WO2015136654A1 - Refrigerating device - Google Patents

Refrigerating device Download PDF

Info

Publication number
WO2015136654A1
WO2015136654A1 PCT/JP2014/056576 JP2014056576W WO2015136654A1 WO 2015136654 A1 WO2015136654 A1 WO 2015136654A1 JP 2014056576 W JP2014056576 W JP 2014056576W WO 2015136654 A1 WO2015136654 A1 WO 2015136654A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature side
condenser
high temperature
refrigerant
housing
Prior art date
Application number
PCT/JP2014/056576
Other languages
French (fr)
Japanese (ja)
Inventor
宮井 純一
池田 隆
杉本 猛
山下 哲也
亮宜 倉地
祐二 垂水
博文 原井川
勝徳 堀内
幅紀 佐藤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2014/056576 priority Critical patent/WO2015136654A1/en
Publication of WO2015136654A1 publication Critical patent/WO2015136654A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • F24F1/16Arrangement or mounting thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/46Component arrangements in separate outdoor units
    • F24F1/48Component arrangements in separate outdoor units characterised by air airflow, e.g. inlet or outlet airflow
    • F24F1/50Component arrangements in separate outdoor units characterised by air airflow, e.g. inlet or outlet airflow with outlet air in upward direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0426Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with units having particular arrangement relative to the large body of fluid, e.g. with interleaved units or with adjacent heat exchange units in common air flow or with units extending at an angle to each other or with units arranged around a central element
    • F28D1/0435Combination of units extending one behind the other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/18Optimization, e.g. high integration of refrigeration components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • F28D2021/007Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/02Arrangements of fins common to different heat exchange sections, the fins being in contact with different heat exchange media

