WO2015137285A1 - Glass for chemical strengthening, and chemically strengthened glass - Google Patents

Glass for chemical strengthening, and chemically strengthened glass Download PDF

Info

Publication number
WO2015137285A1
WO2015137285A1 PCT/JP2015/056858 JP2015056858W WO2015137285A1 WO 2015137285 A1 WO2015137285 A1 WO 2015137285A1 JP 2015056858 W JP2015056858 W JP 2015056858W WO 2015137285 A1 WO2015137285 A1 WO 2015137285A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
chemical strengthening
less
chemically strengthened
compressive stress
Prior art date
Application number
PCT/JP2015/056858
Other languages
French (fr)
Japanese (ja)
Inventor
貴尋 坂上
山本 宏行
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Publication of WO2015137285A1 publication Critical patent/WO2015137285A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions

Definitions

  • the present invention relates to a chemically tempered glass and a chemically tempered glass used for electronic devices, for example, casings and ornaments of communication devices and information devices that can be carried and used.
  • Cases and decorations for electronic devices such as mobile phones are selected and used from materials such as resin and metal in consideration of various factors such as decorativeness, scratch resistance, workability, and cost. Yes.
  • Patent Document 1 In recent years, attempts have been made to use glass, which has not been used in the past, as a casing material (see Patent Document 1). According to Patent Document 1, in an electronic device such as a mobile phone, it is said that a unique decoration effect with a sense of transparency can be exhibited by forming the casing body from glass.
  • a method of forming a compressive stress layer on the glass surface As a method for increasing the strength of glass, a method of forming a compressive stress layer on the glass surface is generally known.
  • an air cooling strengthening method physical strengthening method in which the glass plate surface heated to near the softening point is rapidly cooled by air cooling or the like, and ions at a temperature below the glass transition point.
  • Alkali metal ions typically Li ions and Na ions
  • alkali ions typically Na ions or K ions for Li ions.
  • a typical chemical strengthening method is to exchange K ions for Na ions.
  • the decorative glass as described above is usually used with a thickness of 2 mm or less.
  • the air cooling strengthening method is applied to such a thin glass plate, it is difficult to form a compressive stress layer because the temperature difference between the surface and the inside is difficult to be obtained, and the desired high strength characteristic can be obtained. Can not.
  • the air cooling enhancement due to the variation in cooling temperature, there is a great concern that the flatness may be impaired particularly for a thin plate, and the texture that is the object of the present invention may be impaired. From these points, it is preferable that the latter can be strengthened by the chemical strengthening method.
  • the glass described in Patent Document 2 is known as a glass that can be chemically strengthened and has a black color.
  • the glass described in Patent Document 2 is an aluminosilicate glass containing a high concentration of iron oxide.
  • JP 2009-61730 A Japanese Examined Patent Publication No. 45-16112
  • the surface compressive stress of the compressive stress layer is improved by containing an aluminum component in the glass.
  • the melting temperature of a glass raw material becomes high by containing an aluminum component in glass. Therefore, it is also known that the melting temperature of the glass raw material is kept below a certain level by containing a boron component in the glass.
  • the present inventor for the purpose of creating a glass exhibiting a black color with high absorbance, when an iron component is contained in the glass and the above-described aluminum component and boron component are co-added, the aluminum component and the iron component It was confirmed that devitrification occurred in the melted glass in the specific content range.
  • the object of the present invention is to provide chemically tempered glass and chemically tempered glass having characteristics suitable for use in electronic device casings and decorative products, that is, excellent aesthetics, high productivity, and high strength.
  • the present invention in a molar percentage based on the following oxides, Fe 2 O 3 0.1 ⁇ 7% , the Al 2 O 3 1 ⁇ 25% , the B 2 O 3 containing 0.1 to 10 percent, Vickers indenter having a minimum value of absorbance at a wavelength of 380 nm to 780 nm of 0.3 or more and a mirror finished surface of a glass plate having a thickness of 0.8 mm having an angle of 136 ° (hereinafter referred to as “in this specification”) This “Vickers indenter having a tip angle of 136 °” is referred to as “Vickers indenter (tip portion angle is 136 °)”.) When a dent is formed using a Vickers indenter, the crack occurrence rate is 50%.
  • the intensifying load is 150 gf (1.471 N) or more, and a glass for chemical strengthening that does not contain magnetite crystals (hereinafter referred to as the chemically strengthened glass of the present invention) is provided.
  • the glass for chemical strengthening of the present invention contains 2 to 7% of Fe 2 O 3 , Al 2 O 3 is X%, and Fe 2 O 3 is Y%, the following formula (1) A chemically strengthened glass containing the indicated amount is provided. Y ⁇ ⁇ 0.518X + 8.924 (1) Also provided is a glass for chemical strengthening according to the present invention, which contains 0.1 to 5% of V 2 O 5 .
  • the glass for chemical strengthening according to the present invention is SiO 2 55 to 75%, Al 2 O 3 1 to 25%, B 2 O 3 0.1 to 10%, Na 2 O 10-20%, K 2 O 0-5%, MgO 0-10%, CaO 0-10%, ⁇ RO (R is Mg, Ca, Sr, Ba, and Zn) Represents an alkaline earth metal selected from the group consisting of: RO represents one or more oxides of the alkaline earth metal, and ⁇ RO represents the total content of RO contained). 18%, 0.1 to 7% of Fe 2 O 3 and 0 to at least one metal oxide selected from the group consisting of coloring components (Co, Mn, Ni, Cu, Cr, V, and Bi) Provide a glass for chemical strengthening containing ⁇ 7%.
  • coloring components Co, Mn, Ni, Cu, Cr, V, and Bi
  • the present invention is a chemically strengthened glass obtained by chemically strengthening the above-described glass for chemical strengthening according to the present invention, which is provided with a compressive stress layer on the surface and is a glass plate having a thickness of 0.8 mm.
  • a chemically strengthened glass having a Vickers indentation load of 7 kgf (68.65 N) or more that gives a fracture rate of 50% when a Vickers indenter (angle of the tip portion is 136 °) is implanted on the surface.
  • a chemically strengthened glass of the present invention wherein the depth of the compressive stress layer is 10 ⁇ m or more, and the surface compressive stress of the compressive stress layer is 300 MPa or more.
  • the present invention it is possible to obtain a chemically strengthened glass and a chemically strengthened glass exhibiting a black color with characteristics suitable for use in electronic device casings and decorative products, that is, an excellent aesthetic appearance.
  • the glass for chemical strengthening and the chemically strengthened glass of the present invention can be a glass having high productivity and high strength.
  • the glass for chemical strengthening of the present invention is expressed in terms of a mole percentage based on the following oxides: Fe 2 O 3 is 0.1 to 7%, Al 2 O 3 is 1 to 25%, B 2 O 3 is 0.1 to Contains 10%.
  • content such as a coloring component, shows conversion content when each component which exists in glass shall exist as a displayed oxide.
  • “contains 0.1 to 7% of Fe 2 O 3 ” means that the Fe content in the glass is all in the form of Fe 2 O 3 , that is, Fe This means that the content in terms of Fe 2 O 3 is 0.1 to 7%.
  • “to” indicating a numerical range is used in the sense of including the numerical values described before and after it as a lower limit and an upper limit, and unless otherwise specified, Are used with similar meanings.
  • Fe 2 O 3 is a component for shielding light having a wavelength in the visible range and presenting the glass black, and is essential. If it is less than 0.1%, the glass does not exhibit black color. If Fe 2 O 3 exceeds 7%, the glass becomes unstable and devitrification may occur.
  • the ratio of the content of divalent iron in terms of Fe 2 O 3 in the total iron is preferably 10 to 50%, particularly preferably 15 to 40%. Most preferably, it is 20 to 30%. If the iron redox is lower than 10%, when SO 3 is contained, the decomposition does not proceed and the expected clarification effect may not be obtained. If it is higher than 50%, SO 3 will be decomposed too much before clarification and the expected clarification effect may not be obtained, or the number of bubbles may increase due to generation of bubbles.
  • Iron redox may indicate the percentage of divalent iron in terms of Mossbauer Spectroscopy Fe 2 O 3 in the total iron in terms of Fe 2 O 3 by% on the display.
  • a radiation source ( 57 Co)
  • a glass sample (a 3-7 mm thick glass flat plate cut, ground, and mirror-polished from the glass block) and a detector (LND 45431) are arranged on a straight line.
  • the radiation source is moved with respect to the axial direction of the optical system, and the energy change of ⁇ rays is caused by the Doppler effect.
  • the ratio of divalent Fe to trivalent Fe is calculated, and the ratio of divalent Fe is defined as iron redox.
  • Al 2 O 3 is a component that improves the chemical strengthening properties of glass and is essential. If it is less than 1%, the chemical strengthening properties are not sufficient. If Al 2 O 3 exceeds 25%, the viscosity of the glass becomes high and uniform melting becomes difficult.
  • B 2 O 3 is a component that lowers the melting temperature of the glass raw material and is essential. When B 2 O 3 is contained, if it is less than 0.1%, the effect of lowering the melting temperature of the glass raw material may not be obtained. If B 2 O 3 exceeds 10%, striae due to volatilization may occur and the yield may decrease.
  • the glass for chemical strengthening of the present invention has a minimum absorbance of 0.3 or more at a wavelength of 380 nm to 780 nm.
  • the glass for chemical strengthening is packaged, for example, on an electronic device.
  • a display device made up of a liquid crystal panel or organic EL and an operation device made up of buttons, or an operation device made up of a display device such as a touch panel and an operation device are arranged on one side.
  • the frame material is enclosed.
  • the other surface on the opposite side is constituted by a panel.
  • the frame material and the frame material, or the panel and the frame material may be configured integrally.
  • the glass for chemical strengthening can be used for any of the above-mentioned frame materials, panels, and frame materials. Moreover, the glass for chemical strengthening may be flat, concave, or convex.
  • a light source of a display device provided in an electronic device is configured to emit white light such as a light emitting diode, an organic EL, or a CCFL. Therefore, the minimum value of the absorbance at a wavelength of 380 nm to 780 nm of the chemically strengthened glass needs to be 0.3 or more so that the white light does not leak outside the device through the chemically strengthened glass.
  • White light is made to be recognized as white after phosphors are used and light having a plurality of wavelengths in the visible range is combined. Therefore, by setting the minimum value of the absorbance at a wavelength in the visible range to 0.3 or more, it is possible to absorb white light with a single glass without providing a light shielding unit and obtain sufficient light shielding properties.
  • the minimum absorbance at a wavelength of 380 nm to 780 nm of the glass is less than 0.3, a desired light shielding property cannot be obtained, and visible light may pass through the chemically strengthening glass.
  • the chemically strengthened glass is formed into a concave shape or a convex shape, visible light may pass through a portion where the thickness is the thinnest.
  • the absorbance is preferably 0.7 or more, more preferably 0.9 or more, 1.0 or more is particularly preferable.
  • the glass for chemical strengthening of the present invention is a glass plate having a thickness of 0.8 mm, but the crack occurrence rate when indentation is formed on the mirror-finished surface using a Vickers indenter (the angle of the tip is 136 °) is 50%.
  • the indentation load of the Vickers indenter (hereinafter sometimes referred to as CIL) is 150 gf or more. If this indentation load is less than 150 gf, it means that the surface of the glass is easily damaged, and the scratches remaining on the glass surface during polishing and the like become deep. Therefore, a chemically strengthened glass having high strength after chemically strengthening the chemically strengthened glass cannot be obtained.
  • the indentation load was determined by the following method. A plate-like glass having a thickness of 0.8 mm and having both surfaces mirror-polished was prepared. Using a Vickers hardness tester, a Vickers indenter (the tip angle was 136 °) was pressed for 15 seconds, then the Vickers indenter was removed, and the vicinity of the indentation was observed after 15 seconds. In the observation, we investigated how many cracks occurred from the corner of the indentation. The measurement was performed by pushing the Vickers indenter of 50 gf (0.49 N), 100 gf (0.981 N), 200 gf (1.961 N), 300 gf (2.941 N), 500 gf (4.903 N), 1 kgf (9.807 N).
  • the average number of cracks generated was calculated for each load.
  • the relationship between the load and the number of cracks was calculated by regression using a sigmoid function. From the regression calculation result, the load at which the number of cracks was two was defined as the indentation load value (gf).
  • the atmospheric conditions for the measurement are an air temperature of 25 ° C. and a humidity of about 40%.
  • the chemically strengthening glass of the present invention does not contain magnetite crystals.
  • a polishing phase takes time because a crystal phase having a higher hardness than the glass phase is present in the glass.
  • chipping and cracking are likely to occur on the end face of the glass in the polishing step, and the bending strength of the glass may be reduced.
  • the present inventor has found that there is a content range in which devitrification does not occur between the iron component and the aluminum component when melting the glass for chemical strengthening, which essentially includes the iron component, the boron component, and the aluminum component.
  • Magnetite crystals are a kind of oxide mineral and crystallize when the iron component contained in the glass raw material is devitrified in the process of melting to slow cooling.
  • the chemical composition is represented by Fe 2+ Fe 3+ 2 O 4 (triiron tetroxide).
  • the magnetite crystal in the glass is judged to be contained when the linear transmittance at a wavelength of 800 nm of the glass having a thickness of 0.8 mm is 1% or less. This is because, when magnetite crystals are present in the glass, light transmitted through the glass is scattered by the crystals, and the value of the linear transmittance is thereby significantly reduced.
  • the presence or absence of magnetite crystals in the glass can be confirmed by a method in which the surface of the glass is polished and observed using an optical microscope.
  • the chemically strengthened glass of the present invention has two preferred embodiments (first and second embodiments) described below.
  • the glass for chemical strengthening according to the first embodiment will be described.
  • the composition of the glass for chemical strengthening according to the first embodiment of the present invention will be described using the mole percentage display content unless otherwise specified.
  • Fe 2 O 3 is an essential component for presenting the glass in black, and the total iron content represented by Fe 2 O 3 is 2% or more and 7% or less. If the total iron content is less than 2%, the desired black glass cannot be obtained. Preferably it is 2.5% or more, More preferably, it is 3% or more. If Fe 2 O 3 exceeds 7%, a desired black color tone cannot be obtained. Preferably it is 6% or less, More preferably, it is 5% or less.
  • Al 2 O 3 is a component that improves the weather resistance and chemical strengthening properties of glass and is essential.
  • the Al 2 O 3 contained in the glass X%, if the Fe 2 O 3 was set to Y%, as the Al 2 O 3, contains an amount indicated by the following equation (1).
  • Y ⁇ ⁇ 0.518X + 8.924 (1) With a range of Al 2 O 3 and Fe 2 O 3 shown in Equation (1), it is possible to prevent the devitrification occurs in the glass. On the other hand, if it is out of the above range, devitrification may occur in the glass.
  • the formula (1) is obtained by the present inventor by creating a number of glasses having different content ratios of the iron component and the aluminum component and confirming whether or not devitrification occurs.
  • the glass for chemical strengthening of the second embodiment will be described.
