WO2015139256A1 - 一种浮式平台及其装卸载过程中保持浮态和稳性控制方法 - Google Patents

一种浮式平台及其装卸载过程中保持浮态和稳性控制方法 Download PDF

Info

Publication number
WO2015139256A1
WO2015139256A1 PCT/CN2014/073738 CN2014073738W WO2015139256A1 WO 2015139256 A1 WO2015139256 A1 WO 2015139256A1 CN 2014073738 W CN2014073738 W CN 2014073738W WO 2015139256 A1 WO2015139256 A1 WO 2015139256A1
Authority
WO
WIPO (PCT)
Prior art keywords
crude oil
annular
load
seawater
tank
Prior art date
Application number
PCT/CN2014/073738
Other languages
English (en)
French (fr)
Inventor
黄一
王文华
姚宇鑫
叶茂生
刘刚
张崎
李红霞
陈景杰
董磊磊
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学 filed Critical 大连理工大学
Priority to PCT/CN2014/073738 priority Critical patent/WO2015139256A1/zh
Priority to US14/434,552 priority patent/US9834287B2/en
Publication of WO2015139256A1 publication Critical patent/WO2015139256A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/02Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement
    • B63B1/04Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with single hull
    • B63B1/041Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with single hull with disk-shaped hull
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B11/00Interior subdivision of hulls
    • B63B11/04Constructional features of bunkers, e.g. structural fuel tanks, or ballast tanks, e.g. with elastic walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B27/00Arrangement of ship-based loading or unloading equipment for cargo or passengers
    • B63B27/24Arrangement of ship-based loading or unloading equipment for cargo or passengers of pipe-lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B43/00Improving safety of vessels, e.g. damage control, not otherwise provided for
    • B63B43/02Improving safety of vessels, e.g. damage control, not otherwise provided for reducing risk of capsizing or sinking
    • B63B43/04Improving safety of vessels, e.g. damage control, not otherwise provided for reducing risk of capsizing or sinking by improving stability
    • B63B43/06Improving safety of vessels, e.g. damage control, not otherwise provided for reducing risk of capsizing or sinking by improving stability using ballast tanks

