WO2015139317A1 - 信息交互装置、基站和通信系统 - Google Patents

信息交互装置、基站和通信系统 Download PDF

Info

Publication number
WO2015139317A1
WO2015139317A1 PCT/CN2014/073895 CN2014073895W WO2015139317A1 WO 2015139317 A1 WO2015139317 A1 WO 2015139317A1 CN 2014073895 W CN2014073895 W CN 2014073895W WO 2015139317 A1 WO2015139317 A1 WO 2015139317A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
status information
data packet
information
data packets
Prior art date
Application number
PCT/CN2014/073895
Other languages
English (en)
French (fr)
Inventor
李兆俊
汪巍崴
Original Assignee
富士通株式会社
李兆俊
汪巍崴
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社, 李兆俊, 汪巍崴 filed Critical 富士通株式会社
Priority to PCT/CN2014/073895 priority Critical patent/WO2015139317A1/zh
Publication of WO2015139317A1 publication Critical patent/WO2015139317A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/02Buffering or recovering information during reselection ; Modification of the traffic flow during hand-off

Definitions

  • the present invention relates to the field of communications, and in particular, to an information interaction apparatus, a base station, and a communication system. Background technique
  • the dual connectivity operation allows the user equipment (UE, User Equipment) in the connected state to simultaneously use the radio resources provided by at least two different base stations connected by non-ideal backhaul, thereby improving single-user throughput.
  • Bearer Split as one of the dual connectivity options, splits a bearer (such as a user-used service) into multiple base stations to achieve the best single-user throughput gain allowed by the technology's potential.
  • FIG. 1 is a schematic diagram of a network architecture for bearer splitting.
  • one bearer is split into two base stations, one of which is a base station of a macro cell, and the other base station is a base station of a small cell, and the two base stations may also be base stations of a small cell.
  • One of the base stations is a primary base station (MeNB) and the other base station is a secondary base station (SeNB).
  • MeNB primary base station
  • SeNB secondary base station
  • FIG. 2 is a schematic diagram of a protocol stack for bearer splitting. As shown in FIG. 2, on the primary base station side, a Packet Data Convergence Protocol (PDCP), a Radio Link Control (RLC), and a Medium Access Control (MAC) are included. On the secondary base station side, there is no PDCP.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • the transmit buffer overflow of the SeNB will cause the user throughput gain of the dual connectivity operation to decrease; if too much data is compressed to the transmit buffer of the SeNB, the transmission delay via the SeNB will increase, The SeNB may be forced to discard packets received from the MeNB due to buffer overflow. Therefore, a good flow control mechanism is the key to double-join operation based on bearer splitting.
  • the SeNB requests the MeNB for the amount of data to be transmitted to perform traffic control.
  • the transmission rate of the downlink data transmitted by the MeNB to the SeNB on the X2 interface is too high (compared to the data processing capacity of the SeNB); and/or the SeNB is on the air interface (the interface between the UE and the SeNB)
  • the transmission rate of the downlink data sent to the UE is too low.
  • the MeNB upstream buffer overflows including:
  • the transmission rate of the uplink data sent by the SeNB to the MeNB on the X2 interface is too high (compared to the data processing capacity of the MeNB); and/or the transmission rate of the uplink data sent by the MeNB to the serving gateway (S-GW) is too low (core network ( CN, Core Network) Congestion).
  • S-GW serving gateway
  • the MeNB uplink buffer underflows including:
  • the transmission rate of the uplink data sent by the SeNB to the MeNB on the X2 interface is too low (compared to the quality of service (QoS) guarantee requirement); and/or the transmission rate of the uplink data sent by the UE to the SeNB on the air interface is too low.
  • QoS quality of service
  • the transmission rate of downlink data sent by the MeNB to the SeNB on the X2 interface is too low (compared to quality of service (QoS) guarantee requirements).
  • the embodiments of the present invention provide a method, an apparatus, and a communication system for information interaction, which can meet the above requirements and solve the problems existing in the prior art.
  • an information interaction apparatus comprising: a first communication unit for receiving from a second base station participating in a dual connection operation, and/or The status information of the data packet is transmitted to the second base station participating in the dual connectivity operation.
  • a base station comprising the information interaction apparatus of the first aspect.
  • a communication system including a first base station and a second base station participating in a dual connectivity operation, wherein one of the first base station and the second base station Base station from Another base station receives, and/or transmits status information of the data packet to another base station.
  • the state information of the interactive data packet between the base stations participating in the dual connection operation can ensure that the flow control mechanism of the dual connection operation works well, reliability, and high efficiency, and solves the problem in the prior art.
  • Figure 1 is a schematic diagram of a network architecture for bearer splitting
  • 2 is a schematic diagram of a protocol stack for bearer splitting
  • Embodiment 3 is a flowchart of an information interaction method according to Embodiment 1 of the present invention.
  • FIG. 4 is a schematic structural diagram of an information interaction apparatus according to Embodiment 3 of the present invention.
  • Figure 5 is a block diagram showing the structure of a base station according to Embodiment 4 of the present invention.
  • FIG. 6 is a schematic structural diagram of an information interaction apparatus according to Embodiment 5 of the present invention.
  • Figure 7 is a block diagram showing the structure of a base station according to Embodiment 6 of the present invention.
  • FIG. 8 is a block diagram showing the communication system of Embodiment 7 of the present invention. detailed description
  • an embodiment of the present invention provides an information interaction method, a device, a base station, and a communication system, where the base stations participating in the dual connection operation exchange state information about the data packet, so that the base station can The information is obtained and processed accordingly, thereby ensuring that the flow control mechanism works well, reliability and high efficiency, and solves the problems existing in the prior art.
  • FIG. 3 is a flowchart of an information interaction method according to Embodiment 1 of the present invention. As shown in FIG. 3, the method includes: Step 301: One of a first base station and a second base station participating in a dual connectivity operation receives status information of a data packet from another base station, and/or transmits to another base station.
  • the base station can perform corresponding processing according to the obtained state information of the data packet, thereby ensuring that the flow control mechanism works well, reliability, and high efficiency.
  • one of the first base station and the second base station participating in the dual connection operation may be used as the primary base station, and the other base station is used as the secondary base station, for example, the first base station is referred to as the primary base station (MeNB).
  • the second base station is referred to as a secondary base station (SeNB); the user equipment is sent to the second base station, and data transmission from the second base station to the first base station is referred to as uplink data transmission, and the first base station is The second base station, data transmission from the second base station to the user equipment is referred to as downlink data transmission; and vice versa.
  • the primary base station and the secondary base station may be a macro cell base station or a small cell base station.
  • the following is an example in which the first base station is a primary base station (MeNB), and the second base station is a secondary base station (SeNB), and vice versa.
  • the status information of the data packet received by the first base station from the second base station includes one or more of the following information:
  • the resource usage report may be represented by "occupancy of the buffer storing the data packet", for example, may be one or more of the following occupancy rates: may be the occupation of the buffer storing the uplink data packet Rate, the occupancy of the buffer holding the downstream packet, and the buffer occupancy of all packets.
  • the status information of the data packet sent by the first base station to the second base station includes one or more of the following information. :
  • the method may further include:
  • Step 302 Perform corresponding processing according to the received status information of the data packet.
  • the dual-connected traffic can be well controlled and the quality of service requirement can be ensured.
  • This step is an optional step.
  • the following examples illustrate:
  • the first base station when the first base station receives the status information of the data packet sent by the second base station, the first base station performs one or more of the following according to the received status information (such as 1) to 7) deal with:
  • the second base station when the second base station receives the status information of the data packet sent by the first base station, the second base station performs one or more of the following according to the received status information (such as 8) to 9) deal with:
  • the second base station reserves resources for supporting the split bearer according to the buffer size of the first base station participating in the dual connection operation for temporarily storing the downlink PDCP data packet sent to the second base station;
  • the second base station adjusts, according to the third state information, a transmission rate of sending uplink data to the first base station.
  • one or two of the first base station and the second base station may send the status information of the data packet to the base station according to a predetermined time (period or aperiod) or when the trigger condition is met.
  • the status information of the data packet may be the serial number information of the data packet, for example, Packet Data Convergence Protocol (PDCP) Sequence Number (SN), Radio Link Control ( RLC, Radio Link Control) serial number information, IP serial number information, user-level GPRS Tunnel Protocol (GTP-U, GPRS Tunnel Protocol for the User Plane) serial number information, etc., are not listed here.
  • PDCP Packet Data Convergence Protocol
  • SN Packet Data Convergence Number
  • RLC Radio Link Control
  • IP serial number information IP serial number information
  • GTP-U user-level GPRS Tunnel Protocol for the User Plane serial number information
  • the uplink data packet is an uplink PDCP data packet
  • the downlink data packet is a downlink PDCP data packet.
  • the serial number information of other data packets is similar to the case of the PDCP serial number information, and will not be enumerated here.
  • the status information of the data packet can be exchanged between the base stations through any existing message or newly created message.
  • a base station can include the status information of the data packet in a status report of the data packet to transmit to another base station.
  • the status information of the data packet may be further divided into uplink status information related to uplink data transmission and downlink status information related to downlink data transmission, and different status reports of different data packets are used to interact with the uplink. And downstream status information.
  • a base station may include the status information of the data packet in any existing or newly created message to another base station, or may include the status information of the data packet in the PDCP serial number status report. Send to another base station.
  • the PDCP sequence number information includes PDCP sequence number information related to uplink data transmission and PDCP sequence number information related to downlink data transmission
  • one base station may also pass the uplink PDCP sequence.
  • the column number status report transmits PDCP sequence number information related to the uplink data transmission, and transmits PDCP sequence number information related to the downlink data transmission through the downlink PDCP sequence number status report.
  • the status information of the data packet is PDCP serial number information, and the status information is transmitted through the downlink PDCP serial number status report and the uplink PDCP serial number status report, respectively, as an example for detailed description.
  • Example 2
  • Embodiment 2 of the present invention provides an information interaction method. The difference from Embodiment 1 will be described in detail based on Embodiment 1.
  • the second base station when the second base station sends the status information of the data packet to the first base station, the second base station may use one or more of the information 1), 2), and 4) in the first embodiment. Included in the downlink PDCP sequence number status report, sent to the first base station; one or more of the information 5) to 7) in Embodiment 1 are included in the uplink PDCP sequence number status report to the first base station Send
  • the information may be sent to the first base station by using an uplink PDCP sequence number status report, or may be sent to the first base station by using a downlink PDCP sequence number status report, for example, if the resource usage report is used. If the occupancy rate of the buffer storing the uplink data packet is used, the uplink PDCP sequence number status report is used; if the resource usage report is the occupancy rate of the buffer storing the downlink data packet, the downlink PDCP sequence number status report is used; Also, there is no limit here. If the resource usage report is the occupancy of a buffer that holds all packets, then which status report is available.
  • the first base station may apply the embodiment
  • the information 9) is transmitted to the second base station in the downlink PDCP sequence number status report; the information 10) in the first embodiment is included in the uplink PDCP sequence number status report and transmitted to the second base station.
  • the above downlink PDCP sequence number status report and the uplink PDCP sequence number status report can be used independently. This case will be described in detail below as an example.
  • the first base station sends a downlink PDCP sequence number status report to the second base station, where the downlink PDCP sequence number status report may include:
  • the buffer size estimated by the first base station for temporarily storing downlink PDCP packets addressed to the second base station.
  • the second base station sends a downlink PDCP sequence number status report to the first base station, and the downlink PDCP sequence number status report received by the first base station from the second base station may include one of the following information or More than one:
  • the second base station may receive downlink PDCP data packets (such as PDUs) on an X2 interface between the first base station and the second base station, and may receive the received PDCP data packet.
  • a status information is sent to the first base station; wherein the first status information can be represented by a bit string (Bit String), but is not limited to this representation. When represented by a bit string, "1" or "0" can be used to indicate that the second base station correctly receives (ACK) or erroneously receives (NACK). vice versa.