  • the composition of the glass for chemical strengthening of the following second embodiment of the present invention will be described using the mole percentage display content unless otherwise specified.
  • Fe 2 O 3 is an essential component for presenting the glass in a relatively thin black color, and the total iron content represented by Fe 2 O 3 is 0.1 to less than 2%. If the total iron content is less than 0.1%, a desired black glass cannot be obtained. Preferably it is 0.2% or more, More preferably, it is 0.5% or more. If Fe 2 O 3 is 2% or more, the strength of the glass may be lowered. Preferably it is 1.8% or less, More preferably, it is 1.5% or less.
  • SiO 2 is a component constituting the glass skeleton and essential, and the content of SiO 2 is 55 to 75%. If it is less than 55%, the stability as glass will deteriorate, or the weather resistance will deteriorate. Preferably it is 60% or more. More preferably, it is 65% or more. If the SiO 2 content exceeds 75%, the viscosity of the glass increases and the meltability decreases significantly. Preferably it is 73% or less, typically 72% or less.
  • Na 2 O is a component that improves the meltability of glass, and is essential because a surface compressive stress layer is formed by ion exchange.
  • the content of Na 2 O is 10 to 20%. If it is less than 10%, the meltability is poor, and it becomes difficult to form a desired surface compressive stress layer by ion exchange. Preferably it is 11% or more, typically 12% or more. When Na 2 O exceeds 20%, the weather resistance decreases. Preferably it is 18% or less, typically 16% or less.
  • K 2 O is a component that improves the meltability and has the effect of increasing the ion exchange rate in chemical strengthening, and is therefore not essential, but is a preferable component.
  • the content of K 2 O is preferably 0.01 to 5%. If it is less than 0.01%, there is a possibility that a significant effect cannot be obtained for improving the meltability, or a significant effect cannot be obtained for improving the ion exchange rate. Typically, it is 0.3% or more.
  • K 2 O exceeds 5%, the weather resistance decreases. Preferably it is 4% or less, typically 3% or less.
  • MgO is a component that improves the meltability, and is not essential, but can be contained as necessary.
  • the content of MgO is preferably 3 to 10%. If it is less than 3%, there is a possibility that a significant effect for improving the meltability cannot be obtained. Typically 4% or more.
  • MgO exceeds 10% the weather resistance decreases. Preferably it is 9% or less, typically 8% or less.
  • CaO is a component that improves the meltability, and can be contained as necessary.
  • the content of CaO is preferably 0.01 to 10%. If it is less than 0.01%, a significant effect on improving the meltability cannot be obtained. Typically, it is 0.1% or more. If CaO exceeds 10%, the chemical strengthening properties are lowered. Preferably it is 9% or less, typically 8% or less.
  • RO is an alkaline earth metal selected from the group consisting of Mg, Ca, Sr, Ba, and Zn, and RO is a component of the alkaline earth metal oxide
  • the total ⁇ RO content of RO when RO is contained is preferably 1 to 18%. If it is less than 1%, the meltability may decrease. Preferably it is 3% or more, typically 5% or more. When ⁇ RO exceeds 18%, the weather resistance decreases. It is preferably 15% or less, more preferably 13% or less, and typically 11% or less. Note that ⁇ RO indicates the total amount of all RO components.
  • ZrO 2 is a component that increases the ion exchange rate and is not essential, but may be contained in a range of less than 1%. If the ZrO 2 content exceeds 1%, the meltability may be deteriorated and remain in the glass as an unmelted product.
  • SO 3 is a component that acts as a fining agent, and is not essential, but can be contained as necessary.
  • the content of SO 3 is preferably 0.005 to 0.3%. If it is less than 0.005%, the expected clarification action cannot be obtained. Preferably it is 0.01% or more, More preferably, it is 0.02% or more. 0.03% or more is most preferable. On the other hand, if it exceeds 0.5%, it becomes a generation source of bubbles, and there is a possibility that the glass melts slowly or the number of bubbles increases. Preferably it is 0.3% or less, More preferably, it is 0.2% or less. 0.1% or less is most preferable.
  • SnO 2 is a component that acts as a fining agent, and is not essential, but can be contained as necessary.
  • the content of SnO 2 is preferably 0.005 to 1%. If it is less than 0.005%, the expected clarification action cannot be obtained. Preferably it is 0.01% or more, More preferably, it is 0.05% or more. On the other hand, if it exceeds 1%, it becomes a generation source of bubbles, and there is a possibility that the glass melts slowly or the number of bubbles increases. Preferably it is 0.8% or less, More preferably, it is 0.5% or less. Most preferred is 0.3% or less.
  • Li 2 O is a component for improving the meltability, and is not essential, but can be contained as necessary.
  • the content of Li 2 O is preferably 1 to 15%. If it is less than 1%, there is a possibility that a significant effect for improving the meltability cannot be obtained. Preferably it is 3% or more, and typically 6% or more. If Li 2 O exceeds 15%, the weather resistance may decrease. Preferably it is 10% or less, typically 5% or less.
  • SrO is a component for improving the meltability, and is not essential, but can be contained as necessary.
  • the content of SrO is preferably 1 to 15%. If it is less than 1%, there is a possibility that a significant effect for improving the meltability cannot be obtained. Preferably it is 3% or more, and typically 6% or more. If SrO exceeds 15%, the weather resistance and chemical strengthening properties may be lowered. Preferably it is 12% or less, typically 9% or less.
  • BaO is a component for improving the meltability, and is not essential, but can be contained as necessary.
  • the content of BaO is preferably 1 to 15%. If it is less than 1%, there is a possibility that a significant effect for improving the meltability cannot be obtained. Preferably it is 3% or more, and typically 6% or more. If BaO exceeds 15%, the weather resistance and chemical strengthening properties may be reduced. Preferably it is 12% or less, typically 9% or less.
  • ZnO is a component for improving the meltability, and is not essential, but can be contained as necessary.
  • the content of ZnO is preferably 1 to 15%. If it is less than 1%, there is a possibility that a significant effect for improving the meltability cannot be obtained. Preferably it is 3% or more, and typically 6% or more. If ZnO exceeds 15%, the weather resistance may be lowered. Preferably it is 12% or less, typically 9% or less.
  • the glass coloring component may contain at least one component of a metal oxide selected from the group of metals consisting of Co, Mn, Ni, Cu, Cr, V, and Bi. When such components are contained, the total content of these components is preferably 7% or less, and typically 6% or less.
  • V 2 O 5 is a component that improves CIL and can be contained as necessary, although not essential.
  • the content of V 2 O 5 is preferably 0.1 to 5%. If it is less than 0.1%, there is a possibility that a significant effect for improving CIL cannot be obtained. Preferably it is 0.2% or more, and typically 0.5% or more. If V 2 O 5 exceeds 5%, the weather resistance may decrease. Preferably it is 4% or less, typically 3% or less.
  • the glass for chemical strengthening of the present invention may be chemically strengthened to form a compressive stress layer on the glass surface.
  • the method of chemical strengthening treatment is not particularly limited as long as it can ion-exchange Na 2 O on the glass surface layer and K 2 O in the molten salt.
  • KNO 3 molten salt The conditions for forming a chemically strengthened layer (surface compressive stress layer) having a desired surface compressive stress on the glass surface vary depending on the thickness of the glass, but the glass is added to the KNO 3 molten salt at 400 to 550 ° C. It is typical to soak for 2 to 20 hours.
  • this KNO 3 molten salt in addition to KNO 3 , for example, NaNO 3 may be contained in an amount of about 5% or less.
  • the chemically strengthened glass of the present invention can be produced by applying the chemical strengthening method described above.
  • the depth of the compressive stress layer generated by the chemical strengthening treatment is preferably 10 ⁇ m or more. The reason is as follows.
  • the glass surface may be polished, and the grain size of the abrasive grains used for polishing at the final stage is typically 2 to 6 ⁇ m. Such abrasive grains are thought to ultimately form microcracks having a maximum size of 5 ⁇ m on the glass surface.
  • the depth of the compressive-stress layer produced by a chemical strengthening process shall be 10 micrometers or more.
  • the compressive stress layer is more preferably 12 ⁇ m or more, further preferably 14 ⁇ m or more, and typically 16 ⁇ m or more.
  • the compressive stress layer is too deep, the internal tensile stress increases and the impact at the time of failure increases. That is, it is known that when the internal tensile stress is large, the glass tends to become a fine piece and scatter in pieces at the time of breakage, which increases the risk. As a result of experiments by the present inventors, it has been found that in a glass having a thickness of 2 mm or less, scattering at the time of breakage becomes significant when the depth of the surface compressive stress layer exceeds 70 ⁇ m. Therefore, in the chemically strengthened glass of the present invention, the depth of the compressive stress layer is 70 ⁇ m or less.
  • the depth of the compressive stress layer is more preferably 60 ⁇ m or less, further preferably 50 ⁇ m or less, and typically 40 ⁇ m or less.
  • the chemically strengthened glass of the present invention can be obtained by chemically strengthening the glass by chemically strengthening, but the surface compressive stress of the compressive stress layer formed on the glass surface is 300 MPa or more. Preferably, it is 550 MPa or more, more preferably 700 MPa or more. Further, the surface compressive stress of the surface compressive stress layer is preferably 1400 MPa or less, and more preferably 1300 MPa or less. Typically, it is 1200 MPa or less.
  • the chemically strengthened glass of the present invention is a glass plate having a thickness of 0.8 mm, and a Vickers indenter having a fracture rate of 50% when a Vickers indenter (the angle of the tip portion is 136 °) is driven into the mirror-finished surface
  • the driving load (hereinafter sometimes referred to as FIL) is preferably 7 kgf (68.65 N) or more.
  • FIL The driving load
  • the driving load of the Vickers indenter at which the fracture rate is 50% is less than 7 kgf (68.65 N)
  • the strength of the glass is insufficient, and the chemical strengthening effect may not be sufficiently exhibited.
  • it is 8 kgf (78.45 N) or more, more preferably 10 kgf (98.07 N) or more.
  • the driving load was obtained by the following method.
  • a plate-shaped chemically tempered glass having a thickness of 0.8 mm prepared by mirror-polishing both surfaces of a glass plate having a thickness of 0.8 mm and performing chemical strengthening treatment was prepared.
  • With a Vickers hardness tester the presence or absence of glass breakage was observed when a Vickers indenter (the angle of the tip portion was 136 °) was driven.
  • the measurement is performed by a Vickers indentation load of 5 kgf (49.03 N), 10 kgf (98.07 N), 20 kgf (196.13 N), 30 kgf (294.20 N), 40 kgf (392.27 N), and 50 kgf (490.33 N). Separately, it was performed on 10 sheets of glass.
  • the glass breaking rate was calculated for each load.
  • the relationship between the load and the fracture rate was calculated by regression using a linear function. From the regression calculation results, the load at which the fracture rate was 50% was determined as the driving load value (kgf).
  • the atmospheric conditions for the measurement are an air temperature of 25 ° C. and a humidity of about 40%.
  • the method for producing the glass for chemical strengthening of the present invention is not particularly limited.
  • various raw materials are prepared so as to have a desired glass composition, heated to 1500 to 1700 ° C. and melted, and then defoamed and stirred. Homogenized and formed into a plate shape or the like by a well-known down draw method, press method, float method or the like, or cast into a block shape. And after slow cooling, it cut
  • Example 1 to 49 in Table 1 to Table 5 (Examples 1 to 33 are Examples, and Examples 34 to 49 are Comparative Examples), oxides, Commonly used glass materials such as products, carbonates and nitrates were appropriately selected and weighed to 100 ml as glass. Note that the SO 3 in Table, was added to bow the glass raw material nitric (Na 2 SO 4), a residual SO 3 remaining in glass after Glauber's salt decomposition, is a calculated value.
  • this raw material mixture was put into a platinum crucible, put into a resistance heating type electric furnace at 1500 to 1600 ° C., heated for about 0.5 hours, and then the raw materials were melted, and then melted for 1 hour and degassed. Then, it was poured into a mold having a length of about 50 mm ⁇ width of about 100 mm ⁇ height of about 20 mm preheated to about 300 ° C., and slowly cooled at a rate of about 1 ° C./min to obtain a glass block. After cutting this glass block, the glass is cut out so that the size is 40 mm long x 40 mm wide x 0.8 mm thick, then ground, and finally polished on both sides to a mirror surface to obtain a plate-like glass It was.
  • the crack occurrence rate when forming an indentation using a Vickers indenter (angle of the tip portion is 136 °) on the mirror-finished surface of a glass plate having a thickness of 0.8 mm is 50%.
  • the indentation load (CIL) of the Vickers indenter, and the fracture rate when the Vickers indenter (the tip angle is 136 °) is driven into the mirror-finished surface of the glass plate having a thickness of 0.8 mm that has been chemically strengthened.
  • Vickers indentation load FIL
  • FIL Vickers indentation load
  • CIL Indentation load
  • FIL Indentation load
  • Absorbance was determined by the following method.
  • the thickness t of a plate-like glass obtained by mirror-polishing both surfaces of a glass plate corresponding to a thickness of about 0.8 mm was measured with a caliper.
  • the spectral transmittance T of the glass was measured using an ultraviolet-visible near-infrared spectrophotometer (manufactured by JASCO Corporation, V-570).
  • the spectral transmittance T is a value considering the surface reflection when the reflectance of the glass is assumed to be 4%.
  • the depth (DOL) and the surface compressive stress (CS) of the compressive stress layer after the chemical strengthening treatment of the glass were measured using a surface compressive stress meter using infrared as measurement light.
  • the chemical strengthening treatment was performed by preparing a glass plate having a thickness of 0.8 mm and immersing the glass in a molten salt composed of KNO 3 (99%) and NaNO 3 (1%) at 450 ° C. for 6 hours.
  • the glasses of Examples 34 to 48 where devitrification occurred could not measure DOL and CS because the measurement light of the surface compressive stress meter did not pass through. Therefore, in Tables 4 and 5, “measurement impossible” was set.
  • the presence or absence of devitrification of the glass was determined by measuring the spectral transmittance T of a glass plate having a thickness of 0.8 mm using an ultraviolet-visible-near infrared spectrophotometer (manufactured by JASCO Corporation, V-570).
  • an ultraviolet-visible-near infrared spectrophotometer manufactured by JASCO Corporation, V-570.
  • the linear transmittance at 800 nm was 1% or less, devitrification occurred.
  • the linear transmittance at a wavelength of 800 nm exceeded 1%, no devitrification was assumed. That is, when the linear transmittance at a wavelength of 800 nm of glass having a plate thickness of 0.8 mm exceeds 1% (that is, no devitrification), it indicates that the glass does not contain magnetite crystals.
  • FIG. 1 shows a plot in which there is no ⁇ and in which no devitrification is indicated as x.
  • the chemically strengthened glass of the present invention exhibits a black color, has high strength, and can be obtained without devitrification.
  • the glass of the comparative example is devitrified, and there is a possibility that the aesthetic appearance is impaired. Further, since crystals with high hardness are generated in the glass, the polishing process takes time, and productivity may be lowered. Further, in the polishing step, chipping and cracks are likely to occur on the end face of the glass, and the bending strength of the glass may be reduced.
  • the chemically tempered glass of the present invention is provided around the operation panel of AV equipment / OA equipment, the door of the product, the operation button / knob, or the rectangular display surface of an image display panel such as a digital photo frame or TV. It can be used for decorative items such as decorative panels arranged on the glass or black-colored glass for electronic devices. It can also be used for interior parts for automobiles, members such as furniture, and building materials used outdoors and indoors.
  • the entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2014-049750 filed on March 13, 2014 are incorporated herein by reference. .

