WO2015137084A1 - Ir cut filter - Google Patents

Ir cut filter Download PDF

Info

Publication number
WO2015137084A1
WO2015137084A1 PCT/JP2015/054725 JP2015054725W WO2015137084A1 WO 2015137084 A1 WO2015137084 A1 WO 2015137084A1 JP 2015054725 W JP2015054725 W JP 2015054725W WO 2015137084 A1 WO2015137084 A1 WO 2015137084A1
Authority
WO
WIPO (PCT)
Prior art keywords
sio2
nb2o5
tio2
wavelength
transmittance
Prior art date
Application number
PCT/JP2015/054725
Other languages
French (fr)
Japanese (ja)
Inventor
孔二 中村
英隆 地大
宗矩 川路
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2016507422A priority Critical patent/JP6458797B2/en
Publication of WO2015137084A1 publication Critical patent/WO2015137084A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/281Interference filters designed for the infrared light

Definitions

  • the present invention relates to an infrared cut filter, for example, an infrared cut filter used for a camera unit.
  • a silicon semiconductor device for example, a CCD (Charge) is used as an image sensor that converts an optical image formed by an imaging lens into an electrical signal.
  • a solid-state imaging device such as a coupled device (Image sensor) and a CMOS (Complementary Metal-Oxide Semiconductor) image sensor) has been used. Since this silicon semiconductor device has sensitivity up to the near-infrared region, near-infrared light is captured as an image in addition to visible light when light enters. As a result, problems such as generation of pseudo colors occur in the obtained video.
  • Patent Documents 1 to 3 propose infrared cut filters for cameras that have little incident angle dependency.
  • the incident angle of the light beam to the infrared cut filter increases with the reduction in the height of the camera and the increase in the size of the imaging element.
  • the shift amount of the cutoff wavelength is large at an incident angle of 0 degrees and an incident angle of 30 degrees, the center portion of the screen and the peripheral portion The color shading phenomenon in which colors differ between and will occur.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide an infrared cut filter with little ghost, color shading, and red fog.
  • the infrared cut filter of the present invention is an infrared cut filter having a dielectric multilayer film on both sides of a substrate,
  • the average transmittance at an incident angle of 0 degree at a wavelength of 425 to 620 nm is 95% or more
  • the average transmittance at an incident angle of 30 degrees at a wavelength of 425 to 620 nm is 94% or more
  • the average transmittance at an incident angle of 0 degree at a wavelength of 600 to 620 nm is 91% or more
  • the following conditional expressions (1) and (2) are satisfied at a wavelength of 580 to 700 nm,
  • the average transmittance at a wavelength of 700 to 1100 nm is 0.5% or less and the maximum transmittance is 1.8% or less
  • the average transmittance at a wavelength of 1100 to 1200 nm is 8% or less and the maximum transmittance is 12.5% or less.
  • the camera unit of the present invention includes the infrared cut filter.
  • the dielectric multilayer film characterized by spectral characteristics is provided on both sides of the substrate, an infrared cut filter with less ghost, color shading and red fog, and a camera unit having the same Can be realized. Then, by using the camera unit according to the present invention for a digital device such as a digital camera or a smartphone, a high-performance image input function can be realized at a low cost.
  • Sectional drawing which shows typically one Embodiment of an infrared cut filter.
  • the block diagram which shows the schematic structural example of the digital apparatus with an image input function.
  • the graph which shows the spectral transmittance of the whole filter of the comparative example 1.
  • FIG. The graph which shows the spectral transmittance of the whole filter of the comparative example 2.
  • FIG. 10 is a graph showing the spectral transmittance of each filter surface in Comparative Example 3.
  • 3 is a graph showing the spectral transmittance of the entire filter of Example 1.
  • 3 is a graph showing the spectral transmittance of each filter surface of Example 1.
  • 6 is a graph showing the spectral transmittance of the entire filter of Example 2.
  • 6 is a graph showing the spectral transmittance of each filter surface of Example 2.
  • 10 is a graph showing the spectral transmittance of the entire filter of Example 3.
  • 6 is a graph showing the spectral transmittance of each filter surface of Example 3.
  • 6 is a graph showing the spectral transmittance of the entire filter of Example 4.
  • 6 is a graph showing the spectral transmittance of each filter surface of Example 4.
  • FIG. 1 schematically shows a cross-sectional structure of an embodiment of an infrared cut filter FR in which dielectric multilayer films MA and MB are coated on both surfaces of a substrate SU (for example, a glass substrate).
  • This infrared cut filter FR reduces ghost, color shading, and red fog favorably by imparting characteristic spectral characteristics to the dielectric multilayer films MA and MB on both surfaces of the substrate SU.
  • the inventor produced infrared cut filters having various characteristics, incorporated them into a camera unit, performed image evaluation, and analyzed the evaluation results of filter characteristics, ghost, color shading, red fog, and the like. As a result, it has been found that there is a relationship described below between ghost, color shading, red fogging, and spectral characteristics of the infrared cut filter FR.
  • An example is shown in FIG. 2 ( ⁇ : incident angle).
  • the ghost correlates with the reflectance in the visible region (wavelength 425 to 650 nm), and the generation of the ghost is suppressed when the reflectance is smaller.
  • the characteristics related to the ghost are, specifically, an average transmittance at an incident angle of 0 degrees at a wavelength of 425 to 620 nm, an average transmittance at an incident angle of 30 degrees at a wavelength of 425 to 620 nm, and an incident at a wavelength of 600 to 620 nm.
  • Average transmittance at an angle of 0 degrees From the relationship between these numerical values and the image evaluation result of the live-action test, it is possible to calculate a threshold that can satisfactorily reduce ghosts.
  • Color shading is related to the transmittance difference between the incident angle of 0 degrees and 30 degrees with respect to the infrared cut filter, and the occurrence of color shading is suppressed when the transmittance difference is reduced.
  • the characteristics related to color shading are the sum of the wavelength shift amounts between 0 degree and 30 degrees of incident angles between 90% transmittance and 50% transmittance, and 50% transmittance to 5 transmittance.
  • % Is the sum of the wavelength shift amounts between 0 degree and 30 degrees of incident angle. From the relationship between these numerical values and the image evaluation result of the live-action test, a threshold capable of satisfactorily reducing color shading can be calculated.
  • the red fog has a correlation with the transmittance at a wavelength of 700 to 1200 nm, and the smaller the transmittance, the more the occurrence of red fog is suppressed.
  • the characteristics related to the red fog are the average transmittance and the maximum transmittance at a wavelength of 700 to 1100 nm, and the average transmittance and the maximum transmittance at a wavelength of 1100 to 1200 nm. From the relationship between these numerical values and the image evaluation result of the live-action test, a threshold capable of satisfactorily reducing the red fog can be calculated.
  • the infrared cut filter FR is an infrared cut filter having dielectric multilayer films MA and MB on both surfaces of a substrate SU,
  • the average transmittance at an incident angle of 0 degree at a wavelength of 425 to 620 nm is 95% or more
  • the average transmittance at an incident angle of 30 degrees at a wavelength of 425 to 620 nm is 94% or more
  • the average transmittance at an incident angle of 0 degree at a wavelength of 600 to 620 nm is 91% or more
  • the following conditional expressions (1) and (2) are satisfied at a wavelength of 580 to 700 nm,
  • the average transmittance at a wavelength of 700 to 1100 nm is 0.5% or less and the maximum transmittance is 1.8% or less
  • the average transmittance at a wavelength of 1100 to 1200 nm is 8% or less and the maximum transmittance is 12.5% or less.
  • Conditional expressions (1) and (2) both define a condition range for favorably correcting color shading. Since conditional expression (1) defines a high transmittance range, effective color shading correction can be performed by setting the upper limit to satisfy conditional expression (1).
  • conditional expression (2) defines a low transmittance range, which is a weak range of sensor sensitivity
  • setting the upper limit to satisfy conditional expression (2) is effective for dealing with a small amount of light. Color shading correction is possible. Therefore, in order to suppress the occurrence of color shading, it is effective to satisfy both conditional expressions (1) and (2). That is, to satisfy the conditional expressions (1) and (2), the sum of the wavelength shift amounts of the incident angles of 0 degrees and 30 degrees between the transmittance 90% and the transmittance 50% and the transmittance 50% What is necessary is just to make both the sum of the wavelength shift amount of the incident angles 0 degree and 30 degree
  • the surface with the shorter wavelength ⁇ 50% (0 degree) when the incident angle is 0 degree and the transmittance is 50% is defined as the A face.
  • the B surface has a high transmittance so as not to affect the characteristics of the infrared cut filter FR at 580 to 700 nm.
  • the dielectric multilayer films MA and MB having spectral characteristics are provided on both sides of the substrate SU, so that an infrared cut filter FR with less ghost, color shading and red fog is realized. can do.
  • a camera unit including the infrared cut filter FR in a digital device such as a digital camera or a smartphone, a high-performance image input function can be realized at a low cost. The conditions for more effectively achieving ghost, color shading and red fog reduction will be described below.
  • conditional expression (3) is satisfied at a wavelength of 580 to 700 nm. ⁇ 15 ⁇ ⁇ A 50% (0 degree) ⁇ B 50% (30 degree) ⁇ 10 (3) However, ⁇ A 50% (0 degree): wavelength (nm) when the incident angle is 0 degree on the A plane and the transmittance is 50%, ⁇ B50% (30 degrees): wavelength (nm) at an incident angle of 30 degrees and a transmittance of 50% on the B surface, It is.
  • the transmittance of 700 nm or more in wavelength increases due to the skirt of the cutoff region of the B surface, and the red fog is deteriorated. .
  • conditional expression (3) the wavelength shift effective for color shading can be suppressed by the A-side dielectric multilayer film MA, and the infrared cut can be appropriately performed by the B-side dielectric multilayer film MB.
  • Color shading increases when the upper limit of conditional expression (3) is exceeded, and red fog increases when the lower limit of conditional expression (3) is exceeded.
  • the oblique characteristics are determined by the A-side dielectric multilayer film MA having a small angle dependency, and the infrared cut is performed by the B-side dielectric multilayer film MB, if below the lower limit of the conditional expression (3), Since ⁇ B50% (30 degrees) is farther away from ⁇ A50% (0 degrees), it becomes difficult to perform infrared cut around 700 nm with the spectral characteristics (0 degrees) of the dielectric multilayer film MB.
  • the number of layers of the dielectric multilayer films MA and MB is preferably 200 or less on one side, and more preferably 100 or less on one side.
  • the average transmittance at an incident angle of 0 degrees at wavelengths of 425 to 620 nm is 99% or more, the average transmittance at an incident angle of 30 degrees at wavelengths of 425 to 620 nm is 97% or more,
  • the average transmittance at an incident angle of 0 degree at 600 to 620 nm is preferably 98.5% or more.
  • This condition stipulates a more preferable condition range based on the above viewpoints, etc., among the aforementioned ghost-related condition ranges. Therefore, preferably, the ghost reduction effect can be further increased by satisfying this condition.
  • the infrared cut filter FR preferably satisfies the following conditional expression (1a) at a wavelength of 580 to 700 nm.
  • ⁇ [T 50 to 90%]
  • the conditional expression (1a) defines a more preferable condition range based on the above viewpoints, etc., among the condition ranges defined by the conditional expression (1). Therefore, the color shading reduction effect can be further increased preferably by satisfying conditional expression (1a).
  • the average transmittance at a wavelength of 700 to 1100 nm is 0.15% or less and the maximum transmittance is 1% or less, and the average transmittance at a wavelength of 1100 to 1200 nm is 4% or less and the maximum transmittance is 9%.
  • the average transmittance at a wavelength of 700 to 1100 nm is 0.1% or less and the maximum transmittance is 0.7% or less
  • the average transmittance at a wavelength of 1100 to 1200 nm is 1% or less and the maximum transmittance is More preferably, the rate is 1.5% or less.
  • an imaging optical device for example, a camera unit mounted on a digital device (for example, a smartphone) with an image input function
  • use of the infrared cut filter FR according to the present invention is suitable.
  • An imaging optical device is an optical device that is a main component of a camera used for still image shooting and moving image shooting of a subject, and is formed by, for example, an imaging lens that forms an optical image of an object (that is, a subject) and the imaging lens.
  • An image sensor for example, a solid-state image sensor such as a CCD image sensor or a CMOS image sensor
  • an infrared cut filter disposed between the image sensor and the image sensor FR is provided to optically capture a subject image and output it as an electrical signal.
  • Examples of digital devices with an image input function include cameras such as digital cameras, video cameras, surveillance cameras, in-vehicle cameras, and videophone cameras. Built-in or external to personal computers, portable digital devices (for example, small information device terminals such as mobile phones, smartphones, tablet terminals, and mobile computers), peripheral devices (scanners, printers, etc.), and other digital devices.
  • the one with a camera function is included. As can be seen from these examples, it is possible not only to configure a camera by using an imaging optical device, but also to add a camera function by mounting the imaging optical device on various devices. For example, a digital device with an image input function such as a smartphone can be configured.
  • FIG. 4 is a schematic cross-sectional view showing a schematic configuration example of a digital device DU as an example of a digital device with an image input function.
  • the imaging optical device LU mounted on the digital device DU shown in FIG. 4 includes an imaging lens LN (AX: optical axis) that forms an optical image (image plane) IM of the object in order from the object (that is, subject) side, An infrared cut filter FR and an imaging element SR that converts an optical image IM formed on a light receiving surface (imaging surface) SS, which is a photoelectric conversion unit, by an imaging lens LN into an electrical signal are provided.
  • AX optical axis
  • the imaging optical device LU When a digital device DU with an image input function is constituted by this imaging optical device LU, the imaging optical device LU is usually arranged inside the body, but when necessary to realize the camera function, a form as necessary is adopted. Is possible.
  • the unitized imaging optical device LU can be configured to be detachable or rotatable with respect to the main body of the digital device DU.
  • the digital device DU includes a signal processing unit 1, a control unit 2, a memory 3, an operation unit 4, a display unit 5 and the like in addition to the imaging optical device LU.
  • the signal generated by the image sensor SR is subjected to predetermined digital image processing, image compression processing, and the like in the signal processing unit 1 as necessary, and recorded as a digital video signal in the memory 3 (semiconductor memory, optical disc, etc.) In some cases, it is transmitted to other devices via a cable or converted into an infrared signal or the like (for example, a communication function of a mobile phone).
  • the control unit 2 is composed of a microcomputer, and controls functions such as a shooting function (still image shooting function, moving image shooting function, etc.), an image reproduction function, etc .; a lens moving mechanism for focusing, etc.
  • the control unit 2 controls the imaging optical device LU so as to perform at least one of still image shooting and moving image shooting of a subject.
  • the display unit 5 includes a display such as a liquid crystal monitor, and performs image display using an image signal converted by the image sensor SR or image information recorded in the memory 3.
  • the operation unit 4 is a part including operation members such as an operation button (for example, a release button) and an operation dial (for example, a shooting mode dial), and transmits information input by the operator to the control unit 2.
  • the infrared cut filter FR has optical characteristics in which the dielectric multilayer films MA and MB on both surfaces of the substrate SU both transmit visible light and reflect infrared light.
  • the dielectric multilayer films MA and MB on both surfaces of the substrate SU both transmit visible light and reflect infrared light.
  • TiO 2 and SiO 2 constituting the dielectric multilayer films MA and MB are made of optical films. Film thicknesses corresponding to a quarter wavelength in the infrared region (for example, wavelength 900 nm) are alternately laminated.
  • the thickness of each layer is gradually shifted from the quarter wavelength to set the effect of interference.
  • the film formation method of the infrared cut filter FR include vacuum deposition, ion assist film formation, ion plating film formation, sputter film formation (reactive sputter film formation, etc.), ion beam sputter film formation, and the like.
  • the dielectric multilayer films MA and MB on both sides of the substrate SU are preferably formed by these film forming methods.
  • the substrate SU is preferably made of glass.
  • the plastic substrate is not suitable for forming a dielectric multilayer film. Accordingly, a glass substrate is preferable to a plastic substrate as a reliable transparent substrate that has a certain degree of strength as the infrared cut filter FR and does not peel off.
  • the dielectric multilayer films MA and MB on both surfaces of the substrate SU are preferably made of at least two vapor deposition materials, and at least one of them is made of SiO 2 or a mixture containing SiO 2 .
  • the dielectric multilayer films MA and MB on both surfaces of the substrate SU are both made of at least two vapor deposition materials, and at least one of them is made of TiO 2 , Nb 2 O 5 , Ta 2 O 5 , ZrO 2 or any one of them. It is preferable to consist of a mixture containing.
  • a low-refractive index material such as SiO 2 and a high-refractive index material such as TiO 2 are preferable materials for imparting compressive stress, are easy to manufacture, and are preferable materials for the refractive index required for performance. .
  • the construction data indicates the film forming material and film thickness (nm) of each layer of the dielectric multilayer films MA and MB, and the refractive index n (wavelength 540 nm) of the substrate SU and film forming material.
  • the dielectric multilayer films MA and MB are both alternating layers of a high refractive index layer made of Nb 2 O 5 and a low refractive index layer made of SiO 2 (
  • the dielectric multilayer films MA and MB are alternately composed of a high refractive index layer made of TiO 2 and a low refractive index layer made of SiO 2. It is composed of layers (TiO2 / SiO2).
  • Table 1 shows the characteristic values and values corresponding to the conditional expressions of Comparative Examples 1 to 3 and Examples 1 to 4, and Table 2 shows the evaluation results obtained by using the following image evaluation method.
  • the graphs of FIGS. 5 to 18 show the spectral characteristics of Comparative Examples 1 to 3 and Examples 1 to 4.
  • an infrared cut filter FR is provided between the imaging lens LN (5 positive / negative / positive / negative elements) and the imaging element SR so that the A-side faces the imaging element SR. Placed and took pictures to evaluate the images.
  • the ghost evaluation (wavelength: 425 to 620 nm)
  • the light source was arranged at a short side, a long side, and a diagonal at a pitch of 5 degrees with respect to the optical axis AX, and the appearance of the ghost was evaluated from the captured image.
  • color shading evaluation (wavelength: 580 to 700 nm)
  • a white light source was photographed as a light source, and the difference in color between the peripheral part and the central part was evaluated.
  • a black object illuminated with a light source was photographed, and the difference in color between the photographed image and the object was evaluated.
  • the light source DAYLIGHT (north window light), Cool White (cold white fluorescent light), HORIZON (sunset light), INCA (showcase light) were used.
  • Example 1 Multilayer MA (A surface) n (540nm) Board 1.52 SiO2 1.47 Nb2O5 2.38 Layer Material Film thickness (nm) 1 Nb2O5 16.34 2 SiO2 28.28 3 Nb2O5 64.83 4 SiO2 23.55 5 Nb2O5 30.30 6 SiO2 40.40 7 Nb2O5 112.82 8 SiO2 45.22 9 Nb2O5 15.15 10 SiO2 36.35 11 Nb2O5 95.45 12 SiO2 190.09 13 Nb2O5 16.10 14 SiO2 218.88 15 Nb2O5 15.15 16 SiO2 220.94 17 Nb2O5 18.97 18 SiO2 199.93 19 Nb2O5 54.05 20 SiO2 29.18 21 Nb2O5 23.30 22 SiO2 74.99 23 Nb2O5 116.94 24 SiO2 38.72 25 Nb2O5 124.35 26 SiO2 36.76 27 Nb2O5
  • Example 1 Multilayer MB (B side) n (540nm) Board 1.52 SiO2 1.47 Nb2O5 2.38 Layer Material Film thickness (nm) 1 Nb2O5 14.55 2 SiO2 47.64 3 Nb2O5 22.99 4 SiO2 190.77 5 Nb2O5 115.18 6 SiO2 25.31 7 Nb2O5 116.76 8 SiO2 51.63 9 Nb2O5 14.55 10 SiO2 35.46 11 Nb2O5 90.76 12 SiO2 189.51 13 Nb2O5 15.45 14 SiO2 220.58 15 Nb2O5 14.55 16 SiO2 216.46 17 Nb2O5 16.15 18 SiO2 186.22 19 Nb2O5 87.09 20 SiO2 27.39 21 Nb2O5 15.78 22 SiO2 49.91 23 Nb2O5 101.61 24 SiO2 19.36 25 Nb2O5 16.15 26 SiO2 28.83 27 Nb2O5 105
  • Example 2 Multilayer MA (A surface) n (540nm) Board 1.52 SiO2 1.47 Nb2O5 2.38 Layer Material Film thickness (nm) 1 Nb2O5 16.34 2 SiO2 28.28 3 Nb2O5 64.83 4 SiO2 23.55 5 Nb2O5 30.30 6 SiO2 40.40 7 Nb2O5 112.82 8 SiO2 45.22 9 Nb2O5 15.15 10 SiO2 36.35 11 Nb2O5 95.45 12 SiO2 190.09 13 Nb2O5 16.10 14 SiO2 218.88 15 Nb2O5 15.15 16 SiO2 220.94 17 Nb2O5 18.97 18 SiO2 199.93 19 Nb2O5 54.05 20 SiO2 29.18 21 Nb2O5 23.30 22 SiO2 74.99 23 Nb2O5 116.94 24 SiO2 38.72 25 Nb2O5 124.35 26 SiO2 36.76 27 Nb2O5
  • Example 2 Multilayer MB (B side) n (540nm) Board 1.52 SiO2 1.47 Nb2O5 2.38 Layer Material Film thickness (nm) 1 Nb2O5 21.03 2 SiO2 31.00 3 Nb2O5 34.37 4 SiO2 180.97 5 Nb2O5 117.57 6 SiO2 24.25 7 Nb2O5 110.40 8 SiO2 40.51 9 Nb2O5 14.55 10 SiO2 43.14 11 Nb2O5 98.21 12 SiO2 24.25 13 Nb2O5 20.35 14 SiO2 33.41 15 Nb2O5 121.78 16 SiO2 24.73 17 Nb2O5 115.21 18 SiO2 24.25 19 Nb2O5 17.27 20 SiO2 29.59 21 Nb2O5 122.35 22 SiO2 24.25 23 Nb2O5 133.06 24 SiO2 24.25 25 Nb2O5 134.08 26 SiO2 24.25 27 N
  • Example 3 Multilayer MA (A surface) n (540nm) Board 1.52 SiO2 1.47 TiO2 2.39 Layer Material Film thickness (nm) 1 TiO2 9.16 2 SiO2 29.43 3 TiO2 95.11 4 SiO2 159.35 5 TiO2 85.78 6 SiO2 20.25 7 TiO2 20.88 8 SiO2 39.90 9 TiO2 108.96 10 SiO2 195.34 11 TiO2 11.36 12 SiO2 678.69 13 TiO2 11.21 14 SiO2 192.42 15 TiO2 99.02 16 SiO2 37.50 17 TiO2 14.79 18 SiO2 42.40 19 TiO2 115.31 20 SiO2 24.63 21 TiO2 128.14 22 SiO2 24.24 23 TiO2 128.40 24 SiO2 25.26 25 TiO2 129.56 26 SiO2 27.05 27 TiO2 125.56 28 SiO2 31.34 29 TiO2 113.94 30 SiO2 80.27 31
  • Example 3 Multilayer MB (B side) n (540nm) Board 1.52 SiO2 1.47 TiO2 2.39 Layer Material Film thickness (nm) 1 TiO2 10.05 2 SiO2 34.19 3 TiO2 97.80 4 SiO2 153.99 5 TiO2 86.57 6 SiO2 151.02 7 TiO2 105.53 8 SiO2 19.19 9 TiO2 113.00 10 SiO2 56.42 11 TiO2 12.87 12 SiO2 51.09 13 TiO2 100.27 14 SiO2 17.08 15 TiO2 26.39 16 SiO2 32.21 17 TiO2 32.55 18 SiO2 47.26 19 TiO2 22.20 20 SiO2 48.91 21 TiO2 108.20 22 SiO2 70.03 23 TiO2 11.45 24 SiO2 47.32 25 TiO2 200.40 26 SiO2 41.57 27 TiO2 14.77 28 SiO2 60.07 29 TiO2 105.16 30 SiO2 58.44 31 TiO2 15.
  • Example 4 Multilayer MA (A surface) n (540nm) Board 1.52 SiO2 1.47 TiO2 2.39 Layer Material Film thickness (nm) 1 SiO2 54.59 2 TiO2 9.90 3 SiO2 35.25 4 TiO2 107.25 5 SiO2 35.16 6 TiO2 21.40 7 SiO2 23.47 8 TiO2 91.88 9 SiO2 189.41 10 TiO2 19.76 11 SiO2 214.64 12 TiO2 20.27 13 SiO2 192.62 14 TiO2 72.68 15 SiO2 19.67 16 TiO2 26.11 17 SiO2 50.06 18 TiO2 121.81 19 SiO2 27.69 20 TiO2 128.55 21 SiO2 24.37 22 TiO2 129.54 23 SiO2 23.31 24 TiO2 129.71 25 SiO2 22.52 26 TiO2 130.03 27 SiO2 21.83 28 TiO2 130.18 29 SiO2 20.98 30 TiO2 130.68 31 Si
  • Example 4 Multilayer MB (B side) n (540nm) Board 1.52 SiO2 1.47 TiO2 2.39 Layer Material Film thickness (nm) 1 TiO2 10.15 2 SiO2 34.31 3 TiO2 102.29 4 SiO2 158.00 5 TiO2 85.29 6 SiO2 150.91 7 TiO2 87.84 8 SiO2 35.67 9 TiO2 15.31 10 SiO2 41.05 11 TiO2 89.48 12 SiO2 146.05 13 TiO2 80.84 14 SiO2 143.54 15 TiO2 80.59 16 SiO2 145.35 17 TiO2 93.20 18 SiO2 46.82 19 TiO2 22.36 20 SiO2 31.17 21 TiO2 58.41 22 SiO2 45.47 23 TiO2 11.33 24 SiO2 74.10 25 TiO2 88.06 26 SiO2 142.90 27 TiO2 81.55 28 SiO2 142.88 29 TiO2 82.87 30 Si