Definitions

  • the present invention relates to a refrigeration apparatus in which two refrigerant circuits (refrigeration cycles) are cascade-connected.
  • a refrigeration apparatus that performs a dual refrigeration cycle by cascade-connecting a high-temperature refrigerant circuit (high-temperature refrigeration cycle) and a low-temperature refrigerant circuit (low-temperature refrigeration cycle) via a cascade capacitor is known.
  • a pre-stage radiator intermediate cooler
  • the pre-stage radiator is condensed in the high-temperature side refrigerant circuit in the air passage formed by the blowing means.
  • the condenser of the high temperature side refrigeration circuit and the intercooler of the low temperature side refrigerant circuit are separately arranged.
  • the condenser of the high temperature side refrigeration circuit and the intercooler of the low temperature side refrigerant circuit are manufactured separately. For this reason, there has been a problem that it is difficult to balance the heat exchange amount (air volume) of the condenser of the high-temperature side refrigeration circuit and the heat exchange amount (air volume) of the intermediate cooler of the low-temperature side refrigerant circuit.
  • the manufacturing cost is increased.
  • the present invention has been made to solve the above-described problems.
  • the heat exchange amount (air volume) of the condenser of the high-temperature side refrigeration circuit and the heat exchange amount (air volume) of the intermediate cooler of the low-temperature side refrigerant circuit It is possible to obtain a refrigeration apparatus that is easy to balance. Moreover, the freezing apparatus which can reduce manufacturing cost is obtained.
  • the refrigeration apparatus includes a first refrigerant circuit in which a first compressor, a first condenser, a first throttling device, and a first evaporator are sequentially connected by piping, and a refrigerant circulates, a second compressor, an intermediate A cooler, a second condenser, a second expansion device, and a second evaporator are sequentially connected to each other by pipes, the refrigerant is circulated, the first evaporator, and the second condenser; A cascade condenser that exchanges heat between the refrigerant flowing through the first evaporator and the refrigerant flowing through the second condenser; and a blower that supplies air to the first condenser and the intercooler. At least a part of one condenser and the intermediate cooler are configured by an integrated heat exchanger in which heat transfer fins are integrated.
  • the refrigeration apparatus of the present invention it is possible to easily balance the heat exchange amount (air volume) of the condenser of the high-temperature side refrigeration circuit and the heat exchange amount (air volume) of the intercooler of the low-temperature side refrigerant circuit. it can. In addition, the manufacturing cost can be reduced.
  • FIG. 1 is a refrigerant circuit diagram schematically showing a refrigerant circuit configuration of a refrigeration apparatus according to Embodiment 1 of the present invention.
  • the refrigeration apparatus 100 includes a high temperature side refrigerant circuit A and a low temperature side refrigerant circuit (load side circuit) B.
  • the high temperature side refrigerant circuit A and the low temperature side refrigerant circuit B are cascade-connected via a cascade capacitor 13.
  • the refrigeration apparatus 100 performs a dual refrigeration cycle by circulating refrigerant in each of the high temperature side refrigerant circuit A and the low temperature side refrigerant circuit B.
  • the level of temperature, pressure, etc. is not particularly determined in relation to absolute values, but in the state, operation, etc. of the refrigeration apparatus 100. It shall be relatively determined.
  • a two-stage refrigeration cycle including two refrigerant circuits will be described.
  • the refrigeration apparatus according to the present invention includes three or more refrigeration cycles (multi-source refrigeration apparatus). Is included.
  • the high temperature side refrigerant circuit A includes a high temperature side compressor 1, a high temperature side condenser 2, a high temperature side expansion valve 3, and a high temperature side evaporator 4.
  • the high temperature side compressor 1, the high temperature side condenser 2, the high temperature side expansion valve 3, and the high temperature side evaporator 4 are connected in series by a high temperature side refrigerant pipe 51.
  • a liquid pipe side (high temperature) service valve 5 is provided in the liquid piping portion on the outlet side of the high temperature side condenser 2.
  • a suction side (high temperature) service valve 6 is provided on the suction side of the high temperature side compressor 1.
  • an HFC (hydrofluorocarbon) refrigerant for example, an HFC (hydrofluorocarbon) refrigerant, an HFO (hydrofluoroolefin) refrigerant, an HC (hydrocarbon) refrigerant, or the like is used.
  • HFC refrigerant include R410A, R404A, R32, R407C, and the like.
  • the high temperature side compressor 1 sucks the refrigerant flowing through the high temperature side refrigerant circuit A.
  • the high temperature side compressor 1 compresses the sucked refrigerant and discharges it in a high temperature and high pressure state.
  • the high temperature side condenser 2 performs heat exchange between the refrigerant discharged from the high temperature side compressor 1 and the air.
  • the high temperature side condenser 2 is comprised by the fin tube type heat exchanger which has a heat exchanger tube and many radiation fins, for example.
  • the high temperature side expansion valve 3 decompresses and expands the refrigerant that has flowed out of the high temperature side condenser 2.
  • the high temperature side evaporator 4 performs heat exchange between the refrigerant decompressed by the high temperature side expansion valve 3 and the refrigerant flowing through the low temperature side condenser 9 of the low temperature side refrigerant circuit B.
  • the high temperature side evaporator 4 and the low temperature side condenser 9 constitute a cascade condenser 13.
  • the cascade condenser 13 is composed of, for example, a plate type heat exchanger.
  • the cascade condenser 13 is not limited to a plate heat exchanger, and may be a shell-and-tube heat exchanger, a double tube heat exchanger, or the like.
  • the liquid pipe side service valve 5 is installed on the outlet side of the high temperature side condenser 2 and on the upstream side of the high temperature side expansion valve 3.
  • the liquid pipe side service valve 5 is used to perform operations such as evacuation of the high temperature side refrigerant circuit A and charging of the refrigerant into the high temperature side refrigerant circuit A.
  • the suction side service valve 6 is installed on the suction side of the high temperature side compressor 1 and on the downstream side of the high temperature side evaporator 4.
  • the suction side service valve 6 is used to perform operations such as evacuation of the high temperature side refrigerant circuit A and filling of refrigerant into the high temperature side refrigerant circuit A.
  • the high temperature side compressor 1, the high temperature side condenser 2, the high temperature side expansion valve 3, the high temperature side evaporator 4, the liquid pipe side service valve 5, and the suction side service valve 6 are accommodated in an outdoor unit 14. Yes.
  • the high temperature side compressor 1 corresponds to the “first compressor” in the present invention.
  • the high temperature side condenser 2 corresponds to a “first condenser” in the present invention.
  • the high temperature side expansion valve 3 corresponds to a “first throttle device” in the present invention.
  • the high temperature side evaporator 4 corresponds to the “first evaporator” in the present invention.
  • the low temperature side refrigerant circuit B includes a low temperature side compressor 7, an intermediate cooler 8, a low temperature side condenser 9, a liquid receiver 10, a low temperature side expansion valve 16, and a low temperature side evaporator 17.
  • the low temperature side compressor 7, the intermediate cooler 8, the low temperature side condenser 9, the liquid receiver 10, the low temperature side expansion valve 16, and the low temperature side evaporator 17 are connected in series by a low temperature side refrigerant pipe 52. Piping is connected.
  • a liquid pipe side (low temperature) service valve 11 is provided in the liquid piping portion on the outlet side of the liquid receiver 10.
  • a suction side (low temperature) service valve 12 is provided on the suction side of the low temperature side compressor 7.
  • a liquid pipe solenoid valve 15 is provided between the liquid pipe side service valve 11 and the low temperature side expansion valve 16.
  • the refrigerant circulating through the low-temperature side refrigerant circuit B for example, a carbon dioxide (CO 2 ) refrigerant having a global warming potential (GWP) of 1 is used.
  • coolant used for the low temperature side refrigerant circuit B is not limited to a carbon dioxide.
  • the low temperature side compressor 7 sucks the refrigerant flowing through the low temperature side refrigerant circuit B.
  • the low temperature side compressor 7 compresses the sucked refrigerant and discharges it in a high temperature and high pressure state.
  • the intercooler 8 performs heat exchange between the refrigerant discharged from the low temperature side compressor 7 and the air.
  • the intercooler 8 is constituted by, for example, a fin tube type heat exchanger having a heat transfer tube and a large number of radiating fins.
  • the low temperature side condenser 9 exchanges heat between the refrigerant that has flowed out of the intermediate cooler 8 and the refrigerant that flows through the high temperature side evaporator 4 of the high temperature side refrigerant circuit A.
  • the liquid receiver 10 stores excess refrigerant out of the refrigerant flowing out from the low-temperature side condenser 9.
  • the low temperature side expansion valve 16 decompresses and expands the refrigerant that has flowed out of the liquid receiver 10.
  • the low temperature side evaporator 17 performs heat exchange between the refrigerant decompressed by the low temperature side expansion valve 16 and a fluid (for example, air, water, a refrigerant, or brine).
  • the liquid pipe side service valve 11 is installed on the outlet side of the liquid receiver 10 and on the upstream side of the low temperature side expansion valve 16.
  • the liquid pipe side service valve 11 is used to perform operations such as evacuation of the low temperature side refrigerant circuit B and charging of the refrigerant into the low temperature side refrigerant circuit B.
  • the suction side service valve 12 is installed on the suction side of the low temperature side compressor 7 and on the downstream side of the low temperature side evaporator 17.
  • the suction side service valve 12 is used to perform operations such as evacuation of the low temperature side refrigerant circuit B and filling of the refrigerant into the low temperature side refrigerant circuit B.
  • the liquid pipe solenoid valve 15 is used to perform operations such as evacuation of the low temperature side refrigerant circuit B and filling of the refrigerant into the low temperature side refrigerant circuit B.
  • the low temperature side compressor 7, the intermediate cooler 8, the low temperature side condenser 9, the liquid receiver 10, the liquid pipe side service valve 11, and the suction side service valve 12 are accommodated in the outdoor unit 14.
  • the liquid pipe solenoid valve 15, the low temperature side expansion valve 16, and the low temperature side evaporator 17 are accommodated in the load side unit 18.
  • the low temperature side compressor 7 corresponds to the “second compressor” in the present invention.
  • the low temperature side condenser 9 corresponds to a “second condenser” in the present invention.
  • the low temperature side expansion valve 16 corresponds to a “second throttle device”.
  • the low temperature side evaporator 17 corresponds to a “second evaporator” in the present invention.
  • the refrigerant flowing into the high temperature side condenser 2 is condensed and liquefied by heat exchange with air, and becomes a refrigerant in a liquid phase state at a high pressure.
  • the high-pressure and liquid-phase refrigerant that has flowed out of the high-temperature side condenser 2 is decompressed by the high-temperature-side expansion valve 3, and becomes a low-temperature and low-pressure refrigerant in the gas-liquid two-phase state.
  • This low-temperature low-pressure refrigerant in the gas-liquid two-phase state evaporates by exchanging heat with the refrigerant flowing through the low-temperature side condenser 9 of the low-temperature side refrigerant circuit B in the high-temperature side evaporator 4 constituting the cascade condenser 13. It becomes a gas-phase refrigerant at low pressure.
  • the refrigerant flowing through the low temperature side condenser 9 of the low temperature side refrigerant circuit B is cooled.
  • the refrigerant flowing out from the high temperature side evaporator 4 is sucked into the high temperature side compressor 1 again.
  • This low-temperature low-pressure refrigerant in the gas-liquid two-phase state evaporates by exchanging heat with the refrigerant flowing through the low-temperature side condenser 9 of the low-temperature side refrigerant circuit B in the high-temperature side evaporator 4 constituting the cascade condenser 13. It becomes a gas-phase refrigerant at low pressure.
  • the refrigerant flowing into the low temperature side condenser 9 is condensed by exchanging heat with the refrigerant flowing through the high temperature side evaporator 4 of the high temperature side refrigerant circuit A, and becomes a low temperature and high pressure liquid phase refrigerant. At this time, the refrigerant flowing through the high temperature side evaporator 4 of the high temperature side refrigerant circuit A is heated.
  • the low-temperature and high-pressure liquid-phase refrigerant that has flowed out of the low-temperature side condenser 9 flows into the liquid receiver 10.
  • a part of the refrigerant that has flowed into the liquid receiver 10 is stored as surplus refrigerant, and the remainder flows into the low temperature side expansion valve 16.
  • the high-pressure and liquid-phase refrigerant that has flowed into the low-temperature side expansion valve 16 is decompressed and becomes a gas-liquid two-phase refrigerant.
  • the low-temperature and low-pressure gas-liquid two-phase refrigerant flows into the low-temperature evaporator 17.
  • the refrigerant evaporates by exchanging heat with a fluid (here, air), and becomes a high temperature and low pressure gas phase refrigerant. At this time, the space to be cooled is cooled in the load side unit 18. The low-pressure gas-phase refrigerant that has flowed out of the low-temperature side evaporator 17 is sucked into the low-temperature side compressor 7 again.
  • a fluid here, air
  • the state in which the liquid receiver 10 is connected as one of the components of the low temperature side refrigerant circuit B has been described as an example.
  • the present invention is not limited to this, and the liquid receiver 10 is not necessarily limited thereto. Need not be connected.
  • a liquid receiver such as an accumulator may be connected to the suction side of the low temperature side compressor 7 instead of the liquid receiver 10.
  • the liquid receiver may determine the presence / absence of connection and the selection of the type depending on the application of the refrigeration apparatus 100 and the refrigerant used.
  • the load side unit 18 accommodates a liquid pipe solenoid valve 15, a low temperature side expansion valve 16, and a low temperature side evaporator 17.
  • the load side unit 18 is used as, for example, a refrigerated freezer showcase or a unit cooler.
  • the load side unit 18 is pipe-connected so as to be separable from the outdoor unit 14 via the liquid pipe side service valve 11 and the suction side service valve 12. For example, when installing the refrigeration apparatus 100, the outdoor unit 14 and the load-side unit 18 are transported separately and connected by piping on site.
  • FIG. 2 is an internal perspective view schematically showing the internal configuration of the outdoor unit according to Embodiment 1 of the present invention.
  • FIG. 3 is a perspective view schematically showing the configuration of the outdoor unit according to Embodiment 1 of the present invention.
  • FIG. 4 is a plan view schematically showing the configuration of the outdoor unit according to Embodiment 1 of the present invention.
  • the outdoor unit 14 includes a high temperature side housing 19 and a low temperature side housing 20.
  • the high temperature side casing 19 and the low temperature side casing 20 are configured by casings having the same outer shape.
  • the high temperature side casing 19 and the low temperature side casing 20 share a bottom plate with a common base 21.
  • the high temperature side casing 19 and the low temperature side casing 20 are installed adjacent to each other on the common mount 21.
  • the high temperature side housing 19 has a high temperature side outlet 30 on the upper surface.
  • casing 20 has the low temperature side blower outlet 31 on the upper surface.
  • the high temperature side housing 19 has a high temperature side suction port 32 on a side surface.
  • the low temperature side housing 20 has a low temperature side suction port 33 on a side surface.
  • the high temperature side casing 19 includes a high temperature side compressor 1, a part of the high temperature side condenser 2, a high temperature side expansion valve 3, a liquid pipe side service valve 5, a suction side service valve 6, a high temperature side blower 22, and a high temperature side.
  • a side controller 24 is installed.
  • the other part of the high temperature side condenser 2 is installed in the low temperature side housing 20.
  • the high temperature side condenser 2 installed in the high temperature side housing 19 is installed along the high temperature side suction port 32.
  • the high temperature side condenser 2 installed in the high temperature side housing 19 has a U-shaped cross section, for example.
  • the high temperature side blower 22 is installed on the upper portion of the high temperature side casing 19 and supplies air to the high temperature side condenser 2.
  • the high temperature side blower 22 is arranged on the upper side compared to the high temperature side condenser 2, sucks air from the high temperature side suction port 32, and passes the air that has passed through the high temperature side condenser 2 to the high temperature side outlet 19 of the high temperature side casing 19. Blow out from 30.
  • the high temperature side controller 24 executes various controls of the high temperature side equipment.
  • a high temperature side controller operation switch 25 is provided around or inside the high temperature side controller 24.
  • the high temperature side controller operation switch 25 receives an instruction to the high temperature side controller 24.
  • the liquid pipe side service valve 5 and the suction side service valve 6 are preferably arranged in the vicinity of the right side wall of the high temperature side casing 19 (in the vicinity of the side wall away from the low temperature side casing 20).
  • the liquid pipe side service valve 5 and the suction side service valve 6 By installing the liquid pipe side service valve 5 and the suction side service valve 6 at this position, it contributes to the improvement of workability and maintainability. That is, an operator who performs the installation of the outdoor unit 14 (for example, new installation or model exchange) and an operator who performs maintenance of the outdoor unit 14 (periodic maintenance, failure diagnosis, etc.) enclose the wrong refrigerant. The possibility of being lost can be reduced.
  • the low temperature side housing 20 includes a low temperature side compressor 7, another part of the high temperature side condenser 2, an intermediate cooler 8, a liquid receiver 10, a liquid pipe side service valve 11, a suction side service valve 12, a cascade condenser. 13. A low temperature side blower 23 and a low temperature side controller 26 are installed.
  • the high temperature side condenser 2 and the intermediate cooler 8 installed in the low temperature side housing 20 are configured as an integrated heat exchanger.
  • the intermediate cooler 8 is disposed in the low temperature side housing 20 at a position closer to the low temperature side blower 23 than the high temperature side condenser 2.
  • the high temperature side condenser 2 and the intermediate cooler 8 installed in the low temperature side housing 20 are installed along the low temperature side suction port 33.
  • the high temperature side condenser 2 and the intermediate cooler 8 installed in the low temperature side housing 20 have, for example, a U-shaped cross section.
  • the low temperature side blower 23 is installed in the upper part of the low temperature side housing 20 and supplies air to the high temperature side condenser 2.
  • the low temperature side blower 23 is disposed on the upper side compared to the intermediate cooler 8, sucks air from the low temperature side suction port 33, and passes through the high temperature side condenser 2 and the intermediate cooler 8 installed in the low temperature side housing 20.
  • the blown air is blown out from the low temperature side air outlet 31 of the low temperature side housing 20.
  • the low temperature side controller 26 executes various controls of the low temperature side equipment.
  • a low temperature side controller operation switch 27 is provided around or inside the low temperature side controller 26. The low temperature side controller operation switch 27 receives an instruction to the low temperature side controller 26.
  • the liquid pipe side service valve 11 and the suction side service valve 12 are desirably arranged in the vicinity of the left side wall of the low temperature side housing 20 (near the side wall on the side away from the high temperature side housing 19).
  • the liquid pipe side service valve 11 and the suction side service valve 12 By installing the liquid pipe side service valve 11 and the suction side service valve 12 at this position, it contributes to the improvement of workability and maintainability. That is, an operator who performs the installation (for example, new installation or model exchange) of the outdoor unit 14 and an operator who performs maintenance (periodic maintenance or failure diagnosis) of the outdoor unit 14 enclose the wrong refrigerant. Can be reduced.
  • cascade capacitor 13 extending over both the high temperature side and the low temperature side may be arranged in either the high temperature side casing 19 or the low temperature side casing 20 in consideration of the arrangement condition or the like.
  • the high temperature side casing 19 corresponds to the “high temperature side casing 19” in the present invention.
  • the low temperature side casing 20 corresponds to the “low temperature side casing 20” in the present invention.
  • the high temperature side blower 22 and the low temperature side blower 23 correspond to the “blower” in the present invention.
  • the high temperature side blower 22 corresponds to the “high temperature side blower 22” in the present invention.
  • the low temperature side blower 23 corresponds to a “second blower” in the present invention.
  • the ratio of the processing capacity of the high temperature side condenser 2 of the high temperature side refrigerant circuit A and the processing capacity of the intermediate cooler 8 of the low temperature side refrigerant circuit B is about 7: 3. Therefore, a part of the high temperature side condenser 2 is also installed in the low temperature side housing 20 in accordance with the ratio between the processing capacity of the high temperature side condenser 2 and the processing capacity of the intermediate cooler 8.
  • FIG. 5 is a diagram schematically showing the configuration of the high-temperature side condenser and the intercooler according to Embodiment 1 of the present invention.
  • the heat exchanger constituting the high temperature side condenser 2 and the intermediate cooler 8 includes heat transfer fins 41 and heat transfer tubes 42.
  • the heat transfer fins 41 have, for example, a plate shape, are stacked at a predetermined interval, and air flows between them.
  • the heat transfer tube 42 is provided so as to penetrate the heat transfer fins 41, and the refrigerant circulates therein.
  • a plurality of heat transfer tubes 42 are arranged in the row direction (the horizontal direction on the paper surface) and in the step direction (the vertical direction on the paper surface).
  • the number of stages and the number of rows of the heat transfer tubes 42 illustrated in FIG. 5 are merely examples, and the present invention is not limited thereto.
  • a part of the intermediate cooler 8 and the high temperature side condenser 2 installed in the low temperature side housing 20 is constituted by an integrated heat exchanger in which the heat transfer fins 41 are integrated.
  • the high temperature side condenser 2 installed in the high temperature side housing 19 flows in the column direction after the refrigerant flows in from the inlet pipe 51a and branches in the step direction, and then flows in the row direction sequentially. Then, the refrigerant that has flowed out of the high temperature side condenser 2 installed in the high temperature side casing 19 flows into the high temperature side condenser 2 installed in the low temperature side casing 20 via the relay pipe 51b.
  • the refrigerant that has flowed into the high-temperature side condenser 2 installed in the low-temperature side casing 20 branches in the stage direction, then turns back at the end side of the heat transfer tube 42, sequentially flows in the row direction, and flows out from the outlet pipe 51c. .
  • the distribution direction is not limited to this.
  • the refrigerant may flow from the high temperature side condenser 2 installed in the low temperature side housing 20 to the high temperature side condenser 2 installed in the high temperature side housing 19.
  • the intercooler 8 installed in the low-temperature side casing 20 flows in from the inlet pipe 52a, branches in the step direction, then turns back at the end side of the heat transfer pipe 42, and sequentially flows in the column direction. It flows out of 52b.
  • the heat exchanger is divided into upper and lower parts so that the upper part functions as an intermediate cooler 8 and the lower part functions as a part of the high-temperature side condenser 2. That is, the intermediate cooler 8 is disposed in the low temperature side housing 20 at a position closer to the low temperature side blower 23 than the high temperature side condenser 2.
  • the processing capacity (heat exchange capacity) of the intermediate cooler 8 and the high temperature side condenser 2 is changed when the amount of air supplied is changed.
  • the ratio is greatly affected.
  • the amount of air supplied into the low temperature side housing 20 becomes smaller as the distance from the low temperature side blower 23 increases as the equipment in the housing becomes an obstacle to the air flow.
  • the air volume supplied into the low temperature side casing 20 is turbulent due to obstacles such as equipment in the casing, and the air volume changes as the distance from the low temperature side blower 23 increases.
  • the balance between the heat exchange amount of the high temperature side condenser 2 and the heat exchange amount of the intermediate cooler 8 can be stabilized.
  • the air volume to the intercooler 8 increases, and the heat exchange amount increases. That is, the size (number of stages) of the intermediate cooler 8 can be reduced.
  • the air volume supplied from the high temperature side blower 22 into the high temperature side casing 19 is the same as the air volume supplied from the low temperature side blower 23 into the low temperature side casing 20.
  • the air volume is made the same.
  • the same type of blower for the high temperature side blower 22 and the low temperature side blower 23 it is not necessary to install a blower having different power in each casing, leading to cost reduction.
  • the number of stages of refrigerant pipes of the heat exchanger that constitutes a part of the high temperature side condenser 2 disposed in the high temperature side casing 19, and other than the high temperature side condenser 2 disposed in the low temperature side casing 20 It is desirable that the number of refrigerant pipes of the heat exchanger constituting the intermediate cooler 8 and the number of refrigerant pipes be the same. Thereby, the ratio of the heat exchange amount can be accurately adjusted by the ratio between the number of stages of the high temperature side condenser 2 and the number of stages of the intermediate cooler 8 installed in the low temperature side casing 20.
  • a part of the high temperature side condenser 2 and the intermediate cooler 8 are configured as an integrated heat exchanger in which the heat transfer fins 41 are integrated. For this reason, the positional relationship between a part of the high temperature side condenser 2 and the intercooler 8 with respect to the low temperature side blower 23 can be ensured with high accuracy. Therefore, the balance of the heat exchange amount (air volume) can be stabilized. Further, the manufacturing cost can be reduced by adopting the integrated type.
  • the intermediate cooler 8 is disposed in the outdoor unit 14 at a position closer to the low temperature side blower 23 than the high temperature side condenser 2. For this reason, the air volume of the air passing through the intercooler 8 is increased, and the amount of heat exchange is increased. Therefore, the size of the intermediate cooler 8 for ensuring the heat exchange amount necessary for the intermediate cooler 8 can be reduced. Moreover, since the intermediate cooler 8 can be made small, the space of the high temperature side condenser 2 can be enlarged. That is, the refrigerating capacity with respect to the size of the device is improved.
  • the ratio of the number of stages of the heat exchanger constituting the high temperature side condenser 2 and the number of stages of the heat exchanger constituting the intermediate cooler 8 will be described.
  • the number of stages for improving the COP at the rated outside air temperature and the number of stages for reducing the power consumption (annual power consumption) in one year will be described.
  • the number of stages of the high temperature side condenser 2 arranged in the high temperature side casing 19 is 60
  • the total number of stages of the high temperature side condenser 2 and the intermediate cooler 8 arranged in the low temperature side casing 20 is 60.
  • the number of rows of the high temperature side condenser 2 and the intermediate cooler 8 is three.
  • the air volume of the high temperature side fan 22 and the air volume of the low temperature side fan 23 are made the same.
  • the outdoor unit 14 is installed outdoors, and the load side unit 18 is installed in a refrigerated warehouse.
  • the outside air temperature is 7 to 40 ° C as a parameter, and the inside temperature of the refrigerated warehouse is 0 ° C.
  • the rated outside air temperature is 32 ° C., and the rated capacity is 25 kW at this rated outside air temperature.
  • the air volume of each blower is controlled so that the condensation temperature of the high-temperature side condenser 2 becomes the outside air temperature + 10 ° C. It is assumed that the input power to the blower changes in proportion to the air volume of the blower.
  • FIG. 6 shows the result of calculating the COP for the following conditions under the above conditions.
  • the number of stages of the high-temperature side condenser 2 is 120.
  • the number of stages of the intercooler 8 is 4, and the number of stages of the high-temperature side condenser 2 is 116.
  • the number of stages of the intermediate cooler 8 is 10 and the number of stages of the high-temperature side condenser 2 is 110.
  • the number of stages of the intermediate cooler 8 is 20 and the number of stages of the high-temperature side condenser 2 is 100.
  • the number of stages of the intermediate cooler 8 is 30, and the number of stages of the high-temperature side condenser 2 is 90.
  • the number of stages of the intermediate cooler 8 is 60 and the number of stages of the high-temperature side condenser 2 is 60. As shown in FIG. 6, when the number of stages of the intermediate cooler 8 is 20, the COP is 1.88 and becomes the maximum. Further, when the number of stages of the intercooler 8 is 10 and 30, it is a relatively high value.
  • the annual power consumption is calculated by calculating the power consumption at each outdoor temperature (input power to each compressor + input power to each blower) and calculating an approximate expression of the input power characteristics with respect to the outside air temperature. create. Then, the annual accumulated time of the outside air temperature in the area assumed to be used is investigated, and the power consumption amount at each outside air temperature is calculated and summed to calculate the annual power consumption amount.
  • the annual cumulative time in Tokyo is used.
  • the results of calculating the annual power consumption are shown in FIG. As shown in FIG. 8, when the number of stages of the intercooler 8 is 10, 20, and 30, the annual power consumption is reduced. The number of stages of the intermediate cooler 8 is minimum when the number of stages is 10.
  • the COP at the rated outside air temperature is adjusted by adjusting the ratio of the number of stages of the intermediate cooler 8 and the high temperature side condenser 2 installed in the low temperature side housing 20 to 1: 5 to 3: 3. Can be improved, and the annual power consumption can be reduced.

Abstract

A refrigerating device is characterized by comprising: a high-temperature side refrigerant circuit (A) in which a high-temperature side compressor (1), a high-temperature side condenser (2), a high-temperature side expansion valve (3), and a high-temperature side evaporator (4) are sequentially connected by piping and in which a refrigerant circulates; a low-temperature side refrigerant circuit (B) in which a low-temperature side compressor (7), an intercooler (8), a low-temperature side condenser (9), a low-temperature side expansion valve (16), and a low-temperature side evaporator (17) are sequentially connected by piping and in which a refrigerant circulates; a cascade condenser (13) that comprises the high-temperature side evaporator (4) and the low-temperature side condenser (9) and in which heat exchange is performed between the refrigerant flowing in the high-temperature side evaporator (4) and the refrigerant flowing in the low-temperature side condenser (9); and a blower that supplies air to the high-temperature side condenser (2) and the intercooler (8). The device is also characterized in that at least a portion of the high-temperature side condenser (2) and the intercooler (8) comprise an integrated heat exchanger in which heat transfer fins (42) are integrated.

Description

冷凍装置Refrigeration equipment
 本発明は、2つの冷媒回路(冷凍サイクル)をカスケード接続した冷凍装置に関する。 The present invention relates to a refrigeration apparatus in which two refrigerant circuits (refrigeration cycles) are cascade-connected.
 従来、高温側冷媒回路(高温側冷凍サイクル)と低温側冷媒回路(低温側冷凍サイクル)とを、カスケードコンデンサを介してカスケード接続して、二元冷凍サイクルを行う冷凍装置が知られている。
 このような冷凍装置において、低温側冷媒回路を循環する冷媒の放熱を行う前段放熱器(中間冷却器)を備え、送風手段が形成する風路内において、前段放熱器を高温側冷媒回路の凝縮器の下流側に配置したものが提案されている(例えば、特許文献1参照)。
2. Description of the Related Art Conventionally, a refrigeration apparatus that performs a dual refrigeration cycle by cascade-connecting a high-temperature refrigerant circuit (high-temperature refrigeration cycle) and a low-temperature refrigerant circuit (low-temperature refrigeration cycle) via a cascade capacitor is known.
In such a refrigeration apparatus, a pre-stage radiator (intermediate cooler) that radiates the refrigerant circulating in the low-temperature side refrigerant circuit is provided, and the pre-stage radiator is condensed in the high-temperature side refrigerant circuit in the air passage formed by the blowing means. The thing arrange | positioned in the downstream of a container is proposed (for example, refer patent document 1).
特開2008-2759号公報(段落[0029]、図1)JP 2008-2759 A (paragraph [0029], FIG. 1)
 しかしながら、従来の冷凍装置では、高温側冷凍回路の凝縮器と低温側冷媒回路の中間冷却器とが別々に配置されている。
 また、従来の冷凍装置では、高温側冷凍回路の凝縮器と低温側冷媒回路の中間冷却器とが別々に製造されている。
 このため、高温側冷凍回路の凝縮器の熱交換量(風量)と、低温側冷媒回路の中間冷却器の熱交換量(風量)とのバランスを取ることが難しい、という問題点があった。
 また、製造コストが高くなる、という問題点があった。
However, in the conventional refrigeration apparatus, the condenser of the high temperature side refrigeration circuit and the intercooler of the low temperature side refrigerant circuit are separately arranged.
Moreover, in the conventional refrigeration apparatus, the condenser of the high temperature side refrigeration circuit and the intercooler of the low temperature side refrigerant circuit are manufactured separately.
For this reason, there has been a problem that it is difficult to balance the heat exchange amount (air volume) of the condenser of the high-temperature side refrigeration circuit and the heat exchange amount (air volume) of the intermediate cooler of the low-temperature side refrigerant circuit.
In addition, there is a problem that the manufacturing cost is increased.
 本発明は、上記のような課題を解決するためになされたもので、高温側冷凍回路の凝縮器の熱交換量(風量)と、低温側冷媒回路の中間冷却器の熱交換量(風量)とのバランスが取り易い冷凍装置を得るものである。
 また、製造コストを低減することができる冷凍装置を得るものである。
The present invention has been made to solve the above-described problems. The heat exchange amount (air volume) of the condenser of the high-temperature side refrigeration circuit and the heat exchange amount (air volume) of the intermediate cooler of the low-temperature side refrigerant circuit. It is possible to obtain a refrigeration apparatus that is easy to balance.
Moreover, the freezing apparatus which can reduce manufacturing cost is obtained.
 本発明に係る冷凍装置は、第1圧縮機、第1凝縮器、第1絞り装置、及び第1蒸発器が順次配管接続され、冷媒が循環する第1冷媒回路と、第2圧縮機、中間冷却器、第2凝縮器、第2絞り装置、及び第2蒸発器が順次配管接続され、冷媒が循環する第2冷媒回路と、前記第1蒸発器と前記第2凝縮器とで構成され、前記第1蒸発器を流れる冷媒と前記第2凝縮器を流れる冷媒とが熱交換を行うカスケードコンデンサと、前記第1凝縮器及び前記中間冷却器に空気を供給する送風機と、を備え、前記第1凝縮器の少なくとも一部及び前記中間冷却器は、伝熱フィンが一体化された一体型の熱交換器で構成されたことを特徴とする。 The refrigeration apparatus according to the present invention includes a first refrigerant circuit in which a first compressor, a first condenser, a first throttling device, and a first evaporator are sequentially connected by piping, and a refrigerant circulates, a second compressor, an intermediate A cooler, a second condenser, a second expansion device, and a second evaporator are sequentially connected to each other by pipes, the refrigerant is circulated, the first evaporator, and the second condenser; A cascade condenser that exchanges heat between the refrigerant flowing through the first evaporator and the refrigerant flowing through the second condenser; and a blower that supplies air to the first condenser and the intercooler. At least a part of one condenser and the intermediate cooler are configured by an integrated heat exchanger in which heat transfer fins are integrated.
 本発明に係る冷凍装置によれば、高温側冷凍回路の凝縮器の熱交換量(風量)と、低温側冷媒回路の中間冷却器の熱交換量(風量)とのバランスを取り易くすることができる。
 また、製造コストを低減することができる。
According to the refrigeration apparatus of the present invention, it is possible to easily balance the heat exchange amount (air volume) of the condenser of the high-temperature side refrigeration circuit and the heat exchange amount (air volume) of the intercooler of the low-temperature side refrigerant circuit. it can.
In addition, the manufacturing cost can be reduced.
本発明の実施の形態1に係る冷凍装置の冷媒回路構成を概略的に示す冷媒回路図である。It is a refrigerant circuit figure which shows roughly the refrigerant circuit structure of the refrigeration apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る室外ユニットの内部構成を概略的に示す内部透視図である。It is an internal perspective view which shows roughly the internal structure of the outdoor unit which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る室外ユニットの構成を概略的に示す斜視図である。It is a perspective view which shows roughly the structure of the outdoor unit which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る室外ユニットの構成を概略的に示す平面図である。It is a top view which shows roughly the structure of the outdoor unit which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る高温側凝縮器及び中間冷却器の構成を概略的に示す図である。It is a figure which shows schematically the structure of the high temperature side condenser and intermediate cooler which concern on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷凍装置の定格COPの算出結果を示す図である。It is a figure which shows the calculation result of the rated COP of the refrigeration apparatus which concerns on Embodiment 1 of this invention. 使用地域における外気温度と年間累計時間との関係を示す図である。It is a figure which shows the relationship between the external temperature in a use area, and annual accumulation time. 本発明の実施の形態1に係る冷凍装置の年間消費電力量の算出結果を示す図である。It is a figure which shows the calculation result of the annual power consumption of the freezing apparatus which concerns on Embodiment 1 of this invention.
 以下、本発明の実施の形態を図面に基づいて説明する。
 なお、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
In the following drawings, the size relationship of each component may be different from the actual one.
実施の形態1.
[構成]
 図1は、本発明の実施の形態1に係る冷凍装置の冷媒回路構成を概略的に示す冷媒回路図である。
 図1に示すように、冷凍装置100は、高温側冷媒回路A、及び低温側冷媒回路(負荷側回路)Bを有する。
 高温側冷媒回路Aと低温側冷媒回路Bとは、カスケードコンデンサ13を介して、カスケード接続されている。
 冷凍装置100は、高温側冷媒回路Aと低温側冷媒回路Bとのそれぞれで、冷媒を循環させることで二元冷凍サイクルを行う。
Embodiment 1 FIG.
[Constitution]
FIG. 1 is a refrigerant circuit diagram schematically showing a refrigerant circuit configuration of a refrigeration apparatus according to Embodiment 1 of the present invention.
As shown in FIG. 1, the refrigeration apparatus 100 includes a high temperature side refrigerant circuit A and a low temperature side refrigerant circuit (load side circuit) B.
The high temperature side refrigerant circuit A and the low temperature side refrigerant circuit B are cascade-connected via a cascade capacitor 13.
The refrigeration apparatus 100 performs a dual refrigeration cycle by circulating refrigerant in each of the high temperature side refrigerant circuit A and the low temperature side refrigerant circuit B.
 ここで、低温側、高温側と称する構成における、温度、圧力等の高低については、特に絶対的な値との関係で高低等が定まっているものではなく、冷凍装置100における状態、動作等において相対的に定まるものとする。
 なお、本実施の形態1では、2つの冷媒回路を備えた二元冷凍サイクルについて説明するが、本発明に係る冷凍装置には、3つ以上の冷凍サイクルを備えた冷凍装置(多元冷凍装置)が含まれる。
Here, in the configuration referred to as the low temperature side and the high temperature side, the level of temperature, pressure, etc. is not particularly determined in relation to absolute values, but in the state, operation, etc. of the refrigeration apparatus 100. It shall be relatively determined.
In the first embodiment, a two-stage refrigeration cycle including two refrigerant circuits will be described. However, the refrigeration apparatus according to the present invention includes three or more refrigeration cycles (multi-source refrigeration apparatus). Is included.
(高温側冷媒回路A)
 高温側冷媒回路Aは、高温側圧縮機1と、高温側凝縮器2と、高温側膨張弁3と、高温側蒸発器4と、を有する。
 高温側圧縮機1と、高温側凝縮器2と、高温側膨張弁3と、高温側蒸発器4とは、高温側冷媒配管51によって、直列に配管接続されている。
(High temperature side refrigerant circuit A)
The high temperature side refrigerant circuit A includes a high temperature side compressor 1, a high temperature side condenser 2, a high temperature side expansion valve 3, and a high temperature side evaporator 4.
The high temperature side compressor 1, the high temperature side condenser 2, the high temperature side expansion valve 3, and the high temperature side evaporator 4 are connected in series by a high temperature side refrigerant pipe 51.
 高温側冷媒回路Aには、高温側凝縮器2の出口側の液配管部に、液管側(高温)サービスバルブ5が設けられている。
 高温側冷媒回路Aには、高温側圧縮機1の吸入側に、吸入側(高温)サービスバルブ6が設けられている。
In the high temperature side refrigerant circuit A, a liquid pipe side (high temperature) service valve 5 is provided in the liquid piping portion on the outlet side of the high temperature side condenser 2.
In the high temperature side refrigerant circuit A, a suction side (high temperature) service valve 6 is provided on the suction side of the high temperature side compressor 1.
 高温側冷媒回路Aを循環させる冷媒は、例えば、HFC(ハイドロフルオロカーボン)冷媒、HFO(ハイドロフルオロオレフィン)冷媒、又は、HC(ハイドロカーボン)冷媒等を使用する。
 HFC冷媒としては、R410A、R404A、R32、R407C等がある。
As the refrigerant circulating through the high temperature side refrigerant circuit A, for example, an HFC (hydrofluorocarbon) refrigerant, an HFO (hydrofluoroolefin) refrigerant, an HC (hydrocarbon) refrigerant, or the like is used.
Examples of the HFC refrigerant include R410A, R404A, R32, R407C, and the like.
 高温側圧縮機1は、高温側冷媒回路Aを流れる冷媒を吸入する。
 高温側圧縮機1は、吸入した冷媒を圧縮して、高温且つ高圧の状態にして吐出する。
 高温側凝縮器2は、高温側圧縮機1から吐出された冷媒と、空気との間で熱交換を行う。
 高温側凝縮器2は、例えば、伝熱管と多数の放熱フィンとを有するフィンチューブ型の熱交換器で構成される。
The high temperature side compressor 1 sucks the refrigerant flowing through the high temperature side refrigerant circuit A.
The high temperature side compressor 1 compresses the sucked refrigerant and discharges it in a high temperature and high pressure state.
The high temperature side condenser 2 performs heat exchange between the refrigerant discharged from the high temperature side compressor 1 and the air.
The high temperature side condenser 2 is comprised by the fin tube type heat exchanger which has a heat exchanger tube and many radiation fins, for example.
 高温側膨張弁3は、高温側凝縮器2から流出した冷媒を、減圧して膨張させる。
 高温側蒸発器4は、高温側膨張弁3で減圧された冷媒と、低温側冷媒回路Bの低温側凝縮器9を流れる冷媒との間で熱交換を行う。
 高温側蒸発器4及び低温側凝縮器9は、カスケードコンデンサ13を構成する。
 カスケードコンデンサ13は、例えばプレート式の熱交換器で構成される。
 なお、カスケードコンデンサ13は、プレート式の熱交換器に限定されず、シェルアンドチューブ式の熱交換器、又は二重管式の熱交換器などでも良い。
The high temperature side expansion valve 3 decompresses and expands the refrigerant that has flowed out of the high temperature side condenser 2.
The high temperature side evaporator 4 performs heat exchange between the refrigerant decompressed by the high temperature side expansion valve 3 and the refrigerant flowing through the low temperature side condenser 9 of the low temperature side refrigerant circuit B.
The high temperature side evaporator 4 and the low temperature side condenser 9 constitute a cascade condenser 13.
The cascade condenser 13 is composed of, for example, a plate type heat exchanger.
The cascade condenser 13 is not limited to a plate heat exchanger, and may be a shell-and-tube heat exchanger, a double tube heat exchanger, or the like.
 液管側サービスバルブ5は、高温側凝縮器2の出口側、且つ、高温側膨張弁3の上流側に設置されている。
 液管側サービスバルブ5は、高温側冷媒回路Aの真空引き、及び高温側冷媒回路A内への冷媒の充填等の作業を行うために使用される。
 吸入側サービスバルブ6は、高温側圧縮機1の吸入側、且つ、高温側蒸発器4の下流側に設置されている。
 吸入側サービスバルブ6は、高温側冷媒回路Aの真空引き、及び高温側冷媒回路A内への冷媒の充填等の作業を行うために使用される。
The liquid pipe side service valve 5 is installed on the outlet side of the high temperature side condenser 2 and on the upstream side of the high temperature side expansion valve 3.
The liquid pipe side service valve 5 is used to perform operations such as evacuation of the high temperature side refrigerant circuit A and charging of the refrigerant into the high temperature side refrigerant circuit A.
The suction side service valve 6 is installed on the suction side of the high temperature side compressor 1 and on the downstream side of the high temperature side evaporator 4.
The suction side service valve 6 is used to perform operations such as evacuation of the high temperature side refrigerant circuit A and filling of refrigerant into the high temperature side refrigerant circuit A.