Abstract

 Provided are a glass for chemical strengthening and a chemically strengthened glass, provided with characteristics suitable for application in a housing or decorative component of an electronic device, i.e., excellent aesthetics, high productivity, and high strength. This glass for chemical strengthening is characterized by containing 0.1-7% Fe2O3, 1-25% Al2O3, and 0.1-10% B2O3 by mole percentage in terms of oxides, the minimum absorbance in a wavelength range of 380 nm to 780 nm being at least 0.3, the indentation load of a Vickers indenter giving a crack incidence of 50% when an indentation is formed using the Vickers indenter (angle of tip: 136°) in a mirror-finished surface of a sheet of the glass having a thickness of 0.8 mm being at least 150 gf, and the glass for chemical strengthening not containing magnetite crystals.

Description

化学強化用ガラスおよび化学強化ガラスChemically strengthened glass and chemically strengthened glass
 本発明は、電子機器、例えば携帯して使用可能な通信機器や情報機器等の筐体や装飾品に用いられる化学強化用ガラスおよび化学強化ガラスに関する。 The present invention relates to a chemically tempered glass and a chemically tempered glass used for electronic devices, for example, casings and ornaments of communication devices and information devices that can be carried and used.
 携帯電話等の電子機器の筐体や装飾品は、装飾性、耐傷性、加工性、コスト等の様々な要因を考慮し、樹脂、金属等の素材から適宜のものが選択され、用いられている。 Cases and decorations for electronic devices such as mobile phones are selected and used from materials such as resin and metal in consideration of various factors such as decorativeness, scratch resistance, workability, and cost. Yes.
 近年、従来用いられていなかったガラスを筐体の素材として用いる試みがされている(特許文献1参照)。特許文献1によれば、携帯電話等の電子機器において、筐体本体をガラスで形成することにより、透明感のある独特の装飾効果を発揮することができるとされている。 In recent years, attempts have been made to use glass, which has not been used in the past, as a casing material (see Patent Document 1). According to Patent Document 1, in an electronic device such as a mobile phone, it is said that a unique decoration effect with a sense of transparency can be exhibited by forming the casing body from glass.
 携帯電話等の携帯して使用可能な電子機器の筐体や装飾品は、使用時の落下衝撃による破損や長期間の使用による接触傷を考慮し、高い強度が求められる。 筐 体 Cases and decorations of electronic devices that can be carried around, such as mobile phones, are required to have high strength in consideration of damage due to drop impact during use and contact damage due to long-term use.
 ガラスの強度を高める方法として、ガラス表面に圧縮応力層を形成させる手法が一般的に知られている。
  ガラス表面に圧縮応力層を形成させる手法としては、軟化点付近まで加熱したガラス板表面を風冷などにより急速に冷却する風冷強化法(物理強化法)と、ガラス転移点以下の温度でイオン交換によりガラス板表面のイオン半径が小さなアルカリ金属イオン(典型的にはLiイオン、Naイオン)をイオン半径のより大きいアルカリイオン(典型的にはLiイオンに対してはNaイオンまたはKイオンであり、Naイオンに対してはKイオン)に交換する化学強化法が代表的である。
As a method for increasing the strength of glass, a method of forming a compressive stress layer on the glass surface is generally known.
As a method for forming a compressive stress layer on the glass surface, an air cooling strengthening method (physical strengthening method) in which the glass plate surface heated to near the softening point is rapidly cooled by air cooling or the like, and ions at a temperature below the glass transition point. Alkali metal ions (typically Li ions and Na ions) having a small ionic radius on the glass plate surface by exchange are alkali ions (typically Na ions or K ions for Li ions). A typical chemical strengthening method is to exchange K ions for Na ions.
 例えば、前述したような装飾用ガラスの厚さは、通常2mm以下の厚みで使用されることが多い。このように薄いガラス板に対して風冷強化法を適用すると、表面と内部の温度差がつきにくいために圧縮応力層を形成することが困難であり、目的の高強度という特性を得ることができない。また、風冷強化では、冷却温度のばらつきにより、特に薄板については平面性を損なう懸念が大きく、本発明の目的である質感を損なう可能性がある。これらの点から、後者の化学強化法によって強化できることが好ましい。 For example, the decorative glass as described above is usually used with a thickness of 2 mm or less. When the air cooling strengthening method is applied to such a thin glass plate, it is difficult to form a compressive stress layer because the temperature difference between the surface and the inside is difficult to be obtained, and the desired high strength characteristic can be obtained. Can not. Further, in the air cooling enhancement, due to the variation in cooling temperature, there is a great concern that the flatness may be impaired particularly for a thin plate, and the texture that is the object of the present invention may be impaired. From these points, it is preferable that the latter can be strengthened by the chemical strengthening method.
 また、携帯電話等の電子機器の筐体や装飾品は、機器自体の存在を強く主張せず、なおかつ重厚感、高級感が得られる黒色が多用されている。 Also, the case and decoration of electronic devices such as mobile phones are often used in black, which does not insist on the existence of the device itself, yet provides a profound feeling and luxury.
 化学強化可能であって、かつ黒色を呈するガラスとして、特許文献2に記載のガラスが知られている。特許文献2に記載のガラスは、アルミノケイ酸塩ガラスに高濃度の酸化鉄を含有させたものである。 The glass described in Patent Document 2 is known as a glass that can be chemically strengthened and has a black color. The glass described in Patent Document 2 is an aluminosilicate glass containing a high concentration of iron oxide.
特開2009-61730号公報JP 2009-61730 A 特公昭45-16112号公報Japanese Examined Patent Publication No. 45-16112
 化学強化法を用いてガラスを強化処理する場合、ガラス中にアルミニウム成分を含有することで圧縮応力層の表面圧縮応力が向上することが知られている。
  また、ガラス中にアルミニウム成分を含有することで、ガラス原料の溶解温度が高くなる。そのため、ガラス中にホウ素成分を含有することでガラス原料の溶解温度を一定以下とすることも知られている。
When glass is strengthened using a chemical strengthening method, it is known that the surface compressive stress of the compressive stress layer is improved by containing an aluminum component in the glass.
Moreover, the melting temperature of a glass raw material becomes high by containing an aluminum component in glass. Therefore, it is also known that the melting temperature of the glass raw material is kept below a certain level by containing a boron component in the glass.
 しかしながら、本発明者は、吸光度の高い黒色を呈するガラスを作成する目的で、ガラス中に鉄成分を含有し、かつ前述のアルミニウム成分およびホウ素成分とを共添加した場合、アルミニウム成分と鉄成分との特定の含有範囲において、溶融したガラス中に失透が発生することを確認した。 However, the present inventor, for the purpose of creating a glass exhibiting a black color with high absorbance, when an iron component is contained in the glass and the above-described aluminum component and boron component are co-added, the aluminum component and the iron component It was confirmed that devitrification occurred in the melted glass in the specific content range.
 黒色を呈するガラスにおいて、ガラス中に失透が発生すると、ガラスの表面が薄く白曇り、美観が優れないという問題がある。ガラス中の失透は、ガラスの表面だけでなく内部においても発生するため、ガラスの表面を研磨加工しても、この問題を解決することはできない。 When the glass exhibiting black color is devitrified in the glass, there is a problem that the surface of the glass is thin and cloudy and the appearance is not excellent. Since devitrification in the glass occurs not only on the surface of the glass but also on the inside, even if the surface of the glass is polished, this problem cannot be solved.
 また、ガラス中に失透が発生すると、ガラス中にガラス相と比較して硬度の高い結晶相が存在するため、研磨工程に時間を要するという問題がある。また、ガラス中に硬度の高い結晶相が存在することに起因し、研磨工程においてガラスの端面に欠けやクラックが発生しやすくなり、ガラスの曲げ強度が低下するおそれがある。 Further, when devitrification occurs in the glass, there is a problem that the polishing process takes time because a crystal phase having higher hardness than the glass phase exists in the glass. In addition, due to the presence of a crystalline phase having high hardness in the glass, chipping and cracking are likely to occur on the end face of the glass in the polishing step, and the bending strength of the glass may be reduced.
 本発明は、電子機器の筐体や装飾品用途に好適な特性、すなわち、優れた美観、高い生産性、高い強度を備えた化学強化用ガラスおよび化学強化ガラスの提供を目的とする。 The object of the present invention is to provide chemically tempered glass and chemically tempered glass having characteristics suitable for use in electronic device casings and decorative products, that is, excellent aesthetics, high productivity, and high strength.
 本発明は、下記酸化物基準のモル百分率表示で、Feを0.1~7%、Alを1~25%、Bを0.1~10%含有し、波長380nm~780nmにおける吸光度の最小値が0.3以上であって、厚み0.8mmのガラス板にしたものの鏡面仕上げ表面に先端部の角度が136°のビッカース圧子(以下、本明細書において、この「先端部の角度が136°のビッカース圧子」を「ビッカース圧子(先端部の角度は136°)」と記す。)を用いて圧痕を形成した際のクラック発生率が50%となるビッカース圧子の押し込み荷重が150gf(1.471N)以上であり、マグネタイト結晶を含有しない化学強化用ガラス(以下、本発明の化学強化用ガラスという。)を提供する。 The present invention, in a molar percentage based on the following oxides, Fe 2 O 3 0.1 ~ 7% , the Al 2 O 3 1 ~ 25% , the B 2 O 3 containing 0.1 to 10 percent, Vickers indenter having a minimum value of absorbance at a wavelength of 380 nm to 780 nm of 0.3 or more and a mirror finished surface of a glass plate having a thickness of 0.8 mm having an angle of 136 ° (hereinafter referred to as “in this specification”) This “Vickers indenter having a tip angle of 136 °” is referred to as “Vickers indenter (tip portion angle is 136 °)”.) When a dent is formed using a Vickers indenter, the crack occurrence rate is 50%. The intensifying load is 150 gf (1.471 N) or more, and a glass for chemical strengthening that does not contain magnetite crystals (hereinafter referred to as the chemically strengthened glass of the present invention) is provided.
 また、本発明の化学強化用ガラスであって、Feを2~7%含有し、AlをX%、FeをY%とした場合、下記(1)式で示す量を含有する化学強化用ガラスを提供する。
    Y≦-0.518X+8.924 ・・・(1)
 また、本発明の化学強化用ガラスであって、Vを0.1~5%含有する化学強化用ガラスを提供する。
Further, when the glass for chemical strengthening of the present invention contains 2 to 7% of Fe 2 O 3 , Al 2 O 3 is X%, and Fe 2 O 3 is Y%, the following formula (1) A chemically strengthened glass containing the indicated amount is provided.
Y ≦ −0.518X + 8.924 (1)
Also provided is a glass for chemical strengthening according to the present invention, which contains 0.1 to 5% of V 2 O 5 .
 また、本発明の化学強化用ガラスであって、下記酸化物基準のモル百分率表示で、SiOを55~75%、Alを1~25%、Bを0.1~10%、NaOを10~20%、KOを0~5%、MgOを0~10%、CaOを0~10%、ΣRO(Rは、Mg、Ca、Sr、Ba、およびZnからなる群より選択されるアルカリ土類金属を示し、ROは、前記アルカリ土類金属の1種以上の酸化物を示し、ΣROは、含有されるROの合計含有量を示す。)を0~18%、Feを0.1~7%、着色成分(Co、Mn、Ni、Cu、Cr、V、およびBiからなる金属の群から選択される少なくとも1種の金属酸化物を0~7%、含有する化学強化用ガラスを提供する。 Further, the glass for chemical strengthening according to the present invention is SiO 2 55 to 75%, Al 2 O 3 1 to 25%, B 2 O 3 0.1 to 10%, Na 2 O 10-20%, K 2 O 0-5%, MgO 0-10%, CaO 0-10%, ΣRO (R is Mg, Ca, Sr, Ba, and Zn) Represents an alkaline earth metal selected from the group consisting of: RO represents one or more oxides of the alkaline earth metal, and ΣRO represents the total content of RO contained). 18%, 0.1 to 7% of Fe 2 O 3 and 0 to at least one metal oxide selected from the group consisting of coloring components (Co, Mn, Ni, Cu, Cr, V, and Bi) Provide a glass for chemical strengthening containing ˜7%.
 また、本発明は、上記した本発明の化学強化用ガラスを化学強化処理して得られる化学強化ガラスであって、表面に圧縮応力層を備え、厚み0.8mmのガラス板にしたものの鏡面仕上げ表面にビッカース圧子(先端部の角度は136°)を打ち込んだ際の破壊率が50%となるビッカース圧子の打ち込み荷重が7kgf(68.65N)以上である化学強化ガラスを提供する。 Further, the present invention is a chemically strengthened glass obtained by chemically strengthening the above-described glass for chemical strengthening according to the present invention, which is provided with a compressive stress layer on the surface and is a glass plate having a thickness of 0.8 mm. Provided is a chemically strengthened glass having a Vickers indentation load of 7 kgf (68.65 N) or more that gives a fracture rate of 50% when a Vickers indenter (angle of the tip portion is 136 °) is implanted on the surface.
 また、本発明の化学強化ガラスであって、圧縮応力層の深さが10μm以上であり、圧縮応力層の表面圧縮応力が300MPa以上である化学強化ガラスを提供する。 Also provided is a chemically strengthened glass of the present invention, wherein the depth of the compressive stress layer is 10 μm or more, and the surface compressive stress of the compressive stress layer is 300 MPa or more.
 本発明によれば、電子機器の筐体や装飾品用途に好適な特性、すなわち、優れた美観を備えた黒色を呈する化学強化用ガラスおよび化学強化ガラスが得られる。また、本発明の化学強化用ガラスおよび化学強化ガラスは、生産性が高く、高い強度を備えたガラスとすることが可能である。 According to the present invention, it is possible to obtain a chemically strengthened glass and a chemically strengthened glass exhibiting a black color with characteristics suitable for use in electronic device casings and decorative products, that is, an excellent aesthetic appearance. Moreover, the glass for chemical strengthening and the chemically strengthened glass of the present invention can be a glass having high productivity and high strength.
実施例および比較例の各ガラスにおける失透の発生有無を鉄成分とアルミニウム成分の含有量でプロットした図である。It is the figure which plotted the presence or absence of devitrification in each glass of an Example and a comparative example by content of an iron component and an aluminum component.
 本発明の化学強化用ガラスは、下記酸化物基準のモル百分率表示で、Feを0.1~7%、Alを1~25%、Bを0.1~10%含有する。
  なお、本明細書において、着色成分等の含有量は、ガラス中に存在する各成分が、表示された酸化物として存在するものとした場合の換算含有量を示す。たとえば、「Feを0.1~7%含有する」とは、ガラス中に存在するFeが、すべてFeの形で存在するものとした場合のFe含有量、すなわちFeのFe換算含有量が0.1~7%であることを意味するものである。
 本明細書において数値範囲を示す「~」とは、その前後に記載された数値を下限値および上限値として含む意味で使用され、特段の定めがない限り、以下本明細書において「~」は、同様の意味をもって使用される。
The glass for chemical strengthening of the present invention is expressed in terms of a mole percentage based on the following oxides: Fe 2 O 3 is 0.1 to 7%, Al 2 O 3 is 1 to 25%, B 2 O 3 is 0.1 to Contains 10%.
In addition, in this specification, content, such as a coloring component, shows conversion content when each component which exists in glass shall exist as a displayed oxide. For example, “contains 0.1 to 7% of Fe 2 O 3 ” means that the Fe content in the glass is all in the form of Fe 2 O 3 , that is, Fe This means that the content in terms of Fe 2 O 3 is 0.1 to 7%.
In the present specification, “to” indicating a numerical range is used in the sense of including the numerical values described before and after it as a lower limit and an upper limit, and unless otherwise specified, Are used with similar meanings.
 Feは、可視域の波長の光を遮蔽し、ガラスを黒色に呈するための成分であり、必須である。0.1%未満ではガラスが黒色を呈しない。Feが7%超ではガラスが不安定となり失透を生じるおそれがある。
  この全鉄のうちのFeで換算した2価の鉄の含有量の割合(すなわち、鉄レドックス)が10~50%、特には15~40%であることが好ましい。20~30%であるともっとも好ましい。鉄レドックスが10%より低いとSOを含有する場合、その分解が進まず期待する清澄効果が得られないおそれがある。50%より高いと清澄前にSOの分解が進みすぎて期待する清澄効果が得られない、あるいは、泡の発生源となり泡個数が増加するおそれがある。
Fe 2 O 3 is a component for shielding light having a wavelength in the visible range and presenting the glass black, and is essential. If it is less than 0.1%, the glass does not exhibit black color. If Fe 2 O 3 exceeds 7%, the glass becomes unstable and devitrification may occur.
The ratio of the content of divalent iron in terms of Fe 2 O 3 in the total iron (that is, iron redox) is preferably 10 to 50%, particularly preferably 15 to 40%. Most preferably, it is 20 to 30%. If the iron redox is lower than 10%, when SO 3 is contained, the decomposition does not proceed and the expected clarification effect may not be obtained. If it is higher than 50%, SO 3 will be decomposed too much before clarification and the expected clarification effect may not be obtained, or the number of bubbles may increase due to generation of bubbles.