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Filters (AREA)
  • Blocking Light For Cameras (AREA)
  • Laminated Bodies (AREA)

Abstract

This IR cut filter comprises dielectric multilayer films on either side of a substrate and exhibits a mean transmittance of at least 95% over the 425-620 nm wavelength range at an angle of incidence of 0°, a mean transmittance of at least 94% over the 425-620 nm wavelength range at an angle of incidence of 30°, a mean transmittance of at least 91% over the 600-620 nm wavelength range at an angle of incidence of 0°, a mean transmittance of at most 0.5% and a maximum transmittance of at most 1.8% over the 700-1,100 nm wavelength range, and a mean transmittance of at most 8% and a maximum transmittance of at most 12.5% over the 1,100-1,200 nm wavelength range. Over the 580-700 nm wavelength range, this IR cut filter satisfies the relations Σ[T = 50% to 90%] |λT(0°)−λT(30°)| < 400 and Σ[T = 5% to 50%] |λT(0°)−λT(30°)| < 850 (where Σ[T = a% to b%] |λT(0°)−λT(30°)| represents the wavelength difference |λT(0°)−λT(30°)| summed as the transmittance T is increased from a% to b% in increments of 1% and λT(θ) represents the wavelength (in nm) at which the transmittance at an angle of incidence of θ° is T%).