Definitions

  • the present invention relates to a floating platform and a method of controlling the floating state and steady state of such a floating platform during loading.
  • This technology mainly connects the oil storage tank and the top of the ballast water tank through the pipeline.
  • the tank is sealed and pre-charged with a certain pressure of nitrogen.
  • the crude oil intake pump-seawater unloading pump, crude oil external pump-seawater ballast pump Separate linkages to achieve equal mass flow rate replacement.
  • the purpose of using this technology is to ensure that the weight of the floating body is constant during the process of oil storage and external transportation, the structure of the draft is unchanged, and the vertical variation of the center of gravity is small.
  • the crude oil is in the upper part of the oil storage tank, and the water is in the lower part of the oil storage tank.
  • the oil entering the tank will be discharged from the sea through the water treatment system of the same volume.
  • the water treatment system ensures that the drained water is clean.
  • the volume of oil that is exported is filled by the seawater in the sea into the tank.
  • equal weight of ballast water must be entered or removed to compensate for changes in oil and water volume. This can be obtained from the ballast tank provided by each column.
  • any sudden changes in the oil tank are suppressed by the atmosphere regulating tank, and in the atmosphere regulating tank, the interface between the oil and water can fluctuate freely.
  • the oil is injected into the oil buffer compartment, which is connected to the four oil storage tanks located in the caisson.
  • the oil level in the oil buffer tank rises, the increased height of the oil column will cause the water below the oil storage tank to drain into the water buffer tank.
  • the water in the water buffer tank will be pumped into the water treatment unit by the submersible pump and then discharged into the sea.
  • the design concept of the oil storage tank is shown in Figure 4.
  • the present invention is directed to the above problems, and a floating platform developed along the height of the floating platform
  • the center of gravity of each compartment is fully loaded and unloaded during the vertical line of the center of gravity of the floating platform.
  • it can ensure that the floating platform always maintains a constant displacement, keeping the waterline surface position unchanged, and ensuring that the floating platform always has the best hydrodynamic performance.
  • the floating platform has optimal hydrodynamic performance when fully loaded with crude oil, and both the displacement and the water line are optimal.
  • seawater can be poured into a partial level compartment in the multi-level compartment (the density of the seawater is greater than the density of the crude oil), so that the floating center of the floating platform does not change.
  • the center of gravity of each compartment is always on the vertical line where the center of gravity of the floating platform is located. It ensures that the floating platform is always in a positive floating state, which ensures the stability of the floating platform.
  • one of the compartments requires at least one set of crude oil injection, seawater injection and output pipelines and associated valves; and in order to ensure that the center of gravity of the plurality of compartments is constant, a complex control system is required to control each compartment.
  • the rate and time of perfusion and discharge are high in production costs.
  • a plurality of compartments of each floor are arranged as a connector structure, and only one set of said pipes and valves can be provided for each compartment, thereby greatly reducing the number of pipes and valves, and also eliminating the need for Control system and complex control steps.
  • each compartment is designed as an annular chamber of equal inner diameter, and corresponding input and output valves are arranged at the bottom of the annular compartment to ensure that the added weight of each annular compartment is evenly distributed in the annular compartment, that is, to ensure the compartment of each compartment.
  • the center of gravity remains the same, increasing the stability of the platform.
  • a plurality of transverse bulkheads are arranged inside the annular chamber, and the annular compartment is divided into a plurality of independent compartments, each horizontal An opening is provided below the bulkhead, that is, a plurality of independent compartments are formed into a connector by means of a connector. The area of the free surface is further reduced, and the stability of the ship is increased.
  • the volume of the annular chamber of each layer is proportional to its adjacent annular chamber, that is, the volume ratio of the adjacent upper and lower annular chambers is equal to the inverse of the density of the liquid stored therein.
  • the stored liquid is seawater and crude oil, and the volume ratio of the annular chamber follows the following formula:
  • VA is the volume of the annular chamber compartment in the lower two compartments
  • VB is the volume of the annular compartment located in the upper layer of A.
  • the present invention in order to cooperate with a plurality of annular chambers for loading and unloading crude oil, the present invention further provides a transfer cabin disposed at the bottom of the floating platform, the volume of the transfer tank and the annular chamber above it.
  • the volume ratio is also the inverse of its stored liquid. Similar to the other upper annular chambers, the center of gravity of the other annular chambers is located on the vertical line.
  • the annular compartment When the crude oil is fully loaded: the annular compartment is filled with crude oil, and the transfer tank is in no-load state; when the crude oil operation is output: the transfer tank is filled with seawater, and the crude oil in the upper annular compartment of the transfer tank is extracted; The annular compartment of the empty crude oil is filled with seawater, and the crude oil of the annular compartment in the upper layer of the annular compartment is extracted; the above process is repeated until the uppermost annular compartment is in an idle state, and the crude oil output is completed;
  • the volume of the uppermost annular chamber in the floating platform is less than the volume of the secondary top annular chamber.
  • the floating platform has a double-layered shell and a double-layered bottom, and a transfer tank is arranged in the double-layered bottom;
  • the adjustment cabin is an annular load-carrying cabin I and a transfer cabin with two centers of gravity ⁇ , the center of gravity of the two transfer cabins is located on the vertical line;
  • the mass of the fully loaded seawater in the transfer tank I or the transfer tank is equal to the difference in quality of the fully loaded seawater in the sub-top annular chamber and the full load of crude oil in the top annular chamber;
  • the plurality of annular chambers are filled with crude oil, and the transfer tank I and the transfer tank are in an idling state;