  • the first base station may determine, according to the first state information, whether to slow down the data transmission rate on the X2 interface.
  • the second base station sends a PDCP data packet to the user equipment by using an air interface between the second base station and the user equipment, where the second base station may send a downlink PDCP data packet to the user equipment.
  • the second state information is sent to the first base station; wherein the second state information may be represented by a bit string (Bit String), but is not limited to such a representation. When represented by a bit string, "1" or “0" can be used to indicate that the user equipment is correctly receiving (ACK) or erroneously receiving (NACK). vice versa.
  • the first base station may consider whether to terminate the dual connection operation using the second base station according to the second status information.
  • the resource usage report may be represented by a buffer occupancy rate for storing downstream data packets or a buffer occupancy rate for storing all data packets.
  • the first base station may adjust the resource scheduling based on the dual connectivity operation based on the bearer split according to the downlink status report.
  • the first base station sends an uplink PDCP sequence number status report to the second base station, where
  • the uplink PDCP serial number status report includes:
  • the first base station may receive uplink PDCP data packets (such as PDUs) on the X2 interface (Interface) between the first base station and the second base station, and may receive the received PDCP data packet.
  • the third state information is sent to the second base station; wherein the third state information may be represented by a bit string (Bit String), but is not limited to such a representation.
  • Bit String When represented by a bit string, "1" or "0" can be used to indicate that the first base station correctly receives (ACK) or erroneously receives (NACK). vice versa.
  • the second base station may determine, according to the third state information, whether to slow down the data transmission rate on the X2 interface.
  • the second base station may send an uplink PDCP sequence number status report to the first base station, and the uplink PDCP sequence number status report received by the first base station may include one or more of the following information:
  • the first base station may reserve resources supporting the split bearer according to the information.
  • the second base station receives an uplink PDCP data packet sent by the user equipment on an air interface between the second base station and the user equipment, and the second base station may receive the received uplink PDCP data packet.
  • the fourth state information is sent to the first base station; wherein the fourth state information may be represented by a bit string, but is not limited to such a representation. When represented by a bit string, "1" or "0" can be used to indicate that the second base station correctly receives (ACK) or erroneously receives (NACK). vice versa.
  • the first base station can consider whether to terminate the double connection operation using the second base station according to the received information.
  • the resource usage report may be represented by a buffer occupancy rate of an upstream data packet or a buffer occupancy rate of all data packets.
  • the first base station can perform the double connection operation based on the bearer split according to the resource usage report.
  • Resource scheduling performed for example, when the resource usage report indicates that the buffer occupancy rate is high, the first base station may reduce the service provided by the second base station to the split bearer, such as by reducing the second base station The packet that is served by the split.
  • the first base station may fine-tune the resource based on the dual-connection operation based on the bearer split according to the uplink channel status report. Scheduling.
  • the base station that receives the uplink PDCP sequence number status report and/or the downlink PDCP sequence number status report performs corresponding processing according to the status report;
  • the first base station when the first base station receives the downlink PDCP sequence number status report from the second base station, the first base station may perform one or more of the following processes according to the received information:
  • the first base station determines, according to the first state information, whether to slow down a transmission rate of a downlink PDCP data packet sent to the second base station;
  • the first base station may determine, according to the first state information, whether all downlink PDCP data packets have been correctly received; if too many PDCP data packets are not correctly received, the first A base station can slow down the data transmission rate on the X2 interface while ensuring the quality of service (QoS) requirement; wherein, according to a predetermined threshold, it can be determined whether too many PDCP data packets are not correctly received, for example, the domain value can be 1%, if more than or equal to 1% of PDCP packets are not received correctly, it is considered that too many PDCP packets are not received correctly, but the threshold can also be other values, which can be determined according to actual conditions. The above 1% is only a specific example. .
  • the first base station determines, according to the second state information, whether to terminate the dual connection operation using the second base station
  • the first base station may determine, according to the second state information, whether all downlink PDCP data packets have been correctly sent; if too many PDCP data packets are not correctly sent, The first base station may consider terminating the use of the second base station for dual connectivity operations;
  • the method for judging that the excessive PDCP data packet is not correctly received is similar to the foregoing, and is not described here.
  • the first base station determines, according to the resource usage report, a transmission rate of the PDCP data packet sent to the second base station, and/or performs resource scheduling for the dual connectivity operation;
  • the resource usage report is to store the buffer occupancy of the downstream data packet or to store all data packets.
  • the buffer occupancy rate when the buffer occupancy rate is large, determining that the first base station transmits a data packet to the second base station at a higher transmission rate, so that the transmission rate can be slowed down; and vice versa, here No longer.
  • the first base station may further perform resource scheduling on the bearer split-based dual connection operation according to the resource usage report; for example, when the resource usage report indicates that the buffer occupancy rate is high, the first base station may be reduced.
  • the service provided by the second base station to the split bearer for example, the data packet of the split bearer served by the second base station is reduced; and vice versa, and details are not described herein again.
  • the first base station adjusts resource scheduling for the dual connectivity operation according to the downlink channel state report
  • the first base station may fine-tune the resource scheduling based on the bearer split-based dual connectivity operation according to the downlink channel state report. For example, if the downlink channel state report indicates that the downlink channel quality of the terminal results in a decrease in the transmission rate, the first base station can reduce the data packets transmitted to the second base station.
  • the second base station when the second base station receives the downlink PDCP sequence number status report from the first base station, the second base station may perform the following processing according to the received information:
  • the second base station reserves sufficient resources for supporting the split bearer according to the buffer size estimated by the first base station for temporarily storing the downlink PDCP data packet addressed to the second base station.
  • the first base station when the first base station receives the uplink PDCP sequence number status report from the second base station, the first base station may perform one or more of the following processes according to the received information:
  • the first base station reserves the resource for supporting the split bearer according to the buffer size estimated by the second base station for temporarily storing the uplink PDCP data packet sent to the first base station.
  • the first base station determines, according to the fourth state information, whether to terminate the dual connection operation using the second base station;
  • the first base station may determine, according to the received information, whether all uplink PDCP data packets have been correctly received; if too many PDCP data packets are not correctly received, the first base station may consider terminating the second use.
  • the base station performs a dual connection operation.
  • the first base station performs resource scheduling for the dual connectivity operation according to the resource usage report.
  • the specific resource scheduling mode is as described above, and will not be described here.
  • the resource usage report is the buffer occupancy rate of the uplink data packet or the buffer occupancy rate of all the data packets.
  • the first base station reports resource scheduling for the dual connectivity operation according to the uplink channel status report Make adjustments;
  • the first base station may fine-tune the resource scheduling based on the bearer split dual connection operation according to the uplink channel state report. For example, if the uplink channel status report indicates that the uplink channel quality of the terminal results in a decrease in the transmission rate, the first base station can reduce the data packets received by the second base station.
  • the second base station when the second base station receives the uplink PDCP sequence number status report from the first base station, the second base station may perform the following processing according to the received information:
  • the second base station determines whether to slow down the transmission rate of the uplink data transmission according to the received third state information. For example, after receiving the third state information, the second base station may determine, according to the third state information, whether all uplink PDCPs are used. The data packet has been received correctly; if too many PDCP data packets are not received correctly, the second base station can slow down the data transmission rate on the X2 interface;
  • the foregoing may determine, according to a predetermined threshold, whether an excessive number of PDCP data packets are not correctly received, as described above, and details are not described herein again.
  • the first base station sends an uplink and/or downlink PDCP sequence number status report to the second base station according to the first predetermined time or when the first trigger condition is met, and/or receives the second base station according to the second base station.
  • an estimate of the buffer size for temporarily storing PDCP PDUs in the first base station or the second base station may be periodically performed; a report on status information of a PDCP data packet reception or transmission status may be triggered by an event, for example If the PDCP packet that is not correctly received or sent exceeds a certain domain value, the status information is triggered to be reported.
  • the PDCP serial number status report can be used independently;
  • the processing based on the above status report can also be performed independently;
  • the first base station may perform resource scheduling for a double connection operation based on bearer splitting to guarantee QoS requirements, or adjust a transmission rate of the sent data packet according to the obtained information, or determine whether to terminate the use of the first
  • the second base station performs a dual connection operation; or the resource reserved for the double connection operation based on the bearer split according to the information;
  • the second base station may reserve a dual connection operation based on bearer splitting according to the information. Resources; or adjust the transmission rate of the transmitted packets based on the obtained information.
  • Fig. 4 is a block diagram showing the structure of an information interaction apparatus according to a third embodiment of the present invention.
  • the apparatus 400 includes a first communication unit 401 for receiving from a second base station participating in the dual connection operation, and/or to the second participating in the double connection operation.
  • the second base station sends status information of the data packet.
  • the status information of the data packet may be the serial number information of the data packet, as described in Embodiment 1, and the content thereof is incorporated herein, and details are not described herein again.
  • the content of the status information of the data packet that is sent by the first communication unit 401 to the second base station and received from the second base station is sent by the first base station to the second base station according to Embodiments 1 and 2.
  • the content of the status information of the data packet received from the second base station is the same, and the content thereof is incorporated herein, and details are not described herein again.
  • the information interaction apparatus 400 may further include: a first estimating unit (not The first estimating unit is configured to estimate a buffer size used by the first base station to temporarily store downlink data packets sent to the second base station.
  • the apparatus 400 may further include a first processing unit 402 for performing corresponding processing according to status information of the received data packet. For example, resource scheduling for dual connectivity operations based on bearer splitting may be performed to guarantee QoS requirements, and/or to adjust the transmission rate of the transmitted data packets based on the obtained information, and/or to determine whether to terminate using the second base station A dual connection operation; and/or a resource reserved for a dual connectivity operation based on bearer splitting based on the information. In this way, the efficiency and reliability of the flow control of the double connection can be ensured, and the quality of service can be met.
  • the processing manner of the specific first processing unit 402 is as described in Embodiment 1 and Embodiment 2, and the content thereof is incorporated herein, and details are not described herein again.
  • the status information of the data packet is PDCP serial number information
  • the uplink data packet and the downlink data packet may be an uplink PDCP data packet and a downlink PDCP data packet, respectively.
  • the other serial number information is similar to the PDCP serial number, and will not be described here.
  • the first communication unit 401 may send or receive status information of the data packet to the second base station in the manner described in Embodiment 1, Embodiment 2, and merge the This, no longer here Narration.
  • the first processing unit 402 may further include a second processing unit 402a and a third processing unit 402b, respectively, according to the received
  • the downlink PDCP sequence number status report and the uplink PDCP sequence number status report are processed accordingly. among them,
  • the second processing unit 402a is configured to determine, according to the first status information, whether to slow down the transmission rate of the downlink PDCP data packet sent to the second base station. ; and / or,
  • the resource scheduling for the dual connectivity operation is adjusted based on the downlink channel state report.
  • the third processing unit 402b is configured to determine, according to the fourth status information, whether to terminate using the second base station to perform dual Connection operation; and/or,
  • resource scheduling for the dual connectivity operation may be an occupancy rate of a buffer storing an uplink data packet or a buffer occupancy rate of all data packets; and/or,
  • the resource scheduling for the dual connectivity operation is adjusted based on the uplink channel status report.
  • the first communication unit may send an uplink PDCP sequence number status report and/or a downlink PDCP sequence number status report to the second base station according to a predetermined time or when a preset trigger condition is met, specifically, as implemented.
  • Example 1 and Embodiment 2 are not described here.
  • the second processing unit 402 and the third processing unit 403 are optional components, which can be used independently, and are processed based on the downlink and uplink PDCP sequence number status reports, respectively, but can also be implemented by using one processor in combination.
  • Example 4
  • FIG. 5 is a block diagram showing the structure of a base station according to a fourth embodiment of the present invention. As shown in FIG. 5, the base station includes, as in Embodiment 3 The information interaction device 505.
  • FIG. 5 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • base station 500 can include: a central processing unit (CPU) 501 and memory 504; and a memory 504 coupled to central processing unit 501.
  • the memory 504 can store various data; in addition, a program for information processing is stored, and the program is executed under the control of the central processing unit 501 to receive information transmitted by the second base station and/or to transmit information to the second base station.
  • the functionality of information interaction device 505 can be integrated into central processor 501.
  • the central processing unit 501 can be configured to: receive status information of the data packet from the second base station participating in the dual connectivity operation, and/or to the second base station participating in the dual connectivity operation.
  • the status information of the data packet is as described in Embodiments 1-3, and the content thereof is incorporated herein, and details are not described herein again.
  • the central processing unit 501 may be configured to: determine, according to the first state information, whether to slow down a transmission rate of the downlink data packet sent to the second base station; and / or,
  • the status report adjusts the resource scheduling for this dual connection operation.
  • the status information of the data packet may be serial number information, such as PDCP serial number information, and correspondingly, the uplink data packet and the downlink data packet are an uplink PDCP data packet and a downlink PDCP data packet, respectively.
  • the function of the information interaction device may not be integrated into the central processing unit 501, and the central processing unit
  • the 501 is configured separately, for example, the information interaction device 503 can be configured as a chip connected to the central processing unit 501, and the function of the information interaction device 503 is implemented by the control of the central processing unit 501.
  • the base station 500 may further include: a transceiver 502, an antenna 503, and the like; wherein the functions of the above components are similar to the prior art, and details are not described herein again. It should be noted that the base station 500 does not have to include all of the components shown in FIG. 5; in addition, the base station 500 may also include components not shown in FIG. 5, and reference may be made to the prior art.
  • the base station can perform corresponding processing according to the obtained state information of the data packet, which can ensure that the flow control mechanism works well, reliability, and high efficiency.
  • Example 5
  • Figure 6 is a block diagram showing the structure of an information interaction apparatus according to a fifth embodiment of the present invention.
  • the apparatus 600 includes a second communication unit 601 for receiving from the first base station participating in the dual connection operation, and/or to the second participating in the double connection operation.
  • a base station transmits status information of the data packet.
  • the status information of the data packet may be the serial number information of the data packet, as described in Embodiment 1, and the content thereof is incorporated herein, and details are not described herein again.
  • the content of the status information of the data packet received by the second communication unit 601 from the first base station to the first base station is as described in Embodiment 1-3, and the content thereof is incorporated herein. Let me repeat.
  • the information interaction apparatus 600 may further include: a second estimation unit ( Not shown), the second estimating unit is configured to estimate a buffer size of the second base station participating in the dual connection operation for temporarily storing the uplink data packet sent to the first base station.
  • the apparatus 600 may further include a fourth processing unit 602 for performing corresponding processing according to status information of the received data packet.
  • a fourth processing unit 602 for performing corresponding processing according to status information of the received data packet.
  • the resource reserved for the dual-connection operation based on the bearer splitting may be used according to the status information, or the transmission rate of the sent data packet may be adjusted according to the obtained information, as described in Embodiments 1 to 3.
  • the processing manner of the specific fourth processing unit 602 is as described in Embodiment 1 to Embodiment 2, and the content thereof is incorporated herein, and details are not described herein again.
  • the status information of the data packet is PDCP serial number information
  • the uplink data packet and the downlink data packet may be an uplink PDCP data packet and a downlink PDCP data packet, respectively.
  • the other serial number information is similar to the PDCP serial number, and will not be described here.
  • the second communication unit 601 may send the status information of the data packet to the first base station or receive the status information of the data packet from the first base station in the manner described in Embodiment 1, Embodiment 2, and merge the This will not be repeated here.
  • the fourth processing unit 602 may further include a fifth processing unit 602a and a sixth processing unit 602b, respectively, according to the received The downlink PDCP sequence number status report and the uplink PDCP sequence number status report are processed accordingly. among them,
  • the determining unit 602a is configured to determine, according to the third state information, whether to slow down the transmission rate of the uplink PDCP data packet sent to the first base station.
  • the fourth processing unit 602b when the second communication unit 601 receives the downlink PDCP sequence number status report from the first base station, the fourth processing unit 602b is configured to use the estimated downlink PDCP for temporary storage to the second base station.
  • the buffer size of the packet which reserves resources for double-join operations based on bearer splitting.
  • the second communication unit 601 may send the status information of the data packet to the first base station according to a predetermined time or when a preset trigger condition is met, as described in Embodiment 1 and Embodiment 2, I won't go into details here.
  • the fifth processing unit 602a and the sixth processing unit 602b are optional components, which can be used independently, and are processed based on the downlink and uplink PDCP sequence number status reports, respectively, but can also be implemented by using one processor in combination.
  • Example 6
  • Figure 7 is a block diagram showing the structure of a base station according to a sixth embodiment of the present invention. As shown in FIG. 7, the base station includes the information interaction device 705 as described in Embodiment 4.
  • FIG. 7 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • base station 700 can include: a central processing unit (CPU) 701 and memory 704; and a memory 704 coupled to central processing unit 701.
  • the memory 704 can store various data; in addition, a program for information processing is stored, and the program is executed under the control of the central processing unit 701 to receive information transmitted by the first base station and/or to transmit information to the first base station.
  • the functionality of information interaction device 705 can be integrated into central processor 701.
  • the central processing unit 701 can be configured to: receive status information of the data packet from the first base station participating in the dual connectivity operation, and/or to the second base station participating in the dual connectivity operation.
  • the status information of the data packet is as described in Embodiments 1-3, and the content thereof is incorporated herein, and details are not described herein again.
  • the central processing unit 701 may be configured to: determine, according to the third state information, whether to slow down a transmission rate of the uplink data packet sent to the first base station, when receiving the status information of the data packet sent by the first base station; and / or
  • the status information of the data packet may be serial number information, such as PDCP serial number information
  • the uplink data packet and the downlink data packet are an uplink PDCP data packet and a downlink PDCP data packet, respectively.
  • the function of the information interaction device may not be integrated into the central processing unit 701, and is configured separately from the central processing unit 701.
  • the information interaction device 705 may be configured as a chip connected to the central processing unit 701 through the central processing unit 701. Control is implemented to implement the functions of the information interaction device 705.
  • the base station 700 may further include: a transceiver 702, an antenna 703, and the like; wherein the functions of the above components are similar to those of the prior art, and details are not described herein again. It should be noted that the base station 700 does not have to include all of the components shown in FIG. 7; in addition, the base station 700 may also include components not shown in FIG. 7, and reference may be made to the prior art.
  • the base station can obtain uplink and downlink status reports, so that corresponding processing can be performed according to the foregoing information, which can ensure that the flow control mechanism works well, reliability, and high efficiency.
  • Example 7
  • FIG. 8 is a block diagram showing the communication system of Embodiment 7 of the present invention. As shown in FIG. 8, the user equipment (UE) is in a connected state, and the radio resources are provided by at least two different base stations.
  • UE user equipment
  • the number of the base stations is not limited to two, and may be multiple, but the status information of the interactive data packets is similar to that of the foregoing embodiment, and details are not described herein again.
  • the base station may include a base station (e.g., referred to as a first base station) as described in Embodiment 4 and a base station (e.g., referred to as a second base station) as described in Embodiment 6.
  • a base station e.g., referred to as a first base station
  • a base station e.g., referred to as a second base station
  • the one of the first base station and the second base station receives status information of the data packet from another base station and/or to another base station.
  • the content of the status information of the data packet is as described in Embodiment 1 and Embodiment 2, and the content thereof is incorporated herein, and details are not described herein again.
  • the first base station after receiving the status information of the data packet sent by the second base station, the first base station is configured to: determine, according to the first status information, whether to slow down sending to the second base station. a transmission rate of the downlink data packet; and/or, determining, according to the second state information, whether to terminate the dual connectivity operation using the second base station; and/or performing resource scheduling for the dual connectivity operation according to the resource usage report; And/or adjusting, according to the downlink channel state report, the resource scheduling for the dual connectivity operation; and/or determining, according to the fourth state information, whether to terminate the dual connectivity operation using the second base station; and/or, according to the uplink
  • the channel status report adjusts the resource scheduling for this dual connectivity operation.
  • the second base station after receiving the status information of the data packet sent by the first base station, the second base station adjusts a transmission rate of sending uplink data to the first base station according to the third status information; and/or According to the buffer size of the first base station participating in the dual connection operation for temporarily storing the downlink PDCP data packet addressed to the second base station, the reserved resource is reserved for supporting the split bearer.
  • the status information of the data packet may be serial number information, such as PDCP serial number information, and correspondingly, the uplink data packet and the downlink data packet are an uplink PDCP data packet and a downlink PDCP data packet, respectively.
  • the specific sender, the receiving mode, and the corresponding processing according to the state information of the first base station and the second base station are combined as described in Embodiment 2, and the contents thereof are combined. Here, it will not be described here.
  • the first base station and the second base station can obtain the status information of the data packet, and perform corresponding processing according to the foregoing information, thereby ensuring that the flow control mechanism works well, reliability, and high efficiency.
  • Embodiments of the present invention also provide a computer readable program, wherein when the program is executed in an information mutual device or a base station, the program causes a computer to execute the embodiments 1 and 2 in the information interaction device or base station Information interaction method.
  • the embodiment of the present invention further provides a storage medium storing a computer readable program, wherein the computer readable program causes the computer to execute the information interaction method described in Embodiments 1-2 in the information interaction device or the base station.
  • a person skilled in the art can understand that all or part of the steps of implementing the above embodiments can be completed by a program to instruct related hardware, and the program can be stored in a computer readable storage medium.
  • the method may include all or part of the steps in the foregoing embodiment, and the storage medium may include: a ROM, a RAM, a magnetic disk, an optical disk, and the like.
  • the apparatus and method above in the present application may be implemented by hardware, or may be implemented by hardware in combination with software.
  • the present application relates to a computer readable program that, when executed by a logic component, enables the logic component to implement the apparatus or components described above, or to cause the logic component to implement the various methods described above Or steps.
  • Logic components such as field programmable logic components, microprocessors, processors used in computers, and the like.
  • the present application also relates to a storage medium for storing the above program, such as a hard disk, a magnetic disk, an optical disk, a DVD, a flash memory, or the like.