Description

赤外カットフィルターInfrared cut filter
 本発明は、赤外カットフィルターに関するものであり、例えば、カメラユニットに用いられる赤外カットフィルターに関するものである。 The present invention relates to an infrared cut filter, for example, an infrared cut filter used for a camera unit.
 カメラ付き携帯電話,スマートフォン(高機能携帯電話)等の画像入力機能付きデジタル機器には、撮像レンズで形成された光学像を電気信号に変換する撮像素子として、シリコン半導体デバイス(例えば、CCD(Charge Coupled Device)型イメージセンサー,CMOS(Complementary Metal-Oxide Semiconductor)型イメージセンサー等の固体撮像素子)が従来より一般的に用いられている。このシリコン半導体デバイスは、近赤外線領域まで感度を持っているため、光が入射すると可視光以外に近赤外線をも映像として取り込んでしまう。その結果、得られた映像には疑似色が発生する等の問題が生じることになる。 In digital devices with an image input function such as a mobile phone with a camera and a smartphone (high-performance mobile phone), a silicon semiconductor device (for example, a CCD (Charge) is used as an image sensor that converts an optical image formed by an imaging lens into an electrical signal. 2. Description of the Related Art Conventionally, a solid-state imaging device such as a coupled device (Image sensor) and a CMOS (Complementary Metal-Oxide Semiconductor) image sensor) has been used. Since this silicon semiconductor device has sensitivity up to the near-infrared region, near-infrared light is captured as an image in addition to visible light when light enters. As a result, problems such as generation of pseudo colors occur in the obtained video.
 そこで、従来の画像入力機能付きデジタル機器では、撮像レンズと撮像素子との間に赤外カットフィルターを挿入することでこの問題を解消している。赤外カットフィルターとしては、さまざまなタイプのものが提案されており、例えば特許文献1~3には、カメラ用の赤外カットフィルターとして、入射角度依存性の少ないものが提案されている。 Therefore, in the conventional digital device with an image input function, this problem is solved by inserting an infrared cut filter between the imaging lens and the imaging element. Various types of infrared cut filters have been proposed. For example, Patent Documents 1 to 3 propose infrared cut filters for cameras that have little incident angle dependency.
WO2013/042738 A1WO2013 / 042738 A1 特開2013-178338号公報JP 2013-178338 A US2013/0021515 A1US2013 / 0021515 A1
 撮像レンズ,撮像素子等を備えたカメラユニットでは、カメラの低背化や撮像素子の大型化に伴って、赤外カットフィルターへの光線入射角度が大きくなる。ガラス基板の両面に誘電体多層膜が形成された一般的な赤外カットフィルターの場合、入射角度0度と入射角度30度とではカットオフ波長のシフト量が大きいため、画面中心部と周辺部とで色が異なる色シェーディング現象が発生してしまう。吸収ガラスを用いることにより色シェーディング現象の発生を抑制することは可能であるが、吸収ガラスを薄くすると吸収量が確保できなくなったり落下強度の低下を招いたりすることになる。 In a camera unit equipped with an imaging lens, an imaging element, etc., the incident angle of the light beam to the infrared cut filter increases with the reduction in the height of the camera and the increase in the size of the imaging element. In the case of a general infrared cut filter in which a dielectric multilayer film is formed on both surfaces of a glass substrate, since the shift amount of the cutoff wavelength is large at an incident angle of 0 degrees and an incident angle of 30 degrees, the center portion of the screen and the peripheral portion The color shading phenomenon in which colors differ between and will occur. Although it is possible to suppress the occurrence of the color shading phenomenon by using the absorbing glass, if the absorbing glass is made thin, the amount of absorption cannot be secured or the drop strength is reduced.
 特許文献1に記載の赤外カットフィルターの場合、透明基板からなるものは透過率90%~50%での入射角度0度と30度との波長差の和が大きいため、色シェーディングが少ないとは言えない。特許文献2に記載の赤外カットフィルターの場合、波長600~620での平均透過率が小さいためゴーストが少ないとは言えず、波長700~1100nmでの最大透過率も大きいため、画面全体あるいは特定の色に赤色がかぶる赤かぶりが少ないとは言えない。特許文献3に記載の赤外カットフィルターの場合、波長1100~1200nmでの平均透過率が開示されておらず、膜構成から特性を再現することも困難であるが、赤かぶりが少ないとは言えない。また、各基板面の多層膜特性は不明であるが、生産性が良好な膜構成にはなっていない。 In the case of the infrared cut filter described in Patent Document 1, a transparent substrate having a transmittance of 90% to 50% has a large sum of wavelength differences between an incident angle of 0 degrees and 30 degrees, so that there is little color shading. I can't say that. In the case of the infrared cut filter described in Patent Document 2, it cannot be said that the ghost is small because the average transmittance at a wavelength of 600 to 620 is small, and the maximum transmittance at a wavelength of 700 to 1100 nm is large. It cannot be said that there is little red fogging with red on the color. In the case of the infrared cut filter described in Patent Document 3, the average transmittance at a wavelength of 1100 to 1200 nm is not disclosed, and it is difficult to reproduce the characteristics from the film configuration, but it can be said that the red fog is small. Absent. Moreover, although the multilayer film characteristic of each substrate surface is unknown, it is not a film structure with good productivity.
 本発明はこのような状況に鑑みてなされたものであって、その目的は、ゴースト,色シェーディング及び赤かぶりの少ない赤外カットフィルターを提供することにある。 The present invention has been made in view of such circumstances, and an object thereof is to provide an infrared cut filter with little ghost, color shading, and red fog.
 上記目的を達成するために、本発明の赤外カットフィルターは、基板の両面に誘電体多層膜を有する赤外カットフィルターであって、
 波長425~620nmにおける入射角度0度での平均透過率が95%以上であり、
 波長425~620nmにおける入射角度30度での平均透過率が94%以上であり、
 波長600~620nmにおける入射角度0度での平均透過率が91%以上であり、
 波長580~700nmにおいて、以下の条件式(1)及び(2)を満足し、
 波長700~1100nmにおける平均透過率が0.5%以下で最大透過率が1.8%以下であり、
 波長1100~1200nmにおける平均透過率が8%以下で最大透過率12.5%以下である。
Σ[T=50~90%]|λT(0度)-λT(30度)|<400 …(1)
Σ[T= 5~50%]|λT(0度)-λT(30度)|<850 …(2)
 ただし、
Σ[T=a~b%]|λT(0度)-λT(30度)|:透過率Tがa%からb%までの1%毎の波長差|λT(0度)-λT(30度)|の和、
λT(θ):入射角度θ度で透過率T%のときの波長(nm)、
である。
In order to achieve the above object, the infrared cut filter of the present invention is an infrared cut filter having a dielectric multilayer film on both sides of a substrate,
The average transmittance at an incident angle of 0 degree at a wavelength of 425 to 620 nm is 95% or more,
The average transmittance at an incident angle of 30 degrees at a wavelength of 425 to 620 nm is 94% or more,
The average transmittance at an incident angle of 0 degree at a wavelength of 600 to 620 nm is 91% or more,
The following conditional expressions (1) and (2) are satisfied at a wavelength of 580 to 700 nm,
The average transmittance at a wavelength of 700 to 1100 nm is 0.5% or less and the maximum transmittance is 1.8% or less,
The average transmittance at a wavelength of 1100 to 1200 nm is 8% or less and the maximum transmittance is 12.5% or less.
Σ [T = 50 to 90%] | λT (0 degree) −λT (30 degree) | <400 (1)
Σ [T = 5 to 50%] | λT (0 degree) −λT (30 degree) | <850 (2)
However,
Σ [T = a˜b%] | λT (0 degree) −λT (30 degree) |: Wavelength difference for every 1% from the transmittance T of a% to b% | λT (0 degree) −λT (30 Degree) |
λT (θ): wavelength (nm) at an incident angle θ degree and transmittance T%,
It is.
 本発明のカメラユニットは、上記赤外カットフィルターを備えたものである。 The camera unit of the present invention includes the infrared cut filter.
 本発明によれば、分光特性に特徴のある誘電体多層膜を基板の両面に有する構成になっているため、ゴースト,色シェーディング及び赤かぶりの少ない赤外カットフィルターと、それを備えたカメラユニットを実現することができる。そして、本発明に係るカメラユニットをデジタルカメラ,スマートフォン等のデジタル機器に用いることによって、高性能の画像入力機能を安価に実現することが可能となる。 According to the present invention, since the dielectric multilayer film characterized by spectral characteristics is provided on both sides of the substrate, an infrared cut filter with less ghost, color shading and red fog, and a camera unit having the same Can be realized. Then, by using the camera unit according to the present invention for a digital device such as a digital camera or a smartphone, a high-performance image input function can be realized at a low cost.
赤外カットフィルターの一実施の形態を模式的に示す断面図。Sectional drawing which shows typically one Embodiment of an infrared cut filter. 赤外カットフィルターの分光特性とゴースト,色シェーディング及び赤かぶりとの関係を説明するための図。The figure for demonstrating the relationship between the spectral characteristic of an infrared cut filter, a ghost, a color shading, and a red fog. 色シェーディングと波長シフト量の和との関係を説明するための図。The figure for demonstrating the relationship between color shading and the sum of the amount of wavelength shifts. 画像入力機能付きデジタル機器の概略構成例を示すブロック図。The block diagram which shows the schematic structural example of the digital apparatus with an image input function. 比較例1のフィルター全体の分光透過率を示すグラフ。The graph which shows the spectral transmittance of the whole filter of the comparative example 1. 比較例1の各フィルター面の分光透過率を示すグラフ。The graph which shows the spectral transmittance of each filter surface of the comparative example 1. FIG. 比較例2のフィルター全体の分光透過率を示すグラフ。The graph which shows the spectral transmittance of the whole filter of the comparative example 2. 比較例2の各フィルター面の分光透過率を示すグラフ。The graph which shows the spectral transmittance of each filter surface of the comparative example 2. FIG. 比較例3のフィルター全体の分光透過率を示すグラフ。The graph which shows the spectral transmittance of the whole filter of the comparative example 3. FIG. 比較例3の各フィルター面の分光透過率を示すグラフ。10 is a graph showing the spectral transmittance of each filter surface in Comparative Example 3. 実施例1のフィルター全体の分光透過率を示すグラフ。3 is a graph showing the spectral transmittance of the entire filter of Example 1. 実施例1の各フィルター面の分光透過率を示すグラフ。3 is a graph showing the spectral transmittance of each filter surface of Example 1. 実施例2のフィルター全体の分光透過率を示すグラフ。6 is a graph showing the spectral transmittance of the entire filter of Example 2. 実施例2の各フィルター面の分光透過率を示すグラフ。6 is a graph showing the spectral transmittance of each filter surface of Example 2. 実施例3のフィルター全体の分光透過率を示すグラフ。10 is a graph showing the spectral transmittance of the entire filter of Example 3. 実施例3の各フィルター面の分光透過率を示すグラフ。6 is a graph showing the spectral transmittance of each filter surface of Example 3. 実施例4のフィルター全体の分光透過率を示すグラフ。6 is a graph showing the spectral transmittance of the entire filter of Example 4. 実施例4の各フィルター面の分光透過率を示すグラフ。6 is a graph showing the spectral transmittance of each filter surface of Example 4.
 以下、本発明を実施した赤外カットフィルター,カメラユニット等を、図面を参照しつつ説明する。図1に、基板SU(例えば、ガラス基板)の両面に誘電体多層膜MA,MBがコーティングされた赤外カットフィルターFRの一実施の形態について、その断面構造を模式的に示す。この赤外カットフィルターFRは、基板SU両面の誘電体多層膜MA,MBに特徴的な分光特性を持たせることにより、ゴースト,色シェーディング及び赤かぶりを良好に低減するものである。本発明者は様々な特性の赤外カットフィルターを作製し、カメラユニットに組み込んで画像評価を実施し、フィルター特性,ゴースト,色シェーディング,赤かぶり等の評価結果を解析した。その結果、ゴースト,色シェーディング,赤かぶりと赤外カットフィルターFRの分光特性との間には、以下に説明するような関係があることを見出した。その一例を図2に示す(θ:入射角度)。 Hereinafter, an infrared cut filter, a camera unit and the like embodying the present invention will be described with reference to the drawings. FIG. 1 schematically shows a cross-sectional structure of an embodiment of an infrared cut filter FR in which dielectric multilayer films MA and MB are coated on both surfaces of a substrate SU (for example, a glass substrate). This infrared cut filter FR reduces ghost, color shading, and red fog favorably by imparting characteristic spectral characteristics to the dielectric multilayer films MA and MB on both surfaces of the substrate SU. The inventor produced infrared cut filters having various characteristics, incorporated them into a camera unit, performed image evaluation, and analyzed the evaluation results of filter characteristics, ghost, color shading, red fog, and the like. As a result, it has been found that there is a relationship described below between ghost, color shading, red fogging, and spectral characteristics of the infrared cut filter FR. An example is shown in FIG. 2 (θ: incident angle).
 ゴーストは、可視領域(波長425~650nm)の反射率と相関があり、その反射率が少ない方がゴーストの発生が抑制される。言い換えれば、誘電体多層膜は可視領域での光の吸収がほとんどないため、透過率が高いとゴーストが抑制される。ゴーストと関係する特性は、具体的には、波長425~620nmにおける入射角度0度での平均透過率と、波長425~620nmにおける入射角度30度での平均透過率と、波長600~620nmにおける入射角度0度での平均透過率と、である。これらの数値と実写テストの画像評価結果との関係から、ゴーストを良好に低減することの可能な閾値を算出することができる。 The ghost correlates with the reflectance in the visible region (wavelength 425 to 650 nm), and the generation of the ghost is suppressed when the reflectance is smaller. In other words, since the dielectric multilayer film hardly absorbs light in the visible region, ghost is suppressed when the transmittance is high. The characteristics related to the ghost are, specifically, an average transmittance at an incident angle of 0 degrees at a wavelength of 425 to 620 nm, an average transmittance at an incident angle of 30 degrees at a wavelength of 425 to 620 nm, and an incident at a wavelength of 600 to 620 nm. Average transmittance at an angle of 0 degrees. From the relationship between these numerical values and the image evaluation result of the live-action test, it is possible to calculate a threshold that can satisfactorily reduce ghosts.
 色シェーディングは、赤外カットフィルターに対する入射角度0度と30度との透過率差に関係があり、その透過率差が小さくなれば色シェーディングの発生が抑制される。色シェーディングと関係する特性は、具体的には、透過率90%から透過率50%までの間の入射角度0度と30度との波長シフト量の和、及び透過率50%から透過率5%までの間の入射角度0度と30度との波長シフト量の和である。これらの数値と実写テストの画像評価結果との関係から、色シェーディングを良好に低減することの可能な閾値を算出することができる。 Color shading is related to the transmittance difference between the incident angle of 0 degrees and 30 degrees with respect to the infrared cut filter, and the occurrence of color shading is suppressed when the transmittance difference is reduced. Specifically, the characteristics related to color shading are the sum of the wavelength shift amounts between 0 degree and 30 degrees of incident angles between 90% transmittance and 50% transmittance, and 50% transmittance to 5 transmittance. % Is the sum of the wavelength shift amounts between 0 degree and 30 degrees of incident angle. From the relationship between these numerical values and the image evaluation result of the live-action test, a threshold capable of satisfactorily reducing color shading can be calculated.
 赤かぶりは、波長700~1200nmの透過率と相関があり、その透過率が小さい方が赤かぶりの発生が抑制される。赤かぶりと関係する特性は、具体的には、波長700~1100nmにおける平均透過率及び最大透過率、並びに波長1100~1200nmにおける平均透過率及び最大透過率である。これらの数値と実写テストの画像評価結果との関係から、赤かぶりを良好に低減することの可能な閾値を算出することができる。 The red fog has a correlation with the transmittance at a wavelength of 700 to 1200 nm, and the smaller the transmittance, the more the occurrence of red fog is suppressed. Specifically, the characteristics related to the red fog are the average transmittance and the maximum transmittance at a wavelength of 700 to 1100 nm, and the average transmittance and the maximum transmittance at a wavelength of 1100 to 1200 nm. From the relationship between these numerical values and the image evaluation result of the live-action test, a threshold capable of satisfactorily reducing the red fog can be calculated.
 上記観点に基づく本発明に係る赤外カットフィルターFRは、基板SUの両面に誘電体多層膜MA,MBを有する赤外カットフィルターであって、
 波長425~620nmにおける入射角度0度での平均透過率が95%以上であり、
 波長425~620nmにおける入射角度30度での平均透過率が94%以上であり、
 波長600~620nmにおける入射角度0度での平均透過率が91%以上であり、
 波長580~700nmにおいて、以下の条件式(1)及び(2)を満足し、
 波長700~1100nmにおける平均透過率が0.5%以下で最大透過率が1.8%以下であり、
 波長1100~1200nmにおける平均透過率が8%以下で最大透過率12.5%以下であることを特徴とするものである。
Σ[T=50~90%]|λT(0度)-λT(30度)|<400 …(1)
Σ[T= 5~50%]|λT(0度)-λT(30度)|<850 …(2)
 ただし、
Σ[T=a~b%]|λT(0度)-λT(30度)|:透過率Tがa%からb%までの1%毎の波長差|λT(0度)-λT(30度)|の和、
λT(θ):入射角度θ度で透過率T%のときの波長(nm)、
である。
The infrared cut filter FR according to the present invention based on the above viewpoint is an infrared cut filter having dielectric multilayer films MA and MB on both surfaces of a substrate SU,
The average transmittance at an incident angle of 0 degree at a wavelength of 425 to 620 nm is 95% or more,
The average transmittance at an incident angle of 30 degrees at a wavelength of 425 to 620 nm is 94% or more,
The average transmittance at an incident angle of 0 degree at a wavelength of 600 to 620 nm is 91% or more,
The following conditional expressions (1) and (2) are satisfied at a wavelength of 580 to 700 nm,
The average transmittance at a wavelength of 700 to 1100 nm is 0.5% or less and the maximum transmittance is 1.8% or less,
The average transmittance at a wavelength of 1100 to 1200 nm is 8% or less and the maximum transmittance is 12.5% or less.
Σ [T = 50 to 90%] | λT (0 degree) −λT (30 degree) | <400 (1)
Σ [T = 5 to 50%] | λT (0 degree) −λT (30 degree) | <850 (2)
However,
Σ [T = a˜b%] | λT (0 degree) −λT (30 degree) |: Wavelength difference for every 1% from the transmittance T of a% to b% | λT (0 degree) −λT (30 Degree) |
λT (θ): wavelength (nm) at an incident angle θ degree and transmittance T%,
It is.
 図3の分光透過率のグラフに、色シェーディングと、波長シフト量の和:Σ[T=a~b%]|λT(0度)-λT(30度)|と、の関係を示す。図3(a)中の斜線部分は条件式(1)が規定している条件範囲を示しており、図3(b)中の斜線部分は条件式(2)が規定している条件範囲を示している。そして、条件式(1),(2)は両方とも色シェーディングを良好に補正するための条件範囲を規定している。条件式(1)は高透過率範囲を規定しているので、条件式(1)を満たすようにその上限を設定することにより、効果的な色シェーディング補正が可能となる。一方、条件式(2)はセンサー感度の弱い範囲である低透過率範囲を規定しているので、条件式(2)を満たすようにその上限を設定することにより、少ない光量に対応した効果的な色シェーディング補正が可能となる。したがって、色シェーディングの発生を抑えるには、条件式(1),(2)を両方とも満たすのが効果的である。つまり、条件式(1),(2)を満たすように、透過率90%から透過率50%までの間の入射角度0度と30度との波長シフト量の和と、透過率50%から透過率5%までの間の入射角度0度と30度との波長シフト量の和と、を両方共小さくすればよい。 3 shows the relationship between color shading and the sum of wavelength shift amounts: Σ [T = a to b%] | λT (0 degree) −λT (30 degree) |. The shaded portion in FIG. 3A indicates the condition range defined by the conditional expression (1), and the shaded portion in FIG. 3B indicates the condition range defined by the conditional expression (2). Show. Conditional expressions (1) and (2) both define a condition range for favorably correcting color shading. Since conditional expression (1) defines a high transmittance range, effective color shading correction can be performed by setting the upper limit to satisfy conditional expression (1). On the other hand, since conditional expression (2) defines a low transmittance range, which is a weak range of sensor sensitivity, setting the upper limit to satisfy conditional expression (2) is effective for dealing with a small amount of light. Color shading correction is possible. Therefore, in order to suppress the occurrence of color shading, it is effective to satisfy both conditional expressions (1) and (2). That is, to satisfy the conditional expressions (1) and (2), the sum of the wavelength shift amounts of the incident angles of 0 degrees and 30 degrees between the transmittance 90% and the transmittance 50% and the transmittance 50% What is necessary is just to make both the sum of the wavelength shift amount of the incident angles 0 degree and 30 degree | times between the transmittance | permeability 5% small.
 生産性を良好にするために少ない層数で色シェーディングを低減する場合には、透過率90%から透過率50%までの間の入射角度0度と30度との波長シフト量の和:Σ[T=50~90%]|λT(0度)-λT(30度)|を重視して、それを小さくすれば良好な結果を得ることができる。波長シフト量の和:Σ[T=50~90%]|λT(0度)-λT(30度)|を重視して、それを小さくする最適な方法を考えた場合、波長580~700nmにおいて、基板SU両面の誘電体多層膜MA,MBからなる両フィルター面のうち、入射角度0度で透過率50%のときの波長λ50%(0度)の短い方の面をA面とし、長い方の面をB面とすると、A面の特性で波長シフト量の和:Σ[T=50~90%]|λT(0度)-λT(30度)|を小さくして、その波長域580~700nmでB面が赤外カットフィルターFRの特性に影響しないように高い透過率を持つのが好ましい。また、透過率50%から透過率5%までの間の入射角度0度と30度との波長シフト量の和:Σ[T= 5~50%]|λT(0度)-λT(30度)|を重視して、それをB面の特性で小さくすれば、色シェーディングを低減する上で良好な結果を得ることができる。 When reducing color shading with a small number of layers in order to improve productivity, the sum of the wavelength shift amounts between 0 degree and 30 degrees of incident angles between 90% transmittance and 50% transmittance: Σ [T = 50 to 90%] | λT (0 degree) −λT (30 degree) | is emphasized, and if it is reduced, good results can be obtained. Sum of wavelength shifts: Σ [T = 50 to 90%] | λT (0 degree) −λT (30 degrees) | When the optimum method for reducing it is considered, the wavelength shift is 580 to 700 nm. Of the two filter surfaces formed of the dielectric multilayer films MA and MB on both surfaces of the substrate SU, the surface with the shorter wavelength λ50% (0 degree) when the incident angle is 0 degree and the transmittance is 50% is defined as the A face. If the surface is the B surface, the wavelength shift is reduced by reducing the sum of wavelength shifts: Σ [T = 50 to 90%] | λT (0 degrees) −λT (30 degrees) | It is preferable that the B surface has a high transmittance so as not to affect the characteristics of the infrared cut filter FR at 580 to 700 nm. Further, the sum of the wavelength shift amounts of the incident angle between 0 degree and 30 degrees between the transmittance of 50% and the transmittance of 5%: Σ [T = 5-50%] | λT (0 degree) −λT (30 degrees If emphasizing |) and reducing it with the characteristics of the B surface, good results can be obtained in reducing color shading.
 上記特徴的構成によると、分光特性に特徴のある誘電体多層膜MA,MBを基板SUの両面に有する構成になっているため、ゴースト,色シェーディング及び赤かぶりの少ない赤外カットフィルターFRを実現することができる。そして、赤外カットフィルターFRを備えたカメラユニットをデジタルカメラ,スマートフォン等のデジタル機器に用いることによって、高性能の画像入力機能を安価に実現することが可能となる。そして、ゴースト,色シェーディング及び赤かぶりの低減を更に効果的に達成するための条件等を以下に説明する。 According to the above characteristic configuration, the dielectric multilayer films MA and MB having spectral characteristics are provided on both sides of the substrate SU, so that an infrared cut filter FR with less ghost, color shading and red fog is realized. can do. By using a camera unit including the infrared cut filter FR in a digital device such as a digital camera or a smartphone, a high-performance image input function can be realized at a low cost. The conditions for more effectively achieving ghost, color shading and red fog reduction will be described below.
 波長580~700nmにおいて、以下の条件式(3)を満足することが好ましい。
-15≦λA50%(0度)-λB50%(30度)≦10 …(3)
 ただし、
λA50%(0度):A面において入射角度0度で透過率50%のときの波長(nm)、
λB50%(30度):B面において入射角度30度で透過率50%のときの波長(nm)、
である。
It is preferable that the following conditional expression (3) is satisfied at a wavelength of 580 to 700 nm.
−15 ≦ λA 50% (0 degree) −λB 50% (30 degree) ≦ 10 (3)
However,
λA 50% (0 degree): wavelength (nm) when the incident angle is 0 degree on the A plane and the transmittance is 50%,
λB50% (30 degrees): wavelength (nm) at an incident angle of 30 degrees and a transmittance of 50% on the B surface,
It is.
 前述したように、A面で透過率90~50%の波長シフト量を重視して小さくし、B面で透過率50~5%の波長シフト量を重視して小さくすることは、A面において入射角度0度で透過率50%のときの波長λA50%(0度)と、B面において入射角度30度で透過率50%のときの波長λB50%(30度)と、の波長差:λA50%(0度)-λB50%(30度)と関係がある。この波長差が大きすぎると(つまり、A面とB面との重なりが大きいと)、透過率90%~50%の波長シフトがB面の特性の影響を受けて大きくなり、色シェーディングが悪化する。また、波長差が小さすぎると(つまり、A面とB面とがあまり重ならない)と、波長700nm以上の透過率がB面のカットオフ領域のスソにかかって大きくなり、赤かぶりが悪化する。 As described above, it is important to reduce the wavelength shift amount with a transmittance of 90 to 50% on the A surface, while reducing the wavelength shift amount with a transmittance of 50 to 5% on the B surface. Wavelength difference between the wavelength λA50% (0 degree) when the incident angle is 0 degree and the transmittance is 50%, and the wavelength difference λB50% (30 degree) when the incident angle is 30 degrees and the transmittance is 50% on the B surface: λA50 % (0 degree) -λB50% (30 degrees). If this wavelength difference is too large (that is, if the overlap between the A side and the B side is large), the wavelength shift of 90% to 50% transmittance becomes large due to the influence of the B side characteristics, and the color shading deteriorates. To do. On the other hand, if the wavelength difference is too small (that is, the A and B surfaces do not overlap very much), the transmittance of 700 nm or more in wavelength increases due to the skirt of the cutoff region of the B surface, and the red fog is deteriorated. .
 条件式(3)を満たすことにより、A面の誘電体多層膜MAで色シェーディングに効く波長シフトを抑えることができ、B面の誘電体多層膜MBで適正に赤外カットすることができる。条件式(3)の上限を上回ると色シェーディングが大きくなり、条件式(3)の下限を下回ると赤かぶりが大きくなる。角度依存性が小さいA面の誘電体多層膜MAで斜めの特性を決めており、B面の誘電体多層膜MBで赤外カットしているので、条件式(3)の下限を下回ると、λB50%(30度)がλA50%(0度)より長波長側に離れて、誘電体多層膜MBの分光特性(0度)で700nmあたりを赤外カットすることが困難になる。 By satisfying conditional expression (3), the wavelength shift effective for color shading can be suppressed by the A-side dielectric multilayer film MA, and the infrared cut can be appropriately performed by the B-side dielectric multilayer film MB. Color shading increases when the upper limit of conditional expression (3) is exceeded, and red fog increases when the lower limit of conditional expression (3) is exceeded. Since the oblique characteristics are determined by the A-side dielectric multilayer film MA having a small angle dependency, and the infrared cut is performed by the B-side dielectric multilayer film MB, if below the lower limit of the conditional expression (3), Since λB50% (30 degrees) is farther away from λA50% (0 degrees), it becomes difficult to perform infrared cut around 700 nm with the spectral characteristics (0 degrees) of the dielectric multilayer film MB.
 ゴースト,色シェーディング及び赤かぶりを抑制する設計は、各誘電体多層膜MA,MBの層数を多くすることにより可能であるが、層数が多くなると、材料の表面粗さや材料に僅かにある吸収によって光の散乱や光の吸収が発生することになり、生産性も悪くなる。したがって、前述した構成を有する赤外カットフィルターFRでは、誘電体多層膜MA,MBの層数は、片面で200層以下であることが好ましく、片面で100層以下であることが更に好ましい。 A design that suppresses ghost, color shading, and red fogging is possible by increasing the number of layers of each of the dielectric multilayer films MA and MB. However, as the number of layers increases, the surface roughness of the material and the material are slightly increased. Absorption causes light scattering and light absorption, and productivity also deteriorates. Therefore, in the infrared cut filter FR having the above-described configuration, the number of layers of the dielectric multilayer films MA and MB is preferably 200 or less on one side, and more preferably 100 or less on one side.
 ゴーストと関係する特性に関して、波長425~620nmにおける入射角度0度での平均透過率が99%以上であり、波長425~620nmにおける入射角度30度での平均透過率が97%以上であり、波長600~620nmにおける入射角度0度での平均透過率が98.5%以上であることが好ましい。この条件は、前述したゴースト関連の条件範囲のなかでも、前記観点等に基づいた更に好ましい条件範囲を規定している。したがって、好ましくはこの条件を満たすことにより、前記ゴースト低減効果をより一層大きくすることができる。 Regarding the characteristics related to the ghost, the average transmittance at an incident angle of 0 degrees at wavelengths of 425 to 620 nm is 99% or more, the average transmittance at an incident angle of 30 degrees at wavelengths of 425 to 620 nm is 97% or more, The average transmittance at an incident angle of 0 degree at 600 to 620 nm is preferably 98.5% or more. This condition stipulates a more preferable condition range based on the above viewpoints, etc., among the aforementioned ghost-related condition ranges. Therefore, preferably, the ghost reduction effect can be further increased by satisfying this condition.
 赤外カットフィルターFRは、波長580~700nmにおいて、以下の条件式(1a)を満足することが好ましい。
Σ[T=50~90%]|λT(0度)-λT(30度)|<215 …(1a)
 この条件式(1a)は、前記条件式(1)が規定している条件範囲のなかでも、前記観点等に基づいた更に好ましい条件範囲を規定している。したがって、好ましくは条件式(1a)を満たすことにより、前記色シェーディング低減効果をより一層大きくすることができる。
The infrared cut filter FR preferably satisfies the following conditional expression (1a) at a wavelength of 580 to 700 nm.
Σ [T = 50 to 90%] | λT (0 degree) −λT (30 degree) | <215 (1a)
The conditional expression (1a) defines a more preferable condition range based on the above viewpoints, etc., among the condition ranges defined by the conditional expression (1). Therefore, the color shading reduction effect can be further increased preferably by satisfying conditional expression (1a).
 赤かぶりと関係する特性に関して、波長700~1100nmにおける平均透過率が0.15%以下で最大透過率が1%以下であり、波長1100~1200nmにおける平均透過率が4%以下で最大透過率9%以下であることが好ましく、波長700~1100nmにおける平均透過率が0.1%以下で最大透過率が0.7%以下であり、波長1100~1200nmにおける平均透過率が1%以下で最大透過率1.5%以下であることが更に好ましい。これらの条件は、前述した赤かぶり関連の条件範囲のなかでも、前記観点等に基づいた更に好ましい条件範囲を規定している。したがって、好ましくはこの条件を満たすことにより、前記赤かぶり低減効果をより一層大きくすることができる。 Regarding the characteristics related to red fog, the average transmittance at a wavelength of 700 to 1100 nm is 0.15% or less and the maximum transmittance is 1% or less, and the average transmittance at a wavelength of 1100 to 1200 nm is 4% or less and the maximum transmittance is 9%. % Or less, the average transmittance at a wavelength of 700 to 1100 nm is 0.1% or less and the maximum transmittance is 0.7% or less, and the average transmittance at a wavelength of 1100 to 1200 nm is 1% or less and the maximum transmittance is More preferably, the rate is 1.5% or less. These conditions define a more preferable condition range based on the above viewpoints, etc., among the above-described condition ranges related to red fog. Therefore, preferably, by satisfying this condition, the red fog reduction effect can be further increased.
 画像入力機能付きデジタル機器(例えばスマートフォン)に搭載される撮像光学装置(例えばカメラユニット)においては、本発明に係る赤外カットフィルターFRの使用が適している。撮像光学装置は、被写体の静止画撮影や動画撮影に用いられるカメラの主たる構成要素を成す光学装置であり、例えば、物体(すなわち被写体)の光学像を形成する撮像レンズと、その撮像レンズにより形成された光学像を電気的な信号に変換する撮像素子(例えば、CCD型イメージセンサー,CMOS型イメージセンサー等の固体撮像素子)と、撮像レンズと撮像素子との間に配置される赤外カットフィルターFRと、を備えることにより、被写体の映像を光学的に取り込んで電気的な信号として出力するものである。 In an imaging optical device (for example, a camera unit) mounted on a digital device (for example, a smartphone) with an image input function, use of the infrared cut filter FR according to the present invention is suitable. An imaging optical device is an optical device that is a main component of a camera used for still image shooting and moving image shooting of a subject, and is formed by, for example, an imaging lens that forms an optical image of an object (that is, a subject) and the imaging lens. An image sensor (for example, a solid-state image sensor such as a CCD image sensor or a CMOS image sensor) that converts the optical image that has been converted into an electrical signal, and an infrared cut filter disposed between the image sensor and the image sensor FR is provided to optically capture a subject image and output it as an electrical signal.
 画像入力機能付きデジタル機器の例としては、デジタルカメラ,ビデオカメラ,監視カメラ,車載カメラ,テレビ電話用カメラ等のカメラが挙げられる。また、パーソナルコンピュータ,携帯用デジタル機器(例えば、携帯電話,スマートフォン,タブレット端末,モバイルコンピュータ等の小型情報機器端末),これらの周辺機器(スキャナー,プリンター等),その他のデジタル機器等に内蔵又は外付けによりカメラ機能が搭載されたものが挙げられる。これらの例から分かるように、撮像光学装置を用いることによりカメラを構成することができるだけでなく、各種機器に撮像光学装置を搭載することによりカメラ機能を付加することが可能である。例えば、スマートフォン等の画像入力機能付きデジタル機器を構成することが可能である。 Examples of digital devices with an image input function include cameras such as digital cameras, video cameras, surveillance cameras, in-vehicle cameras, and videophone cameras. Built-in or external to personal computers, portable digital devices (for example, small information device terminals such as mobile phones, smartphones, tablet terminals, and mobile computers), peripheral devices (scanners, printers, etc.), and other digital devices. The one with a camera function is included. As can be seen from these examples, it is possible not only to configure a camera by using an imaging optical device, but also to add a camera function by mounting the imaging optical device on various devices. For example, a digital device with an image input function such as a smartphone can be configured.
 図4に、画像入力機能付きデジタル機器の一例として、デジタル機器DUの概略構成例を模式的断面で示す。図4に示すデジタル機器DUに搭載されている撮像光学装置LUは、物体(すなわち被写体)側から順に、物体の光学像(像面)IMを形成する撮像レンズLN(AX:光軸)と、赤外カットフィルターFRと、撮像レンズLNにより光電変換部である受光面(撮像面)SS上に形成された光学像IMを電気的な信号に変換する撮像素子SRと、を備えている。この撮像光学装置LUで画像入力機能付きデジタル機器DUを構成する場合、通常そのボディ内部に撮像光学装置LUを配置することになるが、カメラ機能を実現する際には必要に応じた形態を採用することが可能である。例えば、ユニット化した撮像光学装置LUをデジタル機器DUの本体に対して着脱可能又は回動可能に構成することが可能である。 FIG. 4 is a schematic cross-sectional view showing a schematic configuration example of a digital device DU as an example of a digital device with an image input function. The imaging optical device LU mounted on the digital device DU shown in FIG. 4 includes an imaging lens LN (AX: optical axis) that forms an optical image (image plane) IM of the object in order from the object (that is, subject) side, An infrared cut filter FR and an imaging element SR that converts an optical image IM formed on a light receiving surface (imaging surface) SS, which is a photoelectric conversion unit, by an imaging lens LN into an electrical signal are provided. When a digital device DU with an image input function is constituted by this imaging optical device LU, the imaging optical device LU is usually arranged inside the body, but when necessary to realize the camera function, a form as necessary is adopted. Is possible. For example, the unitized imaging optical device LU can be configured to be detachable or rotatable with respect to the main body of the digital device DU.
 デジタル機器DUは、撮像光学装置LUの他に、信号処理部1,制御部2,メモリー3,操作部4,表示部5等を備えている。撮像素子SRで生成した信号は、信号処理部1で所定のデジタル画像処理や画像圧縮処理等が必要に応じて施され、デジタル映像信号としてメモリー3(半導体メモリー,光ディスク等)に記録されたり、場合によってはケーブルを介したり赤外線信号等に変換されたりして他の機器に伝送される(例えば携帯電話の通信機能)。制御部2はマイクロコンピュータからなっており、撮影機能(静止画撮影機能,動画撮影機能等),画像再生機能等の機能の制御;フォーカシングのためのレンズ移動機構の制御等を集中的に行う。例えば、被写体の静止画撮影,動画撮影のうちの少なくとも一方を行うように、制御部2により撮像光学装置LUに対する制御が行われる。表示部5は液晶モニター等のディスプレイを含む部分であり、撮像素子SRによって変換された画像信号あるいはメモリー3に記録されている画像情報を用いて画像表示を行う。操作部4は、操作ボタン(例えばレリーズボタン),操作ダイヤル(例えば撮影モードダイヤル)等の操作部材を含む部分であり、操作者が操作入力した情報を制御部2に伝達する。 The digital device DU includes a signal processing unit 1, a control unit 2, a memory 3, an operation unit 4, a display unit 5 and the like in addition to the imaging optical device LU. The signal generated by the image sensor SR is subjected to predetermined digital image processing, image compression processing, and the like in the signal processing unit 1 as necessary, and recorded as a digital video signal in the memory 3 (semiconductor memory, optical disc, etc.) In some cases, it is transmitted to other devices via a cable or converted into an infrared signal or the like (for example, a communication function of a mobile phone). The control unit 2 is composed of a microcomputer, and controls functions such as a shooting function (still image shooting function, moving image shooting function, etc.), an image reproduction function, etc .; a lens moving mechanism for focusing, etc. For example, the control unit 2 controls the imaging optical device LU so as to perform at least one of still image shooting and moving image shooting of a subject. The display unit 5 includes a display such as a liquid crystal monitor, and performs image display using an image signal converted by the image sensor SR or image information recorded in the memory 3. The operation unit 4 is a part including operation members such as an operation button (for example, a release button) and an operation dial (for example, a shooting mode dial), and transmits information input by the operator to the control unit 2.
 赤外カットフィルターFRは、基板SU両面の誘電体多層膜MA,MBがいずれも可視域の光を透過させ赤外域の光を反射させる光学特性を有するものである。例えば、波長450~600nmの光を透過させ、波長700nm以上の光を反射させる赤外カットフィルターを作製する場合、誘電体多層膜MA,MBを構成するTiO2とSiO2を、光学的な膜厚が赤外域(例えば、波長900nm)の1/4波長に相当する膜厚を交互に積層する。そして、波長450nm~600nmの光を効率良く透過させるため、各層の膜厚を少しずつ1/4波長からずらし、干渉の効果を抑えるように設定する。赤外カットフィルターFRの成膜方法としては、真空蒸着、イオンアシスト成膜、イオンプレーティング成膜、スパッタ成膜(反応性スパッタ成膜等)、イオンビームスパッタ成膜等が挙げられる。基板SU両面の誘電体多層膜MA,MBは、いずれもこれらの成膜方法で形成されたものであることが望ましい。 The infrared cut filter FR has optical characteristics in which the dielectric multilayer films MA and MB on both surfaces of the substrate SU both transmit visible light and reflect infrared light. For example, when producing an infrared cut filter that transmits light having a wavelength of 450 to 600 nm and reflects light having a wavelength of 700 nm or more, TiO 2 and SiO 2 constituting the dielectric multilayer films MA and MB are made of optical films. Film thicknesses corresponding to a quarter wavelength in the infrared region (for example, wavelength 900 nm) are alternately laminated. Then, in order to efficiently transmit light having a wavelength of 450 nm to 600 nm, the thickness of each layer is gradually shifted from the quarter wavelength to set the effect of interference. Examples of the film formation method of the infrared cut filter FR include vacuum deposition, ion assist film formation, ion plating film formation, sputter film formation (reactive sputter film formation, etc.), ion beam sputter film formation, and the like. The dielectric multilayer films MA and MB on both sides of the substrate SU are preferably formed by these film forming methods.
 基板SUはガラスからなることが好ましい。プラスチック基板は、誘電体多層膜の形成に不向きである。したがって、赤外カットフィルターFRとしてある程度の強度を有し、かつ、剥がれの生じない信頼性のある透明基板としては、プラスチック基板よりもガラス基板が好ましい。 The substrate SU is preferably made of glass. The plastic substrate is not suitable for forming a dielectric multilayer film. Accordingly, a glass substrate is preferable to a plastic substrate as a reliable transparent substrate that has a certain degree of strength as the infrared cut filter FR and does not peel off.
 基板SUの両面の誘電体多層膜MA,MBがいずれも少なくとも2つの蒸着材料からなり、そのうちの少なくとも1つがSiO2又はSiO2を含む混合物からなることが好ましい。また、基板SUの両面の誘電体多層膜MA,MBがいずれも少なくとも2つの蒸着材料からなり、そのうちの少なくとも1つがTiO2、Nb25、Ta25、ZrO2又はそのいずれかを含む混合物からなることが好ましい。SiO2等の低屈折率材料やTiO2等の高屈折率材料は、圧縮応力を持たせる上で好ましい材料であり、製造が容易であり、性能に要求される屈折率に関しても好ましい材料である。 The dielectric multilayer films MA and MB on both surfaces of the substrate SU are preferably made of at least two vapor deposition materials, and at least one of them is made of SiO 2 or a mixture containing SiO 2 . The dielectric multilayer films MA and MB on both surfaces of the substrate SU are both made of at least two vapor deposition materials, and at least one of them is made of TiO 2 , Nb 2 O 5 , Ta 2 O 5 , ZrO 2 or any one of them. It is preferable to consist of a mixture containing. A low-refractive index material such as SiO 2 and a high-refractive index material such as TiO 2 are preferable materials for imparting compressive stress, are easy to manufacture, and are preferable materials for the refractive index required for performance. .
 以下、本発明に係る赤外カットフィルターの構成等を、比較例1~3及び実施例1~4のコンストラクションデータ等を挙げて更に具体的に説明する。コンストラクションデータでは、誘電体多層膜MA,MBの各層の成膜材料及び膜厚(nm)、並びに基板SU及び成膜材料の屈折率n(波長540nm)を示す。比較例1~3及び実施例1,2では、誘電体多層膜MA,MBがいずれも、Nb25からなる高屈折率層と、SiO2からなる低屈折率層と、の交互層(Nb2O5/SiO2)で構成されており、実施例3,4では、誘電体多層膜MA,MBがいずれも、TiO2からなる高屈折率層と、SiO2からなる低屈折率層と、の交互層(TiO2/SiO2)で構成されている。 Hereinafter, the configuration and the like of the infrared cut filter according to the present invention will be described more specifically with reference to the construction data of Comparative Examples 1 to 3 and Examples 1 to 4. The construction data indicates the film forming material and film thickness (nm) of each layer of the dielectric multilayer films MA and MB, and the refractive index n (wavelength 540 nm) of the substrate SU and film forming material. In Comparative Examples 1 to 3 and Examples 1 and 2, the dielectric multilayer films MA and MB are both alternating layers of a high refractive index layer made of Nb 2 O 5 and a low refractive index layer made of SiO 2 ( In Examples 3 and 4, the dielectric multilayer films MA and MB are alternately composed of a high refractive index layer made of TiO 2 and a low refractive index layer made of SiO 2. It is composed of layers (TiO2 / SiO2).
 表1に、比較例1~3及び実施例1~4の特性値,条件式対応値等を示し、表2に、以下の画像評価方法を用いて得られた評価結果を示す。また、図5~18のグラフに、比較例1~3及び実施例1~4の分光特性を示す。図5,図7,…,図15,図17はフィルター全体の分光透過率(入射角度θ=0°,30°)を示しており、図6,図8,…,図16,図18は各フィルター面(A面,B面)の分光透過率(入射角度θ=0°,30°)を示している。 Table 1 shows the characteristic values and values corresponding to the conditional expressions of Comparative Examples 1 to 3 and Examples 1 to 4, and Table 2 shows the evaluation results obtained by using the following image evaluation method. Also, the graphs of FIGS. 5 to 18 show the spectral characteristics of Comparative Examples 1 to 3 and Examples 1 to 4. 5, FIG. 7, FIG. 15 and FIG. 17 show the spectral transmittance (incident angle θ = 0 °, 30 °) of the entire filter, and FIG. 6, FIG. The spectral transmittance (incident angle θ = 0 °, 30 °) of each filter surface (A surface, B surface) is shown.
 [画像評価方法] 図4に示すように、撮像レンズLN(正負正正負の5枚構成)と撮像素子SRとの間に、A面側が撮像素子SRと対向するように赤外カットフィルターFRを配置し、写真を撮ってその画像を評価した。ゴースト評価(波長:425~620nm)では、光源を光軸AXに対して5度ピッチで短辺,長辺,対角に位置するように配置し、撮った画像からゴーストの出方を評価した。色シェーディング評価(波長:580~700nm)では、光源として全面が白いものを撮影し、周辺部と中心部の色目の違いを評価した。赤かぶり評価(波長:700~1200nm)では、光源で照明された黒い物体を撮影し、撮影された画像と物体の色目の違いを評価した。光源としては、DAYLIGHT(北窓光),Cool White(冷白色蛍光灯),HORIZON(日没光),INCA(ショーケース光)を用いた。 [Image Evaluation Method] As shown in FIG. 4, an infrared cut filter FR is provided between the imaging lens LN (5 positive / negative / positive / negative elements) and the imaging element SR so that the A-side faces the imaging element SR. Placed and took pictures to evaluate the images. In the ghost evaluation (wavelength: 425 to 620 nm), the light source was arranged at a short side, a long side, and a diagonal at a pitch of 5 degrees with respect to the optical axis AX, and the appearance of the ghost was evaluated from the captured image. . In color shading evaluation (wavelength: 580 to 700 nm), a white light source was photographed as a light source, and the difference in color between the peripheral part and the central part was evaluated. In the red fog evaluation (wavelength: 700 to 1200 nm), a black object illuminated with a light source was photographed, and the difference in color between the photographed image and the object was evaluated. As the light source, DAYLIGHT (north window light), Cool White (cold white fluorescent light), HORIZON (sunset light), INCA (showcase light) were used.
 表1中、
*1:波長425~620nmにおける入射角度0度での平均透過率(%)、
*2:波長425~620nmにおける入射角度30度での平均透過率(%)、
*3:波長600~620nmにおける入射角度0度での平均透過率(%)、
*4:波長700~1100nmにおける平均透過率(%)、
*5:波長700~1100nmにおける最大透過率(%)、
*6:波長1100~1200nmにおける平均透過率(%)、
*7:波長1100~1200nmにおける最大透過率(%)、
λA50%(0度):A面において入射角度0度で透過率50%のときの波長(nm)、
λB50%(0度):B面において入射角度0度で透過率50%のときの波長(nm)、
λB50%(30度):B面において入射角度30度で透過率50%のときの波長(nm)、
であり、これらの数値を条件式(1)~(3)の対応値と併せて示す。
In Table 1,
* 1: Average transmittance (%) at an incident angle of 0 degree at a wavelength of 425 to 620 nm.
* 2: Average transmittance (%) at an incident angle of 30 degrees at a wavelength of 425 to 620 nm,
* 3: Average transmittance (%) at an incident angle of 0 degree at a wavelength of 600 to 620 nm,
* 4: Average transmittance (%) at a wavelength of 700 to 1100 nm
* 5: Maximum transmittance (%) at a wavelength of 700 to 1100 nm
* 6: Average transmittance (%) at a wavelength of 1100 to 1200 nm
* 7: Maximum transmittance (%) at a wavelength of 1100 to 1200 nm.
λA 50% (0 degree): wavelength (nm) when the incident angle is 0 degree on the A plane and the transmittance is 50%,
λB50% (0 degree): wavelength (nm) when the incident angle is 0 degree on the B surface and the transmittance is 50%,
λB50% (30 degrees): wavelength (nm) at an incident angle of 30 degrees and a transmittance of 50% on the B surface,
These numerical values are shown together with the corresponding values of the conditional expressions (1) to (3).
 表2に示す評価結果では、
D:許容不可能なレベル、
C:少し問題がある程度の許容可能なレベル、
B:問題無い許容可能なレベル、
A:全く問題無い許容可能なレベル、
とした。
In the evaluation results shown in Table 2,
D: unacceptable level
C: acceptable level with some problems,
B: acceptable level with no problem,
A: Acceptable level without any problem,
It was.
 比較例1
多層膜MA(A面)
         n(540nm)
 基板    1.52
 SiO2    1.47
 Nb2O5   2.39