 鉄レドックスは、メスバウアー分光法によりFeに換算した全鉄中のFeに換算した2価の鉄の割合を%表示で示すことができる。具体的には、放射線源(57Co)、ガラス試料(上記ガラスブロックから切断、研削、鏡面研磨した3~7mm厚のガラス平板)、検出器(LND社製45431)を直線上に配置する透過光学系での評価を行う。光学系の軸方向に対して放射線源を運動させ、ドップラー効果によるγ線のエネルギー変化を起こす。そして室温で得られたメスバウアー吸収スペクトルを用いて、2価のFeと3価のFeの割合を算出し、2価のFeの割合を鉄レドックスとする。 Iron redox may indicate the percentage of divalent iron in terms of Mossbauer Spectroscopy Fe 2 O 3 in the total iron in terms of Fe 2 O 3 by% on the display. Specifically, a radiation source ( 57 Co), a glass sample (a 3-7 mm thick glass flat plate cut, ground, and mirror-polished from the glass block) and a detector (LND 45431) are arranged on a straight line. Perform optical system evaluation. The radiation source is moved with respect to the axial direction of the optical system, and the energy change of γ rays is caused by the Doppler effect. Then, using the Mossbauer absorption spectrum obtained at room temperature, the ratio of divalent Fe to trivalent Fe is calculated, and the ratio of divalent Fe is defined as iron redox.
 Alは、ガラスの化学強化特性を向上させる成分であり、必須である。1%未満では化学強化特性が十分でない。Alが25%超ではガラスの粘性が高くなり均質な溶融が困難になる。 Al 2 O 3 is a component that improves the chemical strengthening properties of glass and is essential. If it is less than 1%, the chemical strengthening properties are not sufficient. If Al 2 O 3 exceeds 25%, the viscosity of the glass becomes high and uniform melting becomes difficult.
 Bは、ガラス原料の溶融温度を下げる成分であり、必須である。Bを含有する場合、0.1%未満ではガラス原料の溶融温度を下げる効果が得られないおそれがある。Bが10%超では揮散による脈理が発生し、歩留まりが低下するおそれがある。 B 2 O 3 is a component that lowers the melting temperature of the glass raw material and is essential. When B 2 O 3 is contained, if it is less than 0.1%, the effect of lowering the melting temperature of the glass raw material may not be obtained. If B 2 O 3 exceeds 10%, striae due to volatilization may occur and the yield may decrease.
 本発明の化学強化用ガラスは、波長380nm~780nmにおける吸光度の最小値が0.3以上である。
  化学強化用ガラスは、例えば電子機器に外装される。携帯電話の外表面は、一方の面に液晶パネルや有機ELからなる表示装置およびボタンからなる操作装置、もしくはタッチパネルのような表示装置と操作装置が一体となったものが配置され、その周囲を額縁材が囲う構成である。反対の他方の面は、パネルで構成される。そして、一方の面と他方の面との間である機器の厚み部分に枠材がある。これら額縁材と枠材、もしくはパネルと枠材は一体に構成される場合もある。
The glass for chemical strengthening of the present invention has a minimum absorbance of 0.3 or more at a wavelength of 380 nm to 780 nm.
The glass for chemical strengthening is packaged, for example, on an electronic device. On the outer surface of the mobile phone, a display device made up of a liquid crystal panel or organic EL and an operation device made up of buttons, or an operation device made up of a display device such as a touch panel and an operation device are arranged on one side. The frame material is enclosed. The other surface on the opposite side is constituted by a panel. And there exists a frame material in the thickness part of the apparatus between one surface and the other surface. The frame material and the frame material, or the panel and the frame material may be configured integrally.
 化学強化用ガラスは、前述の額縁材、パネル、枠材のいずれにも用いることが可能である。また、化学強化用ガラスは、平板状、凹状、もしくは凸状であってもよい。 The glass for chemical strengthening can be used for any of the above-mentioned frame materials, panels, and frame materials. Moreover, the glass for chemical strengthening may be flat, concave, or convex.
 電子機器の内部に設けられる表示装置の光源は、発光ダイオード、有機EL、CCFL等の白色光を発するもので構成される。そのため、これら白色光が化学強化用ガラスを介して機器の外部に漏れることがないよう、その化学強化用ガラスの波長380nm~780nmにおける吸光度の最小値を0.3以上とする必要がある。白色光は、蛍光体を用い可視域の複数の波長の光を複合した上で白色として認識させるものである。そのため、可視域の波長の吸光度の最小値を0.3以上とすることで、遮光手段を別途設けることなく白色光をガラス単体で吸収し、十分な遮光性を得ることが可能である。 A light source of a display device provided in an electronic device is configured to emit white light such as a light emitting diode, an organic EL, or a CCFL. Therefore, the minimum value of the absorbance at a wavelength of 380 nm to 780 nm of the chemically strengthened glass needs to be 0.3 or more so that the white light does not leak outside the device through the chemically strengthened glass. White light is made to be recognized as white after phosphors are used and light having a plurality of wavelengths in the visible range is combined. Therefore, by setting the minimum value of the absorbance at a wavelength in the visible range to 0.3 or more, it is possible to absorb white light with a single glass without providing a light shielding unit and obtain sufficient light shielding properties.
 ガラスの波長380nm~780nmにおける吸光度の最小値が0.3未満である場合、所望の遮光性が得られず、可視光が化学強化用ガラスを透過するおそれがある。また、化学強化用ガラスが凹状、もしくは凸状に成形される際、厚みがもっとも薄い箇所において、可視光が透過するおそれがある。化学強化用ガラスの厚みが薄い場合には、その薄い箇所における吸光度の最小値を0.3以上とする必要があり、その吸光度は、0.7以上が好ましく、0.9以上がより好ましく、1.0以上が特に好ましい。 If the minimum absorbance at a wavelength of 380 nm to 780 nm of the glass is less than 0.3, a desired light shielding property cannot be obtained, and visible light may pass through the chemically strengthening glass. In addition, when the chemically strengthened glass is formed into a concave shape or a convex shape, visible light may pass through a portion where the thickness is the thinnest. When the thickness of the glass for chemical strengthening is thin, it is necessary to make the minimum value of the absorbance at the thin portion 0.3 or more, and the absorbance is preferably 0.7 or more, more preferably 0.9 or more, 1.0 or more is particularly preferable.
 本発明における吸光度の算出方法は、以下のとおりである。ガラス板の両面を鏡面研磨し、厚さtを測定する。このガラス板の分光透過率Tを測定する(例えば、日本分光株式会社製、紫外可視近赤外分光光度計V-570を用いる)。そして、吸光度Aを、A=-log10Tの関係式を用いて算出する。 The method for calculating absorbance in the present invention is as follows. Both surfaces of the glass plate are mirror-polished and the thickness t is measured. The spectral transmittance T of this glass plate is measured (for example, using a UV-visible near-infrared spectrophotometer V-570 manufactured by JASCO Corporation). Then, the absorbance A is calculated using a relational expression of A = −log 10 T.
 本発明の化学強化用ガラスは、厚み0.8mmのガラス板にしたものの鏡面仕上げ表面にビッカース圧子(先端部の角度は136°)を用いて圧痕を形成した際のクラック発生率が50%となるビッカース圧子の押し込み荷重(以下、CILと表記することがある)が150gf以上である。
  この押し込み荷重が、150gf未満であると、ガラスの表面が傷付きやすくなることを意味し、研磨時等にガラス表面に残る傷が深くなる。そのため、化学強化用ガラスを化学強化処理した後の強度の高い化学強化ガラスが得られない。
The glass for chemical strengthening of the present invention is a glass plate having a thickness of 0.8 mm, but the crack occurrence rate when indentation is formed on the mirror-finished surface using a Vickers indenter (the angle of the tip is 136 °) is 50%. The indentation load of the Vickers indenter (hereinafter sometimes referred to as CIL) is 150 gf or more.
If this indentation load is less than 150 gf, it means that the surface of the glass is easily damaged, and the scratches remaining on the glass surface during polishing and the like become deep. Therefore, a chemically strengthened glass having high strength after chemically strengthening the chemically strengthened glass cannot be obtained.
 前記押し込み荷重は、以下の方法で求めた。両面を鏡面研磨した、厚さ0.8mmの板状のガラスを用意した。ビッカース硬度試験機にて、ビッカース圧子(先端部の角度は136°)を15秒押し込んだ後にビッカース圧子をはずし、15秒後に圧痕付近を観測した。観測では、圧痕のコーナーからクラックが何本発生しているかを調査した。測定は、50gf(0.49N)、100gf(0.981N)、200gf(1.961N)、300gf(2.941N)、500gf(4.903N)、1kgf(9.807N)のビッカース圧子の押し込み荷重別に、10枚のガラスに対して行った。発生したクラック本数の平均値を荷重ごとに算出した。荷重とクラック本数との関係を、シグモイド関数を用いて回帰計算した。回帰計算結果から、クラック本数が2本となる荷重を前記押し込み荷重値(gf)とした。なお、測定の雰囲気条件は、気温25℃、湿度約40%である。 The indentation load was determined by the following method. A plate-like glass having a thickness of 0.8 mm and having both surfaces mirror-polished was prepared. Using a Vickers hardness tester, a Vickers indenter (the tip angle was 136 °) was pressed for 15 seconds, then the Vickers indenter was removed, and the vicinity of the indentation was observed after 15 seconds. In the observation, we investigated how many cracks occurred from the corner of the indentation. The measurement was performed by pushing the Vickers indenter of 50 gf (0.49 N), 100 gf (0.981 N), 200 gf (1.961 N), 300 gf (2.941 N), 500 gf (4.903 N), 1 kgf (9.807 N). Separately, it was performed on 10 sheets of glass. The average number of cracks generated was calculated for each load. The relationship between the load and the number of cracks was calculated by regression using a sigmoid function. From the regression calculation result, the load at which the number of cracks was two was defined as the indentation load value (gf). The atmospheric conditions for the measurement are an air temperature of 25 ° C. and a humidity of about 40%.
 本発明の化学強化用ガラスは、マグネタイト結晶を含有しないことが必須である。
  前述のとおりガラス中に失透が発生すると、ガラス中にガラス相と比較して硬度の高い結晶相が存在するため、研磨工程に時間を要する。また、ガラス中に硬度の高い結晶相が存在することに起因し、研磨工程においてガラスの端面に欠けやクラックが発生しやすくなり、ガラスの曲げ強度が低下するおそれがある。
It is essential that the chemically strengthening glass of the present invention does not contain magnetite crystals.
As described above, when devitrification occurs in the glass, a polishing phase takes time because a crystal phase having a higher hardness than the glass phase is present in the glass. In addition, due to the presence of a crystalline phase having high hardness in the glass, chipping and cracking are likely to occur on the end face of the glass in the polishing step, and the bending strength of the glass may be reduced.
 本発明者は、鉄成分、ホウ素成分およびアルミニウム成分を必須とした化学強化用ガラスを溶融する際、鉄成分とアルミニウム成分との間に失透が発生しない含有範囲が存在することを見出した。マグネタイト結晶は、酸化鉱物の一種であり、ガラス原料に含有する鉄成分が溶融から徐冷の過程で失透することで結晶化する。化学組成は、Fe2+Fe3+ (四酸化三鉄)で表される。 The present inventor has found that there is a content range in which devitrification does not occur between the iron component and the aluminum component when melting the glass for chemical strengthening, which essentially includes the iron component, the boron component, and the aluminum component. Magnetite crystals are a kind of oxide mineral and crystallize when the iron component contained in the glass raw material is devitrified in the process of melting to slow cooling. The chemical composition is represented by Fe 2+ Fe 3+ 2 O 4 (triiron tetroxide).
 本発明において、ガラス中のマグネタイト結晶は、板厚0.8mmのガラスの波長800nmにおける直線透過率が1%以下である場合、含有していると判断される。これは、ガラス中にマグネタイト結晶が存在すると、ガラス中を透過する光が結晶によって散乱し、これにより直線透過率の値が著しく低くなるためである。また、他の方法として、ガラスの表面を研磨し、光学顕微鏡を用いて観察する方法で、ガラス中のマグネタイト結晶の有無を確認することも可能である。 In the present invention, the magnetite crystal in the glass is judged to be contained when the linear transmittance at a wavelength of 800 nm of the glass having a thickness of 0.8 mm is 1% or less. This is because, when magnetite crystals are present in the glass, light transmitted through the glass is scattered by the crystals, and the value of the linear transmittance is thereby significantly reduced. As another method, the presence or absence of magnetite crystals in the glass can be confirmed by a method in which the surface of the glass is polished and observed using an optical microscope.
 本発明の化学強化用ガラスは、好適な形態として以下に述べる2つの実施形態(第1の実施形態、第2の実施形態)がある。 The chemically strengthened glass of the present invention has two preferred embodiments (first and second embodiments) described below.
 第1の実施形態の化学強化用ガラスについて説明する。
  以下の本発明の第1の実施形態の化学強化用ガラスの組成について、特に断らない限りモル百分率表示含有量を用いて説明する。
The glass for chemical strengthening according to the first embodiment will be described.
The composition of the glass for chemical strengthening according to the first embodiment of the present invention will be described using the mole percentage display content unless otherwise specified.
 Feは、ガラスを黒色に呈するための必須成分であり、Feで表した全鉄含有量は、2%以上、7%以下である。この全鉄含有量が2%未満では、所望とする黒色のガラスが得られない。好ましくは2.5%以上、より好ましくは3%以上である。Feが7%超では、所望の黒色の色調が得られない。好ましくは6%以下、より好ましくは5%以下である。 Fe 2 O 3 is an essential component for presenting the glass in black, and the total iron content represented by Fe 2 O 3 is 2% or more and 7% or less. If the total iron content is less than 2%, the desired black glass cannot be obtained. Preferably it is 2.5% or more, More preferably, it is 3% or more. If Fe 2 O 3 exceeds 7%, a desired black color tone cannot be obtained. Preferably it is 6% or less, More preferably, it is 5% or less.
 Alは、ガラスの耐候性および化学強化特性を向上させる成分であり、必須である。しかしながら、Feを2~7%含有する場合において、アルミニウム成分と鉄成分との特定の含有範囲において、溶融したガラス中に失透が発生する懸念がある。そのため、ガラス中に含有するAlをX%、FeをY%とした場合、Alとしては、下記(1)式で示す量を含有する。
    Y≦-0.518X+8.924 ・・・(1)
  数式(1)で示すAlとFeとの範囲とすることで、ガラス中に失透が発生することを抑制することができる。他方、上記範囲を外れると、ガラス中に失透が発生するおそれがある。数式(1)は、本発明者が鉄成分とアルミニウム成分の含有比率の相違する多数のガラスを作成し、失透の発生有無を確認して求めたものである。
Al 2 O 3 is a component that improves the weather resistance and chemical strengthening properties of glass and is essential. However, when 2 to 7% of Fe 2 O 3 is contained, devitrification may occur in the molten glass in a specific content range of the aluminum component and the iron component. Therefore, the Al 2 O 3 contained in the glass X%, if the Fe 2 O 3 was set to Y%, as the Al 2 O 3, contains an amount indicated by the following equation (1).
Y ≦ −0.518X + 8.924 (1)
With a range of Al 2 O 3 and Fe 2 O 3 shown in Equation (1), it is possible to prevent the devitrification occurs in the glass. On the other hand, if it is out of the above range, devitrification may occur in the glass. The formula (1) is obtained by the present inventor by creating a number of glasses having different content ratios of the iron component and the aluminum component and confirming whether or not devitrification occurs.
 第2の実施形態の化学強化用ガラスについて説明する。
  以下の本発明の第2の実施形態の化学強化用ガラスの組成について、特に断らない限りモル百分率表示含有量を用いて説明する。
The glass for chemical strengthening of the second embodiment will be described.
The composition of the glass for chemical strengthening of the following second embodiment of the present invention will be described using the mole percentage display content unless otherwise specified.
 Feは、ガラスを比較的薄い黒色に呈するための必須成分であり、Feで表した全鉄含有量は、0.1~2%未満である。この全鉄含有量が0.1%未満では、所望とする黒色のガラスが得られない。好ましくは0.2%以上、より好ましくは0.5%以上である。Feが2%以上では、ガラスの強度が低下するおそれがある。好ましくは1.8%以下、より好ましくは1.5%以下である。 Fe 2 O 3 is an essential component for presenting the glass in a relatively thin black color, and the total iron content represented by Fe 2 O 3 is 0.1 to less than 2%. If the total iron content is less than 0.1%, a desired black glass cannot be obtained. Preferably it is 0.2% or more, More preferably, it is 0.5% or more. If Fe 2 O 3 is 2% or more, the strength of the glass may be lowered. Preferably it is 1.8% or less, More preferably, it is 1.5% or less.
 次いで、上記第1および第2の実施形態の化学強化用ガラスに共通のその他のガラス成分について、特に断らない限りモル百分率表示含有量を用いて説明する。 Next, other glass components common to the glass for chemical strengthening of the first and second embodiments will be described using the mole percentage display content unless otherwise specified.