Abstract

一种信息交互装置、基站和通信系统,该装置包括第一通信单元,所述第一通信单元用于从参与双重连接操作的第二基站接收、和/或向参与双重连接操作的第二基站发送数据包的状态信息。通过基站间交互上述数据包的状态信息可保证良好的流量控制机制工作良好、可靠性、高效性,解决了现有技术中存在的问题。

Description

信息交互装置、 基站和通信系统 技术领域
本发明涉及通信领域, 特别涉及一种信息交互装置、 基站和通信系统。 背景技术
低功率小小区 (Small Cells) 被认为是极有前途的新技术, 可用于应对移动流量 爆炸, 特别是在室内和室外的热点部署场景中。其中, 双重连接操作可让处于连接状 态的用户设备 (UE, User Equipment) 同时使用以非理想回程 (backhaul) 连接的至 少两个不同的基站所提供的无线资源, 从而提高单用户吞吐量。 承载拆分 (Bearer Split), 作为双重连接操作选项之一, 将一个承载 (如用户使用的服务) 拆分到多个 基站, 可实现技术潜能所允许的最佳单用户吞吐量增益。
图 1是承载拆分的网络架构示意图。 如图 1所示, 将一个承载拆分到两个基站, 其中一个基站是宏小区的基站, 另一个基站是小小区的基站,此外该两个基站也可均 为小小区的基站。其中的一个基站是主基站(MeNB),另一个基站是辅基站(SeNB)。
图 2是承载拆分的协议栈示意图。 如图 2所示, 在主基站侧, 包括分组数据汇聚 协议 (PDCP, Packet Data Convergence Protocol) 无线链路控制 (RLC, Radio Link Control)和媒介接入控制(MAC, Medium Access Control)。在辅基站侧,不存在 PDCP。
在上述承载拆分操作中, SeNB的发送缓冲器溢出将造成双重连接操作的用户吞 吐量增益降低; 如果过多的数据被压到 SeNB的发送缓冲器, 经由该 SeNB的传输延 迟将会增加, 可能会迫使该 SeNB由于缓冲区溢出而丢弃从 MeNB接收到的数据包。 因此, 一个良好的流量控制机制是基于承载拆分的双重连接操作的关键。
目前, 通过 SeNB向 MeNB请求发送数据的数据量, 以进行流量控制。
应该注意, 上面对技术背景的介绍只是为了方便对本发明的技术方案进行清楚、 完整的说明, 并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本发 明的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。 发明内容
虽然通过上述现有机制可进行流量控制,但经研究发现,现有的流量控制机制无 法满足以下需求:
在 SeNB和 MeNB之间交换充足的信息, 以保证流量控制机制工作良好; 无数据包丢失, 以保证流量控制机制的可靠性;
采用极少的信令开销, 以保证流量控制机制的高效性;
尽可能重用已有的信令消息。
另外, 上述现有机制无法克服以下问题:
问题 1 : SeNB下行缓冲器溢出, 原因包括:
MeNB 在 X2接口 (MeNB和 SeNB之间的接口)上向 SeNB 发送下行数据的传 输速率过高(与 SeNB的数据处理容量相比); 和 /或 SeNB 在空中接口 (UE与 SeNB 之间的接口) 上向 UE 发送下行数据的传输速率过低。
问题 2: MeNB 上行缓冲器溢出, 原因包括:
SeNB在 X2接口上向 MeNB 发送上行数据的传输速率过高 (与 MeNB的数据 处理容量相比);和 /或 MeNB向服务网关(S-GW) 发送上行数据的传输速率过低 (核 心网 (CN, Core Network) 拥塞)。
问题 3: MeNB 上行缓冲器下溢, 原因包括:
SeNB在 X2接口上向 MeNB 发送上行数据的传输速率过低(与服务质量(QoS) 保障要求相比); 和 /或 UE 在空中接口上向 SeNB发送上行数据的传输速率过低。
问题 4: SeNB下行缓冲器下溢, 原因包括:
MeNB 在 X2接口上向 SeNB发送下行数据的传输速率过低(与服务质量(QoS) 保障要求相比)。
本发明实施例提供一种信息交互方法、装置和通信系统, 可满足上述需求、 并解 决现有技术中存在的问题。
根据本发明实施例的第一个方面, 提供了一种信息交互装置, 该装置包括: 第一通信单元,所述第一通信单元用于从参与双重连接操作的第二基站接收、和 /或向参与双重连接操作的第二基站发送数据包的状态信息。
根据本发明实施例的第二个方面,提供了一种基站, 该基站包括第一方面所述的 信息交互装置。
根据本发明实施例的第三个方面,提供了一种通信系统, 该系统包括参与双重连 接操作的第一基站和第二基站,其中,所述第一基站和所述第二基站中的一个基站从 另一个基站接收、 和 /或向另一个基站发送数据包的状态信息。
本发明实施例的有益效果在于:参与双重连接操作的基站间通过交互数据包的状 态信息, 可保证该双重连接操作的流量控制机制工作良好、可靠性和高效性, 解决了 现有技术中存在的问题。
参照后文的说明和附图,详细公开了本发明的特定实施方式,指明了本发明的原 理可以被采用的方式。应该理解, 本发明的实施方式在范围上并不因而受到限制。在 所附权利要求的精神和条款的范围内,本发明的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和 /或示出的特征可以以相同或类似的方式在一个或更多 个其它实施方式中使用, 与其它实施方式中的特征相组合, 或替代其它实施方式中的 特征。
应该强调, 术语"包括 /包含"在本文使用时指特征、 整件、 步骤或组件的存在, 但并不排除一个或更多个其它特征、 整件、 步骤或组件的存在或附加。 附图说明
所包括的附图用来提供对本发明实施例的进一步的理解,其构成了说明书的一部 分, 用于例示本发明的实施方式, 并与文字描述一起来阐释本发明的原理。 显而易见 地, 下面描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。 在附图中: 图 1是承载拆分的网络架构示意图;
图 2是承载拆分的协议栈示意图;
图 3是本发明实施例 1的信息交互方法流程图;
图 4是本发明实施例 3的信息交互装置结构示意图;
图 5是本发明实施例 4的基站构成示意图;
图 6是本发明实施例 5的信息交互装置结构示意图;
图 7是本发明实施例 6的基站构成示意图;
图 8是本发明实施例 7的通信系统架构图。 具体实施方式
参照附图, 通过下面的说明书, 本发明的前述以及其它特征将变得明显。在说明 书和附图中, 具体公开了本发明的特定实施方式,其表明了其中可以采用本发明的原 则的部分实施方式, 应了解的是, 本发明不限于所描述的实施方式, 相反, 本发明包 括落入所附权利要求的范围内的全部修改、变型以及等同物。下面结合附图对本发明 的各种实施方式进行说明。
为了解决现有技术中存在的问题, 本发明实施例提供一种信息交互方法及其装 置、基站和通信系统, 参与双重连接操作的基站之间交换有关数据包的状态信息, 这 样, 基站可根据获得信息进行相应的处理, 从而保证了流量控制机制工作良好、可靠 性和高效性,解决了现有技术中存在的问题。 以下结合附图对本发明实施例进行详细 说明。
实施例 1
图 3是本发明实施例 1的信息交互方法流程图。 如图 3所示, 该方法包括: 步骤 301, 参与双重连接操作的第一基站和第二基站中的一个基站从另一个基站 接收、 和 /或向另一个基站发送数据包的状态信息。
通过上述实施例,基站可根据获得的数据包的状态信息进行相应的处理,可保证 流量控制机制工作良好、 可靠性和高效性。
在本实施例中,可将参与双重连接操作的第一基站和第二基站中的一个基站作为 主基站, 将另一个基站作为辅基站, 例如, 将该第一基站称为主基站 (MeNB), 将 该第二基站称为辅基站(SeNB); 将该用户设备到该第二基站, 从该第二基站到该第 一基站的数据传输称为上行数据传输,将从该第一基站到该第二基站、从该第二基站 到用户设备的数据传输称为下行数据传输; 反之亦然。
在本实施例中, 该主基站和该辅基站可为宏小区基站, 也可以是小小区基站。 下面以该第一基站为主基站 (MeNB), 该第二基站为辅基站 (SeNB) 为例进行 说明, 反之亦然。
在本实施例中, 该第一基站从该第二基站接收的数据包的状态信息, 即该第二基 站向该第一基站发送的数据包的状态信息包括以下信息中的一个或一个以上:
1 ) 该第二基站从参与双重连接操作的第一基站接收到的下行数据包的第一状态 信息, 该第一状态信息用于指示是否所有的下行数据包已被该第二基站正确接收;
2) 该第二基站发送到用户设备的下行数据包的第二状态信息, 该第二状态信息 用于指示是否所有的下行数据包已被该第二基站正确发送到该用户设备; 3 ) 针对该双重连接操作, 该第二基站的资源使用报告;
在本实施例中, 该资源使用报告可用 "存放数据包的缓冲器的占用率"来表示, 例如,可以是以下占用率其中之一或一个以上: 可以是存放上行数据包的缓冲器的占 用率, 存放下行数据包的缓冲器的占用率, 存放所有数据包的缓冲器的占用率。
4) 使用双重连接操作的用户设备的下行信道状态报告;
5 ) 该第二基站预估的用于暂存发往参与双重连接操作的第一基站的上行数据包 的缓冲器大小;
6) 该第二基站从用户设备接收到的上行数据包的第四状态信息, 该第四状态信 息用于指示是否所有的上行数据包已被正确接收;
7) 使用双重连接操作的用户设备的上行信道状态报告。
在本实施例中, 该第一基站向该第二基站发送的数据包的状态信息, 即该第二基 站接收该第一基站发送的数据包的状态信息, 包括以下信息中的一个或一个以上:
8) 参与双重连接操作的第一基站用于暂存发往该第二基站的下行数据包的缓冲 器大小;
9) 参与双重连接操作的第一基站从该第二基站接收到的上行数据包的第三状态 信息, 该第三状态信息用于指示是否所有的上行数据包已被该第一基站正确接收。
在本实施例中,在一个基站从另一个基站接收数据包的状态信息后,如图 3所示, 该方法还可包括:
步骤 302, 根据接收到的该数据包的状态信息进行相应的处理;
其中,根据该数据包的状态信息进行处理后,可对该双重连接的流量进行良好地 控制并且还可保证服务质量的需求, 该步骤为可选步骤。 以下举例说明:
例如,在该第一基站接收到该第二基站发送的该数据包的状态信息时, 该第一基 站根据接收的状态信息 (如上述 1 ) 〜7)) 进行如下一种或一种以上的处理:
1 ) 根据该第一状态信息决定是否减缓向该第二基站发送的下行数据包的传输速 率;
2)根据该第二状态信息和 /或该第四状态信息决定是否终止使用该第二基站进行 双重连接操作;
3 ) 根据该资源使用报告进行针对该双重连接操作的资源调度;
4)根据该下行信道状态报告和 /或上行信道状态报告对针对该双重连接操作所作 的资源调度进行调整;
5 ) 根据该第二基站预估的用于暂存发往该第一基站的上行数据包的缓冲器大小 为支持拆分承载预留资源。
例如,在该第二基站接收到该第一基站发送的该数据包的状态信息时, 该第二基 站根据接收的状态信息 (如上述 8) 〜9)) 进行如下一种或一种以上的处理:
6) 该第二基站根据参与双重连接操作的第一基站用于暂存发往该第二基站的下 行 PDCP数据包的缓冲器大小为支持拆分承载预留资源;
7 )该第二基站根据该第三状态信息调整向该第一基站发送上行数据的传输速率。 在本实施例中, 该第一基站和第二基站中的一个或二个基站可按照预定时间(周 期或非周期) 或者在满足触发条件时向对方基站发送该数据包的状态信息。
在本实施例中, 该数据包的状态信息可为数据包的序列号信息, 例如, 分组数据 汇聚协议(PDCP, Packet Data Convergence Protocol)序列号(SN, Sequence Number) 信息, 无线链路控制 (RLC, Radio Link Control)序列号信息, IP序列号信息, 用户 层面的 GPRS隧道协议 (GTP-U , GPRS Tunnel Protocol for the User Plane)序列号信 息等, 此处不一一列举。 但本实施例不限于上述信息, 还可包括其他信息。
例如, 该数据包的状态信息为 PDCP序列号信息时, 该上行数据包为上行 PDCP 数据包,该下行数据包为下行 PDCP数据包。对于其他数据包的序列号信息与该 PDCP 序列号信息的情况类似, 此处不再一一列举。
在本实施例中,基站之间可通过现有的任何一种消息或者新建的消息交互该数据 包的状态信息。例如, 一个基站可将该数据包的状态信息包含在数据包的状态报告中 向另一个基站发送。
此外, 还可将该数据包的状态信息分为与上行数据传输相关的上行的状态信息、 以及与下行数据传输相关的下行的状态信息,且分别采用不同的数据包的状态报告来 交互该上行和下行的状态信息。
例如,对于 PDCP序列号信息, 一个基站可将该数据包的状态信息包含在任意已 有或新建的消息向另一个基站发送,也可将该数据包的状态信息包含在 PDCP序列号 状态报告中向另一个基站发送。
另外, 如果该 PDCP序列号信息包含与上行数据传输有关的 PDCP序列号信息、 和与下行的数据传输有关的 PDCP序列号信息,则一个基站还可通过上行的 PDCP序 列号状态报告发送与上行的数据传输有关的 PDCP序列号信息,通过下行的 PDCP序 列号状态报告发送与下行的数据传输有关的 PDCP序列号信息。
以下实施例 2 以该数据包的状态信息为 PDCP 序列号信息、 分别通过下行的 PDCP序列号状态报告和上行的 PDCP序列号状态报告来发送该状态信息为例进行详 细说明。 实施例 2
本发明实施例 2提供一种信息交互方法。 基于实施例 1, 对于与实施例 1不同之 处进行详细说明。
在本实施例中,在该第二基站向该第一基站发送该数据包的状态信息时,该第二 基站可将实施例 1中信息 1 )、 2) 和 4) 中的一个或一个以上包含在下行的 PDCP序 列号状态报告中向该第一基站发送; 将实施例 1 中的信息 5 ) 〜7 ) 中的一个或一个 以上包含在上行的 PDCP序列号状态报告中向该第一基站发送;
对于实施例 1中的信息 3 ), 可以通过上行的 PDCP序列号状态报告向该第一基 站发送, 也可通过下行的 PDCP序列号状态报告向该第一基站发送, 例如, 如果该资 源使用报告是存放上行数据包的缓冲器的占用率,则使用上行的 PDCP序列号状态报 告; 如果该资源使用报告是存放下行数据包的缓冲器的占用率, 则使用下行的 PDCP 序列号状态报告; 反之亦然, 此处不做限定。如果该资源使用报告是存放所有数据包 的缓冲器的占用率, 则使用哪个状态报告都可。
在该第一基站向该第二基站发送该数据包的状态信息时,该第一基站可将实施例
1中信息 9) 包含在下行的 PDCP序列号状态报告中向该第二基站发送; 将实施例 1 中的信息 10) 包含在上行的 PDCP序列号状态报告中向该第二基站发送。
以上下行的 PDCP序列号状态报告和上行的 PDCP序列号状态报告可独立使用。 以下以这种情况为例进行详细说明。
在本实施例中, 该第一基站向该第二基站发送下行的 PDCP序列号状态报告, 该 下行的 PDCP序列号状态报告可包括:
该第一基站预估的用于暂存发往该第二基站的下行 PDCP数据包的缓冲器大小。 这样,在该第二基站接收到该缓冲器大小的信息后,可根据该信息为支持拆分承载预 留足够的资源。 在本实施例中, 该第二基站向该第一基站发送下行的 PDCP序列号状态报告, 该 第一基站从该第二基站接收的下行的 PDCP 序列号状态报告可包括以下信息中的一 个或一个以上:
1 ) 该第二基站从该第一基站接收到的下行 PDCP数据包的第一状态信息, 该第 一状态信息用于指示是否所有的下行 PDCP数据包已被该第二基站正确接收;
在本实施例中,该第二基站可在该第一基站和第二基站之间的 X2接口(interface) 上接收到下行 PDCP数据包 (如 PDUs), 可将接收到的 PDCP数据包的第一状态信 息发送给该第一基站; 其中, 可通过比特串 (Bit String)来表示该第一状态信息, 但 不限于这种表示方式。 在通过比特串来表示时, 可使用 " 1 "或 "0"来指示该第二基 站正确接收 (ACK) 或错误接收 (NACK)。 反之亦然。
这样,该第一基站接收到该第一状态信息后,可以根据该第一状态信息确定是否 减缓在 X2接口上的数据传输速率。
2)该第二基站发送到用户设备的下行 PDCP数据包的第二状态信息, 该第二状 态信息用于指示是否所有的下行 PDCP 数据包已被该第二基站正确发送到该用户设 备;
在本实施例中,该第二基站通过该第二基站和该用户设备之间的空中接口向该用 户设备发送 PDCP数据包,该第二基站可将发送到该用户设备的下行 PDCP数据包的 第二状态信息向该第一基站发送; 其中, 可通过比特串 (Bit String)来表示该第二状 态信息, 但不限于这种表示方式。 在通过比特串来表示时, 可使用 " 1 "或 "0"来指 示该用户设备正确接收 (ACK) 或错误接收 (NACK)。 反之亦然。
这样,在该第一基站接收到该第二状态信息后,可根据该第二状态信息考虑是否 终止使用该第二基站进行双重连接操作。
3 ) 针对该双重连接操作, 该第二基站的资源使用报告;
在本实施例中,该资源使用报告可采用存放下行的数据包的缓冲器占用率或存放 所有数据包的缓冲器占用率来表示。
4) 使用双重连接操作的用户设备在空中接口上的下行信道状态报告; 在本实施例中,该第一基站可根据该下行状态报告调整为基于承载拆分的双重连 接操作所做的资源调度。
在本实施例中, 该第一基站向该第二基站发送上行的 PDCP序列号状态报告, 该 上行的 PDCP序列号状态报告包括:
该第一基站从该第二基站接收到的上行 PDCP数据包的第三状态信息,该第三状 态信息用于指示是否所有的上行 PDCP数据包已被该第一基站正确收;
在本实施例中,该第一基站可在该第一基站和第二基站之间的 X2接口(Interface) 上接收到上行 PDCP数据包 (如 PDUs), 可将接收到的 PDCP数据包的第三状态信 息发送给该第二基站; 其中, 可通过比特串 (Bit String)来表示该第三状态信息, 但 不限于这种表示方式。 在通过比特串来表示时, 可使用 " 1 "或 "0"来指示该第一基 站正确接收 (ACK) 或错误接收 (NACK)。 反之亦然。
这样,该第二基站接收到该第三状态信息后,可以根据该第三状态信息确定是否 减缓在 X2界面上数据传输速率。
在本实施例中, 该第二基站可向该第一基站发送上行的 PDCP序列号状态报告, 该第一基站接收到的上行的 PDCP 序列号状态报告可包括以下信息其中之一或一个 以上:
1 ) 该第二基站预估的用于暂存发往该第一基站的上行 PDCP数据包的缓冲器大 小;
其中, 该第一基站获得该信息后, 可以根据该信息预留支持拆分承载的资源。
2) 该第二基站从用户设备接收到的上行 PDCP数据包的第四状态信息, 该第四 状态信息用于指示是否所有的上行 PDCP数据包已被正确接收;
在本实施例中,该第二基站在该第二基站和该用户设备之间的空中接口上接收该 用户设备发送的上行 PDCP数据包,该第二基站可将接收到的上行 PDCP数据包的第 四状态信息向该第一基站发送; 其中, 可通过比特串 (Bit String)来表示该第四状态 信息, 但不限于这种表示方式。 在通过比特串来表示时, 可使用 " 1 "或 "0"来指示 该第二基站正确接收 (ACK) 或错误接收 (NACK)。 反之亦然。
这样,该第一基站可根据接收到的上述信息考虑是否终止使用该第二基站进行双 重连接操作。
3 ) 针对该双重连接操作, 该第二基站的资源使用报告;
在本实施例中,该资源使用报告可采用存放上行的数据包的缓冲器占用率或者存 放所有数据包的缓冲器占用率来表示。
这样,该第一基站可根据该资源使用报告进行为基于承载拆分的双重连接操作所 做的资源调度; 例如, 在该资源使用报告表明该缓冲器的占用率较高时, 该第一基站 可以减少该第二基站对该拆分承载所提供的服务,如减少由该第二基站所服务的该拆 分承载的数据包。
4) 使用双重连接操作的用户设备在空中接口上的上行信道状态报告; 在本实施例中,该第一基站可根据该上行信道状态报告微调为基于承载拆分的双 重连接操作所做的资源调度。
在本实施例中, 接收到该上行的 PDCP序列号状态报告和 /或下行的 PDCP序列 号状态报告的基站根据该状态报告进行相应的处理;
在本实施例中, 在该第一基站从该第二基站接收下行的 PDCP 序列号状态报告 时, 该第一基站可根据接收到的信息进行如下处理之一或一个以上:
1 ) 该第一基站根据该第一状态信息决定是否减缓向该第二基站发送的下行 PDCP数据包的传输速率;