 層      材料       膜厚(nm)
 1       SiO2        188.38
 2       Nb2O5        15.15
 3       SiO2         32.36
 4       Nb2O5       131.87
 5       SiO2         32.99
 6       Nb2O5        17.68
 7       SiO2        398.71
 8       Nb2O5        22.86
 9       SiO2         34.94
 10      Nb2O5        36.95
 11      SiO2        185.92
 12      Nb2O5        86.08
 13      SiO2         19.58
 14      Nb2O5        24.40
 15      SiO2         44.06
 16      Nb2O5       127.03
 17      SiO2         26.41
 18      Nb2O5       133.05
 19      SiO2         27.31
 20      Nb2O5       132.96
 21      SiO2         29.16
 22      Nb2O5       130.45
 23      SiO2         31.00
 24      Nb2O5       128.35
 25      SiO2         31.06
 26      Nb2O5       128.73
 27      SiO2         33.58
 28      Nb2O5       129.50
 29      SiO2         36.22
 30      Nb2O5       124.47
 31      SiO2         53.14
 32      Nb2O5        24.69
 33      SiO2         13.91
 34      Nb2O5        79.38
 35      SiO2        200.47
 36      Nb2O5        16.43
 37      SiO2        200.03
 38      Nb2O5        95.12
 39      SiO2        131.85
 40      Nb2O5        90.18
 41      SiO2        144.59
 42      Nb2O5        95.05
 43      SiO2        161.79
 44      Nb2O5        84.43
 45      SiO2         37.89
 46      Nb2O5        15.15
 47      SiO2         58.99
 48      Nb2O5        99.29
 49      SiO2        169.89
 50      Nb2O5        33.59
 51      SiO2         29.51
 52      Nb2O5        25.57
 53      SiO2        170.14
 54      Nb2O5        16.41
 55      SiO2         22.54
 56      Nb2O5        65.88
 57      SiO2         18.69
 58      Nb2O5        28.11
 59      SiO2        203.62
 60      Nb2O5       107.66
 61      SiO2        206.28
 62      Nb2O5        26.38
 63      SiO2         27.17
 64      Nb2O5       131.61
 65      SiO2        173.95
 66      Nb2O5        99.66
 67      SiO2        157.76
 68      Nb2O5        97.97
 69      SiO2         83.39
Comparative Example 1
Multilayer MA (A surface)
n (540nm)
Board 1.52
SiO2 1.47
Nb2O5 2.39

Layer Material Film thickness (nm)
1 SiO2 188.38
2 Nb2O5 15.15
3 SiO2 32.36
4 Nb2O5 131.87
5 SiO2 32.99
6 Nb2O5 17.68
7 SiO2 398.71
8 Nb2O5 22.86
9 SiO2 34.94
10 Nb2O5 36.95
11 SiO2 185.92
12 Nb2O5 86.08
13 SiO2 19.58
14 Nb2O5 24.40
15 SiO2 44.06
16 Nb2O5 127.03
17 SiO2 26.41
18 Nb2O5 133.05
19 SiO2 27.31
20 Nb2O5 132.96
21 SiO2 29.16
22 Nb2O5 130.45
23 SiO2 31.00
24 Nb2O5 128.35
25 SiO2 31.06
26 Nb2O5 128.73
27 SiO2 33.58
28 Nb2O5 129.50
29 SiO2 36.22
30 Nb2O5 124.47
31 SiO2 53.14
32 Nb2O5 24.69
33 SiO2 13.91
34 Nb2O5 79.38
35 SiO2 200.47
36 Nb2O5 16.43
37 SiO2 200.03
38 Nb2O5 95.12
39 SiO2 131.85
40 Nb2O5 90.18
41 SiO2 144.59
42 Nb2O5 95.05
43 SiO2 161.79
44 Nb2O5 84.43
45 SiO2 37.89
46 Nb2O5 15.15
47 SiO2 58.99
48 Nb2O5 99.29
49 SiO2 169.89
50 Nb2O5 33.59
51 SiO2 29.51
52 Nb2O5 25.57
53 SiO2 170.14
54 Nb2O5 16.41
55 SiO2 22.54
56 Nb2O5 65.88
57 SiO2 18.69
58 Nb2O5 28.11
59 SiO2 203.62
60 Nb2O5 107.66
61 SiO2 206.28
62 Nb2O5 26.38
63 SiO2 27.17
64 Nb2O5 131.61
65 SiO2 173.95
66 Nb2O5 99.66
67 SiO2 157.76
68 Nb2O5 97.97
69 SiO2 83.39
 比較例1
多層膜MB(B面)
         n(540nm)
 基板    1.52
 SiO2    1.47
 Nb2O5   2.39

 層      材料       膜厚(nm)
 1       Nb2O5        14.63
 2       SiO2         47.88
 3       Nb2O5        23.01
 4       SiO2        191.84
 5       Nb2O5       115.50
 6       SiO2         25.77
 7       Nb2O5       117.17
 8       SiO2         52.53
 9       Nb2O5        14.63
 10      SiO2         35.23
 11      Nb2O5        90.70
 12      SiO2        190.20
 13      Nb2O5        15.61
 14      SiO2        221.29
 15      Nb2O5        14.63
 16      SiO2        217.11
 17      Nb2O5        16.34
 18      SiO2        187.01
 19      Nb2O5        86.72
 20      SiO2         25.86
 21      Nb2O5        16.74
 22      SiO2         49.39
 23      Nb2O5       102.56
 24      SiO2         18.22
 25      Nb2O5        16.13
 26      SiO2         28.51
 27      Nb2O5       106.36
 28      SiO2         19.32
 29      Nb2O5        17.53
 30      SiO2         23.21
 31      Nb2O5       119.66
 32      SiO2         21.56
 33      Nb2O5       132.02
 34      SiO2         19.79
 35      Nb2O5       123.94
 36      SiO2         15.24
 37      Nb2O5        22.64
 38      SiO2         14.63
 39      Nb2O5       120.11
 40      SiO2         18.69
 41      Nb2O5       120.08
 42      SiO2         24.50
 43      Nb2O5        18.25
 44      SiO2         18.36
 45      Nb2O5       115.81
 46      SiO2         22.13
 47      Nb2O5       118.79
 48      SiO2         42.60
 49      Nb2O5        20.05
 50      SiO2         22.85
 51      Nb2O5        86.07
 52      SiO2        156.82
 53      Nb2O5        85.07
 54      SiO2        157.16
 55      Nb2O5       105.44
 56      SiO2        178.10
 57      Nb2O5       109.09
 58      SiO2        176.07
 59      Nb2O5       106.98
 60      SiO2        174.50
 61      Nb2O5        99.23
 62      SiO2        164.22
 63      Nb2O5        95.44
 64      SiO2        167.02
 65      Nb2O5       101.09
 66      SiO2         85.49
Comparative Example 1
Multilayer MB (B side)
n (540nm)
Board 1.52
SiO2 1.47
Nb2O5 2.39

Layer Material Film thickness (nm)
1 Nb2O5 14.63
2 SiO2 47.88
3 Nb2O5 23.01
4 SiO2 191.84
5 Nb2O5 115.50
6 SiO2 25.77
7 Nb2O5 117.17
8 SiO2 52.53
9 Nb2O5 14.63
10 SiO2 35.23
11 Nb2O5 90.70
12 SiO2 190.20
13 Nb2O5 15.61
14 SiO2 221.29
15 Nb2O5 14.63
16 SiO2 217.11
17 Nb2O5 16.34
18 SiO2 187.01
19 Nb2O5 86.72
20 SiO2 25.86
21 Nb2O5 16.74
22 SiO2 49.39
23 Nb2O5 102.56
24 SiO2 18.22
25 Nb2O5 16.13
26 SiO2 28.51
27 Nb2O5 106.36
28 SiO2 19.32
29 Nb2O5 17.53
30 SiO2 23.21
31 Nb2O5 119.66
32 SiO2 21.56
33 Nb2O5 132.02
34 SiO2 19.79
35 Nb2O5 123.94
36 SiO2 15.24
37 Nb2O5 22.64
38 SiO2 14.63
39 Nb2O5 120.11
40 SiO2 18.69
41 Nb2O5 120.08
42 SiO2 24.50
43 Nb2O5 18.25
44 SiO2 18.36
45 Nb2O5 115.81
46 SiO2 22.13
47 Nb2O5 118.79
48 SiO2 42.60
49 Nb2O5 20.05
50 SiO2 22.85
51 Nb2O5 86.07
52 SiO2 156.82
53 Nb2O5 85.07
54 SiO2 157.16
55 Nb2O5 105.44
56 SiO2 178.10
57 Nb2O5 109.09
58 SiO2 176.07
59 Nb2O5 106.98
60 SiO2 174.50
61 Nb2O5 99.23
62 SiO2 164.22
63 Nb2O5 95.44
64 SiO2 167.02
65 Nb2O5 101.09
66 SiO2 85.49
 比較例2
多層膜MA(A面)
         n(540nm)
 基板    1.52
 SiO2    1.47
 Nb2O5   2.38

 層      材料       膜厚(nm)
 1       Nb2O5        14.28
 2       SiO2         35.73
 3       Nb2O5       114.45
 4       SiO2        196.82
 5       Nb2O5        15.55
 6       SiO2        203.33
 7       Nb2O5        35.97
 8       SiO2         28.56
 9       Nb2O5        16.23
 10      SiO2        134.47
 11      Nb2O5       111.08
 12      SiO2         33.69
 13      Nb2O5       125.54
 14      SiO2         29.75
 15      Nb2O5       129.86
 16      SiO2         29.14
 17      Nb2O5       128.16
 18      SiO2         29.69
 19      Nb2O5       127.96
 20      SiO2         29.89
 21      Nb2O5       127.01
 22      SiO2         30.13
 23      Nb2O5       127.97
 24      SiO2         30.59
 25      Nb2O5       127.78
 26      SiO2         30.36
 27      Nb2O5       128.81
 28      SiO2         29.79
 29      Nb2O5       128.57
 30      SiO2         28.59
 31      Nb2O5       129.83
 32      SiO2         27.90
 33      Nb2O5       129.82
 34      SiO2         27.10
 35      Nb2O5       130.60
 36      SiO2         26.84
 37      Nb2O5       128.22
 38      SiO2         27.16
 39      Nb2O5       115.70
 40      SiO2         48.45
 41      Nb2O5        14.41
 42      SiO2         32.98
 43      Nb2O5        91.74
 44      SiO2         41.00
 45      Nb2O5        15.00
 46      SiO2         38.68
 47      Nb2O5        93.99
 48      SiO2         27.72
 49      Nb2O5        17.30
 50      SiO2         34.30
 51      Nb2O5       115.57
 52      SiO2         24.24
 53      Nb2O5       115.71
 54      SiO2         28.56
 55      Nb2O5        16.89
 56      SiO2         28.56
 57      Nb2O5       114.81
 58      SiO2         28.56
 59      Nb2O5       115.01
 60      SiO2         55.50
 61      Nb2O5        14.95
 62      SiO2         28.56
 63      Nb2O5        81.55
 64      SiO2        145.32
 65      Nb2O5        89.25
 66      SiO2        191.09
 67      Nb2O5        23.04
 68      SiO2         37.35
 69      Nb2O5       113.82
 70      SiO2        158.36
 71      Nb2O5        85.25
 72      SiO2         75.02
Comparative Example 2
Multilayer MA (A surface)
n (540nm)
Board 1.52
SiO2 1.47
Nb2O5 2.38

Layer Material Film thickness (nm)
1 Nb2O5 14.28
2 SiO2 35.73
3 Nb2O5 114.45
4 SiO2 196.82
5 Nb2O5 15.55
6 SiO2 203.33
7 Nb2O5 35.97
8 SiO2 28.56
9 Nb2O5 16.23
10 SiO2 134.47
11 Nb2O5 111.08
12 SiO2 33.69
13 Nb2O5 125.54
14 SiO2 29.75
15 Nb2O5 129.86
16 SiO2 29.14
17 Nb2O5 128.16
18 SiO2 29.69
19 Nb2O5 127.96
20 SiO2 29.89
21 Nb2O5 127.01
22 SiO2 30.13
23 Nb2O5 127.97
24 SiO2 30.59
25 Nb2O5 127.78
26 SiO2 30.36
27 Nb2O5 128.81
28 SiO2 29.79
29 Nb2O5 128.57
30 SiO2 28.59
31 Nb2O5 129.83
32 SiO2 27.90
33 Nb2O5 129.82
34 SiO2 27.10
35 Nb2O5 130.60
36 SiO2 26.84
37 Nb2O5 128.22
38 SiO2 27.16
39 Nb2O5 115.70
40 SiO2 48.45
41 Nb2O5 14.41
42 SiO2 32.98
43 Nb2O5 91.74
44 SiO2 41.00
45 Nb2O5 15.00
46 SiO2 38.68
47 Nb2O5 93.99
48 SiO2 27.72
49 Nb2O5 17.30
50 SiO2 34.30
51 Nb2O5 115.57
52 SiO2 24.24
53 Nb2O5 115.71
54 SiO2 28.56
55 Nb2O5 16.89
56 SiO2 28.56
57 Nb2O5 114.81
58 SiO2 28.56
59 Nb2O5 115.01
60 SiO2 55.50
61 Nb2O5 14.95
62 SiO2 28.56
63 Nb2O5 81.55
64 SiO2 145.32
65 Nb2O5 89.25
66 SiO2 191.09
67 Nb2O5 23.04
68 SiO2 37.35
69 Nb2O5 113.82
70 SiO2 158.36
71 Nb2O5 85.25
72 SiO2 75.02
 比較例2
多層膜MB(B面)
         n(540nm)
 基板    1.52
 SiO2    1.47
 Nb2O5   2.38

 層      材料       膜厚(nm)
 1       Nb2O5        15.38
 2       SiO2         30.98
 3       Nb2O5        57.67
 4       SiO2         23.94
 5       Nb2O5        23.79
 6       SiO2         97.67
 7       Nb2O5        17.92
 8       SiO2         30.75
 9       Nb2O5        63.82
 10      SiO2         46.28
 11      Nb2O5        15.38
 12      SiO2         75.48
 13      Nb2O5        42.78
 14      SiO2         25.62
 15      Nb2O5        27.01
 16      SiO2        113.30
 17      Nb2O5        19.51
 18      SiO2         30.75
 19      Nb2O5        39.64
 20      SiO2        163.91
 21      Nb2O5        84.80
 22      SiO2        151.54
 23      Nb2O5        86.74
 24      SiO2         33.52
 25      Nb2O5        15.38
 26      SiO2         45.62
 27      Nb2O5        93.29
 28      SiO2        147.13
 29      Nb2O5        86.07
 30      SiO2        147.27
 31      Nb2O5        94.66
 32      SiO2         56.66
 33      Nb2O5        15.38
 34      SiO2         37.30
 35      Nb2O5        84.03
 36      SiO2         39.12
 37      Nb2O5        15.38
 38      SiO2         57.54
 39      Nb2O5        99.89
 40      SiO2        160.09
 41      Nb2O5        99.61
 42      SiO2        176.00
 43      Nb2O5       108.43
 44      SiO2        182.01
 45      Nb2O5       109.79
 46      SiO2        183.74
 47      Nb2O5       110.39
 48      SiO2        183.10
 49      Nb2O5       110.53
 50      SiO2        183.09
 51      Nb2O5       109.97
 52      SiO2        181.76
 53      Nb2O5       108.76
 54      SiO2        181.05
 55      Nb2O5       105.08
 56      SiO2        170.20
 57      Nb2O5        96.29
 58      SiO2         79.48
Comparative Example 2
Multilayer MB (B side)
n (540nm)
Board 1.52
SiO2 1.47
Nb2O5 2.38

Layer Material Film thickness (nm)
1 Nb2O5 15.38
2 SiO2 30.98
3 Nb2O5 57.67
4 SiO2 23.94
5 Nb2O5 23.79
6 SiO2 97.67
7 Nb2O5 17.92
8 SiO2 30.75
9 Nb2O5 63.82
10 SiO2 46.28
11 Nb2O5 15.38
12 SiO2 75.48
13 Nb2O5 42.78
14 SiO2 25.62
15 Nb2O5 27.01
16 SiO2 113.30
17 Nb2O5 19.51
18 SiO2 30.75
19 Nb2O5 39.64
20 SiO2 163.91
21 Nb2O5 84.80
22 SiO2 151.54
23 Nb2O5 86.74
24 SiO2 33.52
25 Nb2O5 15.38
26 SiO2 45.62
27 Nb2O5 93.29
28 SiO2 147.13
29 Nb2O5 86.07
30 SiO2 147.27
31 Nb2O5 94.66
32 SiO2 56.66
33 Nb2O5 15.38
34 SiO2 37.30
35 Nb2O5 84.03
36 SiO2 39.12
37 Nb2O5 15.38
38 SiO2 57.54
39 Nb2O5 99.89
40 SiO2 160.09
41 Nb2O5 99.61
42 SiO2 176.00
43 Nb2O5 108.43
44 SiO2 182.01
45 Nb2O5 109.79
46 SiO2 183.74
47 Nb2O5 110.39
48 SiO2 183.10
49 Nb2O5 110.53
50 SiO2 183.09
51 Nb2O5 109.97
52 SiO2 181.76
53 Nb2O5 108.76
54 SiO2 181.05
55 Nb2O5 105.08
56 SiO2 170.20
57 Nb2O5 96.29
58 SiO2 79.48
 比較例3
多層膜MA(A面)
         n(540nm)
 基板    1.52
 SiO2    1.47
 Nb2O5   2.38

 層      材料       膜厚(nm)
 1       SiO2         94.81
 2       Nb2O5        10.48
 3       SiO2         33.79
 4       Nb2O5       102.05
 5       SiO2         33.32
 6       Nb2O5        19.56
 7       SiO2         40.71
 8       Nb2O5       110.44
 9       SiO2         35.39
 10      Nb2O5        18.71
 11      SiO2         24.59
 12      Nb2O5        96.29
 13      SiO2        196.65
 14      Nb2O5        16.05
 15      SiO2        223.97
 16      Nb2O5        13.32
 17      SiO2        227.18
 18      Nb2O5        16.59
 19      SiO2        196.77
 20      Nb2O5        79.59
 21      SiO2         19.56
 22      Nb2O5        21.98
 23      SiO2         57.44
 24      Nb2O5       119.21
 25      SiO2         32.06
 26      Nb2O5       126.82
 27      SiO2         33.85
 28      Nb2O5       125.23
 29      SiO2         34.09
 30      Nb2O5       126.07
 31      SiO2         36.59
 32      Nb2O5       124.86
 33      SiO2         34.66
 34      Nb2O5       119.49
 35      SiO2         61.27
 36      Nb2O5        21.29
 37      SiO2         20.28
 38      Nb2O5        77.19
 39      SiO2        183.85
 40      Nb2O5        27.08
 41      SiO2         31.73
 42      Nb2O5        12.97
 43      SiO2        156.54
 44      Nb2O5       115.14
 45      SiO2         34.33
 46      Nb2O5       124.38
 47      SiO2         79.30
 48      Nb2O5        12.14
 49      SiO2         72.94
 50      Nb2O5        22.51
 51      SiO2        201.57
 52      Nb2O5       106.89
 53      SiO2         37.65
 54      Nb2O5        13.77
 55      SiO2         34.15
 56      Nb2O5       104.51
 57      SiO2        202.42
 58      Nb2O5        14.97
 59      SiO2        199.77
 60      Nb2O5       100.80
 61      SiO2         35.73
 62      Nb2O5        14.97
 63      SiO2         43.55
 64      Nb2O5       100.83
 65      SiO2        188.87
 66      Nb2O5        15.30
 67      SiO2        209.98
 68      Nb2O5        20.25
 69      SiO2         35.81
 70      Nb2O5        15.62
 71      SiO2        149.54
 72      Nb2O5        93.93
 73      SiO2        154.42
 74      Nb2O5        27.07
 75      SiO2         17.64
 76      Nb2O5        35.17
 77      SiO2        170.29
 78      Nb2O5        96.88
 79      SiO2         37.25
 80      Nb2O5        16.06
 81      SiO2         45.39
 82      Nb2O5       103.42
 83      SiO2         87.50
Comparative Example 3
Multilayer MA (A surface)
n (540nm)
Board 1.52
SiO2 1.47
Nb2O5 2.38

Layer Material Film thickness (nm)
1 SiO2 94.81
2 Nb2O5 10.48
3 SiO2 33.79
4 Nb2O5 102.05
5 SiO2 33.32
6 Nb2O5 19.56
7 SiO2 40.71
8 Nb2O5 110.44
9 SiO2 35.39
10 Nb2O5 18.71
11 SiO2 24.59
12 Nb2O5 96.29
13 SiO2 196.65
14 Nb2O5 16.05
15 SiO2 223.97
16 Nb2O5 13.32
17 SiO2 227.18
18 Nb2O5 16.59
19 SiO2 196.77
20 Nb2O5 79.59
21 SiO2 19.56
22 Nb2O5 21.98
23 SiO2 57.44
24 Nb2O5 119.21
25 SiO2 32.06
26 Nb2O5 126.82
27 SiO2 33.85
28 Nb2O5 125.23
29 SiO2 34.09
30 Nb2O5 126.07
31 SiO2 36.59
32 Nb2O5 124.86
33 SiO2 34.66
34 Nb2O5 119.49
35 SiO2 61.27
36 Nb2O5 21.29
37 SiO2 20.28
38 Nb2O5 77.19
39 SiO2 183.85
40 Nb2O5 27.08
41 SiO2 31.73
42 Nb2O5 12.97
43 SiO2 156.54
44 Nb2O5 115.14
45 SiO2 34.33
46 Nb2O5 124.38
47 SiO2 79.30
48 Nb2O5 12.14
49 SiO2 72.94
50 Nb2O5 22.51
51 SiO2 201.57
52 Nb2O5 106.89
53 SiO2 37.65
54 Nb2O5 13.77
55 SiO2 34.15
56 Nb2O5 104.51
57 SiO2 202.42
58 Nb2O5 14.97
59 SiO2 199.77
60 Nb2O5 100.80
61 SiO2 35.73
62 Nb2O5 14.97
63 SiO2 43.55
64 Nb2O5 100.83
65 SiO2 188.87
66 Nb2O5 15.30
67 SiO2 209.98
68 Nb2O5 20.25
69 SiO2 35.81
70 Nb2O5 15.62
71 SiO2 149.54
72 Nb2O5 93.93
73 SiO2 154.42
74 Nb2O5 27.07
75 SiO2 17.64
76 Nb2O5 35.17
77 SiO2 170.29
78 Nb2O5 96.88
79 SiO2 37.25
80 Nb2O5 16.06
81 SiO2 45.39
82 Nb2O5 103.42
83 SiO2 87.50
 比較例3
多層膜MB(B面)
         n(540nm)
 基板    1.52
 SiO2    1.47
 Nb2O5   2.38

 層      材料       膜厚(nm)
 1       Nb2O5        10.22
 2       SiO2         35.62
 3       Nb2O5       102.34
 4       SiO2        156.54
 5       Nb2O5        87.14
 6       SiO2        149.29
 7       Nb2O5       106.00
 8       SiO2         20.02
 9       Nb2O5       105.21
 10      SiO2        149.81
 11      Nb2O5        95.01
 12      SiO2         42.76
 13      Nb2O5        19.36
 14      SiO2         34.17
 15      Nb2O5       204.24
 16      SiO2         44.45
 17      Nb2O5        15.13
 18      SiO2         57.31
 19      Nb2O5       116.83
 20      SiO2         21.06
 21      Nb2O5       113.61
 22      SiO2         23.41
 23      Nb2O5        18.19
 24      SiO2         26.17
 25      Nb2O5       105.37
 26      SiO2         62.06
 27      Nb2O5        13.73
 28      SiO2         44.37
 29      Nb2O5       199.88
 30      SiO2         42.86
 31      Nb2O5        14.37
 32      SiO2         56.82
 33      Nb2O5       102.26
 34      SiO2         61.10
 35      Nb2O5        15.10
 36      SiO2         41.53
 37      Nb2O5       210.79
 38      SiO2         41.49
 39      Nb2O5        20.40
 40      SiO2         40.23
 41      Nb2O5       215.61
 42      SiO2         33.15
 43      Nb2O5        21.37
 44      SiO2         40.41
 45      Nb2O5        95.54
 46      SiO2        154.28
 47      Nb2O5       112.66
 48      SiO2         30.66
 49      Nb2O5        31.57
 50      SiO2         45.52
 51      Nb2O5        28.05
 52      SiO2         34.75
 53      Nb2O5       108.26
 54      SiO2        154.08
 55      Nb2O5        88.11
 56      SiO2        155.57
 57      Nb2O5       100.53
 58      SiO2        173.70
 59      Nb2O5       105.39
 60      SiO2        172.65
 61      Nb2O5       107.21
 62      SiO2        172.22
 63      Nb2O5        98.85
 64      SiO2        156.11
 65      Nb2O5       102.42
 66      SiO2         37.82
 67      Nb2O5        24.49
 68      SiO2         27.87
 69      Nb2O5       207.40
 70      SiO2         24.01
 71      Nb2O5        25.02
 72      SiO2         32.87
 73      Nb2O5       102.86
 74      SiO2        152.65
 75      Nb2O5        83.67
 76      SiO2         70.39
Comparative Example 3
Multilayer MB (B side)
n (540nm)
Board 1.52
SiO2 1.47
Nb2O5 2.38

Layer Material Film thickness (nm)
1 Nb2O5 10.22
2 SiO2 35.62
3 Nb2O5 102.34
4 SiO2 156.54
5 Nb2O5 87.14
6 SiO2 149.29
7 Nb2O5 106.00
8 SiO2 20.02
9 Nb2O5 105.21
10 SiO2 149.81
11 Nb2O5 95.01
12 SiO2 42.76
13 Nb2O5 19.36
14 SiO2 34.17
15 Nb2O5 204.24
16 SiO2 44.45
17 Nb2O5 15.13
18 SiO2 57.31
19 Nb2O5 116.83
20 SiO2 21.06
21 Nb2O5 113.61
22 SiO2 23.41
23 Nb2O5 18.19
24 SiO2 26.17
25 Nb2O5 105.37
26 SiO2 62.06
27 Nb2O5 13.73
28 SiO2 44.37
29 Nb2O5 199.88
30 SiO2 42.86
31 Nb2O5 14.37
32 SiO2 56.82
33 Nb2O5 102.26
34 SiO2 61.10
35 Nb2O5 15.10
36 SiO2 41.53
37 Nb2O5 210.79
38 SiO2 41.49
39 Nb2O5 20.40
40 SiO2 40.23
41 Nb2O5 215.61
42 SiO2 33.15
43 Nb2O5 21.37
44 SiO2 40.41
45 Nb2O5 95.54
46 SiO2 154.28
47 Nb2O5 112.66
48 SiO2 30.66
49 Nb2O5 31.57
50 SiO2 45.52
51 Nb2O5 28.05
52 SiO2 34.75
53 Nb2O5 108.26
54 SiO2 154.08
55 Nb2O5 88.11
56 SiO2 155.57
57 Nb2O5 100.53
58 SiO2 173.70
59 Nb2O5 105.39
60 SiO2 172.65
61 Nb2O5 107.21
62 SiO2 172.22
63 Nb2O5 98.85
64 SiO2 156.11
65 Nb2O5 102.42
66 SiO2 37.82
67 Nb2O5 24.49
68 SiO2 27.87
69 Nb2O5 207.40
70 SiO2 24.01
71 Nb2O5 25.02
72 SiO2 32.87
73 Nb2O5 102.86
74 SiO2 152.65
75 Nb2O5 83.67
76 SiO2 70.39
 実施例1
多層膜MA(A面)
         n(540nm)
 基板    1.52
 SiO2    1.47
 Nb2O5   2.38

 層      材料       膜厚(nm)
 1       Nb2O5        16.34
 2       SiO2         28.28
 3       Nb2O5        64.83
 4       SiO2         23.55
 5       Nb2O5        30.30
 6       SiO2         40.40
 7       Nb2O5       112.82
 8       SiO2         45.22
 9       Nb2O5        15.15
 10      SiO2         36.35
 11      Nb2O5        95.45
 12      SiO2        190.09
 13      Nb2O5        16.10
 14      SiO2        218.88
 15      Nb2O5        15.15
 16      SiO2        220.94
 17      Nb2O5        18.97
 18      SiO2        199.93
 19      Nb2O5        54.05
 20      SiO2         29.18
 21      Nb2O5        23.30
 22      SiO2         74.99
 23      Nb2O5       116.94
 24      SiO2         38.72
 25      Nb2O5       124.35
 26      SiO2         36.76
 27      Nb2O5       124.83
 28      SiO2         38.48
 29      Nb2O5       124.23
 30      SiO2         38.39
 31      Nb2O5       123.75
 32      SiO2         40.50
 33      Nb2O5       114.51
 34      SiO2         85.79
 35      Nb2O5        20.64
 36      SiO2         28.61
 37      Nb2O5        53.60
 38      SiO2        176.99
 39      Nb2O5        28.74
 40      SiO2         25.25
 41      Nb2O5        15.15
 42      SiO2        147.35
 43      Nb2O5        89.39
 44      SiO2        143.58
 45      Nb2O5        89.74
 46      SiO2        169.33
 47      Nb2O5        21.40
 48      SiO2         30.30
 49      Nb2O5        15.15
 50      SiO2        165.72
 51      Nb2O5       106.58
 52      SiO2         56.89
 53      Nb2O5        15.15
 54      SiO2         32.19
 55      Nb2O5        91.52
 56      SiO2        180.87
 57      Nb2O5        27.05
 58      SiO2         30.30
 59      Nb2O5        15.15
 60      SiO2        155.48
 61      Nb2O5        95.56
 62      SiO2        149.06
 63      Nb2O5        98.23
 64      SiO2        180.19
 65      Nb2O5       121.78
 66      SiO2         46.19
 67      Nb2O5        16.93
 68      SiO2        229.33
 69      Nb2O5       107.14
 70      SiO2        180.94
 71      Nb2O5       129.41
 72      SiO2         25.25
 73      Nb2O5        28.00
 74      SiO2        184.96
 75      Nb2O5       100.23
 76      SiO2         79.29
Example 1
Multilayer MA (A surface)
n (540nm)
Board 1.52
SiO2 1.47
Nb2O5 2.38

Layer Material Film thickness (nm)
1 Nb2O5 16.34
2 SiO2 28.28
3 Nb2O5 64.83
4 SiO2 23.55
5 Nb2O5 30.30
6 SiO2 40.40
7 Nb2O5 112.82
8 SiO2 45.22
9 Nb2O5 15.15
10 SiO2 36.35
11 Nb2O5 95.45
12 SiO2 190.09
13 Nb2O5 16.10
14 SiO2 218.88
15 Nb2O5 15.15
16 SiO2 220.94
17 Nb2O5 18.97
18 SiO2 199.93
19 Nb2O5 54.05
20 SiO2 29.18
21 Nb2O5 23.30
22 SiO2 74.99
23 Nb2O5 116.94
24 SiO2 38.72
25 Nb2O5 124.35
26 SiO2 36.76
27 Nb2O5 124.83
28 SiO2 38.48
29 Nb2O5 124.23
30 SiO2 38.39
31 Nb2O5 123.75
32 SiO2 40.50
33 Nb2O5 114.51
34 SiO2 85.79
35 Nb2O5 20.64
36 SiO2 28.61
37 Nb2O5 53.60
38 SiO2 176.99
39 Nb2O5 28.74
40 SiO2 25.25
41 Nb2O5 15.15
42 SiO2 147.35
43 Nb2O5 89.39
44 SiO2 143.58
45 Nb2O5 89.74
46 SiO2 169.33
47 Nb2O5 21.40
48 SiO2 30.30
49 Nb2O5 15.15
50 SiO2 165.72
51 Nb2O5 106.58
52 SiO2 56.89
53 Nb2O5 15.15
54 SiO2 32.19
55 Nb2O5 91.52
56 SiO2 180.87
57 Nb2O5 27.05
58 SiO2 30.30
59 Nb2O5 15.15
60 SiO2 155.48
61 Nb2O5 95.56
62 SiO2 149.06
63 Nb2O5 98.23
64 SiO2 180.19
65 Nb2O5 121.78
66 SiO2 46.19
67 Nb2O5 16.93
68 SiO2 229.33
69 Nb2O5 107.14
70 SiO2 180.94
71 Nb2O5 129.41
72 SiO2 25.25
73 Nb2O5 28.00
74 SiO2 184.96
75 Nb2O5 100.23
76 SiO2 79.29
 実施例1
多層膜MB(B面)
         n(540nm)
 基板    1.52
 SiO2    1.47
 Nb2O5   2.38

 層      材料       膜厚(nm)
 1       Nb2O5        14.55
 2       SiO2         47.64
 3       Nb2O5        22.99
 4       SiO2        190.77
 5       Nb2O5       115.18
 6       SiO2         25.31
 7       Nb2O5       116.76
 8       SiO2         51.63
 9       Nb2O5        14.55
 10      SiO2         35.46
 11      Nb2O5        90.76
 12      SiO2        189.51
 13      Nb2O5        15.45
 14      SiO2        220.58
 15      Nb2O5        14.55
 16      SiO2        216.46
 17      Nb2O5        16.15
 18      SiO2        186.22
 19      Nb2O5        87.09
 20      SiO2         27.39
 21      Nb2O5        15.78
 22      SiO2         49.91
 23      Nb2O5       101.61
 24      SiO2         19.36
 25      Nb2O5        16.15
 26      SiO2         28.83
 27      Nb2O5       105.70
 28      SiO2         18.02
 29      Nb2O5        17.32
 30      SiO2         22.62
 31      Nb2O5       119.51
 32      SiO2         21.35
 33      Nb2O5       131.68
 34      SiO2         19.38
 35      Nb2O5       123.47
 36      SiO2         13.98
 37      Nb2O5        22.41
 38      SiO2         14.55
 39      Nb2O5       120.63
 40      SiO2         18.50
 41      Nb2O5       120.55
 42      SiO2         23.56
 43      Nb2O5        18.17
 44      SiO2         16.53
 45      Nb2O5       115.62
 46      SiO2         22.04
 47      Nb2O5       117.29
 48      SiO2         44.84
 49      Nb2O5        18.62
 50      SiO2         25.30
 51      Nb2O5        86.10
 52      SiO2        156.03
 53      Nb2O5        84.32
 54      SiO2        155.86
 55      Nb2O5       105.01
 56      SiO2        177.09
 57      Nb2O5       109.00
 58      SiO2        174.93
 59      Nb2O5       106.74
 60      SiO2        174.34
 61      Nb2O5        98.98
 62      SiO2        163.78
 63      Nb2O5        94.55
 64      SiO2        165.72
 65      Nb2O5       100.46
 66      SiO2         85.17
Example 1
Multilayer MB (B side)
n (540nm)
Board 1.52
SiO2 1.47
Nb2O5 2.38

Layer Material Film thickness (nm)
1 Nb2O5 14.55
2 SiO2 47.64
3 Nb2O5 22.99
4 SiO2 190.77
5 Nb2O5 115.18
6 SiO2 25.31
7 Nb2O5 116.76
8 SiO2 51.63
9 Nb2O5 14.55
10 SiO2 35.46
11 Nb2O5 90.76
12 SiO2 189.51
13 Nb2O5 15.45
14 SiO2 220.58
15 Nb2O5 14.55
16 SiO2 216.46
17 Nb2O5 16.15
18 SiO2 186.22
19 Nb2O5 87.09
20 SiO2 27.39
21 Nb2O5 15.78
22 SiO2 49.91
23 Nb2O5 101.61
24 SiO2 19.36
25 Nb2O5 16.15
26 SiO2 28.83
27 Nb2O5 105.70
28 SiO2 18.02
29 Nb2O5 17.32
30 SiO2 22.62
31 Nb2O5 119.51
32 SiO2 21.35
33 Nb2O5 131.68
34 SiO2 19.38
35 Nb2O5 123.47
36 SiO2 13.98
37 Nb2O5 22.41
38 SiO2 14.55
39 Nb2O5 120.63
40 SiO2 18.50
41 Nb2O5 120.55
42 SiO2 23.56
43 Nb2O5 18.17
44 SiO2 16.53
45 Nb2O5 115.62
46 SiO2 22.04
47 Nb2O5 117.29
48 SiO2 44.84
49 Nb2O5 18.62
50 SiO2 25.30
51 Nb2O5 86.10
52 SiO2 156.03
53 Nb2O5 84.32
54 SiO2 155.86
55 Nb2O5 105.01
56 SiO2 177.09
57 Nb2O5 109.00
58 SiO2 174.93
59 Nb2O5 106.74
60 SiO2 174.34
61 Nb2O5 98.98
62 SiO2 163.78
63 Nb2O5 94.55
64 SiO2 165.72
65 Nb2O5 100.46
66 SiO2 85.17
 実施例2
多層膜MA(A面)
         n(540nm)
 基板    1.52
 SiO2    1.47
 Nb2O5   2.38

 層      材料       膜厚(nm)
 1       Nb2O5        16.34
 2       SiO2         28.28
 3       Nb2O5        64.83
 4       SiO2         23.55
 5       Nb2O5        30.30
 6       SiO2         40.40
 7       Nb2O5       112.82
 8       SiO2         45.22
 9       Nb2O5        15.15
 10      SiO2         36.35
 11      Nb2O5        95.45
 12      SiO2        190.09
 13      Nb2O5        16.10
 14      SiO2        218.88
 15      Nb2O5        15.15
 16      SiO2        220.94
 17      Nb2O5        18.97
 18      SiO2        199.93
 19      Nb2O5        54.05
 20      SiO2         29.18
 21      Nb2O5        23.30
 22      SiO2         74.99
 23      Nb2O5       116.94
 24      SiO2         38.72
 25      Nb2O5       124.35
 26      SiO2         36.76
 27      Nb2O5       124.83
 28      SiO2         38.48
 29      Nb2O5       124.23
 30      SiO2         38.39
 31      Nb2O5       123.75
 32      SiO2         40.50
 33      Nb2O5       114.51
 34      SiO2         85.79
 35      Nb2O5        20.64
 36      SiO2         28.61
 37      Nb2O5        53.60
 38      SiO2        176.99
 39      Nb2O5        28.74
 40      SiO2         25.25
 41      Nb2O5        15.15
 42      SiO2        147.35
 43      Nb2O5        89.39
 44      SiO2        143.58
 45      Nb2O5        89.74
 46      SiO2        169.33
 47      Nb2O5        21.40
 48      SiO2         30.30
 49      Nb2O5        15.15
 50      SiO2        165.72
 51      Nb2O5       106.58
 52      SiO2         56.89
 53      Nb2O5        15.15
 54      SiO2         32.19
 55      Nb2O5        91.52
 56      SiO2        180.87
 57      Nb2O5        27.05
 58      SiO2         30.30
 59      Nb2O5        15.15
 60      SiO2        155.48
 61      Nb2O5        95.56
 62      SiO2        149.06
 63      Nb2O5        98.23
 64      SiO2        180.19
 65      Nb2O5       121.78
 66      SiO2         46.19
 67      Nb2O5        16.93
 68      SiO2        229.33
 69      Nb2O5       107.14
 70      SiO2        180.94
 71      Nb2O5       129.41
 72      SiO2         25.25
 73      Nb2O5        28.00
 74      SiO2        184.96
 75      Nb2O5       100.23
 76      SiO2         79.29
Example 2
Multilayer MA (A surface)
n (540nm)
Board 1.52
SiO2 1.47
Nb2O5 2.38

Layer Material Film thickness (nm)
1 Nb2O5 16.34
2 SiO2 28.28
3 Nb2O5 64.83
4 SiO2 23.55
5 Nb2O5 30.30
6 SiO2 40.40
7 Nb2O5 112.82
8 SiO2 45.22
9 Nb2O5 15.15
10 SiO2 36.35
11 Nb2O5 95.45
12 SiO2 190.09
13 Nb2O5 16.10
14 SiO2 218.88
15 Nb2O5 15.15
16 SiO2 220.94
17 Nb2O5 18.97
18 SiO2 199.93
19 Nb2O5 54.05
20 SiO2 29.18
21 Nb2O5 23.30
22 SiO2 74.99
23 Nb2O5 116.94
24 SiO2 38.72
25 Nb2O5 124.35
26 SiO2 36.76
27 Nb2O5 124.83
28 SiO2 38.48
29 Nb2O5 124.23
30 SiO2 38.39
31 Nb2O5 123.75
32 SiO2 40.50
33 Nb2O5 114.51
34 SiO2 85.79
35 Nb2O5 20.64
36 SiO2 28.61
37 Nb2O5 53.60
38 SiO2 176.99
39 Nb2O5 28.74
40 SiO2 25.25
41 Nb2O5 15.15
42 SiO2 147.35
43 Nb2O5 89.39
44 SiO2 143.58
45 Nb2O5 89.74
46 SiO2 169.33
47 Nb2O5 21.40
48 SiO2 30.30
49 Nb2O5 15.15
50 SiO2 165.72
51 Nb2O5 106.58
52 SiO2 56.89
53 Nb2O5 15.15
54 SiO2 32.19
55 Nb2O5 91.52
56 SiO2 180.87
57 Nb2O5 27.05
58 SiO2 30.30
59 Nb2O5 15.15
60 SiO2 155.48
61 Nb2O5 95.56
62 SiO2 149.06
63 Nb2O5 98.23
64 SiO2 180.19
65 Nb2O5 121.78
66 SiO2 46.19
67 Nb2O5 16.93
68 SiO2 229.33
69 Nb2O5 107.14
70 SiO2 180.94
71 Nb2O5 129.41
72 SiO2 25.25
73 Nb2O5 28.00
74 SiO2 184.96
75 Nb2O5 100.23
76 SiO2 79.29
 実施例2
多層膜MB(B面)
         n(540nm)
 基板    1.52
 SiO2    1.47
 Nb2O5   2.38

 層      材料       膜厚(nm)
 1       Nb2O5        21.03
 2       SiO2         31.00
 3       Nb2O5        34.37
 4       SiO2        180.97
 5       Nb2O5       117.57
 6       SiO2         24.25
 7       Nb2O5       110.40
 8       SiO2         40.51
 9       Nb2O5        14.55
 10      SiO2         43.14
 11      Nb2O5        98.21
 12      SiO2         24.25
 13      Nb2O5        20.35
 14      SiO2         33.41
 15      Nb2O5       121.78
 16      SiO2         24.73
 17      Nb2O5       115.21
 18      SiO2         24.25
 19      Nb2O5        17.27
 20      SiO2         29.59
 21      Nb2O5       122.35
 22      SiO2         24.25
 23      Nb2O5       133.06
 24      SiO2         24.25
 25      Nb2O5       134.08
 26      SiO2         24.25
 27      Nb2O5       134.90
 28      SiO2         24.25
 29      Nb2O5       133.68
 30      SiO2         24.25
 31      Nb2O5       132.29
 32      SiO2         26.35
 33      Nb2O5       133.27
 34      SiO2         24.25
 35      Nb2O5       132.92
 36      SiO2         24.25
 37      Nb2O5       133.38
 38      SiO2         24.25
 39      Nb2O5       134.92
 40      SiO2         24.25
 41      Nb2O5       133.53
 42      SiO2         24.25
 43      Nb2O5       133.31
 44      SiO2         26.21
 45      Nb2O5       128.44
 46      SiO2         33.18
 47      Nb2O5       110.75
 48      SiO2        147.03
 49      Nb2O5        87.24
 50      SiO2        176.66
 51      Nb2O5       114.02
 52      SiO2         24.25
 53      Nb2O5        14.55
 54      SiO2        175.10
 55      Nb2O5        26.12
 56      SiO2         27.24
 57      Nb2O5        34.05
 58      SiO2        168.35
 59      Nb2O5        92.33
 60      SiO2        164.19
 61      Nb2O5       108.87
 62      SiO2        179.05
 63      Nb2O5        97.45
 64      SiO2        150.95
 65      Nb2O5        88.14
 66      SiO2         72.29
Example 2
Multilayer MB (B side)
n (540nm)
Board 1.52
SiO2 1.47
Nb2O5 2.38

Layer Material Film thickness (nm)
1 Nb2O5 21.03
2 SiO2 31.00
3 Nb2O5 34.37
4 SiO2 180.97
5 Nb2O5 117.57
6 SiO2 24.25
7 Nb2O5 110.40
8 SiO2 40.51
9 Nb2O5 14.55
10 SiO2 43.14
11 Nb2O5 98.21
12 SiO2 24.25
13 Nb2O5 20.35
14 SiO2 33.41
15 Nb2O5 121.78
16 SiO2 24.73
17 Nb2O5 115.21
18 SiO2 24.25
19 Nb2O5 17.27
20 SiO2 29.59
21 Nb2O5 122.35
22 SiO2 24.25
23 Nb2O5 133.06
24 SiO2 24.25
25 Nb2O5 134.08
26 SiO2 24.25
27 Nb2O5 134.90
28 SiO2 24.25
29 Nb2O5 133.68
30 SiO2 24.25
31 Nb2O5 132.29
32 SiO2 26.35
33 Nb2O5 133.27
34 SiO2 24.25
35 Nb2O5 132.92
36 SiO2 24.25
37 Nb2O5 133.38
38 SiO2 24.25
39 Nb2O5 134.92
40 SiO2 24.25
41 Nb2O5 133.53
42 SiO2 24.25
43 Nb2O5 133.31
44 SiO2 26.21
45 Nb2O5 128.44
46 SiO2 33.18
47 Nb2O5 110.75
48 SiO2 147.03
49 Nb2O5 87.24
50 SiO2 176.66
51 Nb2O5 114.02
52 SiO2 24.25
53 Nb2O5 14.55
54 SiO2 175.10
55 Nb2O5 26.12
56 SiO2 27.24
57 Nb2O5 34.05
58 SiO2 168.35
59 Nb2O5 92.33
60 SiO2 164.19
61 Nb2O5 108.87
62 SiO2 179.05
63 Nb2O5 97.45
64 SiO2 150.95
65 Nb2O5 88.14
66 SiO2 72.29
 実施例3
多層膜MA(A面)
         n(540nm)
 基板    1.52
 SiO2    1.47
 TiO2    2.39

 層      材料       膜厚(nm)
 1       TiO2          9.16
 2       SiO2         29.43
 3       TiO2         95.11
 4       SiO2        159.35
 5       TiO2         85.78
 6       SiO2         20.25
 7       TiO2         20.88
 8       SiO2         39.90
 9       TiO2        108.96
 10      SiO2        195.34
 11      TiO2         11.36
 12      SiO2        678.69
 13      TiO2         11.21
 14      SiO2        192.42
 15      TiO2         99.02
 16      SiO2         37.50
 17      TiO2         14.79
 18      SiO2         42.40
 19      TiO2        115.31
 20      SiO2         24.63
 21      TiO2        128.14
 22      SiO2         24.24
 23      TiO2        128.40
 24      SiO2         25.26
 25      TiO2        129.56
 26      SiO2         27.05
 27      TiO2        125.56
 28      SiO2         31.34
 29      TiO2        113.94
 30      SiO2         80.27
 31      TiO2         12.39
 32      SiO2         31.73
 33      TiO2         77.37
 34      SiO2        185.56
 35      TiO2         23.60
 36      SiO2        185.81
 37      TiO2         64.17
 38      SiO2         19.91
 39      TiO2         13.83
 40      SiO2        117.13
 41      TiO2         96.53
 42      SiO2        139.71
 43      TiO2         13.27
 44      SiO2         37.62
 45      TiO2         30.27
 46      SiO2        188.60
 47      TiO2        103.49
 48      SiO2         29.02
 49      TiO2         18.48
 50      SiO2         38.05
 51      TiO2        108.82
 52      SiO2        197.19
 53      TiO2         19.31
 54      SiO2        194.83
 55      TiO2         86.27
 56      SiO2         23.28
 57      TiO2         18.11
 58      SiO2         53.39
 59      TiO2        110.09
 60      SiO2         60.43
 61      TiO2         20.65
 62      SiO2         24.11
 63      TiO2         70.07
 64      SiO2        159.63
 65      TiO2         82.41
 66      SiO2         48.23
 67      TiO2         11.26
 68      SiO2         63.43
 69      TiO2         81.18
 70      SiO2         20.53
 71      TiO2         21.66
 72      SiO2         50.41
 73      TiO2        107.83
 74      SiO2        208.64
 75      TiO2         18.66
 76      SiO2         42.12
 77      TiO2        112.95
 78      SiO2        165.54
 79      TiO2         89.71
 80      SiO2         77.84
Example 3
Multilayer MA (A surface)
n (540nm)
Board 1.52
SiO2 1.47
TiO2 2.39

Layer Material Film thickness (nm)
1 TiO2 9.16
2 SiO2 29.43
3 TiO2 95.11
4 SiO2 159.35
5 TiO2 85.78
6 SiO2 20.25
7 TiO2 20.88
8 SiO2 39.90
9 TiO2 108.96
10 SiO2 195.34
11 TiO2 11.36
12 SiO2 678.69
13 TiO2 11.21
14 SiO2 192.42
15 TiO2 99.02
16 SiO2 37.50
17 TiO2 14.79
18 SiO2 42.40
19 TiO2 115.31
20 SiO2 24.63
21 TiO2 128.14
22 SiO2 24.24
23 TiO2 128.40
24 SiO2 25.26
25 TiO2 129.56
26 SiO2 27.05
27 TiO2 125.56
28 SiO2 31.34
29 TiO2 113.94
30 SiO2 80.27
31 TiO2 12.39
32 SiO2 31.73
33 TiO2 77.37
34 SiO2 185.56
35 TiO2 23.60
36 SiO2 185.81
37 TiO2 64.17
38 SiO2 19.91
39 TiO2 13.83
40 SiO2 117.13
41 TiO2 96.53
42 SiO2 139.71
43 TiO2 13.27
44 SiO2 37.62
45 TiO2 30.27
46 SiO2 188.60
47 TiO2 103.49
48 SiO2 29.02
49 TiO2 18.48
50 SiO2 38.05
51 TiO2 108.82
52 SiO2 197.19
53 TiO2 19.31
54 SiO2 194.83
55 TiO2 86.27
56 SiO2 23.28
57 TiO2 18.11
58 SiO2 53.39
59 TiO2 110.09
60 SiO2 60.43
61 TiO2 20.65
62 SiO2 24.11
63 TiO2 70.07
64 SiO2 159.63
65 TiO2 82.41
66 SiO2 48.23
67 TiO2 11.26
68 SiO2 63.43
69 TiO2 81.18
70 SiO2 20.53
71 TiO2 21.66
72 SiO2 50.41
73 TiO2 107.83
74 SiO2 208.64
75 TiO2 18.66
76 SiO2 42.12
77 TiO2 112.95
78 SiO2 165.54
79 TiO2 89.71
80 SiO2 77.84
 実施例3
多層膜MB(B面)
         n(540nm)
 基板    1.52
 SiO2    1.47
 TiO2    2.39

 層      材料       膜厚(nm)
 1       TiO2         10.05
 2       SiO2         34.19
 3       TiO2         97.80
 4       SiO2        153.99
 5       TiO2         86.57
 6       SiO2        151.02
 7       TiO2        105.53
 8       SiO2         19.19
 9       TiO2        113.00
 10      SiO2         56.42
 11      TiO2         12.87
 12      SiO2         51.09
 13      TiO2        100.27
 14      SiO2         17.08
 15      TiO2         26.39
 16      SiO2         32.21
 17      TiO2         32.55
 18      SiO2         47.26
 19      TiO2         22.20
 20      SiO2         48.91
 21      TiO2        108.20
 22      SiO2         70.03
 23      TiO2         11.45
 24      SiO2         47.32
 25      TiO2        200.40
 26      SiO2         41.57
 27      TiO2         14.77
 28      SiO2         60.07
 29      TiO2        105.16
 30      SiO2         58.44
 31      TiO2         15.70
 32      SiO2         43.57
 33      TiO2        196.62
 34      SiO2        161.54
 35      TiO2         85.75
 36      SiO2         18.19
 37      TiO2         21.35
 38      SiO2         54.77
 39      TiO2         25.45
 40      SiO2         45.46
 41      TiO2         31.68
 42      SiO2         36.17
 43      TiO2        116.54
 44      SiO2         54.43
 45      TiO2         17.42
 46      SiO2         42.47
 47      TiO2        203.30
 48      SiO2         48.00
 49      TiO2         12.03
 50      SiO2         68.49
 51      TiO2        104.90
 52      SiO2         52.83
 53      TiO2         18.34
 54      SiO2         37.92
 55      TiO2        202.90
 56      SiO2         38.40
 57      TiO2         19.27
 58      SiO2         48.13
 59      TiO2         96.33
 60      SiO2        155.44
 61      TiO2         92.57
 62      SiO2        173.19
 63      TiO2        103.66
 64      SiO2        173.53
 65      TiO2        103.50
 66      SiO2        174.04
 67      TiO2        102.01
 68      SiO2        164.17
 69      TiO2         90.66
 70      SiO2        161.13
 71      TiO2        113.04
 72      SiO2         31.81
 73      TiO2         29.18
 74      SiO2         51.13
 75      TiO2         26.04
 76      SiO2         36.69
 77      TiO2        109.39
 78      SiO2        155.58
 79      TiO2         85.88
 80      SiO2        150.37
 81      TiO2         83.25
 82      SiO2         72.86
Example 3
Multilayer MB (B side)
n (540nm)
Board 1.52
SiO2 1.47
TiO2 2.39

Layer Material Film thickness (nm)
1 TiO2 10.05
2 SiO2 34.19
3 TiO2 97.80
4 SiO2 153.99
5 TiO2 86.57
6 SiO2 151.02
7 TiO2 105.53
8 SiO2 19.19
9 TiO2 113.00
10 SiO2 56.42
11 TiO2 12.87
12 SiO2 51.09
13 TiO2 100.27
14 SiO2 17.08
15 TiO2 26.39
16 SiO2 32.21
17 TiO2 32.55
18 SiO2 47.26
19 TiO2 22.20
20 SiO2 48.91
21 TiO2 108.20
22 SiO2 70.03
23 TiO2 11.45
24 SiO2 47.32
25 TiO2 200.40
26 SiO2 41.57
27 TiO2 14.77
28 SiO2 60.07
29 TiO2 105.16
30 SiO2 58.44
31 TiO2 15.70
32 SiO2 43.57
33 TiO2 196.62
34 SiO2 161.54
35 TiO2 85.75
36 SiO2 18.19
37 TiO2 21.35
38 SiO2 54.77
39 TiO2 25.45
40 SiO2 45.46
41 TiO2 31.68
42 SiO2 36.17
43 TiO2 116.54
44 SiO2 54.43
45 TiO2 17.42
46 SiO2 42.47
47 TiO2 203.30
48 SiO2 48.00
49 TiO2 12.03
50 SiO2 68.49
51 TiO2 104.90
52 SiO2 52.83
53 TiO2 18.34
54 SiO2 37.92
55 TiO2 202.90
56 SiO2 38.40
57 TiO2 19.27
58 SiO2 48.13
59 TiO2 96.33
60 SiO2 155.44
61 TiO2 92.57
62 SiO2 173.19
63 TiO2 103.66
64 SiO2 173.53
65 TiO2 103.50
66 SiO2 174.04
67 TiO2 102.01
68 SiO2 164.17
69 TiO2 90.66
70 SiO2 161.13
71 TiO2 113.04
72 SiO2 31.81
73 TiO2 29.18
74 SiO2 51.13
75 TiO2 26.04
76 SiO2 36.69
77 TiO2 109.39
78 SiO2 155.58
79 TiO2 85.88
80 SiO2 150.37
81 TiO2 83.25
82 SiO2 72.86
 実施例4
多層膜MA(A面)
         n(540nm)
 基板    1.52
 SiO2    1.47
 TiO2    2.39

 層      材料       膜厚(nm)
 1       SiO2         54.59
 2       TiO2          9.90
 3       SiO2         35.25
 4       TiO2        107.25
 5       SiO2         35.16
 6       TiO2         21.40
 7       SiO2         23.47
 8       TiO2         91.88
 9       SiO2        189.41
 10      TiO2         19.76
 11      SiO2        214.64
 12      TiO2         20.27
 13      SiO2        192.62
 14      TiO2         72.68
 15      SiO2         19.67
 16      TiO2         26.11
 17      SiO2         50.06
 18      TiO2        121.81
 19      SiO2         27.69
 20      TiO2        128.55
 21      SiO2         24.37
 22      TiO2        129.54
 23      SiO2         23.31
 24      TiO2        129.71
 25      SiO2         22.52
 26      TiO2        130.03
 27      SiO2         21.83
 28      TiO2        130.18
 29      SiO2         20.98
 30      TiO2        130.68
 31      SiO2         21.97
 32      TiO2        130.13
 33      SiO2         25.70
 34      TiO2        121.99
 35      SiO2         56.45
 36      TiO2         23.71
 37      SiO2         24.89
 38      TiO2         69.60
 39      SiO2        189.30
 40      TiO2         23.96
 41      SiO2        211.37
 42      TiO2         22.52
 43      SiO2        212.72
 44      TiO2         23.32
 45      SiO2        201.67
 46      TiO2         42.44
 47      SiO2         29.81
 48      TiO2         22.29
 49      SiO2        288.86
 50      TiO2         15.75
 51      SiO2         20.02
 52      TiO2         75.03
 53      SiO2        168.01
 54      TiO2         69.30
 55      SiO2         17.58
 56      TiO2         20.89
 57      SiO2        236.37
 58      TiO2         11.40
 59      SiO2         31.79
 60      TiO2        100.20
 61      SiO2        176.11
 62      TiO2        113.67
 63      SiO2        186.72
 64      TiO2        113.29
 65      SiO2        187.39
 66      TiO2        114.15
 67      SiO2        182.70
 68      TiO2        124.66
 69      SiO2         37.51
 70      TiO2         17.76
 71      SiO2        158.83
 72      TiO2          9.94
 73      SiO2         32.29
 74      TiO2         82.85
 75      SiO2         24.80
 76      TiO2         19.07
 77      SiO2         74.29
 78      TiO2         21.29
 79      SiO2         16.41
 80      TiO2         78.08
 81      SiO2         86.14
Example 4
Multilayer MA (A surface)
n (540nm)
Board 1.52
SiO2 1.47
TiO2 2.39

Layer Material Film thickness (nm)
1 SiO2 54.59
2 TiO2 9.90
3 SiO2 35.25
4 TiO2 107.25
5 SiO2 35.16
6 TiO2 21.40
7 SiO2 23.47
8 TiO2 91.88
9 SiO2 189.41
10 TiO2 19.76
11 SiO2 214.64
12 TiO2 20.27
13 SiO2 192.62
14 TiO2 72.68
15 SiO2 19.67
16 TiO2 26.11
17 SiO2 50.06
18 TiO2 121.81
19 SiO2 27.69
20 TiO2 128.55
21 SiO2 24.37
22 TiO2 129.54
23 SiO2 23.31
24 TiO2 129.71
25 SiO2 22.52
26 TiO2 130.03
27 SiO2 21.83
28 TiO2 130.18
29 SiO2 20.98
30 TiO2 130.68
31 SiO2 21.97
32 TiO2 130.13
33 SiO2 25.70
34 TiO2 121.99
35 SiO2 56.45
36 TiO2 23.71
37 SiO2 24.89
38 TiO2 69.60
39 SiO2 189.30
40 TiO2 23.96
41 SiO2 211.37
42 TiO2 22.52
43 SiO2 212.72
44 TiO2 23.32
45 SiO2 201.67
46 TiO2 42.44
47 SiO2 29.81
48 TiO2 22.29
49 SiO2 288.86
50 TiO2 15.75
51 SiO2 20.02
52 TiO2 75.03
53 SiO2 168.01
54 TiO2 69.30
55 SiO2 17.58
56 TiO2 20.89
57 SiO2 236.37
58 TiO2 11.40
59 SiO2 31.79
60 TiO2 100.20
61 SiO2 176.11
62 TiO2 113.67
63 SiO2 186.72
64 TiO2 113.29
65 SiO2 187.39
66 TiO2 114.15
67 SiO2 182.70
68 TiO2 124.66
69 SiO2 37.51
70 TiO2 17.76
71 SiO2 158.83
72 TiO2 9.94
73 SiO2 32.29
74 TiO2 82.85
75 SiO2 24.80
76 TiO2 19.07
77 SiO2 74.29
78 TiO2 21.29
79 SiO2 16.41
80 TiO2 78.08
81 SiO2 86.14
 実施例4
多層膜MB(B面)
         n(540nm)
 基板    1.52
 SiO2    1.47
 TiO2    2.39

 層      材料       膜厚(nm)
 1       TiO2         10.15
 2       SiO2         34.31
 3       TiO2        102.29
 4       SiO2        158.00
 5       TiO2         85.29
 6       SiO2        150.91
 7       TiO2         87.84
 8       SiO2         35.67
 9       TiO2         15.31
 10      SiO2         41.05
 11      TiO2         89.48
 12      SiO2        146.05
 13      TiO2         80.84
 14      SiO2        143.54
 15      TiO2         80.59
 16      SiO2        145.35
 17      TiO2         93.20
 18      SiO2         46.82
 19      TiO2         22.36
 20      SiO2         31.17
 21      TiO2         58.41
 22      SiO2         45.47
 23      TiO2         11.33
 24      SiO2         74.10
 25      TiO2         88.06
 26      SiO2        142.90
 27      TiO2         81.55
 28      SiO2        142.88
 29      TiO2         82.87
 30      SiO2        147.03
 31      TiO2         91.50
 32      SiO2        179.06
 33      TiO2         26.19
 34      SiO2         12.57
 35      TiO2         80.35
 36      SiO2         20.26
 37      TiO2         10.15
 38      SiO2        146.29
 39      TiO2         92.57
 40      SiO2        145.43
 41      TiO2         21.58
 42      SiO2         16.24
 43      TiO2         40.24
 44      SiO2        167.77
 45      TiO2        104.56
 46      SiO2         32.72
 47      TiO2         14.04
 48      SiO2         91.76
 49      TiO2         10.15
 50      SiO2         47.83
 51      TiO2        100.80
 52      SiO2        155.22
 53      TiO2         90.33
 54      SiO2        148.68
 55      TiO2         11.92
 56      SiO2         15.22
 57      TiO2        304.64
 58      SiO2         26.97
 59      TiO2         26.25
 60      SiO2         41.89
 61      TiO2        112.25
 62      SiO2         77.59
 63      TiO2         10.15
 64      SiO2         51.91
 65      TiO2        212.68
 66      SiO2         40.31
 67      TiO2         20.94
 68      SiO2         47.55
 69      TiO2        106.09
 70      SiO2         18.40
 71      TiO2         10.15
 72      SiO2        179.85
 73      TiO2         15.07
 74      SiO2         16.31
 75      TiO2         92.24
 76      SiO2        168.29
 77      TiO2         64.07
 78      SiO2         17.50
 79      TiO2         19.39
 80      SiO2        108.52
 81      TiO2         21.10
 82      SiO2         21.61
 83      TiO2         50.42
 84      SiO2         85.10
Example 4
Multilayer MB (B side)
n (540nm)
Board 1.52
SiO2 1.47
TiO2 2.39

Layer Material Film thickness (nm)
1 TiO2 10.15
2 SiO2 34.31
3 TiO2 102.29
4 SiO2 158.00
5 TiO2 85.29
6 SiO2 150.91
7 TiO2 87.84
8 SiO2 35.67
9 TiO2 15.31
10 SiO2 41.05
11 TiO2 89.48
12 SiO2 146.05
13 TiO2 80.84
14 SiO2 143.54
15 TiO2 80.59
16 SiO2 145.35
17 TiO2 93.20
18 SiO2 46.82
19 TiO2 22.36
20 SiO2 31.17
21 TiO2 58.41
22 SiO2 45.47
23 TiO2 11.33
24 SiO2 74.10
25 TiO2 88.06
26 SiO2 142.90
27 TiO2 81.55
28 SiO2 142.88
29 TiO2 82.87
30 SiO2 147.03
31 TiO2 91.50
32 SiO2 179.06
33 TiO2 26.19
34 SiO2 12.57
35 TiO2 80.35
36 SiO2 20.26
37 TiO2 10.15
38 SiO2 146.29
39 TiO2 92.57
40 SiO2 145.43
41 TiO2 21.58
42 SiO2 16.24
43 TiO2 40.24
44 SiO2 167.77
45 TiO2 104.56
46 SiO2 32.72
47 TiO2 14.04
48 SiO2 91.76
49 TiO2 10.15
50 SiO2 47.83
51 TiO2 100.80
52 SiO2 155.22
53 TiO2 90.33
54 SiO2 148.68
55 TiO2 11.92
56 SiO2 15.22
57 TiO2 304.64
58 SiO2 26.97
59 TiO2 26.25
60 SiO2 41.89
61 TiO2 112.25
62 SiO2 77.59
63 TiO2 10.15
64 SiO2 51.91
65 TiO2 212.68
66 SiO2 40.31
67 TiO2 20.94
68 SiO2 47.55
69 TiO2 106.09
70 SiO2 18.40
71 TiO2 10.15
72 SiO2 179.85
73 TiO2 15.07
74 SiO2 16.31
75 TiO2 92.24
76 SiO2 168.29
77 TiO2 64.07
78 SiO2 17.50
79 TiO2 19.39
80 SiO2 108.52
81 TiO2 21.10
82 SiO2 21.61
83 TiO2 50.42
84 SiO2 85.10
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 FR  赤外カットフィルター
 MA,MB  誘電体多層膜
 SU  基板
 DU  デジタル機器
 LU  撮像光学装置(カメラユニット)
 LN  撮像レンズ
 SR  撮像素子
 SS  受光面(撮像面)
 IM  像面(光学像)
 AX  光軸
 1  信号処理部
 2  制御部
 3  メモリー
 4  操作部
 5  表示部
FR Infrared cut filter MA, MB Dielectric multilayer film SU substrate DU Digital equipment LU Imaging optical device (camera unit)
LN Imaging lens SR Imaging element SS Light receiving surface (imaging surface)
IM image plane (optical image)
AX Optical axis 1 Signal processing unit 2 Control unit 3 Memory 4 Operation unit 5 Display unit

Claims (7)

  1.  基板の両面に誘電体多層膜を有する赤外カットフィルターであって、
     波長425~620nmにおける入射角度0度での平均透過率が95%以上であり、
     波長425~620nmにおける入射角度30度での平均透過率が94%以上であり、
     波長600~620nmにおける入射角度0度での平均透過率が91%以上であり、
     波長580~700nmにおいて、以下の条件式(1)及び(2)を満足し、
     波長700~1100nmにおける平均透過率が0.5%以下で最大透過率が1.8%以下であり、
     波長1100~1200nmにおける平均透過率が8%以下で最大透過率12.5%以下である赤外カットフィルター;
    Σ[T=50~90%]|λT(0度)-λT(30度)|<400 …(1)
    Σ[T= 5~50%]|λT(0度)-λT(30度)|<850 …(2)
     ただし、
    Σ[T=a~b%]|λT(0度)-λT(30度)|:透過率Tがa%からb%までの1%毎の波長差|λT(0度)-λT(30度)|の和、
    λT(θ):入射角度θ度で透過率T%のときの波長(nm)、
    である。
    An infrared cut filter having a dielectric multilayer film on both sides of a substrate,
    The average transmittance at an incident angle of 0 degree at a wavelength of 425 to 620 nm is 95% or more,
    The average transmittance at an incident angle of 30 degrees at a wavelength of 425 to 620 nm is 94% or more,
    The average transmittance at an incident angle of 0 degree at a wavelength of 600 to 620 nm is 91% or more,
    The following conditional expressions (1) and (2) are satisfied at a wavelength of 580 to 700 nm,
    The average transmittance at a wavelength of 700 to 1100 nm is 0.5% or less and the maximum transmittance is 1.8% or less,
    An infrared cut filter having an average transmittance of 8% or less at a wavelength of 1100 to 1200 nm and a maximum transmittance of 12.5% or less;
    Σ [T = 50 to 90%] | λT (0 degree) −λT (30 degree) | <400 (1)
    Σ [T = 5 to 50%] | λT (0 degree) −λT (30 degree) | <850 (2)
    However,
    Σ [T = a˜b%] | λT (0 degree) −λT (30 degree) |: Wavelength difference for every 1% from the transmittance T of a% to b% | λT (0 degree) −λT (30 Degree) |
    λT (θ): wavelength (nm) at an incident angle θ degree and transmittance T%,
    It is.
  2.  波長580~700nmにおいて、前記基板両面の誘電体多層膜からなる両フィルター面のうち、入射角度0度で透過率50%のときの波長の短い方の面をA面とし、長い方の面をB面とすると、以下の条件式(3)を満足する請求項1記載の赤外カットフィルター;
    -15≦λA50%(0度)-λB50%(30度)≦10 …(3)
     ただし、
    λA50%(0度):A面において入射角度0度で透過率50%のときの波長(nm)、
    λB50%(30度):B面において入射角度30度で透過率50%のときの波長(nm)、
    である。
    Of the two filter surfaces comprising the dielectric multilayer films on both surfaces of the substrate at a wavelength of 580 to 700 nm, the surface with the shorter wavelength when the incident angle is 0 degree and the transmittance is 50% is the A surface, and the longer surface is The infrared cut filter according to claim 1, which satisfies the following conditional expression (3) as the B surface:
    −15 ≦ λA 50% (0 degree) −λB 50% (30 degree) ≦ 10 (3)
    However,
    λA 50% (0 degree): wavelength (nm) when the incident angle is 0 degree on the A plane and the transmittance is 50%,
    λB50% (30 degrees): wavelength (nm) at an incident angle of 30 degrees and a transmittance of 50% on the B surface,
    It is.
  3.  波長425~620nmにおける入射角度0度での平均透過率が99%以上であり、
     波長425~620nmにおける入射角度30度での平均透過率が97%以上であり、
     波長600~620nmにおける入射角度0度での平均透過率が98.5%以上である請求項1又は2記載の赤外カットフィルター。
    The average transmittance at an incident angle of 0 degree at a wavelength of 425 to 620 nm is 99% or more,
    The average transmittance at an incident angle of 30 degrees at a wavelength of 425 to 620 nm is 97% or more,
    The infrared cut filter according to claim 1 or 2, wherein the average transmittance at an incident angle of 0 degree at a wavelength of 600 to 620 nm is 98.5% or more.
  4.  波長580~700nmにおいて、以下の条件式(1a)を満足する請求項1~3のいずれか1項に記載の赤外カットフィルター;
    Σ[T=50~90%]|λT(0度)-λT(30度)|<215 …(1a)
     ただし、
    Σ[T=a~b%]|λT(0度)-λT(30度)|:透過率Tがa%からb%までの1%毎の波長差|λT(0度)-λT(30度)|の和、
    λT(θ):入射角度θ度で透過率T%のときの波長(nm)、
    である。
    The infrared cut filter according to any one of claims 1 to 3, which satisfies the following conditional expression (1a) at a wavelength of 580 to 700 nm:
    Σ [T = 50 to 90%] | λT (0 degree) −λT (30 degree) | <215 (1a)
    However,
    Σ [T = a˜b%] | λT (0 degree) −λT (30 degree) |: Wavelength difference for every 1% from the transmittance T of a% to b% | λT (0 degree) −λT (30 Degree) |
    λT (θ): wavelength (nm) at an incident angle θ degree and transmittance T%,
    It is.
  5.  波長700~1100nmにおける平均透過率が0.15%以下で最大透過率が1%以下であり、
     波長1100~1200nmにおける平均透過率が4%以下で最大透過率9%以下である請求項1~4のいずれか1項に記載の赤外カットフィルター。
    The average transmittance at a wavelength of 700 to 1100 nm is 0.15% or less and the maximum transmittance is 1% or less,
    The infrared cut filter according to any one of claims 1 to 4, wherein an average transmittance at a wavelength of 1100 to 1200 nm is 4% or less and a maximum transmittance is 9% or less.
  6.  波長700~1100nmにおける平均透過率が0.1%以下で最大透過率が0.7%以下であり、
     波長1100~1200nmにおける平均透過率が1%以下で最大透過率1.5%以下である請求項1~5のいずれか1項に記載の赤外カットフィルター。
    The average transmittance at a wavelength of 700 to 1100 nm is 0.1% or less and the maximum transmittance is 0.7% or less,
    6. The infrared cut filter according to claim 1, wherein an average transmittance at a wavelength of 1100 to 1200 nm is 1% or less and a maximum transmittance is 1.5% or less.
  7.  請求項1~6のいずれか1項に記載の赤外カットフィルターを備えたカメラユニット。 A camera unit comprising the infrared cut filter according to any one of claims 1 to 6.
PCT/JP2015/054725 2014-03-11 2015-02-20 Ir cut filter WO2015137084A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016507422A JP6458797B2 (en) 2014-03-11 2015-02-20 Infrared cut filter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-047856 2014-03-11
JP2014047856 2014-03-11

Publications (1)

Publication Number Publication Date
WO2015137084A1 true WO2015137084A1 (en) 2015-09-17

Family

ID=54071533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/054725 WO2015137084A1 (en) 2014-03-11 2015-02-20 Ir cut filter

Country Status (2)

Country Link
JP (1) JP6458797B2 (en)
WO (1) WO2015137084A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018070325A1 (en) * 2016-10-13 2018-04-19 浜松ホトニクス株式会社 Radiation image reading device
JP2021045578A (en) * 2016-10-13 2021-03-25 浜松ホトニクス株式会社 Radiographic image reading apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007183525A (en) * 2005-12-07 2007-07-19 Murakami Corp Dielectric multilayer film filter
JP2010032867A (en) * 2008-07-30 2010-02-12 Enplas Corp Infrared ray cutoff filter
WO2013042738A1 (en) * 2011-09-21 2013-03-28 旭硝子株式会社 Near-infrared cut-off filter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007183525A (en) * 2005-12-07 2007-07-19 Murakami Corp Dielectric multilayer film filter
JP2010032867A (en) * 2008-07-30 2010-02-12 Enplas Corp Infrared ray cutoff filter
WO2013042738A1 (en) * 2011-09-21 2013-03-28 旭硝子株式会社 Near-infrared cut-off filter

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018070325A1 (en) * 2016-10-13 2018-04-19 浜松ホトニクス株式会社 Radiation image reading device
JP2018061694A (en) * 2016-10-13 2018-04-19 浜松ホトニクス株式会社 Radiation image reading apparatus
JP2021045578A (en) * 2016-10-13 2021-03-25 浜松ホトニクス株式会社 Radiographic image reading apparatus
US11355150B2 (en) 2016-10-13 2022-06-07 Hamamatsu Photonics K.K. Radiation image reading device
JP7328197B2 (en) 2016-10-13 2023-08-16 浜松ホトニクス株式会社 Radiation image reader

Also Published As

Publication number Publication date
JPWO2015137084A1 (en) 2017-04-06
JP6458797B2 (en) 2019-01-30

Similar Documents

Publication Publication Date Title
WO2014084167A1 (en) Near-infrared ray cut filter
JP6034785B2 (en) Optical member
WO2014104370A1 (en) Near-infrared cut-off filter
JP6119747B2 (en) Near-infrared cut filter
US20140347493A1 (en) Image-capturing device and filter
JP6383980B2 (en) Near-infrared cut filter
CN108693584B (en) Optical filter and solid-state imaging device using the same
US20150116576A1 (en) Image capture assembly, digital camera and a mobile device having an improved construction
JP2015227963A (en) Optical filter and manufacturing method therefor
JP6458797B2 (en) Infrared cut filter
US20170005120A1 (en) Image pickup device, image pickup apparatus, and production apparatus and method
TWI752677B (en) IR Cut Filter Structure
JP6174379B2 (en) Visible light transmission filter
JP2010175941A (en) Optical filter and method of manufacturing the same, and image capturing apparatus having the same
WO2014174751A1 (en) Optical device
TWI463194B (en) Infrared cutoff filter structure
JP2015011319A (en) Near-infrared cut filter
JP2007304573A (en) Near ultraviolet ray and infrared ray blocking filter, birefringent plate with near ultraviolet ray and infrared ray blocking filter, optical low pass filter and imaging apparatus
WO2015137183A1 (en) Optical filter and imaging device
US20120212809A1 (en) Infrared Cut Filter
JP2006195373A (en) Visibility correcting near infrared cut filter, and optical low pass filter and visibility correcting element using the same
KR200395227Y1 (en) Camera module with reduced thickness
JP2013102362A (en) Optical device, image processing method and program
JP6467895B2 (en) Optical filter
JP2014174325A (en) Imaging optical system unit, imaging device and digital device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15760790

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016507422

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15760790

Country of ref document: EP

Kind code of ref document: A1