WO2015137064A1 - System for sequential controlled release of functional molecule - Google Patents

System for sequential controlled release of functional molecule Download PDF

Info

Publication number
WO2015137064A1
WO2015137064A1 PCT/JP2015/054423 JP2015054423W WO2015137064A1 WO 2015137064 A1 WO2015137064 A1 WO 2015137064A1 JP 2015054423 W JP2015054423 W JP 2015054423W WO 2015137064 A1 WO2015137064 A1 WO 2015137064A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
compound according
functional molecule
hydrogen atom
Prior art date
Application number
PCT/JP2015/054423
Other languages
French (fr)
Japanese (ja)
Inventor
金井 求
洋平 相馬
佳奈 田辺
Original Assignee
国立大学法人 東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 東京大学 filed Critical 国立大学法人 東京大学
Publication of WO2015137064A1 publication Critical patent/WO2015137064A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes

Definitions

  • the present invention relates to a carrier characterized in that a specific functional molecule can be gradually and gradually released.
  • DDS drug delivery system
  • liposomes for example, Patent Document 1
  • PEG polyethylene glycol
  • PEG polymer micelles
  • emulsions nanoparticles
  • water-soluble polymers gels of hyaluronic acid and cellulose derivatives
  • No technology has been reported so far that allows functional release of different types of functional molecules (drugs, etc.) to be sequentially and gradually released in a programmed release order.
  • an object of the present invention is to provide a novel sustained-release carrier material capable of sequentially releasing functional molecules such as peptides and fluorescent molecules.
  • the present inventors use compounds having a serine-prolyl ester bond and a similar structure thereof (hereinafter collectively referred to as “serine-prolyl ester unit”).
  • Serine-prolyl ester unit compounds having a serine-prolyl ester bond and a similar structure thereof.
  • N-to-O acyl group transfer reaction with amide bond cleavage proceeds (diketopiperazine is formed), and subsequently functions by being hydrolyzed by the generated ester moiety.
  • functional molecules are released, and that different types of functional molecules can be sequentially released by designing the molecules so that such reactions occur continuously (cascade).
  • the present invention has been completed.
  • the compound according to (1) above, wherein the functional molecule is selected from the group consisting of a fluorophore, a peptide, a nucleic acid, a fragrance compound, a taste-providing compound, and a low molecular weight pharmaceutical compound; (3) The compound according to (1) above, wherein the functional molecule is a fluorophore serving as a donor of fluorescence resonance energy transfer (FRET); (4) The compound according to (3) above, further having a quencher serving as an acceptor of fluorescence resonance energy transfer (FRET) in the terminal repeating unit; (5) The compound according to (1) above, wherein in each repeating unit, the functional molecule is a different type of molecule; (6) The compound according to (1) above, wherein B is a structure having an amide group; (7) The compound according to (1) above, wherein R 1 is carbonyl. (8) The compound according to (1) above, wherein R 2 is a hydrogen atom or methyl; (9) The compound according to (1), wherein n is 1,
  • a carrier for sequential and sustained release of functional molecules comprising the compound according to any one of (1) to (10) above; and (12) any one of (1) to (10) above.
  • a drug delivery system comprising the compound is provided.
  • an amide cleavage reaction occurs continuously, and different types of functions such as low molecular drug compounds, peptides, perfume compounds, fluorophores, etc. It becomes possible to sequentially release sex molecules in a desired order. Therefore, it can be expected to be applied to the creation of a novel sequential release type drug delivery system and a film preparation.
  • FIG. 1 shows the reaction mechanism of separation of repeating units and release of functional molecular sites in the compound of the present invention.
  • FIG. 2 is a schematic diagram showing an embodiment of the present invention when the functional molecule is a peptide.
  • FIG. 3 is a schematic diagram showing an embodiment of the present invention when the functional molecule is a fluorescence fluorophoretic energy transfer (FRET) donor fluorophore.
  • FIG. 4 is an HPLC chart and Mass spectrum showing the results of monitoring the reaction of the compound of the present invention (Compound 5) over time.
  • FIG. 5 is a diagram showing the results of the sequential release reaction of the compound of the present invention (compound 4) having a plurality of repeating units.
  • FIG. 6 is a graph showing the change with time of the fluorescence spectrum of the compound of the present invention (compound 5).
  • FIG. 7 is a schematic diagram showing a FRET mechanism by release of a functional molecule in the compound of the present invention (Compound 5).
  • amino acid may be any compound as long as it is a compound having both an amino group and a carboxy group, and includes natural and non-natural compounds. It may be any of neutral amino acids, basic amino acids, or acidic amino acids. In addition to amino acids that themselves function as transmitters such as neurotransmitters, bioactive peptides (in addition to dipeptides, tripeptides, tetrapeptides, An amino acid that is a constituent component of a polypeptide compound such as an oligopeptide or a protein can be used. As the amino acid, an optically active amino acid is preferably used. For example, as the ⁇ -amino acid, either D- or L-amino acid may be used, but it may be preferable to select an optically active amino acid that functions in a living body.
  • the “amino acid residue” means a residue having the same structure as the so-called N-terminal residue, which is the same as the remaining partial structure obtained by removing the hydroxyl group from the carboxy group of the amino acid.
  • A is constituted by linking a plurality of amino acid residues.
  • the C-terminal amino acid residue has a hydroxyl group from the carboxy group of the amino acid as described above.
  • a partial structure in which a hydrogen atom is removed from the amino group is sufficient, and the intermediate and N-terminal amino acid residues can be linked in the same manner as a normal peptide chain.
  • alkyl may be any of an aliphatic hydrocarbon group composed of linear, branched, cyclic, or a combination thereof.
  • the number of carbon atoms of the alkyl group is not particularly limited.
  • the number of carbon atoms is 1 to 20 (C 1-20 )
  • the number of carbons is 3 to 15 (C 3 to 15 )
  • the number of carbons is 5 to 10 (C 5 to 10). ).
  • the number of carbons it means “alkyl” having the number of carbons within the range.
  • C 1-8 alkyl includes methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, neo-pentyl, n-hexyl, isohexyl, n-heptyl, n-octyl and the like are included.
  • the alkyl group may have one or more arbitrary substituents.
  • substituents examples include, but are not limited to, an alkoxy group, a halogen atom, an amino group, a mono- or di-substituted amino group, a substituted silyl group, and acyl.
  • alkyl group has two or more substituents, they may be the same or different.
  • alkyl part of other substituents containing an alkyl part for example, an alkoxy group, an arylalkyl group, etc.
  • substituent group examples include, but are not limited to, an alkyl group, an alkoxy group, a hydroxyl group, a carboxyl group, a halogen atom, a sulfo group, an amino group, an alkoxycarbonyl group, and an oxo group.
  • substituents may further have a substituent. Examples of such include, but are not limited to, a halogenated alkyl group, a dialkylamino group, and the like.
  • alkenyl refers to a linear or branched hydrocarbon group having at least one carbon-carbon double bond.
  • non-limiting examples include vinyl, allyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1,3-butanedienyl, 1-pentenyl, 2-pentenyl, 3-pentenyl 4-pentenyl, 1,3-pentanedienyl, 1-hexenyl, 2-hexenyl, 3-hexenyl, 4-hexenyl, 5-hexenyl and 1,4-hexanedienyl).
  • the double bond may be either cis or trans conformation.
  • alkynyl refers to a linear or branched hydrocarbon group having at least one carbon-carbon triple bond.
  • non-limiting examples include ethynyl, propynyl, 2-butynyl and 3-methylbutynyl.
  • cycloalkyl refers to a monocyclic or polycyclic non-aromatic ring system composed of the above alkyl.
  • the cycloalkyl can be unsubstituted or substituted by one or more substituents, which can be the same or different, and non-limiting examples of monocyclic cycloalkyl include cyclopropyl, cyclopentyl, cyclohexyl
  • Non-limiting examples of polycyclic cycloalkyls include 1-decalinyl, 2-decalinyl, norbornyl, adamantyl and the like.
  • the cycloalkyl may be a heterocycloalkyl containing one or more hetero atoms (for example, an oxygen atom, a nitrogen atom, or a sulfur atom) as ring-constituting atoms.
  • Any —NH in the heterocycloalkyl ring may be protected, for example as a —N (Boc) group, —N (CBz) group and —N (Tos) group, a nitrogen atom in the ring or
  • the sulfur atom may be oxidized to the corresponding N-oxide, S-oxide or S, S-dioxide.
  • non-limiting examples of monocyclic heterocycloalkyl include diazapanyl, piperidinyl, pyrrolidinyl, piperazinyl, morpholinyl, thiomorpholinyl, thiazolidinyl, 1,4-dioxanyl, tetrahydrofuranyl, tetrahydropyranyl, tetrahydrothiophenyl, lactam and Examples include lactones.
  • cycloalkenyl refers to a monocyclic or polycyclic non-aromatic ring system containing at least one carbon-carbon double bond.
  • the cycloalkenyl may be unsubstituted or substituted by one or more substituents, which may be the same or different, and non-limiting examples of monocyclic cycloalkenyl include cyclopentenyl, cyclohexenyl And cyclohepta-1,3-dienyl, and non-limiting examples of polycyclic cycloalkenyl include norbornylenyl and the like.
  • the cycloalkyl may be a heterocycloalkenyl which may be a heterocycloalkenyl containing one or more heteroatoms (for example, an oxygen atom, a nitrogen atom, or a sulfur atom) as a ring-constituting atom. Atoms may be oxidized to the corresponding N-oxide, S-oxide or S, S-dioxide.
  • heteroatoms for example, an oxygen atom, a nitrogen atom, or a sulfur atom
  • aryl may be either a monocyclic or condensed polycyclic aromatic hydrocarbon group, and a hetero atom (for example, an oxygen atom, a nitrogen atom, or a sulfur atom) as a ring constituent atom Etc.) may be an aromatic heterocyclic ring. In this case, it may be referred to as “heteroaryl” or “heteroaromatic”. Whether aryl is a single ring or a fused ring, it can be attached at all possible positions.
  • Non-limiting examples of monocyclic aryl include phenyl group (Ph), thienyl group (2- or 3-thienyl group), pyridyl group, furyl group, thiazolyl group, oxazolyl group, pyrazolyl group, 2-pyrazinyl Group, pyrimidinyl group, pyrrolyl group, imidazolyl group, pyridazinyl group, 3-isothiazolyl group, 3-isoxazolyl group, 1,2,4-oxadiazol-5-yl group or 1,2,4-oxadiazole-3 -Yl group and the like.
  • Non-limiting examples of fused polycyclic aryl include 1-naphthyl group, 2-naphthyl group, 1-indenyl group, 2-indenyl group, 2,3-dihydroinden-1-yl group, 2,3 -Dihydroinden-2-yl group, 2-anthryl group, indazolyl group, quinolyl group, isoquinolyl group, 1,2-dihydroisoquinolyl group, 1,2,3,4-tetrahydroisoquinolyl group, indolyl group, Isoindolyl group, phthalazinyl group, quinoxalinyl group, benzofuranyl group, 2,3-dihydrobenzofuran-1-yl group, 2,3-dihydrobenzofuran-2-yl group, 2,3-dihydrobenzothiophen-1-yl group, 2 , 3-dihydrobenzothiophen-2-yl group, benzothiazolyl group,
  • an aryl group may have one or more arbitrary substituents on the ring.
  • substituents include, but are not limited to, an alkoxy group, a halogen atom, an amino group, a mono- or di-substituted amino group, a substituted silyl group, and acyl.
  • the aryl group has two or more substituents, they may be the same or different. The same applies to the aryl moiety of other substituents containing the aryl moiety (for example, an aryloxy group and an arylalkyl group).
  • arylalkyl represents alkyl substituted with the above aryl.
  • the arylalkyl may have one or more arbitrary substituents.
  • substituents include, but are not limited to, an alkoxy group, a halogen atom, an amino group, a mono- or di-substituted amino group, a substituted silyl group, and an acyl group.
  • the acyl group has two or more substituents, they may be the same or different.
  • Non-limiting examples of arylalkyl include benzyl group, 2-thienylmethyl group, 3-thienylmethyl group, 2-pyridylmethyl group, 3-pyridylmethyl group, 4-pyridylmethyl group, 2-furylmethyl group, 3-furylmethyl group, 2-thiazolylmethyl group, 4-thiazolylmethyl group, 5-thiazolylmethyl group, 2-oxazolylmethyl group, 4-oxazolylmethyl group, 5-oxazolylmethyl group, 1-pyrazolylmethyl group 3-pyrazolylmethyl group, 4-pyrazolylmethyl group, 2-pyrazinylmethyl group, 2-pyrimidinylmethyl group, 4-pyrimidinylmethyl group, 5-pyrimidinylmethyl group, 1-pyrrolylmethyl group, 2-pyrrolylmethyl group, 3-pyrrolylmethyl group 1-imidazolylmethyl group, 2-imidazolylmethyl group, 4-imidazolylmethyl 3-pyridazinylmethyl group, 4-pyridazinylmethyl group
  • arylalkenyl represents alkenyl substituted with aryl.
  • the “alkoxy group” is a structure in which the alkyl group is bonded to an oxygen atom, and examples thereof include a saturated alkoxy group that is linear, branched, cyclic, or a combination thereof.
  • methoxy group, ethoxy group, n-propoxy group, isopropoxy group, cyclopropoxy group, n-butoxy group, isobutoxy group, s-butoxy group, t-butoxy group, cyclobutoxy group, cyclopropylmethoxy group, n- Pentyloxy group, cyclopentyloxy group, cyclopropylethyloxy group, cyclobutylmethyloxy group, n-hexyloxy group, cyclohexyloxy group, cyclopropylpropyloxy group, cyclobutylethyloxy group, cyclopentylmethyloxy group, etc. are preferable Take as an example.
  • the “aryloxy group” is a group to which the aryl group is bonded through an oxygen atom.
  • the aryloxy group include phenoxy group, 2-thienyloxy group, 3-thienyloxy group, 2-pyridyloxy group, 3-pyridyloxy group, 4-pyridyloxy group, 2-furyloxy group, and 3-furyl.
  • alkylamino and arylamino mean an amino group in which a hydrogen atom of —NH 2 group is substituted with 1 or 2 of the above alkyl or aryl.
  • methylamino, dimethylamino, ethylamino, diethylamino, ethylmethylamino, benzylamino and the like can be mentioned.
  • alkylthio and arylthio mean a group in which the hydrogen atom of the —SH group is substituted with the above alkyl or aryl.
  • methylthio, ethylthio, benzylthio and the like can be mentioned.
  • ring structure when formed by a combination of two substituents, means a heterocyclic or carbocyclic group, such group being saturated, unsaturated, or aromatic.
  • it includes cycloalkyl, cycloalkenyl, aryl, and heteroaryl as defined above. Examples include cycloalkyl, phenyl, naphthyl, morpholinyl, piperidinyl, imidazolyl, pyrrolidinyl, pyridyl and the like.
  • a substituent can form a ring structure with another substituent, and when such substituents are bonded to each other, those skilled in the art will recognize a specific substitution, such as bonding to hydrogen.
  • the compound having sequential sustained release property of the present invention has a repeating unit represented by the following formula (I).
  • A is a group having a functional molecule;
  • B is a spacer group;
  • R 1 is a hydrogen atom, a carbonyl, an optionally substituted C 1 -C 5 alkyl, a substituent.
  • R 2 is a hydrogen atom or a C 1 -C 10 alkyl optionally having a substituent; and an optionally substituted alkoxy or an optionally substituted aryl; and
  • n is an integer of 1 or 2.
  • the repeating unit is linked to each other at the terminal part of the acyl group on the nitrogen-containing cycloalkyl (5-membered ring or 6-membered ring) and the terminal part of the alkoxy group having R 2 .
  • the compound of the present invention has two or more repeating units linked at the terminal portion, for example, 2 to 50, preferably 3 to 20, more preferably 3 to 10 repeating units.
  • the compound of the present invention is cleaved from the remainder of the compound by the diketopiperazine formation accompanying the N-to-O acyl transfer reaction in a neutral aqueous solution, and then The functional molecule can be sequentially released in a desired order by releasing a portion containing A having a functional molecule by hydrolysis of and repeating this.
  • the reaction mechanism is shown in FIG.
  • Step 1) The hydroxyl group at the site corresponding to serine in the structure of the repeating unit attacks the carbonyl at the adjacent amide site, resulting in an N-to-O acyl transfer reaction;
  • Step 2) The amino group produced by the transfer reaction and the ester group of nitrogen-containing cycloalkyl (5-membered ring or 6-membered ring) react to form a diketopiperazine ring, thereby linking with other repeating units.
  • Step 3 The separated repeating unit is hydrolyzed and the ester bond is cleaved, whereby the site having the functional molecule is released from the site having the diketopiperazine ring;
  • the compound of the present invention is characterized in that the pH is stable in the acidic region, and the above reaction proceeds under conditions near neutrality, thereby enabling sequential release. In that sense, it can be said to be a sequential sustained release carrier triggered by pH.
  • the pH which becomes the said trigger is 5 or more, for example, Preferably it is 6.5 or more, More preferably, it is 7.4 or more. Therefore, it can function in an in vivo environment.
  • Examples of the functional molecule in A in formula (I) include, but are not limited to, compounds exhibiting taste such as fluorophores, peptides, nucleic acids, fragrance compounds, sweeteners, and low molecular weight pharmaceutical compounds. Any molecule that is useful to be sequentially released under neutral aqueous solution conditions can be used.
  • the functional molecules can be the same or different types in each repeating unit, preferably different types.
  • the functional molecule in A is a peptide, and the embodiment of the present invention in that case is shown in FIG.
  • Each repeat unit is linked to peptide 1 to 4.
  • steps 1) to 4) in the figure, one cycle of these steps is shown as “first reaction” to “fourth reaction”), and separated from the compound of the present invention in order from peptide 1. Released.
  • These peptides 1 to 4 can be the same or different types.
  • only the release of peptide 4 by the fourth reaction is illustrated, but it is not necessarily limited to four, and it is designed to release more peptides by linking further repeating units. Those skilled in the art will understand that this is possible.
  • the functional molecule in A is a fluorophore, and in particular, can be a fluorophore serving as a donor of fluorescence resonance energy transfer (FRET).
  • FRET fluorescence resonance energy transfer
  • the repeating unit serving as the terminal of a plurality of repeating unit groups to be linked for example, fluorescence resonance energy transfer (to the terminal on the acyl group side on the nitrogen-containing cycloalkyl (5-membered ring or 6-membered ring))
  • a quencher that serves as an acceptor for (FRET).
  • FRET fluorescence resonance energy transfer
  • the donor fluorophore is quenched by the quencher while it is linked to the compound of the present invention and does not emit fluorescence, but is released when separated from the compound of the present invention.
  • Can fluoresce By adjusting the substituent X or Y in the donor fluorophore in FIG. 3, fluorophores having fluorescence characteristics such as different emission wavelengths can be used.
  • examples of such a fluorophore include those containing fluorene, coumarin, fluorescein, anthracene, and aminobenzyl, and examples of the quencher include groups containing azobenzene and dinitrophenol.
  • B is a spacer group for linking A containing a functional molecule and a serine-prolyl ester unit. Accordingly, B is not particularly limited as long as it can be linked to the amide group on the serine-prolyl ester unit side, and examples thereof include a structure containing an alkyl group, an alkoxy group, an aryl group, and an acyl group. Preferably, B is a structure containing an amide group.
  • R 1 has a hydrogen atom, a carbonyl, an optionally substituted C 1 -C 5 alkyl, an optionally substituted alkoxy, or a substituent.
  • R 2 may be a hydrogen atom or C 1 -C 10 alkyl, preferably a hydrogen atom or methyl.
  • n 1 or 2
  • n 1
  • the nitrogen-containing cycloalkyl in the serine-prolyl ester unit is a pyrrolidine ring
  • n 2
  • n 1
  • the nitrogen-containing cycloalkyl can be substituted with any substituent.
  • the compound represented by the above formula (I) may exist as a salt.
  • such salts include base addition salts, acid addition salts, amino acid salts and the like.
  • the base addition salt include metal salts such as sodium salt, potassium salt, calcium salt, magnesium salt, ammonium salt, or organic amine salts such as triethylamine salt, piperidine salt, morpholine salt, and acid addition salt.
  • examples thereof include mineral acid salts such as hydrochloride, sulfate, and nitrate, and organic acid salts such as methanesulfonate, paratoluenesulfonate, citrate, and oxalate.
  • Examples of amino acid salts include glycine salts. However, the salt of the compound of the present invention is not limited to these.
  • the compound represented by the formula (I) may have one or more asymmetric carbons depending on the type of substituent, and there are stereoisomers such as optical isomers or diastereoisomers. There is a case. Pure forms of stereoisomers, any mixture of stereoisomers, racemates, and the like are all within the scope of the present invention.
  • the compound represented by the formula (I) may exist as a hydrate or a solvate, and any of these substances is included in the scope of the present invention.
  • the kind of solvent which forms a solvate is not specifically limited, For example, solvents, such as ethanol, acetone, isopropanol, can be illustrated.
  • the compound of the present invention may be used as a composition by blending additives usually used in the preparation of reagents as required.
  • additives such as solubilizers, pH adjusters, buffers, and tonicity agents can be used as additives for use in a physiological environment, and the amount of these can be appropriately selected by those skilled in the art. is there.
  • These compositions can be provided as a composition in an appropriate form such as a powder-form mixture, a lyophilized product, a granule, a tablet, or a liquid.
  • the compound represented by the formula (I) can be used as a carrier for sequential sustained release of functional molecules triggered by pH, for example, as a drug delivery system.
  • functional molecules such as drugs can be sequentially released in the desired order using pH as a trigger.
  • Fmoc-Gly-Ser (tBu) -OH 55 mg, 0.12 mmol
  • DIC ⁇ L, 0.12 mmol
  • 1-hydroxybenzotriazole HOBt, 18 mg, 0.12 mmol
  • Condensation was carried out by reacting for hours. Thereafter, removal of the Fmoc group and introduction of the Fmoc amino acid were sequentially repeated to construct a protected peptide resin.
  • the tBu group was adopted as the side chain protecting group of Asp and Glu.
  • Fmoc-Pro-OH (253 mg, 0.75 mmol) was added, and the mixture was shaken in CH 2 Cl 2 for 20 hours in the presence of DIC (116 ⁇ L, 0.75 mmol) and DMAP (0.6 mg, 0.005 mmol).
  • DIC 116 ⁇ L, 0.75 mmol
  • DMAP 0.6 mg, 0.005 mmol
  • Fmoc-Gly-Ser-OH 48 mg, 0.125 mmol
  • HATU 47.5 mg, 0.125 mmol
  • DIEA 54.4 ⁇ L, 0.125 mmol
  • Example 2 [Amide cleavage reaction]
  • Compound 5 (0.17 mg, 0.1 ⁇ mol) obtained in Example 1 was dissolved in 0.1 M phosphate buffer (pH 7.4) / DMSO (95: 5, v / v, 100 ⁇ L) in a thermostatic chamber at 37 ° C.
  • the amide cleavage reaction was monitored over time.
  • the obtained HPLC chart and the result of Mass spectrum are shown in FIG. From this result, it was confirmed that the release reaction of the site having 7-methoxycoumarin progressed in almost all the compounds 5 after 24 hours.

Abstract

[Problem] To provide a novel controlled-release carrier material capable of sequentially releasing a functional molecule such as a peptide or a fluorescent molecule. [Solution] A compound having repeating units represented by formula (I). (In formula (I), A is a group having a functional molecule; B is a spacer group; R1 is a hydrogen atom, a carbonyl group, a C1-C5 alkyl which may have a substituent, alkoxy which may have a substituent, or aryl which may have a substituent; R2 is a hydrogen atom or a C1-C10 alkyl which may have a substituent; and n is an integer of 1 or 2.)

Description

機能性分子の逐次徐放システムSequential sustained release system of functional molecules
 本発明は、特定の機能性分子を逐次徐放可能であることを特徴とする担体に関する。 The present invention relates to a carrier characterized in that a specific functional molecule can be gradually and gradually released.
 近年、生体組織又は細胞内の必要な部位に必要な量の低分子化合物、ペプチド、核酸、タンパク質等の薬物を輸送する、いわゆる薬物輸送システム(ドラッグデリバリーシステム;DDS)が盛んに研究されている。特に、生体内での薬物放出の制御(コントロールドリリース)は、副作用の低減や、大きな治療効果が得られる技術として重要である。薬剤を徐々に放出したり、制御して放出することのできるドラッグデリバリー材料は、薬効効果を長時間維持することを可能とし、少ない薬の投与でも効果的な治療が可能となる。また、体内や血中で過度に薬効成分の濃度が上昇しないため、副作用を抑えることも可能となる。 In recent years, a so-called drug delivery system (drug delivery system; DDS) that transports a necessary amount of a low molecular weight compound, peptide, nucleic acid, protein, or other drug to a necessary site in a living tissue or cell has been actively studied. . In particular, control of drug release in vivo (controlled release) is important as a technique for reducing side effects and obtaining a large therapeutic effect. A drug delivery material that can release a drug gradually or can be controlled and released makes it possible to maintain a medicinal effect for a long time, and an effective treatment is possible even with a small amount of drug administration. Moreover, since the concentration of the medicinal component is not excessively increased in the body or blood, side effects can be suppressed.
 これまで、かかるドラッグデリバリーの輸送担体としては、リポソーム(例えば、特許文献1)、ポリエチレングリコール(PEG)、高分子ミセル、エマルジョン、ナノ粒子、水溶性高分子、ヒアルロン酸やセルロース誘導体のゲルなどの種々の材料が用いられてきた。しかしながら、種類の異なる機能性分子(薬剤等)を、放出順序等をプログラムした態様で逐次徐放可能な技術はこれまでの報告されていなかった。 Until now, as a carrier for such drug delivery, liposomes (for example, Patent Document 1), polyethylene glycol (PEG), polymer micelles, emulsions, nanoparticles, water-soluble polymers, gels of hyaluronic acid and cellulose derivatives, etc. Various materials have been used. However, no technology has been reported so far that allows functional release of different types of functional molecules (drugs, etc.) to be sequentially and gradually released in a programmed release order.
特開2003-226638号公報JP 2003-226638 A
 そこで、本発明は、ペプチドや蛍光分子等の機能性分子を逐次放出可能な新規な徐放担体材料を提供することを課題とするものである。 Therefore, an object of the present invention is to provide a novel sustained-release carrier material capable of sequentially releasing functional molecules such as peptides and fluorescent molecules.
 本発明者らは、上記課題を解決するべく鋭意検討を行った結果、セリン-プロリルエステル結合及びその類似構造(以下、まとめて「セリン-プロリルエステルユニット」という。)を有する化合物を用いることで、中性水溶液中において、アミド結合切断を伴うN-to-Oアシル基転移反応が進行し(ジケトピペラジンが形成され)、続いて生成したエステル部分にて加水分解を受けることで機能性分子が放出されること、及び、かかる反応を連続的(カスケード)に起こるように分子設計することで異なる種類の機能性分子を逐次放出できることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventors use compounds having a serine-prolyl ester bond and a similar structure thereof (hereinafter collectively referred to as “serine-prolyl ester unit”). Thus, in a neutral aqueous solution, N-to-O acyl group transfer reaction with amide bond cleavage proceeds (diketopiperazine is formed), and subsequently functions by being hydrolyzed by the generated ester moiety. It has been found that functional molecules are released, and that different types of functional molecules can be sequentially released by designing the molecules so that such reactions occur continuously (cascade). Thus, the present invention has been completed.
 すなわち、本発明は、一態様において、
(1)以下の式(I)で表される繰り返し単位を有する化合物:
Figure JPOXMLDOC01-appb-C000002


〔式中、Aは、機能性分子を有する基であり;Bは、スペーサー基であり;Rは、水素原子、カルボニル、置換基を有していてもよいC~Cアルキル、置換基を有していてもよいアルコキシ、又は置換基を有していてもよいアリールであり;Rは、水素原子又は置換基を有していてもよいC~C10アルキルであり;及び、nは、1又は2の整数である。〕;
(2)前記機能性分子が蛍光団、ペプチド、核酸、香料化合物、味覚を呈する化合物、及び低分子医薬化合物よりなる群から選択される、上記(1)に記載の化合物;
(3)前記機能性分子が、蛍光共鳴エネルギー移動(FRET)のドナーとなる蛍光団である、上記(1)に記載の化合物;
(4)末端となる繰り返し単位に蛍光共鳴エネルギー移動(FRET)のアクセプターとなる消光団を更に有する、上記(3)に記載の化合物;
(5)各繰り返し単位において、機能性分子が異なる種類の分子である、上記(1)に記載の化合物;
(6)Bが、アミド基を有する構造である、上記(1)に記載の化合物;
(7)Rがカルボニルである、上記(1)に記載の化合物。
(8)Rが水素原子又はメチルである、上記(1)に記載の化合物;
(9)nが1である、上記(1)に記載の化合物;及び
(10)Rが水素原子であり、nが1である、上記(1)に記載の化合物
を提供するものである。
That is, the present invention in one aspect,
(1) A compound having a repeating unit represented by the following formula (I):
Figure JPOXMLDOC01-appb-C000002


[Wherein A is a group having a functional molecule; B is a spacer group; R 1 is a hydrogen atom, carbonyl, C 1 -C 5 alkyl optionally having substituent, substituted An optionally substituted alkoxy, or an optionally substituted aryl; R 2 is a hydrogen atom or an optionally substituted C 1 -C 10 alkyl; and , N is an integer of 1 or 2. ];
(2) The compound according to (1) above, wherein the functional molecule is selected from the group consisting of a fluorophore, a peptide, a nucleic acid, a fragrance compound, a taste-providing compound, and a low molecular weight pharmaceutical compound;
(3) The compound according to (1) above, wherein the functional molecule is a fluorophore serving as a donor of fluorescence resonance energy transfer (FRET);
(4) The compound according to (3) above, further having a quencher serving as an acceptor of fluorescence resonance energy transfer (FRET) in the terminal repeating unit;
(5) The compound according to (1) above, wherein in each repeating unit, the functional molecule is a different type of molecule;
(6) The compound according to (1) above, wherein B is a structure having an amide group;
(7) The compound according to (1) above, wherein R 1 is carbonyl.
(8) The compound according to (1) above, wherein R 2 is a hydrogen atom or methyl;
(9) The compound according to (1), wherein n is 1, and (10) the compound according to (1), wherein R 2 is a hydrogen atom and n is 1. .
 本発明は、別の好ましい態様において、
(11)上記(1)~(10)のいずれか1に記載の化合物を含む、機能性分子の逐次徐放用担体;及び
(12)上記(1)~(10)のいずれか1に記載の化合物を含む、ドラッグデリバリーシステム
を提供するものである。
The present invention, in another preferred embodiment,
(11) A carrier for sequential and sustained release of functional molecules, comprising the compound according to any one of (1) to (10) above; and (12) any one of (1) to (10) above. A drug delivery system comprising the compound is provided.
 本発明によれば、セリン-プロリルエステルユニットを有する繰り返し単位を複数連結させることで、連続的にアミド切断反応が生じ、低分子薬剤化合物、ペプチド、香料化合物、蛍光団等の異なる種類の機能性分子を所望の順番で逐次放出することが可能となる。それゆえ、新規な逐次放出型ドラッグデリバリーシステムやフィルム製剤等の創出への適用が期待できる。 According to the present invention, by connecting a plurality of repeating units having a serine-prolyl ester unit, an amide cleavage reaction occurs continuously, and different types of functions such as low molecular drug compounds, peptides, perfume compounds, fluorophores, etc. It becomes possible to sequentially release sex molecules in a desired order. Therefore, it can be expected to be applied to the creation of a novel sequential release type drug delivery system and a film preparation.
図1は、本発明の化合物における繰り返し単位の分離及び機能性分子部位の放出の反応機構を示したものである。FIG. 1 shows the reaction mechanism of separation of repeating units and release of functional molecular sites in the compound of the present invention. 図2は、機能性分子がペプチドである場合の本発明の態様を示した模式図である。FIG. 2 is a schematic diagram showing an embodiment of the present invention when the functional molecule is a peptide. 図3は、機能性分子が蛍光共鳴エネルギー移動(FRET)のドナー蛍光団である場合の本発明の態様を示した模式図である。FIG. 3 is a schematic diagram showing an embodiment of the present invention when the functional molecule is a fluorescence fluorophoretic energy transfer (FRET) donor fluorophore. 図4は、本発明の化合物(化合物5)の反応を経時的モニターした結果を示すHPLCチャートとMassスペクトルである。FIG. 4 is an HPLC chart and Mass spectrum showing the results of monitoring the reaction of the compound of the present invention (Compound 5) over time. 図5は、複数の繰り返し単位を有する本発明の化合物(化合物4)の逐次放出反応の結果を示す図である。FIG. 5 is a diagram showing the results of the sequential release reaction of the compound of the present invention (compound 4) having a plurality of repeating units. 図6は、本発明の化合物(化合物5)の蛍光スペクトルの経時変化を示す図である。FIG. 6 is a graph showing the change with time of the fluorescence spectrum of the compound of the present invention (compound 5). 図7は、本発明の化合物(化合物5)における機能性分子の放出によるFRET機構を示す模式図である。FIG. 7 is a schematic diagram showing a FRET mechanism by release of a functional molecule in the compound of the present invention (Compound 5).
 以下、本発明の実施形態について説明する。本発明の範囲はこれらの説明に拘束されることはなく、以下の例示以外についても、本発明の趣旨を損なわない範囲で適宜変更し実施することができる。 Hereinafter, embodiments of the present invention will be described. The scope of the present invention is not limited to these descriptions, and other than the following examples, the scope of the present invention can be appropriately changed and implemented without departing from the spirit of the present invention.
1.定義 1. Definition
 本明細書において、「アミノ酸」は、アミノ基とカルボキシ基の両方を有する化合物であれば任意の化合物を用いることができ、天然及非天然のものを含む。中性アミノ酸、塩基性アミノ酸、又は酸性アミノ酸のいずれであってもよく、それ自体が神経伝達物質などの伝達物質として機能するアミノ酸のほか、生理活性ペプチド(ジペプチド、トリペプチド、テトラペプチドのほか、オリゴペプチドを含む)やタンパク質などのポリペプチド化合物の構成成分であるアミノ酸を用いることができ、例えばαアミノ酸、βアミノ酸、γアミノ酸などであってもよい。アミノ酸としては、光学活性アミノ酸を用いることが好ましい。例えば、αアミノ酸についてはD-又はL-アミノ酸のいずれを用いてもよいが、生体において機能する光学活性アミノ酸を選択することが好ましい場合がある。 In the present specification, “amino acid” may be any compound as long as it is a compound having both an amino group and a carboxy group, and includes natural and non-natural compounds. It may be any of neutral amino acids, basic amino acids, or acidic amino acids. In addition to amino acids that themselves function as transmitters such as neurotransmitters, bioactive peptides (in addition to dipeptides, tripeptides, tetrapeptides, An amino acid that is a constituent component of a polypeptide compound such as an oligopeptide or a protein can be used. As the amino acid, an optically active amino acid is preferably used. For example, as the α-amino acid, either D- or L-amino acid may be used, but it may be preferable to select an optically active amino acid that functions in a living body.
 本明細書において、「アミノ酸残基」とは、アミノ酸のカルボキシ基から水酸基を除去した残りの部分構造と等しく、いわゆるN-末端残基と同様の構造を有するものを意味する。ただし、これは、Aが複数のアミノ酸残基が連結して構成される場合を除外するものではなく、かかる場合はC-末端のアミノ酸残基が、上記のようにアミノ酸のカルボキシ基から水酸基を除去し、且つアミノ基から水素原子を除去した部分構造となれば良く、中間及びN-末端のアミノ酸残基は通常のペプチド鎖と同様に連結することができる。 In the present specification, the “amino acid residue” means a residue having the same structure as the so-called N-terminal residue, which is the same as the remaining partial structure obtained by removing the hydroxyl group from the carboxy group of the amino acid. However, this does not exclude the case where A is constituted by linking a plurality of amino acid residues. In such a case, the C-terminal amino acid residue has a hydroxyl group from the carboxy group of the amino acid as described above. A partial structure in which a hydrogen atom is removed from the amino group is sufficient, and the intermediate and N-terminal amino acid residues can be linked in the same manner as a normal peptide chain.
 本明細書中において、「アルキル」は直鎖状、分枝鎖状、環状、又はそれらの組み合わせからなる脂肪族炭化水素基のいずれであってもよい。アルキル基の炭素数は特に限定されないが、例えば、炭素数1~20個(C1~20)、炭素数3~15個(C3~15)、炭素数5~10個(C5~10)である。炭素数を指定した場合は、その数の範囲の炭素数を有する「アルキル」を意味する。例えば、C1~8アルキルには、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、sec-ブチル、tert-ブチル、n-ペンチル、イソペンチル、neo-ペンチル、n-ヘキシル、イソヘキシル、n-ヘプチル、n-オクチル等が含まれる。本明細書において、アルキル基は任意の置換基を1個以上有していてもよい。該置換基としては、例えば、アルコキシ基、ハロゲン原子、アミノ基、モノ若しくはジ置換アミノ基、置換シリル基、又はアシルなどを挙げることができるが、これらに限定されることはない。アルキル基が2個以上の置換基を有する場合には、それらは同一でも異なっていてもよい。アルキル部分を含む他の置換基(例えばアルコシ基、アリールアルキル基など)のアルキル部分についても同様である。 In the present specification, “alkyl” may be any of an aliphatic hydrocarbon group composed of linear, branched, cyclic, or a combination thereof. The number of carbon atoms of the alkyl group is not particularly limited. For example, the number of carbon atoms is 1 to 20 (C 1-20 ), the number of carbons is 3 to 15 (C 3 to 15 ), and the number of carbons is 5 to 10 (C 5 to 10). ). When the number of carbons is specified, it means “alkyl” having the number of carbons within the range. For example, C 1-8 alkyl includes methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, neo-pentyl, n-hexyl, isohexyl, n-heptyl, n-octyl and the like are included. In the present specification, the alkyl group may have one or more arbitrary substituents. Examples of the substituent include, but are not limited to, an alkoxy group, a halogen atom, an amino group, a mono- or di-substituted amino group, a substituted silyl group, and acyl. When the alkyl group has two or more substituents, they may be the same or different. The same applies to the alkyl part of other substituents containing an alkyl part (for example, an alkoxy group, an arylalkyl group, etc.).
 本明細書において、ある官能基について「置換基を有していてもよい」と定義されている場合には、置換基の種類、置換位置、及び置換基の個数は特に限定されず、2個以上の置換基を有する場合には、それらは同一でも異なっていてもよい。置換基としては、例えば、アルキル基、アルコキシ基、水酸基、カルボキシル基、ハロゲン原子、スルホ基、アミノ基、アルコキシカルボニル基、オキソ基などを挙げることができるが、これらに限定されることはない。これらの置換基にはさらに置換基が存在していてもよい。このような例として、例えば、ハロゲン化アルキル基、ジアルキルアミノ基などを挙げることができるが、これらに限定されることはない。 In this specification, when a certain functional group is defined as “may have a substituent”, the type of substituent, the position of substitution, and the number of substituents are not particularly limited. When having the above substituents, they may be the same or different. Examples of the substituent group include, but are not limited to, an alkyl group, an alkoxy group, a hydroxyl group, a carboxyl group, a halogen atom, a sulfo group, an amino group, an alkoxycarbonyl group, and an oxo group. These substituents may further have a substituent. Examples of such include, but are not limited to, a halogenated alkyl group, a dialkylamino group, and the like.
 本明細書中において、「アルケニル」は、少なくとも1つの炭素-炭素二重結合を有している直鎖又は分枝鎖の炭化水素基をいう。例えば、その非限定的な例として、ビニル、アリル、1-プロペニル、イソプロペニル、1-ブテニル、2-ブテニル、3-ブテニル、1,3-ブタンジエニル、1-ペンテニル、2-ペンテニル、3-ペンテニル、4-ペンテニル、1,3-ペンタンジエニル、1-ヘキセニル、2-ヘキセニル、3-ヘキセニル、4-ヘキセニル、5-ヘキセニル及び1,4-ヘキサンジエニル)を含む。二重結合についてシス配座またはトランス配座のいずれであってもよい。 In the present specification, “alkenyl” refers to a linear or branched hydrocarbon group having at least one carbon-carbon double bond. For example, non-limiting examples include vinyl, allyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1,3-butanedienyl, 1-pentenyl, 2-pentenyl, 3-pentenyl 4-pentenyl, 1,3-pentanedienyl, 1-hexenyl, 2-hexenyl, 3-hexenyl, 4-hexenyl, 5-hexenyl and 1,4-hexanedienyl). The double bond may be either cis or trans conformation.
 本明細書中において、「アルキニル」は、少なくとも1つの炭素-炭素三重結合を有している直鎖又は分枝鎖の炭化水素基をいう。例えば、その非限定的な例として、エチニル、プロピニル、2-ブチニルおよび3-メチルブチニルなどがあるを含む。 In the present specification, “alkynyl” refers to a linear or branched hydrocarbon group having at least one carbon-carbon triple bond. For example, non-limiting examples include ethynyl, propynyl, 2-butynyl and 3-methylbutynyl.
 本明細書中において、「シクロアルキル」は、上記のアルキルよりなる単環または多環式の非芳香環系をいう。当該シクロアルキルは、置換されていないか同一もしくは異なっても良い1以上の置換基によって置換されていることができ、単環式シクロアルキルの非限定的な例には、シクロプロピル、シクロペンチル、シクロヘキシルおよびシクロヘプチルなどがあり、多環式のシクロアルキルの非限定的な例には、1-デカリニル、2-デカリニル、ノルボルニル、アダマンチルなどが挙げられる。また、当該シクロアルキルは、環構成原子としてヘテロ原子(例えば、酸素原子、窒素原子、又は硫黄原子など)を1個以上含むヘテロシクロアルキルであってもよい。ヘテロシクロアルキル環中の任意の-NHは、例えば-N(Boc)基、-N(CBz)基および-N(Tos)基としてのように保護されていてもよく、環中の窒素原子または硫黄原子が対応するN-オキシド、S-オキシドまたはS,S-ジオキシドへ酸化されたものであってもよい。例えば、単環式ヘテロシクロアルキルの非限定的な例には、ジアザパニル、ピペリジニル、ピロリジニル、ピペラジニル、モルホリニル、チオモルホリニル、チアゾリジニル、1,4-ジオキサニル、テトラヒドロフラニル、テトラヒドロピラニル、テトラヒドロチオフェニル、ラクタムおよびラクトン等が挙げられる。 In the present specification, “cycloalkyl” refers to a monocyclic or polycyclic non-aromatic ring system composed of the above alkyl. The cycloalkyl can be unsubstituted or substituted by one or more substituents, which can be the same or different, and non-limiting examples of monocyclic cycloalkyl include cyclopropyl, cyclopentyl, cyclohexyl Non-limiting examples of polycyclic cycloalkyls include 1-decalinyl, 2-decalinyl, norbornyl, adamantyl and the like. In addition, the cycloalkyl may be a heterocycloalkyl containing one or more hetero atoms (for example, an oxygen atom, a nitrogen atom, or a sulfur atom) as ring-constituting atoms. Any —NH in the heterocycloalkyl ring may be protected, for example as a —N (Boc) group, —N (CBz) group and —N (Tos) group, a nitrogen atom in the ring or The sulfur atom may be oxidized to the corresponding N-oxide, S-oxide or S, S-dioxide. For example, non-limiting examples of monocyclic heterocycloalkyl include diazapanyl, piperidinyl, pyrrolidinyl, piperazinyl, morpholinyl, thiomorpholinyl, thiazolidinyl, 1,4-dioxanyl, tetrahydrofuranyl, tetrahydropyranyl, tetrahydrothiophenyl, lactam and Examples include lactones.
 本明細書中において、「シクロアルケニル」は、少なくとも1つの炭素-炭素二重結合を含む、単環または多環式の非芳香環系をいう。当該シクロアルケニルは、置換されていないか同一もしくは異なっても良い1以上の置換基によって置換されていることができ、単環式のシクロアルケニルの非限定的な例には、シクロペンテニル、シクロヘキセニルおよびシクロヘプタ-1,3-ジエニルなどがあり、多環式のシクロアルケニルの非限定的な例には、ノルボルニレニル等が挙げられる。また、当該シクロアルキルは、環構成原子としてヘテロ原子(例えば、酸素原子、窒素原子、又は硫黄原子など)を1個以上含むヘテロシクロアルケニルであってもよいヘテロシクロアルケニル環中の窒素原子または硫黄原子を、対応するN-オキシド、S-オキシドまたはS,S-ジオキシドへ酸化してもよい。 As used herein, “cycloalkenyl” refers to a monocyclic or polycyclic non-aromatic ring system containing at least one carbon-carbon double bond. The cycloalkenyl may be unsubstituted or substituted by one or more substituents, which may be the same or different, and non-limiting examples of monocyclic cycloalkenyl include cyclopentenyl, cyclohexenyl And cyclohepta-1,3-dienyl, and non-limiting examples of polycyclic cycloalkenyl include norbornylenyl and the like. In addition, the cycloalkyl may be a heterocycloalkenyl which may be a heterocycloalkenyl containing one or more heteroatoms (for example, an oxygen atom, a nitrogen atom, or a sulfur atom) as a ring-constituting atom. Atoms may be oxidized to the corresponding N-oxide, S-oxide or S, S-dioxide.
 本明細書中において、「アリール」は単環式又は縮合多環式の芳香族炭化水素基のいずれであってもよく、環構成原子としてヘテロ原子(例えば、酸素原子、窒素原子、又は硫黄原子など)を1個以上含む芳香族複素環であってもよい。この場合、これを「ヘテロアリール」または「ヘテロ芳香族」と呼ぶ場合もある。アリールが単環および縮合環のいずれである場合も、すべての可能な位置で結合しうる。単環式のアリールの非限定的な例としては、フェニル基(Ph)、チエニル基(2-又は3-チエニル基)、ピリジル基、フリル基、チアゾリル基、オキサゾリル基、ピラゾリル基、2-ピラジニル基、ピリミジニル基、ピロリル基、イミダゾリル基、ピリダジニル基、3-イソチアゾリル基、3-イソオキサゾリル基、1,2,4-オキサジアゾール-5-イル基又は1,2,4-オキサジアゾール-3-イル基等が挙げられる。縮合多環式のアリールの非限定的な例としては、1-ナフチル基、2-ナフチル基、1-インデニル基、2-インデニル基、2,3-ジヒドロインデン-1-イル基、2,3-ジヒドロインデン-2-イル基、2-アンスリル基、インダゾリル基、キノリル基、イソキノリル基、1,2-ジヒドロイソキノリル基、1,2,3,4-テトラヒドロイソキノリル基、インドリル基、イソインドリル基、フタラジニル基、キノキサリニル基、ベンゾフラニル基、2,3-ジヒドロベンゾフラン-1-イル基、2,3-ジヒドロベンゾフラン-2-イル基、2,3-ジヒドロベンゾチオフェン-1-イル基、2,3-ジヒドロベンゾチオフェン-2-イル基、ベンゾチアゾリル基、ベンズイミダゾリル基、フルオレニル基又はチオキサンテニル基等が挙げられる。本明細書において、アリール基はその環上に任意の置換基を1個以上有していてもよい。該置換基としては、例えば、アルコキシ基、ハロゲン原子、アミノ基、モノ若しくはジ置換アミノ基、置換シリル基、又はアシルなどを挙げることができるが、これらに限定されることはない。アリール基が2個以上の置換基を有する場合には、それらは同一でも異なっていてもよい。アリール部分を含む他の置換基(例えばアリールオキシ基やアリールアルキル基など)のアリール部分についても同様である。 In the present specification, “aryl” may be either a monocyclic or condensed polycyclic aromatic hydrocarbon group, and a hetero atom (for example, an oxygen atom, a nitrogen atom, or a sulfur atom) as a ring constituent atom Etc.) may be an aromatic heterocyclic ring. In this case, it may be referred to as “heteroaryl” or “heteroaromatic”. Whether aryl is a single ring or a fused ring, it can be attached at all possible positions. Non-limiting examples of monocyclic aryl include phenyl group (Ph), thienyl group (2- or 3-thienyl group), pyridyl group, furyl group, thiazolyl group, oxazolyl group, pyrazolyl group, 2-pyrazinyl Group, pyrimidinyl group, pyrrolyl group, imidazolyl group, pyridazinyl group, 3-isothiazolyl group, 3-isoxazolyl group, 1,2,4-oxadiazol-5-yl group or 1,2,4-oxadiazole-3 -Yl group and the like. Non-limiting examples of fused polycyclic aryl include 1-naphthyl group, 2-naphthyl group, 1-indenyl group, 2-indenyl group, 2,3-dihydroinden-1-yl group, 2,3 -Dihydroinden-2-yl group, 2-anthryl group, indazolyl group, quinolyl group, isoquinolyl group, 1,2-dihydroisoquinolyl group, 1,2,3,4-tetrahydroisoquinolyl group, indolyl group, Isoindolyl group, phthalazinyl group, quinoxalinyl group, benzofuranyl group, 2,3-dihydrobenzofuran-1-yl group, 2,3-dihydrobenzofuran-2-yl group, 2,3-dihydrobenzothiophen-1-yl group, 2 , 3-dihydrobenzothiophen-2-yl group, benzothiazolyl group, benzimidazolyl group, fluorenyl group, thioxanthenyl group, etc. And the like. In the present specification, an aryl group may have one or more arbitrary substituents on the ring. Examples of the substituent include, but are not limited to, an alkoxy group, a halogen atom, an amino group, a mono- or di-substituted amino group, a substituted silyl group, and acyl. When the aryl group has two or more substituents, they may be the same or different. The same applies to the aryl moiety of other substituents containing the aryl moiety (for example, an aryloxy group and an arylalkyl group).
 本明細書中において、「アリールアルキル」は、上記アリールで置換されたアルキルを表す。アリールアルキルは、任意の置換基を1個以上有していてもよい。該置換基としては、例えば、アルコキシ基、ハロゲン原子、アミノ基、モノ若しくはジ置換アミノ基、置換シリル基、又はアシル基などを挙げることができるが、これらに限定されることはない。アシル基が2個以上の置換基を有する場合には、それらは同一でも異なっていてもよい。アリールアルキルの非限定的な例としては、ベンジル基、2-チエニルメチル基、3-チエニルメチル基、2-ピリジルメチル基、3-ピリジルメチル基、4-ピリジルメチル基、2-フリルメチル基、3-フリルメチル基、2-チアゾリルメチル基、4-チアゾリルメチル基、5-チアゾリルメチル基、2-オキサゾリルメチル基、4-オキサゾリルメチル基、5-オキサゾリルメチル基、1-ピラゾリルメチル基、3-ピラゾリルメチル基、4-ピラゾリルメチル基、2-ピラジニルメチル基、2-ピリミジニルメチル基、4-ピリミジニルメチル基、5-ピリミジニルメチル基、1-ピロリルメチル基、2-ピロリルメチル基、3-ピロリルメチル基、1-イミダゾリルメチル基、2-イミダゾリルメチル基、4-イミダゾリルメチル基、3-ピリダジニルメチル基、4-ピリダジニルメチル基、3-イソチアゾリルメチル基、3-イソオキサゾリルメチル基、1,2,4-オキサジアゾール-5-イルメチル基又は1,2,4-オキサジアゾール-3-イルメチル基等が挙げられる。 In the present specification, “arylalkyl” represents alkyl substituted with the above aryl. The arylalkyl may have one or more arbitrary substituents. Examples of the substituent include, but are not limited to, an alkoxy group, a halogen atom, an amino group, a mono- or di-substituted amino group, a substituted silyl group, and an acyl group. When the acyl group has two or more substituents, they may be the same or different. Non-limiting examples of arylalkyl include benzyl group, 2-thienylmethyl group, 3-thienylmethyl group, 2-pyridylmethyl group, 3-pyridylmethyl group, 4-pyridylmethyl group, 2-furylmethyl group, 3-furylmethyl group, 2-thiazolylmethyl group, 4-thiazolylmethyl group, 5-thiazolylmethyl group, 2-oxazolylmethyl group, 4-oxazolylmethyl group, 5-oxazolylmethyl group, 1-pyrazolylmethyl group 3-pyrazolylmethyl group, 4-pyrazolylmethyl group, 2-pyrazinylmethyl group, 2-pyrimidinylmethyl group, 4-pyrimidinylmethyl group, 5-pyrimidinylmethyl group, 1-pyrrolylmethyl group, 2-pyrrolylmethyl group, 3-pyrrolylmethyl group 1-imidazolylmethyl group, 2-imidazolylmethyl group, 4-imidazolylmethyl 3-pyridazinylmethyl group, 4-pyridazinylmethyl group, 3-isothiazolylmethyl group, 3-isoxazolylmethyl group, 1,2,4-oxadiazol-5-ylmethyl group Or a 1,2,4-oxadiazol-3-ylmethyl group etc. are mentioned.
 同様に、本明細書中において、「アリールアルケニル」は、上記アリールで置換されたアルケニルを表す。 Similarly, in the present specification, “arylalkenyl” represents alkenyl substituted with aryl.
 本明細書中において、「アルコキシ基」とは、前記アルキル基が酸素原子に結合した構造であり、例えば直鎖状、分枝状、環状又はそれらの組み合わせである飽和アルコキシ基が挙げられる。例えば、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、シクロプロポキシ基、n-ブトキシ基、イソブトキシ基、s-ブトキシ基、t-ブトキシ基、シクロブトキシ基、シクロプロピルメトキシ基、n-ペンチルオキシ基、シクロペンチルオキシ基、シクロプロピルエチルオキシ基、シクロブチルメチルオキシ基、n-ヘキシルオキシ基、シクロヘキシルオキシ基、シクロプロピルプロピルオキシ基、シクロブチルエチルオキシ基又はシクロペンチルメチルオキシ基等が好適な例として挙げられる。 In the present specification, the “alkoxy group” is a structure in which the alkyl group is bonded to an oxygen atom, and examples thereof include a saturated alkoxy group that is linear, branched, cyclic, or a combination thereof. For example, methoxy group, ethoxy group, n-propoxy group, isopropoxy group, cyclopropoxy group, n-butoxy group, isobutoxy group, s-butoxy group, t-butoxy group, cyclobutoxy group, cyclopropylmethoxy group, n- Pentyloxy group, cyclopentyloxy group, cyclopropylethyloxy group, cyclobutylmethyloxy group, n-hexyloxy group, cyclohexyloxy group, cyclopropylpropyloxy group, cyclobutylethyloxy group, cyclopentylmethyloxy group, etc. are preferable Take as an example.
 本明細書中において、「アリールオキシ基」とは、前記アリール基が酸素原子を介して結合する基である。アリールオキシ基としては、例えば、フェノキシ基、2-チエニルオキシ基、3-チエニルオキシ基、2-ピリジルオキシ基、3-ピリジルオキシ基、4-ピリジルオキシ基、2-フリルオキシ基、3-フリルオキシ基、2-チアゾリルオキシ基、4-チアゾリルオキシ基、5-チアゾリルオキシ基、2-オキサゾリルオキシ基、4-オキサゾリルオキシ基、5-オキサゾリルオキシ基、1-ピラゾリルオキシ基、3-ピラゾリルオキシ基、4-ピラゾリルオキシ基、2-ピラジニルオキシ基、2-ピリミジニルオキシ基、4-ピリミジニルオキシ基、5-ピリミジニルオキシ基、1-ピロリルオキシ基、2-ピロリルオキシ基、3-ピロリルオキシ基、1-イミダゾリルオキシ基、2-イミダゾリルオキシ基、4-イミダゾリルオキシ基、3-ピリダジニルオキシ基、4-ピリダジニルオキシ基、3-イソチアゾリルオキシ基、3-イソオキサゾリルオキシ基、1,2,4-オキサジアゾール-5-イルオキシ基、又は1,2,4-オキサジアゾール-3-イルオキシ基等が例示される。 In the present specification, the “aryloxy group” is a group to which the aryl group is bonded through an oxygen atom. Examples of the aryloxy group include phenoxy group, 2-thienyloxy group, 3-thienyloxy group, 2-pyridyloxy group, 3-pyridyloxy group, 4-pyridyloxy group, 2-furyloxy group, and 3-furyl. Oxy group, 2-thiazolyloxy group, 4-thiazolyloxy group, 5-thiazolyloxy group, 2-oxazolyloxy group, 4-oxazolyloxy group, 5-oxazolyloxy group, 1-pyrazolyloxy group, 3-pyrazolyloxy group Group, 4-pyrazolyloxy group, 2-pyrazinyloxy group, 2-pyrimidinyloxy group, 4-pyrimidinyloxy group, 5-pyrimidinyloxy group, 1-pyrrolyloxy group, 2-pyrrolyloxy group, 3-pyrrolyloxy group, 1-imidazolyloxy group , 2-imidazolyloxy group, 4-imidazolyloxy group, -Pyridazinyloxy group, 4-pyridazinyloxy group, 3-isothiazolyloxy group, 3-isoxazolyloxy group, 1,2,4-oxadiazol-5-yloxy group, or Examples include a 1,2,4-oxadiazol-3-yloxy group.
 本明細書中において、「アルキルアミノ」及び「アリールアミノ」は、-NH基の水素原子が上記アルキル又はアリールの1又は2で置換されたアミノ基を意味する。例えば、メチルアミノ、ジメチルアミノ、エチルアミノ、ジエチルアミノ、エチルメチルアミノ、ベンジルアミノ等が挙げられる。同様に、「アルキルチオ」及び「アリールチオ」は、-SH基の水素原子が上記アルキル又はアリールで置換された基を意味する。例えば、メチルチオ、エチルチオ、ベンジルチオ等が挙げられる。 In the present specification, “alkylamino” and “arylamino” mean an amino group in which a hydrogen atom of —NH 2 group is substituted with 1 or 2 of the above alkyl or aryl. For example, methylamino, dimethylamino, ethylamino, diethylamino, ethylmethylamino, benzylamino and the like can be mentioned. Similarly, “alkylthio” and “arylthio” mean a group in which the hydrogen atom of the —SH group is substituted with the above alkyl or aryl. For example, methylthio, ethylthio, benzylthio and the like can be mentioned.
 本明細書中において用いられる「アミド」とは、RNR’CO-(R=アルキルの場合、アルカミノカルボニル-)およびRCONR’-(R=アルキルの場合、アルキルカルボニルアミノ-)の両方を含む。 As used herein, “amide” includes both RNR′CO— (when R = alkyl, alkaminocarbonyl-) and RCONR′- (where R = alkyl, alkylcarbonylamino-).
 本明細書中において用いられる「エステル」とは、ROCO-(R=アルキルの場合、アルコキシカルボニル-)およびRCOO-(R=アルキルの場合、アルキルカルボニルオキシ-)の両方を含む。 As used herein, “ester” includes both ROCO— (in the case of R = alkyl, alkoxycarbonyl-) and RCOO— (in the case of R = alkyl, alkylcarbonyloxy-).
 本明細書中において用いられる「アシル」とは、カルボン酸等の有機酸からヒドロキシル基を除去した基であり、RCO-(R=メチルの場合、アセチル)で表される。 As used herein, “acyl” is a group obtained by removing a hydroxyl group from an organic acid such as carboxylic acid, and is represented by RCO— (in the case of R = methyl, acetyl).
 本明細書中において、「環構造」という用語は、二つの置換基の組み合わせによって形成される場合、複素環または炭素環基を意味し、そのような基は飽和、不飽和、または芳香族であることができる。従って、上記において定義した、シクロアルキル、シクロアルケニル、アリール、及びヘテロアリールを含むものである。例えば、シクロアルキル、フェニル、ナフチル、モルホリニル、ピペルジニル、イミダゾリル、ピロリジニル、およびピリジルなどが挙げられる。本明細書中において、置換基は、別の置換基と環構造を形成することができ、そのような置換基同士が結合する場合、当業者であれば、特定の置換、例えば水素への結合が形成されることを理解できる。従って、特定の置換基が共に環構造を形成すると記載されている場合、当業者であれば、当該環構造は通常の化学反応によって形成することができ、また容易に生成することを理解できる。かかる環構造およびそれらの形成過程はいずれも、当業者の認識範囲内である。 As used herein, the term “ring structure”, when formed by a combination of two substituents, means a heterocyclic or carbocyclic group, such group being saturated, unsaturated, or aromatic. Can be. Accordingly, it includes cycloalkyl, cycloalkenyl, aryl, and heteroaryl as defined above. Examples include cycloalkyl, phenyl, naphthyl, morpholinyl, piperidinyl, imidazolyl, pyrrolidinyl, pyridyl and the like. In the present specification, a substituent can form a ring structure with another substituent, and when such substituents are bonded to each other, those skilled in the art will recognize a specific substitution, such as bonding to hydrogen. Can be understood. Therefore, when it is described that specific substituents together form a ring structure, those skilled in the art can understand that the ring structure can be formed by an ordinary chemical reaction and can be easily generated. Both such ring structures and their process of formation are within the purview of those skilled in the art.
2.セリン-プロリルエステルユニットを有する化合物
 本発明の逐次徐放性を有する化合物は、一態様において、以下の式(I)で表される繰り返し単位を有する。
Figure JPOXMLDOC01-appb-C000003

2. Compound Having Serine-Prolyl Ester Unit In one aspect, the compound having sequential sustained release property of the present invention has a repeating unit represented by the following formula (I).
Figure JPOXMLDOC01-appb-C000003

 式中、Aは、機能性分子を有する基であり;Bは、スペーサー基であり;Rは、水素原子、カルボニル、置換基を有していてもよいC~Cアルキル、置換基を有していてもよいアルコキシ、又は置換基を有していてもよいアリールであり;Rは、水素原子又は置換基を有していてもよいC~C10アルキルであり;及び、nは、1又は2の整数である。 In the formula, A is a group having a functional molecule; B is a spacer group; R 1 is a hydrogen atom, a carbonyl, an optionally substituted C 1 -C 5 alkyl, a substituent. R 2 is a hydrogen atom or a C 1 -C 10 alkyl optionally having a substituent; and an optionally substituted alkoxy or an optionally substituted aryl; and n is an integer of 1 or 2.
 当該繰り返し単位は、式(I)に示されるように、含窒素シクロアルキル(5員環又は6員環)上のアシル基末端部分と、Rを有するアルコキシ基末端部分において互いに連結する。本発明の化合物は、当該末端部分において連結した2以上繰り返し単位を有し、例えば、2~50、好ましくは3~20、より好ましくは3~10の繰り返し単位を有する。 As shown in the formula (I), the repeating unit is linked to each other at the terminal part of the acyl group on the nitrogen-containing cycloalkyl (5-membered ring or 6-membered ring) and the terminal part of the alkoxy group having R 2 . The compound of the present invention has two or more repeating units linked at the terminal portion, for example, 2 to 50, preferably 3 to 20, more preferably 3 to 10 repeating units.
 かかる構造を有することにより、本発明の化合物は、中性水溶液中において、N-to-Oのアシル基転移反応に伴うジケトピペラジン形成によって、末端の繰り返し単位が化合物の残部から切断され、その後の加水分解によって機能性分子を有するAを含む部分を放出し、これを繰り返すことにより機能性分子を所望の順番で逐次放出することができる。その反応機構を図1に示す。 By having such a structure, the compound of the present invention is cleaved from the remainder of the compound by the diketopiperazine formation accompanying the N-to-O acyl transfer reaction in a neutral aqueous solution, and then The functional molecule can be sequentially released in a desired order by releasing a portion containing A having a functional molecule by hydrolysis of and repeating this. The reaction mechanism is shown in FIG.
 具体的には、図1に示すように、以下の反応により、繰り返し単位の分離及び機能性分子部位の放出が進行する(なお、図中に機能性分子は具体的に示されていないが、「セリン-プロリルエステルユニット」の左側末端のアミノ基に機能性分子が連結している)。
 工程1):繰り返し単位の構造中のセリンに該当する部位におけるヒドロキシル基が、近接するアミド部位のカルボニルを攻撃し、N-to-Oのアシル基転移反応が生じる;
 工程2):前記転移反応により生じたアミノ基と含窒素シクロアルキル(5員環又は6員環)のエステル基が反応し、ジケトピペラジン環を形成することによって、他の繰り返し単位との連結を担っていたエステル結合が切断され、結果として、1の繰り返し単位が本発明の化合物から分離される;
工程3):分離された繰り返し単位が加水分解され、エステル結合が切断されることによって、機能性分子を有する部位が、ジケトピペラジン環を有する部位から放出される;
工程4):上記工程2)によって、1の繰り返し単位が切断された本発明の化合物の残部において、再び工程1)のアシル基転移反応が起こる。
Specifically, as shown in FIG. 1, separation of repeating units and release of functional molecular sites proceed by the following reaction (note that functional molecules are not specifically shown in the figure, A functional molecule is linked to the amino group at the left end of the “serine-prolyl ester unit”).
Step 1): The hydroxyl group at the site corresponding to serine in the structure of the repeating unit attacks the carbonyl at the adjacent amide site, resulting in an N-to-O acyl transfer reaction;
Step 2): The amino group produced by the transfer reaction and the ester group of nitrogen-containing cycloalkyl (5-membered ring or 6-membered ring) react to form a diketopiperazine ring, thereby linking with other repeating units. The resulting ester bond is separated from the compound of the invention;
Step 3): The separated repeating unit is hydrolyzed and the ester bond is cleaved, whereby the site having the functional molecule is released from the site having the diketopiperazine ring;
Step 4): The acyl group transfer reaction of Step 1) occurs again in the remainder of the compound of the present invention in which one repeating unit is cleaved by the above Step 2).
 これら反応を連続的(カスケード)に起こるように分子設計することで、同一又は異なる種類の複数の機能性分子を予め定めた順番により逐次放出することができる。本発明の化合物はpHが酸性領域では安定であり、中性付近の条件下で上記反応が進行して逐次放出が可能となるという特徴を有する。その意味で、pHをトリガーとした逐次徐放担体ということができる。当該トリガーとなるpHは、例えば、5以上であり、好ましくは6.5以上であり、より好ましくは7.4以上である。従って、生体内の環境において機能することができる。 By designing the molecules so that these reactions occur continuously (cascade), a plurality of functional molecules of the same or different types can be sequentially released in a predetermined order. The compound of the present invention is characterized in that the pH is stable in the acidic region, and the above reaction proceeds under conditions near neutrality, thereby enabling sequential release. In that sense, it can be said to be a sequential sustained release carrier triggered by pH. The pH which becomes the said trigger is 5 or more, for example, Preferably it is 6.5 or more, More preferably, it is 7.4 or more. Therefore, it can function in an in vivo environment.
 式(I)中のAにおける機能性分子としては、例えば、蛍光団、ペプチド、核酸、香料化合物、甘味料等の味覚を呈する化合物、又は低分子医薬化合物が挙げられるが、これらに限らず、中性水溶液条件下で逐次放出されることが有用な分子であれば用いることができる。当該機能性分子は、各繰り返し単位において同一又は異なる種類であることができ、好ましくは、異なる種類である。 Examples of the functional molecule in A in formula (I) include, but are not limited to, compounds exhibiting taste such as fluorophores, peptides, nucleic acids, fragrance compounds, sweeteners, and low molecular weight pharmaceutical compounds. Any molecule that is useful to be sequentially released under neutral aqueous solution conditions can be used. The functional molecules can be the same or different types in each repeating unit, preferably different types.
 好ましい非限定的な例として、Aにおける機能性分子はペプチドであり、その場合の本発明の態様を図2に示す。各繰り返し単位には、peptide 1~4が連結している。上記の工程1)~4)に従い(図中では、これらの工程の1サイクルを「第1反応」~「第4反応」として示している)、peptide 1から順に本発明の化合物から切り離されて放出される。これらのpeptide 1~4は、同一のものであることもできるし、異なる種類であることもできる。また、ここでは、第4反応によるpeptide 4の放出までしか例示していないが、必ずしも4つに限られることはなく、更なる繰り返し単位を連結することによって、より多くのペプチドを放出させるよう設計可能であることは、当業者には理解できるであろう。 As a preferred non-limiting example, the functional molecule in A is a peptide, and the embodiment of the present invention in that case is shown in FIG. Each repeat unit is linked to peptide 1 to 4. In accordance with the above steps 1) to 4) (in the figure, one cycle of these steps is shown as “first reaction” to “fourth reaction”), and separated from the compound of the present invention in order from peptide 1. Released. These peptides 1 to 4 can be the same or different types. In addition, here, only the release of peptide 4 by the fourth reaction is illustrated, but it is not necessarily limited to four, and it is designed to release more peptides by linking further repeating units. Those skilled in the art will understand that this is possible.
 また、別の好ましい例としては、Aにおける機能性分子は蛍光団であり、特に、蛍光共鳴エネルギー移動(FRET)のドナーとなる蛍光団であることができる。これは、本発明の化合物によってFRET機構を用いた蛍光プローブ等の用途等に用いる場合に好適である。その場合の本発明の態様を図3に示す。複数の繰り返し単位を連結させることにより、図2の場合と同様に、蛍光団を逐次放出することが可能となる。この場合、複数の連結する繰り返し単位群の末端となる繰り返し単位において、例えば、含窒素シクロアルキル(5員環又は6員環)上のアシル基側の末端となる部位に、蛍光共鳴エネルギー移動(FRET)のアクセプターとなる消光団を有することが好ましい。これにより、図3に示すように、ドナー蛍光団は、本発明の化合物中に連結している間は消光団により消光され蛍光を発しないが、本発明の化合物から切り離された放出された場合には蛍光を発することができる。図3中のドナー蛍光団における置換基X又はYを調節することによって、異なる発光波長等の蛍光特性を有する蛍光団を用いることができる。 As another preferred example, the functional molecule in A is a fluorophore, and in particular, can be a fluorophore serving as a donor of fluorescence resonance energy transfer (FRET). This is suitable when the compound of the present invention is used for applications such as a fluorescent probe using the FRET mechanism. An embodiment of the present invention in that case is shown in FIG. By connecting a plurality of repeating units, it becomes possible to sequentially release the fluorophores, as in the case of FIG. In this case, in the repeating unit serving as the terminal of a plurality of repeating unit groups to be linked, for example, fluorescence resonance energy transfer (to the terminal on the acyl group side on the nitrogen-containing cycloalkyl (5-membered ring or 6-membered ring)) It is preferable to have a quencher that serves as an acceptor for (FRET). Thus, as shown in FIG. 3, the donor fluorophore is quenched by the quencher while it is linked to the compound of the present invention and does not emit fluorescence, but is released when separated from the compound of the present invention. Can fluoresce. By adjusting the substituent X or Y in the donor fluorophore in FIG. 3, fluorophores having fluorescence characteristics such as different emission wavelengths can be used.
 例えば、かかる蛍光団としては、フルオレン、クマリン、フルオレセイン、アントラセン、アミノベンジルを含む基であるものが挙げられ、消光団としては、例えば、アゾベンゼン、ジニトロフェノールを含む基を挙げることができる。 For example, examples of such a fluorophore include those containing fluorene, coumarin, fluorescein, anthracene, and aminobenzyl, and examples of the quencher include groups containing azobenzene and dinitrophenol.
 式(I)中、Bは、機能性分子を含むAとセリン-プロリルエステルユニットとを連結するスペーサー基である。従って、Bは、セリン-プロリルエステルユニット側のアミド基に連結可能なものであれば特に限定されないが、例えば、アルキル基、アルコキシ基、アリール基、アシル基を含む構造等が挙げられる。好ましくは、Bは、アミド基を含む構造である。 In the formula (I), B is a spacer group for linking A containing a functional molecule and a serine-prolyl ester unit. Accordingly, B is not particularly limited as long as it can be linked to the amide group on the serine-prolyl ester unit side, and examples thereof include a structure containing an alkyl group, an alkoxy group, an aryl group, and an acyl group. Preferably, B is a structure containing an amide group.
 式(I)中、Rは、水素原子、カルボニル、置換基を有していてもよいC~Cアルキル、置換基を有していてもよいアルコキシ、又は置換基を有していてもよいアリールであることができ、好ましくはカルボニルである。また、Rは、水素原子又はC~C10アルキルであることができるが、好ましくは、水素原子又はメチルである。 In formula (I), R 1 has a hydrogen atom, a carbonyl, an optionally substituted C 1 -C 5 alkyl, an optionally substituted alkoxy, or a substituent. Can be any aryl, preferably carbonyl. R 2 may be a hydrogen atom or C 1 -C 10 alkyl, preferably a hydrogen atom or methyl.
 式(I)中、1又は2の整数であることができ、すなわち、nが1の場合、セリン-プロリルエステルユニットにおける含窒素シクロアルキルは、ピロリジン環であり、nが2の場合はピペリジン環となる。好ましくは、nは、1である。なお、当該含窒素シクロアルキルは、任意の置換基によって置換されることもできる。 In formula (I), it can be an integer of 1 or 2, ie, when n is 1, the nitrogen-containing cycloalkyl in the serine-prolyl ester unit is a pyrrolidine ring, and when n is 2, piperidine It becomes a ring. Preferably n is 1. The nitrogen-containing cycloalkyl can be substituted with any substituent.
 上記式(I)で表される化合物は、塩として存在する場合がある。そのような塩としては、塩基付加塩、酸付加塩、アミノ酸塩などを挙げることができる。塩基付加塩としては、例えば、ナトリウム塩、カリウム塩、カルシウム塩、マグネシウム塩などの金属塩、アンモニウム塩、又はトリエチルアミン塩、ピペリジン塩、モルホリン塩などの有機アミン塩を挙げることができ、酸付加塩としては、例えば、塩酸塩、硫酸塩、硝酸塩などの鉱酸塩、メタンスルホン酸塩、パラトルエンスルホン酸塩、クエン酸塩、シュウ酸塩などの有機酸塩を挙げることができる。アミノ酸塩としてはグリシン塩などを例示することができる。もっとも、本発明の化合物の塩はこれらに限定されることはない。 The compound represented by the above formula (I) may exist as a salt. Examples of such salts include base addition salts, acid addition salts, amino acid salts and the like. Examples of the base addition salt include metal salts such as sodium salt, potassium salt, calcium salt, magnesium salt, ammonium salt, or organic amine salts such as triethylamine salt, piperidine salt, morpholine salt, and acid addition salt. Examples thereof include mineral acid salts such as hydrochloride, sulfate, and nitrate, and organic acid salts such as methanesulfonate, paratoluenesulfonate, citrate, and oxalate. Examples of amino acid salts include glycine salts. However, the salt of the compound of the present invention is not limited to these.
 式(I)で表される化合物は、置換基の種類に応じて1個または2個以上の不斉炭素を有する場合があり、光学異性体又はジアステレオ異性体などの立体異性体が存在する場合がある。純粋な形態の立体異性体、立体異性体の任意の混合物、ラセミ体などはいずれも本発明の範囲に包含される。 The compound represented by the formula (I) may have one or more asymmetric carbons depending on the type of substituent, and there are stereoisomers such as optical isomers or diastereoisomers. There is a case. Pure forms of stereoisomers, any mixture of stereoisomers, racemates, and the like are all within the scope of the present invention.
 式(I)で表される化合物は、水和物又は溶媒和物として存在する場合もあるが、これらの物質はいずれも本発明の範囲に包含される。溶媒和物を形成する溶媒の種類は特に限定されないが、例えば、エタノール、アセトン、イソプロパノールなどの溶媒を例示することができる。 The compound represented by the formula (I) may exist as a hydrate or a solvate, and any of these substances is included in the scope of the present invention. Although the kind of solvent which forms a solvate is not specifically limited, For example, solvents, such as ethanol, acetone, isopropanol, can be illustrated.
 本発明の化合物は、必要に応じて試薬の調製に通常用いられる添加剤を配合して組成物として用いてもよい。例えば、生理的環境で用いるための添加剤として、溶解補助剤、pH調節剤、緩衝剤、等張化剤などの添加剤を用いることができ、これらの配合量は当業者に適宜選択可能である。これらの組成物は、粉末形態の混合物、凍結乾燥物、顆粒剤、錠剤、液剤など適宜の形態の組成物として提供され得る。 The compound of the present invention may be used as a composition by blending additives usually used in the preparation of reagents as required. For example, additives such as solubilizers, pH adjusters, buffers, and tonicity agents can be used as additives for use in a physiological environment, and the amount of these can be appropriately selected by those skilled in the art. is there. These compositions can be provided as a composition in an appropriate form such as a powder-form mixture, a lyophilized product, a granule, a tablet, or a liquid.
 本明細書の実施例には、式(I)で表される本発明の化合物に包含される代表的化合物についての製造方法が具体的に示されているので、当業者は本明細書の開示を参照することにより、及び必要に応じて出発原料や試薬などを適宜選択することにより、式(I)に包含される任意の化合物を容易に製造することができる。その他、当該製造方法における反応温度や反応時間等の反応条件は、後述の実施例において代表的な例として詳細に記載するが、必ずしもそれらに限定されるわけではなく、当該技術分野における当業者であれば、有機合成における一般的な知識に基づいてそれぞれ適宜選択可能である。 In the examples of the present specification, production methods for representative compounds included in the compounds of the present invention represented by the formula (I) are specifically shown. Any compound included in formula (I) can be easily produced by referring to, and appropriately selecting starting materials and reagents as necessary. In addition, reaction conditions such as reaction temperature and reaction time in the production method will be described in detail as typical examples in the examples described later, but are not necessarily limited thereto, and those skilled in the art will not be limited thereto. If there are, they can be appropriately selected based on general knowledge in organic synthesis.
 式(I)で表される化合物は、pHをトリガーとした機能性分子の逐次徐放用担体として用いることができ、例えば、ドラッグデリバリーシステムとして用いることができる。これにより、薬剤等の同一又は異なる種類の機能性分子を所望の順番で、pHをトリガーとして逐次放出することができる。 The compound represented by the formula (I) can be used as a carrier for sequential sustained release of functional molecules triggered by pH, for example, as a drug delivery system. Thereby, the same or different types of functional molecules such as drugs can be sequentially released in the desired order using pH as a trigger.
 以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらによって限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
[実施例1]
[合成]
1.Z-Ser(H-Val-Phe-Phe-Ala-Glu-Asp-Val-Gly-Ser-Pro)-NH2(化合物1)の合成
Figure JPOXMLDOC01-appb-C000004


 NovaPEG Rink-amide resin (0.1 mmol) に対し、Z-Ser-OH (59 mg, 0.25 mmol)、N,N’-diisopropylcarbodiimide (DIC, 38 μL, 0.25 mmol)、1-hydroxybenzotriazole (HOBt, 38 mg, 0.25 mmol)およびN,N-dimethylformamide (DMF, 2 mL) を加え、室温で 2 時間振盪した。続いて、Fmoc-Pro-OH (505 mg, 1.5 mmol) を加え、CH2Cl2 中、DIC (231 μL, 1.5 mmol) および DMAP (1.2 mg, 0.01 mmol) 存在下で 24時間振盪した。Pro残基のNa-Fmoc 基の除去は 20% piperidine/DMF (v/v) を加えて 1 分間手動で振盪した後、反応溶液を濾過し、新たに 20% piperidine/DMF を加え10 分間振盪することにより行った。次に、Fmoc-Gly-Ser(tBu)-OH (55 mg, 0.12 mmol)を、DIC (18 μL, 0.12 mmol)、1-hydroxybenzotriazole (HOBt, 18 mg, 0.12 mmol)存在下、DMF中、5時間反応させることにより縮合した。その後、Fmoc基の除去およびFmocアミノ酸の導入を順次繰り返し、保護ペプチド樹脂を構築した。AspおよびGluの側鎖保護基にはtBu基を採用した。樹脂を MeOH で洗浄、真空ポンプで乾燥した後(380 mg)、triisopropylsilane-H2O-trifluoroacetic acid (2.5:2.5:95) 中で 180分間撹拌し、樹脂の濾過、濾液の濃縮、Et2O による再沈殿を経て白色固体を得た (38 mg)。一部の粗ペプチド(8 mg)を逆相HPLC (0.1% aqueous TFA-CH3CN system) により精製し、凍結乾燥を経て白色無晶形 1 を得た (3.5 mg)。
収率: 13%; MALDI-MS (TOF): Mcalc: 1287.3; M+Nafound: 1306.2; 逆相ODSカラムおける保持時間 = 21.7 min (column:YMC-Pack ODS-AM (4.6 x 150 mm), 0-100% CH3CN in 0.1% aqueous TFA)
[Example 1]
[Synthesis]
1. Synthesis of Z-Ser (H-Val-Phe-Phe-Ala-Glu-Asp-Val-Gly-Ser-Pro) -NH 2 (Compound 1)
Figure JPOXMLDOC01-appb-C000004


NovaPEG Rink-amide resin (0.1 mmol) vs. Z-Ser-OH (59 mg, 0.25 mmol), N, N'-diisopropylcarbodiimide (DIC, 38 μL, 0.25 mmol), 1-hydroxybenzotriazole (HOBt, 38 mg, 0.25 mmol) and N, N-dimethylformamide (DMF, 2 mL) were added, and the mixture was shaken at room temperature for 2 hours. Subsequently, Fmoc-Pro-OH (505 mg, 1.5 mmol) was added, and the mixture was shaken in CH 2 Cl 2 in the presence of DIC (231 μL, 1.5 mmol) and DMAP (1.2 mg, 0.01 mmol) for 24 hours. After removal of the N a -Fmoc group of Pro residues which was shaken by hand for 1 minute by adding 20% piperidine / DMF (v / v), the reaction solution was filtered, 10 minutes added freshly 20% piperidine / DMF This was done by shaking. Next, Fmoc-Gly-Ser (tBu) -OH (55 mg, 0.12 mmol) was added in DMF in the presence of DIC (18 μL, 0.12 mmol) and 1-hydroxybenzotriazole (HOBt, 18 mg, 0.12 mmol). Condensation was carried out by reacting for hours. Thereafter, removal of the Fmoc group and introduction of the Fmoc amino acid were sequentially repeated to construct a protected peptide resin. The tBu group was adopted as the side chain protecting group of Asp and Glu. The resin was washed with MeOH, dried with a vacuum pump (380 mg), stirred in triisopropylsilane-H 2 O-trifluoroacetic acid (2.5: 2.5: 95) for 180 minutes, filtered, filtered and concentrated with Et 2 O. A white solid was obtained via reprecipitation by (38 mg). A part of the crude peptide (8 mg) was purified by reverse phase HPLC (0.1% aqueous TFA-CH 3 CN system), and lyophilized to obtain white amorphous form 1 (3.5 mg).
Yield: 13%; MALDI-MS (TOF): M calc : 1287.3; M + Na found : 1306.2; Retention time in reverse phase ODS column = 21.7 min (column: YMC-Pack ODS-AM (4.6 x 150 mm) , 0-100% CH 3 CN in 0.1% aqueous TFA)
2.Z-Ser(H-Val-Phe-Phe-Ala-Glu-Asp-Val-Gly-Ser-D-Pro)-NH2(化合物2)の合成
Figure JPOXMLDOC01-appb-C000005


 化合物1と同様の方法により合成した。収率: 16%; ESI-MS (TOF): Mcalc: 644.30; [M+2H]2+ found: 644.29; 逆相ODSカラムおける保持時間 = 20.2 min (column:YMC-Pack ODS-AM (4.6 x 150 mm), 0-100% CH3CN in 0.1% aqueous TFA)
2. Synthesis of Z-Ser (H-Val-Phe-Phe-Ala-Glu-Asp-Val-Gly-Ser- D-Pro) -NH 2 (Compound 2)
Figure JPOXMLDOC01-appb-C000005


Synthesis was performed in the same manner as for compound 1. Yield: 16%; ESI-MS (TOF): M calc : 644.30; [M + 2H] 2+ found : 644.29; Retention time in reversed-phase ODS column = 20.2 min (column: YMC-Pack ODS-AM (4.6 x 150 mm), 0-100% CH 3 CN in 0.1% aqueous TFA)
3.Z-Thr(H-Val-Phe-Phe-Ala-Glu-Asp-Val-Gly-Ser-Pro)-NH2(化合物3)の合成
Figure JPOXMLDOC01-appb-C000006


 化合物1と同様の方法により合成した。収率: 10%; ESI-MS (TOF): Mcalc: 651.31; [M+2H]2+ found: 651.29; 逆相ODSカラムおける保持時間 = 20.4 min (column:YMC-Pack ODS-AM (4.6 x 150 mm), 0-100% CH3CN in 0.1% aqueous TFA)
3. Synthesis of Z-Thr (H-Val-Phe-Phe-Ala-Glu-Asp-Val-Gly-Ser-Pro) -NH 2 (compound 3)
Figure JPOXMLDOC01-appb-C000006


Synthesis was performed in the same manner as for compound 1. Yield: 10%; ESI-MS (TOF): M calc : 651.31; [M + 2H] 2+ found : 651.29; Retention time in reversed-phase ODS column = 20.4 min (column: YMC-Pack ODS-AM (4.6 x 150 mm), 0-100% CH 3 CN in 0.1% aqueous TFA)
4.Z-Ser(Z-Ala-Ser(Fmoc-Gly-Ser-Pro)-Pro)-(Arg)3-NH2(化合物4)の合成
Figure JPOXMLDOC01-appb-C000007


 化合物1と同様の方法によりZ-Ser(H-Pro)-(Arg)3-NH-resinを構築後、Z-Ala-Serを縮合し、Z-Ser(Z-Ala-Ser-Pro)-(Arg)3-NH-resinを合成した。化合物1と同様の方法を用いて、Serの側鎖ヒドロキシ基に対してFmoc-Pro-OHを縮合(2つ目のエステル結合を構築)、Fmoc基の除去、Fmoc-Gly-Ser(tBu)-OHの縮合、脱樹脂・脱保護、HPLC精製を行うことにより化合物4を合成した。
収率: 2%; MALDI-MS (TOF): Mcalc: 1559.7; M+Hfound: 1560.9; 逆相ODSカラムおける保持時間 = 23.3 min (column:YMC-Pack ODS-AM (4.6 x 150 mm), 0-100% CH3CN in 0.1% aqueous TFA)
4). Synthesis of Z-Ser (Z-Ala-Ser (Fmoc-Gly-Ser-Pro) -Pro)-(Arg) 3 -NH 2 (compound 4)
Figure JPOXMLDOC01-appb-C000007


After constructing Z-Ser (H-Pro)-(Arg) 3 -NH-resin by the same method as for Compound 1, Z-Ala-Ser is condensed and Z-Ser (Z-Ala-Ser-Pro)- (Arg) 3 -NH-resin was synthesized. Using the same method as for compound 1, Fmoc-Pro-OH is condensed to the side chain hydroxy group of Ser (constructing the second ester bond), Fmoc group is removed, Fmoc-Gly-Ser (tBu) Compound 4 was synthesized by -OH condensation, deresinification / deprotection, and HPLC purification.
Yield: 2%; MALDI-MS (TOF): M calc : 1559.7; M + H found : 1560.9; Retention time in reverse phase ODS column = 23.3 min (column: YMC-Pack ODS-AM (4.6 x 150 mm) , 0-100% CH 3 CN in 0.1% aqueous TFA)
5.蛍光団を有するペプチド(化合物5)の合成
Figure JPOXMLDOC01-appb-C000008


 Dnp NovaTag resin (0.050 mmol) に対し、Fmoc-Arg(Pbf)-OH (82.9 mg, 0.125 mmol)、1-[bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxid hexafluorophosphate (HATU, 47.5 mg, 0.125 mmol)、N,N-diisopropylethylamine (DIEA, 54.4 μL, 0.125 mmol) およびN,N-dimethylformamide (DMF, 2 mL) を加え、室温で 1 時間振盪した。Arg残基のNa-Fmoc基の除去は 20% piperidine/DMF (v/v) を加えて 1 分間手動で振盪した後、反応溶液を濾過し、新たに 20% piperidine/DMF を加え10 分間振盪することにより行った。DMFによる洗浄の後、Fmoc-Arg(Pbf)-OH (82.9 mg, 0.125 mmol) を加え、DMF 中、HATU (47.5 mg, 0.125 mmol)およびDIEA (54.4 μL, 0.125 mmol) 存在下で 1時間振盪した。同様に、Fmoc基の除去およびFmoc-Arg(Pbf)-OHの導入、Fmoc基の除去およびZ-Ser-OHの導入を行った。続いて、Fmoc-Pro-OH (253 mg, 0.75 mmol) を加え、CH2Cl2 中、DIC (116 μL, 0.75 mmol) および DMAP (0.6 mg, 0.005 mmol) 存在下で 20時間振盪した。Fmoc基を除去した後、Fmoc-Gly-Ser-OH (48 mg, 0.125 mmol)を、HATU (47.5 mg, 0.125 mmol) およびDIEA (54.4 μL, 0.125 mmol) 存在下、DMF中1時間反応させることにより縮合した。同様に、Fmoc基の除去および 7-Methoxycoumarin-4-acetic acid (Mca-OH, 17.6 mg, 0.125 μmol) の導入を行った。樹脂を MeOH で洗浄、真空ポンプで乾燥した後(192 mg)、triisopropylsilane-H2O-trifluoroacetic acid (2.5:2.5:95) 中で 60分間撹拌し、樹脂の濾過、濾液の濃縮、Et2O による再沈殿を経て白色固体を得た。一部の粗ペプチドを逆相HPLC (0.1% aqueous TFA-CH3CN system) により精製し、凍結乾燥を経て白色無晶形 5 を得た (0.5 mg)。
収率: 3%; ESI-MS (TOF): Mcalc: 458.53; [M+3H]3+ found: 458.53; 逆相ODSカラムにおける保持時間 = 19.9 min (column:YMC-Pack ODS-AM (4.6 x 150 mm), 0-100% CH3CN in 0.1% aqueous TFA)
5. Synthesis of peptide having fluorophore (compound 5)
Figure JPOXMLDOC01-appb-C000008


For Dnp NovaTag resin (0.050 mmol), Fmoc-Arg (Pbf) -OH (82.9 mg, 0.125 mmol), 1- [bis (dimethylamino) methylene] -1H-1,2,3-triazolo [4,5- b] Add pyridinium 3-oxid hexafluorophosphate (HATU, 47.5 mg, 0.125 mmol), N, N-diisopropylethylamine (DIEA, 54.4 μL, 0.125 mmol) and N, N-dimethylformamide (DMF, 2 mL) for 1 hour at room temperature Shake. After removal of the N a -Fmoc group of Arg residues shaking manually for one minute by addition of 20% piperidine / DMF (v / v), the reaction solution was filtered, 10 minutes added freshly 20% piperidine / DMF This was done by shaking. After washing with DMF, add Fmoc-Arg (Pbf) -OH (82.9 mg, 0.125 mmol) and shake for 1 hour in DMF in the presence of HATU (47.5 mg, 0.125 mmol) and DIEA (54.4 μL, 0.125 mmol). did. Similarly, removal of Fmoc group and introduction of Fmoc-Arg (Pbf) -OH, removal of Fmoc group and introduction of Z-Ser-OH were performed. Subsequently, Fmoc-Pro-OH (253 mg, 0.75 mmol) was added, and the mixture was shaken in CH 2 Cl 2 for 20 hours in the presence of DIC (116 μL, 0.75 mmol) and DMAP (0.6 mg, 0.005 mmol). After removing the Fmoc group, react Fmoc-Gly-Ser-OH (48 mg, 0.125 mmol) in DMF for 1 hour in the presence of HATU (47.5 mg, 0.125 mmol) and DIEA (54.4 μL, 0.125 mmol). Condensed by Similarly, the Fmoc group was removed and 7-Methoxycoumarin-4-acetic acid (Mca-OH, 17.6 mg, 0.125 μmol) was introduced. The resin was washed with MeOH, dried with a vacuum pump (192 mg), then stirred in triisopropylsilane-H 2 O-trifluoroacetic acid (2.5: 2.5: 95) for 60 minutes, filtered with resin, concentrated in filtrate, Et 2 O A white solid was obtained through reprecipitation. A portion of the crude peptide was purified by reverse phase HPLC (0.1% aqueous TFA-CH 3 CN system), and lyophilized to obtain white amorphous form 5 (0.5 mg).
Yield: 3%; ESI-MS (TOF): M calc : 458.53; [M + 3H] 3+ found : 458.53; Retention time on reverse phase ODS column = 19.9 min (column: YMC-Pack ODS-AM (4.6 x 150 mm), 0-100% CH 3 CN in 0.1% aqueous TFA)
[実施例2]
[アミド切断反応]
 実施例1で得られた化合物5 (0.17 mg, 0.1 μmol) を0.1 Mリン酸バッファー(pH 7.4)/DMSO (95:5, v/v, 100 μL)に溶解し37 ℃の恒温槽にて静置し、経時的にアミド切断反応をモニターした。得られたHPLCチャートとMassスペクトルの結果を図4に示す。この結果から、24時間後には、ほぼ全ての化合物5において7-メトキシクマリンを有する部位の放出反応が進行していることが確認された。
[Example 2]
[Amide cleavage reaction]
Compound 5 (0.17 mg, 0.1 μmol) obtained in Example 1 was dissolved in 0.1 M phosphate buffer (pH 7.4) / DMSO (95: 5, v / v, 100 μL) in a thermostatic chamber at 37 ° C. The amide cleavage reaction was monitored over time. The obtained HPLC chart and the result of Mass spectrum are shown in FIG. From this result, it was confirmed that the release reaction of the site having 7-methoxycoumarin progressed in almost all the compounds 5 after 24 hours.
 同様の溶液条件下において、第1の繰り返し単位内にフルオレイン及び第2の繰り返し単位内にフェニルを有する化合物4についてのアミド切断を観測した。その結果、図5に示すように、2段階での逐次放出反応が進行することを確認した。
Figure JPOXMLDOC01-appb-C000009

Under similar solution conditions, amide cleavage was observed for compound 4 with fluorin in the first repeat unit and phenyl in the second repeat unit. As a result, as shown in FIG. 5, it was confirmed that the sequential release reaction in two stages proceeded.
Figure JPOXMLDOC01-appb-C000009

[実施例3]
[蛍光スペクトル測定]
上記化合物5の反応液 3 μLを水で3 mLに希釈した水溶液に対し、蛍光光度計にて325 nmで励起し蛍光スペクトルを得た。結果を図6に示す。図6より、経時的に380nmをピークとする蛍光強度が増大した。これは、FRET機構により、反応以前の7-メトキシクマリン部位が分子内に存在する状態では消光団によって蛍光が抑えられていたものが、化合物5から7-メトキシクマリン部位が放出するに伴って蛍光が回復したことを示すものである(図7)。
[Example 3]
[Fluorescence spectrum measurement]
An aqueous solution obtained by diluting 3 μL of the reaction solution of Compound 5 to 3 mL with water was excited at 325 nm with a fluorometer to obtain a fluorescence spectrum. The results are shown in FIG. From FIG. 6, the fluorescence intensity peaking at 380 nm increased with time. This is because the fluorescence was suppressed by the quencher when the 7-methoxycoumarin moiety before the reaction was present in the molecule due to the FRET mechanism. Indicates that the recovery has occurred (FIG. 7).

Claims (12)

  1. 以下の式(I)で表される繰り返し単位を有する化合物:
    Figure JPOXMLDOC01-appb-C000001


    〔式中、Aは、機能性分子を有する基であり;Bは、スペーサー基であり;Rは、水素原子、カルボニル、置換基を有していてもよいC~Cアルキル、置換基を有していてもよいアルコキシ、又は置換基を有していてもよいアリールであり;Rは、水素原子又は置換基を有していてもよいC~C10アルキルであり;及び、nは、1又は2の整数である。〕
    A compound having a repeating unit represented by the following formula (I):
    Figure JPOXMLDOC01-appb-C000001


    [Wherein A is a group having a functional molecule; B is a spacer group; R 1 is a hydrogen atom, carbonyl, C 1 -C 5 alkyl optionally having substituent, substituted An optionally substituted alkoxy, or an optionally substituted aryl; R 2 is a hydrogen atom or an optionally substituted C 1 -C 10 alkyl; and , N is an integer of 1 or 2. ]
  2. 前記機能性分子が蛍光団、ペプチド、核酸、香料、味覚を呈する化合物、及び低分子医薬化合物よりなる群から選択される、請求項1に記載の化合物。 The compound according to claim 1, wherein the functional molecule is selected from the group consisting of a fluorophore, a peptide, a nucleic acid, a fragrance, a compound exhibiting a taste, and a low molecular weight pharmaceutical compound.
  3. 前記機能性分子が、蛍光共鳴エネルギー移動(FRET)のドナーとなる蛍光団である、請求項1に記載の化合物。 The compound according to claim 1, wherein the functional molecule is a fluorophore serving as a donor of fluorescence resonance energy transfer (FRET).
  4. 末端となる繰り返し単位に蛍光共鳴エネルギー移動(FRET)のアクセプターとなる消光団を更に有する、請求項3に記載の化合物。 The compound according to claim 3, further comprising a quencher that serves as an acceptor of fluorescence resonance energy transfer (FRET) in the terminal repeating unit.
  5. 各繰り返し単位において、機能性分子が異なる種類の分子である、請求項1に記載の化合物。 The compound according to claim 1, wherein in each repeating unit, the functional molecule is a different type of molecule.
  6. Bが、アミド基を有する構造である、請求項1に記載の化合物。 The compound according to claim 1, wherein B has a structure having an amide group.
  7. がカルボニルである、請求項1に記載の化合物。 The compound of claim 1, wherein R 1 is carbonyl.
  8. が水素原子又はメチルである、請求項1に記載の化合物。 The compound according to claim 1, wherein R 2 is a hydrogen atom or methyl.
  9. nが1である、請求項1に記載の化合物。 The compound of claim 1, wherein n is 1.
  10. が水素原子であり、nが1である、請求項1に記載の化合物。 The compound according to claim 1, wherein R 2 is a hydrogen atom and n is 1.
  11. 請求項1~10のいずれか1に記載の化合物を含む、機能性分子の逐次徐放用担体。 A carrier for sequential and sustained release of functional molecules, comprising the compound according to any one of claims 1 to 10.
  12. 請求項1~10のいずれか1に記載の化合物を含む、ドラッグデリバリーシステム。 A drug delivery system comprising the compound according to any one of claims 1 to 10.
PCT/JP2015/054423 2014-03-10 2015-02-18 System for sequential controlled release of functional molecule WO2015137064A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-046681 2014-03-10
JP2014046681A JP2015168669A (en) 2014-03-10 2014-03-10 Successive controlled release system for functional molecule

Publications (1)

Publication Number Publication Date
WO2015137064A1 true WO2015137064A1 (en) 2015-09-17

Family

ID=54071514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/054423 WO2015137064A1 (en) 2014-03-10 2015-02-18 System for sequential controlled release of functional molecule

Country Status (2)

Country Link
JP (1) JP2015168669A (en)
WO (1) WO2015137064A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003226638A (en) * 2002-01-30 2003-08-12 National Institute Of Advanced Industrial & Technology Target-tropic liposome

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003226638A (en) * 2002-01-30 2003-08-12 National Institute Of Advanced Industrial & Technology Target-tropic liposome

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
EDOSADA C.Y. ET AL.: "Peptide substrate profiling defines fibroblast activation protein as an endopeptidase of strict Gly2-Pro1- cleaving specificity", FEBS LETTERS, vol. 580, no. 6, 2006, pages 1581 - 1586, XP028030263, ISSN: 0014-5793 *
KANA TANABE ET AL.: "Cascade Amide Setsudan Hanno o Riyo shita Bunshi Chikuji Joho System no Kaihatsu", POLYMER PREPRINTS, JAPAN, vol. 63, no. 1, 9 May 2014 (2014-05-09), pages 3311 - 3312 *
KANA TANABE ET AL.: "Renzokuteki Amide Ketsugo Setsudan Hanno o Riyo shita Kinosei Bunshi Chikuji Joho System no Kaihatsu", 94TH ANNUAL MEETING OF THE CHEMICAL SOCIETY OF JAPAN IN SPRING 2014 NEN KOEN YOKOSHU III, vol. 94 th, no. 3, 12 March 2014 (2014-03-12), pages 972 *
TENNANT-EYLES R.J. ET AL.: "Peptide templated glycosidic bond formation: a new strategy for oligosaccharide synthesis", CHEM. COMMUN., 1999, pages 1037 - 1038, XP055224339 *
TENNANT-EYLES R.J. ET AL.: "Peptide templated glycosylation reactions", TETRAHEDRON : ASYMMETRY, vol. 11, no. 1, 2000, pages 231 - 243, XP004202382, ISSN: 0957-4166 *

Also Published As

Publication number Publication date
JP2015168669A (en) 2015-09-28

Similar Documents

Publication Publication Date Title
CA2224437A1 (en) Pyridinone-thrombin inhibitors
KR20090017523A (en) Substituted prolinamides, production thereof and their use as drugs
CN103298826A (en) Dipeptide analogs for treating conditions associated with amyloid fibril formation
JP2012529482A (en) 2,3-Dihydro-1H-indene compounds and their use to treat cancer
Harris et al. Synthesis of proline-modified analogues of the neuroprotective agent glycyl-l-prolyl-glutamic acid (GPE)
Lai et al. Synthesis and pharmacological evaluation of glycine-modified analogues of the neuroprotective agent glycyl-L-prolyl-L-glutamic acid (GPE)
JPWO2016006678A1 (en) Fluorescent probe for detection of dipeptidyl peptidase IV
JP7238123B2 (en) Method for producing peptide compound, protecting group-forming reagent, and condensed polycyclic aromatic hydrocarbon compound
JP2017043615A (en) Cyclopropane amino acid unit that improves membrane permeability and/or metabolic stability of cyclic peptide
WO2021177336A1 (en) Peptide and cell membrane permeation agent
CA2233860A1 (en) Thrombin inhibitors
CN110240631B (en) Chiral isoindolone cyclopeptide derivative, preparation method and application thereof
WO2015137064A1 (en) System for sequential controlled release of functional molecule
JP6638016B2 (en) Cyclopeptide, pharmaceutical or cosmetic composition containing the same, and method for producing the same
KR101146849B1 (en) ?-amino acid derivatives and use thereof as medicines
JP2016152772A (en) Novel umami-taste imparting agent
Hiebl et al. Large‐scale synthesis of hematoregulatory nonapeptide SK&F 107647 by fragment coupling
JP4734656B2 (en) Method for producing PF1022
HU208838B (en) Method for producing peptones containing aza aminoacides by means of solid-phase synthesis
US7482473B2 (en) Coumarin derivative
KR20190092429A (en) Process for preparing diazepine derivative
CA2648136A1 (en) Process for the manufacture of lysobactin derivatives
EP1628956B1 (en) A process for the preparation of compounds having an ace inhibitory action
WO2024043249A1 (en) Cyclic peptide or salt thereof and mdmx inhibitor
JP2000154198A (en) Solid phase synthesis of cyclic depsipeptide and its intermediate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15762368

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15762368

Country of ref document: EP

Kind code of ref document: A1