 SiOは、ガラスの骨格を構成する成分であり必須であり、SiOの含有量は、55~75%である。55%未満ではガラスとしての安定性が低下する、または耐候性が低下する。好ましくは60%以上である。より好ましくは65%以上である。
  SiOが75%超ではガラスの粘性が増大し溶融性が著しく低下する。好ましくは73%以下、典型的には72%以下である。
SiO 2 is a component constituting the glass skeleton and essential, and the content of SiO 2 is 55 to 75%. If it is less than 55%, the stability as glass will deteriorate, or the weather resistance will deteriorate. Preferably it is 60% or more. More preferably, it is 65% or more.
If the SiO 2 content exceeds 75%, the viscosity of the glass increases and the meltability decreases significantly. Preferably it is 73% or less, typically 72% or less.
 NaOは、ガラスの溶融性を向上させる成分であり、またイオン交換により表面圧縮応力層を形成させるため、必須である。NaOの含有量は、10~20%である。10%未満では溶融性が悪く、またイオン交換により所望の表面圧縮応力層を形成することが困難となる。好ましくは11%以上、典型的には12%以上である。
  NaOが20%超では耐候性が低下する。好ましくは18%以下、典型的には16%以下である。
Na 2 O is a component that improves the meltability of glass, and is essential because a surface compressive stress layer is formed by ion exchange. The content of Na 2 O is 10 to 20%. If it is less than 10%, the meltability is poor, and it becomes difficult to form a desired surface compressive stress layer by ion exchange. Preferably it is 11% or more, typically 12% or more.
When Na 2 O exceeds 20%, the weather resistance decreases. Preferably it is 18% or less, typically 16% or less.
 KOは、溶融性を向上させる成分であるとともに、化学強化におけるイオン交換速度を大きくする作用があるため、必須ではないが含有することが好ましい成分である。KOを含有する場合のKOの含有量は、0.01~5%が好ましい。0.01%未満では溶融性向上について有意な効果が得られない、またはイオン交換速度の向上について有意な効果が得られないおそれがある。典型的には0.3%以上である。
  KOが5%超では耐候性が低下する。好ましくは4%以下、典型的には3%以下である。
K 2 O is a component that improves the meltability and has the effect of increasing the ion exchange rate in chemical strengthening, and is therefore not essential, but is a preferable component. When K 2 O is contained, the content of K 2 O is preferably 0.01 to 5%. If it is less than 0.01%, there is a possibility that a significant effect cannot be obtained for improving the meltability, or a significant effect cannot be obtained for improving the ion exchange rate. Typically, it is 0.3% or more.
When K 2 O exceeds 5%, the weather resistance decreases. Preferably it is 4% or less, typically 3% or less.
 MgOは、溶融性を向上させる成分であり、必須ではないが必要に応じて含有することができる。MgOを含有する場合のMgOの含有量は、3~10%が好ましい。3%未満では溶融性向上について有意な効果が得られないおそれがある。典型的には4%以上である。
  MgOが10%超では耐候性が低下する。好ましくは9%以下、典型的には8%以下である。
MgO is a component that improves the meltability, and is not essential, but can be contained as necessary. When MgO is contained, the content of MgO is preferably 3 to 10%. If it is less than 3%, there is a possibility that a significant effect for improving the meltability cannot be obtained. Typically 4% or more.
When MgO exceeds 10%, the weather resistance decreases. Preferably it is 9% or less, typically 8% or less.
 CaOは、溶融性を向上させる成分であり、必要に応じて含有することができる。CaOを含有する場合のCaOの含有量は、0.01~10%が好ましい。0.01%未満では溶融性向上について有意な効果が得られない。典型的には0.1%以上である。
  CaOが10%超では化学強化特性が低下する。好ましくは9%以下、典型的には8%以下である。
CaO is a component that improves the meltability, and can be contained as necessary. When CaO is contained, the content of CaO is preferably 0.01 to 10%. If it is less than 0.01%, a significant effect on improving the meltability cannot be obtained. Typically, it is 0.1% or more.
If CaO exceeds 10%, the chemical strengthening properties are lowered. Preferably it is 9% or less, typically 8% or less.
 RO(Rは、Mg、Ca、Sr、Ba、およびZnからなる群から選択されるアルカリ土類金属であり、ROは、アルカリ土類金属酸化物の成分である)は、溶融性を向上させる成分であり、必須ではないが必要に応じていずれか1種以上を含有することができる。
 ROを含有する場合のROの含有量の合計ΣROは、1~18%が好ましい。1%未満では溶融性が低下するおそれがある。好ましくは3%以上、典型的には5%以上である。
  ΣROが18%超では耐候性が低下する。好ましくは15%以下、より好ましくは13%以下、典型的には11%以下である。なお、ΣROとは、全てのRO成分の合量を示すものである。
RO (R is an alkaline earth metal selected from the group consisting of Mg, Ca, Sr, Ba, and Zn, and RO is a component of the alkaline earth metal oxide) improves the meltability. Although it is a component and is not essential, it can contain any 1 or more types as needed.
The total ΣRO content of RO when RO is contained is preferably 1 to 18%. If it is less than 1%, the meltability may decrease. Preferably it is 3% or more, typically 5% or more.
When ΣRO exceeds 18%, the weather resistance decreases. It is preferably 15% or less, more preferably 13% or less, and typically 11% or less. Note that ΣRO indicates the total amount of all RO components.
 ZrOは、イオン交換速度を大きくする成分であり、必須ではないが1%未満の範囲で含有してもよい。ZrOが1%超では溶融性が悪化して未溶融物としてガラス中に残る場合が起こるおそれがある。 ZrO 2 is a component that increases the ion exchange rate and is not essential, but may be contained in a range of less than 1%. If the ZrO 2 content exceeds 1%, the meltability may be deteriorated and remain in the glass as an unmelted product.
 SOは、清澄剤として作用する成分であり、必須ではないが必要に応じて含有することができる。SOを含有する場合のSOの含有量は、0.005~0.3%が好ましい。0.005%未満では期待する清澄作用が得られない。好ましくは0.01%以上、より好ましくは0.02%以上である。0.03%以上がもっとも好ましい。また0.5%超では逆に泡の発生源となり、ガラスの溶け落ちが遅くなったり、泡個数が増加するおそれがある。好ましくは0.3%以下、より好ましくは0.2%以下である。0.1%以下がもっとも好ましい。 SO 3 is a component that acts as a fining agent, and is not essential, but can be contained as necessary. When SO 3 is contained, the content of SO 3 is preferably 0.005 to 0.3%. If it is less than 0.005%, the expected clarification action cannot be obtained. Preferably it is 0.01% or more, More preferably, it is 0.02% or more. 0.03% or more is most preferable. On the other hand, if it exceeds 0.5%, it becomes a generation source of bubbles, and there is a possibility that the glass melts slowly or the number of bubbles increases. Preferably it is 0.3% or less, More preferably, it is 0.2% or less. 0.1% or less is most preferable.
 SnOは、清澄剤として作用する成分であり、必須ではないが必要に応じて含有することができる。SnOを含有する場合のSnOの含有量は、0.005~1%が好ましい。0.005%未満では期待する清澄作用が得られない。好ましくは0.01%以上、より好ましくは0.05%以上である。また1%超では逆に泡の発生源となり、ガラスの溶け落ちが遅くなったり、泡個数が増加するおそれがある。好ましくは0.8%以下、より好ましくは0.5%以下である。0.3%以下がもっとも好ましい。 SnO 2 is a component that acts as a fining agent, and is not essential, but can be contained as necessary. When SnO 2 is contained, the content of SnO 2 is preferably 0.005 to 1%. If it is less than 0.005%, the expected clarification action cannot be obtained. Preferably it is 0.01% or more, More preferably, it is 0.05% or more. On the other hand, if it exceeds 1%, it becomes a generation source of bubbles, and there is a possibility that the glass melts slowly or the number of bubbles increases. Preferably it is 0.8% or less, More preferably, it is 0.5% or less. Most preferred is 0.3% or less.
 LiOは、溶融性を向上させるための成分であり、必須ではないが必要に応じて含有することができる。LiOを含有する場合のLiOの含有量は、1~15%が好ましい。1%未満では溶融性向上について有意な効果が得られないおそれがある。好ましくは3%以上であり、典型的には6%以上である。
  LiOが15%超では耐候性が低下するおそれがある。好ましくは10%以下、典型的には5%以下である。
Li 2 O is a component for improving the meltability, and is not essential, but can be contained as necessary. When Li 2 O is contained, the content of Li 2 O is preferably 1 to 15%. If it is less than 1%, there is a possibility that a significant effect for improving the meltability cannot be obtained. Preferably it is 3% or more, and typically 6% or more.
If Li 2 O exceeds 15%, the weather resistance may decrease. Preferably it is 10% or less, typically 5% or less.
 SrOは、溶融性を向上させるための成分であり、必須ではないが必要に応じて含有することができる。SrOを含有する場合のSrOの含有量は、1~15%が好ましい。1%未満では溶融性向上について有意な効果が得られないおそれがある。好ましくは3%以上であり、典型的には6%以上である。
  SrOが15%超では耐候性や化学強化特性が低下するおそれがある。好ましくは12%以下、典型的には9%以下である。
SrO is a component for improving the meltability, and is not essential, but can be contained as necessary. When SrO is contained, the content of SrO is preferably 1 to 15%. If it is less than 1%, there is a possibility that a significant effect for improving the meltability cannot be obtained. Preferably it is 3% or more, and typically 6% or more.
If SrO exceeds 15%, the weather resistance and chemical strengthening properties may be lowered. Preferably it is 12% or less, typically 9% or less.
 BaOは、溶融性を向上させるための成分であり、必須ではないが必要に応じて含有することができる。BaOを含有する場合のBaOの含有量は、1~15%が好ましい。1%未満では溶融性向上について有意な効果が得られないおそれがある。好ましくは3%以上であり、典型的には6%以上である。
  BaOが15%超では耐候性や化学強化特性が低下するおそれがある。好ましくは12%以下、典型的には9%以下である。
BaO is a component for improving the meltability, and is not essential, but can be contained as necessary. When BaO is contained, the content of BaO is preferably 1 to 15%. If it is less than 1%, there is a possibility that a significant effect for improving the meltability cannot be obtained. Preferably it is 3% or more, and typically 6% or more.
If BaO exceeds 15%, the weather resistance and chemical strengthening properties may be reduced. Preferably it is 12% or less, typically 9% or less.
 ZnOは、溶融性を向上させるための成分であり、必須ではないが必要に応じて含有することができる。ZnOを含有する場合のZnOの含有量は、1~15%が好ましい。1%未満では溶融性向上について有意な効果が得られないおそれがある。好ましくは3%以上であり、典型的には6%以上である。
  ZnOが15%超では耐候性が低下するおそれがある。好ましくは12%以下、典型的には9%以下である。
ZnO is a component for improving the meltability, and is not essential, but can be contained as necessary. When ZnO is contained, the content of ZnO is preferably 1 to 15%. If it is less than 1%, there is a possibility that a significant effect for improving the meltability cannot be obtained. Preferably it is 3% or more, and typically 6% or more.
If ZnO exceeds 15%, the weather resistance may be lowered. Preferably it is 12% or less, typically 9% or less.
 ガラスの着色成分として、Co、Mn、Ni、Cu、Cr、V、およびBiからなる金属の群から選択される金属酸化物を少なくとも1成分を含有してもよい。そのような成分を含有する場合、それら成分の含有量の合計は、7%以下であることが好ましく、典型的には6%以下である。 The glass coloring component may contain at least one component of a metal oxide selected from the group of metals consisting of Co, Mn, Ni, Cu, Cr, V, and Bi. When such components are contained, the total content of these components is preferably 7% or less, and typically 6% or less.
 上記の着色成分の中で、Vは、CILを向上させる成分であり、必須ではないが必要に応じて含有することができる。Vを含有する場合のVの含有量は、0.1~5%が好ましい。0.1%未満ではCILの向上について有意な効果が得られないおそれがある。好ましくは0.2%以上であり、典型的には0.5%以上である。
  Vが5%超では耐候性が低下するおそれがある。好ましくは4%以下、典型的には3%以下である。
Among the above-mentioned coloring components, V 2 O 5 is a component that improves CIL and can be contained as necessary, although not essential. When V 2 O 5 is contained, the content of V 2 O 5 is preferably 0.1 to 5%. If it is less than 0.1%, there is a possibility that a significant effect for improving CIL cannot be obtained. Preferably it is 0.2% or more, and typically 0.5% or more.
If V 2 O 5 exceeds 5%, the weather resistance may decrease. Preferably it is 4% or less, typically 3% or less.
 本発明の化学強化用ガラスは、化学強化処理してガラスの表面に圧縮応力層を形成してもよい。
  化学強化処理の方法としては、ガラス表層のNaOと溶融塩中のKOとをイオン交換できるものであれば、特に限定されない。たとえば、加熱された硝酸カリウム(KNO)溶融塩にガラスを浸漬する方法が挙げられる。所望の表面圧縮応力を有する化学強化層(表面圧縮応力層)を、ガラス表面に形成するための条件は、ガラスの厚さによっても異なるが、400~550℃のKNO溶融塩に、ガラスを2~20時間浸漬させることが典型的である。
  また、このKNO溶融塩としては、KNO以外に、例えばNaNOを5%程度以下含有するものであってもよい。
The glass for chemical strengthening of the present invention may be chemically strengthened to form a compressive stress layer on the glass surface.
The method of chemical strengthening treatment is not particularly limited as long as it can ion-exchange Na 2 O on the glass surface layer and K 2 O in the molten salt. For example, a method of dipping the glass like a heated potassium nitrate (KNO 3) molten salt. The conditions for forming a chemically strengthened layer (surface compressive stress layer) having a desired surface compressive stress on the glass surface vary depending on the thickness of the glass, but the glass is added to the KNO 3 molten salt at 400 to 550 ° C. It is typical to soak for 2 to 20 hours.
Further, as this KNO 3 molten salt, in addition to KNO 3 , for example, NaNO 3 may be contained in an amount of about 5% or less.
 本発明の化学強化用ガラスは、上記化学強化処理の方法を適用することにより、化学強化処理されたガラスを製造できる。このとき、化学強化処理によって生じる圧縮応力層の深さは、10μm以上とすることが好ましい。その理由は、以下のとおりである。 The chemically strengthened glass of the present invention can be produced by applying the chemical strengthening method described above. At this time, the depth of the compressive stress layer generated by the chemical strengthening treatment is preferably 10 μm or more. The reason is as follows.
 装飾用途に用いられるガラスの製造においては、ガラス表面を研磨されることがあり、その最終段階の研磨に使用される研磨砥粒の粒径は、2~6μmが典型的である。このような砥粒によって、ガラス表面には、最終的に最大5μmのマイクロクラックが形成されると考えられる。化学強化処理による強度向上効果を有効なものとするためには、ガラス表面に形成されるマイクロクラックより深い圧縮応力層が形成されていることが必要である。このため、化学強化処理によって生じる圧縮応力層の深さは、10μm以上とすることが好ましい。また、使用時に圧縮応力層の深さを超える傷がつくと、ガラスの破壊につながるため、圧縮応力層は厚い方が好ましい。このため、圧縮応力層は、より好ましくは12μm以上、さらに好ましくは14μm以上、典型的には16μm以上である。 In the production of glass used for decorative purposes, the glass surface may be polished, and the grain size of the abrasive grains used for polishing at the final stage is typically 2 to 6 μm. Such abrasive grains are thought to ultimately form microcracks having a maximum size of 5 μm on the glass surface. In order to make the strength improvement effect by the chemical strengthening treatment effective, it is necessary to form a compressive stress layer deeper than the microcracks formed on the glass surface. For this reason, it is preferable that the depth of the compressive-stress layer produced by a chemical strengthening process shall be 10 micrometers or more. Moreover, since the damage exceeding the depth of a compressive-stress layer at the time of use will lead to destruction of glass, the one where the compressive-stress layer is thick is preferable. For this reason, the compressive stress layer is more preferably 12 μm or more, further preferably 14 μm or more, and typically 16 μm or more.
 一方、圧縮応力層が深すぎると、内部引張応力が大きくなり、破壊時の衝撃が大きくなる。すなわち、内部引張応力が大きいと、破壊時に、ガラスが細片となって粉々に飛散する傾向があり、危険性が高まることが知られている。本発明者らによる実験の結果、厚さ2mm以下のガラスでは、表面圧縮応力層の深さが70μmを超えると、破壊時の飛散が顕著となることが判明した。したがって、本発明の化学強化ガラスにおいては圧縮応力層の深さは、70μm以下とされる。装飾用ガラスとして用いる場合、その用途にもよるが、たとえば、AV機器・OA機器等の載置型の機器の操作パネルと比較して、表面に接触傷がつく確率が高い携帯用機器等の用途に適用する場合には、安全をみて圧縮応力層の深さを薄くしておくことも考えられる。この場合には、圧縮応力層の深さは、より好ましくは60μm以下、さらに好ましくは50μm以下、典型的には40μm以下である。 On the other hand, if the compressive stress layer is too deep, the internal tensile stress increases and the impact at the time of failure increases. That is, it is known that when the internal tensile stress is large, the glass tends to become a fine piece and scatter in pieces at the time of breakage, which increases the risk. As a result of experiments by the present inventors, it has been found that in a glass having a thickness of 2 mm or less, scattering at the time of breakage becomes significant when the depth of the surface compressive stress layer exceeds 70 μm. Therefore, in the chemically strengthened glass of the present invention, the depth of the compressive stress layer is 70 μm or less. When used as a decorative glass, depending on the application, for example, a portable device having a higher probability of contact scratches on the surface than an operation panel of a mounting type device such as an AV device / OA device. When applying to the above, it is conceivable to reduce the depth of the compressive stress layer for safety. In this case, the depth of the compressive stress layer is more preferably 60 μm or less, further preferably 50 μm or less, and typically 40 μm or less.