  • seawater is separately injected into the transfer tank I and the transfer tank, and the crude oil in the upper annular chamber of the transfer tank is started to be extracted; the seawater is filled in the annular chamber of the empty crude oil, and the Crude oil in the upper compartment of the annular compartment; repeating the above process until the uppermost annular compartment is in a venting state; when the top annular compartment is emptied, in order to keep the center of gravity of the floating platform unchanged, the loading is emptied Seawater loaded in tank I or in the transfer tank;
  • the annular compartment When the crude oil is fully loaded: the annular compartment is filled with crude oil, and the transfer tank is in no-load state; when the crude oil operation is output: the transfer tank is filled with seawater, and the crude oil in the upper annular compartment of the transfer tank is extracted; The annular compartment of the empty crude oil is filled with seawater, and the crude oil of the annular compartment in the upper layer of the annular compartment is extracted; the above process is repeated until the uppermost annular compartment is in an idle state, and the crude oil output is completed;
  • the annular chamber When the crude oil is fully loaded: the annular chamber is filled with crude oil, and the transfer tank I and the transfer tank are in an empty state; when the top annular chamber is emptied, the transfer tank I or the transfer tank is drained. Loaded seawater;
  • the seawater is filled in the transfer tank I and the transfer tank, and the crude oil in the upper annular chamber of the transfer tank is extracted; the annular chamber in which the crude oil is emptied is filled with seawater, and the upper layer of the annular chamber is extracted.
  • Crude oil in the annular chamber repeating the above process until the uppermost annular chamber is in an unloaded state, when inputting crude oil: injecting crude oil into the annular chamber of the top layer in an unloaded state, evacuating the seawater of the secondary top annular chamber, The seawater is filled in the transfer tank I or the transfer tank; the above process is repeated until the bottom annular chamber is filled with crude oil, at which time the transfer tank I and the transfer tank are empty.
  • the floating platform provided by the present invention and the method for maintaining the floating state and stability during the loading and unloading process have the following advantages compared with the prior art:
  • ballast tank It is not necessary to separately set the ballast tank, which maximizes the utilization of the platform space and makes full use of the platform. Payload to improve load capacity. Greatly improve the practical economy of the platform.
  • the principle of subdivision is arranged by volume ratio. From the bottom to the top, the cabin is set up from small to large to ensure that the stability and high change during the loading and unloading process are always in a safe and controllable state, thus ensuring the excellent stability of the platform.
  • the principle of subdivision is arranged in volume ratio, which is convenient for setting up the transfer tank, configuring the transfer water, simplifying the loading operation, and helping to reduce the free liquid level in the cabin.
  • FIG. 14 are schematic diagrams of loading and unloading processes according to an embodiment of the present invention.
  • Figure 15 is a schematic view of the effect of the embodiment of the present invention.
  • A, B, C, D, E, F The vertical distribution of the platform of the platform is divided into six layers; the "+" "-" at the top of each figure indicates the loading and unloading into the cabin.
  • a floating platform comprises a double-layered casing and a double-layered bottom, the floating platform having an hourglass type in cross section, wherein the waterline is the narrowest part of the hourglass.
  • Six annular compartments are arranged below the waterline, from bottom to top: cabin IA, cabin compartment, cabin niC, cabin IVD, cabin VE and cabin VIF.
  • the six compartments described are equal divisions, ie
  • V A , V B , V C , V D , V E . VF are the volumes of the cabin IA, cabin compartment, cabin IIIC, cabin IVD, cabin VE and cabin VIF, respectively.
  • Embodiment 1 Loading and unloading process
  • the present invention develops an innovative loading and unloading process within a safe and controllable range.
  • the platform has a drilling function unit, it is generally divided into two working conditions, namely drilling conditions and production and production conditions. Under drilling conditions, the ballast water is also used to adjust the floating state of the platform to ensure that the waterline of the platform is always at the full waterline. This process is clear and is not specifically stated here. For ease of understanding, the process of loading and unloading the production production conditions is divided into two phases:
  • the first stage of production conditions Full load of crude oil, start crude oil output, as shown in Figure 1-7.
  • Step 1 Remove all the oil in the A compartment.
  • the two transfer cabins BALI and BAL2 must be filled with water;
  • Step 2 Remove all the oil in the B compartment and fill the A compartment with water. Since the mass of the pumped oil is equal to the mass of the added water, there is no need to change the water in the tank.
  • Step 3 The principle is the same as the second step, directly pumping out all the oil in the C compartment and filling the B compartment with water;
  • Step 4 Pump out all the oil in the D compartment and fill the C compartment with water;
  • Step 5 Pump out all the oil in the E compartment and fill the D compartment with water
  • Step 6 Pump out all the oil in the F compartment and fill the E compartment with water. Since the designed E compartment is larger than the F compartment, the added water quality is greater than the mass of the pumped oil, so it must be drained accordingly. All water in BAL2.
  • the second stage of production conditions full load ballast water, start crude oil input as shown in Figure 8-14.
  • tanks 8, B, C, D and E of the oil storage tank are filled with water, the cabin of the F is empty, the BALI of the tank is filled with water, and the BAL2 is empty.
  • Step 1 Fill the oil in the F compartment and remove all the water in the E compartment. Since the quality of the E compartment water is greater than the quality of the F compartment, the BAL2 compartment must be filled with water to ensure that the platform is not maintained. Change
  • Step 2 Fill the oil in the E compartment and directly remove all the water in the D compartment;
  • Step 3 Fill the oil in the D compartment and directly remove all the water in the C compartment;
  • Step 4 Fill the oil in the C compartment and directly remove all the water in the B compartment;
  • Step 5 Fill the oil in the B compartment and directly remove all the water in the compartment A;
  • Step 6 Fill the oil in the compartment A, and directly remove all the water from the transfer compartment BALI and BAL2; the platform is again switched from the dynamic balance state to the static equilibrium state, ready to start the next round of work.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Loading And Unloading Of Fuel Tanks Or Ships (AREA)

Abstract

一种浮式平台,沿浮式平台高度方向具有多层舱室,每层舱室满载和装卸载过程中的重心始终位于浮式平台整体重心所在的竖直线上,多个环形舱室容积为等比分舱:相邻上下两环形舱室容积比等于其存储的液体密度的反比;在实际装载过程中,通过调节不同层舱室装载原油或海水,即可保证浮式平台始终保持恒定的排水量,保持水线面位置不发生变化,保证浮式平台始终具备最佳的水动力性能。

Description

一种浮式平台及其装卸载过程中保持浮态和稳性控制方法 技术领域
本发明涉及一种浮式平台和此种浮式平台在装载过程中浮态和稳态的控制 方法。 涉及专利分类号 B63 船舶或其他水上船只; 与船有关的设备 B63B 船舶 或其他水上船只; 船用设备 B63B35/00 适合于专门用途的船舶或类似的浮动结 构 B63B35/44 浮式建筑物, 水上仓库, 水上钻井平台或水上车间, 例如载有油 水分离设备的。
背景技术
2013年天津大学, 水利工程仿真与安全国家重点实验室, 唐友刚团队提出 了一种混凝土材质的新型多筒式 FPSO (也可做 FDPSO), 见图 1。 该新型采用 了中海油专家吴植融提出的"密闭气压连通式压载海水和原油等质量流率置换 流程"这一专利技术为设计基础, 实现了对新型浮体水动力性能的优化 [1]。
这项技术主要是通过管道将储油舱和压载海水舱顶部连通, 舱体密闭并预 充一定压力的氮气, 原油进舱泵-海水卸载泵、 原油外输泵-海水压载泵两组分别 联动, 实现等质量流率置换。 使用这种技术的目的是在储油和外输过程中, 保 证浮体重量不变, 结构吃水不变, 重心垂向变化幅度小。
这种储油技术的突出优点是保证浮体始终处于同一稳性状态, 实现水动力 性能的最优化。 其次, 压载水和原油分开储存很大程度上减少了对海洋环境的 污染。 但同时也存在着不可忽视的缺点。
首先, 在满载和空载两种工况下, 浮体总质量变化巨大, 水动力性能存在 巨大差异, 在设计过程中很难兼顾。 在海工发展日益集约化多功能化的今天, 有效载重能力的重要性越发突出, 成为评价一个平台非常重要的性能与经济指 标。 该技术要求平台必须预留足够的固定压载, 为达到恒定吃水预留空间比接 近 4:5, 本身就是对平台载重性能极大的浪费, 也就使平台经济性大打折扣。
其次, 该专利设备成本投入不可忽视, 氮气发生装置, 压力控制装置, 内 外双层的储罐, 工艺复杂投入不菲。 并且降低了设备使用可靠性, 存在潜在的 增加停工期的威胁。 装置示意图如图 2所示。
2006年,在由法国 DORIS公司与葡萄牙里斯本理工大学合作研究的新概念 FPSO/FDPSO中, 如图 3, 为保持平台恒定浮态, 控制水线面面积所采用了一种 创新的水油混合存储技术 [2,3]。
根据原油和水密度不同的原理, 原油处于储油舱上部, 水处于储油舱下部。 当生产时, 进入油舱的油将同样体积的水, 经过水处理系统排出大海。 水处理 系统确保排出的水清洁。 另一方面, 当外输时, 输出的油的体积由大海中的海 水进入油舱填补。 为了保持吃水恒定, 等重量的压载水必须进入或移除来补偿 油和水体积的变化。 这可以通过每个柱提供的压载水舱得到。 在装卸载时, 油 水舱的任何突然变化都被大气调节舱抑制, 在大气调节舱中, 油和水的交界面 可以自由波动。 在加载过程中, 油注入油缓冲舱, 油缓冲舱与位于沉箱内的四 个储油舱相连。 当油缓冲舱中的油面升高时, 油柱增加的高度将会使储油舱下 部的水排入到水缓冲舱。 水缓冲舱中的水将会由潜水泵抽入到水处理装置, 然 后排入大海。 储油舱的设计概念图如图 4。
这种储油舱的优点在于有效控制平台总质量不变进而保持浮态不变, 充分 利用了平台载重量, 具有良好的经济性。 但是该技术同样存在严重缺陷。
首先, 在水油同时存在的阶段, 水油界面会随浮体运动而不断变化, 海洋 状况瞬息万变, 晃荡过程中分界面乳化问题在所难免, 为此必须严格控制输入 输出速度防止水油混合。 在经历了复杂海况后乳化现象严重, 必须保持一段时 间待水油分界面明显后才能进行原油输入输出工作, 严重制约了平台处理能力 的充分发挥, 降低运作效率, 即使如此乳化问题依然不能杜绝。
其次, 水油混合存放, 即使是在满载原油的载况, 根据设计要求舱室中还 是会保留一定高度的压载水以防止原油进入水缓冲舱中。 从采油到卸载原油这 段比较长的时间中相互融合无法避免, 必然会有大量海水中的盐类物质溶解进 入原油, 增加了原油含盐量, 降低原油品质。
再有, 原油凝固点高, 通常情况下需要加热储存, 而水油同时存在必然存 在热交换导致大量热量随压载水的排出而流失, 导致大量热能浪费增加平台操 作成本, 同时为后期原油转运带来不必要的麻烦。
最后, 为保护海洋环境, 水油混合存储技术为后期压载水处理带来很大压 力。 与洗舱处理流程不同, 该技术后期压载水中的含油量将大幅提升, 需要更 高能力的处理设备才能满足工艺流程要求, 又增加了一个制约运作效率的因素。 发明内容
本发明针对以上问题的提出, 而研制的一种浮式平台, 沿浮式平台高度方 向具有多层舱室, 每层舱室满载和装卸载过程中的重心始终位于浮式平台整体 重心所在的竖直线上。 在实际装载过程中, 通过调节不同层舱室装载原油或海 水, 即可保证浮式平台始终保持恒定的排水量, 保持水线面位置不发生变化, 保证浮式平台始终具备最佳的水动力性能。
优选的, 浮式平台在满载原油时具备最佳水动力性能, 此时的排水量和水 线均处于最优状态。 在输出原油时, 可以在所述多层舱室中的部分层次舱室中 灌注海水 (海水密度大于原油密度), 即可保证浮式平台的浮心不发生变化。 而 每层舱室的重心都位于始终位于浮式平台整体重心所在的竖直线上。 保证了浮 式平台始终处于正浮状态, 保证了浮式平台的稳定性。