例如,该第一基站接收到该第一状态信息后,可以根据该第一状态信息确定是否 所有的下行 PDCP数据包已被正确接收; 如果有过多的 PDCP数据包未被正确接收, 该第一基站可在保障服务质量 (QoS) 需求的同时减缓在 X2界面上数据传输速率; 其中,可根据预定的阈值来判断是否有过多的 PDCP数据包未被正确接收, 如该 域值可为 1%, 如果大于等于 1%的 PDCP数据包未正确接收, 则认为过多的 PDCP 数据包未正确接收, 但该阈值还可为其他数值, 可根据实际情况确定, 上述 1%仅为 具体实例。
2) 该第一基站根据该第二状态信息决定是否终止使用该第二基站进行双重连接 操作;
例如,在该第一基站接收到该第二状态信息后,可根据该第二状态信息确定是否 所有的下行 PDCP数据包已被正确发送; 如果有过多的 PDCP数据包未被正确发送, 该第一基站会考虑终止使用该第二基站进行双重连接操作;
其中,该过多的 PDCP数据包未被正确接收的判断方法与上述类似,此处不再赘 述。
3 ) 该第一基站根据该资源使用报告确定向该第二基站发送的 PDCP数据包的传 输速率和 /或进行针对该双重连接操作的资源调度;
例如,该资源使用报告是存放下行的数据包的缓冲器占用率或者存放所有数据包 的缓冲器占用率,在该缓冲器占用率较大时,可确定该第一基站向该第二基站发送数 据包的传输速率较高, 这样, 可减缓该传输速率; 反之亦然, 此处不再赘述。
此外,该第一基站还可根据该资源使用报告对基于承载拆分的双重连接操作进行 资源调度; 例如, 在该资源使用报告表明该缓冲器的占用率较高时, 该第一基站可以 减少该第二基站对该拆分承载所提供的服务,如减少由该第二基站所服务的该拆分承 载的数据包; 反之亦然, 此处不再赘述。
4) 该第一基站根据下行信道状态报告对针对该双重连接操作所作的资源调度进 行调整;
例如,该第一基站可根据该下行信道状态报告微调为基于承载拆分的双重连接操 作所做的资源调度。例如, 如果下行信道状态报告表明终端的下行信道质量导致传输 速率降低, 第一基站可以减少向第二基站发送的数据包。
在本实施例中, 在该第二基站从该第一基站接收下行的 PDCP 序列号状态报告 时, 该第二基站可根据接收到的信息进行如下处理:
该第二基站根据该第一基站预估的用于暂存发往该第二基站的下行的 PDCP数 据包的缓冲器大小为支持拆分承载预留足够的资源。
在本实施例中, 在该第一基站从该第二基站接收上行的 PDCP 序列号状态报告 时, 该第一基站可根据接收到的信息进行如下处理之一或一个以上:
1 ) 该第一基站根据该第二基站预估的用于暂存发往该第一基站的上行 PDCP数 据包的缓冲器大小预留支持拆分承载的资源。
2) 该第一基站根据该第四状态信息决定是否终止使用该第二基站进行双重连接 操作;
例如, 该第一基站可根据接收到的上述信息确定是否所有的上行 PDCP数据包 已被正确接收; 如果有过多的 PDCP数据包未被正确接收, 该第一基站会考虑终止使 用该第二基站进行双重连接操作。
3 ) 该第一基站根据该资源使用报告进行针对该双重连接操作的资源调度。 具体 的资源调度方式如上所述, 此处不再赘述;
其中该资源使用报告是存放上行的数据包的缓冲器占用率或者存放所有数据包 的缓冲器占用率。
4) 该第一基站根据该上行信道状态报告对针对该双重连接操作所作的资源调度 进行调整;
例如,该第一基站可根据该上行信道状态报告微调为基于承载拆分的双重连接操 作所做的资源调度。例如, 如果上行信道状态报告表明终端的上行信道质量导致传输 速率降低, 第一基站可以减少由第二基站接收的数据包。
在本实施例中, 在该第二基站从该第一基站接收上行的 PDCP 序列号状态报告 时, 该第二基站可根据接收到的信息进行如下处理:
该第二基站根据接收到的第三状态信息确定是否减缓上行数据传输的传输速率; 例如,该第二基站接收到该第三状态信息后,可以根据该第三状态信息确定是否 所有的上行 PDCP数据包已被正确接收; 如果有过多的 PDCP数据包未被正确接收, 该第二基站可减缓在 X2界面上数据传输速率;
其中,可根据预定的阈值来判断是否有过多的 PDCP数据包未被正确接收, 具体 如上述所述, 此处不再赘述。
在本实施例中,该第一基站按照第一预定时间或者在满足第一触发条件时向该第 二基站发送上行和 /或下行的 PDCP序列号状态报告、 和 /或接收该第二基站按照第二 预定时间或在满足第二触发条件时向该第一基站发送的上行和 /或下行的 PDCP序列 号状态报告。
例如, 可以定期地进行有关在该第一基站或第二基站中用于暂存 PDCP PDUs的 缓冲器大小的预估报告; 有关 PDCP数据包接收或发送状态的状态信息的报告可由 事件触发, 例如, 未正确接收或发送的 PDCP数据包超过一定的域值时, 触发报告上 述状态信息。
上述从该第一基站到该第二基站的上行的 PDCP序列号状态报告、下行的 PDCP 序列号状态报告、 以及从该第二基站到该第一基站的上行的 PDCP序列号状态报告、 下行的 PDCP序列号状态报告可以独立使用;
相应地基于上述状态报告的处理也可以独立进行;
该第一基站获得上述信息后,可进行为基于承载拆分的双重连接操作所做的资源 调度以保障 QoS需求、 或者根据获得信息来调节发送数据包的传输速率、 或者确定 是否终止使用该第二基站进行双重连接操作;或者根据该信息为基于承载拆分的双重 连接操作预留的资源;
该第二基站获得上述信息后,可根据该信息为基于承载拆分的双重连接操作预留 的资源; 或者根据获得信息来调节发送数据包的传输速率。
通过上述处理, 可保证双重连接 (Dual Connectivity) 的流量控制的可靠性和高 效性。 以及保证了服务质量的需求。 实施例 3
图 4是本发明实施例 3的信息交互装置的构成示意图。 用于第一基站侧, 如图 4 所示, 装置 400包括第一通信单元 401, 第一通信单元 401用于从参与双重连接操作 的第二基站接收、 和 /或向参与双重连接操作的第二基站发送数据包的状态信息。
在本实施例中, 该数据包的状态信息可为可为数据包的序列号信息, 如实施例 1 所述, 将其内容合并于此, 此处不再赘述。
在本实施例中,第一通信单元 401向第二基站发送的、从第二基站接收的该数据 包的状态信息的内容如实施例 1、 2所述第一基站向第二基站发送的、 从第二基站接 收的数据包的状态信息的内容相同, 将其内容合并于此, 此处不再赘述。
在本实施例中,在向该第二基站发送第一基站用于暂存发往该第二基站的下行数 据包的缓冲器大小时, 信息交互装置 400还可包括: 第一估计单元 (未示出), 该第 一估计单元用于估计该第一基站用于暂存发往该第二基站的下行数据包的缓冲器大 小。
如图 4所示, 装置 400还可包括第一处理单元 402, 用于根据接收到的数据包的 状态信息进行相应的处理。例如,可进行为基于承载拆分的双重连接操作所做的资源 调度以保障 QoS需求、和 /或根据获得信息来调节发送数据包的传输速率、和 /或确定 是否终止使用该第二基站进行双重连接操作; 和 /或根据该信息为基于承载拆分的双 重连接操作预留的资源。这样, 可保证双重连接的流量控制的高效性和可靠性, 以及 满足服务质量的需求。 具体的第一处理单元 402 的处理方式如实施例 1 和实施例 2 所述, 将其内容合并于此, 此处不再赘述。
在本实施例中, 例如, 该数据包的状态信息为 PDCP序列号信息, 该上行数据包 和下行数据包可分别为上行 PDCP数据包和下行 PDCP数据包。对于其他的序列号信 息与该 PDCP序列号情况类似, 此处不再赘述。
在本实施例中, 第一通信单元 401可采用实施例 1、 实施例 2所述的方式向该第 二基站发送、 或从该第二基站接收该数据包的状态信息, 现将其合并于此, 此处不再 赘述。
在本实施例中,如果第一通信单元 401采用实施例 2所述的方式发送该状态信息 时, 第一处理单元 402还可包括第二处理单元 402a和第三处理单元 402b, 分别根据 接收的下行的 PDCP序列号状态报告和上行的 PDCP序列号状态报告进行相应的处 理。 其中,
在第一通信单元 401从该第二基站接收下行的 PDCP序列号状态报告时,第二处 理单元 402a用于根据该第一状态信息决定是否减缓向第二基站发送的下行 PDCP数 据包的传输速率; 和 /或,
根据该第二状态信息决定是否终止使用该第二基站进行双重连接操作; 和 /或, 根据该资源使用报告进行针对该双重连接操作的资源调度,其中该资源使用报告 可以是存放下行数据包的缓冲器的占用率或存放所有数据包的缓冲器的占用率; 和 / 或,
根据该下行信道状态报告对针对该双重连接操作所作的资源调度进行调整。 在本实施例中,在第一通信单元 401从该第二基站接收上行的 PDCP序列号状态 报告时, 第三处理单元 402b用于根据该第四状态信息决定是否终止使用该第二基站 进行双重连接操作; 和 /或,
根据该资源使用报告进行针对所述双重连接操作的资源调度,其中该资源使用报 告可以是存放上行数据包的缓冲器的占用率或存放所有数据包的缓冲器的占用率;和 /或,
根据该上行信道状态报告对针对该双重连接操作所作的资源调度进行调整。 在本实施例中,第一通信单元可按照预定时间、或者在满足预设的触发条件时向 第二基站发送上行的 PDCP序列号状态报告和 /或下行的 PDCP序列号状态报告, 具 体如实施例 1和实施例 2所述, 此处不再赘述。
在本实施例中,第二处理单元 402和第三处理单元 403为可选部件,可独立使用, 分别基于下行和上行的 PDCP序列号状态报告进行处理,但也可合并使用一个处理器 实现。 实施例 4
图 5是本发明实施例 4的基站构成示意图。 如图 5所示, 该基站包括如实施例 3 所述的信息交互装置 505。
图 5是本发明实施例的基站的构成示意图。 如图 5所示, 基站 500可以包括: 中 央处理器 (CPU) 501和存储器 504; 存储器 504耦合到中央处理器 501。 其中该存 储器 504可存储各种数据; 此外还存储信息处理的程序, 并且在中央处理器 501的控 制下执行该程序, 以接收第二基站发送的信息、 和 /或向第二基站发送信息。
在一个实施方式中, 信息交互装置 505的功能可以被集成到中央处理器 501中。 其中, 中央处理器 501 可以被配置为: 从参与双重连接操作的第二基站接收、 和 /或 向参与双重连接操作的第二基站发送数据包的状态信息。
该数据包的状态信息如实施例 1-3所述, 将其内容合并于此, 此处不再赘述。 其中,在接收到该第二基站发送的数据包的状态信息时, 中央处理器 501可以被 配置为: 根据该第一状态信息决定是否减缓向第二基站发送的下行数据包的传输速 率; 和 /或,
根据该第二状态信息决定是否终止使用该第二基站进行双重连接操作; 和 /或, 根据该资源使用报告进行针对该双重连接操作的资源调度; 和 /或,
根据下行信道状态报告对针对所述双重连接操作所作的资源调度进行调整; 和 /或, 根据该第四状态信息决定是否终止使用该第二基站进行双重连接操作; 和 /或, 根据该上行信道状态报告对针对该双重连接操作所作的资源调度进行调整。
在本实施例中, 该数据包的状态信息可为序列号信息, 如 PDCP序列号信息, 相 应地, 上行数据包和下行数据包分别为上行 PDCP数据包和下行 PDCP数据包。
此外, 该信息交互装置的功能也可不集成到中央处理器 501 中, 与中央处理器
501分开配置, 例如可以将信息交互装置 503配置为与中央处理器 501连接的芯片, 通过中央处理器 501的控制来实现信息交互装置 503的功能。
此外, 如图 5所示, 基站 500还可以包括: 收发机 502和天线 503等; 其中, 上 述部件的功能与现有技术类似, 此处不再赘述。值得注意的是, 基站 500也并不是必 须要包括图 5中所示的所有部件;此外,基站 500还可以包括图 5中没有示出的部件, 可以参考现有技术。
由上述实施例可知, 该基站可根据获得的该数据包的状态信息进行相应的处理, 可保证流量控制机制工作良好、 可靠性和高效性。 实施例 5
图 6是本发明实施例 5的信息交互装置的构成示意图。 用于第二基站侧, 如图 6 所示, 装置 600包括第二通信单元 601, 第二通信单元 601用于从参与双重连接操作 的第一基站接收、 和 /或向参与双重连接操作的第一基站发送数据包的状态信息。
在本实施例中,该数据包的状态信息可为数据包的序列号信息,如实施例 1所述, 将其内容合并于此, 此处不再赘述。
在本实施例中,第二通信单元 601向第一基站发送的、从第一基站接收的数据包 的状态信息的内容如实施例 1-3所述, 将其内容合并于此, 此处不再赘述。
在本实施例中,在向该第一基站发送该第二基站用于暂存发往该第一基站的上行 数据包的缓冲器大小时, 信息交互装置 600还可包括: 第二估计单元 (未示出), 该 第二估计单元用于估计参与双重连接操作的第二基站用于暂存发往该第一基站的上 行数据包的缓冲器大小。
如图 6所示, 装置 600还可包括第四处理单元 602, 用于根据接收到的数据包的 状态信息进行相应的处理。例如,可根据该状态信息为基于承载拆分的双重连接操作 预留的资源, 或者根据获得信息来调节发送数据包的传输速率, 具体如实施例 1~3 所述。这样, 可保证双重连接的流量控制的高效性和可靠性, 以及满足服务质量的需 求。具体的第四处理单元 602的处理方式如实施例 1至实施例 2所述,将其内容合并 于此, 此处不再赘述。
在本实施例中, 例如, 该数据包的状态信息为 PDCP序列号信息, 该上行数据包 和下行数据包可分别为上行 PDCP数据包和下行 PDCP数据包。对于其他的序列号信 息与该 PDCP序列号情况类似, 此处不再赘述。
在本实施例中, 第二通信单元 601可采用实施例 1、 实施例 2所述的方式向该第 一基站发送、 或从该第一基站接收该数据包的状态信息, 现将其合并于此, 此处不再 赘述。
在本实施例中,如果第二通信单元 601采用实施例 2所述的方式发送该状态信息 时, 第四处理单元 602还可包括第五处理单元 602a和第六处理单元 602b, 分别根据 接收的下行的 PDCP序列号状态报告和上行的 PDCP序列号状态报告进行相应的处 理。 其中,
在第二通信单元 601从该第一基站接收上行的 PDCP序列号状态报告时,第五处 理单元 602a用于根据该第三状态信息决定是否减缓向第一基站发送的上行 PDCP数 据包的传输速率。
在本实施例中,在第二通信单元 601从该第一基站接收下行的 PDCP序列号状态 报告时, 第四处理单元 602b用于根据估计的用于暂存发往该第二基站的下行 PDCP 数据包的缓冲器大小, 为基于承载拆分的双重连接操作预留资源。
在本实施例中,第二通信单元 601可按照预定时间、或者在满足预设的触发条件 时向第一基站发送该数据包的状态信息, 具体如实施例 1和实施例 2所述,此处不再 赘述。
在本实施例中, 第五处理单元 602a和第六处理单元 602b为可选部件, 可独立使 用, 分别基于下行和上行的 PDCP序列号状态报告进行处理,但也可合并使用一个处 理器实现。 实施例 6
图 7是本发明实施例 6的基站构成示意图。 如图 7所示, 该基站包括如实施例 4 所述的信息交互装置 705。
图 7是本发明实施例的基站的构成示意图。 如图 7所示, 基站 700可以包括: 中 央处理器 (CPU) 701和存储器 704; 存储器 704耦合到中央处理器 701。 其中该存 储器 704可存储各种数据; 此外还存储信息处理的程序, 并且在中央处理器 701的控 制下执行该程序, 以接收第一基站发送的信息、 和 /或向第一基站发送信息。
在一个实施方式中, 信息交互装置 705的功能可以被集成到中央处理器 701中。 其中, 中央处理器 701 可以被配置为: 从参与双重连接操作的第一基站接收、 和 /或 向参与双重连接操作的第二基站发送数据包的状态信息。
该数据包的状态信息如实施例 1-3所述, 将其内容合并于此, 此处不再赘述。 其中,在接收到该第一基站发送的该数据包的状态信息时, 中央处理器 701可以 被配置为:根据该第三状态信息决定是否减缓向第一基站发送的上行数据包的传输速 率; 和 /或
用于根据估计的用于暂存发往该第二基站的下行数据包的缓冲器大小,为基于承 载拆分的双重连接操作预留资源。
在本实施例中, 该数据包的状态信息可为序列号信息, 如 PDCP序列号信息, 相 应地, 上行数据包和下行数据包分别为上行 PDCP数据包和下行 PDCP数据包。 此外, 该信息交互装置的功能也可不集成到中央处理器 701 中, 与中央处理器 701分开配置, 例如可以将信息交互装置 705配置为与中央处理器 701连接的芯片, 通过中央处理器 701的控制来实现信息交互装置 705的功能。
此外, 如图 7所示, 基站 700还可以包括: 收发机 702和天线 703等; 其中, 上 述部件的功能与现有技术类似, 此处不再赘述。值得注意的是, 基站 700也并不是必 须要包括图 7中所示的所有部件;此外,基站 700还可以包括图 7中没有示出的部件, 可以参考现有技术。
由上述实施例可知, 该基站可获得上行、下行状态报告, 从而可根据上述信息进 行相应的处理, 可保证流量控制机制工作良好、 可靠性和高效性。 实施例 7
图 8是本发明实施例 7的通信系统架构图。 如图 8所示, 包括用户设备 (UE), 处于连接态, 由至少两个不同的基站提供无线资源。
该基站的数量不限于两个,可以为多个,但交互的数据包的状态信息与上述实施 例类似, 此处不再赘述。
如图 8所示, 该基站可包括如实施例 4所述的基站(如称为第一基站) 以及如实 施例 6所述的基站 (如称为第二基站)。
其中, 该第一基站和该第二基站中的一个基站从另一个基站接收、 和 /或向另一 个基站发送数据包的状态信息。
在本实施例中, 该数据包的状态信息的内容如实施例 1和实施例 2所述,将其内 容合并于此, 此处不再赘述。
在本实施例中, 该第一基站在接收到该第二基站发送的数据包的状态信息后, 该 第一基站用于:根据该第一状态信息决定是否减缓向所述第二基站发送的下行数据包 的传输速率; 和 /或, 根据该第二状态信息决定是否终止使用所述第二基站进行双重 连接操作; 和 /或, 根据该资源使用报告进行针对该双重连接操作的资源调度; 和 /或, 根据下行信道状态报告对针对该双重连接操作所作的资源调度进行调整; 和 /或根据 该第四状态信息决定是否终止使用该第二基站进行双重连接操作; 和 /或, 根据上行 信道状态报告对针对该双重连接操作所作的资源调度进行调整。 在本实施例中, 该第二基站在接收到所述第一基站发送的该数据包的状态信息 后, 根据该第三状态信息调整向该第一基站发送上行数据的传输速率; 和 /或根据参 与双重连接操作的第一基站用于暂存发往该第二基站的下行 PDCP 数据包的缓冲器 大小为支持拆分承载预留资源。
在本实施例中, 该数据包的状态信息可为序列号信息, 如 PDCP序列号信息, 相 应地, 上行数据包和下行数据包分别为上行 PDCP数据包和下行 PDCP数据包。
如果采用实施例 2所述的方式交互该状态信息时,第一基站和第二基站具体的发 送方、接收式、 以及根据该状态信息进行相应的处理如实施例 2所述, 将其内容合并 于此, 此处不再赘述。
上述第一基站和第二基站的构成可参照实施例 3和实施例 5, 此处不再赘述。 由上述实施例可知,第一基站和第二基站可获得数据包的状态信息, 从而根据上 述信息进行相应的处理, 可保证流量控制机制工作良好、 可靠性和高效性。
本发明实施例还提供一种计算机可读程序,其中当在信息相互装置或基站中执行 所述程序时, 所述程序使得计算机在所述信息交互装置或基站中执行实施例 1 和 2 所述的信息交互方法。
本发明实施例还提供一种存储有计算机可读程序的存储介质,其中所述计算机可 读程序使得计算机在信息交互装置或基站中执行实施例 1~2所述的信息交互方法。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分步骤是可以 通过程序来指令相关的硬件完成, 所述的程序可以存储于一计算机可读取存储介质 中, 该程序在执行时, 可以包括上述实施例方法中的全部或部分步骤, 所述的存储介 质可以包括: ROM、 RAM, 磁盘、 光盘等。
本申请以上的装置和方法可以由硬件实现, 也可以由硬件结合软件实现。本申请 涉及这样的计算机可读程序, 当该程序被逻辑部件所执行时, 能够使该逻辑部件实现 上文所述的装置或构成部件, 或使该逻辑部件实现上文所述的各种方法或步骤。逻辑 部件例如现场可编程逻辑部件、微处理器、计算机中使用的处理器等。本申请还涉及 用于存储以上程序的存储介质, 如硬盘、 磁盘、 光盘、 DVD、 flash存储器等。
以上结合具体的实施方式对本申请进行了描述,但本领域技术人员应该清楚,这 些描述都是示例性的, 并不是对本申请保护范围的限制。本领域技术人员可根据本申 请的精神和原理对本申请做出各种变型和修改, 这些变型和修改也在本申请范围内。

Claims

权 利 要 求 书
1、 一种信息交互装置, 包括:
第一通信单元,所述第一通信单元用于从参与双重连接操作的第二基站接收、和 /或向参与双重连接操作的第二基站发送数据包的状态信息。
2、 根据权利要求 1所述的信息交互装置, 其中, 所述第一通信单元从所述第二 基站接收的数据包的状态信息包括:
所述第二基站从参与双重连接操作的第一基站接收到的下行数据包的第一状态 信息, 所述第一状态信息用于指示是否所有的下行数据包已被所述第二基站正确接 收; 和 /或,
所述第二基站发送到用户设备的下行数据包的第二状态信息,所述第二状态信息 用于指示是否所有的下行数据包已被所述第二基站正确发送到所述用户设备; 和 /或, 针对所述双重连接操作, 所述第二基站的资源使用报告; 和 /或,
使用双重连接操作的用户设备的下行信道状态报告; 和 /或,
所述第二基站预估的用于暂存发往参与双重连接操作的所述第一基站的上行数 据包的缓冲器大小; 和 /或,
所述第二基站从用户设备接收到的上行数据包的第四状态信息,所述第四状态信 息用于指示是否所有的上行数据包已被正确接收; 和 /或,
使用双重连接操作的用户设备的上行信道状态报告。
3、 根据权利要求 2所述的信息交互装置, 其中, 在所述第一基站从所述第二基 站接收数据包的状态信息时,所述信息交互装置还包括处理单元,所述处理单元用于 根据所述数据包的状态信息进行相应的处理。
4、 根据权利要求 3所述的信息交互装置, 其中, 所述处理单元用于: 根据所述 第一状态信息决定是否减缓向所述第二基站发送的下行数据包的传输速率; 和 /或, 根据所述第二状态信息和 /或第四状态信息决定是否终止使用所述第二基站进行 双重连接操作; 和 /或,
根据所述资源使用报告进行针对所述双重连接操作的资源调度; 和 /或, 根据所述下行信道状态报告和 /或上行信道状态报告对针对所述双重连接操作所 作的资源调度进行调整; 和 /或, 根据所述第二基站预估的用于暂存发往所述第一基站的上行数据包的缓冲器大 小为支持拆分承载预留资源。
5、 根据权利要求 1所述的信息交互装置, 其中, 所述第一通信单元向所述第二 基站发送的数据包的状态信息包括:
参与双重连接操作的第一基站用于暂存发往所述第二基站的下行数据包的缓冲 器大小; 和 /或,
参与双重连接操作所作的第一基站从所述第二基站接收到的上行数据包的第三 状态信息,所述第三状态信息用于指示是否所有的上行数据包已被所述第一基站正确 收。
6、 根据权利要求 1所述的信息交互装置, 其中, 所述第一通信单元按照第一预 定时间或者在满足第一触发条件时向第二基站发送所述数据包的状态信息; 和 /或, 所述第一通信单元接收所述第二基站按照第二预定时间或者在满足第二触发条件时 向所述第一基站发送的所述数据包的状态信息。
7、 一种基站, 包括权利要求 1所述的信息交互装置。
8、 一种通信系统, 所述系统包括参与双重连接操作的第一基站和第二基站, 其 中, 所述第一基站和所述第二基站中的一个基站从另一个基站接收、 和 /或向另一个 基站发送数据包的状态信息。
9、 根据权利要求 8所述的通信系统, 其中, 所述第二基站从所述第一基站接收 的数据包的状态信息包括:
参与双重连接操作的第一基站用于暂存发往所述第二基站的下行数据包的缓冲 器大小; 和 /或,
参与双重连接操作的第一基站从所述第二基站接收到的上行数据包的第三状态 信息, 所述第三状态信息用于指示是否所有的上行数据包已被所述第一基站正确收。
10、根据权利要求 8所述的通信系统, 其中, 所述第二基站向所述第一基站发送 的数据包的状态信息包括:
所述第二基站从所述第一基站接收到的下行数据包的第一状态信息,通过所述第 一状态信息指示是否所有的下行数据包已被所述第二基站正确接收; 和 /或,
所述第二基站发送到用户设备的下行数据包的第二状态信息,通过所述第二状态 信息指示是否所有的下行数据包已被所述第二基站正确发送到所述用户设备; 和 /或, 针对所述双重连接操作, 所述第二基站的资源使用报告; 和 /或, 使用双重连接操作的用户设备的下行信道状态报告; 和 /或,
所述第二基站预估的用于暂存发往参与双重连接操作的所述第一基站的上行数 据包的缓冲器大小; 和 /或,
所述第二基站从用户设备接收到的上行数据包的第四状态信息,所述第四状态信 息用于指示是否所有的上行数据包已被正确接收; 和 /或,
使用双重连接操作的用户设备的上行信道状态报告。
11、 根据权利要求 10所述的通信系统, 其中, 所述第一基站在接收到所述第二 基站发送的数据包的状态信息后,所述第一基站还用于: 根据所述数据包的状态信息 进行相应的处理。
12、根据权利要求 9所述的通信系统, 其中, 所述第二基站在接收到所述第一基 站发送的数据包的状态信息后,所述第二基站根据参与双重连接操作的第一基站用于 暂存发往所述第二基站的下行 PDCP数据包的缓冲器大小为支持拆分承载预留资源; 和 /或,
根据所述第三状态信息调整向所述第一基站发送上行数据的传输速率。
13、根据权利要求 8所述的通信系统, 其中, 所述第一基站按照第一预定时间或 者在满足第一触发条件时向第二基站发送数据包的状态信息; 和 /或, 所述第二基站 按照第二预定时间或者在满足第二触发条件时向所述第一基站发送数据包的状态信 息。
PCT/CN2014/073895 2014-03-21 2014-03-21 信息交互装置、基站和通信系统 WO2015139317A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/073895 WO2015139317A1 (zh) 2014-03-21 2014-03-21 信息交互装置、基站和通信系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/073895 WO2015139317A1 (zh) 2014-03-21 2014-03-21 信息交互装置、基站和通信系统

Publications (1)

Publication Number Publication Date
WO2015139317A1 true WO2015139317A1 (zh) 2015-09-24

Family

ID=54143729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/073895 WO2015139317A1 (zh) 2014-03-21 2014-03-21 信息交互装置、基站和通信系统

Country Status (1)

Country Link
WO (1) WO2015139317A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1462517A (zh) * 2001-04-25 2003-12-17 皇家菲利浦电子有限公司 无线通信系统
CN101527621A (zh) * 2008-03-06 2009-09-09 中兴通讯股份有限公司 一种中继网络下行链到链混合自动重传请求的方法
US20120176955A1 (en) * 2011-01-06 2012-07-12 Hitachi, Ltd. Radio system and radio communication method
CN103428788A (zh) * 2012-05-18 2013-12-04 华为技术有限公司 一种数据转发的方法、设备及通讯系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1462517A (zh) * 2001-04-25 2003-12-17 皇家菲利浦电子有限公司 无线通信系统
CN101527621A (zh) * 2008-03-06 2009-09-09 中兴通讯股份有限公司 一种中继网络下行链到链混合自动重传请求的方法
US20120176955A1 (en) * 2011-01-06 2012-07-12 Hitachi, Ltd. Radio system and radio communication method
CN103428788A (zh) * 2012-05-18 2013-12-04 华为技术有限公司 一种数据转发的方法、设备及通讯系统

Similar Documents

Publication Publication Date Title
US11743773B2 (en) Flow control method and apparatus
EP3295700B9 (en) Uplink data splitting
US11652751B2 (en) Maintenance of downlink throughput
EP2999296B1 (en) Configuring a discard timer
US9980156B2 (en) Optimization of downlink throughput
WO2015027719A1 (zh) 一种协作多流传输数据的方法及基站
JP2020174394A (ja) 無線端末
CN102833783B (zh) 一种优化无线环境下tcp协议的方法
WO2009100668A1 (zh) 一种触发资源配置的方法、装置及系统
WO2018082597A1 (zh) 拥塞控制方法及装置、基站
WO2013029521A1 (zh) 用于数据传输的方法、分流点设备、用户终端和系统
WO2011015155A1 (zh) 带宽管理方法、演进基站、服务网关和通信系统
WO2016127666A1 (zh) 一种rlc数据包分流方法及基站
EP3135070A1 (en) Method and apparatus for improved multi-carrier communication
TWI661733B (zh) 適應性tti調諧之方法以及使用者設備
US20190223256A1 (en) Data transmission method, network device, and terminal device
WO2015123939A1 (zh) 一种信息交互方法、系统以及基站
TWI721333B (zh) 在無線通訊系統中建立承載的方法和裝置
WO2017214871A1 (zh) 业务数据分流方法及装置
CN104685959B (zh) 具有统一接口的无源无线电链路控制实体
WO2015070446A1 (zh) 一种数据传输的方法及用户设备
CN1996814A (zh) 一种流量控制方法
WO2017028681A1 (zh) 一种数据传输状态的报告、确定传输数据量的方法及装置
WO2015139317A1 (zh) 信息交互装置、基站和通信系统
WO2023040795A1 (zh) 一种信息传输方法以及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14886530

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14886530

Country of ref document: EP

Kind code of ref document: A1