 また、本発明の化学強化用ガラスは、上述したように、化学強化処理することで、化学強化されたガラスを得られるが、ガラス表面に形成される圧縮応力層の表面圧縮応力は、300MPa以上であることが好ましく、550MPa以上であることがより好ましく、700MPa以上であることがさらに好ましい。また、表面圧縮応力層の表面圧縮応力は、1400MPa以下が好ましく、1300MPa以下がより好ましい。典型的には1200MPa以下である。 Further, as described above, the chemically strengthened glass of the present invention can be obtained by chemically strengthening the glass by chemically strengthening, but the surface compressive stress of the compressive stress layer formed on the glass surface is 300 MPa or more. Preferably, it is 550 MPa or more, more preferably 700 MPa or more. Further, the surface compressive stress of the surface compressive stress layer is preferably 1400 MPa or less, and more preferably 1300 MPa or less. Typically, it is 1200 MPa or less.
 また、本発明の化学強化ガラスは、厚み0.8mmのガラス板にしたものの鏡面仕上げ表面にビッカース圧子(先端部の角度は136°)を打ち込んだ際の破壊率が50%となるビッカース圧子の打ち込み荷重(以下、FILと表記することがある)が7kgf(68.65N)以上であることが好ましい。このようにすることで、曲げや擦傷に強いガラスを得ることができる。前述の破壊率が50%となるビッカース圧子の打ち込み荷重が7kgf(68.65N)未満の場合、ガラスの強度が不十分で、化学強化の効果を十分に発揮できないおそれがある。好ましくは、8kgf(78.45N)以上であり、より好ましくは10kgf(98.07N)以上である。 In addition, the chemically strengthened glass of the present invention is a glass plate having a thickness of 0.8 mm, and a Vickers indenter having a fracture rate of 50% when a Vickers indenter (the angle of the tip portion is 136 °) is driven into the mirror-finished surface The driving load (hereinafter sometimes referred to as FIL) is preferably 7 kgf (68.65 N) or more. By doing in this way, the glass strong against a bending and an abrasion can be obtained. When the driving load of the Vickers indenter at which the fracture rate is 50% is less than 7 kgf (68.65 N), the strength of the glass is insufficient, and the chemical strengthening effect may not be sufficiently exhibited. Preferably, it is 8 kgf (78.45 N) or more, more preferably 10 kgf (98.07 N) or more.
 前記打ち込み荷重は、以下の方法で求めた。厚み0.8mmのガラス板の両面を鏡面研磨し、化学強化処理を行った、厚さ0.8mmの板状の化学強化ガラスを用意した。ビッカース硬度試験機にて、ビッカース圧子(先端部の角度は136°)を打ち込んだ際にガラスの破壊有無を観測した。測定は、5kgf(49.03N)、10kgf(98.07N)、20kgf(196.13N)、30kgf(294.20N)、40kgf(392.27N)、50kgf(490.33N)のビッカース圧子の打ち込み荷重別に、10枚のガラスに対して行った。ガラスの破壊率を荷重ごとに算出した。破壊率が50%となる荷重を含む領域で、荷重と破壊率との関係を、一次関数を用いて回帰計算した。回帰計算結果から、破壊率が50%となる荷重を前記打ち込み荷重値(kgf)とした。なお、測定の雰囲気条件は、気温25℃、湿度約40%である。 The driving load was obtained by the following method. A plate-shaped chemically tempered glass having a thickness of 0.8 mm prepared by mirror-polishing both surfaces of a glass plate having a thickness of 0.8 mm and performing chemical strengthening treatment was prepared. With a Vickers hardness tester, the presence or absence of glass breakage was observed when a Vickers indenter (the angle of the tip portion was 136 °) was driven. The measurement is performed by a Vickers indentation load of 5 kgf (49.03 N), 10 kgf (98.07 N), 20 kgf (196.13 N), 30 kgf (294.20 N), 40 kgf (392.27 N), and 50 kgf (490.33 N). Separately, it was performed on 10 sheets of glass. The glass breaking rate was calculated for each load. In a region including a load where the fracture rate is 50%, the relationship between the load and the fracture rate was calculated by regression using a linear function. From the regression calculation results, the load at which the fracture rate was 50% was determined as the driving load value (kgf). The atmospheric conditions for the measurement are an air temperature of 25 ° C. and a humidity of about 40%.
 本発明の化学強化用ガラスの製造方法は特に限定されないが、たとえば所望のガラス組成となるように種々の原料を適量調合し、1500~1700℃に加熱し溶融した後、脱泡、撹拌などにより均質化し、周知の、ダウンドロー法、プレス法、フロート法などによって板状等に成形するか、またはキャストしてブロック状に成形する。そして、徐冷後所望のサイズに切断し、必要に応じ研磨加工を施して製造される。 The method for producing the glass for chemical strengthening of the present invention is not particularly limited. For example, various raw materials are prepared so as to have a desired glass composition, heated to 1500 to 1700 ° C. and melted, and then defoamed and stirred. Homogenized and formed into a plate shape or the like by a well-known down draw method, press method, float method or the like, or cast into a block shape. And after slow cooling, it cut | disconnects to desired size, and gives a polishing process as needed, and is manufactured.
 以上、本発明の化学強化用ガラスについて一例を挙げて説明したが、本発明の趣旨に反しない限度において、また必要に応じて適宜構成を変更することができる。 As described above, the chemical strengthening glass of the present invention has been described by way of an example, but the configuration can be appropriately changed as necessary without departing from the spirit of the present invention.
 以下、本発明の実施例に基づいて詳細に説明するが、本発明は、これら実施例のみに限定されるものではない。 Hereinafter, although it demonstrates in detail based on the Example of this invention, this invention is not limited only to these Examples.
 表1~表5の例1~49(例1~例33は実施例、例34~例49は比較例)について、表中にモル百分率表示で示す組成になるように、酸化物、水酸化物、炭酸塩、硝酸塩等一般に使用されているガラス原料を適宜選択し、ガラスとして100mlとなるように秤量した。なお、表に記載のSOは、ガラス原料にボウ硝(NaSO)を添加し、ボウ硝分解後にガラス中に残る残存SOであり、計算値である。 For Examples 1 to 49 in Table 1 to Table 5 (Examples 1 to 33 are Examples, and Examples 34 to 49 are Comparative Examples), oxides, Commonly used glass materials such as products, carbonates and nitrates were appropriately selected and weighed to 100 ml as glass. Note that the SO 3 in Table, was added to bow the glass raw material nitric (Na 2 SO 4), a residual SO 3 remaining in glass after Glauber's salt decomposition, is a calculated value.
 ついで、この原料混合物を白金製るつぼに入れ、1500~1600℃の抵抗加熱式電気炉に投入し、約0.5時間加熱して原料が溶け落ちた後、1時間溶融し、脱泡した。その後、およそ300℃に予熱した、縦約50mm×横約100mm×高さ約20mmの型材に流し込み、約1℃/分の速度で徐冷し、ガラスブロックを得た。このガラスブロックを切断して、サイズが縦40mm×横40mm×厚さ0.8mmになるようにガラスを切り出した後、研削し、最後に両面を鏡面に研磨加工し、板状のガラスを得た。 Next, this raw material mixture was put into a platinum crucible, put into a resistance heating type electric furnace at 1500 to 1600 ° C., heated for about 0.5 hours, and then the raw materials were melted, and then melted for 1 hour and degassed. Then, it was poured into a mold having a length of about 50 mm × width of about 100 mm × height of about 20 mm preheated to about 300 ° C., and slowly cooled at a rate of about 1 ° C./min to obtain a glass block. After cutting this glass block, the glass is cut out so that the size is 40 mm long x 40 mm wide x 0.8 mm thick, then ground, and finally polished on both sides to a mirror surface to obtain a plate-like glass It was.
 得られた板状のガラスについて、厚み0.8mmのガラス板にしたものの鏡面仕上げ表面にビッカース圧子(先端部の角度は136°)を用いて圧痕を形成した際のクラック発生率が50%となるビッカース圧子の押し込み荷重(CIL)、化学強化処理されたガラスの厚み0.8mmのガラス板にしたものの鏡面仕上げ表面にビッカース圧子(先端部の角度は136°)を打ち込んだ際の破壊率が50%となるビッカース圧子の打ち込み荷重(FIL)、波長300nm~800nmおよび波長380nm~780nmの直線透過率の最小値および最大値、波長300nm~800nmおよび波長380nm~780nmの吸光度の最小値および最大値、ならびに失透発生の有無を表1~5に併記する。なお、表1~5中、「-」は、未測定であることを示す。 About the obtained plate-like glass, the crack occurrence rate when forming an indentation using a Vickers indenter (angle of the tip portion is 136 °) on the mirror-finished surface of a glass plate having a thickness of 0.8 mm is 50%. The indentation load (CIL) of the Vickers indenter, and the fracture rate when the Vickers indenter (the tip angle is 136 °) is driven into the mirror-finished surface of the glass plate having a thickness of 0.8 mm that has been chemically strengthened. Vickers indentation load (FIL) of 50%, minimum and maximum values of linear transmittance at wavelengths of 300 nm to 800 nm and wavelengths of 380 nm to 780 nm, and minimum and maximum values of absorbance at wavelengths of 300 nm to 800 nm and wavelengths of 380 nm to 780 nm Tables 1 to 5 also show whether or not devitrification occurs. In Tables 1 to 5, “-” indicates that no measurement was performed.
 厚み0.8mmのガラス板にしたものの鏡面仕上げ表面にビッカース圧子(先端部の角度は136°)を用いて圧痕を形成した際のクラック発生率が50%となるビッカース圧子の押し込み荷重(CIL)および化学強化処理されたガラスの厚み0.8mmのガラス板にしたものの鏡面仕上げ表面にビッカース圧子(先端部の角度は136°)を打ち込んだ際の破壊率が50%となるビッカース圧子の打ち込み荷重(FIL)の測定方法は、前述のとおりである。 Indentation load (CIL) of Vickers indenter with a crack generation rate of 50% when indentation is formed on the mirror-finished surface of the glass plate with a thickness of 0.8 mm using a Vickers indenter (the tip angle is 136 °) And a Vickers indentation load that causes a fracture rate of 50% when a Vickers indenter (tip angle is 136 °) is applied to the mirror-finished surface of a glass plate having a thickness of 0.8 mm that has been chemically strengthened. The method for measuring (FIL) is as described above.
 吸光度は、以下の方法で求めた。厚み約0.8mm相当のガラス板の両面を鏡面研磨した板状のガラスの厚さtを、ノギスで測定した。このガラスの分光透過率Tを、紫外可視近赤外分光光度計(日本分光株式会社製、V-570)を用いて測定した。なお、表1~5中において、分光透過率Tは、ガラスの反射率を4%と仮定した時の表面反射を考慮した値とした。そして、吸光度Aは、A=-log10Tの関係式を用いて算出した。また、波長300nm~800nmおよび波長380nm~780nmの吸光度の最小値および最大値を求めた。 Absorbance was determined by the following method. The thickness t of a plate-like glass obtained by mirror-polishing both surfaces of a glass plate corresponding to a thickness of about 0.8 mm was measured with a caliper. The spectral transmittance T of the glass was measured using an ultraviolet-visible near-infrared spectrophotometer (manufactured by JASCO Corporation, V-570). In Tables 1 to 5, the spectral transmittance T is a value considering the surface reflection when the reflectance of the glass is assumed to be 4%. The absorbance A was calculated using a relational expression of A = −log 10 T. Further, the minimum and maximum values of absorbance at wavelengths of 300 nm to 800 nm and wavelengths of 380 nm to 780 nm were determined.
 ガラスの化学強化処理後の圧縮応力層の深さ(DOL)および表面圧縮応力(CS)は、赤外線を測定光とした表面圧縮応力計を用いて測定した。
 化学強化処理は、厚み0.8mmのガラス板を用意し、ガラスを450℃のKNO(99%)とNaNO(1%)とからなる溶融塩にそれぞれ6時間浸漬することで行った。なお、失透が発生した例34~例48のガラスは、表面圧縮応力計の測定光が透過しないため、DOLおよびCSの測定ができなかった。そのため、表4、表5において「測定不可」とした。
The depth (DOL) and the surface compressive stress (CS) of the compressive stress layer after the chemical strengthening treatment of the glass were measured using a surface compressive stress meter using infrared as measurement light.
The chemical strengthening treatment was performed by preparing a glass plate having a thickness of 0.8 mm and immersing the glass in a molten salt composed of KNO 3 (99%) and NaNO 3 (1%) at 450 ° C. for 6 hours. The glasses of Examples 34 to 48 where devitrification occurred could not measure DOL and CS because the measurement light of the surface compressive stress meter did not pass through. Therefore, in Tables 4 and 5, “measurement impossible” was set.
 ガラスの失透発生の有無は、板厚0.8mmのガラス板の分光透過率Tを、紫外可視近赤外分光光度計(日本分光株式会社製、V-570)を用いて測定し、波長800nmの直線透過率が1%以下の場合は失透あり、波長800nmの直線透過率が1%を超える場合は失透なしとした。すなわち、板厚0.8mmのガラスの波長800nmにおける直線透過率が1%超(すなわち、失透なし)である場合は、ガラス中のマグネタイト結晶を含有していないことを示す。 The presence or absence of devitrification of the glass was determined by measuring the spectral transmittance T of a glass plate having a thickness of 0.8 mm using an ultraviolet-visible-near infrared spectrophotometer (manufactured by JASCO Corporation, V-570). When the linear transmittance at 800 nm was 1% or less, devitrification occurred. When the linear transmittance at a wavelength of 800 nm exceeded 1%, no devitrification was assumed. That is, when the linear transmittance at a wavelength of 800 nm of glass having a plate thickness of 0.8 mm exceeds 1% (that is, no devitrification), it indicates that the glass does not contain magnetite crystals.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 上記実施例および比較例の各ガラスについて、アルミニウム成分の含有量(AlOの含有量)を横軸、鉄成分の含有量(FeOの含有量)を縦軸とし、失透がない場合を○、失透がない場合を×としてプロットしたものを図1に示した。 For each glass of Examples and Comparative Examples, and the content of the aluminum component (the content of Al 2 O 3) horizontal axis, the content of iron component (content of Fe 2 O 3) and the vertical axis, devitrification FIG. 1 shows a plot in which there is no ◯ and in which no devitrification is indicated as x.
 表1~表5に示すとおり、本発明の化学強化用ガラスは、黒色を呈し、高い強度を備え、失透のないガラスを得ることができる。他方、比較例のガラスは、失透が発生しており、美観を損ねるおそれがある。また、ガラス中に硬度の高い結晶が発生しているため、研磨工程に時間を要し、生産性が低くなるおそれがある。また、研磨工程においてガラスの端面に欠けやクラックが発生しやすくなり、ガラスの曲げ強度が低下するおそれがある。 As shown in Tables 1 to 5, the chemically strengthened glass of the present invention exhibits a black color, has high strength, and can be obtained without devitrification. On the other hand, the glass of the comparative example is devitrified, and there is a possibility that the aesthetic appearance is impaired. Further, since crystals with high hardness are generated in the glass, the polishing process takes time, and productivity may be lowered. Further, in the polishing step, chipping and cracks are likely to occur on the end face of the glass, and the bending strength of the glass may be reduced.
 また、図1に示すとおり、特にガラス中のFeの含有量が2%以上であって、かつアルミニウム成分と鉄成分の含有量が上述の数式(1)を満たさない場合、Feがガラス中に溶け込めずに、マグネタイト結晶として析出しやすくなる。そのため、アルミニウム成分と鉄成分の含有量が上述の数式(1)を満たすよう適切に調整することで、より失透の発生がない所望の黒色ガラスを得ることが可能になる。 In addition, as shown in FIG. 1, in particular, when the content of Fe 2 O 3 in the glass is 2% or more and the contents of the aluminum component and the iron component do not satisfy the above formula (1), Fe 2 O 3 is not easily dissolved in the glass but is easily precipitated as a magnetite crystal. Therefore, it is possible to obtain a desired black glass with less devitrification by appropriately adjusting the contents of the aluminum component and the iron component so as to satisfy the above formula (1).
 本発明の化学強化ガラスは、AV機器・OA機器等の操作パネル、同製品の開閉扉、操作ボタン・つまみ、またはデジタル・フォト・フレームやTVなどの画像表示パネルの矩形状の表示面の周囲に配置される装飾パネル等の装飾品や電子機器用の黒色を呈するガラスなどに利用できる。また、自動車用内装部材、家具等の部材、屋外や屋内で用いられる建材等にも利用できる。
 なお、2014年3月13日に出願された日本特許出願2014-049750号の明細書、特許請求の範囲、図面および要約書の全内容をここに引用し、本発明の開示として取り入れるものである。
The chemically tempered glass of the present invention is provided around the operation panel of AV equipment / OA equipment, the door of the product, the operation button / knob, or the rectangular display surface of an image display panel such as a digital photo frame or TV. It can be used for decorative items such as decorative panels arranged on the glass or black-colored glass for electronic devices. It can also be used for interior parts for automobiles, members such as furniture, and building materials used outdoors and indoors.
The entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2014-049750 filed on March 13, 2014 are incorporated herein by reference. .