更进一步的, 考虑到一个所述的舱室至少需要一套原油注入、 海水注入和 输出的管路以及配套的阀门; 同时为了保证多个舱室的重心不变, 需要复杂的 控制系统控制每个舱室的灌注和排出的速率和时间, 生产成本高昂。
故所述的每层的多个舱室设置成连通器结构, 针对每层舱室只要设置一套 所述的管路和阀门即可, 大量减少了管路和阀门的数量, 同时也可省去所述的 控制系统和复杂的控制步骤。
更进一步的, 考虑到形成连通器的多个舱室内部, 由于每个舱室的容积不 同, 可能会存在自由液面, 在高海况下影响浮式平台稳定性。
故所述每层舱室设计成一内径相等的环形舱室, 在环形舱室底部设置相应 的输入输出阀门, 可以保证每层环形舱室增加的重量适中均匀的分布在环形舱 室内, 即保证每层环形舱室的重心始终保持不变, 增加了平台的稳定性。
更进一步的, 为了进一步的减少自由液面对平台稳定性的影响, 优选的, 在所述的环形舱室内部设置有多个横舱壁, 将环形舱室分隔成多个独立的舱室, 每个横舱壁的下方设有开口, 即利用连通器原理, 使多个独立的舱室形成连通 器。 进一步的减少了自由液面的面积, 增加了船舶的稳定性。
更进一步的, 所述每层的环形舱室的容积与其相邻的环形舱室存在比例关 系, 即相邻上下两环形舱室容积比等于其存储的液体密度的反比。 对于浮式平 台, 存储的液体为海水和原油, 环形舱室的体积比遵循如下公式:
^¾ _ Pw¾ ter
¾ Poll 其中 VA为所述相邻两环形舱室中, 位于下层的环形舱室舱室容积; VB为 位于 A上层的环形舱室的容积。。采用等比分舱能够保证在装卸载原油(在空舱 填充海水) 的过程中始终保持等质量置换, 保证在装卸载过程中稳性高变化始 终处于偏于安全可控状态, 保证平台的稳定性。
作为一个较佳的实施例, 为了配合多个环形舱室进行原油的装卸载, 本发 明还设有调载舱, 设置在浮式平台底部, 所述的调载舱的容积与其上方的环形 舱室的容积比同样为其存储液体的反比。 与其它上层的环形舱室类似, 其重心 与其它环形舱室的重心都位于所述的竖直线上。
原油满载状态下: 所述环形舱室均储满原油, 调载舱处于空载状态; 输出原油作业时: 在所述调载舱中灌满海水, 抽取调载舱上层环形舱室的 原油; 在排空原油的环形舱室中灌满海水, 抽取该环形舱室上层的环形舱室的 原油; 重复上述过程, 直到位于最上层的环形舱室处于空载状态, 完成原油输 出;
输入原油作业时: 在所述顶层处于空载状态的环形舱室中注入原油, 排空 次顶层环形舱室的海水; 重复上述过程, 直到最底层环形舱室注满原油, 所述 调载舱处于空载状态。
作为另一个实施例, 所述的浮式平台中位于最顶层的环形舱室的容积小于 次顶层环形舱室的容积。
相应的, 所述的浮式平台具有双层壳体和双层底, 在双层底内设置有调载 舱; 所述调整舱为两个重心重合的环形的调载舱 I和调载舱 Π, 两个调载舱的重 心位于所述的竖直线上;
所述调载舱 I或调载舱 Π满载海水的质量等于所述次顶层环形舱室满载海 水与顶层环形舱室满载原油的质量差;
原油满载状态下: 所述多个环形舱室均储满原油, 调载舱 I和调载舱 Π处 于空载状态;
输出原油作业时: 在所述调载舱 I和调载舱 Π中分别灌入海水, 同时开始 抽取调载舱上层环形舱室的原油; 在排空原油的环形舱室中灌入海水, 同时抽 取该环形舱室上层的环形舱室的原油; 重复上述过程, 直到位于最上层的环形 舱室处于放空状态; 当顶层环形舱室原油排空时, 为了保持浮式平台整体的重 心不变, 排空所述调载舱 I或调载舱 Π装载的海水;
输入原油作业时: 首先在所述顶层处于空载状态的环形舱室中灌注原油, 开始排空次顶层环形舱室的海水,同时在所述调载舱 I或调载舱 Π中灌注海水;, 保证浮式平台重心不发生改变; 重复上述过程, 直到最底层环形舱室注满原油, 此时所述调载舱 I和调载舱 Π位空载。
针对第一实施例所述结构的浮式平台装卸载过程中保持浮态和稳性控制方 法, 具有如下步骤:
原油满载状态下: 所述环形舱室均储满原油, 调载舱处于空载状态; 输出原油作业时: 在所述调载舱中灌满海水, 抽取调载舱上层环形舱室的 原油; 在排空原油的环形舱室中灌满海水, 抽取该环形舱室上层的环形舱室的 原油; 重复上述过程, 直到位于最上层的环形舱室处于空载状态, 完成原油输 出;
输入原油作业时: 在所述顶层处于空载状态的环形舱室中注入原油, 排空 次顶层环形舱室的海水; 重复上述过程, 直到最底层环形舱室注满原油, 所述 调载舱处于空载状态。
一种针对第二实施例所述结构的浮式平台装卸载过程中保持浮态和稳性控 制方法, 具有如下步骤:
原油满载状态下: 所述环形舱室均储满原油, 调载舱 I和调载舱 Π处于空 载状态; 当顶层环形舱室原油排空时, 排空所述调载舱 I或调载舱 Π装载的海 水;
输出原油作业时: 在所述调载舱 I和调载舱 Π中灌满海水, 抽取调载舱上 层环形舱室的原油; 在排空原油的环形舱室中灌满海水, 抽取该环形舱室上层 的环形舱室的原油; 重复上述过程, 直到位于最上层的环形舱室处于空载状态, 输入原油作业时: 在所述顶层处于空载状态的环形舱室中注入原油, 排空 次顶层环形舱室的海水, 在所述调载舱 I或调载舱 Π注满海水; 重复上述过程, 直到最底层环形舱室注满原油, 此时所述调载舱 I和调载舱 Π位空载。
由于采用了上述技术方案, 本发明提供的一种浮式平台及其装卸载过程中 保持浮态和稳性控制方法与已有技术相比具有如下优点:
1.维持恒定的排水量, 保持水线面位置不发生变化, 从而保证了平台可始终 提供设定的最优水动力性能。
2.油水分离储存, 杜绝原油与水的乳化现象以及海水中盐类物质融入等问 题, 保证原油品质。
3.油水分离储存, 最大程度减小原油热量损失, 降低供热系统要求, 从而节 约平台操作成本。
4.不必单独设置压载水舱, 最大限度提高了平台空间利用率, 充分使用平台 有效载荷, 提高载重性能。 极大的提高了平台实用的经济性。
5.应用连通器原理, 保证平台在装卸载过程中始终保持正浮状态。
6.应用连通器原理, 设计简单, 所用设备无需特别设计, 应用传统平台所必 须的设备即可。 进而方便采用该技术对原有老旧储油平台进行升级改造。
7.应用连通器原理, 最大限度减少管系布置, 降低建造成本。
8.采用体积等比排列分舱原则, 由下向上, 由小到大设置舱室, 保证在装卸 载过程中稳性高变化始终处于偏于安全的可控状态, 从而保证平台的优异稳性。
9.采用体积等比排列分舱原则, 便于设置调载舱, 配置调载水, 简化配载操 作, 有利于减少舱内自由液面。
附图说明
为了更清楚的说明本发明的实施例或现有技术的技术方案, 下面将对实施 例或现有技术描述中所需要使用的附图做一简单地介绍, 显而易见地, 下面描 述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不 付出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1-图 14为本发明实施例的装卸载过程示意图
图 15为本发明实施例的效果示意图
图中: A、 B、 C、 D、 E、 F: 平台的舱室垂向分布, 即分为六层; 每幅图 上方的 " + " "— "分别表示向舱室内装载和卸载。
具体实施方式
为使本发明的实施例的目的、 技术方案和优点更加清楚, 下面结合本发明 实施例中的附图, 对本发明实施例中的技术方案进行清楚完整的描述:
如图 1 所示: 一种浮式平台, 包括双层壳体和双层的底, 该浮式平台的截 面为沙漏型, 其中水线为所述沙漏的最窄部分。 在水线以下设置了六个环形的 舱室, 由下至上依次为: 舱室 IA、 舱室 ΠΒ、 舱室 niC、 舱室 IVD、 舱室 VE和 舱室 VIF。 所述的六个舱室为等比分舱, 即
Figure imgf000008_0001
。 其中 VA,VB,VC,VD,VE.VF分别为所述的舱室 IA、 舱室 ΠΒ、 舱室 IIIC、 舱室 IVD、 舱室 VE和舱室 VIF的体积。
实施例 1装卸载流程
为保证浮心垂向位置不发生改变, 并且限定重心在垂向上的变化始终处于 偏于安全的可控范围内, 配合上述分舱设计, 本发明制定出一套创新的装卸载 流程。
如果平台具有钻井功能单元则一般分为两种工况, 既钻井工况和生产采油 工况。 在钻井工况下, 同样采用压载水调节平台浮态, 保证平台水线面始终处 于满载水线位置。 这一过程明确, 此处不特殊说明。 为便于理解, 将生产采油 工况装卸载过程分为两个阶段分别说明:
生产工况第一阶段: 满载原油, 启动原油输出, 如图 1-图 7所示。
当满载工况时, 所有储油舱室 A、 B、 C、 D、 E、 F舱均储满油, 调载舱为 空舱状态。
第一步: 抽掉 A舱室的所有油, 为确保平台总质量不变, 必须用水注满两 个调载舱 BALI和 BAL2;
第二步: 抽掉 B舱室的所有油, 向 A舱室注满水, 由于抽掉的油的质量和 添加的水的质量相等, 调载舱水无需变化;
第三步: 原理同第二步操作, 直接抽掉 C舱室的所有油, 向 B舱室注满水; 第四步: 抽掉 D舱室的所有油, 向 C舱室注满水;
第五步: 抽掉 E舱室的所有油, 向 D舱室注满水;
第六步: 抽掉 F舱室的所有油, 向 E舱室注满水; 由于设计的 E舱室体积 相对 F舱室较大, 添加的水的质量大于抽掉的油的质量, 因此必须相应的排掉 BAL2的全部水。
当 F舱室油抽空以后, 卸油过程完毕, F舱室不再注满水即为空舱状态, 为 下阶段储油做准备。 通过对第一阶段重量分布变化的分析可知, 在此期间, 整 体重心的位置不断下降, 在浮心位置不变的前提下, 平台整体稳性不断提高。
生产工况第二阶段: 满载压载水, 启动原油输入如图 8-图 14所示。
当压载工况时, 储油舱室八、 B、 C、 D、 E舱均储满水, F舱室为空舱, 调 载舱 BALI储满水, BAL2为空舱状态。
第一步: 注满 F舱室的油, 同时抽掉 E舱室的全部水, 由于 E舱室水的质 量要大于 F舱室的油的质量, 因此必须用水注满 BAL2舱室 , 以确保平台浮态 维持不变;
第二步: 注满 E舱室的油, 直接抽掉 D舱室的全部水;
第三步: 注满 D舱室的油, 直接抽掉 C舱室的全部水;
第四步: 注满 C舱室的油, 直接抽掉 B舱室的全部水; 第五步: 注满 B舱室的油, 直接抽掉 A舱室的全部水;
第六步: 注满 A舱室的油, 直接抽掉调载舱 BALI和 BAL2的全部水; 平台再次从动平衡状态转换到静平衡状态, 准备开始下一轮作业。 通过对 第二阶段重量分布变化的分析可知, 在此期间, 整体重心的位置不断上升, 在 浮心位置不变的前提下, 平台整体稳性不断下降, 但始终处于设定的变化范围 内。
值得特别说明的是, 原油输入输出两个阶段处理过程形成闭循环, 无论从 哪一点出发输入输出均能保证浮心位置不变, 重心位置在设定范围内浮动, 不 影响平台整体稳性和水动力性能。 稳性高变化如图 15所示。
以上所述, 仅为本发明较佳的具体实施方式, 但本发明的保护范围并不局 限于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 根据本 发明的技术方案及其发明构思加以等同替换或改变, 都应涵盖在本发明的保护 范围之内。

Claims

权 利 要 求 书
1、 一种浮式平台, 其特征在于: 沿浮式平台高度方向设有多层舱室, 每层 舱室满载和装卸载过程中的重心始终位于浮式平台整体重心所在的竖直线上; 装载过程中, 通过调节不同层舱室装载原油或海水, 使浮式平台始终保持恒定 的排水量, 保持水线面位置不发生变化。
2、 根据权利要求 1所述的一种浮式平台, 其特征还在于: 所述的每层舱室 为应用连通器原理的整体舱室。
3、 根据权利要求 1或 2所述的一种浮式平台, 其特征还在于: 所述的每层 舱室为一环形舱室, 所述环形舱室的截面尺寸一致。
4、 根据权利要求 3所述的一种浮式平台, 其特征还在于所述的每层环形舱 室中设有多个底部具有开口的横舱壁。
5、 根据权利要求 4所述的一种浮式平台, 其特征还在于所述的多个环形舱 室容积为等比分舱: 相邻上下两环形舱室容积比等于其存储的液体密度的反比; 对于浮式平台存储的液体为海水和原油, 环形舱室的体积比遵循如下公式:
¾ _ P¾?ater
¾ Pol!
其中 vA为所述相邻两环形舱室中,位于下层的环形舱室舱室容积; vB为位 于 A上层的环形舱室的容积。
6、 根据权利要求 5所述的一种浮式平台, 其特征还在于: 所述的浮式平台 具有双层壳体和双层底, 在双层底内设置有调载舱; 所述调载舱的容积与其上 方的环形舱室的容积比等于其存储液体密度的反比, 浮式平台存储海水和石油 时, 所述上方环形舱室与调载舱的容积比等于水与石油的密度比; 调载舱为环 形, 重心位于所述竖直线上;
原油满载状态下: 所述环形舱室均储满原油, 调载舱处于空载状态; 输出原油作业时: 向所述调载舱中灌注海水, 同时抽取调载舱上层环形舱 室的原油; 当所述的上层环形舱室的原油全部排空时, 在该环形舱室中灌注海 水, 同时抽取该环形舱室上层的环形舱室的原油; 重复上述过程, 直到位于最 上层的环形舱室处于空载状态, 完成原油输出;
抽取原油和灌注海水作业同时进行, 保持在作业过程中, 浮式平台的重心 保持恒定; 输入原油作业时: 在所述顶层处于空载状态的环形舱室中注入原油, 同时 开始排空次顶层环形舱室中的海水; 重复上述过程, 直到最底层环形舱室注满 原油, 所述调载舱处于空载状态。
7、 根据权利要求 5或 6所述的一种浮式平台, 其特征还在于: 所述的浮式 平台具有双层壳体和双层底, 在双层底内设置有调载舱; 所述调整舱为两个重 心重合的环形的调载舱 I和调载舱 Π, 两个调载舱的重心位于所述的竖直线上; 所述调载舱 I和调载舱 Π的容积之和与最底层环形舱室的容积比等于其存 储液体密度的反比, 存储海水和石油时, 所述上方环形舱室与调载舱的容积比 等于水与石油的密度比;
所述调载舱 I或调载舱 Π满载海水的质量等于所述次顶层环形舱室满载海 水与顶层环形舱室满载原油的质量差;
原油满载状态下: 所述多个环形舱室均储满原油, 调载舱 I和调载舱 Π处 于空载状态;
输出原油作业时: 在所述调载舱 I和调载舱 Π中分别灌入海水, 同时开始 抽取调载舱上层环形舱室的原油; 在排空原油的环形舱室中灌入海水, 同时抽 取该环形舱室上层的环形舱室的原油; 重复上述过程, 直到位于最上层的环形 舱室处于放空状态; 当顶层环形舱室原油排空时, 为了保持浮式平台整体的重 心不变, 排空所述调载舱 I或调载舱 Π装载的海水;
输入原油作业时: 首先在所述顶层处于空载状态的环形舱室中灌注原油, 开始排空次顶层环形舱室的海水,同时在所述调载舱 I或调载舱 Π中灌注海水;, 保证浮式平台重心不发生改变; 重复上述过程, 直到最底层环形舱室注满原油, 此时所述调载舱 I和调载舱 Π位空载。
8、 一种具有如权利要求 7所述结构的浮式平台装卸载过程中保持浮态和稳 性控制方法, 具有如下步骤:
原油满载状态下: 所述环形舱室均储满原油, 调载舱处于空载状态; 输出原油作业时: 在所述调载舱中灌满海水, 抽取调载舱上层环形舱室的 原油; 在排空原油的环形舱室中灌满海水, 抽取该环形舱室上层的环形舱室的 原油; 重复上述过程, 直到位于最上层的环形舱室处于空载状态, 完成原油输 出;
输入原油作业时: 在所述顶层处于空载状态的环形舱室中注入原油, 排空 次顶层环形舱室的海水; 重复上述过程, 直到最底层环形舱室注满原油, 所述 调载舱处于空载状态。
9、 一种具有如权利要求 8所述结构的浮式平台装卸载过程中保持浮态和稳 性控制方法, 具有如下步骤:
原油满载状态下: 所述环形舱室均储满原油, 调载舱 I和调载舱 Π处于空 载状态; 当顶层环形舱室原油排空时, 排空所述调载舱 I或调载舱 Π装载的海 水;
输出原油作业时: 在所述调载舱 I和调载舱 Π中灌满海水, 抽取调载舱上 层环形舱室的原油; 在排空原油的环形舱室中灌满海水, 抽取该环形舱室上层 的环形舱室的原油; 重复上述过程, 直到位于最上层的环形舱室处于空载状态, 输入原油作业时: 在所述顶层处于空载状态的环形舱室中注入原油, 排空 次顶层环形舱室的海水, 在所述调载舱 I或调载舱 Π注满海水; 重复上述过程, 直到最底层环形舱室注满原油, 此时所述调载舱 I和调载舱 Π位空载。
PCT/CN2014/073738 2014-03-20 2014-03-20 一种浮式平台及其装卸载过程中保持浮态和稳性控制方法 WO2015139256A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2014/073738 WO2015139256A1 (zh) 2014-03-20 2014-03-20 一种浮式平台及其装卸载过程中保持浮态和稳性控制方法
US14/434,552 US9834287B2 (en) 2014-03-20 2014-03-20 Floating platform and method of floating state keeping and stability control during loading and unloading process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/073738 WO2015139256A1 (zh) 2014-03-20 2014-03-20 一种浮式平台及其装卸载过程中保持浮态和稳性控制方法

Publications (1)

Publication Number Publication Date
WO2015139256A1 true WO2015139256A1 (zh) 2015-09-24

Family

ID=54143676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/073738 WO2015139256A1 (zh) 2014-03-20 2014-03-20 一种浮式平台及其装卸载过程中保持浮态和稳性控制方法

Country Status (1)

Country Link
WO (1) WO2015139256A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2877640A1 (fr) * 2004-11-09 2006-05-12 D2M Consultants S A Sa Dispositif pour produire, stocker, et exporter du petrole ou du gaz en mer
CN102149598A (zh) * 2008-09-11 2011-08-10 塞万海洋股份有限公司 用于储存气体的浮动单元
CN103085946A (zh) * 2012-10-15 2013-05-08 大连理工大学 对接圆台式浮式生产储油系统
CN103085947A (zh) * 2012-10-15 2013-05-08 大连理工大学 沙漏型海洋工程浮式结构物
CN103171743A (zh) * 2012-10-15 2013-06-26 大连理工大学 对接八棱台式浮式生产储油系统
CN103832556A (zh) * 2014-03-20 2014-06-04 大连理工大学 一种浮式平台及其装卸载过程中保持浮态和稳性控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2877640A1 (fr) * 2004-11-09 2006-05-12 D2M Consultants S A Sa Dispositif pour produire, stocker, et exporter du petrole ou du gaz en mer
CN102149598A (zh) * 2008-09-11 2011-08-10 塞万海洋股份有限公司 用于储存气体的浮动单元
CN103085946A (zh) * 2012-10-15 2013-05-08 大连理工大学 对接圆台式浮式生产储油系统
CN103085947A (zh) * 2012-10-15 2013-05-08 大连理工大学 沙漏型海洋工程浮式结构物
CN103171743A (zh) * 2012-10-15 2013-06-26 大连理工大学 对接八棱台式浮式生产储油系统
CN103832556A (zh) * 2014-03-20 2014-06-04 大连理工大学 一种浮式平台及其装卸载过程中保持浮态和稳性控制方法

Similar Documents

Publication Publication Date Title
CN105584601B (zh) 半潜式起重平台压载水系统及其操作方法
CN101973373B (zh) 压载舱透气系统
CN103832556B (zh) 一种浮式平台及其装卸载过程中保持浮态和稳性控制方法
CN101980917A (zh) 液体储存、装卸装置及以其为基础的海上钻井和生产设施
CN107685838A (zh) 半潜式起重平台的压载系统及其压载方法
CN110510271B (zh) 适用于海洋石油开发的水下大型油水置换储卸油装置及其操作方法
CN101200899A (zh) 带有储油舱的自安装式桶型基础
CN103228531B (zh) 载货船舶以及装载和卸载这种载货船舶的方法
EP2996933A1 (en) Compact floating production, storage and offloading facility
CN104386209A (zh) 一种砂舱型自卸式运砂船
CN106585909B (zh) 浮式平台及储卸油方法
US20050163572A1 (en) Floating semi-submersible oil production and storage arrangement
CN205530193U (zh) 使用水下柔性储存装置的深水浮式油气平台
US9834287B2 (en) Floating platform and method of floating state keeping and stability control during loading and unloading process
CN115626258A (zh) 坐底式平台及其安装方法
CN203876957U (zh) 一种浮式平台
CN204432944U (zh) 一种砂舱型自卸式运砂船
CN105501406B (zh) 使用水下柔性储存装置的深水浮式油气平台
WO2015139256A1 (zh) 一种浮式平台及其装卸载过程中保持浮态和稳性控制方法
KR20110094366A (ko) 해상 구조물의 밸러스트 장치
CN217893173U (zh) 一种新型移动式平台
KR101334325B1 (ko) 화물창을 구비하는 선박
US3224402A (en) Stabilized floating drilling platform
US2834311A (en) Floating dry dock
US3306247A (en) Stabilizing apparatus for ships

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14434552

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14886489

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14886489

Country of ref document: EP

Kind code of ref document: A1