the alloying treatment is performed after being held for a predetermined time in the reheating temperature range, the alloying treatment time is not included in the holding time in the reheating temperature range.
  • the average cooling rate at this time is not particularly limited, and is preferably 0.1 ° C./sec or more, more preferably 0.4 ° C./sec or more, preferably 200 ° C./sec or less, more preferably 150 ° C./sec or less It suffices to cool at an average cooling rate.
  • the technique of the present invention can be suitably adopted particularly for thin steel plates having a thickness of 6 mm or less.
  • the high strength cold rolled steel sheet and high strength galvanized steel sheet of the present invention are steel sheets having a tensile strength of 980 MPa or more, preferably 1,000 MPa or more, more preferably 1,010 MPa or more.
  • the ductility is represented by a balance of strength and ductility, that is, “tensile strength in unit MPa ⁇ ductility in unit%”, preferably 15,000 MPa ⁇ % or more, more preferably 15,100 MPa ⁇ % or more, further preferably
  • the pressure shall be 15,200 MPa ⁇ % or more.
  • Flexibility is represented by the balance of strength and VDA (Verband der Automobilindustrie) bending angle determined by the method described in Examples described later, that is, "VDA bending angle indicated by tensile strength in unit MPa x unit degree", Preferably, it is 100,000 MPa ⁇ ° or more, more preferably 100,500 MPa ⁇ ° or more, and further preferably 101,000 MPa ⁇ ° or more.
  • the present application is related to Japanese Patent Application No. 2014-053399 filed on March 17, 2014, Japanese Patent Application No. 2014-053400 filed on March 17, 2014, and September 22, 2014 Claiming the benefit of priority based on Japanese Patent Application No. 2014-192757 filed in The entire content of the specification of Japanese Patent Application No. 2014-053399 filed on March 17, 2014, the entire specification of Japanese Patent Application No. 2014-053400 filed on March 17, 2014 The contents and the entire contents of the specification of Japanese Patent Application No. 2014-192757 filed on September 22, 2014 are incorporated for reference of the present application.
  • Example 1 A steel having the component composition shown in Table 1 below was melted and subjected to hot rolling ⁇ cold rolling ⁇ continuous annealing under the following conditions to produce a cold rolled steel sheet.
  • the steels of the component compositions shown in Table 1 have the balance of iron and unavoidable impurities, and the blanks indicate that no element is added.
  • Hot rolling The slab was heated to 1250 ° C. and hot rolled to a plate thickness of 2.3 mm so that the rolling reduction was 90% and the finish rolling temperature was 920 ° C. Thereafter, the film is cooled from this temperature to the “rolling temperature (° C.)” shown in Table 2 or Table 3 at an average cooling rate of 30 ° C./s and then taken up, and then “holding temperature 1 (° C.)” shown in Table 2; And “hold time (hour)” or “hold start temperature (° C.)”, “hold end temperature (° C.)”, and “hold time (hour)” shown in Table 3. Then, it air-cooled to room temperature and manufactured the hot rolled sheet steel.
  • Cold rolling The obtained hot rolled steel sheet was pickled to remove surface scale, and then cold rolling was performed to produce a cold rolled steel sheet having a thickness of 1.2 mm.
  • Table 2 No. 32 is a comparative example which does not reheat, and it shows in the reheat column that it hold
  • the temperature at which the soaking is maintained is “soaking temperature (° C)", the average cooling rate to 500 ° C after soaking is “average cooling rate 1 (° C / sec)", and the cooling rate at 500 ° C or less is “ Average cooling rate 2 (° C / sec), cooling stop temperature is “cooling stop temperature (° C)”, holding temperature at reheating after cooling stop is “reheating holding temperature (° C)”, holding time at the holding temperature Was described as “reheat holding time (seconds)", respectively.
  • the holding time at the soaking holding temperature is set to 100 seconds to 600 seconds.
  • a portion of the above test steel is immersed in a galvanizing bath at 55 ° C., electroplated under conditions of a current density of 30 to 50 A / dm 2 , washed with water and dried to obtain electricity A galvanized steel sheet was obtained.
  • the adhesion amount of zinc plating per one side was 10 to 100 g / m 2.
  • washing treatment such as alkaline aqueous solution immersion degreasing, water washing, and acid washing was appropriately performed to obtain a test steel having an electrogalvanized layer on the surface.
  • the electrogalvanized steel plate entered "EG" in the "variety" column in the table.
  • the metal structure, the Mn concentration, and various mechanical properties were evaluated for each of the test steels, as described in detail below, and are shown in Table 4 or Table 5.
  • the area ratio of ferrite, the area ratio of hard phase, the area ratio of MA structure, the volume ratio of residual ⁇ , and the ratio of spherical hard phase were measured as follows. That is, the cross section of the test steel was polished and corroded as described below, and then a quarter position of the plate thickness was observed using an optical microscope or a scanning electron microscope. Then, a metallographic photograph taken with an optical microscope or SEM was subjected to image analysis to measure the proportion of each tissue. Details are shown below.
  • the structure other than the above ferrite was used as a hard phase, and the value obtained by removing the area ratio of ferrite from 100% of the observation field of view was defined as the area ratio of the hard phase.
  • the results are described in "Hard phase (area%)" in the table.
  • the structure of the hard phase was also observed, and it was confirmed that the hard phase is at least one selected from the group consisting of bainitic ferrite, bainite, tempered martensite, residual ⁇ , and MA structure.
  • volume rate of residual ⁇ After polishing using # 1000 to # 1500 sandpaper to 1/4 plate thickness position, the surface is electropolished to a depth of 10 to 20 ⁇ m, and then X-ray diffractometer, RIGAKU Co., Ltd. It measured using manufactured RINT1500. Specifically, a Co target is used, 40 kV-200 mA is output, and a range of 40 ° to 130 ° is measured at 2 ⁇ , and the diffraction peaks (110), (200), (b A quantitative measurement of residual ⁇ was performed from diffraction peaks (111), (200), (220) and (311) of 211) and fcc ( ⁇ ). The results are described in “residual ⁇ (volume%)” in the table.
  • Spherical hard phase in ferrite phase After the above polishing, it is corroded by nital and spherical hard phase with an aspect ratio 1 to 3 with an equivalent circle diameter of 2 ⁇ m or less in the ferrite phase is 1000 ⁇ magnification in SEM. : 100 ⁇ m ⁇ 100 ⁇ m were observed for a total of three fields of view, and image analysis was performed to determine the ratio of the spherical hard phase to the above hard phase. The results are described in "Spherical hard phase (area%)" in the table.
  • the percentage of the area where the Mn concentration is 1.2 times or more the concentration of the Mn concentration in the steel sheet The Mn concentration cuts the test steel in the cross section, embeds it in the resin, and polishes EPMA within the range of 20 ⁇ m ⁇ 20 ⁇ m.
  • the beam diameter was measured under the condition of 1 ⁇ m or less.
  • the obtained Mn concentration was divided by the Mn concentration of the steel plate subjected to chemical analysis by inductively coupled plasma emission spectroscopy to determine the ratio of the region concentrated 1.2 times or more of the Mn concentration to the Mn concentration in the steel plate .
  • Standard deviation of the region where the Mn concentration is concentrated 1.2 times or more of the Mn concentration in the steel plate The image color-coded according to the Mn concentration in the steel plate is divided into 100 divisions of 2 ⁇ m division, and Mn in each division The fraction of the area in which the concentration is 1.2 times or more concentrated was measured, and the standard deviation of 100 sections was determined. The results are shown in "standard deviation (area%) of 1.2 times area of Mn concentration" in the table.
  • the ratio of the Mn concentration in the ferrite phase to the Mn concentration in the steel plate was measured by EPMA analysis, and the same visual field of 20 ⁇ m ⁇ 20 ⁇ m was observed by SEM. Each ferrite grain and its Mn concentration distribution were identified by comparing the EPMA analysis result and the SEM image. The point at which the major axis and minor axis of the ferrite grain intersect is the center position of the ferrite grain, and the Mn concentration at the center position is the Mn concentration of the ferrite grain.
  • the mechanical properties of the test steel were subjected to a tensile test using a No. 5 test piece specified in JIS Z2201, and tensile strength and ductility were measured.
  • the test piece was cut out of the test steel so that the direction perpendicular to the rolling direction was the longitudinal direction.
  • the strength-ductility balance was calculated from the obtained tensile strength and ductility.
  • the tensile strength is “TS (MPa)”
  • the ductility is “EL (%)”
  • the strength-ductility balance is “TS ⁇ EL (MPa ⁇ %)”.
  • the tensile strength was 980 MPa or more, it was high strength and was accepted, and when it was less than 980 MPa, the strength was insufficient and was evaluated as rejection.
  • the ductility is evaluated by the strength-ductility balance, and when TS ⁇ EL is 15,000 MPa ⁇ % or more, the ductility is considered to be excellent, and when less than 15,000 MPa ⁇ %, the ductility is evaluated as disqualified. did.
  • the bendability was evaluated under the following measurement conditions based on the VDA standard "VDA 238-100" defined by the German Automobile Manufacturers Association.
  • VDA 238-100 the displacement at the maximum load obtained in the bending test is converted into an angle on the basis of VDA, and the bending angle is determined.
  • the results are described in “VDA bending angle (°)” in the table.
  • the bendability was evaluated from the tensile strength and the bending angle. The results are described in “TS ⁇ VDA (MPa ⁇ °)” in the table.
  • steel plates other than the above did not satisfy the component composition and manufacturing conditions specified in the present invention as described in detail below, and desired properties were not obtained.
  • the steel type U in Table 1 has a C content, and the steel type V has an Mn content exceeding the upper limit of the present invention, and fracture occurred during cold rolling, so that a test steel could not be produced.
  • Experiment No. No. 19 is an example which did not reheat after cooling to 500 degrees C or less, MA structure
  • Experiment No. No. 21 was an example which did not hold
  • Experiment No. No. 22 was an example in which the coiling temperature and the holding temperature were low, and the area ratio of Mn concentration 1.2 times and the standard deviation of the region of 1.2 times Mn concentration were low, and the bendability was bad.
  • Experiment No. No. 23 was an example in which the holding time at a predetermined temperature was short after winding, and the standard deviation of the region of 1.2 times the Mn concentration was low, and the bendability was poor.
  • Experiment No. No. 27 was an example in which the soaking temperature was high, and ferrite was not generated, and the ductility was poor because the area ratio of Mn concentration 1.2 times and the standard deviation of the 1.2 concentration area of Mn concentration were low.
  • Experiment No. No. 30 was an example in which the cooling stop temperature was high, and the ferrite and MA structures were many, the strength was low, and the ductility and the bendability were also poor.
  • Experiment No. No. 31 is an example where the cooling rate to 500 ° C. is slow, and the bendability is deteriorated because the Mn concentration in the ferrite phase is too high.
  • Experiment No. No. 32 is an example which did not reheat after cooling to 500 degrees C or less, and MA structure
  • Example 2 A steel having the component composition shown in Table 6 below was melted and subjected to hot rolling ⁇ cold rolling ⁇ continuous annealing under the following conditions to produce a cold rolled steel sheet.
  • the steels of the component compositions shown in Table 6 have the balance of iron and unavoidable impurities, and the blanks indicate that no element is added.
  • Hot rolling The slab was heated to 1250 ° C. and hot rolled to a plate thickness of 2.3 mm so that the rolling reduction was 90% and the finish rolling temperature was 920 ° C. Thereafter, the film is cooled from this temperature to the “rolling temperature (° C.)” shown in Table 7 or Table 8 at an average cooling rate of 30 ° C./sec, and then “holding temperature 1 (° C.)” shown in Table 7; And “hold time (hour)” or “hold start temperature (° C.)”, “hold end temperature (° C.)”, and “hold time (hour)” shown in Table 8; Then, it air-cooled to room temperature and manufactured the hot rolled sheet steel.
  • Cold rolling The obtained hot rolled steel sheet was pickled to remove surface scale, and then cold rolling was performed to produce a cold rolled steel sheet having a thickness of 1.2 mm.
  • Table 7 No. 29 is a comparative example which does not reheat, and it shows in the reheat column that it hold
  • the temperature at which the soaking is maintained is “soaking temperature (° C)", the average cooling rate to 500 ° C after soaking is “average cooling rate 1 (° C / sec)", and the cooling rate at 500 ° C or less is “ Average cooling rate 2 (° C / sec), cooling stop temperature is “cooling stop temperature (° C)", holding temperature at reheating after cooling stop is “reheating holding temperature (° C)", holding time at the holding temperature “Reheating holding time (seconds)”, plating bath temperature “plating bath temperature (° C.)” and plating time “hot dip galvanizing time (seconds)” respectively.
  • reheating holding time (second) is a total time including "hot-dip galvanization processing time (second)”.
  • the alloying temperature at this time is expressed as “alloying temperature (° C.)”, and the holding time at the alloying temperature is expressed as “alloying treatment time (seconds)”. After holding for a predetermined time, it was allowed to cool to room temperature to obtain a test steel.
  • steel plates other than the above did not satisfy the component composition and manufacturing conditions specified in the present invention as described in detail below, and desired properties were not obtained.
  • the steel type O in Table 6 had a C content, and the steel type P had an Mn content exceeding the upper limit of the present invention, and fracture occurred during cold rolling, so that a test steel could not be produced.
  • Experiment No. No. 3 is an example in which the holding time at the reheating holding temperature after cooling to 500 ° C. or less was short, and the MA structure increased and the bendability deteriorated.
  • Experiment No. 6 is an example which was not kept at a predetermined temperature after winding, and the standard deviation of the region of 1.2 times the Mn concentration was low, and the bendability was bad.
  • Experiment No. No. 7 was an example in which the winding temperature and the holding temperature were low, and the area ratio of Mn concentration 1.2 times and the standard deviation of the region of Mn concentration 1.2 times were low, and the bendability was bad.
  • Experiment No. No. 8 is an example in which the holding time at a predetermined temperature was short after winding, and the standard deviation of the region of 1.2 times the Mn concentration was low, and the bendability was poor.
  • Experiment No. 9 is an example in which reheating after cooling to 500 ° C. or lower was low, and the MA structure increased and the bendability deteriorated.
  • Experiment No. No. 12 is an example in which the soaking temperature was high, and the ductility was poor because ferrite was not sufficiently generated and the Mn concentration in the ferrite phase was too high.
  • Experiment No. No. 17 was an example in which the cooling stop temperature was high, and the ferrite and MA structures were many, the strength was low, and the bendability was also poor.
  • Experiment No. No. 24 is an example where the cooling rate up to 500 ° C. is slow, and the bendability is deteriorated because the Mn concentration in the ferrite phase becomes too high.
  • Experiment No. 29 is an example which did not reheat after cooling to 500 degrees C or less, MA structure

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

Provided is a high strength cold rolled steel sheet which has a tensile strength of 980 MPa or greater and which exhibits excellent ductility and bendability. The high strength cold rolled steel sheet satisfies a specified component composition, and the structure of the steel sheet at a depth corresponding to a quarter of the sheet thickness satisfies all of (1) to (5) below when measured using specified methods. (1) The areal ratio of ferrite relative to the overall structure is not less than 5% but less than 50 %, with the remainder being hard phases. (2) The areal ratio of a mixed structure of fresh martensite and residual austenite relative to the overall structure is greater than 0% but not greater than 30%. (3) A region in which the concentration of Mn is enriched to at least 1.2 times the concentration of Mn in the steel sheet is present at a proportion of not less than 5% by area. (4) When the fraction of a region in which the concentration of Mn is enriched to at least 1.2 times the concentration of Mn in the steel sheet is measured for 100 sections each measuring 2 μm square, the standard deviation is not lower than 4.0%. (5) The concentration of Mn in a ferrite phase is not higher than 0.9 times the concentration of Mn in the steel sheet.

Description

延性及び曲げ性に優れた高強度冷延鋼板および高強度溶融亜鉛めっき鋼板、並びにそれらの製造方法High strength cold rolled steel sheet and high strength galvanized steel sheet excellent in ductility and bendability, and method for manufacturing them
 本発明は、延性及び曲げ性に優れた高強度冷延鋼板および高強度溶融亜鉛めっき鋼板、並びにそれらの製造方法に関する。詳細には、引張強度が980MPa以上の領域で、延性と曲げ性に優れた高強度冷延鋼板、高強度電気亜鉛めっき鋼板、高強度溶融亜鉛めっき鋼板および高強度合金化溶融亜鉛めっき鋼板、並びにこれらの鋼板を効率良く製造することのできる製造方法に関するものである。 The present invention relates to a high strength cold rolled steel sheet and a high strength galvanized steel sheet excellent in ductility and bendability, and a method of manufacturing them. Specifically, a high strength cold rolled steel sheet excellent in ductility and bendability in a region having a tensile strength of 980 MPa or more, a high strength electrogalvanized steel sheet, a high strength galvanized steel sheet and a high strength alloyed galvanized steel sheet, The present invention relates to a manufacturing method capable of efficiently manufacturing these steel plates.
 自動車や輸送機等の低燃費化を実現するために、自動車や輸送機の自重を軽量化することが望まれている。例えば軽量化には高強度鋼板を使用し、板厚を薄くすることが有効である。しかし、鋼板を高強度化すると延性が劣化するため、加工性が悪くなる。したがって高強度鋼板には、プレス成形に必要な延性、および曲げ性に優れた特性が求められている。また自動車用鋼部品には、耐食性の観点から、電気亜鉛めっき(EG、Electro-Galvanizing)や溶融亜鉛めっき(GI、Galvanized Iron)、合金化溶融亜鉛めっき(GA、Galva-Annealed)などの亜鉛めっきを施した鋼板が使用される場合が多い。電気亜鉛めっき鋼板、溶融亜鉛めっき鋼板、および合金化溶融亜鉛めっき鋼板を、以下、「亜鉛めっき鋼板」で代表させる場合がある。これら亜鉛めっき鋼板においても高強度鋼板と同様の特性が求められている。 In order to realize low fuel consumption of automobiles and transport aircraft, it is desirable to reduce the weight of the automobile and transport aircraft. For example, it is effective to use a high strength steel plate and reduce the thickness to reduce the weight. However, when the steel sheet is made high in strength, the ductility is deteriorated, so that the workability is deteriorated. Therefore, high strength steel sheets are required to have excellent ductility and bendability required for press forming. In addition, from the viewpoint of corrosion resistance, galvanizing (EG, Electro-Galvanizing), galvanizing (GI, Galvanized Iron), galvanizing such as alloying galvanization (GA, Galva-Annealed) are applied to steel parts for automobiles. In many cases, a steel plate that has been subjected to There are cases where the electrogalvanized steel sheet, the galvanized steel sheet, and the alloyed galvanized steel sheet are hereinafter represented by "galvanized steel sheet". Also in these galvanized steel sheets, characteristics similar to those of high strength steel sheets are required.
 高強度鋼板の加工性を改善する技術として、例えば特許文献1~4には、曲げ性に優れた超高強度冷延鋼板が提案されている。 As techniques for improving the processability of high strength steel plates, for example, Patent Documents 1 to 4 propose ultra-high strength cold rolled steel plates excellent in bendability.
特開2011-179030号公報JP, 2011-179030, A 特許第5299591号公報Patent No. 5299591 特開2011-225976号公報JP, 2011-225976, A 国際公開第2012/036269号International Publication No. 2012/036269
 しかしながら引張強度が980MPa以上の領域で、延性と曲げ性に優れた鋼板は未だ提供されていなかった。 However, a steel plate excellent in ductility and bendability has not been provided yet in a region where the tensile strength is 980 MPa or more.
 本発明は上記の様な事情に着目してなされたものであって、その目的は、引張強度が980MPa以上であって、延性と曲げ性に優れた高強度冷延鋼板および高強度溶融亜鉛めっき鋼板、並びにそれらを生産性よく製造できる方法、詳細には、引張強度が980MPa以上の領域で、延性と曲げ性に優れた高強度冷延鋼板、高強度電気亜鉛めっき鋼板、高強度溶融亜鉛めっき鋼板および高強度合金化溶融亜鉛めっき鋼板、並びにこれらの鋼板を効率良く製造することのできる製造方法を提供することにある。 The present invention has been made focusing on the above circumstances, and the object thereof is a high strength cold rolled steel sheet having a tensile strength of 980 MPa or more and excellent in ductility and bendability, and high strength galvanizing. Steel sheets and methods for manufacturing them with high productivity, specifically, high strength cold rolled steel sheets excellent in ductility and bendability in a region of tensile strength of 980 MPa or more, high strength electrogalvanized steel sheets, high strength galvanized steel It is an object of the present invention to provide a steel sheet, a high strength alloyed galvanized steel sheet, and a manufacturing method capable of efficiently manufacturing these steel sheets.
 上記課題を解決し得た本発明とは、鋼板の成分組成が、質量%で、C:0.10%以上0.30%以下、Si:1.2%以上3%以下、Mn:0.5%以上3.0%以下、P:0%超0.1%以下、S:0%超0.05%以下、Al:0.005%以上0.2%以下、N:0%超0.01%以下、およびO:0%超0.01%以下を満たし、残部が鉄および不可避的不純物からなり、かつ、鋼板の板厚1/4位置の組織が、下記(1)~(5)の全てを満たすことに要旨を有する。以下、鋼板の成分組成について「%」は「質量%」を意味する。
(1)走査型電子顕微鏡で観察したときに、全組織に対するフェライトの面積率が5%以上50%未満であり、残部は硬質相である。
(2)レペラー腐食を行い、光学顕微鏡で観察したときに、全組織に対するフレッシュマルテンサイトと残留オーステナイトの混合組織の面積率が0%超30%以下である。
(3)電子線マイクロプローブ分析計で分析したときに、Mn濃度が前記鋼板中のMn濃度の1.2倍以上濃縮している領域が5面積%以上存在し、且つ
(4)□2μm区画でMn濃度が前記鋼板中のMn濃度の1.2倍以上濃縮している領域の分率を計測し、100区画測定したときの標準偏差が4.0%以上である。
(5)電子線マイクロプローブ分析計で分析したときに、フェライト相中のMn濃度が前記鋼板中のMn濃度の0.90倍以下である。
In the present invention which has solved the above problems, the component composition of the steel plate is, in mass%, C: 0.10% or more and 0.30% or less, Si: 1.2% or more and 3% or less, Mn: 0. 5% or more and 3.0% or less, P: more than 0% and 0.1% or less, S: more than 0% and 0.05% or less, Al: 0.005% or more and 0.2% or less, N: more than 0% 0 .01% or less and O: more than 0% to 0.01% or less, the balance being composed of iron and unavoidable impurities, and the structure at the 1/4 thickness position of the steel plate has the following (1) to (5) It has a gist to satisfy all of. Hereinafter, "%" means "mass%" about the component composition of a steel plate.
(1) When observed with a scanning electron microscope, the area ratio of ferrite to the entire structure is 5% or more and less than 50%, and the balance is a hard phase.
(2) The area ratio of the mixed structure of fresh martensite and retained austenite with respect to the entire structure is more than 0% and 30% or less when subjected to repeller corrosion and observed with an optical microscope.
(3) When analyzed with an electron beam microprobe analyzer, there are 5 area% or more of a region in which the Mn concentration is 1.2 times or more the Mn concentration in the steel plate, and (4) □ 2 μm section The fraction of the region where the Mn concentration is 1.2 times or more the Mn concentration in the steel sheet is measured, and the standard deviation when measured in 100 sections is 4.0% or more.
(5) When analyzed by an electron beam microprobe analyzer, the Mn concentration in the ferrite phase is 0.90 times or less of the Mn concentration in the steel sheet.
 本発明では、X線回折法で測定したときに、全組織に対する残留オーステナイトの体積率が5%以上であることも好ましい実施態様である。 In the present invention, it is also a preferred embodiment that the volume fraction of retained austenite to the entire structure is 5% or more, as measured by the X-ray diffraction method.
 また上記硬質相は、前記フレッシュマルテンサイトと残留オーステナイトの混合組織と;ベイニティックフェライト、ベイナイト、および焼戻しマルテンサイよりなる群から選択される少なくとも一種の組織と;からなることが好ましい。 Preferably, the hard phase comprises a mixed structure of the fresh martensite and the residual austenite; and at least one structure selected from the group consisting of bainitic ferrite, bainite, and tempered martensite.
 本発明を実施するにあたっては更に他の元素として、(A)Cr:0%超1%以下、およびMo:0%超1%以下よりなる群から選択される少なくとも一種;(B)Ti:0%超0.15%以下、Nb:0%超0.15%以下、およびV:0%超0.15%以下よりなる群から選択される少なくとも一種;(C)Cu:0%超1%以下、およびNi:0%超1%以下よりなる群から選択される少なくとも一種;(D)B:0%超0.005%以下;(E)Ca:0%超0.01%以下、Mg:0%超0.01%以下、およびREM(Rare Earth Metal):0%超0.01%以下よりなる群から選択される少なくとも一種;の少なくともいずれかを含有することも好ましい実施態様である。 In the practice of the present invention, at least one other element selected from the group consisting of (A) Cr: more than 0% and 1% or less and Mo: more than 0% and 1% or less as another element; (B) Ti: 0 %, At least one selected from the group consisting of more than 0.15%, Nb: more than 0%, and less than 0.15%, and V: more than 0% and less than 0.15%; (C) Cu: more than 0% And at least one selected from the group consisting of Ni: more than 0% and 1% or less; (D) B: more than 0% and 0.005% or less; (E) Ca: more than 0% and 0.01% or less, Mg It is also a preferred embodiment to contain at least one selected from the group consisting of: more than 0% and 0.01% or less, and REM (Rare Earth Metal): 0% or more and 0.01% or less. .
 本発明には更に、前記高強度冷延鋼板の表面に、電気亜鉛めっき層が形成されている高強度電気亜鉛めっき鋼板;前記高強度冷延鋼板の表面に、溶融亜鉛めっき層が形成されている高強度溶融亜鉛めっき鋼板;および前記高強度冷延鋼板の表面に、合金化溶融亜鉛めっき層が形成されている高強度合金化溶融亜鉛めっき鋼板;も含まれる。 In the present invention, furthermore, a high strength electrogalvanized steel sheet in which an electrogalvanized layer is formed on the surface of the high strength cold rolled steel sheet; a hot dip galvanized layer is formed on the surface of the high strength cold rolled steel sheet Also included is a high strength galvanized steel sheet; and a high strength alloyed galvanized steel sheet having an alloyed galvanized layer formed on the surface of the high strength cold rolled steel sheet.
 また上記課題を解決し得た本発明に係る高強度冷延鋼板の製造方法は、上記成分組成からなる鋼板の熱延工程で、巻取り温度500℃以上800℃以下で巻取り、その後500℃以上800℃以下で3時間以上保持した後室温まで冷却し、冷延後、(Ac1点+20℃)以上Ac3点未満の温度域で均熱保持し、その後、500℃までを平均冷却速度10℃/秒以上、500℃以下を平均冷却速度10℃/秒以上で、500℃以下の温度域まで冷却し、次いで250℃以上500℃以下の温度域まで再加熱を行い、30秒間以上保持してから室温まで冷却することに要旨を有する。 The method for producing a high strength cold rolled steel sheet according to the present invention, which has solved the above problems, is a process of hot rolling a steel sheet having the above-described composition, and wound at 500 ° C. or more and 800 ° C. or less. After holding at 800 ° C. or less for 3 hours or more, cool to room temperature, cold-roll, hold soaking in a temperature range of (Ac 1 point + 20 ° C.) to Ac 3 point, and then average cooling rate up to 500 ° C. Cool at 10 ° C / sec or more and 500 ° C or less at an average cooling rate of 10 ° C / sec or more to a temperature range of 500 ° C or less, then reheat to a temperature range of 250 ° C or more and 500 ° C or less and hold for 30 seconds or more Then, it has a gist on cooling to room temperature.
 本発明では上記製造方法で得られた鋼板に、更に電気亜鉛めっきを施すことも好ましい。 In the present invention, it is also preferable to further apply galvanizing to the steel sheet obtained by the above-mentioned production method.
 また上記課題を解決し得た本発明に係る高強度溶融亜鉛めっき鋼板の製造方法は、上記成分組成からなる鋼板の熱延工程で、巻取り温度500℃以上800℃以下で巻取り、その後500℃以上800℃以下で3時間以上保持した後室温まで冷却し、冷延後、(Ac1点+20℃)以上Ac3点未満の温度域で均熱保持し、その後、500℃までを平均冷却速度10℃/秒以上、500℃以下を平均冷却速度10℃/秒以上で、500℃以下の温度域まで冷却し、次いで250℃以上500℃以下の温度域まで再加熱を行い、30秒間以上保持すると共に、該保持時間内で溶融亜鉛めっきを施してから室温まで冷却することに要旨を有する。 The method for producing a high strength galvanized steel sheet according to the present invention, which has solved the above problems, is a process of hot rolling a steel sheet having the above-mentioned composition, and wound at 500 ° C. or more and 800 ° C. or less. After holding at 3 ° C or more and 800 ° C or less for 3 hours or more, cool to room temperature, cold-roll, hold soaking in a temperature range of (Ac 1 point + 20 ° C) or more and Ac 3 point, and then average cooling to 500 ° C Cool at a rate of 10 ° C / sec or more and 500 ° C or less at an average cooling rate of 10 ° C / sec or more to a temperature range of 500 ° C or less, then reheat to a temperature range of 250 ° C or more and 500 ° C or less, for 30 seconds or more It has a gist to hold | maintain and to carry out hot dip galvanization within this holding time, and to cool to room temperature.
 本発明では上記溶融亜鉛めっきを施した後、450℃以上550℃以下の温度域で合金化を行うことも好ましい。 In the present invention, it is also preferable to perform alloying in a temperature range of 450 ° C. or more and 550 ° C. or less after applying the above-described hot-dip galvanization.
 本発明によれば、980MPa以上であっても、延性および曲げ性に優れた高強度冷延鋼板および高強度溶融亜鉛めっき鋼板、詳細には、前記特性に優れた高強度冷延鋼板、高強度電気亜鉛めっき鋼板、高強度溶融亜鉛めっき鋼板および高強度合金化溶融亜鉛めっき鋼板を提供できる。また本発明の製造方法によれば、これらの鋼板を効率良く製造することができる。従って、本発明の高強度冷延鋼板等は、特に自動車等の産業分野において極めて有用である。 According to the present invention, high strength cold rolled steel sheet and high strength galvanized steel sheet excellent in ductility and bendability even at 980 MPa or more, in detail, high strength cold rolled steel sheet excellent in the above characteristics, high strength An electrogalvanized steel sheet, a high strength galvanized steel sheet, and a high strength alloyed galvanized steel sheet can be provided. Moreover, according to the manufacturing method of this invention, these steel plates can be manufactured efficiently. Therefore, the high-strength cold-rolled steel plate or the like of the present invention is extremely useful particularly in the industrial field such as automobiles.
図1は、本発明の製造方法における熱処理パターンの一例を示す概略説明図である。FIG. 1 is a schematic explanatory view showing an example of a heat treatment pattern in the manufacturing method of the present invention.
 本発明者らは、引張強度が980MPa以上の特に高強度冷延鋼板や高強度溶融亜鉛めっき鋼板の、延性および曲げ性を改善するために、鋭意検討を重ねて来た。 The inventors of the present invention have conducted intensive studies to improve the ductility and bendability of particularly high strength cold rolled steel sheets having high tensile strength of 980 MPa or more and high strength galvanized steel sheets.
 その結果、成分組成を適切に制御することを前提として、鋼板の金属組織におけるフェライト相と硬質相を最適化すると共に、Mnの偏析を適切に制御すれば、980MPa以上の高強度を確保しつつ、延性、および曲げ性を改善できることを見出し、本発明に至った。 As a result, on the premise that the component composition is appropriately controlled, the ferrite phase and the hard phase in the metal structure of the steel sheet are optimized, and if segregation of Mn is appropriately controlled, high strength of 980 MPa or more is ensured. It has been found that the ductility and bendability can be improved, leading to the present invention.
 以下、本発明で金属組織を規定した理由について詳述する。なお、顕微鏡観察によって測定される分率は鋼板の全組織100%に占める割合を意味する。本発明を構成する金属組織は、金属組織によって測定方法が相違している。そのため、本発明で規定する金属組織を全て合計した場合、100%を超える場合があるが、これはフレッシュマルテンサイトと残留オーステナイトの混合組織を構成する残留γが光学顕微鏡観察によって測定されるだけでなく、X線回折によっても重複して測定されるためである。以下、残留オーステナイトを「残留γ」といい、フレッシュマルテンサイトと残留オーステナイトの混合組織を、「MA(Martensite-Austenite Constituent)組織」ということがある。 Hereinafter, the reason for defining the metal structure in the present invention will be described in detail. In addition, the fraction measured by microscopic observation means the ratio to 100% of the whole structure | tissue of a steel plate. The metal structure which comprises this invention differs in the measuring method by metal structure. Therefore, when all the metal structures specified in the present invention are totaled, it may exceed 100%, but this is only by measuring residual γ which constitutes a mixed structure of fresh martensite and retained austenite by optical microscope observation. It is because it is also measured by X-ray diffraction in an overlapping manner. Hereinafter, retained austenite is referred to as "remaining γ", and a mixed structure of fresh martensite and retained austenite is sometimes referred to as "MA (Martensite-Austenite Constituent) structure".
 フェライトの面積率:5%以上50%未満
 フェライトは鋼板の延性と曲げ性を向上させる効果を有する組織である。本発明ではフェライトの面積分率を高めることで、引張強度が980MPa以上の高強度領域における延性、および曲げ性を向上させることができる。このような効果を発揮させるには、フェライトの面積率を5%以上、好ましくは7%以上、より好ましくは10%以上とする。しかし、フェライトが過剰になると鋼板の強度が低下して、980MPa以上の高強度を確保するのが困難となる。したがってフェライトの面積率は50%未満、好ましくは45%以下、より好ましくは40%以下とする。フェライトの面積率は鋼板の板厚1/4位置を走査型電子顕微鏡(SEM:Scanning Electron Microscope)観察によって測定した値である。
Area ratio of ferrite: 5% or more and less than 50% Ferrite is a structure having an effect of improving ductility and bendability of a steel sheet. In the present invention, by increasing the area fraction of ferrite, it is possible to improve the ductility and bendability in a high strength region having a tensile strength of 980 MPa or more. In order to exhibit such an effect, the area ratio of ferrite is set to 5% or more, preferably 7% or more, and more preferably 10% or more. However, if the amount of ferrite is excessive, the strength of the steel sheet is reduced, which makes it difficult to secure high strength of 980 MPa or more. Therefore, the area ratio of ferrite is less than 50%, preferably 45% or less, more preferably 40% or less. The area ratio of ferrite is a value measured by observing a 1/4 thickness position of a steel plate by a scanning electron microscope (SEM: Scanning Electron Microscope).
 硬質相
 硬質相は引張強度を向上させるのに必要な組織である。本発明では硬質相の面積分率を高めることで、軟質なフェライトを上記面積率の範囲内で存在させつつ、980MPa以上の高強度を達成できる。このような効果を発揮させるには、フェライト以外の残部金属組織が硬質相である必要がある。本発明において硬質相とは、フェライトよりも硬い相であり、例えばベイニティックフェライト、ベイナイト、焼戻しマルテンサイト、およびMA組織よりなる群から選択される少なくとも一種であり、本発明では、下記に示す通り、少なくともMA組織を含む。上記硬質相のうち、ベイニティックフェライト、ベイナイト、および焼戻しマルテンサイトは鋼板の板厚1/4位置のSEM観察による測定値である。尚、残留γはベイニティックフェライトのラス間もしくはMA組織に含まれて存在している。
Hard Phase The hard phase is the texture necessary to improve tensile strength. In the present invention, by increasing the area fraction of the hard phase, a high strength of 980 MPa or more can be achieved while soft ferrite is present within the range of the above area ratio. In order to exhibit such an effect, the remaining metal structure other than ferrite needs to be a hard phase. In the present invention, the hard phase is a phase harder than ferrite, and is, for example, at least one selected from the group consisting of bainitic ferrite, bainite, tempered martensite, and MA structure, and in the present invention, it is shown below As at least including the MA organization. Among the above hard phases, bainitic ferrite, bainite, and tempered martensite are values measured by SEM observation of a 1/4 thickness position of a steel plate. The residual γ is present in the ravine of bainitic ferrite or in the MA structure.
 全組織に対するMA組織の面積率:0%超30%以下
 MA組織が存在すると強度や延性を向上させることができる。よって、強度-延性バランスを向上させる観点からは、MA組織の面積率は好ましくは3%以上、より好ましくは4%以上とする。一方、MA組織の面積率が多くなりすぎると、曲げ性が悪化する。よって本発明では、MA組織の面積率を30%以下、好ましくは20%以下、より好ましくは15%以下とする。
Area ratio of MA structure to whole tissue: more than 0% and 30% or less The presence of an MA structure can improve strength and ductility. Therefore, from the viewpoint of improving the strength-ductility balance, the area ratio of the MA structure is preferably 3% or more, more preferably 4% or more. On the other hand, when the area ratio of the MA structure becomes too large, the bendability deteriorates. Therefore, in the present invention, the area ratio of the MA structure is 30% or less, preferably 20% or less, and more preferably 15% or less.
 なお、MA組織を構成するフレッシュマルテンサイトとは、鋼板を加熱温度から室温まで冷却する過程で未変態オーステナイトがマルテンサイト変態した状態のものをいい、加熱処理後の焼戻しマルテンサイトとは区別している。本発明ではレペラー腐食して光学顕微鏡観察したときに白色化した箇所をMA組織とした。なお、フレッシュマルテンサイトと残留γは、光学顕微鏡観察では区別することは困難なため、フレッシュマルテンサイトと残留γの複合組織をMA組織として測定している。MA組織は鋼板の板厚1/4位置の光学顕微鏡観察による測定値である。 In addition, the fresh martensite which comprises MA structure means the thing of the state which untransformed austenite transformed to martensite in the process which cools a steel plate from heating temperature to room temperature, and distinguishes it from the tempered martensite after heat processing. . In the present invention, the area which was whitened when repeller corrosion was observed with an optical microscope was taken as an MA structure. In addition, since it is difficult to distinguish fresh martensite and residual γ by optical microscope observation, the composite structure of fresh martensite and residual γ is measured as an MA structure. The MA structure is a value measured by optical microscope observation at a 1/4 thickness position of a steel plate.
 Mn濃度が鋼板中のMn濃度の1.2倍以上濃縮している領域:5面積%以上、且つ□2μm区画でMn濃度が鋼板中のMn濃度の1.2倍以上濃縮している領域の面積分率の標準偏差:4.0%以上
 本発明においてMn濃度の濃縮している領域は、鋼板の横断面をビーム径1μm以下で20μm×20μmの範囲を電子線マイクロプローブ分析計(Electron Probe Microanalyzer、EPMA)を用いた分析によって得られるMn濃度を用いて規定される。また「鋼板中のMn濃度」とは、母材鋼板を誘導結合プラズマ発光分光法で化学分析して得られるMn濃度である。したがってMn濃度が鋼板中のMn濃度の1.2倍以上濃縮している領域とは、母材鋼板中のMn濃度よりもEPMA分析によって得られたMn濃度の測定値が1.2倍以上高い領域であり、20μm×20μmの範囲で測定している。
A region where the Mn concentration is concentrated 1.2 times or more of the Mn concentration in the steel plate: 5 area% or more, and a region where the Mn concentration is concentrated 1.2 times or more of the Mn concentration in the steel plate in 2 μm sections Standard deviation of area fraction: 4.0% or more In the present invention, the area where concentration of Mn is concentrated is a cross section of a steel plate with a beam diameter of 1 μm or less and a range of 20 μm × 20 μm with an electron probe microprobe analyzer (Electron Probe) It is defined using the Mn concentration obtained by analysis using Microanalyzer, EPMA). Moreover, "the Mn concentration in a steel plate" is a Mn concentration obtained by chemically analyzing a base steel plate by inductively coupled plasma emission spectroscopy. Therefore, in the region where the Mn concentration is concentrated by 1.2 times or more of the Mn concentration in the steel plate, the measured value of the Mn concentration obtained by EPMA analysis is 1.2 times or more higher than the Mn concentration in the base steel plate. It is an area and is measured in the range of 20 μm × 20 μm.
 また「□2μm区画」とは、2μm四方の区画であって、本発明では20μm×20μmのEPMA測定範囲を縦横各2μm間隔の線を引いて得られる1区画2μm四方の区画100個に分割し、各区画内でMn濃度が1.2倍以上高い領域の面積分率を測定し、100個の区画で統計学的に標準偏差を求めている。 Further, “□ 2 μm section” is a 2 μm square section, and in the present invention, an EPMA measuring range of 20 μm × 20 μm is divided into 100 sections of 2 μm square section obtained by drawing lines at intervals of 2 μm each. The area fraction of the region where the Mn concentration is 1.2 times or more higher in each section is measured, and the standard deviation is statistically determined in 100 sections.
 本発明では、Mn濃度分布において鋼板中のMn濃度の1.2倍以上濃縮している領域が、5面積%以上存在し、且つ□2μmの区画でMnが1.2倍以上濃縮している領域の分率を計測したときの標準編差が4.0%以上であれば、曲げ性が大幅に向上することを見出した。以下では、鋼板中のMn濃度の1.2倍以上濃縮している領域を「Mn濃度1.2倍以上の領域」といい、□2μmの区画でMnが1.2倍以上濃縮している領域の分率を計測したときの標準編差を「Mn濃度が1.2倍以上濃縮している領域の標準偏差」あるいは単に「標準偏差」ということがある。 In the present invention, in the Mn concentration distribution, a region concentrated by 1.2 times or more of the Mn concentration in the steel plate is 5 area% or more, and Mn is concentrated 1.2 times or more in a section of 2 μm It was found that the bendability is greatly improved if the standard deviation when measuring the area fraction is 4.0% or more. Hereinafter, a region concentrated 1.2 times or more of the Mn concentration in the steel plate is referred to as “a region of 1.2 times or more of the Mn concentration”, and Mn is concentrated 1.2 times or more in a section of 2 μm □ The standard deviation when the area fraction is measured may be referred to as "the standard deviation of the area in which the Mn concentration is 1.2 times or more concentrated" or simply "the standard deviation".
 すなわち、Mn濃度1.2倍以上の領域は主に硬質相となる。そしてMn濃度1.2倍以上の領域の面積率が大きい程、相対的にフェライト相中のMn濃度が低下してフェライト相の硬度を低下させることができ、曲げ性を向上できる。またMnの偏析が多いほど標準偏差が大きくなるが、曲げ性向上に寄与するフェライト相中のMn濃度が低くなり、フェライト相の硬度を低下させることができる。 That is, the region with an Mn concentration of 1.2 times or more is mainly a hard phase. The larger the area ratio of the region having a Mn concentration of 1.2 or more, the relatively lower the Mn concentration in the ferrite phase, the lower the hardness of the ferrite phase, and the bendability can be improved. Although the standard deviation increases as the segregation of Mn increases, the Mn concentration in the ferrite phase contributing to the improvement of the bendability decreases, and the hardness of the ferrite phase can be reduced.
 このような効果を得るためには、Mn濃度1.2倍以上の領域は5.0面積%以上、好ましくは5.2面積%以上、より好ましくは5.5面積%以上とする。一方、Mn濃度1.2倍以上の領域の占める割合が高すぎるとオーステナイトのMs点が低下してMA組織が増加することがあるため、Mn濃度1.2倍以上の領域は好ましくは20面積%以下、より好ましくは15面積%以下とする。 In order to obtain such an effect, the area having a Mn concentration of 1.2 times or more is 5.0 area% or more, preferably 5.2 area% or more, more preferably 5.5 area% or more. On the other hand, if the proportion occupied by the region having a Mn concentration of 1.2 times or more is too high, the Ms point of austenite may decrease and the MA structure may increase. Therefore, preferably 20 areas of a region having a Mn concentration of 1.2 times or more % Or less, more preferably 15 area% or less.
 また、Mn濃度が1.2倍以上濃縮している領域の標準偏差は4.0%以上、好ましくは4.5%以上、より好ましくは5.0%以上とする。標準偏差が4.0%より小さい場合は、Mnの分布が不十分で均一に分布しているため、曲げ性向上に寄与する上記フェライト相の硬度低下が不十分である。一方、標準偏差の上限は特に限定されず、好ましくは10%以下である。 In addition, the standard deviation of a region in which the Mn concentration is 1.2 times or more concentrated is 4.0% or more, preferably 4.5% or more, and more preferably 5.0% or more. If the standard deviation is less than 4.0%, the distribution of Mn is insufficient and uniformly distributed, so the reduction in hardness of the ferrite phase contributing to the improvement of the bendability is insufficient. On the other hand, the upper limit of the standard deviation is not particularly limited, and is preferably 10% or less.
 そして上記Mn濃度1.2倍以上の領域を5面積%以上、且つ標準偏差を4.0%以上とすることで、球状化した硬質相をフェライト相中に分散させることができ、鋼材の強度向上効果とフェライトによる曲げ性向上効果を兼備できる。以下、前記球状化した硬質相を「球状硬質相」という。ここで、球状硬質相は硬質相の一部であり、上記硬質相と同じくベイニティックフェライト、ベイナイト、焼戻しマルテンサイト、MA組織などから構成される。従来から硬質相とフェライト相の硬度差が大きいと曲げ加工時に界面亀裂が生じ、曲げ性が悪化すると考えられていたが、フェライト相中の球状硬質相によって界面亀裂を抑制できることがわかった。このような効果を得るためには、フェライト相中の球状硬質相は小さい方がよく、アスペクト比で好ましくは3以下、より好ましくは2.5以下、さらに好ましくは、2以下で、円相当径で好ましくは2μm以下、より好ましくは1.8μm以下、更に好ましくは1.5μm以下とする。また上記効果を奏するためには球状硬質相は、上記硬質相に対して好ましくは0.70体積%以上、より好ましくは、0.75体積%以上、更に好ましくは、0.80体積%以上とする。 The spheroidized hard phase can be dispersed in the ferrite phase by setting the area with an Mn concentration of 1.2 times or more to 5 area% or more and the standard deviation to be 4.0% or more, and the strength of the steel material It is possible to combine the improvement effect with the bendability improvement effect by ferrite. Hereinafter, the spheroidized hard phase is referred to as "spherical hard phase". Here, the spherical hard phase is a part of the hard phase, and is composed of bainitic ferrite, bainite, tempered martensite, an MA structure, and the like as the above-mentioned hard phase. It has been considered that if the hardness difference between the hard phase and the ferrite phase is large, an interface crack is generated during bending and the bendability is deteriorated, but it is found that the interface crack can be suppressed by the spherical hard phase in the ferrite phase. In order to obtain such an effect, the spherical hard phase in the ferrite phase should be as small as possible, and preferably has an aspect ratio of 3 or less, more preferably 2.5 or less, still more preferably 2 or less. Preferably it is 2 micrometers or less, More preferably, it is 1.8 micrometers or less, More preferably, it is 1.5 micrometers or less. Further, in order to exert the above effect, the spherical hard phase is preferably 0.70% by volume or more, more preferably 0.75% by volume or more, still more preferably 0.80% by volume or more with respect to the above hard phase. Do.
 フェライト中のMn濃度が鋼板中のMn濃度の0.90倍以下
 フェライト相中のMn濃度が高すぎると、フェライト相の硬度を十分に低減できず、曲げ性が悪化することから、フェライト相中のMn濃度は鋼板中のMn濃度よりも低くする必要がある。したがってフェライト相中のMn濃度は、鋼板中のMn濃度の0.90倍以下、好ましくは0.85倍以下、より好ましくは0.80倍以下とする。一方、フェライト中のMn濃度が低くなりすぎると、フェライトの硬度が低下し、強度が不足することがあるため、フェライト中のMn濃度は鋼板中のMn濃度の好ましくは0.3倍以上、より好ましくは0.4倍以上とする。なお、フェライト相中のMn濃度はEPMAにて測定できる。
Since the Mn concentration in the ferrite is 0.90 times or less of the Mn concentration in the steel sheet If the Mn concentration in the ferrite phase is too high, the hardness of the ferrite phase can not be sufficiently reduced and the bendability is deteriorated. The Mn concentration of Mn needs to be lower than the Mn concentration in the steel sheet. Therefore, the Mn concentration in the ferrite phase is 0.90 times or less, preferably 0.85 times or less, more preferably 0.80 times or less of the Mn concentration in the steel sheet. On the other hand, if the Mn concentration in the ferrite is too low, the hardness of the ferrite may decrease and the strength may be insufficient. Therefore, the Mn concentration in the ferrite is preferably 0.3 times or more of the Mn concentration in the steel sheet, Preferably, it is 0.4 times or more. The Mn concentration in the ferrite phase can be measured by EPMA.
 全組織に対する残留γの体積率:5%以上
 残留γは、鋼板を加工する際に歪を受けて変形し、マルテンサイトに変態することにより良好な延性を確保できると共に、加工時に変形部の硬化を促進して歪の集中を抑制する効果を有することから、鋼板の強度-延性バランス向上に必要な組織である。このような効果を有効に発揮させるには、残留γの体積率は好ましくは5%以上、より好ましくは6%以上、更に好ましくは7%以上とする。なお、残留γの体積率の上限は、特に限定されないが、本発明の成分組成および製造条件の範囲内では、多くても20%以下となる。残留γは鋼板の板厚1/4位置のX線回折法による測定値である。
The volume ratio of residual γ to the entire structure: 5% or more The residual γ is deformed by strain when processing a steel sheet, and can transform to martensite to ensure good ductility and harden the deformed portion during processing This is a structure necessary to improve the strength-ductility balance of the steel sheet because it has the effect of promoting the strain concentration and suppressing the concentration of strain. In order to exert such an effect effectively, the volume ratio of residual γ is preferably 5% or more, more preferably 6% or more, and still more preferably 7% or more. The upper limit of the volume fraction of residual γ is not particularly limited, but is at most 20% or less within the range of the component composition and production conditions of the present invention. The residual γ is a value measured by X-ray diffractometry at a quarter thickness of the steel plate.
 なお、残留γはベイニティックフェライトのラス間もしくはMA組織に含まれて存在する。上記残留γの効果は存在形態によらず発揮されるため、本発明では、測定した際に確認できる残留γは、存在形態に係わらず残留γとした。 The residual γ is contained between the lass of bainitic ferrite or in the MA structure. The effect of the residual γ is exerted regardless of the present form, so in the present invention, the residual γ which can be confirmed when measured is taken as the residual γ regardless of the present form.
 次に本発明の高強度鋼板の成分組成について説明する。 Next, the component composition of the high strength steel plate of the present invention will be described.
 C:0.10%以上0.30%以下
 Cは、強度を確保し、且つ、残留γの安定性を高めるのに必要な元素である。980MPa以上の引張強度を確保するには、C含有量は0.10%以上、好ましくは0.12%以上、より好ましくは0.15%以上とする。しかし、C含有量が過剰になると、熱延後の強度が上昇し、冷間圧延時に割れが生じたり、最終製品の溶接性が低下するため、C含有量は0.30%以下、好ましくは0.26%以下、より好ましくは0.23%以下とする。
C: 0.10% or more and 0.30% or less C is an element necessary for securing the strength and enhancing the stability of the residual γ. In order to secure a tensile strength of 980 MPa or more, the C content is 0.10% or more, preferably 0.12% or more, more preferably 0.15% or more. However, if the C content is excessive, the strength after hot rolling will increase, cracks will occur during cold rolling, and the weldability of the final product will decrease, so the C content is preferably 0.30% or less, preferably It is 0.26% or less, more preferably 0.23% or less.
 Si:1.2%以上3%以下
 Siは、固溶強化元素として鋼の高強度化に寄与する元素である。また、炭化物の生成を抑え、残留γの生成に有効に作用し、優れたTS×ELバランスを確保するのに有効な元素である。こうした作用を有効に発揮させるには、Si含有量は1.2%以上、好ましくは1.35%以上、より好ましくは1.5%以上とする。しかし、Si含有量が過剰になると、熱間圧延時に著しいスケールが形成されて鋼板表面にスケール跡疵が付き、表面性状が悪くなることがある。また、酸洗性を劣化させる。よってSi含有量は、3%以下、好ましくは2.8%以下、より好ましくは2.6%以下とする。
Si: 1.2% or more and 3% or less Si is an element that contributes to the strengthening of steel as a solid solution strengthening element. In addition, it is an element effective in suppressing the formation of carbides, effectively acting on the formation of residual γ, and securing an excellent TS × EL balance. In order to exert such an effect effectively, the Si content is 1.2% or more, preferably 1.35% or more, more preferably 1.5% or more. However, when the Si content is excessive, a marked scale is formed during hot rolling, scale marks may be formed on the surface of the steel sheet, and the surface properties may be deteriorated. It also degrades the acid washability. Therefore, the Si content is 3% or less, preferably 2.8% or less, and more preferably 2.6% or less.
 Mn:0.5%以上3.0%以下
 Mnは、焼入れ性を向上させて鋼板の高強度化に寄与する元素である。また、γを安定化させて、残留γを生成させるのにも有効に作用する元素である。このような作用を有効に発揮させるには、Mn含有量は0.5%以上、好ましくは0.6%以上、より好ましくは1.0%以上、更に好ましくは1.5%以上、より更に好ましくは2.0%以上とする。しかしMn含有量が過剰になると、熱延後の強度が上昇し、冷間圧延時に割れが生じたり、最終製品の溶接性が劣化する原因となる。また過剰なMnの添加は、Mnが偏析して加工性が劣化する原因となる。よってMn含有量は、3.0%以下、好ましくは2.8%以下、より好ましくは2.6%以下とする。
Mn: 0.5% or more and 3.0% or less Mn is an element that improves the hardenability and contributes to the strengthening of the steel sheet. It is also an element that effectively acts to stabilize γ and generate residual γ. In order to exert such an effect effectively, the Mn content is 0.5% or more, preferably 0.6% or more, more preferably 1.0% or more, further preferably 1.5% or more, further Preferably, it is 2.0% or more. However, when the Mn content is excessive, the strength after hot rolling is increased, which causes cracking during cold rolling or deterioration of the weldability of the final product. Moreover, addition of excessive Mn causes Mn to segregate to deteriorate the workability. Therefore, the Mn content is 3.0% or less, preferably 2.8% or less, more preferably 2.6% or less.
 P:0%超0.1%以下
 Pは不可避的に含有する元素であり、鋼板の溶接性を劣化させる元素である。したがってP含有量は、0.1%以下、好ましくは0.08%以下、より好ましくは0.05%以下とする。なお、P含有量はできるだけ少ない方がよいため、下限は特に限定されないが、工業的には下限は0.0005%である。
P: more than 0% and 0.1% or less P is an element which is contained unavoidable and is an element which degrades the weldability of a steel plate. Therefore, the P content is 0.1% or less, preferably 0.08% or less, and more preferably 0.05% or less. The lower limit is not particularly limited because the P content is preferably as small as possible, but the industrially lower limit is 0.0005%.
 S:0%超0.05%以下
 Sは、Pと同様、不可避的に含有する元素であり、鋼板の溶接性を劣化させる元素である。また、Sは、鋼板中に硫化物系介在物を形成し、鋼板の加工性を低下させる原因となる。したがってS含有量は、0.05%以下、好ましくは0.01%以下、より好ましくは0.005%以下とする。S含有量はできるだけ少ない方がよいため、下限は特に限定されないが、工業的には下限は0.0001%とする。
S: more than 0% and 0.05% or less S, like P, is an element that is inevitably contained and is an element that degrades the weldability of a steel plate. Moreover, S forms a sulfide type inclusion in a steel plate, and becomes a cause of reducing the workability of a steel plate. Therefore, the S content is 0.05% or less, preferably 0.01% or less, and more preferably 0.005% or less. The lower limit is not particularly limited because the S content is preferably as small as possible, but the industrially lower limit is made 0.0001%.
 Al:0.005%以上0.2%以下
 Alは、脱酸剤として作用する元素である。このような作用を有効に発揮させるには、Al含有量は0.005%以上、より好ましくは0.01%以上とする。しかしAl含有量が過剰になると、鋼板の溶接性が著しく劣化するため、Al含有量は0.2%以下、好ましくは0.15%以下、より好ましくは0.10%以下とする。
Al: 0.005% or more and 0.2% or less Al is an element acting as a deoxidizer. In order to exert such an effect effectively, the Al content is made 0.005% or more, more preferably 0.01% or more. However, if the Al content is excessive, the weldability of the steel sheet is significantly degraded, so the Al content is 0.2% or less, preferably 0.15% or less, and more preferably 0.10% or less.
 N:0%超0.01%以下
 Nは、不可避的に含有する元素であるが、鋼板中に窒化物を析出させて鋼板の高強度化に寄与する元素である。この観点から、N含有量は好ましくは0.001%以上とする。しかしN含有量が過剰になると、窒化物が多量に析出して伸び、伸びフランジ性λ、曲げ性などの劣化を引き起こす。従ってN含有量は0.01%以下、好ましくは0.008%以下、より好ましくは0.005%以下とする。
N: more than 0% and 0.01% or less N is an element which is contained unavoidably, but is an element which precipitates a nitride in a steel plate and contributes to high strengthening of the steel plate. From this viewpoint, the N content is preferably 0.001% or more. However, when the N content is excessive, a large amount of nitride is precipitated to cause elongation, which causes deterioration of stretch flangeability λ, bendability and the like. Therefore, the N content is 0.01% or less, preferably 0.008% or less, and more preferably 0.005% or less.
 O:0%超0.01%以下
 Oは不可避的に含まれる元素であり、過剰に含まれると延性や加工時の曲げ性の低下を招く元素である。従ってO含有量は、0.01%以下、好ましくは0.005%以下、より好ましくは0.003%以下とする。なお、O含有量はできるだけ少ない方がよいため、下限は特に限定されないが、工業的には下限は0.0001%である。
O: more than 0% and 0.01% or less O is an element contained unavoidably, and when it is contained in excess, it is an element which causes a decrease in ductility and bendability at the time of processing. Therefore, the O content is 0.01% or less, preferably 0.005% or less, and more preferably 0.003% or less. The lower limit is not particularly limited because the O content is preferably as small as possible, but the industrially lower limit is 0.0001%.
 その他の成分
 本発明の鋼板は、上記成分組成を満足し、残部は鉄および不可避的不純物である。該不可避的不純物としては、例えば鋼中に原料、資材、製造設備等の状況によって持ち込まれることがある上記P、S、N、Oや、Pb、Bi、Sb、Snなどのトランプ元素が含まれることがある。また上記本発明の作用に悪影響を与えない範囲で、更に他の元素として以下の元素を積極的に含有させることも可能である。
Other Components The steel sheet of the present invention satisfies the above-mentioned composition, and the balance is iron and unavoidable impurities. The unavoidable impurities include, for example, the above-mentioned P, S, N, O, and tramp elements such as Pb, Bi, Sb, Sn, etc., which may be brought into steel depending on the conditions of raw materials, materials, manufacturing facilities, etc. Sometimes. In addition, the following elements can be positively contained as other elements within the range not adversely affecting the action of the present invention.
 本発明の鋼板は、更に他の元素として、
(A)Cr:0%超1%以下およびMo:0%超1%以下よりなる群から選択される少なくとも一種、
(B)Ti:0%超0.15%以下、Nb:0%超0.15%以下、およびV:0%超0.15%以下よりなる群から選択される少なくとも一種、
(C)Cu:0%超1%以下およびNi:0%超1%以下よりなる群から選択される少なくとも一種、
(D)B:0%超0.005%以下、
(E)Ca:0%超0.01%以下、Mg:0%超0.01%以下、およびREM:0%超0.01%以下よりなる群から選択される少なくとも一種、などを含有してもよい。これら(A)~(E)の元素は、単独、或いは任意に組み合わせて含有させることもできる。こうした範囲を定めた理由は次の通りである。
The steel sheet of the present invention may further contain, as another element,
(A) Cr: at least one selected from the group consisting of more than 0% and less than 1% and Mo: more than 0% and less than 1%,
(B) at least one selected from the group consisting of Ti: more than 0% and 0.15% or less, Nb: more than 0% and 0.15% or less, and V: 0% and more than 0.15% or less,
(C) at least one selected from the group consisting of Cu: more than 0% and 1% or less and Ni: more than 0% and 1% or less,
(D) B: more than 0% and less than 0.005%,
(E) Ca: at least one selected from the group consisting of more than 0% and 0.01% or less, Mg: more than 0% and 0.01% or less, and REM: more than 0% and 0.01% or less May be These elements (A) to (E) can be contained alone or in combination. The reason for defining such a range is as follows.
 (A)Cr:0%超1%以下およびMo:0%超1%以下よりなる群から選択される少なくとも一種
 CrとMoは、いずれも焼入れ性を高めて鋼板の強度を向上させるのに有効な元素であり、単独で、或いは併用して使用できる。こうした作用を有効に発揮させるには、Cr、Moの含有量は、夫々好ましくは0.1%以上、より好ましくは0.3%以上とする。しかし、過剰に含有すると加工性が低下し、また高コストとなるため、Cr、Moの含有量は、夫々単独で含有させる場合は、好ましくは1%以下、より好ましくは0.8%以下、更に好ましくは0.5%以下である。CrとMoを併用する場合は、夫々単独で上記上限の範囲内であって、且つ好ましくは合計量を1.5%以下とする。
(A) At least one selected from the group consisting of Cr: more than 0% and 1% or less and Mo: more than 0% and 1% or less Both Cr and Mo are effective in enhancing the hardenability and improving the strength of the steel sheet Elements, which can be used alone or in combination. In order to exert such an effect effectively, the content of each of Cr and Mo is preferably 0.1% or more, more preferably 0.3% or more. However, if it is contained in excess, the processability is lowered and the cost becomes high. Therefore, when each of Cr and Mo is contained alone, it is preferably 1% or less, more preferably 0.8% or less. More preferably, it is 0.5% or less. When Cr and Mo are used in combination, each of them is independently within the above upper limit, and preferably the total amount is 1.5% or less.
 (B)Ti:0%超0.15%以下、Nb:0%超0.15%以下、およびV:0%超0.15%以下よりなる群から選択される少なくとも一種
 Ti、Nb、およびVは、いずれも鋼板中に炭化物や窒化物の析出物を形成し、鋼板の強度を向上させると共に、旧γ粒を微細化させる作用を有する元素であり、単独で、或いは併用して使用できる。こうした作用を有効に発揮させるには、Ti、Nb、およびVの含有量は、夫々好ましくは0.005%以上、より好ましくは0.010%以上とする。しかし、過剰に含有すると粒界に炭化物が析出し、鋼板の伸びフランジ性や曲げ性が劣化する。従って、Ti、NbおよびVの含有量は、夫々好ましくは0.15%以下、より好ましくは0.12%以下、更に好ましくは0.10%以下とする。
(B) at least one of Ti, Nb, and at least one selected from the group consisting of Ti: more than 0% and 0.15% or less, Nb: more than 0% and 0.15% or less, and V: more than 0% and 0.15% or less V is an element having a function of forming precipitates of carbides and nitrides in the steel plate to improve the strength of the steel plate and refining the old γ grains, and can be used alone or in combination. . In order to exert such an effect effectively, the content of Ti, Nb and V is preferably 0.005% or more, more preferably 0.010% or more. However, if it is contained in excess, carbides precipitate at grain boundaries, and the stretch flangeability and bendability of the steel sheet deteriorate. Therefore, the content of each of Ti, Nb and V is preferably 0.15% or less, more preferably 0.12% or less, and still more preferably 0.10% or less.
 (C)Cu:0%超1%以下およびNi:0%超1%以下よりなる群から選択される少なくとも一種
 CuとNiは、残留オーステナイトの生成、安定化に有効に作用する元素であり、更に耐食性を向上させる効果も有する元素であり、単独で、或いは併用して使用できる。こうした作用を発揮させるには、Cu、Niの含有量は、夫々好ましくは0.05%以上、より好ましくは0.10%以上とする。しかし、Cuは過剰に含有すると熱間加工性が劣化するため、単独で添加する場合には、Cu含有量は好ましくは1%以下、より好ましくは0.8%以下、更に好ましくは0.5%以下とする。Niは過剰に含有すると高コストとなるため、Ni含有量は好ましくは1%以下、より好ましくは0.8%以下、更に好ましくは0.5%以下とする。CuとNiは併用すると上記作用が発現し易くなり、またNiを含有させることによってCu添加による熱間加工性の劣化が抑制されるため、CuとNiを併用する場合、合計量で好ましくは1.5%以下、より好ましくは1.0%以下とする。
(C) At least one selected from the group consisting of Cu: more than 0% and 1% or less and Ni: more than 0% and 1% or less Cu and Ni are elements effectively acting on formation and stabilization of retained austenite, Furthermore, it is an element also having the effect of improving the corrosion resistance, and can be used alone or in combination. In order to exert such effects, the contents of Cu and Ni are preferably 0.05% or more, more preferably 0.10% or more. However, if the Cu content is excessive, the Cu content is preferably 1% or less, more preferably 0.8% or less, still more preferably 0.5, because the hot workability deteriorates if the Cu content is excessive. % Or less. Since an excessive content of Ni results in high cost, the Ni content is preferably 1% or less, more preferably 0.8% or less, and still more preferably 0.5% or less. When Cu and Ni are used in combination, the above-mentioned action is easily exhibited, and when Ni is contained, the deterioration of hot workability due to the addition of Cu is suppressed. Therefore, when Cu and Ni are used in combination, the total amount is preferably 1 .5% or less, more preferably 1.0% or less.
 (D)B:0%超0.005%以下
 Bは焼入れ性を向上させる元素であり、オーステナイトを安定に室温まで存在させるのに有効な元素である。こうした作用を有効に発揮させるには、B含有量は好ましくは0.0005%以上、より好ましくは0.0010%以上、更に好ましくは0.0015%以上とする。しかし、過剰に含有すると、ホウ化物を生成して延性を劣化させるため、B含有量は、好ましくは0.005%以下、より好ましくは0.004%以下、更に好ましくは0.0035%以下とする。
(D) B: more than 0% and 0.005% or less B is an element improving the hardenability, and is an element effective for stably causing austenite to reach room temperature. In order to exert such effects effectively, the B content is preferably 0.0005% or more, more preferably 0.0010% or more, and still more preferably 0.0015% or more. However, when it is contained in excess, the B content is preferably 0.005% or less, more preferably 0.004% or less, and still more preferably 0.0035% or less, because boride is generated to deteriorate ductility. Do.
 (E)Ca:0%超0.01%以下、Mg:0%超0.01%以下、およびREM:0%超0.01%以下よりなる群から選択される少なくとも一種
 Ca、Mg、およびREMは、鋼板中の介在物を微細分散させる作用を有する元素であり、夫々単独で含有させてもよいし、任意に選ばれる2種以上を含有させてもよい。こうした作用を有効に発揮させるには、Ca、Mg、REMの含有量は、夫々単独で好ましくは0.0005%以上、より好ましくは0.0010%以上とする。しかし、過剰に含まれると、鋳造性や熱間加工性などを劣化させる原因となる。従ってCa、Mg、REMの含有量は、夫々単独で好ましくは0.01%以下、より好ましくは0.008%以下、更に好ましくは0.007%以下とする。
(E) Ca: at least one selected from the group consisting of Ca: more than 0% and 0.01% or less, Mg: more than 0% and 0.01% or less, and REM: more than 0% and 0.01% or less REM is an element having an effect of finely dispersing inclusions in a steel sheet, and may be contained singly or in combination of two or more selected arbitrarily. In order to exert such an effect effectively, the content of each of Ca, Mg and REM is preferably made 0.0005% or more, more preferably 0.0010% or more, alone. However, when it is contained in excess, it causes deterioration of castability, hot workability and the like. Therefore, the content of each of Ca, Mg and REM is preferably 0.01% or less, more preferably 0.008% or less, and still more preferably 0.007% or less.
 なお、本発明においてREMとは希土類元素の略であり、ランタノイド元素、即ちLaからLuまでの15元素、およびスカンジウムとイットリウムを含む意味である。 In the present invention, REM is an abbreviation of a rare earth element and is a meaning including lanthanoid elements, that is, 15 elements from La to Lu, and scandium and yttrium.
 次に、本発明の高強度冷延鋼板、高強度電気亜鉛めっき鋼板、高強度溶融亜鉛めっき鋼板および高強度合金化溶融亜鉛めっき鋼板の製造方法、特には高強度冷延鋼板と高強度溶融亜鉛めっき鋼板の製造方法について説明する。尚、高強度冷延鋼板の製造方法と高強度溶融亜鉛めっき鋼板の製造方法とは、「前記成分組成からなる鋼板の熱延工程で、巻取り温度500℃以上800℃以下で巻取り、その後500℃以上800℃以下で3時間以上保持した後室温まで冷却し、冷延後、(Ac1点+20℃)以上Ac3点未満の温度域で均熱保持し、その後、500℃までを平均冷却速度10℃/秒以上、500℃以下を平均冷却速度10℃/秒以上で、500℃以下の温度域まで冷却」するまでの工程は同一であるため、該工程については併せて説明し、前記「500℃以下の温度域まで冷却」後の再加熱工程は両者で異なるため、該工程については高強度冷延鋼板と高強度溶融亜鉛めっき鋼板の場合に分けて説明する。 Next, a method of manufacturing the high strength cold rolled steel sheet, high strength electrogalvanized steel sheet, high strength galvanized steel sheet and high strength alloyed galvanized steel sheet of the present invention, particularly high strength cold rolled steel sheet and high strength molten zinc The manufacturing method of a plated steel plate is demonstrated. The method for producing a high strength cold rolled steel sheet and the method for producing a high strength galvanized steel sheet according to the present invention are as follows: “The hot rolling process of the steel sheet having the above-mentioned composition has a winding temperature of 500 ° C. or more and 800 ° C. or less. Hold at 500 ° C or more and 800 ° C or less for 3 hours or more, cool to room temperature, cold-roll, hold soaking in a temperature range of (Ac 1 point + 20 ° C) or more and Ac 3 point, and then average up to 500 ° C Since the steps up to “cooling to a temperature range of 500 ° C. or less at a cooling rate of 10 ° C./sec or more and 500 ° C. or less at an average cooling rate of 10 ° C./sec or more are the same, the steps will be described together, The reheating process after “cooling to a temperature range of 500 ° C. or less” is different between the two, so the process will be described separately for the high strength cold rolled steel sheet and the high strength galvanized steel sheet.
 本発明の高強度冷延鋼板と高強度溶融亜鉛めっき鋼板の製造方法では、上記成分組成を満足する鋼に熱間圧延、および冷間圧延を行って得られた鋼板に対し、後記する焼鈍を行う。高強度冷延鋼板の製造方法では、前記焼鈍後、再加熱を行う。更には必要に応じて、電気亜鉛めっき処理を適宜組み合わせて行うことにより高強度電気亜鉛めっき鋼板を得ることができる。高強度溶融亜鉛めっき鋼板の製造方法では焼鈍を行った後、再加熱すると共に溶融亜鉛めっき処理を行う。更には必要に応じて、合金化処理を適宜組み合わせて行うことによって高強度合金化溶融亜鉛めっき鋼板を得ることができる。本発明では製造条件を適切に制御することによって、所望の組織を有する高強度冷延鋼板や高強度溶融亜鉛めっき鋼板等を得ることができる。 In the method for producing a high strength cold rolled steel sheet and a high strength galvanized steel sheet according to the present invention, annealing described later is performed on a steel sheet obtained by performing hot rolling and cold rolling on a steel satisfying the above-mentioned component composition. Do. In the method of manufacturing a high strength cold rolled steel sheet, reheating is performed after the annealing. Furthermore, a high-strength electrogalvanized steel sheet can be obtained by performing the galvanizing treatment appropriately in combination as needed. In the method for producing a high strength galvanized steel sheet, after annealing, reheating and hot dip galvanizing are performed. Furthermore, a high-strength alloyed hot-dip galvanized steel sheet can be obtained by performing the alloying treatment in combination as appropriate. In the present invention, by appropriately controlling the production conditions, it is possible to obtain a high strength cold rolled steel sheet, a high strength galvanized steel sheet, etc. having a desired structure.
 例えば図1に示すように上記成分組成を有する鋼を用いて常法に基づき、熱間圧延を行う。熱間圧延では、例えば仕上げ圧延温度がAc3点以上となるように熱間圧延した後、巻取り温度500℃以上、800℃以下で巻取る。その後500℃以上800℃以下で3時間以上保持した後、室温まで冷却して冷間圧延を行う。尚、仕上げ圧延後の冷却は操業上の上限で約500℃/秒である。 For example, as shown in FIG. 1, hot rolling is performed according to a conventional method using a steel having the above-described component composition. In hot rolling, for example, after hot rolling so that the finish rolling temperature is Ac 3 or more, winding is performed at a winding temperature of 500 ° C. or more and 800 ° C. or less. Then, after holding at 500 degreeC or more and 800 degrees C or less for 3 hours or more, it cools to room temperature and cold-rolls. The cooling after finish rolling is about 500 ° C./sec at the upper limit of operation.
 冷間圧延後、焼鈍工程として、Ac1点+20℃以上、Ac3点未満の2相温度域で均熱保持し、その後、500℃までを平均冷却速度10℃/秒以上で冷却し、次いで500℃以下を平均冷却速度10℃/秒以上で、500℃以下の温度域まで冷却する。高強度冷延鋼板の製造方法では、次いで250℃以上500℃以下の温度域に再加熱して該温度域で30秒間以上保持してから室温まで冷却する工程を含むようにする。また高強度溶融亜鉛めっき鋼板の製造方法では、前記500℃以下の温度域まで冷却後、次いで250℃以上500℃以下の温度域に再加熱して該温度域で30秒間以上保持すると共に、該保持時間内で溶融亜鉛めっきを施してから室温まで冷却する工程を含むようにする。 After cold rolling, as an annealing process, soaking is maintained in a two-phase temperature range of Ac 1 point + 20 ° C. or more and less than Ac 3 point, and then cooled to 500 ° C. at an average cooling rate of 10 ° C./sec or more It cools to a temperature range of 500 degrees C or less at 500 degrees C or less at an average cooling rate of 10 degrees C / sec or more. Next, the method of manufacturing the high strength cold rolled steel sheet includes a step of reheating to a temperature range of 250 ° C. or more and 500 ° C. or less, holding the temperature range for 30 seconds or more, and cooling to room temperature. Further, in the method for producing a high strength galvanized steel sheet, after cooling to the temperature range of 500 ° C. or less, it is then reheated to a temperature range of 250 ° C. or more and 500 ° C. or less and held for 30 seconds or more in the temperature range. Galvanize in a holding time and then cool to room temperature.
 以下、上記各条件を規定した理由について詳述する。 Hereinafter, the reason which specified each said conditions is explained in full detail.
 巻取り温度500℃以上、800℃以下で巻き取り、その後500℃以上800℃以下で3時間以上保持した後、室温まで冷却
 熱間圧延後、巻き取り温度500℃以上、800℃以下で巻き取り、その後500℃以上800℃以下で3時間以上保持することで、上記所定のMn濃度分布を生じさせ、Mnを含む炭化物が析出すると共に、冷間圧延後の焼鈍によってフェライト相中で球状化した硬質相となる。このような効果を得るためには、巻き取り温度は500℃以上、好ましくは550℃以上、より好ましくは600℃以上とする。しかし巻き取り温度が高すぎると鋼板に多量のスケールや、粒界酸化などを生じ、酸洗性が劣化することから、巻き取り温度は800℃以下、好ましくは750℃以下、より好ましくは700℃以下とする。また巻き取り後に保持する温度域は、500℃以上、好ましくは510℃以上、より好ましくは520℃以上、更に好ましくは550℃以上、より更に好ましくは580℃以上とする。一方、保持温度が高すぎると巻き取り温度が高すぎる場合と同じく鋼板に多量のスケールや、粒界酸化などを生じ、酸洗性が劣化することがあるため、保持温度は800℃以下、好ましくは780℃以下、より好ましくは750℃以下、更に好ましくは700℃以下とする。該温度域での保持時間は3時間以上、好ましくは4時間以上、より好ましくは5時間以上、更に好ましくは7時間以上、より更に好ましくは10時間以上である。一方、保持時間が長すぎると巻き取り温度が高すぎることと同様に鋼板に多量のスケールや、粒界酸化などを生じ、酸洗性が劣化することがあるため、保持時間は好ましくは72時間以下、より好ましくは60時間以下とする。
Take up at winding temperature 500 ° C. or more and 800 ° C. or less, then hold at 500 ° C. or more and 800 ° C. or less for 3 hours or more, then cool to room temperature After hot rolling, take up at winding temperature 500 ° C. or more and 800 ° C. or less Then, by maintaining at 500 ° C. or more and 800 ° C. or less for 3 hours or more, the above-mentioned predetermined Mn concentration distribution is generated to precipitate carbides containing Mn, and spheroidized in ferrite phase by annealing after cold rolling It becomes a hard phase. In order to obtain such an effect, the winding temperature is set to 500 ° C. or more, preferably 550 ° C. or more, more preferably 600 ° C. or more. However, if the coiling temperature is too high, a large amount of scale, grain boundary oxidation and the like occur in the steel sheet and the acid washability deteriorates, so that the coiling temperature is 800 ° C. or less, preferably 750 ° C. or less, more preferably 700 ° C. It is assumed that Further, the temperature range to be maintained after winding is 500 ° C. or more, preferably 510 ° C. or more, more preferably 520 ° C. or more, further preferably 550 ° C. or more, still more preferably 580 ° C. or more. On the other hand, if the holding temperature is too high, as in the case where the coiling temperature is too high, a large amount of scale, intergranular oxidation, etc. may occur on the steel sheet and the acidity may deteriorate, so the holding temperature is preferably 800 ° C. or less Is set to 780 ° C. or less, more preferably 750 ° C. or less, and still more preferably 700 ° C. or less. The holding time in the temperature range is 3 hours or more, preferably 4 hours or more, more preferably 5 hours or more, still more preferably 7 hours or more, still more preferably 10 hours or more. On the other hand, if the holding time is too long, a large amount of scale, intergranular oxidation, etc. may occur on the steel plate as in the case where the coiling temperature is too high, and the acid washability may be deteriorated. The following time is more preferably 60 hours or less.
 本発明において、所定の温度で保持するとは、必ずしも同一温度で保持し続けなくてもよく、所定の温度範囲内であれば、変動してもよい趣旨である。例えば上記保持温度の範囲内で恒温保持してもよいし、この範囲内で変化、即ち、温度低下や加熱による温度上昇、変態に伴う復熱による温度上昇等を含む趣旨である。 In the present invention, holding at a predetermined temperature does not necessarily mean holding the same temperature at the same temperature, and it may be fluctuated as long as it is within a predetermined temperature range. For example, the temperature may be maintained within the range of the above-mentioned holding temperature, or within this range, it is intended to include changes such as temperature decrease due to temperature decrease or heating, temperature increase due to recuperation accompanying transformation.
 本発明では上記温度域で所定の時間保持した後、室温まで冷却するが、その際の冷却速度は特に限定されず、例えば空冷などでよい。 In the present invention, after holding for a predetermined time in the above temperature range, cooling is performed to room temperature, but the cooling rate at that time is not particularly limited, and may be, for example, air cooling.
 酸洗、冷延
 熱間圧延後は、必要に応じて酸洗し、冷延率30~80%程度の冷間圧延を行う。
After pickling, cold rolling and hot rolling, pickling is performed if necessary, and cold rolling is performed at a cold rolling ratio of about 30 to 80%.
 焼鈍
 冷間圧延後の焼鈍工程として、Ac1点+20℃以上、Ac3点未満の2相域で均熱保持し、その後、500℃までの温度域を平均冷却速度10℃/秒以上で冷却し、次いで500℃以下の温度域を平均冷却速度10℃/秒以上で冷却し、500℃以下の温度域まで冷却する。
Annealing As an annealing process after cold rolling, soaking is maintained in a two-phase zone of Ac 1 point + 20 ° C or more and Ac 3 point, and then the temperature range up to 500 ° C is cooled at an average cooling rate of 10 ° C / sec or more Then, the temperature range of 500 ° C. or less is cooled at an average cooling rate of 10 ° C./sec or more, and cooled to a temperature range of 500 ° C. or less.
 均熱保持温度をAc1点+20℃以上、Ac3点未満の2相域で均熱保持することで、本発明の上記Mn濃度分布を維持しながら、上記所望量のフェライトを確保できる。均熱保持温度がAc1点+20℃よりも低いと、最終的に得られる鋼板の金属組織のフェライト量が多くなり過ぎて十分な強度を確保できない。そのため、均熱保持温度はAc1点+20℃以上、好ましくはAc1点+25℃以上、より好ましくはAc1点+50℃以上、更に好ましくはAc1点+80℃以上とする。一方、Ac3点以上になると、均熱保持中にフェライトを十分に生成・成長させることができず、延性が低下すると共に、Mn濃度分布が均一となり、フェライト相中に生成する球状硬質相が減少する。そのため、均熱保持温度はAc3点未満、好ましくはAc3点-5℃以下、より好ましくはAc3点-10℃以下、更に好ましくはAc3点-20℃以下の温度とする。 By maintaining soaking holding temperature in a two-phase area of Ac 1 point + 20 ° C. or more and less than Ac 3 point, it is possible to secure the desired amount of ferrite while maintaining the Mn concentration distribution of the present invention. If the soaking holding temperature is lower than Ac 1 point + 20 ° C., the amount of ferrite in the metallographic structure of the finally obtained steel sheet is too large to secure sufficient strength. Therefore, the soaking holding temperature is set to Ac 1 point + 20 ° C. or higher, preferably Ac 1 point + 25 ° C. or higher, more preferably Ac 1 point + 50 ° C. or higher, and still more preferably Ac 1 point + 80 ° C. or higher. On the other hand, if the Ac 3 point or more, the ferrite can not be sufficiently formed and grown during soaking holding, the ductility is lowered, the Mn concentration distribution becomes uniform, and the spherical hard phase formed in the ferrite phase is Decrease. Therefore, the soaking holding temperature is set to a temperature less than Ac 3 point, preferably Ac 3 point −5 ° C. or less, more preferably Ac 3 point −10 ° C. or less, still more preferably Ac 3 point −20 ° C. or less.
 なお、上記均熱保持温度域に昇温する際の平均昇温速度は特に限定されず、適宜選択することが可能であり、例えば0.5~50℃/秒程度の平均昇温速度でもよい。 The average temperature rising rate at the time of raising the temperature to the above-mentioned soaking holding temperature range is not particularly limited, and can be appropriately selected. For example, an average temperature rising rate of about 0.5 to 50 ° C./second may be used. .
 本発明では上記均熱保持温度域での保持時間は特に限定されない。しかしながら保持時間が短すぎると加工組織が残存し、鋼の延性が低下することがあるため、保持時間は好ましくは40秒以上、より好ましくは60秒以上とする。一方、保持時間が長すぎるとオーステナイト相へのMnの濃縮が進み、Ms点が低下してMA組織が増加することがあるため、保持時間は好ましくは3600秒以下、より好ましくは3000秒以下とする。 In the present invention, the holding time in the soaking holding temperature range is not particularly limited. However, if the holding time is too short, the machined structure may remain and the ductility of the steel may decrease, so the holding time is preferably 40 seconds or more, more preferably 60 seconds or more. On the other hand, if the holding time is too long, the concentration of Mn in the austenite phase proceeds and the Ms point may decrease to increase the MA structure. Therefore, the holding time is preferably 3600 seconds or less, more preferably 3000 seconds or less Do.
 また上述の通り本発明において所定の温度で保持するとは、必ずしも同一温度で保持し続けなくてもよく、所定の温度範囲内であれば、変動してもよい趣旨である。例えば上記均熱保持温度で保持する場合は、Ac1点+20℃以上、Ac3点未満の範囲内で恒温保持してもよいし、この範囲内で変化させてもよい。 Further, as described above, in the present invention, holding at a predetermined temperature does not have to be always maintained at the same temperature, and within the predetermined temperature range, it may be fluctuated. For example, in the case of holding at the above-mentioned soaking holding temperature, the temperature may be kept constant within the range of Ac 1 point + 20 ° C. or more and less than Ac 3 point, or may be changed within this range.
 上記Ac1点とAc3点は、「レスリー鉄鋼材料化学」、丸善株式会社、1985年5月31日発行、273頁に記載されている下記(a)式、(b)式から算出できる。式中[ ]は各元素の質量%での含有量を示しており、鋼板に含まれない元素の含有量は0質量%として計算すればよい。
Ac1(℃)=723-10.7×[Mn]-16.9×[Ni]+29.1×[Si]+16.9×[Cr]+290×[As]+6.38×[W]・・・(a)
Ac3(℃)=910-203×√[C]-15.2×[Ni]+44.7×[Si]+10×[V]+31.5×[Mo]+13.1×[W]-(30×[Mn]+11×[Cr]+20×[Cu]-700×[P]-400×[Al]-120×[As]-400×[Ti])・・・(b)
The above Ac 1 point and Ac 3 point can be calculated from the following formulas (a) and (b) described in “Leslie Iron and Steel Material Chemistry”, Maruzen Co., Ltd., May 31, 1985, page 273. In the formula, [] indicates the content of each element in mass%, and the content of the element not contained in the steel sheet may be calculated as 0 mass%.
Ac 1 (° C.) = 723-10.7 × [Mn] −16.9 × [Ni] + 29.1 × [Si] + 16.9 × [Cr] + 290 × [As] + 6.38 × [W] · (A)
Ac 3 (° C.) = 910-203 × √ [C] −15.2 × [Ni] + 44.7 × [Si] +10 4 × [V] + 31.5 × [Mo] + 13.1 × [W] − (30 x [Mn] + 11 x [Cr] + 20 x [Cu]-700 x [P]-400 x [Al]-120 x [As]-400 x [Ti]) (b)
 上記均熱保持した後、500℃までの温度域を平均冷却速度10℃/秒以上で冷却する。上記均熱保持温度からの冷却速度を制御することによってMn濃度の高いフェライトの生成を抑制すると共に、フェライトの生成量を抑制できる。平均冷却速度が遅い場合は、冷却中にMn濃度が高いフェライトが生成し、曲げ性を劣化させたり、強度が低下することがある。そのため、平均冷却速度は10℃/秒以上、好ましくは15℃/秒以上であり、より好ましくは20℃/秒以上とする。平均冷却速度の上限は特になく、水冷や油冷でもよい。 After holding the temperature uniform, the temperature range up to 500 ° C. is cooled at an average cooling rate of 10 ° C./sec or more. By controlling the cooling rate from the above-mentioned soaking holding temperature, it is possible to suppress the formation of ferrite having a high Mn concentration and to suppress the generation amount of ferrite. When the average cooling rate is low, ferrite having a high Mn concentration may be formed during cooling, which may deteriorate the bendability or reduce the strength. Therefore, the average cooling rate is 10 ° C./sec or more, preferably 15 ° C./sec or more, and more preferably 20 ° C./sec or more. The upper limit of the average cooling rate is not particularly limited, and may be water cooling or oil cooling.
 上記500℃までの温度域を上記平均冷却速度で冷却した後、500℃以下を平均冷却速度10℃/秒以上で冷却する。500℃以下の平均冷却速度を10℃/秒以上とすることで、軟質な高温ベイナイトの生成を抑制すると共に、マルテンサイトの自己焼戻しを抑制して、強度を向上させることができる。このような効果を得るためには、500℃以下の平均冷却速度は10℃/秒以上、好ましくは15℃/秒以上、より好ましくは20℃/秒以上とする。平均冷却速度の上限は特になく、水冷や油冷でもよい。 After cooling the temperature range up to 500 ° C. at the above average cooling rate, cooling is performed at 500 ° C. or less at an average cooling rate of 10 ° C./sec or more. By setting the average cooling rate of 500 ° C. or less to 10 ° C./sec or more, it is possible to suppress the formation of soft high-temperature bainite and to suppress the self-tempering of martensite to improve the strength. In order to obtain such an effect, the average cooling rate at 500 ° C. or less is 10 ° C./sec or more, preferably 15 ° C./sec or more, more preferably 20 ° C./sec or more. The upper limit of the average cooling rate is not particularly limited, and may be water cooling or oil cooling.
 なお、500℃までの平均冷却速度と500℃以下の平均冷却速度は同じであっても異なっていてもよく、上記範囲内で適宜調整すればよい。 The average cooling rate up to 500 ° C. and the average cooling rate below 500 ° C. may be the same or different, and may be appropriately adjusted within the above range.
 上記500℃以下を平均冷却速度10℃/秒以上で冷却する場合の冷却停止温度は、500℃以下の温度域である。冷却停止温度が500℃よりも高いと、硬質相が少なくなってしまい、強度を確保できず、またMA組織が増加して曲げ性が劣化する。そのため、冷却停止温度は500℃以下、好ましくは400℃以下、より好ましくは350℃以下、さらに好ましくは300℃以下とする。冷却停止温度の下限は特に限定されないが、操業上、室温までである。 The cooling stop temperature in the case of cooling at 500 ° C. or less at an average cooling rate of 10 ° C./sec or more is a temperature range of 500 ° C. or less. When the cooling stop temperature is higher than 500 ° C., the hard phase is reduced, and the strength can not be secured, and the MA structure is increased to deteriorate the bendability. Therefore, the cooling stop temperature is set to 500 ° C. or less, preferably 400 ° C. or less, more preferably 350 ° C. or less, and still more preferably 300 ° C. or less. The lower limit of the cooling stop temperature is not particularly limited, but in operation, it is up to room temperature.
 以下、再加熱工程については、冷延鋼板の製造方法と溶融亜鉛めっき鋼板の製造方法に分けて説明する。 Hereinafter, the reheating process is divided into a method of manufacturing a cold-rolled steel sheet and a method of manufacturing a hot-dip galvanized steel sheet.
 冷延鋼板の製造方法における再加熱
 上記500℃以下の温度域で冷却を停止した後、次いで250℃以上、500℃以下の温度域まで再加熱を行い、30秒間以上保持してから室温まで冷却する。
Reheating in the method for producing a cold rolled steel sheet After stopping cooling at the above-mentioned temperature range of 500 ° C. or less, then reheating to a temperature range of 250 ° C. or more and 500 ° C. or less, holding for 30 seconds or more and cooling to room temperature Do.
 冷却停止後、250℃以上、500℃以下の温度域まで再加熱を行い、30秒間以上保持することで、マルテンサイトなどの硬質相を焼戻しすると共に、未変態オーステナイトを変態させることができる。再加熱を行わない場合や保持温度が低すぎる場合は、硬質相の焼き戻しが進まず、高密度の転位が生じたり、MA組織が多量に残存し、曲げ性を悪化させることがある。したがって再加熱温度は、250℃以上、好ましくは300℃以上、より好ましくは350℃以上とする。一方、前記保持温度が高くなりすぎると強度が低下する。したがって再加熱温度は500℃以下、好ましくは470℃以下、より好ましくは450℃以下とする。なお、本発明において、この「再加熱」は文言通り、前記500℃以下までの冷却停止温度からの加熱、即ち、昇温を意味する。従って、再加熱温度は上記冷却停止温度よりも高い温度であり、上記250℃以上、500℃以下の温度域であっても、冷却停止温度と再加熱温度が同じである等温保持や、冷却停止温度から更に低い温度への冷却過程は、この再加熱に含まれない。 After cooling is stopped, reheating is performed to a temperature range of 250 ° C. or more and 500 ° C. or less, and by holding for 30 seconds or more, hard phases such as martensite can be tempered and untransformed austenite can be transformed. When reheating is not performed or the holding temperature is too low, tempering of the hard phase does not proceed, high-density dislocation may occur, or a large amount of MA structure may be left, which may deteriorate the bendability. Therefore, the reheating temperature is set to 250 ° C. or more, preferably 300 ° C. or more, more preferably 350 ° C. or more. On the other hand, when the holding temperature is too high, the strength is reduced. Therefore, the reheating temperature is 500 ° C. or less, preferably 470 ° C. or less, more preferably 450 ° C. or less. In the present invention, this "reheating" means heating from the cooling stop temperature to 500 ° C. or less, that is, temperature rise, as it is written. Therefore, the reheating temperature is a temperature higher than the cooling stop temperature, and even in the temperature range of 250 ° C. or more and 500 ° C. or less, isothermal holding and cooling stop with the same cooling stop temperature and reheating temperature The cooling process from temperature to lower temperatures is not included in this reheating.
 また上記再加熱温度域での保持時間が短すぎると、硬質相を十分に焼き戻すことができず、また未変態オーステナイトを変態させることができない。したがって保持時間は30秒以上、好ましくは50秒以上、より好ましくは100秒以上、更に好ましくは200秒以上とする。一方、保持時間の上限は特に限定されないが、長時間保持し過ぎると、生産性が低下する他、強度が低下するため、好ましくは1500秒以下、より好ましくは1000秒以下とする。 If the holding time in the reheating temperature range is too short, the hard phase can not be sufficiently tempered, and untransformed austenite can not be transformed. Therefore, the holding time is set to 30 seconds or more, preferably 50 seconds or more, more preferably 100 seconds or more, and further preferably 200 seconds or more. On the other hand, the upper limit of the holding time is not particularly limited, but if it is held for a long time, the productivity is lowered and the strength is lowered, so it is preferably 1500 seconds or less, more preferably 1000 seconds or less.
 上記再加熱温度域で所定時間保持した後は、室温まで冷却する。この際の平均冷却速度は特に限定されず、好ましくは0.1℃/秒以上、より好ましくは0.4℃/秒以上、好ましくは200℃/秒以下、より好ましくは150℃/秒以下の平均冷却速度で冷却すればよい。 After holding for a predetermined time in the above reheating temperature range, it is cooled to room temperature. The average cooling rate at this time is not particularly limited, and is preferably 0.1 ° C./sec or more, more preferably 0.4 ° C./sec or more, preferably 200 ° C./sec or less, more preferably 150 ° C./sec or less It suffices to cool at an average cooling rate.
 本発明では、上記得られた鋼板表面に、電気亜鉛めっき層が形成されていてもよい。 In the present invention, an electrogalvanized layer may be formed on the surface of the steel sheet obtained above.
 上記の電気亜鉛めっき層の形成方法は特に限定されず、常法の電気亜鉛めっき処理法を採用することができる。例えば、電気亜鉛めっき鋼板を製造する場合、55℃の亜鉛溶液に浸漬しつつ通電し、電気亜鉛めっき処理を行う方法が挙げられる。また片面あたりのめっき付着量も特に限定されず、例えば電気亜鉛めっき鋼板の場合は10~100g/m2程度とすることが挙げられる。 The formation method of said electrogalvanized layer is not specifically limited, The electric galvanization processing method of a conventional method is employable. For example, in the case of producing an electrogalvanized steel sheet, a method of performing an electrogalvanizing treatment by immersing in a 55 ° C. zinc solution and conducting electricity is mentioned. Further, the amount of plating adhesion per one side is also not particularly limited, and, for example, in the case of an electrogalvanized steel plate, it may be about 10 to 100 g / m 2 .
 溶融亜鉛めっき鋼板の製造方法における再加熱
 上記500℃以下の温度域で冷却を停止した後、次いで250℃以上、500℃以下の温度域まで再加熱を行い、30秒間以上保持すると共に、該保持時間内で溶融亜鉛めっきを施してから室温まで冷却する。
Reheating in the manufacturing method of hot-dip galvanized steel sheet After cooling is stopped in the above-mentioned temperature range of 500 ° C. or less, next, it is re-heated to a temperature range of 250 ° C. or more and 500 ° C. or less and held for 30 seconds or more Galvanize in time and then cool to room temperature.
 冷却停止後、250℃以上、500℃以下の温度域まで再加熱を行い、30秒間以上保持することで、マルテンサイトなどの硬質相を焼戻しすると共に、未変態オーステナイトを変態させることができる。再加熱を行わない場合や保持温度が低すぎる場合は、硬質相の焼き戻しが進まず、高密度の転位が生じたり、MA組織が多量に残存し、曲げ性を悪化させることがある。したがって再加熱温度は、250℃以上、好ましくは300℃以上、より好ましくは350℃以上とする。一方、前記保持温度が高くなりすぎると強度が低下する。したがって再加熱温度は500℃以下、好ましくは470℃以下、より好ましくは450℃以下とする。なお、本発明において、この「再加熱」は文言通り、前記500℃以下までの冷却停止温度からの加熱、即ち、昇温を意味する。従って、再加熱温度は上記冷却停止温度よりも高い温度であり、上記250℃以上、500℃以下の温度域であっても、冷却停止温度と再加熱温度が同じである等温保持や、冷却停止温度から更に低い温度への冷却過程は、この再加熱に含まれない。 After cooling is stopped, reheating is performed to a temperature range of 250 ° C. or more and 500 ° C. or less, and by holding for 30 seconds or more, hard phases such as martensite can be tempered and untransformed austenite can be transformed. When reheating is not performed or the holding temperature is too low, tempering of the hard phase does not proceed, high-density dislocation may occur, or a large amount of MA structure may be left, which may deteriorate the bendability. Therefore, the reheating temperature is set to 250 ° C. or more, preferably 300 ° C. or more, more preferably 350 ° C. or more. On the other hand, when the holding temperature is too high, the strength is reduced. Therefore, the reheating temperature is 500 ° C. or less, preferably 470 ° C. or less, more preferably 450 ° C. or less. In the present invention, this "reheating" means heating from the cooling stop temperature to 500 ° C. or less, that is, temperature rise, as it is written. Therefore, the reheating temperature is a temperature higher than the cooling stop temperature, and even in the temperature range of 250 ° C. or more and 500 ° C. or less, isothermal holding and cooling stop with the same cooling stop temperature and reheating temperature The cooling process from temperature to lower temperatures is not included in this reheating.
 また上記再加熱温度域での保持時間が短すぎると、硬質相を十分に焼き戻すことができず、また未変態オーステナイトを変態させることができない。したがって保持時間は30秒以上、好ましくは50秒以上、より好ましくは100秒以上、更に好ましくは200秒以上とする。一方、保持時間の上限は特に限定されないが、長時間保持し過ぎると、生産性が低下する他、強度が低下するため、好ましくは1500秒以下、より好ましくは1000秒以下とする。 If the holding time in the reheating temperature range is too short, the hard phase can not be sufficiently tempered, and untransformed austenite can not be transformed. Therefore, the holding time is set to 30 seconds or more, preferably 50 seconds or more, more preferably 100 seconds or more, and further preferably 200 seconds or more. On the other hand, the upper limit of the holding time is not particularly limited, but if it is held for a long time, the productivity is lowered and the strength is lowered, so it is preferably 1500 seconds or less, more preferably 1000 seconds or less.
 本発明では上記再加熱温度域での30秒間以上の保持時間内において溶融亜鉛めっき処理を行い、鋼板表面に溶融亜鉛めっき層を形成する。本発明では、溶融亜鉛めっきと上記再加熱温度域における保持とを兼ねて行う。すなわち、再加熱による金属組織や強度などの適切な管理を行うためには、再加熱温度域の上記保持時間において溶融亜鉛めっきを行う必要がある。溶融亜鉛めっき層の形成方法は特に限定されず、常法の溶融亜鉛めっき処理法を採用することができる。例えば上記再加熱温度域に温度調整されためっき浴に鋼板を浸漬させて溶融亜鉛めっき処理を行えばよい。めっき時間は上記保持時間を満足すればよく、所望のめっき量を確保できるように適宜調整すればよい。めっき時間は例えば1~10秒とすることが好ましい。 In the present invention, the hot dip galvanizing treatment is performed within the holding time of 30 seconds or more in the reheating temperature range to form a hot dip galvanized layer on the steel sheet surface. In the present invention, it is performed by combining hot-dip galvanizing and holding in the reheating temperature range. That is, in order to perform appropriate management such as metal structure and strength by reheating, it is necessary to perform hot dip galvanization in the above-mentioned holding time of the reheating temperature range. The method for forming the hot-dip galvanized layer is not particularly limited, and a conventional hot-dip galvanizing method can be adopted. For example, the steel sheet may be dipped in a plating bath whose temperature is adjusted to the above reheating temperature range to carry out the hot dip galvanization treatment. The plating time should just satisfy the above-mentioned holding time, and should just be adjusted suitably so that a desired amount of plating can be secured. The plating time is preferably, for example, 1 to 10 seconds.
 再加熱における、溶融亜鉛めっき処理と;加熱のみでめっき処理なし;との組み合わせとして、下記種々のパターンがある。
(i)加熱のみを行った後、溶融亜鉛めっき処理を行う。
(ii)溶融亜鉛めっき処理を行った後、加熱のみを行う。
(iii)加熱のみ、溶融亜鉛めっき、加熱のみの順に行う。
There are the following various patterns as a combination of hot-dip galvanizing treatment and reheating without heating treatment only;
(I) After performing only heating, hot dip galvanizing is performed.
(Ii) After the hot dip galvanizing treatment, only heating is performed.
(Iii) Only heating, galvanizing, and heating are performed in this order.
 前記加熱のみの場合の再加熱温度と、溶融亜鉛めっき温度、即ちめっき浴の温度とが異なる場合、一方の温度から他方の温度へ加熱または冷却する場合を含みうる。前記加熱の方法として、炉加熱や誘導加熱等が挙げられる。 When the reheating temperature in the case of only the heating and the hot dip galvanizing temperature, that is, the temperature of the plating bath are different, the case of heating or cooling from one temperature to the other temperature may be included. As a method of the said heating, furnace heating, induction heating, etc. are mentioned.
 鋼板表面に合金化溶融亜鉛めっき層を形成する場合は、上記溶融亜鉛めっき後、合金化を行えばよい。合金化温度は特に限定されないが、合金化温度が低すぎると合金化が十分に進まないため、好ましくは450℃以上、より好ましくは460℃以上、更に好ましくは480℃以上である。一方、合金化温度が高すぎると合金化が進行し過ぎてめっき層中のFe濃度が高くなり、めっき密着性が悪化するため、好ましくは550℃以下、より好ましくは540℃以下、更に好ましくは530℃以下である。また合金化処理の時間は特に限定されず、所望の合金化が得られるように調整すればよい。合金化処理時間は好ましくは10秒以上60秒以下である。なお、合金化処理は上記再加熱温度域内で所定時間保持した後に行うため、合金化処理時間は上記再加熱温度域内での保持時間に含まない。 In the case of forming an alloyed hot dip galvanized layer on the surface of a steel sheet, alloying may be performed after the above-described hot dip galvanization. The alloying temperature is not particularly limited, but is preferably 450 ° C. or more, more preferably 460 ° C. or more, and still more preferably 480 ° C. or more because alloying does not proceed sufficiently if the alloying temperature is too low. On the other hand, if the alloying temperature is too high, the alloying proceeds too much to increase the Fe concentration in the plating layer and the plating adhesion deteriorates, so it is preferably 550 ° C. or less, more preferably 540 ° C. or less, still more preferably It is 530 ° C. or less. Further, the time of alloying treatment is not particularly limited, and may be adjusted to obtain desired alloying. The alloying treatment time is preferably 10 seconds to 60 seconds. Since the alloying treatment is performed after being held for a predetermined time in the reheating temperature range, the alloying treatment time is not included in the holding time in the reheating temperature range.
 上記再加熱温度域で所定時間保持した後は、室温まで冷却する。この際の平均冷却速度は特に限定されず、好ましくは0.1℃/秒以上、より好ましくは0.4℃/秒以上、好ましくは200℃/秒以下、より好ましくは150℃/秒以下の平均冷却速度で冷却すればよい。 After holding for a predetermined time in the above reheating temperature range, it is cooled to room temperature. The average cooling rate at this time is not particularly limited, and is preferably 0.1 ° C./sec or more, more preferably 0.4 ° C./sec or more, preferably 200 ° C./sec or less, more preferably 150 ° C./sec or less It suffices to cool at an average cooling rate.
 本発明の技術は、特に板厚が6mm以下の薄鋼板に好適に採用できる。 The technique of the present invention can be suitably adopted particularly for thin steel plates having a thickness of 6 mm or less.
 本発明の高強度冷延鋼板および高強度溶融亜鉛めっき鋼板は、引張強度が980MPa以上、好ましくは1,000MPa以上、より好ましくは1,010MPa以上の鋼板を対象とする。延性は、強度と延性のバランス、即ち「単位MPaでの引張強度×単位%での延性」で表され、好ましくは15,000MPa・%以上、より好ましくは15,100MPa・%以上、更に好ましくは15,200MPa・%以上とする。曲げ性は、強度と後述する実施例に記載の方法で求められるVDA(Verband der Automobilindustrie)曲げ角度のバランス、即ち「単位MPaでの引張強度×単位°で示されるVDA曲げ角度」で表され、好ましくは100,000MPa・°以上、より好ましくは100,500MPa・°以上、更に好ましくは101,000MPa・°以上とする。 The high strength cold rolled steel sheet and high strength galvanized steel sheet of the present invention are steel sheets having a tensile strength of 980 MPa or more, preferably 1,000 MPa or more, more preferably 1,010 MPa or more. The ductility is represented by a balance of strength and ductility, that is, “tensile strength in unit MPa × ductility in unit%”, preferably 15,000 MPa ·% or more, more preferably 15,100 MPa ·% or more, further preferably The pressure shall be 15,200 MPa ·% or more. Flexibility is represented by the balance of strength and VDA (Verband der Automobilindustrie) bending angle determined by the method described in Examples described later, that is, "VDA bending angle indicated by tensile strength in unit MPa x unit degree", Preferably, it is 100,000 MPa · ° or more, more preferably 100,500 MPa · ° or more, and further preferably 101,000 MPa · ° or more.
 本願は、2014年3月17日に出願された日本国特許出願第2014-053399号、2014年3月17日に出願された日本国特許出願第2014-053400号、および2014年9月22日に出願された日本国特許出願第2014-192757号に基づく優先権の利益を主張するものである。2014年3月17日に出願された日本国特許出願第2014-053399号の明細書の全内容、2014年3月17日に出願された日本国特許出願第2014-053400号の明細書の全内容、および2014年9月22日に出願された日本国特許出願第2014-192757号の明細書の全内容が、本願の参考のため援用される。 The present application is related to Japanese Patent Application No. 2014-053399 filed on March 17, 2014, Japanese Patent Application No. 2014-053400 filed on March 17, 2014, and September 22, 2014 Claiming the benefit of priority based on Japanese Patent Application No. 2014-192757 filed in The entire content of the specification of Japanese Patent Application No. 2014-053399 filed on March 17, 2014, the entire specification of Japanese Patent Application No. 2014-053400 filed on March 17, 2014 The contents and the entire contents of the specification of Japanese Patent Application No. 2014-192757 filed on September 22, 2014 are incorporated for reference of the present application.
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。 EXAMPLES Hereinafter, the present invention will be more specifically described by way of examples. However, the present invention is of course not limited by the following examples, and appropriate modifications may be made as long as the present invention can be applied to the purpose. Of course, implementation is also possible, and all of them are included in the technical scope of the present invention.
 実施例1
 下記表1に示す成分組成の鋼を溶製し、下記条件で熱間圧延→冷間圧延→連続焼鈍を行って、冷延鋼板を製造した。表1に示す成分組成の鋼は、残部が鉄および不可避的不純物であり、空欄は元素を添加していないことを意味する。
Example 1
A steel having the component composition shown in Table 1 below was melted and subjected to hot rolling → cold rolling → continuous annealing under the following conditions to produce a cold rolled steel sheet. The steels of the component compositions shown in Table 1 have the balance of iron and unavoidable impurities, and the blanks indicate that no element is added.
 熱間圧延
 スラブを1250℃まで加熱し、圧下率90%、仕上げ圧延温度が920℃となるように板厚2.3mmまで熱間圧延した。その後、この温度から平均冷却速度30℃/秒で表2または表3に示す「巻取り温度(℃)」まで冷却して巻き取った後、表2に示す「保持温度1(℃)」、および「保持時間(時間)」で保持するか、表3に示す「保持開始温度(℃)」、「保持終了温度(℃)」、および「保持時間(時間)」の条件で保持した。次いで室温まで空冷して熱延鋼板を製造した。
Hot rolling The slab was heated to 1250 ° C. and hot rolled to a plate thickness of 2.3 mm so that the rolling reduction was 90% and the finish rolling temperature was 920 ° C. Thereafter, the film is cooled from this temperature to the “rolling temperature (° C.)” shown in Table 2 or Table 3 at an average cooling rate of 30 ° C./s and then taken up, and then “holding temperature 1 (° C.)” shown in Table 2; And “hold time (hour)” or “hold start temperature (° C.)”, “hold end temperature (° C.)”, and “hold time (hour)” shown in Table 3. Then, it air-cooled to room temperature and manufactured the hot rolled sheet steel.
 冷間圧延
 得られた熱延鋼板を酸洗して表面のスケールを除去した後、冷間圧延を行い、板厚1.2mmの冷延鋼板を製造した。
Cold rolling The obtained hot rolled steel sheet was pickled to remove surface scale, and then cold rolling was performed to produce a cold rolled steel sheet having a thickness of 1.2 mm.
 冷延鋼板の焼鈍
 得られた冷間圧延鋼板を、表2または表3に示す条件で、均熱保持→冷却→再加熱して、供試鋼を製造した。尚、表2のNo.32は、再加熱を行っていない比較例であり、再加熱の代わりに、冷却停止温度480℃から350℃に冷却後、該温度で300秒間保持したことを、再加熱の欄に示している。
Annealing of Cold Rolled Steel Sheet The obtained cold rolled steel sheet was subjected to soaking holding → cooling → reheating under the conditions shown in Table 2 or Table 3 to produce a test steel. In addition, Table 2 No. 32 is a comparative example which does not reheat, and it shows in the reheat column that it hold | maintained for 300 seconds at the said cooling stop temperature from 480 degreeC to 350 degreeC instead of reheat after cooling at this temperature .
 表中、均熱保持した温度は「均熱温度(℃)」、均熱後500℃までの平均冷却速度は「平均冷却速度1(℃/秒)」、500℃以下での冷却速度は「平均冷却速度2(℃/秒)、冷却停止温度は「冷却停止温度(℃)」、冷却停止後再加熱時の保持温度は「再加熱保持温度(℃)」、該保持温度での保持時間は「再加熱保持時間(秒)」と夫々表記した。なお、本実施例では、均熱保持温度での保持時間を100秒~600秒とした。前記「再加熱保持温度(℃)」で「再加熱保持時間(秒)」後は、室温まで放冷して供試鋼を得た。なお、後記電気亜鉛めっきを行わなかった冷延鋼板については、表中の「品種」欄に「CR」と記入した。 In the table, the temperature at which the soaking is maintained is "soaking temperature (° C)", the average cooling rate to 500 ° C after soaking is "average cooling rate 1 (° C / sec)", and the cooling rate at 500 ° C or less is " Average cooling rate 2 (° C / sec), cooling stop temperature is "cooling stop temperature (° C)", holding temperature at reheating after cooling stop is "reheating holding temperature (° C)", holding time at the holding temperature Was described as "reheat holding time (seconds)", respectively. In the present embodiment, the holding time at the soaking holding temperature is set to 100 seconds to 600 seconds. After the above-mentioned "reheating holding temperature (° C)" and after "reheating holding time (seconds)", it was allowed to cool to room temperature to obtain a test steel. In addition, about the cold-rolled steel plate which did not perform postscript galvanization, "CR" was entered in the "kind" column in the table.
 電気亜鉛めっき鋼板の製造
 上記供試鋼の一部は、55℃の亜鉛めっき浴に浸漬し、電流密度30~50A/dm2の条件で電気めっき処理を施した後、水洗、乾燥して電気亜鉛めっき鋼板を得た。なお、片面あたりの亜鉛めっき付着量:10~100g/m2であった。また上記めっき処理では、適宜アルカリ水溶液浸漬脱脂、水洗、酸洗等の洗浄処理を行って、表面に電気亜鉛めっき層を有する供試鋼を得た。電気亜鉛めっきした鋼板は、表中の「品種」欄に「EG」と記入した。
Production of electrogalvanized steel plate A portion of the above test steel is immersed in a galvanizing bath at 55 ° C., electroplated under conditions of a current density of 30 to 50 A / dm 2 , washed with water and dried to obtain electricity A galvanized steel sheet was obtained. The adhesion amount of zinc plating per one side was 10 to 100 g / m 2. Further, in the above plating treatment, washing treatment such as alkaline aqueous solution immersion degreasing, water washing, and acid washing was appropriately performed to obtain a test steel having an electrogalvanized layer on the surface. The electrogalvanized steel plate entered "EG" in the "variety" column in the table.
 各供試鋼について、下記に詳述する通り、金属組織、Mn濃度、各種機械的特性の評価を行い、表4または表5に示した。 The metal structure, the Mn concentration, and various mechanical properties were evaluated for each of the test steels, as described in detail below, and are shown in Table 4 or Table 5.
 金属組織の測定
 フェライトの面積率、硬質相の面積率、MA組織の面積率、残留γの体積率、球状硬質相の割合は以下のように測定した。すなわち、供試鋼の断面を研磨し、下記に示す通り腐食させてから、光学顕微鏡または走査型電子顕微鏡を用いて板厚の1/4位置を観察した。そして、光学顕微鏡またはSEMで撮影した金属組織写真を画像解析して各組織の割合を測定した。下記に詳細を示す。
Measurement of Metallographic Structure The area ratio of ferrite, the area ratio of hard phase, the area ratio of MA structure, the volume ratio of residual γ, and the ratio of spherical hard phase were measured as follows. That is, the cross section of the test steel was polished and corroded as described below, and then a quarter position of the plate thickness was observed using an optical microscope or a scanning electron microscope. Then, a metallographic photograph taken with an optical microscope or SEM was subjected to image analysis to measure the proportion of each tissue. Details are shown below.
 フェライトの面積率
 上記研磨後に、ナイタールで腐食し、SEMにて倍率1000倍で、1視野サイズ:100μm×100μmを合計3視野観察し、格子間隔5μm、格子点数20×20の点算法にてフェライトの面積率を測定し、3視野の平均値を算出した。結果を表中の「フェライト(面積%)」に記載した。なお、フェライトの面積率には、フェライト相中の硬質相を除く。
Area ratio of ferrite Corroded by nital after the above polishing, 1 field size: 100 μm × 100 μm at a magnification of 1000 times by SEM, a total of 3 fields of view are observed, and ferrite with a grid spacing of 5 μm and a grid point of 20 × 20 The area ratio of was measured, and the average value of 3 fields of view was calculated. The results are shown in "ferrite (area%)" in the table. In addition, the hard phase in a ferrite phase is remove | excluded to the area ratio of a ferrite.
 硬質相の面積率
 上記フェライト以外の組織を硬質相とし、上記観察視野100面積%からフェライト面積率を除いた値を硬質相の面積率とした。結果を表中の「硬質相(面積%)」に記載した。なお、硬質相の組織についても観察し、硬質相はベイニティックフェライト、ベイナイト、焼戻しマルテンサイト、残留γ、およびMA組織よりなる群から選択される少なくとも一種であることを確認した。
Area Ratio of Hard Phase The structure other than the above ferrite was used as a hard phase, and the value obtained by removing the area ratio of ferrite from 100% of the observation field of view was defined as the area ratio of the hard phase. The results are described in "Hard phase (area%)" in the table. The structure of the hard phase was also observed, and it was confirmed that the hard phase is at least one selected from the group consisting of bainitic ferrite, bainite, tempered martensite, residual γ, and MA structure.
 MA組織の面積率
 上記研磨後に、レペラーで腐食し、光学顕微鏡にて倍率1000倍で、1視野サイズ:100μm×100μmを合計3視野観察し、格子間隔5μm、格子点数20×20の点算法にてMA組織の面積率を測定し、3視野の平均値を算出した。結果を表中の「MA(面積%)」に記載した。なお、上記レペラー腐食で白色化した箇所をMA組織として観察した。
Area ratio of MA structure After the above polishing, corrode with repeller, and observe 1 field size: 100 μm × 100 μm with a total of 3 fields of view with a magnification of 1000 × with an optical microscope. The area ratio of the MA tissue was measured, and the average value of three fields of view was calculated. The results are described in "MA (area%)" in the table. In addition, the location whitened by the said repeller corrosion was observed as MA structure | tissue.
 残留γの体積率
 板厚1/4位置まで#1000~#1500のサンドペーパーを使用して研磨した後、更に表面を深さ10~20μmまで電解研磨してから、X線回折装置、リガク社製RINT1500を用いて測定した。具体的には、Coターゲットを使用し、40kV-200mAを出力して2θで40°~130°の範囲を測定し、得られたbcc(α)の回折ピーク(110)、(200)、(211)、及びfcc(γ)の回折ピーク(111)、(200)、(220)、(311)から残留γの定量測定を行った。結果を表中の「残留γ(体積%)」に記載した。
Volume rate of residual γ After polishing using # 1000 to # 1500 sandpaper to 1/4 plate thickness position, the surface is electropolished to a depth of 10 to 20 μm, and then X-ray diffractometer, RIGAKU Co., Ltd. It measured using manufactured RINT1500. Specifically, a Co target is used, 40 kV-200 mA is output, and a range of 40 ° to 130 ° is measured at 2θ, and the diffraction peaks (110), (200), (b A quantitative measurement of residual γ was performed from diffraction peaks (111), (200), (220) and (311) of 211) and fcc (γ). The results are described in “residual γ (volume%)” in the table.
 フェライト相中の球状硬質相
 上記研磨後に、ナイタールで腐食し、フェライト相に存在する円相当径で2μm以下のアスペクト比1~3の球状の硬質相をSEMにて倍率1000倍で、1視野サイズ:100μm×100μmを合計3視野観察し、画像解析して上記硬質相に占める球状硬質相の割合を求めた。結果を表中の「球状硬質相(面積%)」に記載した。
Spherical hard phase in ferrite phase After the above polishing, it is corroded by nital and spherical hard phase with an aspect ratio 1 to 3 with an equivalent circle diameter of 2 μm or less in the ferrite phase is 1000 × magnification in SEM. : 100 μm × 100 μm were observed for a total of three fields of view, and image analysis was performed to determine the ratio of the spherical hard phase to the above hard phase. The results are described in "Spherical hard phase (area%)" in the table.
 Mn濃度が鋼板中のMn濃度の1.2倍以上濃縮している領域の割合
 Mn濃度は、供試鋼を横断面で切断、樹脂に埋め込み、研磨後、20μm×20μmの範囲を、EPMAを用いビーム径1μm以下の条件で測定した。得られたMn濃度を、誘導結合プラズマ発光分光法で化学分析を行った鋼板のMn濃度で除して鋼板中のMn濃度に対するMn濃度1.2倍以上濃縮している領域の割合を求めた。その後、Mn濃度の1.2倍以上の領域と1.2倍未満の領域をそれぞれ色分けし、Mn濃度の1.2倍以上を有する領域の面積%を求めた。結果を表中の「Mn濃度1.2倍の面積率(%)」に記載した。
The percentage of the area where the Mn concentration is 1.2 times or more the concentration of the Mn concentration in the steel sheet The Mn concentration cuts the test steel in the cross section, embeds it in the resin, and polishes EPMA within the range of 20 μm × 20 μm. The beam diameter was measured under the condition of 1 μm or less. The obtained Mn concentration was divided by the Mn concentration of the steel plate subjected to chemical analysis by inductively coupled plasma emission spectroscopy to determine the ratio of the region concentrated 1.2 times or more of the Mn concentration to the Mn concentration in the steel plate . Thereafter, the region of 1.2 times or more of the Mn concentration and the region of less than 1.2 times were color-coded to obtain the area% of the region having the Mn concentration of 1.2 times or more. The results are shown in "area ratio (%) of 1.2 times of Mn concentration" in the table.
 Mn濃度が鋼板中のMn濃度の1.2倍以上濃縮している領域の標準偏差
 上記鋼板中のMn濃度に応じて色分けした画像を、□2μm区画に100区画に区切り、各区画内においてMn濃度が1.2倍以上濃縮している領域の分率を計測し、100区画の標準偏差を求めた。結果を表中の「Mn濃度1.2倍領域の標準偏差(面積%)」に記載した。
Standard deviation of the region where the Mn concentration is concentrated 1.2 times or more of the Mn concentration in the steel plate The image color-coded according to the Mn concentration in the steel plate is divided into 100 divisions of 2 μm division, and Mn in each division The fraction of the area in which the concentration is 1.2 times or more concentrated was measured, and the standard deviation of 100 sections was determined. The results are shown in "standard deviation (area%) of 1.2 times area of Mn concentration" in the table.
 フェライト相中のMn濃度が鋼板中のMn濃度に占める割合
 上記Mn濃度をEPMA分析にて測定した20μm×20μmと同視野をSEM観察した。EPMA分析結果とSEM画像を見比べて、各フェライト粒とそのMn濃度分布を同定した。フェライト粒の長軸、および短軸の交わる点をフェライト粒の中心位置とし、該中心位置のMn濃度をそのフェライト粒のMn濃度とした。20μm×20μm範囲におけるフェライト粒中心位置のMn濃度を上記手法にて同定し、各20μm×20μm範囲における一番Mn濃度の高いフェライト粒のMn濃度を、鋼板のMn濃度で割ることによって、フェライト相中のMn濃度が鋼板のMn濃度に占める割合を求めた。本発明では20μm×20μmを1視野とし、3視野の平均値をフェライト相中のMn濃度が鋼板のMn濃度に占める割合とした。結果を表中の「フェライト相中Mn濃度の割合」に記載した。
The ratio of the Mn concentration in the ferrite phase to the Mn concentration in the steel plate: The above Mn concentration was measured by EPMA analysis, and the same visual field of 20 μm × 20 μm was observed by SEM. Each ferrite grain and its Mn concentration distribution were identified by comparing the EPMA analysis result and the SEM image. The point at which the major axis and minor axis of the ferrite grain intersect is the center position of the ferrite grain, and the Mn concentration at the center position is the Mn concentration of the ferrite grain. The Mn concentration at the ferrite grain center position in the 20 μm × 20 μm range is identified by the above method, and the Mn concentration of the highest Mn concentration ferrite grain in each 20 μm × 20 μm range is divided by the Mn concentration of the steel plate to obtain a ferrite phase. The ratio of the Mn concentration in the steel sheet to the Mn concentration of the steel plate was determined. In the present invention, 20 μm × 20 μm is set as one field of view, and the average value of the three fields of view is the ratio of the Mn concentration in the ferrite phase to the Mn concentration of the steel plate. The results are shown in the “proportion of Mn concentration in ferrite phase” in the table.
 機械的特性の評価
 供試鋼の機械的特性は、JIS Z2201で規定される5号試験片を用いて引張試験を行い、引張強度、および延性を測定した。上記試験片は供試鋼から、圧延方向に対して垂直な方向が長手方向となるように切り出した。得られた引張強度と延性から強度-延性バランスを算出した。表中、引張強度は「TS(MPa)」、延性は「EL(%)」、強度-延性のバランスは「TS×EL(MPa・%)」とした。
Evaluation of mechanical properties The mechanical properties of the test steel were subjected to a tensile test using a No. 5 test piece specified in JIS Z2201, and tensile strength and ductility were measured. The test piece was cut out of the test steel so that the direction perpendicular to the rolling direction was the longitudinal direction. The strength-ductility balance was calculated from the obtained tensile strength and ductility. In the table, the tensile strength is “TS (MPa)”, the ductility is “EL (%)”, and the strength-ductility balance is “TS × EL (MPa ·%)”.
 本発明では、引張強度が980MPa以上の場合は、高強度であり合格とし、980MPa未満の場合は強度不足であり不合格と評価した。 In the present invention, when the tensile strength was 980 MPa or more, it was high strength and was accepted, and when it was less than 980 MPa, the strength was insufficient and was evaluated as rejection.
 また延性は強度-延性バランスで評価し、TS×ELが15,000MPa・%以上の場合は、延性に優れるとして合格とし、15,000MPa・%未満の場合は、延性が悪いとして不合格と評価した。 The ductility is evaluated by the strength-ductility balance, and when TS × EL is 15,000 MPa ·% or more, the ductility is considered to be excellent, and when less than 15,000 MPa ·%, the ductility is evaluated as disqualified. did.
 曲げ性の評価
 曲げ性はドイツ自動車工業会で規定されたVDA基準「VDA238-100」に基づいて以下の測定条件で評価を行った。本発明では曲げ試験で得られる最大荷重時の変位をVDA基準で角度に変換し、曲げ角度を求めた。結果を表中の「VDA曲げ角度(°)」に記載した。また引張強度と曲げ角度から曲げ性を評価した。結果を表中の「TS×VDA(MPa・°)」に記載した。TS×VDAが、100,000MPa・°以上の場合は、曲げ性に優れるとして合格とし、100,000MPa・°未満の場合は、曲げ性不足として不合格と評価した。
 測定条件
  試験方法:ロール支持、ポンチ押し込み
  ロール径:φ30mm
  ポンチ形状:先端R=0.4mm
  ロール間距離:2.9mm
  押し込み速度:20mm/min
  試験片寸法:60mm×60mm
  曲げ方向:圧延直角方向
  試験機:SIMAZU AUTOGRAPH 20kN
Evaluation of bendability The bendability was evaluated under the following measurement conditions based on the VDA standard "VDA 238-100" defined by the German Automobile Manufacturers Association. In the present invention, the displacement at the maximum load obtained in the bending test is converted into an angle on the basis of VDA, and the bending angle is determined. The results are described in “VDA bending angle (°)” in the table. Also, the bendability was evaluated from the tensile strength and the bending angle. The results are described in “TS × VDA (MPa · °)” in the table. When TS × VDA was 100,000 MPa · ° or more, it was regarded as passability as excellent in bendability, and when less than 100,000 MPa · °, it was evaluated as failure as bendability insufficient.
Measurement conditions Test method: Roll support, punch press Roll diameter: φ30 mm
Punch shape: Tip R = 0.4 mm
Distance between rolls: 2.9 mm
Pushing speed: 20 mm / min
Specimen size: 60 mm × 60 mm
Bending direction: Rolled right angle direction Testing machine: SIMAZU AUTOGRAPH 20kN
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表1~5より次のことがわかる。本発明の成分組成を満たす鋼種A~TおよびW~ACを用いて本発明で規定する焼鈍条件にて製造した実験No.1~18、20、24~26、28、29、および33~43の鋼板は、引張強度980MPa以上の領域において、延性と曲げ性に優れていた。 The following can be understood from Tables 1 to 5. Experiment No. 1 manufactured under the annealing conditions specified in the present invention using steel types A to T and W to AC satisfying the component composition of the present invention. The steel plates of 1 to 18, 20, 24 to 26, 28, 29, and 33 to 43 were excellent in ductility and bendability in the region of a tensile strength of 980 MPa or more.
 これに対し、上記以外の鋼板は、下記に詳述する通り、本発明で規定する成分組成や製造条件を満たさず、所望の特性が得られなかった。 On the other hand, steel plates other than the above did not satisfy the component composition and manufacturing conditions specified in the present invention as described in detail below, and desired properties were not obtained.
 表1の鋼種UはC含有量、鋼種VはMn含有量が本発明の上限を超えており、冷間圧延時に破断を生じたため、供試鋼を製造できなかった。 The steel type U in Table 1 has a C content, and the steel type V has an Mn content exceeding the upper limit of the present invention, and fracture occurred during cold rolling, so that a test steel could not be produced.
 実験No.19は、500℃以下まで冷却した後、再加熱しなかった例であり、MA組織が増加して曲げ性が劣化した。 Experiment No. No. 19 is an example which did not reheat after cooling to 500 degrees C or less, MA structure | tissue increased and bending property deteriorated.
 実験No.21は巻き取り後、所定の温度で保持しなかった例であり、Mn濃度1.2倍領域の標準偏差が低く、曲げ性が悪かった。 Experiment No. No. 21 was an example which did not hold | maintain at predetermined | prescribed temperature after winding-up, the standard deviation of the 1.2 density | concentration area | region of Mn concentration was low, and the bendability was bad.
 実験No.22は巻取り温度、および保持温度が低かった例であり、Mn濃度1.2倍の面積率、およびMn濃度1.2倍領域の標準偏差が低く、曲げ性が悪かった。 Experiment No. No. 22 was an example in which the coiling temperature and the holding temperature were low, and the area ratio of Mn concentration 1.2 times and the standard deviation of the region of 1.2 times Mn concentration were low, and the bendability was bad.
 実験No.23は巻き取り後、所定の温度での保持時間が短かった例であり、Mn濃度1.2倍領域の標準偏差が低く、曲げ性が悪かった。 Experiment No. No. 23 was an example in which the holding time at a predetermined temperature was short after winding, and the standard deviation of the region of 1.2 times the Mn concentration was low, and the bendability was poor.
 実験No.27は均熱温度が高かった例であり、フェライトが生成せず、またMn濃度1.2倍の面積率、およびMn濃度1.2倍領域の標準偏差が低かったため、延性が悪かった。 Experiment No. No. 27 was an example in which the soaking temperature was high, and ferrite was not generated, and the ductility was poor because the area ratio of Mn concentration 1.2 times and the standard deviation of the 1.2 concentration area of Mn concentration were low.
 実験No.30は冷却停止温度が高かった例であり、フェライトとMA組織が多くなり、強度が低く、また延性、および曲げ性も悪かった。 Experiment No. No. 30 was an example in which the cooling stop temperature was high, and the ferrite and MA structures were many, the strength was low, and the ductility and the bendability were also poor.
 実験No.31は500℃までの冷却速度が遅い例であり、フェライト相中のMn濃度が高くなりすぎたため、曲げ性が悪化した。 Experiment No. No. 31 is an example where the cooling rate to 500 ° C. is slow, and the bendability is deteriorated because the Mn concentration in the ferrite phase is too high.
 実験No.32は500℃以下まで冷却した後、再加熱を行っていない例であり、MA組織が増加して曲げ性が劣化した。 Experiment No. No. 32 is an example which did not reheat after cooling to 500 degrees C or less, and MA structure | tissue increased and bending property deteriorated.
 実施例2
 下記表6に示す成分組成の鋼を溶製し、下記条件で熱間圧延→冷間圧延→連続焼鈍を行って、冷延鋼板を製造した。表6に示す成分組成の鋼は、残部が鉄および不可避的不純物であり、空欄は元素を添加していないことを意味する。
Example 2
A steel having the component composition shown in Table 6 below was melted and subjected to hot rolling → cold rolling → continuous annealing under the following conditions to produce a cold rolled steel sheet. The steels of the component compositions shown in Table 6 have the balance of iron and unavoidable impurities, and the blanks indicate that no element is added.
 熱間圧延
 スラブを1250℃まで加熱し、圧下率90%、仕上げ圧延温度が920℃となるように板厚2.3mmまで熱間圧延した。その後、この温度から平均冷却速度30℃/秒で表7または表8に示す「巻取り温度(℃)」まで冷却して巻き取った後、表7に示す「保持温度1(℃)」、および「保持時間(時間)」で保持するか、表8に示す「保持開始温度(℃)」、「保持終了温度(℃)」、および「保持時間(時間)」の条件で保持した。次いで室温まで空冷して熱延鋼板を製造した。
Hot rolling The slab was heated to 1250 ° C. and hot rolled to a plate thickness of 2.3 mm so that the rolling reduction was 90% and the finish rolling temperature was 920 ° C. Thereafter, the film is cooled from this temperature to the “rolling temperature (° C.)” shown in Table 7 or Table 8 at an average cooling rate of 30 ° C./sec, and then “holding temperature 1 (° C.)” shown in Table 7; And “hold time (hour)” or “hold start temperature (° C.)”, “hold end temperature (° C.)”, and “hold time (hour)” shown in Table 8; Then, it air-cooled to room temperature and manufactured the hot rolled sheet steel.
 冷間圧延
 得られた熱延鋼板を酸洗して表面のスケールを除去した後、冷間圧延を行い、板厚1.2mmの冷延鋼板を製造した。
Cold rolling The obtained hot rolled steel sheet was pickled to remove surface scale, and then cold rolling was performed to produce a cold rolled steel sheet having a thickness of 1.2 mm.
 冷延鋼板の焼鈍、溶融亜鉛めっき鋼板や合金化溶融亜鉛めっき鋼板の製造
 得られた冷間圧延鋼板を、表9または表10に示す条件で、均熱保持→冷却→再加熱→めっき処理して、供試鋼を製造した。尚、表7のNo.29は、再加熱を行っていない比較例であり、再加熱の代わりに、冷却停止温度470℃から400℃に冷却後、該温度で45秒間保持したことを、再加熱の欄に示している。
Annealing of cold rolled steel sheet, manufacture of galvanized steel sheet and alloyed galvanized steel sheet The obtained cold rolled steel sheet is subjected to soaking holding → cooling → reheating → plating treatment under the conditions shown in Table 9 or Table 10. The test steel was manufactured. In addition, Table 7 No. 29 is a comparative example which does not reheat, and it shows in the reheat column that it hold | maintained at the said temperature for 45 seconds after cooling to the cooling stop temperature of 470 degreeC to 400 degreeC instead of reheating. .
 表中、均熱保持した温度は「均熱温度(℃)」、均熱後500℃までの平均冷却速度は「平均冷却速度1(℃/秒)」、500℃以下での冷却速度は「平均冷却速度2(℃/秒)、冷却停止温度は「冷却停止温度(℃)」、冷却停止後再加熱時の保持温度は「再加熱保持温度(℃)」、該保持温度での保持時間は「再加熱保持時間(秒)」、めっき浴の温度を「めっき浴温度(℃)」、めっき処理時間を「溶融亜鉛めっき処理時間(秒)」と夫々表記した。なお、「再加熱保持時間(秒)」は「溶融亜鉛めっき処理時間(秒)」を含む合計時間である。 In the table, the temperature at which the soaking is maintained is "soaking temperature (° C)", the average cooling rate to 500 ° C after soaking is "average cooling rate 1 (° C / sec)", and the cooling rate at 500 ° C or less is " Average cooling rate 2 (° C / sec), cooling stop temperature is "cooling stop temperature (° C)", holding temperature at reheating after cooling stop is "reheating holding temperature (° C)", holding time at the holding temperature “Reheating holding time (seconds)”, plating bath temperature “plating bath temperature (° C.)” and plating time “hot dip galvanizing time (seconds)” respectively. In addition, "reheating holding time (second)" is a total time including "hot-dip galvanization processing time (second)".
 前記「再加熱保持温度(℃)」で、ほぼ(「再加熱保持時間(秒)」-「溶融亜鉛めっき処理時間(秒)」)保持した後、亜鉛めっき浴に鋼板を浸漬させ、「溶融亜鉛めっき処理時間(秒)」で溶融亜鉛めっき層を形成した。実験No.31、33では、亜鉛めっき浴へ浸漬直前に、表8の「再加熱保持温度(℃)」から「めっき浴温度(℃)」まで加熱を行ってから亜鉛めっき浴に浸漬させた。尚、一部鋼板には溶融亜鉛めっき処理を施した後、合金化処理を行った。表中、このときの合金化温度を「合金化温度(℃)」、合金化温度での保持時間を「合金化処理時間(秒)」と表記した。所定時間保持した後、室温まで放冷して供試鋼を得た。なお、表中の「品種」欄に溶融亜鉛めっき処理のみを行った鋼板は「GI」、合金化処理も行った鋼板は「GA」と記入した。 The steel sheet is immersed in the galvanizing bath after being held substantially ("Reheat holding time (second)"-"hot dip galvanizing treatment time (second)") at the above "reheat holding temperature (° C)" The galvanizing layer was formed in "galvanization processing time (second)". Experiment No. In 31 and 33, immediately before immersion in the zinc plating bath, heating was performed from “reheat holding temperature (° C.)” to “plating bath temperature (° C.)” in Table 8 and then the sheet was immersed in the zinc plating bath. In addition, after carrying out the hot dip galvanization process to the steel plate in part, the alloying process was performed. In the table, the alloying temperature at this time is expressed as “alloying temperature (° C.)”, and the holding time at the alloying temperature is expressed as “alloying treatment time (seconds)”. After holding for a predetermined time, it was allowed to cool to room temperature to obtain a test steel. In addition, the steel plate which performed only the hot dip galvanization process described with "GI" and the steel plate which performed the alloying process as "GA" to the "kind" column in a table | surface.
 各供試鋼について、下記に詳述する通り、金属組織、Mn濃度、各種機械的特性の評価を実施例1と同様にして行い、表9または表10に示した。 For each test steel, as described in detail below, the metal structure, the Mn concentration, and the evaluation of various mechanical properties were performed in the same manner as in Example 1, and are shown in Table 9 or Table 10.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 表6~10より次のことがわかる。本発明の成分組成を満たす鋼種A~NおよびQ~Uを用いて本発明で規定する焼鈍条件にて製造した実験No.1、2、4、5、10、11、13~16、18~23、25~28、および30~35の鋼板は、引張強度980MPa以上の領域において、延性と曲げ性に優れていた。 The following can be understood from Tables 6 to 10. Experiment No. 1 manufactured under the annealing conditions specified in the present invention using steel types A to N and Q to U satisfying the component composition of the present invention. The steel plates of 1, 2, 4, 5, 10, 11, 13-16, 18-23, 25-28, and 30-35 were excellent in ductility and bendability in the region of tensile strength of 980 MPa or more.
 これに対し、上記以外の鋼板は、下記に詳述する通り、本発明で規定する成分組成や製造条件を満たさず、所望の特性が得られなかった。 On the other hand, steel plates other than the above did not satisfy the component composition and manufacturing conditions specified in the present invention as described in detail below, and desired properties were not obtained.
 表6の鋼種OはC含有量、鋼種PはMn含有量が本発明の上限を超えており、冷間圧延時に破断を生じたため、供試鋼を製造できなかった。 The steel type O in Table 6 had a C content, and the steel type P had an Mn content exceeding the upper limit of the present invention, and fracture occurred during cold rolling, so that a test steel could not be produced.
 実験No.3は500℃以下まで冷却した後の再加熱保持温度での保持時間が短かった例であり、MA組織が増加して曲げ性が劣化した。 Experiment No. No. 3 is an example in which the holding time at the reheating holding temperature after cooling to 500 ° C. or less was short, and the MA structure increased and the bendability deteriorated.
 実験No.6は巻き取り後、所定の温度で保持しなかった例であり、Mn濃度1.2倍領域の標準偏差が低く、曲げ性が悪かった。 Experiment No. 6 is an example which was not kept at a predetermined temperature after winding, and the standard deviation of the region of 1.2 times the Mn concentration was low, and the bendability was bad.
 実験No.7は巻取り温度、および保持温度が低かった例であり、Mn濃度1.2倍の面積率、およびMn濃度1.2倍領域の標準偏差が低く、曲げ性が悪かった。 Experiment No. No. 7 was an example in which the winding temperature and the holding temperature were low, and the area ratio of Mn concentration 1.2 times and the standard deviation of the region of Mn concentration 1.2 times were low, and the bendability was bad.
 実験No.8は巻き取り後、所定の温度での保持時間が短かった例であり、Mn濃度1.2倍領域の標準偏差が低く、曲げ性が悪かった。 Experiment No. No. 8 is an example in which the holding time at a predetermined temperature was short after winding, and the standard deviation of the region of 1.2 times the Mn concentration was low, and the bendability was poor.
 実験No.9は、500℃以下まで冷却した後の再加熱が低かった例であり、MA組織が増加して曲げ性が劣化した。 Experiment No. 9 is an example in which reheating after cooling to 500 ° C. or lower was low, and the MA structure increased and the bendability deteriorated.
 実験No.12は均熱温度が高かった例であり、フェライトが十分生成せず、またフェライト相中のMn濃度が高くなりすぎたため、延性が悪かった。 Experiment No. No. 12 is an example in which the soaking temperature was high, and the ductility was poor because ferrite was not sufficiently generated and the Mn concentration in the ferrite phase was too high.
 実験No.17は冷却停止温度が高かった例であり、フェライトとMA組織が多くなり、強度が低く、また曲げ性も悪かった。 Experiment No. No. 17 was an example in which the cooling stop temperature was high, and the ferrite and MA structures were many, the strength was low, and the bendability was also poor.
 実験No.24は500℃までの冷却速度が遅い例であり、フェライト相中のMn濃度が高くなりすぎたため、曲げ性が悪化した。 Experiment No. No. 24 is an example where the cooling rate up to 500 ° C. is slow, and the bendability is deteriorated because the Mn concentration in the ferrite phase becomes too high.
 実験No.29は、500℃以下まで冷却した後、再加熱しなかった例であり、MA組織が増加して曲げ性が劣化した。 Experiment No. No. 29 is an example which did not reheat after cooling to 500 degrees C or less, MA structure | tissue increased and bending property deteriorated.

Claims (11)

  1.  鋼板の成分組成が、質量%で、
    C:0.10%以上0.30%以下、
    Si:1.2%以上3%以下、
    Mn:0.5%以上3.0%以下、
    P:0%超0.1%以下、
    S:0%超0.05%以下、
    Al:0.005%以上0.2%以下、
    N:0%超0.01%以下、および
    O:0%超0.01%以下
    を満たし、残部が鉄および不可避的不純物からなり、かつ、
     鋼板の板厚1/4位置の組織が、下記(1)~(5)の全てを満たすことを特徴とする延性及び曲げ性に優れた引張強度が980MPa以上の高強度冷延鋼板。
    (1)走査型電子顕微鏡で観察したときに、全組織に対するフェライトの面積率が5%以上50%未満であり、残部は硬質相である。
    (2)レペラー腐食を行い、光学顕微鏡で観察したときに、全組織に対するフレッシュマルテンサイトと残留オーステナイトの混合組織の面積率が0%超30%以下である。
    (3)電子線マイクロプローブ分析計で分析したときに、Mn濃度が前記鋼板中のMn濃度の1.2倍以上濃縮している領域が5面積%以上存在し、且つ
    (4)□2μm区画でMn濃度が前記鋼板中のMn濃度の1.2倍以上濃縮している領域の分率を計測し、100区画測定したときの標準偏差が4.0%以上である。
    (5)電子線マイクロプローブ分析計で分析したときに、フェライト相中のMn濃度が前記鋼板中のMn濃度の0.90倍以下である。
    The composition of the steel plate is, in mass%,
    C: 0.10% or more and 0.30% or less,
    Si: 1.2% or more and 3% or less,
    Mn: 0.5% or more and 3.0% or less,
    P: more than 0% and less than 0.1%,
    S: more than 0% and less than 0.05%,
    Al: 0.005% or more and 0.2% or less,
    And more than N: 0% and 0.01% or less, and O: more than 0% and 0.01% or less, and the balance consists of iron and unavoidable impurities, and
    A high strength cold rolled steel sheet having a tensile strength of 980 MPa or more and excellent in ductility and bendability characterized in that the structure at a 1/4 thickness position of the steel sheet satisfies all of the following (1) to (5).
    (1) When observed with a scanning electron microscope, the area ratio of ferrite to the entire structure is 5% or more and less than 50%, and the balance is a hard phase.
    (2) The area ratio of the mixed structure of fresh martensite and retained austenite with respect to the entire structure is more than 0% and 30% or less when subjected to repeller corrosion and observed with an optical microscope.
    (3) When analyzed with an electron beam microprobe analyzer, there are 5 area% or more of a region in which the Mn concentration is 1.2 times or more the Mn concentration in the steel plate, and (4) □ 2 μm section The fraction of the region where the Mn concentration is 1.2 times or more the Mn concentration in the steel sheet is measured, and the standard deviation when measured in 100 sections is 4.0% or more.
    (5) When analyzed by an electron beam microprobe analyzer, the Mn concentration in the ferrite phase is 0.90 times or less of the Mn concentration in the steel sheet.
  2.  X線回折法で測定したときに、全組織に対する残留オーステナイトの体積率が5%以上である請求項1に記載の高強度冷延鋼板。 The high strength cold rolled steel sheet according to claim 1, wherein the volume ratio of retained austenite to the entire structure is 5% or more when measured by the X-ray diffraction method.
  3.  前記硬質相が、前記フレッシュマルテンサイトと残留オーステナイトの混合組織と;ベイニティックフェライト、ベイナイト、および焼戻しマルテンサイよりなる群から選択される少なくとも一種の組織と;からなる請求項1に記載の高強度冷延鋼板。 The high strength according to claim 1, wherein the hard phase comprises a mixed structure of the fresh martensite and retained austenite; and at least one structure selected from the group consisting of bainitic ferrite, bainite, and tempered martensite. Cold rolled steel plate.
  4.  前記成分組成は、更に他の元素として、質量%で、下記(A)~(E)のうちの1以上を含む請求項1に記載の高強度冷延鋼板。
    (A)Cr:0%超1%以下、およびMo:0%超1%以下よりなる群から選択される少なくとも一種;
    (B)Ti:0%超0.15%以下、
    Nb:0%超0.15%以下、および
    V:0%超0.15%以下よりなる群から選択される少なくとも一種;
    (C)Cu:0%超1%以下、およびNi:0%超1%以下よりなる群から選択される少なくとも一種;
    (D)B:0%超0.005%以下
    (E)Ca:0%超0.01%以下、Mg:0%超0.01%以下、およびREM:0%超0.01%以下よりなる群から選択される少なくとも一種
    The high-strength cold-rolled steel sheet according to claim 1, wherein the component composition further includes one or more of the following (A) to (E) in mass% as other elements.
    (A) Cr: at least one selected from the group consisting of more than 0% and less than 1%, and Mo: more than 0% and less than 1%;
    (B) Ti: more than 0% and less than 0.15%,
    Nb: at least one selected from the group consisting of more than 0% and less than 0.15%, and V: more than 0% and less than 0.15%;
    (C) at least one selected from the group consisting of Cu: more than 0% and 1% or less, and Ni: more than 0% and 1% or less;
    (D) B: more than 0% and less than 0.005% (E) Ca: more than 0% and less than 0.01%, Mg: more than 0% and less than 0.01%, and REM: more than 0% and less than 0.01% At least one selected from the group consisting of
  5.  請求項1~4のいずれかに記載の高強度冷延鋼板の表面に、電気亜鉛めっき層が形成されていることを特徴とする高強度電気亜鉛めっき鋼板。 A high strength electrogalvanized steel sheet characterized in that an electrogalvanized layer is formed on the surface of the high strength cold rolled steel sheet according to any one of claims 1 to 4.
  6.  請求項1~4のいずれかに記載の高強度冷延鋼板の表面に、溶融亜鉛めっき層が形成されていることを特徴とする高強度溶融亜鉛めっき鋼板。 A high strength galvanized steel sheet characterized in that a hot dip galvanized layer is formed on the surface of the high strength cold rolled steel sheet according to any one of claims 1 to 4.
  7.  請求項1~4のいずれかに記載の高強度冷延鋼板の表面に、合金化溶融亜鉛めっき層が形成されていることを特徴とする高強度合金化溶融亜鉛めっき鋼板。 A high strength alloyed galvanized steel sheet characterized in that an alloyed galvanized steel layer is formed on the surface of the high strength cold rolled steel sheet according to any one of claims 1 to 4.
  8.  請求項1~4のいずれかに記載の高強度冷延鋼板を製造するための方法であって、
    前記成分組成からなる鋼板の熱延工程で、
    巻取り温度500℃以上800℃以下で巻取り、その後500℃以上800℃以下で3時間以上保持した後室温まで冷却し、冷延後、
    (Ac1点+20℃)以上Ac3点未満の温度域で均熱保持し、その後、500℃までを平均冷却速度10℃/秒以上、500℃以下を平均冷却速度10℃/秒以上で、500℃以下の温度域まで冷却し、
     次いで250℃以上500℃以下の温度域まで再加熱を行い、30秒間以上保持してから室温まで冷却する、延性及び曲げ性に優れた引張強度が980MPa以上の高強度冷延鋼板の製造方法。
    A method for producing the high strength cold rolled steel sheet according to any one of claims 1 to 4, comprising:
    In the hot rolling process of a steel plate having the above composition,
    Take up at a winding temperature of 500 ° C. or more and 800 ° C. or less, hold at 500 ° C. or more and 800 ° C. or less for 3 hours or more, and then cool to room temperature, cold rolled,
    Soaking is maintained in a temperature range of (Ac 1 point + 20 ° C.) or more and Ac 3 point, and then an average cooling rate of 10 ° C./sec or more and 500 ° C. or less is an average cooling rate of 10 ° C./sec or more up to 500 ° C. Cool to a temperature range of 500 ° C or less,
    Then, the method of manufacturing a high strength cold rolled steel sheet having a tensile strength of 980 MPa or more excellent in ductility and bendability by reheating to a temperature range of 250 ° C. to 500 ° C., holding for 30 seconds or more and cooling to room temperature.
  9.  請求項8に記載の製造方法で得られた高強度冷延鋼板に、更に電気亜鉛めっきを施すことを特徴とする高強度電気亜鉛めっき鋼板の製造方法。 A method for producing a high strength electrogalvanized steel sheet, which further comprises applying galvanizing to the high strength cold rolled steel sheet obtained by the method according to claim 8.
  10.  請求項6に記載の高強度溶融亜鉛めっき鋼板を製造するための方法であって、
    前記成分組成からなる鋼板の熱延工程で、
    巻取り温度500℃以上800℃以下で巻取り、その後500℃以上800℃以下で3時間以上保持した後室温まで冷却し、冷延後、
    (Ac1点+20℃)以上Ac3点未満の温度域で均熱保持し、その後、500℃までを平均冷却速度10℃/秒以上、500℃以下を平均冷却速度10℃/秒以上で、500℃以下の温度域まで冷却し、
     次いで250℃以上500℃以下の温度域まで再加熱を行い、30秒間以上保持すると共に、該保持時間内で溶融亜鉛めっきを施してから室温まで冷却する、延性及び曲げ性に優れた引張強度が980MPa以上の高強度溶融亜鉛めっき鋼板の製造方法。
    A method for producing the high strength galvanized steel sheet according to claim 6, wherein
    In the hot rolling process of a steel plate having the above composition,
    Take up at a winding temperature of 500 ° C. or more and 800 ° C. or less, hold at 500 ° C. or more and 800 ° C. or less for 3 hours or more, and then cool to room temperature, cold rolled,
    Soaking is maintained in a temperature range of (Ac 1 point + 20 ° C.) or more and Ac 3 point, and then an average cooling rate of 10 ° C./sec or more and 500 ° C. or less is an average cooling rate of 10 ° C./sec or more up to 500 ° C. Cool to a temperature range of 500 ° C or less,
    Next, re-heating to a temperature range of 250 ° C. to 500 ° C., holding for 30 seconds or more, hot-dip galvanizing within the holding time, and cooling to room temperature, tensile strength excellent in ductility and bendability Manufacturing method of high strength galvanized steel sheet of 980 MPa or more.
  11.  前記溶融亜鉛めっきを施した後、450℃以上550℃以下の温度域で合金化を行うものである請求項10に記載の高強度溶融亜鉛めっき鋼板の製造方法。 The method for producing a high-strength galvanized steel sheet according to claim 10, wherein after hot-dip galvanizing, alloying is performed in a temperature range of 450 ° C to 550 ° C.
PCT/JP2014/084315 2014-03-17 2014-12-25 High strength cold rolled steel sheet and high strength galvanized steel sheet having excellent ductility and bendability, and methods for producing same WO2015141097A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020187014630A KR102165992B1 (en) 2014-03-17 2014-12-25 High strength cold rolled steel sheet and high strength galvanized steel sheet having excellent ductility and bendability, and methods for producing same
MX2016011756A MX2016011756A (en) 2014-03-17 2014-12-25 High strength cold rolled steel sheet and high strength galvanized steel sheet having excellent ductility and bendability, and methods for producing same.
KR1020167028034A KR20160132926A (en) 2014-03-17 2014-12-25 High strength cold rolled steel sheet and high strength galvanized steel sheet having excellent ductility and bendability, and methods for producing same
US15/126,936 US20170096723A1 (en) 2014-03-17 2014-12-25 High strength cold rolled steel sheet and high strength galvanized steel sheet having excellent ductility and bendability, and methods for producing same
CN201480077035.3A CN106103768B (en) 2014-03-17 2014-12-25 Ductility and the excellent high strength cold rolled steel plate of bendability and high-strength hot-dip galvanized steel sheet and their manufacture method

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2014-053399 2014-03-17
JP2014053399 2014-03-17
JP2014-053400 2014-03-17
JP2014053400 2014-03-17
JP2014-192757 2014-09-22
JP2014192757A JP6306481B2 (en) 2014-03-17 2014-09-22 High-strength cold-rolled steel sheet and high-strength hot-dip galvanized steel sheet excellent in ductility and bendability, and methods for producing them

Publications (1)

Publication Number Publication Date
WO2015141097A1 true WO2015141097A1 (en) 2015-09-24

Family

ID=54144092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/084315 WO2015141097A1 (en) 2014-03-17 2014-12-25 High strength cold rolled steel sheet and high strength galvanized steel sheet having excellent ductility and bendability, and methods for producing same

Country Status (6)

Country Link
US (1) US20170096723A1 (en)
JP (1) JP6306481B2 (en)
KR (2) KR20160132926A (en)
CN (1) CN106103768B (en)
MX (1) MX2016011756A (en)
WO (1) WO2015141097A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018115933A1 (en) * 2016-12-21 2018-06-28 Arcelormittal High-strength cold rolled steel sheet having high formability and a method of manufacturing thereof
EP3421631A4 (en) * 2016-02-29 2019-07-24 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Steel sheet for hardening, hardened member, and method for manufacturing steel sheet for hardening
WO2023112461A1 (en) * 2021-12-13 2023-06-22 Jfeスチール株式会社 Steel sheet, member, method for producing said steel sheet and method for producing said member
WO2023188643A1 (en) * 2022-03-31 2023-10-05 Jfeスチール株式会社 Galvanized steel sheet, member, and methods for producing these

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017109541A1 (en) * 2015-12-21 2017-06-29 Arcelormittal Method for producing a high strength coated steel sheet having improved ductility and formability, and obtained coated steel sheet
WO2017109542A1 (en) * 2015-12-21 2017-06-29 Arcelormittal Method for producing a high strength steel sheet having improved ductility and formability, and obtained steel sheet
JP6749818B2 (en) * 2016-02-29 2020-09-02 株式会社神戸製鋼所 High-strength steel sheet and method for manufacturing the same
JP6875914B2 (en) * 2016-05-30 2021-05-26 株式会社神戸製鋼所 High-strength steel plate and its manufacturing method
WO2017208763A1 (en) * 2016-05-30 2017-12-07 株式会社神戸製鋼所 High-strength steel sheet and method for producing same
KR101858852B1 (en) * 2016-12-16 2018-06-28 주식회사 포스코 Cold-rolled steel sheet and galvanized steel sheet having excelent elonggation, hole expansion ration and yield strength and method for manufacturing thereof
KR101899688B1 (en) * 2016-12-23 2018-09-17 주식회사 포스코 High strength hot-rolled steel sheet having excellent continuously producing property, high strength gavanized steel sheet having excellent surface property and plating adhesion and method for manufacturing thereof
JP6414246B2 (en) * 2017-02-15 2018-10-31 Jfeスチール株式会社 High strength steel plate and manufacturing method thereof
EP3807429A1 (en) * 2018-06-12 2021-04-21 ThyssenKrupp Steel Europe AG Flat steel product and method for the production thereof
WO2020203159A1 (en) 2019-03-29 2020-10-08 日本製鉄株式会社 Steel sheet and manufacturing method thereof
CN114080463B (en) * 2019-07-29 2022-10-25 Posco公司 High-strength steel sheet and method for producing same
EP4006192A4 (en) * 2019-07-29 2022-09-07 Posco High-strength steel sheet and manufacturing method thereof
KR102353611B1 (en) * 2019-12-18 2022-01-20 주식회사 포스코 High strength steel sheet having excellent workability and method for manufacturing the same
KR102321297B1 (en) * 2019-12-18 2021-11-03 주식회사 포스코 High strength steel sheet having excellent workability and method for manufacturing the same
KR102321285B1 (en) * 2019-12-18 2021-11-03 주식회사 포스코 High strength steel sheet having excellent workability and method for manufacturing the same
KR102321288B1 (en) * 2019-12-18 2021-11-03 주식회사 포스코 High strength steel sheet having excellent workability and method for manufacturing the same
KR102321292B1 (en) 2019-12-18 2021-11-03 주식회사 포스코 High strength steel sheet having excellent workability and method for manufacturing the same
KR102348529B1 (en) * 2019-12-18 2022-01-07 주식회사 포스코 High strength steel sheet having excellent workability and method for manufacturing the same
KR102321295B1 (en) * 2019-12-18 2021-11-03 주식회사 포스코 High strength steel sheet having excellent workability and method for manufacturing the same
KR102348527B1 (en) * 2019-12-18 2022-01-07 주식회사 포스코 High strength steel sheet having excellent workability and method for manufacturing the same
KR102321287B1 (en) * 2019-12-18 2021-11-03 주식회사 포스코 High strength steel sheet having excellent workability and method for manufacturing the same
EP4217517A1 (en) * 2020-09-23 2023-08-02 ArcelorMittal Cold rolled and coated steel sheet and a method of manufacturing thereof
EP4194578A1 (en) 2020-10-13 2023-06-14 JFE Steel Corporation High-strength cold rolled steel sheet, high-strength plated steel sheet, method for manufacturing high-strength cold rolled steel sheet, and method for manufacturing high-strength plated steel sheet
US20230235421A1 (en) 2020-10-13 2023-07-27 Jfe Steel Corporation High-strength cold-rolled steel sheet, high-strength coated or plated steel sheet, method of producing high-strength cold-rolled steel sheet, method of producing high-strength coated or plated steel sheet, and automotive part
EP4299770A1 (en) * 2021-02-26 2024-01-03 Nippon Steel Corporation Steel sheet
KR20230085287A (en) * 2021-12-06 2023-06-14 주식회사 포스코 Cold rolled steel sheet having excellent weldability, strength and formability and method of manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012036269A1 (en) * 2010-09-16 2012-03-22 新日本製鐵株式会社 High-strength steel sheet with excellent ductility and stretch flangeability, high-strength galvanized steel sheet, and method for producing both
WO2013047739A1 (en) * 2011-09-30 2013-04-04 新日鐵住金株式会社 High-strength hot-dip galvanized steel sheet with excellent mechanical cutting characteristics, high-strength alloyed hot-dip galvanized steel sheet, and method for producing said sheets
JP2014034716A (en) * 2012-08-09 2014-02-24 Nippon Steel & Sumitomo Metal Steel sheet and method of producing the same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5223360B2 (en) * 2007-03-22 2013-06-26 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet with excellent formability and method for producing the same
JP4977879B2 (en) 2010-02-26 2012-07-18 Jfeスチール株式会社 Super high strength cold-rolled steel sheet with excellent bendability
JP5671391B2 (en) 2010-03-31 2015-02-18 株式会社神戸製鋼所 Super high strength steel plate with excellent workability and delayed fracture resistance
KR101604963B1 (en) * 2011-03-31 2016-03-18 가부시키가이샤 고베 세이코쇼 High-strength steel sheet with excellent workability and manufacturing method therefor
UA112771C2 (en) * 2011-05-10 2016-10-25 Арселормітталь Інвестігасьон І Десароло Сл STEEL SHEET WITH HIGH MECHANICAL STRENGTH, PLASTICITY AND FORMATION, METHOD OF MANUFACTURING AND APPLICATION OF SUCH SHEETS
US9745639B2 (en) * 2011-06-13 2017-08-29 Kobe Steel, Ltd. High-strength steel sheet excellent in workability and cold brittleness resistance, and manufacturing method thereof
US9988700B2 (en) * 2011-07-29 2018-06-05 Nippon Steel & Sumitomo Metal Corporation High-strength steel sheet and high-strength galvanized steel sheet excellent in shape fixability, and manufacturing method thereof
ES2755414T3 (en) * 2011-07-29 2020-04-22 Nippon Steel Corp High strength steel sheet excellent in impact resistance and manufacturing method thereof, and high strength galvanized steel sheet and manufacturing method thereof
KR102060522B1 (en) * 2012-03-30 2019-12-30 뵈스트알파인 스탈 게엠베하 High strength cold rolled steel sheet and method of producing such steel sheet
JP5632947B2 (en) * 2012-12-12 2014-11-26 株式会社神戸製鋼所 High-strength steel sheet excellent in workability and low-temperature toughness and method for producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012036269A1 (en) * 2010-09-16 2012-03-22 新日本製鐵株式会社 High-strength steel sheet with excellent ductility and stretch flangeability, high-strength galvanized steel sheet, and method for producing both
WO2013047739A1 (en) * 2011-09-30 2013-04-04 新日鐵住金株式会社 High-strength hot-dip galvanized steel sheet with excellent mechanical cutting characteristics, high-strength alloyed hot-dip galvanized steel sheet, and method for producing said sheets
JP2014034716A (en) * 2012-08-09 2014-02-24 Nippon Steel & Sumitomo Metal Steel sheet and method of producing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3421631A4 (en) * 2016-02-29 2019-07-24 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Steel sheet for hardening, hardened member, and method for manufacturing steel sheet for hardening
WO2018115933A1 (en) * 2016-12-21 2018-06-28 Arcelormittal High-strength cold rolled steel sheet having high formability and a method of manufacturing thereof
WO2018116155A1 (en) * 2016-12-21 2018-06-28 Arcelormittal High-strength cold rolled steel sheet having high formability and a method of manufacturing thereof
US11279984B2 (en) 2016-12-21 2022-03-22 Arcelormittal High-strength cold rolled steel sheet having high formability and a method of manufacturing thereof
WO2023112461A1 (en) * 2021-12-13 2023-06-22 Jfeスチール株式会社 Steel sheet, member, method for producing said steel sheet and method for producing said member
JP7311069B1 (en) * 2021-12-13 2023-07-19 Jfeスチール株式会社 Steel plate and member, and manufacturing method thereof
WO2023188643A1 (en) * 2022-03-31 2023-10-05 Jfeスチール株式会社 Galvanized steel sheet, member, and methods for producing these

Also Published As

Publication number Publication date
CN106103768A (en) 2016-11-09
KR102165992B1 (en) 2020-10-15
MX2016011756A (en) 2016-12-16
CN106103768B (en) 2018-04-06
KR20180061395A (en) 2018-06-07
JP6306481B2 (en) 2018-04-04
KR20160132926A (en) 2016-11-21
JP2015193897A (en) 2015-11-05
US20170096723A1 (en) 2017-04-06

Similar Documents

Publication Publication Date Title
WO2015141097A1 (en) High strength cold rolled steel sheet and high strength galvanized steel sheet having excellent ductility and bendability, and methods for producing same
JP6554397B2 (en) High strength cold rolled steel sheet having a tensile strength of 980 MPa or more excellent in workability and impact property, and a method of manufacturing the same
JP6554396B2 (en) High strength cold rolled steel sheet having a tensile strength of 980 MPa or more excellent in workability and impact property, and a method of manufacturing the same
JP6179677B2 (en) High strength steel plate and manufacturing method thereof
KR101913053B1 (en) High-strength steel sheet, high-strength hot-dip galvanized steel sheet, high-strength hot-dip aluminum-coated steel sheet, and high-strength electrogalvanized steel sheet, and methods for manufacturing same
JP6179676B2 (en) High strength steel plate and manufacturing method thereof
KR101598309B1 (en) High-strength steel sheet having excellent shape-retaining properties, high-strength zinc-plated steel sheet, and method for manufacturing same
JP5536831B2 (en) High-strength steel sheet excellent in workability and low-temperature brittleness, and manufacturing method thereof
KR101605980B1 (en) High-strength hot-dip galvanized steel sheet having excellent delayed fracture resistance, and method for producing same
JP6304456B2 (en) Thin steel plate and plated steel plate, hot rolled steel plate manufacturing method, cold rolled full hard steel plate manufacturing method, heat treatment plate manufacturing method, thin steel plate manufacturing method and plated steel plate manufacturing method
JP6458833B2 (en) Manufacturing method of hot-rolled steel sheet, manufacturing method of cold-rolled full hard steel sheet, and manufacturing method of heat-treated plate
WO2014092025A1 (en) High-strength steel plate and manufacturing method thereof
JP6372633B1 (en) High strength steel plate and manufacturing method thereof
JPWO2016021197A1 (en) High strength steel plate and method for producing the same, and method for producing high strength galvanized steel plate
JP6315160B1 (en) High strength steel plate and manufacturing method thereof
JPWO2016031165A1 (en) High-strength hot-dip galvanized steel sheet excellent in stretch flangeability, in-plane stability and bendability of stretch flangeability, and manufacturing method thereof
WO2016158160A1 (en) HIGH-STRENGTH COLD-ROLLED STEEL SHEET HAVING EXCELLENT WORKABILITY AND COLLISION CHARACTERISTICS AND HAVING TENSILE STRENGTH OF 980 MPa OR MORE, AND METHOD FOR PRODUCING SAME
KR20180095699A (en) High strength galvanized steel sheet, high strength member and manufacturing method of high strength galvanized steel sheet
JP6249140B1 (en) High yield ratio type high strength galvanized steel sheet and method for producing the same
KR20190022786A (en) High strength steel sheet and manufacturing method thereof
WO2016158159A1 (en) HIGH-STRENGTH COLD-ROLLED STEEL SHEET HAVING EXCELLENT WORKABILITY AND COLLISION CHARACTERISTICS AND HAVING TENSILE STRENGTH OF 980 MPa OR MORE, AND METHOD FOR PRODUCING SAME
JP6372632B1 (en) High strength steel plate and manufacturing method thereof
JP7468815B1 (en) High-strength plated steel sheet and method for producing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14886585

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/011756

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 15126936

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167028034

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14886585

Country of ref document: EP

Kind code of ref document: A1