Claims (6)

  1.  下記酸化物基準のモル百分率表示で、Feを0.1~7%、Alを1~25%、Bを0.1~10%含有し、
     波長380nm~780nmにおける吸光度の最小値が0.3以上であって、
     厚み0.8mmのガラス板にしたものの鏡面仕上げ表面にビッカース圧子(先端部の角度は136°)を用いて圧痕を形成した際のクラック発生率が50%となるビッカース圧子の押し込み荷重が150gf(1.471N)以上であり、
     マグネタイト結晶を含有しないことを特徴とする化学強化用ガラス。
    In the following oxide-based mole percentage display, Fe 2 O 3 is contained in an amount of 0.1 to 7%, Al 2 O 3 is contained in an amount of 1 to 25%, and B 2 O 3 is contained in an amount of 0.1 to 10%.
    The minimum absorbance at a wavelength of 380 nm to 780 nm is 0.3 or more,
    A glass plate having a thickness of 0.8 mm has a Vickers indentation load of 150 gf with a crack occurrence rate of 50% when an indentation is formed on the mirror-finished surface using a Vickers indenter (the tip angle is 136 °). 1.471N) or more,
    A glass for chemical strengthening characterized by not containing magnetite crystals.
  2.  Feを2~7%含有する化学強化用ガラスであって、
     AlをX%、FeをY%とした場合、下記(1)式で示す量を含有することを特徴とする請求項1に記載の化学強化用ガラス。
       Y≦-0.518X+8.924 ・・・(1)
    A glass for chemical strengthening containing 2 to 7% of Fe 2 O 3 ,
    The Al 2 O 3 X%, if the Fe 2 O 3 was set to Y%, chemically strengthened glass according to claim 1, characterized in that it contains an amount indicated by the following equation (1).
    Y ≦ −0.518X + 8.924 (1)
  3.  Vを0.1~5%含有することを特徴とする請求項1または請求項2に記載の化学強化用ガラス。 The glass for chemical strengthening according to claim 1 or 2, wherein the glass contains 0.1 to 5% of V 2 O 5 .
  4.  下記酸化物基準のモル百分率表示で、SiOを55~75%、Alを1~25%、Bを0.1~10%、NaOを10~20%、KOを0~5%、MgOを0~10%、CaOを0~10%、ΣRO(Rは、Mg、Ca、Sr、Ba、およびZnからなる群より選択されるアルカリ土類金属を示す。)を0~18%、Feを0.1~7%、着色成分(Co、Mn、Ni、Cu、Cr、V、およびBiからなる金属の群から選択される金属酸化物を少なくとも1成分)を0~7%、含有することを特徴とする請求項1ないし請求項3のいずれか1項に記載の化学強化用ガラス。 In the molar percentage display based on the following oxide, SiO 2 is 55 to 75%, Al 2 O 3 is 1 to 25%, B 2 O 3 is 0.1 to 10%, Na 2 O is 10 to 20%, K 2 O 0-5%, MgO 0-10%, CaO 0-10%, ΣRO (R represents an alkaline earth metal selected from the group consisting of Mg, Ca, Sr, Ba, and Zn .) the 0 ~ 18%, Fe 2 O 3 0.1 to 7% coloring components (Co, Mn, Ni, Cu , Cr, V, and a metal oxide selected from the group of metals consisting of Bi The glass for chemical strengthening according to any one of claims 1 to 3, comprising 0 to 7% of at least one component).
  5.  請求項1ないし請求項4のいずれか1項に記載の化学強化用ガラスを化学強化処理して得られる化学強化ガラスであって、
     表面に圧縮応力層を備え、
     厚み0.8mmのガラス板にしたものの鏡面仕上げ表面にビッカース圧子(先端部の角度は136°)を打ち込んだ際の破壊率が50%となるビッカース圧子の打ち込み荷重が7kgf(68.65N)以上であることを特徴とする化学強化ガラス。
    A chemically strengthened glass obtained by chemically strengthening the chemically strengthened glass according to any one of claims 1 to 4,
    With a compressive stress layer on the surface,
    Although the glass plate has a thickness of 0.8 mm, the impact load of the Vickers indenter that gives a fracture rate of 50% when the Vickers indenter (the tip angle is 136 °) is applied to the mirror-finished surface is 7 kgf (68.65 N) or more. Chemically tempered glass characterized by
  6.  前記圧縮応力層の深さが10μm以上であり、前記圧縮応力層の表面圧縮応力が300MPa以上であることを特徴とする請求項5に記載の化学強化ガラス。 The chemically strengthened glass according to claim 5, wherein the depth of the compressive stress layer is 10 µm or more, and the surface compressive stress of the compressive stress layer is 300 MPa or more.
PCT/JP2015/056858 2014-03-13 2015-03-09 Glass for chemical strengthening, and chemically strengthened glass WO2015137285A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014049750A JP2017081761A (en) 2014-03-13 2014-03-13 Glass for chemically strengthening and chemically strengthened glass
JP2014-049750 2014-03-13