 高温側圧縮機1と、高温側凝縮器2と、高温側膨張弁3と、高温側蒸発器4と、液管側サービスバルブ5と、吸入側サービスバルブ6は、室外ユニット14に収納されている。 The high temperature side compressor 1, the high temperature side condenser 2, the high temperature side expansion valve 3, the high temperature side evaporator 4, the liquid pipe side service valve 5, and the suction side service valve 6 are accommodated in an outdoor unit 14. Yes.
 なお、高温側圧縮機1は、本発明における「第1圧縮機」に相当する。
 高温側凝縮器2は、本発明における「第1凝縮器」に相当する。
 高温側膨張弁3は、本発明における「第1絞り装置」に相当する。
 高温側蒸発器4は、本発明における「第1蒸発器」に相当する。
The high temperature side compressor 1 corresponds to the “first compressor” in the present invention.
The high temperature side condenser 2 corresponds to a “first condenser” in the present invention.
The high temperature side expansion valve 3 corresponds to a “first throttle device” in the present invention.
The high temperature side evaporator 4 corresponds to the “first evaporator” in the present invention.
(低温側冷媒回路B)
 低温側冷媒回路Bは、低温側圧縮機7と、中間冷却器8と、低温側凝縮器9と、受液器10と、低温側膨張弁16と、低温側蒸発器17と、を有する。
 低温側圧縮機7と、中間冷却器8と、低温側凝縮器9と、受液器10と、低温側膨張弁16と、低温側蒸発器17とは、低温側冷媒配管52によって、直列に配管接続されている。
(Low temperature side refrigerant circuit B)
The low temperature side refrigerant circuit B includes a low temperature side compressor 7, an intermediate cooler 8, a low temperature side condenser 9, a liquid receiver 10, a low temperature side expansion valve 16, and a low temperature side evaporator 17.
The low temperature side compressor 7, the intermediate cooler 8, the low temperature side condenser 9, the liquid receiver 10, the low temperature side expansion valve 16, and the low temperature side evaporator 17 are connected in series by a low temperature side refrigerant pipe 52. Piping is connected.
 低温側冷媒回路Bには、受液器10の出口側の液配管部に、液管側(低温)サービスバルブ11が設けられている。
 低温側冷媒回路Bには、低温側圧縮機7の吸入側に、吸入側(低温)サービスバルブ12が設けられている。
 液管側サービスバルブ11と低温側膨張弁16との間には、液管電磁弁15が設けられている。
In the low temperature side refrigerant circuit B, a liquid pipe side (low temperature) service valve 11 is provided in the liquid piping portion on the outlet side of the liquid receiver 10.
In the low temperature side refrigerant circuit B, a suction side (low temperature) service valve 12 is provided on the suction side of the low temperature side compressor 7.
A liquid pipe solenoid valve 15 is provided between the liquid pipe side service valve 11 and the low temperature side expansion valve 16.
 低温側冷媒回路Bを循環させる冷媒は、例えば、地球温暖化係数(GWP)が1である二酸化炭素(CO)冷媒を使用する。
 なお、低温側冷媒回路Bに使用する冷媒は、二酸化炭素に限定されない。
As the refrigerant circulating through the low-temperature side refrigerant circuit B, for example, a carbon dioxide (CO 2 ) refrigerant having a global warming potential (GWP) of 1 is used.
In addition, the refrigerant | coolant used for the low temperature side refrigerant circuit B is not limited to a carbon dioxide.
 低温側圧縮機7は、低温側冷媒回路Bを流れる冷媒を吸入する。
 低温側圧縮機7は、吸入した冷媒を圧縮して、高温且つ高圧の状態にして吐出する。
 中間冷却器8は、低温側圧縮機7から吐出された冷媒と、空気との間で熱交換を行う。
 中間冷却器8は、例えば、伝熱管と多数の放熱フィンとを有するフィンチューブ型の熱交換器で構成される。
 低温側凝縮器9は、中間冷却器8から流出された冷媒と、高温側冷媒回路Aの高温側蒸発器4を流れる冷媒との間で熱交換を行う。
 受液器10は、低温側凝縮器9から流出した冷媒のうち、余剰の冷媒を貯留する。
 低温側膨張弁16は、受液器10から流出した冷媒を、減圧して膨張させる。
 低温側蒸発器17は、低温側膨張弁16で減圧された冷媒と、流体(例えば、空気、水、冷媒、又はブライン等)との間で熱交換を行う。
The low temperature side compressor 7 sucks the refrigerant flowing through the low temperature side refrigerant circuit B.
The low temperature side compressor 7 compresses the sucked refrigerant and discharges it in a high temperature and high pressure state.
The intercooler 8 performs heat exchange between the refrigerant discharged from the low temperature side compressor 7 and the air.
The intercooler 8 is constituted by, for example, a fin tube type heat exchanger having a heat transfer tube and a large number of radiating fins.
The low temperature side condenser 9 exchanges heat between the refrigerant that has flowed out of the intermediate cooler 8 and the refrigerant that flows through the high temperature side evaporator 4 of the high temperature side refrigerant circuit A.
The liquid receiver 10 stores excess refrigerant out of the refrigerant flowing out from the low-temperature side condenser 9.
The low temperature side expansion valve 16 decompresses and expands the refrigerant that has flowed out of the liquid receiver 10.
The low temperature side evaporator 17 performs heat exchange between the refrigerant decompressed by the low temperature side expansion valve 16 and a fluid (for example, air, water, a refrigerant, or brine).
 液管側サービスバルブ11は、受液器10の出口側、且つ、低温側膨張弁16の上流側に設置されている。
 液管側サービスバルブ11は、低温側冷媒回路Bの真空引き、及び低温側冷媒回路B内への冷媒の充填等の作業を行うために使用される。
 吸入側サービスバルブ12は、低温側圧縮機7の吸入側、且つ、低温側蒸発器17の下流側に設置されている。
 吸入側サービスバルブ12は、低温側冷媒回路Bの真空引き、及び低温側冷媒回路B内への冷媒の充填等の作業を行うために使用される。
 液管電磁弁15は、低温側冷媒回路Bの真空引き、及び、低温側冷媒回路B内への冷媒の充填等の作業を行うために使用されるものである。
The liquid pipe side service valve 11 is installed on the outlet side of the liquid receiver 10 and on the upstream side of the low temperature side expansion valve 16.
The liquid pipe side service valve 11 is used to perform operations such as evacuation of the low temperature side refrigerant circuit B and charging of the refrigerant into the low temperature side refrigerant circuit B.
The suction side service valve 12 is installed on the suction side of the low temperature side compressor 7 and on the downstream side of the low temperature side evaporator 17.
The suction side service valve 12 is used to perform operations such as evacuation of the low temperature side refrigerant circuit B and filling of the refrigerant into the low temperature side refrigerant circuit B.
The liquid pipe solenoid valve 15 is used to perform operations such as evacuation of the low temperature side refrigerant circuit B and filling of the refrigerant into the low temperature side refrigerant circuit B.
 低温側圧縮機7と、中間冷却器8と、低温側凝縮器9と、受液器10と、液管側サービスバルブ11と、吸入側サービスバルブ12は、室外ユニット14に収納される。
 液管電磁弁15と、低温側膨張弁16と、低温側蒸発器17は、負荷側ユニット18に収納される。
The low temperature side compressor 7, the intermediate cooler 8, the low temperature side condenser 9, the liquid receiver 10, the liquid pipe side service valve 11, and the suction side service valve 12 are accommodated in the outdoor unit 14.
The liquid pipe solenoid valve 15, the low temperature side expansion valve 16, and the low temperature side evaporator 17 are accommodated in the load side unit 18.
 なお、低温側圧縮機7は、本発明における「第2圧縮機」に相当する。
 低温側凝縮器9は、本発明における「第2凝縮器」に相当する。
 低温側膨張弁16は、「第2絞り装置」に相当する。
 低温側蒸発器17は、本発明における「第2蒸発器」に相当する。
The low temperature side compressor 7 corresponds to the “second compressor” in the present invention.
The low temperature side condenser 9 corresponds to a “second condenser” in the present invention.
The low temperature side expansion valve 16 corresponds to a “second throttle device”.
The low temperature side evaporator 17 corresponds to a “second evaporator” in the present invention.
(高温側冷媒回路Aの動作)
 高温側圧縮機1から吐出された高温高圧で気相状態の冷媒は、高温側凝縮器2へ流入する。
 高温側凝縮器2へ流入した冷媒は、空気との熱交換によって凝縮液化され、高圧で液相状態の冷媒となる。
 高温側凝縮器2から流出した高圧で液相状態の冷媒は、高温側膨張弁3で減圧され、低温低圧で気液二相状態の冷媒となる。
 この低温低圧で気液二相状態の冷媒は、カスケードコンデンサ13を構成する高温側蒸発器4で、低温側冷媒回路Bの低温側凝縮器9を流れている冷媒と熱交換して蒸発し、低圧で気相状態の冷媒となる。
 このとき、低温側冷媒回路Bの低温側凝縮器9を流れている冷媒は、冷却される。
 高温側蒸発器4から流出した冷媒は、高温側圧縮機1に再度吸入される。
(Operation of high temperature side refrigerant circuit A)
The high-temperature and high-pressure gas-phase refrigerant discharged from the high-temperature side compressor 1 flows into the high-temperature side condenser 2.
The refrigerant flowing into the high temperature side condenser 2 is condensed and liquefied by heat exchange with air, and becomes a refrigerant in a liquid phase state at a high pressure.
The high-pressure and liquid-phase refrigerant that has flowed out of the high-temperature side condenser 2 is decompressed by the high-temperature-side expansion valve 3, and becomes a low-temperature and low-pressure refrigerant in the gas-liquid two-phase state.
This low-temperature low-pressure refrigerant in the gas-liquid two-phase state evaporates by exchanging heat with the refrigerant flowing through the low-temperature side condenser 9 of the low-temperature side refrigerant circuit B in the high-temperature side evaporator 4 constituting the cascade condenser 13. It becomes a gas-phase refrigerant at low pressure.
At this time, the refrigerant flowing through the low temperature side condenser 9 of the low temperature side refrigerant circuit B is cooled.
The refrigerant flowing out from the high temperature side evaporator 4 is sucked into the high temperature side compressor 1 again.
(低温側冷媒回路Bの動作)
 低温側圧縮機7から吐出された高温高圧で気相状態の冷媒は、中間冷却器8に流入する。
 この中間冷却器8では、高温高圧で気相状態の冷媒と空気とが熱交換し、冷媒が冷却されて若干温度が下がった状態になる。
 中間冷却器8で冷却された冷媒は、カスケードコンデンサ13を構成する低温側凝縮器9に流入する。
 この低温低圧で気液二相状態の冷媒は、カスケードコンデンサ13を構成する高温側蒸発器4で、低温側冷媒回路Bの低温側凝縮器9を流れている冷媒と熱交換して蒸発し、低圧で気相状態の冷媒となる。
 低温側凝縮器9に流入した冷媒は、高温側冷媒回路Aの高温側蒸発器4を流れている冷媒と熱交換して凝縮し、低温高圧の液相状態の冷媒となる。
 このとき、高温側冷媒回路Aの高温側蒸発器4を流れている冷媒は、加温される。
(Operation of low temperature side refrigerant circuit B)
The high-temperature and high-pressure gas-phase refrigerant discharged from the low-temperature side compressor 7 flows into the intercooler 8.
In the intercooler 8, the refrigerant in the gas phase at high temperature and high pressure exchanges heat with the air, and the refrigerant is cooled and the temperature is slightly lowered.
The refrigerant cooled by the intermediate cooler 8 flows into the low temperature side condenser 9 constituting the cascade condenser 13.
This low-temperature low-pressure refrigerant in the gas-liquid two-phase state evaporates by exchanging heat with the refrigerant flowing through the low-temperature side condenser 9 of the low-temperature side refrigerant circuit B in the high-temperature side evaporator 4 constituting the cascade condenser 13. It becomes a gas-phase refrigerant at low pressure.
The refrigerant flowing into the low temperature side condenser 9 is condensed by exchanging heat with the refrigerant flowing through the high temperature side evaporator 4 of the high temperature side refrigerant circuit A, and becomes a low temperature and high pressure liquid phase refrigerant.
At this time, the refrigerant flowing through the high temperature side evaporator 4 of the high temperature side refrigerant circuit A is heated.
 低温側凝縮器9から流出した低温高圧の液相状態の冷媒は、受液器10に流入する。
 受液器10に流入した冷媒は、一部が余剰冷媒として蓄えられ、残りが低温側膨張弁16に流入する。
 低温側膨張弁16に流入した高圧で液相状態の冷媒は、減圧され、気液二相状態の冷媒となる。
 この低温低圧で気液二相状態の冷媒は、低温側蒸発器17に流入する。
 低温側蒸発器17では、冷媒が流体(ここでは空気)と熱交換して蒸発し、高温低圧の気相状態の冷媒となる。
 このとき、負荷側ユニット18では冷却対象空間が冷却される。
 低温側蒸発器17から流出した低圧で気相状態の冷媒は、低温側圧縮機7に再度吸入される。
The low-temperature and high-pressure liquid-phase refrigerant that has flowed out of the low-temperature side condenser 9 flows into the liquid receiver 10.
A part of the refrigerant that has flowed into the liquid receiver 10 is stored as surplus refrigerant, and the remainder flows into the low temperature side expansion valve 16.
The high-pressure and liquid-phase refrigerant that has flowed into the low-temperature side expansion valve 16 is decompressed and becomes a gas-liquid two-phase refrigerant.
The low-temperature and low-pressure gas-liquid two-phase refrigerant flows into the low-temperature evaporator 17.
In the low temperature side evaporator 17, the refrigerant evaporates by exchanging heat with a fluid (here, air), and becomes a high temperature and low pressure gas phase refrigerant.
At this time, the space to be cooled is cooled in the load side unit 18.
The low-pressure gas-phase refrigerant that has flowed out of the low-temperature side evaporator 17 is sucked into the low-temperature side compressor 7 again.
 なお、実施の形態1では、低温側冷媒回路Bの構成要素の1つとして受液器10が接続されている状態を例に説明したが、これに限定するものではなく、必ずしも受液器10を接続しなくてもよい。
 また、受液器10の代わりに低温側圧縮機7の吸入側にアキュムレーター等の受液器を接続するようにしてもよい。
 つまり、受液器は、冷凍装置100の用途及び使用される冷媒等によって、接続の有無、種類の選定を決定すればよい。
In the first embodiment, the state in which the liquid receiver 10 is connected as one of the components of the low temperature side refrigerant circuit B has been described as an example. However, the present invention is not limited to this, and the liquid receiver 10 is not necessarily limited thereto. Need not be connected.
Further, a liquid receiver such as an accumulator may be connected to the suction side of the low temperature side compressor 7 instead of the liquid receiver 10.
In other words, the liquid receiver may determine the presence / absence of connection and the selection of the type depending on the application of the refrigeration apparatus 100 and the refrigerant used.
 次に、各ユニットにおける機器の配置及び機器の詳細を説明する。 Next, the arrangement of devices in each unit and details of the devices will be described.
(負荷側ユニット18)
 負荷側ユニット18には、液管電磁弁15と、低温側膨張弁16と、低温側蒸発器17と、が収容されている。
 負荷側ユニット18は、例えば、冷蔵冷凍ショーケース、ユニットクーラとして利用される。
 負荷側ユニット18は、液管側サービスバルブ11及び吸入側サービスバルブ12を介して、室外ユニット14から分離可能に配管接続されている。
 例えば、冷凍装置100を据え付け時には、室外ユニット14と、負荷側ユニット18とを分離して運搬し、現地にて配管接続する。
(Load side unit 18)
The load side unit 18 accommodates a liquid pipe solenoid valve 15, a low temperature side expansion valve 16, and a low temperature side evaporator 17.
The load side unit 18 is used as, for example, a refrigerated freezer showcase or a unit cooler.
The load side unit 18 is pipe-connected so as to be separable from the outdoor unit 14 via the liquid pipe side service valve 11 and the suction side service valve 12.
For example, when installing the refrigeration apparatus 100, the outdoor unit 14 and the load-side unit 18 are transported separately and connected by piping on site.
(室外ユニット14)
 図2は、本発明の実施の形態1に係る室外ユニットの内部構成を概略的に示す内部透視図である。
 図3は、本発明の実施の形態1に係る室外ユニットの構成を概略的に示す斜視図である。
 図4は、本発明の実施の形態1に係る室外ユニットの構成を概略的に示す平面図である。
 図2~図4に示すように、室外ユニット14は、高温側筐体19と、低温側筐体20とを備える。
 高温側筐体19及び低温側筐体20は、外形が同一の筐体で構成されている。
 高温側筐体19及び低温側筐体20は、底板を共通架台21で共有している。
 高温側筐体19及び低温側筐体20は、共通架台21上に隣接して設置されている。
 高温側筐体19は、上面に高温側吹出口30を有する。
 低温側筐体20は、上面に低温側吹出口31を有する。
 高温側筐体19は、側面に高温側吸込口32を有する。
 低温側筐体20は、側面に低温側吸込口33を有する。
(Outdoor unit 14)
FIG. 2 is an internal perspective view schematically showing the internal configuration of the outdoor unit according to Embodiment 1 of the present invention.
FIG. 3 is a perspective view schematically showing the configuration of the outdoor unit according to Embodiment 1 of the present invention.
FIG. 4 is a plan view schematically showing the configuration of the outdoor unit according to Embodiment 1 of the present invention.
As shown in FIGS. 2 to 4, the outdoor unit 14 includes a high temperature side housing 19 and a low temperature side housing 20.
The high temperature side casing 19 and the low temperature side casing 20 are configured by casings having the same outer shape.
The high temperature side casing 19 and the low temperature side casing 20 share a bottom plate with a common base 21.
The high temperature side casing 19 and the low temperature side casing 20 are installed adjacent to each other on the common mount 21.
The high temperature side housing 19 has a high temperature side outlet 30 on the upper surface.
The low temperature side housing | casing 20 has the low temperature side blower outlet 31 on the upper surface.
The high temperature side housing 19 has a high temperature side suction port 32 on a side surface.
The low temperature side housing 20 has a low temperature side suction port 33 on a side surface.
 高温側筐体19には、高温側圧縮機1、高温側凝縮器2の一部、高温側膨張弁3、液管側サービスバルブ5、吸入側サービスバルブ6、高温側送風機22、及び、高温側制御コントローラ24が設置されている。
 なお、高温側凝縮器2の他の一部は、低温側筐体20に設置されている。
The high temperature side casing 19 includes a high temperature side compressor 1, a part of the high temperature side condenser 2, a high temperature side expansion valve 3, a liquid pipe side service valve 5, a suction side service valve 6, a high temperature side blower 22, and a high temperature side. A side controller 24 is installed.
The other part of the high temperature side condenser 2 is installed in the low temperature side housing 20.
 高温側筐体19に設置された高温側凝縮器2は、高温側吸込口32に沿って設置されている。
 高温側筐体19に設置された高温側凝縮器2は、例えば、断面形状がU字形に形成されている。
The high temperature side condenser 2 installed in the high temperature side housing 19 is installed along the high temperature side suction port 32.
The high temperature side condenser 2 installed in the high temperature side housing 19 has a U-shaped cross section, for example.
 高温側送風機22は、高温側筐体19の上部に設置され、高温側凝縮器2に空気を供給する。
 高温側送風機22は、高温側凝縮器2と比較して上側に配置され、高温側吸込口32から空気を吸い込み、高温側凝縮器2を通過した空気を高温側筐体19の高温側吹出口30から吹き出す。
The high temperature side blower 22 is installed on the upper portion of the high temperature side casing 19 and supplies air to the high temperature side condenser 2.
The high temperature side blower 22 is arranged on the upper side compared to the high temperature side condenser 2, sucks air from the high temperature side suction port 32, and passes the air that has passed through the high temperature side condenser 2 to the high temperature side outlet 19 of the high temperature side casing 19. Blow out from 30.
 高温側制御コントローラ24は、高温側機器の各種制御を実行する。
 高温側制御コントローラ24の周辺又は内部には、高温側制御コントローラ運転スイッチ25が備えられている。
 高温側制御コントローラ運転スイッチ25は、高温側制御コントローラ24への指示を受け付ける。
The high temperature side controller 24 executes various controls of the high temperature side equipment.
A high temperature side controller operation switch 25 is provided around or inside the high temperature side controller 24.
The high temperature side controller operation switch 25 receives an instruction to the high temperature side controller 24.
 液管側サービスバルブ5及び吸入側サービスバルブ6は、高温側筐体19の紙面右側の側壁近傍(低温側筐体20から離れている側の側壁近傍)に配置するのが望ましい。
 この位置に液管側サービスバルブ5及び吸入側サービスバルブ6を設置することによって、作業性及びメンテナンス性の向上に寄与する。
 すなわち、室外ユニット14の据え付け(例えば、新規据え付け、又は機種交換等)作業を行う作業員、及び室外ユニット14のメンテナンス(定期メンテナンス及び故障診断等)を行う作業員が、誤った冷媒を封入してしまう可能性が低減できる。
 なお、現地配管接続用のサイトグラス(図示せず)又はドライヤ(図示せず)を高温側筐体19内に配置しておくとよい。
The liquid pipe side service valve 5 and the suction side service valve 6 are preferably arranged in the vicinity of the right side wall of the high temperature side casing 19 (in the vicinity of the side wall away from the low temperature side casing 20).
By installing the liquid pipe side service valve 5 and the suction side service valve 6 at this position, it contributes to the improvement of workability and maintainability.
That is, an operator who performs the installation of the outdoor unit 14 (for example, new installation or model exchange) and an operator who performs maintenance of the outdoor unit 14 (periodic maintenance, failure diagnosis, etc.) enclose the wrong refrigerant. The possibility of being lost can be reduced.
In addition, it is good to arrange | position the sight glass (not shown) or dryer (not shown) for local piping connection in the high temperature side housing | casing 19. FIG.
 低温側筐体20には、低温側圧縮機7、高温側凝縮器2の他の一部、中間冷却器8、受液器10、液管側サービスバルブ11、吸入側サービスバルブ12、カスケードコンデンサ13、低温側送風機23、及び、低温側制御コントローラ26が設置されている。 The low temperature side housing 20 includes a low temperature side compressor 7, another part of the high temperature side condenser 2, an intermediate cooler 8, a liquid receiver 10, a liquid pipe side service valve 11, a suction side service valve 12, a cascade condenser. 13. A low temperature side blower 23 and a low temperature side controller 26 are installed.
 低温側筐体20に設置された高温側凝縮器2及び中間冷却器8は、一体型の熱交換器で構成される。
 中間冷却器8は、低温側筐体20内のうち、高温側凝縮器2と比較して低温側送風機23に近い位置に配置されている。
 低温側筐体20に設置された高温側凝縮器2及び中間冷却器8は、低温側吸込口33に沿って設置されている。
 低温側筐体20に設置された高温側凝縮器2及び中間冷却器8は、例えば、断面形状がU字形に形成されている。
The high temperature side condenser 2 and the intermediate cooler 8 installed in the low temperature side housing 20 are configured as an integrated heat exchanger.
The intermediate cooler 8 is disposed in the low temperature side housing 20 at a position closer to the low temperature side blower 23 than the high temperature side condenser 2.
The high temperature side condenser 2 and the intermediate cooler 8 installed in the low temperature side housing 20 are installed along the low temperature side suction port 33.
The high temperature side condenser 2 and the intermediate cooler 8 installed in the low temperature side housing 20 have, for example, a U-shaped cross section.
 低温側送風機23は、低温側筐体20の上部に設置され、高温側凝縮器2に空気を供給する。
 低温側送風機23は、中間冷却器8と比較して上側に配置され、低温側吸込口33から空気を吸い込み、低温側筐体20に設置された高温側凝縮器2及び中間冷却器8を通過した空気を低温側筐体20の低温側吹出口31から吹き出す。
The low temperature side blower 23 is installed in the upper part of the low temperature side housing 20 and supplies air to the high temperature side condenser 2.
The low temperature side blower 23 is disposed on the upper side compared to the intermediate cooler 8, sucks air from the low temperature side suction port 33, and passes through the high temperature side condenser 2 and the intermediate cooler 8 installed in the low temperature side housing 20. The blown air is blown out from the low temperature side air outlet 31 of the low temperature side housing 20.
 低温側制御コントローラ26は、低温側機器の各種制御を実行する。
 低温側制御コントローラ26の周辺又は内部には、低温側制御コントローラ運転スイッチ27が備えられている。
 低温側制御コントローラ運転スイッチ27は、低温側制御コントローラ26への指示を受け付ける。
The low temperature side controller 26 executes various controls of the low temperature side equipment.
A low temperature side controller operation switch 27 is provided around or inside the low temperature side controller 26.
The low temperature side controller operation switch 27 receives an instruction to the low temperature side controller 26.
 液管側サービスバルブ11及び吸入側サービスバルブ12は、低温側筐体20の紙面左側の側壁近傍(高温側筐体19から離れている側の側壁近傍)に配置するのが望ましい。
 この位置に液管側サービスバルブ11及び吸入側サービスバルブ12を設置することによって、作業性及びメンテナンス性の向上に寄与する。
 すなわち、室外ユニット14の据え付け(例えば、新規据え付け又は機種交換等)作業を行なう作業員、及び室外ユニット14のメンテナンス(定期メンテナンス又は故障診断等)を行なう作業員が、誤った冷媒を封入してしまう可能性が低減できる。
 なお、現地配管接続用のサイトグラス(図示せず)又はドライヤ(図示せず)を低温側筐体20内に配置しておくとよい。
The liquid pipe side service valve 11 and the suction side service valve 12 are desirably arranged in the vicinity of the left side wall of the low temperature side housing 20 (near the side wall on the side away from the high temperature side housing 19).
By installing the liquid pipe side service valve 11 and the suction side service valve 12 at this position, it contributes to the improvement of workability and maintainability.
That is, an operator who performs the installation (for example, new installation or model exchange) of the outdoor unit 14 and an operator who performs maintenance (periodic maintenance or failure diagnosis) of the outdoor unit 14 enclose the wrong refrigerant. Can be reduced.
In addition, it is good to arrange | position the sight glass (not shown) or dryer (not shown) for local piping connection in the low temperature side housing | casing 20. FIG.
 なお、高温側、低温側の両者にまたがるカスケードコンデンサ13は、配置具合等を考慮して、高温側筐体19、低温側筐体20のどちらに配置してもよい。 Note that the cascade capacitor 13 extending over both the high temperature side and the low temperature side may be arranged in either the high temperature side casing 19 or the low temperature side casing 20 in consideration of the arrangement condition or the like.
 なお、高温側筐体19は、本発明における「高温側筐体19」に相当する。
 低温側筐体20は、本発明における「低温側筐体20」に相当する。
 高温側送風機22及び低温側送風機23は、本発明における「送風機」に相当する。
 高温側送風機22は、本発明における「高温側送風機22」に相当する。
 低温側送風機23は、本発明における「第2送風機」に相当する。
The high temperature side casing 19 corresponds to the “high temperature side casing 19” in the present invention.
The low temperature side casing 20 corresponds to the “low temperature side casing 20” in the present invention.
The high temperature side blower 22 and the low temperature side blower 23 correspond to the “blower” in the present invention.
The high temperature side blower 22 corresponds to the “high temperature side blower 22” in the present invention.
The low temperature side blower 23 corresponds to a “second blower” in the present invention.
 ここで、高温側冷媒回路Aの高温側凝縮器2の処理能力と、低温側冷媒回路Bの中間冷却器8の処理能力と、の割合は約7:3程度となっている。
 そのため、高温側凝縮器2の処理能力と中間冷却器8の処理能力との割合に応じて、高温側凝縮器2の一部を低温側筐体20にも設置するようにしている。
Here, the ratio of the processing capacity of the high temperature side condenser 2 of the high temperature side refrigerant circuit A and the processing capacity of the intermediate cooler 8 of the low temperature side refrigerant circuit B is about 7: 3.
Therefore, a part of the high temperature side condenser 2 is also installed in the low temperature side housing 20 in accordance with the ratio between the processing capacity of the high temperature side condenser 2 and the processing capacity of the intermediate cooler 8.
 図5は、本発明の実施の形態1に係る高温側凝縮器及び中間冷却器の構成を概略的に示す図である。
 図5に示すように、高温側凝縮器2及び中間冷却器8を構成する熱交換器は、伝熱フィン41と、伝熱管42とを備える。
 伝熱フィン41は、例えば板状形状を有し、所定の間隔で複数積層されて、その間を空気が流通する。
 伝熱管42は、伝熱フィン41を貫通して設けられ、内部に冷媒が流通する。
 伝熱管42は、列方向(紙面横方向)と、段方向(紙面縦方向)に複数配列される。
 なお、図5に示す、伝熱管42の段数及び列数は一例であり、これに限定されない。
FIG. 5 is a diagram schematically showing the configuration of the high-temperature side condenser and the intercooler according to Embodiment 1 of the present invention.
As shown in FIG. 5, the heat exchanger constituting the high temperature side condenser 2 and the intermediate cooler 8 includes heat transfer fins 41 and heat transfer tubes 42.
The heat transfer fins 41 have, for example, a plate shape, are stacked at a predetermined interval, and air flows between them.
The heat transfer tube 42 is provided so as to penetrate the heat transfer fins 41, and the refrigerant circulates therein.
A plurality of heat transfer tubes 42 are arranged in the row direction (the horizontal direction on the paper surface) and in the step direction (the vertical direction on the paper surface).
In addition, the number of stages and the number of rows of the heat transfer tubes 42 illustrated in FIG. 5 are merely examples, and the present invention is not limited thereto.
 低温側筐体20に設置された中間冷却器8及び高温側凝縮器2の一部は、伝熱フィン41が一体化された一体型の熱交換器で構成されている。 A part of the intermediate cooler 8 and the high temperature side condenser 2 installed in the low temperature side housing 20 is constituted by an integrated heat exchanger in which the heat transfer fins 41 are integrated.
 高温側筐体19に設置された高温側凝縮器2は、入口配管51aから冷媒が流入し、段方向に分岐した後、伝熱管42の端部側で折り返して、列方向に順次流れる。
 そして、高温側筐体19に設置された高温側凝縮器2を流出した冷媒は、中継配管51bを介して、低温側筐体20に設置された高温側凝縮器2に流入する。
 低温側筐体20に設置された高温側凝縮器2に流入した冷媒は、段方向に分岐した後、伝熱管42の端部側で折り返して、列方向に順次流れ、出口配管51cから流出する。
 なお、流通方向はこれに限定されない。低温側筐体20に設置された高温側凝縮器2から、高温側筐体19に設置された高温側凝縮器2へ冷媒が流れても良い。
The high temperature side condenser 2 installed in the high temperature side housing 19 flows in the column direction after the refrigerant flows in from the inlet pipe 51a and branches in the step direction, and then flows in the row direction sequentially.
Then, the refrigerant that has flowed out of the high temperature side condenser 2 installed in the high temperature side casing 19 flows into the high temperature side condenser 2 installed in the low temperature side casing 20 via the relay pipe 51b.
The refrigerant that has flowed into the high-temperature side condenser 2 installed in the low-temperature side casing 20 branches in the stage direction, then turns back at the end side of the heat transfer tube 42, sequentially flows in the row direction, and flows out from the outlet pipe 51c. .
The distribution direction is not limited to this. The refrigerant may flow from the high temperature side condenser 2 installed in the low temperature side housing 20 to the high temperature side condenser 2 installed in the high temperature side housing 19.
 低温側筐体20に設置された中間冷却器8は、入口配管52aから冷媒が流入し、段方向に分岐した後、伝熱管42の端部側で折り返して、列方向に順次流れ、出口配管52bから流出する。 The intercooler 8 installed in the low-temperature side casing 20 flows in from the inlet pipe 52a, branches in the step direction, then turns back at the end side of the heat transfer pipe 42, and sequentially flows in the column direction. It flows out of 52b.
 このように、中間冷却器8を構成している熱交換器の段数を調整して、その一部を高温側凝縮器2として機能させる。
 また、熱交換器を上下で分割して上部を中間冷却器8、下部を前記高温側凝縮器2の一部として機能させている。
 すなわち、中間冷却器8は、低温側筐体20内のうち、高温側凝縮器2と比較して低温側送風機23に近い位置に配置されている。
In this way, the number of stages of the heat exchanger that constitutes the intermediate cooler 8 is adjusted, and a part of the heat exchanger functions as the high-temperature side condenser 2.
Further, the heat exchanger is divided into upper and lower parts so that the upper part functions as an intermediate cooler 8 and the lower part functions as a part of the high-temperature side condenser 2.
That is, the intermediate cooler 8 is disposed in the low temperature side housing 20 at a position closer to the low temperature side blower 23 than the high temperature side condenser 2.
 中間冷却器8は、高温側凝縮器2と比較して段数が少ないため、供給される空気の風量が変化すると、中間冷却器8と高温側凝縮器2との処理能力(熱交換容量)の比率に大きく影響する。
 低温側筐体20内に供給される空気の風量は、筐体内の機器等が気流の障害物となり、低温側送風機23からの距離が遠いほど、風量が小さくなる。
 また、低温側筐体20内に供給される空気の風量は、筐体内の機器等の障害物で乱流が生じ、低温側送風機23からの距離が遠いほど、風量が変化する。
 中間冷却器8を低温側送風機23に近い位置に配置することによって、中間冷却器8への風量の変化を少なくすることができる。
 これによって、高温側凝縮器2の熱交換量と、中間冷却器8の熱交換量とのバランスを安定させることができる。
 また、中間冷却器8への風量が大きくなり、熱交換量が大きくなる。
 即ち、中間冷却器8の大きさ(段数)を、小さくすることができる。
Since the intermediate cooler 8 has a smaller number of stages than the high temperature side condenser 2, the processing capacity (heat exchange capacity) of the intermediate cooler 8 and the high temperature side condenser 2 is changed when the amount of air supplied is changed. The ratio is greatly affected.
The amount of air supplied into the low temperature side housing 20 becomes smaller as the distance from the low temperature side blower 23 increases as the equipment in the housing becomes an obstacle to the air flow.
The air volume supplied into the low temperature side casing 20 is turbulent due to obstacles such as equipment in the casing, and the air volume changes as the distance from the low temperature side blower 23 increases.
By disposing the intermediate cooler 8 at a position close to the low temperature side blower 23, it is possible to reduce the change in the air volume to the intermediate cooler 8.
Thereby, the balance between the heat exchange amount of the high temperature side condenser 2 and the heat exchange amount of the intermediate cooler 8 can be stabilized.
Moreover, the air volume to the intercooler 8 increases, and the heat exchange amount increases.
That is, the size (number of stages) of the intermediate cooler 8 can be reduced.
 ここで、高温側送風機22が高温側筐体19内に供給する空気の風量と、低温側送風機23が低温側筐体20内に供給する空気の風量とを、同じにするのが望ましい。
 例えば、高温側送風機22及び低温側送風機23を同一機種の送風機を使用し、回転数を同一に制御することによって、風量を同じにする。
 これによって、高温側筐体19に設置された高温側凝縮器2の一部の熱交換量と、低温側筐体20に設置された高温側凝縮器2の他の一部及び中間冷却器8の熱交換量とのバランスを安定させることができる。
 また、高温側送風機22及び低温側送風機23に同一機種の送風機を使用することで、異なるパワーを有する送風機を各筐体に設置しなくて済み、コストの低減につながる。
Here, it is desirable that the air volume supplied from the high temperature side blower 22 into the high temperature side casing 19 is the same as the air volume supplied from the low temperature side blower 23 into the low temperature side casing 20.
For example, by using the same type of blower for the high temperature side blower 22 and the low temperature side blower 23 and controlling the rotation speed to be the same, the air volume is made the same.
Thereby, the heat exchange amount of a part of the high temperature side condenser 2 installed in the high temperature side casing 19, the other part of the high temperature side condenser 2 installed in the low temperature side casing 20, and the intermediate cooler 8. The balance with the amount of heat exchange can be stabilized.
In addition, by using the same type of blower for the high temperature side blower 22 and the low temperature side blower 23, it is not necessary to install a blower having different power in each casing, leading to cost reduction.
 また、高温側筐体19内に配置された高温側凝縮器2の一部を構成する熱交換器の冷媒配管の段数と、低温側筐体20内に配置された高温側凝縮器2の他の一部及び中間冷却器8を構成する熱交換器の冷媒配管の段数とを、同じにするのが望ましい。
 これによって、低温側筐体20に設置された、高温側凝縮器2の段数と、中間冷却器8の段数との比率によって、熱交換量の比率を精度良く調整することができる。
Further, the number of stages of refrigerant pipes of the heat exchanger that constitutes a part of the high temperature side condenser 2 disposed in the high temperature side casing 19, and other than the high temperature side condenser 2 disposed in the low temperature side casing 20. It is desirable that the number of refrigerant pipes of the heat exchanger constituting the intermediate cooler 8 and the number of refrigerant pipes be the same.
Thereby, the ratio of the heat exchange amount can be accurately adjusted by the ratio between the number of stages of the high temperature side condenser 2 and the number of stages of the intermediate cooler 8 installed in the low temperature side casing 20.
 以上のように本実施の形態においては、高温側凝縮器2の一部及び中間冷却器8は、伝熱フィン41が一体化された一体型の熱交換器で構成されている。
 このため、低温側送風機23に対する、高温側凝縮器2の一部及び中間冷却器8の位置関係が精度良く確保できる。よって、熱交換量(風量)のバランスを安定させることができる。また、一体型とすることで製造コストを安くすることができる。
As described above, in the present embodiment, a part of the high temperature side condenser 2 and the intermediate cooler 8 are configured as an integrated heat exchanger in which the heat transfer fins 41 are integrated.
For this reason, the positional relationship between a part of the high temperature side condenser 2 and the intercooler 8 with respect to the low temperature side blower 23 can be ensured with high accuracy. Therefore, the balance of the heat exchange amount (air volume) can be stabilized. Further, the manufacturing cost can be reduced by adopting the integrated type.
 また、中間冷却器8は、室外ユニット14内のうち、高温側凝縮器2と比較して低温側送風機23に近い位置に配置されている。
 このため、中間冷却器8を通過する空気の風量が大きくなり、熱交換量が大きくなる。
 よって、中間冷却器8に必要な熱交換量を確保する為の、中間冷却器8の大きさを小さくすることができる。
 また、中間冷却器8を小さくすることができるので、高温側凝縮器2のスペースを大きくすることができる。
 すなわち、機器の大きさに対する冷凍能力が向上する。
Further, the intermediate cooler 8 is disposed in the outdoor unit 14 at a position closer to the low temperature side blower 23 than the high temperature side condenser 2.
For this reason, the air volume of the air passing through the intercooler 8 is increased, and the amount of heat exchange is increased.
Therefore, the size of the intermediate cooler 8 for ensuring the heat exchange amount necessary for the intermediate cooler 8 can be reduced.
Moreover, since the intermediate cooler 8 can be made small, the space of the high temperature side condenser 2 can be enlarged.
That is, the refrigerating capacity with respect to the size of the device is improved.
 ここで、高温側凝縮器2を構成する熱交換器の段数と、中間冷却器8を構成する熱交換器の段数の比率について説明する。
 以下の条件において、定格外気温度におけるCOPを向上する段数、及び、一年間における消費電力量(年間消費電力量)を低減する段数ついて説明する。
 例えば、高温側筐体19内に配置された高温側凝縮器2の段数を60段とし、低温側筐体20内に配置された高温側凝縮器2及び中間冷却器8の合計段数を60段とする。
 また、高温側凝縮器2及び中間冷却器8の列数は、共に3列とする。
 また、高温側送風機22の風量と、低温側送風機23の風量とを同一とする。
 また、室外ユニット14を屋外に設置し、負荷側ユニット18を冷蔵倉庫に設置する。
 外気温度は、7~40℃をパラメータとし、冷蔵倉庫の庫内温度を0℃とする。
 定格外気温度を32℃とし、この定格外気温度において、定格能力を25kWとする。
 そして、高温側凝縮器2の凝縮温度が外気温度+10℃となるように、各送風機の風量を制御することとする。
 なお、送風機の風量に比例して、送風機への入力電力が変化するものとする。
Here, the ratio of the number of stages of the heat exchanger constituting the high temperature side condenser 2 and the number of stages of the heat exchanger constituting the intermediate cooler 8 will be described.
Under the following conditions, the number of stages for improving the COP at the rated outside air temperature and the number of stages for reducing the power consumption (annual power consumption) in one year will be described.
For example, the number of stages of the high temperature side condenser 2 arranged in the high temperature side casing 19 is 60, and the total number of stages of the high temperature side condenser 2 and the intermediate cooler 8 arranged in the low temperature side casing 20 is 60. And
The number of rows of the high temperature side condenser 2 and the intermediate cooler 8 is three.
Moreover, the air volume of the high temperature side fan 22 and the air volume of the low temperature side fan 23 are made the same.
Moreover, the outdoor unit 14 is installed outdoors, and the load side unit 18 is installed in a refrigerated warehouse.
The outside air temperature is 7 to 40 ° C as a parameter, and the inside temperature of the refrigerated warehouse is 0 ° C.
The rated outside air temperature is 32 ° C., and the rated capacity is 25 kW at this rated outside air temperature.
Then, the air volume of each blower is controlled so that the condensation temperature of the high-temperature side condenser 2 becomes the outside air temperature + 10 ° C.
It is assumed that the input power to the blower changes in proportion to the air volume of the blower.
 上記の条件において、以下の場合について、COPを算出した結果を図6に示す。
 中間冷却器8が無く、高温側凝縮器2の段数が120段の場合。
 中間冷却器8の段数が4段、高温側凝縮器2の段数が116段の場合。
 中間冷却器8の段数が10段、高温側凝縮器2の段数が110段の場合。
 中間冷却器8の段数が20段、高温側凝縮器2の段数が100段の場合。
 中間冷却器8の段数が30段、高温側凝縮器2の段数が90段の場合。
 中間冷却器8の段数が60段、高温側凝縮器2の段数が60段の場合。
 図6に示すように、中間冷却器8の段数が20段の場合に、COPが1.88で最大となる。また、中間冷却器8の段数が10段及び30の場合にも、比較的高い値となる。
FIG. 6 shows the result of calculating the COP for the following conditions under the above conditions.
When there is no intercooler 8 and the number of stages of the high-temperature side condenser 2 is 120.
When the number of stages of the intercooler 8 is 4, and the number of stages of the high-temperature side condenser 2 is 116.
When the number of stages of the intermediate cooler 8 is 10 and the number of stages of the high-temperature side condenser 2 is 110.
When the number of stages of the intermediate cooler 8 is 20 and the number of stages of the high-temperature side condenser 2 is 100.
When the number of stages of the intermediate cooler 8 is 30, and the number of stages of the high-temperature side condenser 2 is 90.
When the number of stages of the intermediate cooler 8 is 60 and the number of stages of the high-temperature side condenser 2 is 60.
As shown in FIG. 6, when the number of stages of the intermediate cooler 8 is 20, the COP is 1.88 and becomes the maximum. Further, when the number of stages of the intercooler 8 is 10 and 30, it is a relatively high value.
 年間消費電力量の算出は、上述した条件に加え、各外気温度における消費電力(各圧縮機への入力電力+各送風機への入力電力)を算出し、外気温度に対する入力電力特性の近似式を作成する。
 そして、使用を想定する地域の外気温度の年間累計時間を調査し、各外気温度における消費電力量を算出、合計して年間消費電力量を算出する。
 ここでは、図7に示すように、東京の年間累計時間を使用する。
 年間消費電力量を算出した結果を図8に示す。
 図8に示すように、中間冷却器8の段数が10段、20段、30段、において、年間消費電力量が低減する。中間冷却器8の段数が10段において最小となる。
In addition to the above-mentioned conditions, the annual power consumption is calculated by calculating the power consumption at each outdoor temperature (input power to each compressor + input power to each blower) and calculating an approximate expression of the input power characteristics with respect to the outside air temperature. create.
Then, the annual accumulated time of the outside air temperature in the area assumed to be used is investigated, and the power consumption amount at each outside air temperature is calculated and summed to calculate the annual power consumption amount.
Here, as shown in FIG. 7, the annual cumulative time in Tokyo is used.
The results of calculating the annual power consumption are shown in FIG.
As shown in FIG. 8, when the number of stages of the intercooler 8 is 10, 20, and 30, the annual power consumption is reduced. The number of stages of the intermediate cooler 8 is minimum when the number of stages is 10.
 上記の結果から、低温側筐体20に設置した中間冷却器8と高温側凝縮器2との段数の比率を、1:5~3:3の間に調整することで、定格外気温度におけるCOPを向上でき、年間消費電力量を低減することができる。 From the above results, the COP at the rated outside air temperature is adjusted by adjusting the ratio of the number of stages of the intermediate cooler 8 and the high temperature side condenser 2 installed in the low temperature side housing 20 to 1: 5 to 3: 3. Can be improved, and the annual power consumption can be reduced.
 1 高温側圧縮機、2 高温側凝縮器、3 高温側膨張弁、4 高温側蒸発器、5 液管側サービスバルブ、6 吸入側サービスバルブ、7 低温側圧縮機、8 中間冷却器、9 低温側凝縮器、10 受液器、11 液管側サービスバルブ、12 吸入側サービスバルブ、13 カスケードコンデンサ、14 室外ユニット、15 液管電磁弁、16 低温側膨張弁、17 低温側蒸発器、18 負荷側ユニット、19 高温側筐体、20 低温側筐体、21 共通架台、22 高温側送風機、23 低温側送風機、24 高温側制御コントローラ、25 高温側制御コントローラ運転スイッチ、26 低温側制御コントローラ、27 低温側制御コントローラ運転スイッチ、30 高温側吹出口、31 低温側吹出口、32 高温側吸込口、33 低温側吸込口、41 伝熱フィン、42 伝熱管、51 高温側冷媒配管、51a 入口配管、51b 中継配管、51c 出口配管、52 低温側冷媒配管、52a 入口配管、52b 出口配管、100 冷凍装置、A 高温側冷媒回路、B 低温側冷媒回路。 1. High temperature side compressor, 2. High temperature side condenser, 3. High temperature side expansion valve, 4. High temperature side evaporator, 5. Liquid pipe side service valve, 6. Inlet side service valve, 7. Low temperature side compressor, 8. Intermediate cooler, 9. Low temperature. Side condenser, 10 liquid receiver, 11 liquid pipe side service valve, 12 suction side service valve, 13 cascade condenser, 14 outdoor unit, 15 liquid pipe solenoid valve, 16 low temperature side expansion valve, 17 low temperature side evaporator, 18 load Side unit, 19 high temperature side case, 20 low temperature side case, 21 common frame, 22 high temperature side blower, 23 low temperature side blower, 24 high temperature side control controller, 25 high temperature side control controller operation switch, 26 low temperature side control controller, 27 Low temperature side controller operation switch, 30 High temperature side outlet, 31 Low temperature side outlet, 32 High temperature side suction Port, 33 low temperature side suction port, 41 heat transfer fin, 42 heat transfer tube, 51 high temperature side refrigerant piping, 51a inlet piping, 51b relay piping, 51c outlet piping, 52 low temperature side refrigerant piping, 52a inlet piping, 52b outlet piping, 100 Refrigeration equipment, A high temperature side refrigerant circuit, B low temperature side refrigerant circuit.

Claims (5)

  1.  第1圧縮機、第1凝縮器、第1絞り装置、及び第1蒸発器が順次配管接続され、冷媒が循環する第1冷媒回路と、
     第2圧縮機、中間冷却器、第2凝縮器、第2絞り装置、及び第2蒸発器が順次配管接続され、冷媒が循環する第2冷媒回路と、
     前記第1蒸発器と前記第2凝縮器とで構成され、前記第1蒸発器を流れる冷媒と前記第2凝縮器を流れる冷媒とが熱交換を行うカスケードコンデンサと、
     前記第1凝縮器及び前記中間冷却器に空気を供給する送風機と、を備え、
     前記第1凝縮器の少なくとも一部及び前記中間冷却器は、伝熱フィンが一体化された一体型の熱交換器で構成された
    ことを特徴とする冷凍装置。
    A first refrigerant circuit in which a first compressor, a first condenser, a first throttling device, and a first evaporator are sequentially connected by piping and the refrigerant circulates;
    A second refrigerant circuit in which a second compressor, an intercooler, a second condenser, a second expansion device, and a second evaporator are sequentially connected by piping, and the refrigerant circulates;
    A cascade condenser composed of the first evaporator and the second condenser, wherein the refrigerant flowing through the first evaporator and the refrigerant flowing through the second condenser exchange heat;
    A blower for supplying air to the first condenser and the intercooler,
    At least a part of the first condenser and the intermediate cooler are constituted by an integrated heat exchanger in which heat transfer fins are integrated.
  2.  少なくとも、前記第1凝縮器、前記中間冷却器、及び前記送風機は、室外ユニットに設置され、
     前記中間冷却器は、前記室外ユニット内のうち、前記第1凝縮器と比較して前記送風機に近い位置に配置された
    ことを特徴とする請求項1記載の冷凍装置。
    At least the first condenser, the intermediate cooler, and the blower are installed in an outdoor unit,
    2. The refrigeration apparatus according to claim 1, wherein the intermediate cooler is arranged in a position closer to the blower than the first condenser in the outdoor unit.
  3.  前記室外ユニットは、第1筐体と、第2筐体と、を備え、
     前記第1凝縮器の一部は、前記第1筐体内に配置され、
     前記第1凝縮器の他の一部及び前記中間冷却器は、伝熱フィンが一体化された一体型の熱交換器で構成され、前記第2筐体内に配置され、
     前記送風機は、
     前記第1筐体に配置され、前記第1筐体内に空気を供給する第1送風機と、
     前記第2筐体に配置され、前記第2筐体内に空気を供給する第2送風機と、を備え、
     前記第1筐体内に供給する空気の風量と、前記第2筐体内に供給する空気の風量とが同じである
    ことを特徴とする請求項2記載の冷凍装置。
    The outdoor unit includes a first housing and a second housing,
    A portion of the first condenser is disposed within the first housing;
    The other part of the first condenser and the intercooler are constituted by an integrated heat exchanger in which heat transfer fins are integrated, and are arranged in the second casing.
    The blower is
    A first blower that is disposed in the first housing and supplies air into the first housing;
    A second blower disposed in the second housing and supplying air into the second housing;
    The refrigeration apparatus according to claim 2, wherein the air volume supplied into the first housing is the same as the air volume supplied into the second housing.
  4.  前記第1筐体内に配置された前記第1凝縮器を構成する熱交換器の冷媒配管の段数と、
     前記第2筐体内に配置された前記第1凝縮器及び前記中間冷却器を構成する熱交換器の冷媒配管の段数とが同じである
    ことを特徴とする請求項3記載の冷凍装置。
    The number of stages of refrigerant piping of the heat exchanger constituting the first condenser disposed in the first housing;
    The refrigerating apparatus according to claim 3, wherein the number of stages of refrigerant pipes of the heat exchanger constituting the first condenser and the intermediate cooler arranged in the second casing is the same.
  5.  前記第1筐体は、側面に第1吸込口を有し、上面に第1吹出口を有し、
     前記第2筐体は、側面に第2吸込口を有し、上面に第2吹出口を有し、
     前記第1凝縮器の一部は、前記第1吸込口に沿って配置され、
     前記第1凝縮器の他の一部及び前記中間冷却器は、前記第2吸込口に沿って配置され、
     前記中間冷却器は、前記第1凝縮器の他の一部と比較して上側に配置され、
     前記第1送風機は、前記第1凝縮器の一部と比較して上側に配置され、前記第1吸込口から空気を吸い込み、前記第1凝縮器の一部を通過した空気を前記第1筐体の前記吹出口から吹き出し、
     前記第2送風機は、前記中間冷却器と比較して上側に配置され、前記第2吸込口から空気を吸い込み、前記第1凝縮器の他の一部及び前記中間冷却器を通過した空気を前記第2吹出口から吹き出す
    ことを特徴とする請求項3又は4記載の冷凍装置。
    The first housing has a first suction port on a side surface, a first air outlet on an upper surface,
    The second housing has a second suction port on a side surface and a second air outlet on an upper surface,
    A portion of the first condenser is disposed along the first suction port,
    The other part of the first condenser and the intercooler are disposed along the second suction port,
    The intermediate cooler is disposed on the upper side compared to the other part of the first condenser,
    The first blower is disposed above the part of the first condenser, sucks air from the first suction port, and passes the air passing through the part of the first condenser to the first casing. Blowing out from the outlet of the body,
    The second blower is disposed above the intermediate cooler, sucks air from the second suction port, and passes the other part of the first condenser and the air that has passed through the intermediate cooler to the air The refrigeration apparatus according to claim 3 or 4, wherein the refrigeration apparatus blows out from the second outlet.
PCT/JP2014/056576 2014-03-12 2014-03-12 Refrigerating device WO2015136654A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/056576 WO2015136654A1 (en) 2014-03-12 2014-03-12 Refrigerating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/056576 WO2015136654A1 (en) 2014-03-12 2014-03-12 Refrigerating device

Publications (1)

Publication Number Publication Date
WO2015136654A1 true WO2015136654A1 (en) 2015-09-17

Family

ID=54071131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/056576 WO2015136654A1 (en) 2014-03-12 2014-03-12 Refrigerating device

Country Status (1)

Country Link
WO (1) WO2015136654A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3211333A1 (en) * 2016-02-29 2017-08-30 Fujitsu General Limited Outdoor unit of air conditioner
WO2017187227A1 (en) * 2016-04-27 2017-11-02 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Air conditioner
IT201700028737A1 (en) * 2017-03-15 2018-09-15 Innova S R L Heat exchange unit for heat pumps or air conditioners

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150641A (en) * 2007-11-30 2009-07-09 Daikin Ind Ltd Refrigeration unit
JP2012193866A (en) * 2011-03-15 2012-10-11 Mitsubishi Electric Corp Refrigeration device
WO2013098872A1 (en) * 2011-12-26 2013-07-04 三菱電機株式会社 Outdoor unit and air conditioner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150641A (en) * 2007-11-30 2009-07-09 Daikin Ind Ltd Refrigeration unit
JP2012193866A (en) * 2011-03-15 2012-10-11 Mitsubishi Electric Corp Refrigeration device
WO2013098872A1 (en) * 2011-12-26 2013-07-04 三菱電機株式会社 Outdoor unit and air conditioner

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3211333A1 (en) * 2016-02-29 2017-08-30 Fujitsu General Limited Outdoor unit of air conditioner
CN107131579A (en) * 2016-02-29 2017-09-05 富士通将军股份有限公司 The outdoor unit of air-conditioning equipment
WO2017187227A1 (en) * 2016-04-27 2017-11-02 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Air conditioner
IT201700028737A1 (en) * 2017-03-15 2018-09-15 Innova S R L Heat exchange unit for heat pumps or air conditioners
WO2018167692A1 (en) * 2017-03-15 2018-09-20 Innova S.R.L. A heat exchange unit

Similar Documents

Publication Publication Date Title
JP5800994B2 (en) Refrigeration apparatus and control method thereof
JP6125000B2 (en) Dual refrigeration equipment
US9581365B2 (en) Refrigerating apparatus
EP2966386A1 (en) Heat pump system with multiple operating modes
CN106030219B (en) Conditioner
WO2013099047A1 (en) Air conditioner
JP5800998B2 (en) Refrigeration equipment
JP5819006B2 (en) Refrigeration equipment
CN105008820A (en) Air conditioner
US20160265821A1 (en) Air conditioning apparatus
JP6479181B2 (en) Air conditioner
WO2018198203A1 (en) Binary refrigeration device
JPWO2018008139A1 (en) Refrigeration cycle apparatus and air conditioner equipped with the same
JP2015178919A (en) Refrigeration device
WO2015136654A1 (en) Refrigerating device
JP2008008593A (en) Refrigeration system
JP6380927B2 (en) refrigerator
JP5542722B2 (en) Refrigeration equipment
JP5405158B2 (en) Evaporator
JP2015111047A (en) Refrigerating machine
US20200200476A1 (en) Heat exchanger
JP2021529923A (en) Refrigerant vapor compression system
JP2015178920A (en) Refrigeration device
WO2023067807A1 (en) Binary refrigeration device
JP7150198B2 (en) refrigeration equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14885366

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14885366

Country of ref document: EP

Kind code of ref document: A1