Publications (1)

Publication Number Publication Date
WO2015137285A1 true WO2015137285A1 (en) 2015-09-17

Family

ID=54071729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/056858 WO2015137285A1 (en) 2014-03-13 2015-03-09 Glass for chemical strengthening, and chemically strengthened glass

Country Status (2)

Country Link
JP (1) JP2017081761A (en)
WO (1) WO2015137285A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109851218A (en) * 2018-12-14 2019-06-07 广州宏晟光电科技股份有限公司 A kind of optical fiber image inverter veiling glare heat absorbing glass and preparation method thereof
JP2019522623A (en) * 2016-06-13 2019-08-15 コーニング インコーポレイテッド Multicolor photosensitive glass-based component and manufacturing method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019117498B4 (en) * 2018-07-06 2024-03-28 Schott Ag Glasses with improved ion exchangeability
JP7335541B2 (en) * 2018-07-27 2023-08-30 日本電気硝子株式会社 tempered glass and tempered glass

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0600302A1 (en) * 1992-11-27 1994-06-08 Corning Incorporated Fast strengthening glass lenses
WO2012124757A1 (en) * 2011-03-17 2012-09-20 旭硝子株式会社 Glass for chemical strengthening

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0600302A1 (en) * 1992-11-27 1994-06-08 Corning Incorporated Fast strengthening glass lenses
WO2012124757A1 (en) * 2011-03-17 2012-09-20 旭硝子株式会社 Glass for chemical strengthening

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MORTEN M. SMEDSKJAER: "Sodium diffusion in boroaluminosilicate glasses", JOURNAL OF NON- CRYSTALLINE SOLIDS, vol. 357, no. 22, 2011, pages 3744 - 3750, XP028294750, ISSN: 0022-3093 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019522623A (en) * 2016-06-13 2019-08-15 コーニング インコーポレイテッド Multicolor photosensitive glass-based component and manufacturing method
CN109851218A (en) * 2018-12-14 2019-06-07 广州宏晟光电科技股份有限公司 A kind of optical fiber image inverter veiling glare heat absorbing glass and preparation method thereof

Also Published As

Publication number Publication date
JP2017081761A (en) 2017-05-18

Similar Documents

Publication Publication Date Title
JP5682609B2 (en) Glass for chemical strengthening
JP6233312B2 (en) Chemically strengthened glass, chemically strengthened glass, and method for producing chemically strengthened glass
JP5110236B2 (en) Colored glass enclosure
JP5589379B2 (en) Manufacturing method of glass substrate for display cover glass
JP5115545B2 (en) Glass and chemically tempered glass
JP5234213B1 (en) Chemically strengthened glass and method for producing the same, chemically strengthened glass and method for producing the same
JP6060977B2 (en) Glass and chemically tempered glass
JP6222097B2 (en) Method for producing phase-separated glass and phase-separated glass
WO2012008586A1 (en) Plasma display device
JP5459122B2 (en) Display device
JP2014031305A (en) Glass for chemical strengthening and chemically strengthened glass
WO2015137285A1 (en) Glass for chemical strengthening, and chemically strengthened glass
WO2014042175A1 (en) Glass for chemical toughening and chemically toughened glass
WO2014119623A1 (en) White glass
JP2019514833A (en) Colored aluminosilicate glass composition and glass article comprising the same
JP2016121050A (en) Glass molding and production method of glass molding
WO2017209139A1 (en) Glass for chemical strengthening and chemically strengthened glass
JP5510505B2 (en) Glass and chemically tempered glass

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15761822

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15761822

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP