WO2015135183A1 - 检测波长通道的方法和装置 - Google Patents

检测波长通道的方法和装置 Download PDF

Info

Publication number
WO2015135183A1
WO2015135183A1 PCT/CN2014/073380 CN2014073380W WO2015135183A1 WO 2015135183 A1 WO2015135183 A1 WO 2015135183A1 CN 2014073380 W CN2014073380 W CN 2014073380W WO 2015135183 A1 WO2015135183 A1 WO 2015135183A1
Authority
WO
WIPO (PCT)
Prior art keywords
threshold
signal
wavelength channel
real
channel
Prior art date
Application number
PCT/CN2014/073380
Other languages
English (en)
French (fr)
Inventor
邓宁
王娟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201480000157.2A priority Critical patent/CN105899267B/zh
Priority to EP14885105.8A priority patent/EP3110037B1/en
Priority to PCT/CN2014/073380 priority patent/WO2015135183A1/zh
Publication of WO2015135183A1 publication Critical patent/WO2015135183A1/zh
Priority to US15/262,632 priority patent/US10277315B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • H04B10/07957Monitoring or measuring wavelength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • H04B10/07953Monitoring or measuring OSNR, BER or Q
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • H04B10/07955Monitoring or measuring power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/548Phase or frequency modulation

Definitions

  • the present invention relates to the field of optical communications and, more particularly, to methods and apparatus for detecting wavelength channels. Background technique
  • Optical performance monitoring is an important function in optical communication networks. By monitoring and measuring the performance of optical components and/or optical signals at some locations in the optical communication network in real time, the actual state of the optical network is known, and network management and maintenance are performed accordingly. Commonly used optical signal performance monitoring includes measurement of optical signal wavelength, power, optical signal noise ratio (OSNR), and the like.
  • OSNR optical signal noise ratio
  • the prior art optical power monitoring scheme measures the power of each wavelength channel in a Wavelength Division Multiplexing (WDM) system and is connected to a Network Management System (NMS).
  • WDM Wavelength Division Multiplexing
  • NMS Network Management System
  • ASE Amplified Spontaneous Emission
  • the prior art still measures the power of the channel as a power signal of one optical signal. There is no such light signal in the actual system. Therefore, the network management system mistakenly believes that the wavelength channel includes a service signal whose optical power is the measured optical power, thereby causing erroneous operation and management. Summary of the invention
  • Embodiments of the present invention provide a method and apparatus for detecting a wavelength channel, which can avoid misconfiguration or operation of a network management system.
  • a method of detecting a wavelength channel including:
  • the method further includes:
  • the second threshold is less than the first threshold.
  • the method further includes:
  • the M is less than the first threshold and is greater than the preset second threshold, it is determined that the wavelength channel does not include a real service signal, where the second threshold is less than the first threshold.
  • the method further includes:
  • N (2N AC ) f (-2(N AC - I D 2 C ) + ⁇ R 4 (N AC - I D 2 C ⁇ - R 2 N AC ( R 2 N AC - I D 2 C ) , determining a second parameter, wherein R represents the responsiveness of the photodetector performing the photodetection;
  • the wavelength channel includes a real service signal
  • the first threshold is a pre-obtained at least one a value between a minimum value of ⁇ of the true channel of the modulated traffic signal and a maximum value of at least one of the false channels not containing the real traffic signal; and/or,
  • the second threshold is a value between a minimum value of ⁇ of at least one false channel not containing the real traffic signal obtained in advance and a maximum value of ⁇ of at least one true channel containing the phase modulated traffic signal; and/or,
  • the third threshold is between a minimum value of a real part of ⁇ of at least one false channel not containing the real service signal obtained in advance and a maximum value of a real part of the at least one true channel including the phase modulation service signal value.
  • the method further includes:
  • the optical power of the wavelength channel is obtained; if it is determined that the wavelength channel does not include the real service signal, it is reported that the wavelength channel does not include the real service signal.
  • a method of detecting a wavelength channel including:
  • L is greater than a preset fourth threshold, it is determined that the wavelength channel contains a real service signal.
  • the method further includes:
  • L is less than a preset fifth threshold, it is determined that the wavelength channel includes a real service signal, wherein the fifth threshold is less than the fourth threshold.
  • the method further includes:
  • L is less than the fourth threshold and is greater than a preset fifth threshold, it is determined that the wavelength channel does not include a real service signal, wherein the fifth threshold is less than the fourth threshold.
  • the method further includes:
  • N ( N AC ) I (-2(N AC - I D 2 C ) +"4R 4 (N AC - I D 2 C f - R 2 N AC (R 2 N AC - I D 2 C ) , OK a second parameter, wherein R represents the responsiveness of the photodetector performing the photodetection;
  • the wavelength channel includes a real service signal
  • the fourth threshold is a pre-obtained at least one a value between a minimum value in L of the true channel of the modulated traffic signal and a maximum value in L of at least one false channel not containing the real traffic signal; and/or,
  • the fifth threshold is a value between a minimum value of L of at least one false channel not containing the real service signal obtained in advance and a maximum value of L of at least one true channel including the phase modulation service signal;
  • the third threshold is between a minimum of the real part of N of the pre-obtained at least one false channel that does not contain the real traffic signal and a maximum value of the real part of the at least one true channel containing the phase modulated traffic signal. value.
  • the method further includes:
  • an apparatus for detecting a wavelength channel including:
  • a detecting module configured to perform photoelectric detection on an optical signal of a wavelength channel to obtain an electrical signal
  • a spectrum acquiring module configured to acquire a frequency spectrum of the electrical signal
  • the determining module is further configured to: if the M is smaller than the preset second threshold, determine that the wavelength channel includes a real service signal, where the second threshold is smaller than the first The threshold, or, if L is less than the preset fifth threshold, determining that the wavelength channel includes a real service signal, and the fifth threshold is less than the fourth threshold.
  • the determining module is further configured to:
  • the second threshold is less than the first threshold, or if L is less than the fourth threshold and greater than the preset
  • the fifth threshold determines that the wavelength channel does not include a real service signal, and the fifth threshold is less than the fourth threshold.
  • the determining module is further configured to: if M is less than the first threshold, or if L is less than the fourth threshold, according to the equation
  • N (2N AC ) I (-2(N AC - I D 2 C ) + 4R 4 (N AC - I D 2 C f - R 2 N AC (R 2 N AC - I D 2 C ) , Two parameters, wherein R represents the responsiveness of the photodetector performing the photodetection;
  • the wavelength channel includes a real service signal
  • the first threshold is a pre-obtained at least one a value between a minimum value of ⁇ of the true channel of the modulated traffic signal and a maximum value of ⁇ of at least one false channel not containing the real traffic signal, or the fourth threshold is at least one of the amplitude modulation services included in advance The value between the minimum value in L of the true channel of the signal and the maximum value in L of at least one false channel that does not contain the real traffic signal; and/or,
  • the second threshold is a value between a minimum value of M of the pre-obtained at least one false channel not containing the real service signal and a maximum value of M of at least one true channel including the phase modulation service signal, or
  • the five threshold is a value between a minimum value of L of the pre-obtained at least one
  • the third threshold is between a minimum value of the real part of N of the pre-obtained at least one false channel that does not contain the real traffic signal and a maximum value of the real part of N of the true channel including the phase modulated traffic signal. value.
  • the apparatus further includes:
  • An optical power acquiring module configured to acquire optical power of the wavelength channel if the determining module determines that the wavelength channel includes a real service signal
  • the reporting module is configured to report that the wavelength channel does not include a real service signal when the determining module determines that the wavelength channel does not include a real service signal.
  • the method and apparatus for detecting a wavelength channel according to the foregoing technical solution, according to the AC component of the spectrum of the electrical signal or the AC component of the spectrum of the electrical signal and the relationship between the DC component and the preset threshold, determine whether the wavelength channel contains the true Service signals can avoid misconfiguration or operation of the network management system.
  • FIG. 1 is an application scenario diagram of an embodiment of the present invention.
  • FIG. 2 is a schematic flow chart of a method of detecting a wavelength channel, in accordance with one embodiment of the present invention.
  • FIG. 3 is a schematic flow chart of a method of detecting a wavelength channel according to another embodiment of the present invention.
  • 4 is a schematic block diagram of an apparatus for detecting a wavelength channel, in accordance with one embodiment of the present invention.
  • FIG. 5 is a schematic block diagram of an apparatus for detecting a wavelength channel according to another embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of an apparatus for detecting a wavelength channel according to still another embodiment of the present invention. detailed description
  • the optical signal generally indicates the total optical signal in the wavelength channel unless otherwise specified.
  • the optical signal may include real service signals and optical noise (such as ASE), or only real service signals, or only optical noise, wherein the real service signal may also be expressed as a service signal, and the optical noise may also be expressed. For noise or false signals.
  • a wavelength channel containing only optical noise and not including a real service signal is called a fake channel
  • a wavelength channel including a real service signal is called a true channel
  • FIG. 1 is an application scenario diagram of an embodiment of the present invention. As shown in FIG. 1, a portion of the optical signal is coupled from detection point 120 of optical link 110 to detection device 130. After the detection device 130 performs the detection, the detection result is reported to the network management system 140.
  • the optical signal in the y-polarization state, can be expressed as:
  • the AC component of the spectrum of the electrical signal is:
  • N AC R 2 - ⁇ E[P(t) 2 -P s ] ⁇ + R 2 -P s - ⁇ 2N 0 Bf ⁇ + R 2 - ⁇ 2N 0 Ba ⁇ 2 (4) From formula (4) It is found that N Ae is composed of three items, the first one reflects the spectral component of the traffic signal, the second term reflects the beat noise component of the traffic signal and the optical noise, and the third term reflects the beat noise component of the optical noise and the optical noise. .
  • the amplitude information remains after photodetection, so equation (4)
  • the first item dominates, that is, the first item is much larger than the second and third items.
  • the meaning of "usually” here is that the optical signal can contain a very small amount of negligible optical noise, and can also contain a relatively large amount of optical noise, but the optical noise inside is still within a reasonable range, that is, it is not so large as to affect the optical signal. Normal reception. This is also a design criterion for optical communication networks.
  • the envelope of its amplitude is almost flat, so the electrical signal after photodetection is also almost a direct current signal. Therefore, the second term dominated in equation (4) is the beat noise component of the signal and optical noise.
  • the AC component N AC satisfies the following relationship:
  • N Ae N Ae signal is amplitude-modulated traffic signal> N AC (5) phase-modulated traffic signal, in the present invention embodiment, by detecting a wavelength channel in the optical signals N Ae, according to the relationship (5) To determine whether it is a true channel or a fake channel.
  • N Ae may be an AC component in a range of frequencies, such as a frequency range of 0.2 MHz to 2 MHz.
  • the method 200 is performed by a device that detects a wavelength channel.
  • the means for detecting the wavelength channel may be the detecting means 130 of FIG. As shown in FIG. 2, the method 200 includes:
  • whether the wavelength channel includes the real service signal is determined according to the relationship between the AC component N AC of the spectrum of the electrical signal and the preset threshold.
  • the device for detecting the wavelength channel first photoelectrically detects the optical signal of the wavelength channel to obtain an electrical signal.
  • the device for detecting the wavelength channel adjusts the Tunable Optical Filter (TOF) to the center frequency of the channel to be measured, and receives the optical signal by the receiver, that is, photoelectric conversion, to obtain an electrical signal.
  • the receiver can be a low bandwidth optical receiver whose bandwidth can be much lower than the bandwidth of the optical signal, such as tens of MHz or hundreds of MHz. It should be understood that the step of detecting the optical signal may also adopt other methods in the prior art, and the embodiment of the present invention is not limited thereto. Set.
  • the device that detects the wavelength channel acquires the spectrum of the electrical signal.
  • an electrical signal is first converted into a digital signal, and a digital signal is Fourier transformed into a frequency domain to obtain a spectrum of the electrical signal.
  • the Fourier transform can be a fast Fourier transform.
  • the electrical signal can also be converted to the frequency domain by other means such as an electrical spectrum analyzer to obtain its spectrum, which is not limited by the present invention.
  • the device for detecting the wavelength channel determines whether the wavelength channel contains the real service signal according to the relationship between the alternating current component of the spectrum of the electrical signal and the preset threshold.
  • the AC component of the spectrum may be the power or energy of the spectrum in a certain frequency range (excluding zero frequency), or the amplitude of the spectrum at a certain frequency (non-zero frequency) or at several frequencies (not The sum of the amplitudes including the zero frequency).
  • the DC component of the spectrum is the amplitude of the spectrum at zero frequency, which can also be obtained by averaging the electrical signals (not converted to the frequency domain).
  • the embodiment of the present invention can determine whether the wavelength channel contains a real service signal, and does not use the spurious signal as a real service signal, thereby avoiding misconfiguration or operation of the network management system.
  • the first parameter M is equal to the AC component of the spectrum of the electrical signal, that is,
  • the determined wavelength channel includes a real service signal, where the second threshold is less than the first threshold.
  • M is less than the first threshold and greater than the second threshold, indicating that the wavelength channel only contains optical noise, it is determined that the wavelength channel does not include a real service signal.
  • the method for detecting a wavelength channel is based on an AC component of a spectrum of an electrical signal
  • the relationship between the preset thresholds determines whether the wavelength channel contains real service signals, which can avoid misconfiguration or operation of the network management system.
  • the first threshold is a minimum value of M of the at least one true channel including the amplitude modulation service signal obtained in advance and at least one of the M channels that do not include the real service signal. The value between the maximum values.
  • the second threshold is a minimum value in the M of the pre-obtained at least one false channel that does not include the real service signal, and at least one of the M channels including the true channel of the phase modulation service signal. The value between the maximum values.
  • the first threshold and/or the second threshold can be determined based on a plurality of pre-configured wavelength channels.
  • a plurality of wavelength channels are pre-configured, that is, a known optical signal is disposed in each wavelength channel.
  • the pre-configured plurality of wavelength channels includes a plurality of true channels and at least one branch channel.
  • the plurality of true channels includes at least one true channel including the amplitude modulated traffic signal and at least one true channel including the phase modulated traffic signal.
  • the plurality of true channels comprise service signals of various bit rates of various patterns, wherein one part is an amplitude modulated service signal and the other part is a phase modulated service signal.
  • the OSNR of each true channel is the lowest OSNR that the receiver can receive. Alternatively, it can be the lowest OSNR that the receiver can receive in back-to-back situations.
  • M is determined for each of the plurality of wavelength channels that are preconfigured.
  • the TOF center frequency is separately adjusted to the center frequency of each wavelength channel, the optical signal is photoelectrically converted and converted into a digital signal, and then Fourier transformed into the frequency domain to obtain a spectrum of the electrical signal. Then calculate for each channel according to equation (6).
  • the amplitude information remains after photodetection, so the first term of equation (4) dominates.
  • the value of this item is very large, so the N AC is also very large, and it is easy to distinguish it from the phase-modulated optical signal or H i. That is, if M is greater than the first threshold, it may be determined that the wavelength channel includes an amplitude modulated service signal, that is, the determined wavelength channel includes a real service signal.
  • the N AC of the two may be relatively close. In this case, the embodiment of the present invention distinguishes the two in another way.
  • the third threshold If it is greater than the third threshold, it means that the assumption of the equation (10) is not true (that is, the first term in equation (4) is larger).
  • the amplitude modulated optical signal can be judged. Therefore, according to the relationship between the real part of M and N and the preset threshold, the three cases can be distinguished.
  • the amplitude modulation service signal is included, and then according to the relationship between the real part of the N and the third threshold, whether the phase modulation service signal or the optical noise is included;
  • the relationship between the real part and the third threshold is determined whether the phase modulation service signal is included, and whether the amplitude modulation service signal or the optical noise is included according to the magnitude relationship between the M and the first threshold.
  • the method 200 further includes:
  • R (2N AC )I (-2(N AC -I D 2 C ) + ⁇ RN AC -I D 2 C ⁇ - R 2 N AC (R 2 N AC -I D 2 C ) , determining the second parameter Where R represents the responsiveness of the photodetector performing the photodetection;
  • the wavelength channel includes a real service signal
  • the wavelength channel does not contain a real service signal.
  • first according to formula (6), determining ⁇ , comparing ⁇ with a preset first threshold; If M is greater than the first threshold, it indicates that the wavelength channel contains an amplitude modulated service signal, so it is determined that the wavelength channel contains a real service signal.
  • N is determined according to formula (10), and the real part of N is compared with the preset third threshold;
  • the real part of N is less than the third threshold, it indicates that the wavelength channel includes a phase modulation service signal, so it is determined that the wavelength channel includes a real service signal;
  • determining N comparing the real part of N with a preset third threshold
  • the real part of N is less than the third threshold, it indicates that the wavelength channel contains the phase modulation service signal, so it is determined that the wavelength channel contains the real service signal.
  • M is greater than the first threshold, indicating that the wavelength channel includes an amplitude modulated service signal, so determining that the wavelength channel includes a real service signal
  • M is less than the first threshold, it is determined that the wavelength channel does not contain a real service signal.
  • the third threshold is a minimum value of a real part of N of at least one fake channel that does not include a real service signal, and at least one true channel including a phase modulation service signal. The value between the maximum values in the real part of N.
  • the third threshold can also be determined according to a plurality of pre-configured wavelength channels. For example, selecting the minimum value of the real part of N of each pre-configured false channel, and the maximum value of the real part of N of each pre-configured phase modulation true channel, taking a value between the two, for example , the average, as the third threshold.
  • the device for detecting the wavelength channel After determining whether the wavelength channel contains the real service signal, the device for detecting the wavelength channel obtains the optical power of the wavelength channel or reports it to the network management system according to the corresponding result.
  • the method 200 further includes:
  • the optical power of the wavelength channel is obtained; if it is determined that the wavelength channel does not include the real service signal, it is reported that the wavelength channel does not include the real service signal.
  • the optical power of the wavelength channel is obtained.
  • the method for obtaining the optical power of the wavelength channel can adopt the prior art
  • the various methods in the present invention are not limited thereto. If it is determined that the wavelength channel does not contain the real service signal, that is, the wavelength channel is a fake channel, the optical power of the wavelength channel is not obtained, and the wavelength management channel of the network management system may not include the real service signal, so that the network management system can Carry out the next steps and management.
  • the method for detecting a wavelength channel determines whether the wavelength channel includes a real service signal according to the relationship between the AC component of the spectrum of the electrical signal and the preset threshold, and reports the network management system when the wavelength channel does not include the real service signal. , can avoid misconfiguration or operation of the network management system.
  • the power of an optical signal in one wavelength channel may be significantly different from the power of an optical signal in another wavelength channel.
  • the N Ae of the same type of optical signal or spurious signal in different wavelength channels may also be different.
  • N Ae can be normalized according to the power of the optical signal in the wavelength channel.
  • the method 300 is performed by a device that detects a wavelength channel.
  • the means for detecting the wavelength channel may be the detecting means 130 of FIG.
  • the method 300 includes:
  • L is greater than a preset fourth threshold, determine that the wavelength channel includes a real service signal.
  • whether the wavelength channel includes the real service signal is determined according to the AC component of the spectrum of the electrical signal and the relationship between the DC component and the preset threshold.
  • the device for detecting the wavelength channel first photoelectrically detects the optical signal of the wavelength channel to obtain an electric signal.
  • the device for detecting the wavelength channel adjusts the tunable optical filter to the center frequency of the channel to be measured, and receives the optical signal by the receiver, that is, photoelectric conversion, to obtain an electrical signal.
  • the receiver can be a low bandwidth optical receiver with a bandwidth that is much lower than the bandwidth of the optical signal, such as tens of MHz or hundreds of MHz. It should be understood that the step of detecting the optical signal may also adopt other methods in the prior art, which is not limited by the embodiment of the present invention.
  • the device that detects the wavelength channel acquires the spectrum of the electrical signal.
  • the electrical signal is first converted into a digital signal, and the digital signal is Fourier transformed into the frequency domain to obtain a spectrum of the electrical signal.
  • the Fourier transform can be a fast Fourier transform.
  • Other ways such as the electrical spectrum
  • the instrument converts the electrical signal into the frequency domain to obtain its spectrum, which is not limited by the present invention.
  • the means for detecting the wavelength channel normalizes the AC component of the spectrum of the electrical signal according to the power of the optical signal in the wavelength channel. The power of the optical signal in the wavelength channel is reflected, so the N AC can be categorized according to / DC .
  • the third parameter L is determined by:
  • L N AC / I D 2 C ( 11 ) After obtaining the frequency of the electrical signal, calculate L according to equation (11), and then compare L with the preset fourth threshold. If L is greater than the fourth threshold, the wavelength is The channel contains amplitude modulated traffic signals, so it is determined that the wavelength channel contains real traffic signals.
  • L is less than a preset fifth threshold, indicating that the wavelength channel includes a phase modulation service signal, so that the determined wavelength channel includes a real service signal, where the sixth threshold is less than the fifth threshold.
  • L is less than the fourth threshold and greater than the fifth threshold, it indicates that the wavelength channel only contains optical noise, so it is determined that the wavelength channel does not contain the real service signal.
  • the method for detecting a wavelength channel determines whether the wavelength channel includes a real service signal according to the AC component of the spectrum of the electrical signal and the relationship between the DC component and the preset threshold, thereby avoiding misconfiguration or operation of the network management system.
  • the fourth threshold is a minimum value of L of at least one true channel including the amplitude modulation service signal obtained in advance and L of at least one false channel not including the real service signal. The value between the maximum values.
  • the fifth threshold is a minimum value of L in the pre-obtained at least one false channel that does not include the real service signal, and at least one L in the true channel including the phase modulation service signal. The value between the maximum values.
  • the fourth threshold and/or the fifth threshold may be determined based on a plurality of pre-configured wavelength channels.
  • a plurality of wavelength channels are pre-configured, that is, a known optical signal is disposed in each wavelength channel.
  • the pre-configured plurality of wavelength channels includes a plurality of true channels and at least one branch channel.
  • the plurality of true channels includes at least one true channel including the amplitude modulated traffic signal and at least one true channel including the phase modulated traffic signal.
  • the plurality of true channels comprise service signals of various bit rates of various patterns, wherein one part is an amplitude modulated service signal and the other part is a phase modulated service signal.
  • Each true The OSNR of the channel is the lowest OSNR that the receiver can receive, alternatively it can be the lowest OSNR that the receiver can receive in back-to-back situations.
  • the L of each of the plurality of wavelength channels that are preconfigured is determined separately.
  • the TOF center frequency is separately adjusted to the center frequency of each wavelength channel, the optical signal is photoelectrically converted and converted into a digital signal, and then Fourier transformed into the frequency domain to obtain a spectrum of the electrical signal. Then calculate for each channel according to equation (11)
  • the method 300 further includes:
  • R represents the responsiveness of the photodetector performing the photodetection
  • the wavelength channel includes a real service signal
  • the wavelength channel does not contain a real service signal.
  • L is determined, and L is compared with a preset fourth threshold; if L is greater than the fourth threshold, indicating that the wavelength channel includes an amplitude modulation service signal, so determining that the wavelength channel contains true Business signal.
  • N is determined according to formula (10), and the real part of N is compared with the preset third threshold;
  • the real part of N is less than the third threshold, it indicates that the wavelength channel includes a phase modulation service signal, so it is determined that the wavelength channel includes a real service signal;
  • determining N comparing the real part of N with a preset third threshold
  • the real part of N is less than the third threshold, it indicates that the wavelength channel contains the phase modulation service signal, so it is determined that the wavelength channel contains the real service signal.
  • the third threshold is a minimum value of a real part of N of at least one fake channel that does not include a real service signal, and at least one true channel including a phase modulation service signal. The value between the maximum values in the real part of N.
  • the third threshold can also be determined according to a plurality of pre-configured wavelength channels. For example, selecting the minimum value of the real part of N of each pre-configured false channel, and the maximum value of the real part of N of each pre-configured phase modulation true channel, taking a value between the two, for example , the average, as the third threshold.
  • the device for detecting the wavelength channel After determining whether the wavelength channel contains the real service signal, the device for detecting the wavelength channel obtains the optical power of the wavelength channel or reports it to the network management system according to the corresponding result.
  • the method 300 further includes:
  • the optical power of the wavelength channel is obtained; if it is determined that the wavelength channel does not include the real service signal, it is reported that the wavelength channel does not include the real service signal.
  • the optical power of the wavelength channel is obtained.
  • the method for obtaining the optical power of the wavelength channel can adopt various methods in the prior art, and the present invention is not limited thereto. If it is determined that the wavelength channel does not contain the real service signal, that is, the wavelength channel is a fake channel, the optical power of the wavelength channel is not obtained, and the wavelength management channel of the network management system may not include the real service signal, so that the network management system can Carry out the next steps and management.
  • the method for detecting a wavelength channel determines whether the wavelength channel includes a real service signal according to the AC component of the spectrum of the electrical signal and the relationship between the DC component and the preset threshold, and reports when the wavelength channel does not include the real service signal.
  • the network management system can avoid misconfiguration or operation of the network management system.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • FIG. 4 shows a schematic block diagram of an apparatus 400 for detecting wavelength channels in accordance with an embodiment of the present invention.
  • the apparatus 400 includes:
  • the detecting module 410 is configured to perform photoelectric detection on the optical signal of the wavelength channel to obtain an electrical signal
  • the spectrum acquiring module 420 is configured to acquire a frequency spectrum of the electrical signal
  • the threshold determines that the wavelength channel contains real traffic signals.
  • the device 400 for detecting the wavelength channel photoelectrically detects the optical signal of the wavelength channel through the detecting module 410 to obtain an electrical signal.
  • the detection module 410 can include a tunable optical filter and a receiver.
  • the tunable optical filter is adjusted to the center frequency of the channel to be measured, and the receiver receives the optical signal, that is, photoelectric conversion, to obtain an electrical signal.
  • the receiver can be a low bandwidth optical receiver with a bandwidth that is much lower than the bandwidth of the optical signal, such as tens of MHz or hundreds of MHz.
  • the spectrum acquisition module 420 acquires the spectrum of the electrical signal. For example, an electrical signal is first converted into a digital signal, and a digital signal is Fourier transformed into a frequency domain to obtain a spectrum of the electrical signal.
  • the Fourier transform can be a fast Fourier transform.
  • the electrical signal can also be converted to the frequency domain by other means such as an electrical spectrum analyzer to obtain its spectrum, which is not limited by the present invention.
  • the determining module 430 determines the wavelength channel according to the relationship between the AC component of the spectrum of the electrical signal and the preset threshold, or according to the AC component of the spectrum of the electrical signal and the relationship between the DC component and the preset threshold. Whether it contains real business signals.
  • the AC component of the spectrum may be the power or energy of the spectrum in a certain frequency range (excluding zero frequency), or the amplitude of the spectrum at a certain frequency (non-zero frequency) or at several frequencies (not The sum of the amplitudes including the zero frequency).
  • the DC component of the spectrum is the amplitude of the spectrum at zero frequency, which can also be obtained by averaging the electrical signals (not converted to the frequency domain).
  • the determining module 430 may determine the first parameter M according to the formula (6), or determine the third parameter L according to (11), and determine whether the wavelength channel includes the real service signal according to the relationship between the M or L and the corresponding preset threshold. .
  • the determining module 430 is configured to determine that the wavelength channel includes a real service signal if the M is greater than the preset first threshold.
  • the determining module 430 is configured to determine, if the M is less than the preset second threshold, the wavelength channel to include a real service signal, where the second threshold is less than the first threshold.
  • the determining module 430 is configured to: if the M is smaller than the first threshold and greater than the preset second threshold, determine that the wavelength channel does not include a real service signal, and the second threshold is smaller than the first threshold.
  • the determining module 430 is configured to determine that the wavelength channel includes a real service signal if L is greater than a preset fourth threshold.
  • the determining module 430 is configured to: if L is less than a preset fifth threshold, determine that the wavelength channel includes a real service signal, and the fifth threshold is less than the fourth threshold.
  • the determining module 430 is configured to: if L is less than the fourth threshold and greater than a preset fifth threshold, determine that the wavelength channel does not include a real service signal, and the fifth threshold is less than the fourth threshold.
  • the embodiment of the present invention can determine whether the wavelength channel contains a real service signal, and does not use the spurious signal as a real service signal, thereby avoiding misconfiguration or operation of the network management system.
  • the apparatus for detecting a wavelength channel can determine whether a wavelength channel includes a real service signal according to an AC component of a spectrum of an electrical signal or an AC component of a spectrum of an electrical signal and a relationship between a DC component and a preset threshold. Misconfiguration or operation of the network management system.
  • the first threshold is a minimum value of M of the at least one true channel including the amplitude modulation service signal obtained in advance and at least one M of the branch channel not including the real service signal. The value between the maximum values.
  • the second threshold is a minimum value in the M of the pre-obtained at least one false channel that does not include the real service signal, and at least one of the M channels including the true channel of the phase modulation service signal. The value between the maximum values.
  • the fourth threshold is a minimum value of L of at least one true channel including the amplitude modulation service signal obtained in advance and L of at least one false channel not including the real service signal. The value between the maximum values.
  • the fifth threshold is a minimum value of L in the pre-obtained at least one false channel that does not include the real service signal, and at least one L in the true channel including the phase modulation service signal. The value between the maximum values.
  • the wavelength channel includes a real service signal
  • the determining module 430 first determines ⁇ according to the formula (6), and compares ⁇ with the preset first threshold;
  • is greater than the first threshold, it indicates that the wavelength channel contains the amplitude modulated service signal, so it is determined that the wavelength channel contains the real service signal.
  • the real part of N is less than the third threshold, it indicates that the wavelength channel includes a phase modulation service signal, so it is determined that the wavelength channel includes a real service signal;
  • the determination module 430 is also used,
  • the wavelength channel includes a real service signal
  • the determining module 430 first determines L according to the formula (11), and compares L with a preset fourth threshold;
  • L is greater than the fourth threshold, it indicates that the wavelength channel contains the amplitude modulation service signal, so it is determined that the wavelength channel contains the real service signal.
  • N is determined according to formula (10), and the real part of N is compared with the preset third threshold;
  • the real part of N is less than the third threshold, it indicates that the wavelength channel includes a phase modulation service signal, so it is determined that the wavelength channel includes a real service signal;
  • the third threshold is a minimum value of a real part of N of at least one fake channel that does not include a real service signal, and at least one true channel including a phase modulation service signal. The value between the maximum values in the real part of N.
  • the apparatus 400 further includes: an optical power acquiring module 440, configured to acquire the optical channel if the determining module 430 determines that the wavelength channel includes a real service signal. Optical power of the wavelength channel;
  • the reporting module 450 is configured to report that the wavelength channel does not include a real service signal if the determining module 430 determines that the wavelength channel does not include a real service signal.
  • the optical power acquiring module 440 acquires the optical power of the wavelength channel.
  • the method for obtaining the optical power of the wavelength channel can adopt various methods in the prior art, and the present invention is not limited thereto. If the determining module 430 determines that the wavelength channel does not include the real service signal, that is, the wavelength channel is a fake channel, the optical power of the wavelength channel is not obtained, and the reporting module 450 reports the network management system. The wavelength channel does not include the real service signal. In order to facilitate the network management system to carry out the next operation and management accordingly.
  • the apparatus 400 for detecting a wavelength channel may correspond to the detecting apparatus 130 in FIG. 1 according to the present invention, and the above and other operations and/or functions of the respective modules in the apparatus 400 are respectively implemented to implement the foregoing method.
  • the corresponding processes of the various methods in the examples are not described here.
  • the apparatus for detecting a wavelength channel determines whether a wavelength channel includes a real service signal according to an AC component of an electric signal spectrum or an AC component of an electric signal spectrum and a relationship between a DC component and a preset threshold, and does not include a true service signal in the wavelength channel. Reporting the network management system when the real service signal is included can avoid misconfiguration or operation of the network management system.
  • FIG. 6 shows a structure of an apparatus for detecting a wavelength channel according to still another embodiment of the present invention, including at least one processor 602 (for example, a CPU), at least one network interface 605 or other communication interface, a memory 606, and at least one communication.
  • Bus 603 is used to implement the connection procedure between these components.
  • the memory 606 may include a high speed random access memory (RAM: Random Access Memory), and may also include a non-volatile memory such as at least one disk memory.
  • RAM Random Access Memory
  • memory 606 stores program 6061, and processor 602 executes program 6061 for performing the following operations:
  • processor 602 is further configured to:
  • the M is smaller than the preset second threshold, it is determined that the wavelength channel includes a real service signal, and the second threshold is smaller than the first threshold, or if the L is smaller than the preset fifth threshold, determining that the wavelength channel includes the real service.
  • the fifth threshold is less than the fourth threshold.
  • processor 602 is further configured to:
  • the second threshold is less than the first threshold, or if L is less than the fourth threshold and greater than the preset
  • the fifth threshold determines that the wavelength channel does not include a real service signal, and the fifth threshold is less than the fourth threshold.
  • processor 602 is further configured to:
  • N (2N AC ) I (-2(N AC - I D 2 C ) +" 4R 4 (N AC - I D 2 C f - R 2 N AC (R 2 N AC - I D 2 C ) , determining a second parameter, wherein R represents the responsiveness of the photodetector performing the photodetection;
  • the wavelength channel includes a real service signal
  • the first threshold is a value between a minimum value of the at least one true channel including the amplitude modulation service signal obtained in advance and a maximum value of the at least one false channel of the virtual service signal not including the real service signal
  • the fourth threshold is a value between a minimum value of L of the at least one true channel including the amplitude modulation service signal obtained in advance and a maximum value of L of at least one false channel not including the real service signal
  • the second threshold is a value between a minimum value of M of the pre-obtained at least one false channel not containing the real service signal and a maximum value of M of at least one true channel including the phase modulation service signal
  • the five threshold is a value between a minimum value of L of the pre-obtained at least one false channel not containing the real traffic signal and a maximum value of L of at least one true channel including the phase modulated traffic signal;
  • the third threshold is between a minimum value of the real part of N of the pre-obtained at least one false channel that does not contain the real traffic signal and a maximum value of the real part of N of the true channel including the phase modulated traffic signal. value.
  • processor 602 is further configured to:
  • the optical power of the wavelength channel is obtained. If it is determined that the wavelength channel does not include the real service signal, the network interface 605 reports that the wavelength channel does not contain the real service signal.
  • the embodiment of the present invention determines whether a wavelength channel is included according to an AC component of a frequency spectrum of an electrical signal or an AC component of a spectrum of an electrical signal and a relationship between a DC component and a preset threshold.
  • Real business signals can avoid misconfiguration or operation of the network management system.
  • the disclosed systems, devices, and The method can be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, or an electrical, mechanical or other form of connection.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present invention.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention contributes in essence or to the prior art, or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a USB flash drive, a removable hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like, and the program code can be stored. Medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Abstract

一种检测波长通道的方法和装置。该方法包括对波长通道的光信号进行光电探测,得到电信号;获取该电信号的频谱;根据等式M=NAC,确定第一参量M,其中,NAC表示所述电信号的频谱的交流分量;若M大于预设的第一门限,则确定该波长通道包含真实业务信号。该方法和装置能够避免网络管理系统的错误配置或操作。

Description

检测波长通道的方法和装置 技术领域
本发明涉及光通信领域, 并且更具体地, 涉及检测波长通道的方法和装 置。 背景技术
光性能监测是光通信网络中的重要功能。通过实时监控和测量光通信网 络中一些位置点的光组件和 /或光信号性能,获知光网络的实际状态,据此进 行网络管理和维护。 常用的光信号性能的监测包括对光信号波长、 功率、 光 信噪比 (Optical Signal Noise Ratio, OSNR )等的测量。
现有技术的光功率监测方案, 测量出波分复用 (Wavelength Division Multiplexing , WDM ) 系统中每个波长通道的功率, 并上 网络管理系统 ( Network Management System, NMS )。 然而, 有时有些波长通道中并没有 真实的业务信号, 但里面的放大自发辐射( Amplified Spontaneous Emission, ASE )噪声较大, 有着与真实业务光通道接近的光功率。 现有技术仍然测量 出该通道的功率,作为一路光信号功率上报。实际系统中并没有该路光信号。 因而网管误认为该波长通道包含一路光功率为测量所得光功率的业务信号, 从而造成错误的操作和管理。 发明内容
本发明实施例提供了一种检测波长通道的方法和装置, 能够避免网络管 理系统的错误配置或操作。
第一方面, 提供了一种检测波长通道的方法, 包括:
对波长通道的光信号进行光电探测, 得到电信号;
获取该电信号的频谱;
根据等式 = ^ , 确定第一参量 M, 其中, NAe表示该电信号的频谱 的交流分量;
若 M大于预设的第一门限, 则确定该波长通道包含真实业务信号。 结合第一方面, 在第一种可能的实现方式中, 该方法还包括:
若 M小于预设的第二门限, 则确定该波长通道包含真实业务信号, 其 中, 该第二门限小于该第一门限。
结合第一方面或第一方面的第一种可能的实现方式,在第二种可能的实 现方式中, 该方法还包括:
若 M小于该第一门限并且大于预设的第二门限, 则确定该波长通道不 包含真实业务信号, 其中, 该第二门限小于该第一门限。
结合第一方面, 在第三种可能的实现方式中, 该方法还包括:
若 M 小 于 该 第 一 门 限 , 则 根 据 等 式 N = (2NAC) f (-2(NAC - ID 2 C) + ^R4(NAC - ID 2 C†- R2NAC(R2NAC - ID 2 C) , 确定 第二参量 其中, R表示执行该光电探测的光探测器的响应度;
若 N的实部小于预设的第三门限, 则确定该波长通道包含真实业务信 号;
若 N的实部大于该第三门限,则确定该波长通道不包含真实业务信号。。 结合第一方面或第一方面的第一至三种可能的实现方式中的任一种可 能的实现方式, 在第四种可能的实现方式中, 该第一门限为预先获得的至少 一个包含幅度调制业务信号的真通道的 Μ 中的最小值与至少一个不包含真 实业务信号的假通道的 Μ中的最大值之间的值; 和 /或,
该第二门限为预先获得的至少一个不包含真实业务信号的假通道的 Μ 中的最小值与至少一个包含相位调制业务信号的真通道的 Μ 中的最大值之 间的值; 和 /或,
该第三门限为预先获得的至少一个不包含真实业务信号的假通道的 Ν 的实部中的最小值与至少一个包含相位调制业务信号的真通道的 Ν的实部 中的最大值之间的值。
结合第一方面或第一方面的第一至四种可能的实现方式中的任一种可 能的实现方式, 在第五种可能的实现方式中, 该方法还包括:
若确定该波长通道包含真实业务信号, 则获取该波长通道的光功率; 若确定该波长通道不包含真实业务信号, 则报告该波长通道不包含真实 业务信号。
第二方面, 提供了一种检测波长通道的方法, 包括:
对波长通道的光信号进行光电探测, 得到电信号;
获取该电信号的频谱;
根据等式 L = N^〃 , 确定第三参量 L, 其中, N^表示该电信号的频 谱的交流分量, IDC表示该电信号的频谱的直流分量;
若 L大于预设的第四门限, 则确定该波长通道包含真实业务信号。
结合第二方面, 在第一种可能的实现方式中, 该方法还包括:
若 L小于预设的第五门限,则确定该波长通道包含真实业务信号,其中, 该第五门限小于该第四门限。
结合第二方面或第二方面的第一种可能的实现方式,在第二种可能的实 现方式中, 该方法还包括:
若 L小于该第四门限并且大于预设的第五门限,则确定该波长通道不包 含真实业务信号, 其中, 该第五门限小于该第四门限。
结合第二方面, 在第三种可能的实现方式中, 该方法还包括:
若 L 小 于 该 第 四 门 限 , 则 根 据 等 式
N = ( NAC) I (-2(NAC - ID 2 C) +」4R4(NAC - ID 2 Cf - R2NAC(R2NAC - ID 2 C) , 确定 第二参量 其中, R表示执行该光电探测的光探测器的响应度;
若 N的实部小于预设的第三门限, 则确定该波长通道包含真实业务信 号;
若 N的实部大于该第三门限, 则确定该波长通道不包含真实业务信号。 结合第二方面或第二方面的第一至三种可能的实现方式中的任一种可 能的实现方式, 在第四种可能的实现方式中, 该第四门限为预先获得的至少 一个包含幅度调制业务信号的真通道的 L 中的最小值与至少一个不包含真 实业务信号的假通道的 L中的最大值之间的值; 和 /或,
该第五门限为预先获得的至少一个不包含真实业务信号的假通道的 L 中的最小值与至少一个包含相位调制业务信号的真通道的 L 中的最大值之 间的值; 和 /或,
该第三门限为预先获得的至少一个不包含真实业务信号的假通道的 N 的实部中的最小值与至少一个包含相位调制业务信号的真通道的 Ν的实部 中的最大值之间的值。
结合第二方面或第二方面的第一至四种可能的实现方式中的任一种可 能的实现方式, 在第五种可能的实现方式中, 该方法还包括:
若确定该波长通道包含真实业务信号, 则获取该波长通道的光功率; 若确定该波长通道不包含真实业务信号, 则报告该波长通道不包含真实 业务信号。 第三方面, 提供了一种检测波长通道的装置, 包括:
探测模块, 用于对波长通道的光信号进行光电探测, 得到电信号; 频谱获取模块, 用于获取该电信号的频谱;
确定模块, 用于根据等式^ = NAe , 确定第一参量 M, NAC表示该电信 号的频谱的交流分量, 若 M大于预设的第一门限, 则确定该波长通道包含 真实业务信号, 或者, 根据等式 L = NAe〃^, 确定第三参量 L, NAC表示该 电信号的频谱的交流分量, 表示该电信号的频谱的直流分量, 若 L大于 预设的第四门限, 则确定该波长通道包含真实业务信号。
结合第三方面, 在第一种可能的实现方式中, 该确定模块还用于, 若 M小于预设的第二门限, 则确定该波长通道包含真实业务信号, 该 第二门限小于该第一门限, 或者, 若 L小于预设的第五门限, 则确定该波长 通道包含真实业务信号, 该第五门限小于该第四门限。
结合第三方面或第三方面的第一种可能的实现方式,在第二种可能的实 现方式中, 该确定模块还用于,
若 M小于该第一门限并且大于预设的第二门限, 则确定该波长通道不 包含真实业务信号, 该第二门限小于该第一门限, 或者, 若 L小于该第四门 限并且大于预设的第五门限, 则确定该波长通道不包含真实业务信号, 该第 五门限小于该第四门限。
结合第三方面, 在第三种可能的实现方式中, 该确定模块还用于, 若 M 小于该第一门限, 或者, 若 L 小于该第四门限, 则根据等式
N = (2NAC) I (-2(NAC - ID 2 C) + 4R4(NAC - ID 2 Cf - R2NAC(R2NAC - ID 2 C) , 确定 第二参量 其中, R表示执行该光电探测的光探测器的响应度;
若 N的实部小于预设的第三门限, 则确定该波长通道包含真实业务信 号;
若 N的实部大于该第三门限, 则确定该波长通道不包含真实业务信号。 结合第三方面或第三方面的第一至三种可能的实现方式中的任一种可 能的实现方式, 在第四种可能的实现方式中, 该第一门限为预先获得的至少 一个包含幅度调制业务信号的真通道的 Μ 中的最小值与至少一个不包含真 实业务信号的假通道的 Μ 中的最大值之间的值, 或者, 该第四门限为预先 获得的至少一个包含幅度调制业务信号的真通道的 L 中的最小值与至少一 个不包含真实业务信号的假通道的 L中的最大值之间的值; 和 /或, 该第二门限为预先获得的至少一个不包含真实业务信号的假通道的 M 中的最小值与至少一个包含相位调制业务信号的真通道的 M 中的最大值之 间的值, 或者, 该第五门限为预先获得的至少一个不包含真实业务信号的假 通道的 L中的最小值与至少一个包含相位调制业务信号的真通道的 L中的最 大值之间的值; 和 /或,
该第三门限为预先获得的至少一个不包含真实业务信号的假通道的 N 的实部中的最小值与至少一个包含相位调制业务信号的真通道的 N的实部 中的最大值之间的值。
结合第三方面或第三方面的第一至四种可能的实现方式中的任一种可 能的实现方式, 在第五种可能的实现方式中, 该装置还包括:
光功率获取模块,用于在该确定模块确定该波长通道包含真实业务信号 的情况下, 获取该波长通道的光功率;
报告模块,用于在该确定模块确定该波长通道不包含真实业务信号的情 况下, 报告该波长通道不包含真实业务信号。
基于上述技术方案, 本发明实施例的检测波长通道的方法和装置, 根据 电信号的频谱的交流分量或者电信号的频谱的交流分量以及直流分量与预 设门限的关系, 确定波长通道是否包含真实业务信号, 能够避免网络管理系 统的错误配置或操作。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对本发明实施例中 所需要使用的附图作筒单地介绍, 显而易见地, 下面描述中的附图仅仅是本 发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的 前提下, 还可以根据这些附图获得其他的附图。
图 1是本发明实施例的一个应用场景图。
图 2是根据本发明一个实施例的检测波长通道的方法的示意性流程图。 图 3是根据本发明另一实施例的检测波长通道的方法的示意性流程图。 图 4是根据本发明一个实施例的检测波长通道的装置的示意性框图。 图 5是根据本发明另一实施例的检测波长通道的装置的示意性框图。 图 6是根据本发明又一实施例的检测波长通道的装置的结构示意图。 具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例是本发明的一部分实施例, 而不 是全部实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作出创 造性劳动的前提下所获得的所有其他实施例, 都应属于本发明保护的范围。
在本发明实施例中, 除特别说明外, 光信号一般表示波长通道中的总的 光信号。 对应不同情况, 光信号可以包括真实业务信号和光噪声 (如 ASE), 或者, 只包括真实业务信号, 或者, 只包括光噪声, 其中, 真实业务信号也 可以表述为业务信号, 光噪声也可以表述为噪声或假信号。
在本发明实施例中, 只包含光噪声不包含真实业务信号的波长通道称为 假通道, 包含真实业务信号的波长通道称为真通道。
图 1是本发明实施例的一个应用场景图。 如图 1所示, 从光链路 110的 检测点 120处耦合出一部分光信号进入检测装置 130。 检测装置 130进行检 测后, 将检测结果上报网络管理系统 140。
对于波长通道的光信号(可能是含光噪声和真实业务信号的光信号, 也 可能是不含真实业务信号的光噪声 ), 在 X偏振态上, 该光信号可以表示为: sx(t) = Ax(t) + nx(t) ( 1 ) 在 y偏振态上, 该光信号可以表示为:
sy(t) = A (t) + ny(t) (2) 其中, Ax(0和 是业务信号的场强, (0和 (ί)是光噪声的场强。 接收后对应的电信号的频谱的直流分量为:
IDC =R-{E[\Ax(t)\2 + \Ay(t)\2 + \nx(t)\2 + \ny(t)\2]} = R-{Ps +2N0B-a} ( 3 ) 其中, R是光探测器的响应度, E[.]表示求期望(均值), 是业务信号 的光功率, 是光噪声的功率密度, B是处理电路的带宽, α是处理电路幅 频响应的等效的系数。
电信号的频谱的交流分量为:
NAC =R2 -{E[P(t)2 -Ps]} + R2 -Ps -{2N0B-f} + R2 -{2N0B-a}2 (4) 由式(4)可以得到, NAe由三项组成, 第一项反映业务信号的频谱分 量, 第二项反映了业务信号与光噪声的拍频噪声分量, 第三项反映了光噪声 与光噪声的拍频噪声分量。
对于通常的幅度调制光信号,光电探测后幅度信息仍然保留,因此式(4) 中第一项占主导, 即第一项远大于第二项和第三项。 这里 "通常"的含义是, 该光信号里可以包含非常少量可忽略的光噪声, 也可以包含较大量的光噪 声, 但里面的光噪声仍在合理范围, 即不会大到影响该光信号的正常接收。 这也是光通信网络的一个设计准则。
对于通常的相位调制光信号, 其幅度的包络几乎是平的, 因此光电探测 后的电信号也几乎是一个直流信号。 因此式(4 ) 中主导的为第二项, 即信 号与光噪声的拍频噪声分量。
对于 支信号即光噪声独占的信道, 式(4 ) 中主导的为第三项。
根据上述分析, 通常对于上述三种不同的情况, 交流分量 NAC满足以下 关系:
幅度调制业务信号的 NAe 信号的 NAe >相位调制业务信号的 NAC ( 5 ) 因此,在本发明实施例中,可以通过检测一个波长通道里光信号的 NAe , 根据关系式(5 ) 来判断是真通道还是假通道。 可选地, NAe可以是在一个 频率范围内的交流分量, 例如 0.2MHz到 2MHz的频率范围。 图。 该方法 200由检测波长通道的装置执行。 例如, 该检测波长通道的装置 可以是图 1中的检测装置 130。 如图 2所示, 该方法 200包括:
S210, 对波长通道的光信号进行光电探测, 得到电信号;
S220, 获取电信号的频谱;
S230, 根据等式 = ^^ 确定第一参量 M, 其中, NAe表示电信号的 频谱的交流分量;
S240, 若 M大于预设的第一门限, 则确定该波长通道包含真实业务信 号。
在本发明实施例中, 根据电信号的频谱的交流分量 NAC与预设门限的关 系, 确定波长通道是否包含真实业务信号。
检测波长通道的装置先对波长通道的光信号进行光电探测, 得到电信 号。 例如, 检测波长通道的装置将其中的可调光滤波器 (Tunable Optical Filter, TOF )调到被测波长通道的中心频率处, 利用接收机对光信号进行接 收, 即光电转换, 得到电信号。 接收机可以是一个低带宽的光接收机, 其带 宽可以远远低于光信号的带宽, 比如是几十 MHz或几百 MHz。 应理解, 探 测光信号的步骤还可以采用现有技术中的其他方法, 本发明实施例对此不限 定。
然后, 检测波长通道的装置获取电信号的频谱。 例如, 先将电信号转换 成数字信号, 对数字信号进行傅里叶变换变换到频域, 得到电信号的频谱。 例如, 该傅里叶变换可以是快速傅里叶变换。 也可以通过其他方式如电频谱 仪将所述电信号转换到频域得到其频谱, 本发明对此并不限定。
在得到电信号的频语后,检测波长通道的装置根据电信号的频谱的交流 分量与预设门限的关系, 确定该波长通道是否包含真实业务信号。
可选地, 频谱的交流分量可以是频谱在一定频率范围内 (不包括零频) 的功率或能量, 也可以是频谱在某个频率(非零频)上的幅度或在若干个频 率(不包括零频)上的幅度之和。 频谱的直流分量是频谱在零频上的幅度, 该直流分量也可以通过对电信号 (不转换到频域)进行平均而获得。
由式(5 )可知, 对于幅度调制业务信号、 相位调制业务信号和假信号, 它们的电信号的频谱的交流分量差别比较大。 基于此, 可以根据电信号的频 谱的交流分量与预设门限的关系, 确定波长通道包含的是幅度调制业务信 号、 相位调制业务信号还是假信号, 其中前两种是真实业务信号。 这样, 本 发明实施例可以判断出波长通道是否包含真实业务信号, 不会将假信号作为 真实业务信号, 从而能够避免网络管理系统的错误配置或操作。
具体地, 在本发明实施例中, 令第一参量 M等于电信号的频谱的交流 分量, 即:
M 二 NAC ( 6 ) 在获取电信号的频语后, 计算 M, 再与预设的第一门限比较, 若 M大 于第一门限, 表示波长通道包含幅度调制业务信号, 因此确定波长通道包含 真实业务信号。
可选地, 若 M小于预设的第二门限, 表示波长通道包含相位调制业务 信号, 因此确定波长通道包含真实业务信号,其中,第二门限小于第一门限。
可选地, 若 M小于第一门限并且大于第二门限, 表示波长通道只包含 光噪声, 因此确定波长通道不包含真实业务信号。
应理解, 在本发明实施例中, 在确定 M后, 也可以先与第二门限比较。 也就是说, 本发明实施例对与第一门限和第二门限比较的先后顺序并不限 定。
本发明实施例的检测波长通道的方法,根据电信号的频谱的交流分量与 预设门限的关系, 确定波长通道是否包含真实业务信号, 能够避免网络管理 系统的错误配置或操作。
应理解, 在本发明实施例的各种判断条件中, 采用了 "大于"或 "小于" 的描述, 若出现 "等于" 的情况, 可以按照其中的任一种情况处理, 这都应 涵盖在本发明的保护范围之内。
可选地, 在本发明实施例中, 该第一门限为预先获得的至少一个包含幅 度调制业务信号的真通道的 M 中的最小值与至少一个不包含真实业务信号 的假通道的 M中的最大值之间的值。
可选地, 在本发明实施例中, 该第二门限为预先获得的至少一个不包含 真实业务信号的假通道的 M 中的最小值与至少一个包含相位调制业务信号 的真通道的 M中的最大值之间的值。
也就是说,第一门限和 /或第二门限可以根据预配置好的多个波长通道确 定。 具体地, 预配置多个波长通道, 即每个波长通道中配置已知的光信号。 预配置的多个波长通道包括多个真通道和至少一个支通道。 多个真通道包括 至少一个包含幅度调制业务信号的真通道和至少一个包含相位调制业务信 号的真通道。 可选地, 多个真通道包含各种码型的各种比特率的业务信号, 其中, 一部分为幅度调制业务信号, 另一部分为相位调制业务信号。 各个真 通道的 OSNR为接收机能够接收的最低 OSNR, 可选地, 可以是背靠背情况 下接收机能够接收的最低 OSNR。
分别确定预配置的多个波长通道中的每个波长通道的 M。
例如, 分别调节 TOF 中心频率到每个波长通道的中心频率处, 对光信 号进行光电转换并转换成数字信号, 然后傅里叶变换到频域, 得到电信号的 频谱。 然后根据式(6 )对每个通道计算 。
选取各个支通道的 M中的最大值, 以及各个幅度调制真通道的 M中的 最小值, 取介于这两者之间的值, 例如, 平均值, 作为第一门限。 选取各个 假通道的 M中的最小值, 以及各个相位调制真通道的 M中的最大值, 取介 于这两者之间的值, 例如, 平均值, 作为第二门限。
对于通常的幅度调制光信号,光电探测后幅度信息仍然保留,因此式(4 ) 第一项占主导。 通常这一项的值很大, 因此 NAC也很大, 很容易与相位调制 光信号或 H i言号区分开。 也就是说, 若 M大于第一门限, 则可以确定波长 通道包含幅度调制业务信号, 即确定波长通道包含真实业务信号。 对于相位调制光信号或假信号,尤其是当相位调制光信号里光噪声含量 较多时 (即 OSNR较低时), 两者的 NAC可能比较接近。 在这种情况下, 本 发明实施例采用另一种方式对这两者进行区分。
在式(3)和(4) 中, 记 Ρη =2Ν0Β·α, 定义第二参量 N来表示光噪声相 对业务信号的大小, 即:
N = P P (7) 考虑到不管是对于全光噪声的假信道还是相位调制光信号, 式(4) 的 第一项为 0或相对 4艮小, 可忽略, 因此, 式(3)和(4)可以改写为:
IDC=RPn.(N + l) (8) NAC=R2P 2N + \) (9) 由上两式可以得到:
N = (2NAC)I (-2(NAC -ID 2 C) +」4R4(NAC - ID 2 Cf - R2NAC(R2NAC - ID 2 C) ( 10) 将 N的实部与预设的第三门限比较,若小于第三门限,意味着 N = Pnl Ps 4艮小, 即光噪声在波长通道里 4艮少, 因此, 可以判断该波长通道里为真实的 业务光信号 (相位调制光信号)。
若大于第三门限, 意味着 较大或者式(10)的假设不成立(即式(4) 中的第一项 4艮大)。 结合 M与第一门限的比较, 可以把幅度调制光信号判断 出来, 因此, 根据 M和 N的实部与预设门限的关系, 可以将三种情况区分 开。 可以先根据 M与第一门限的大小关系, 判断是否包含幅度调制业务信 号,再根据 N的实部与第三门限的大小关系, 判断是否包含相位调制业务信 号或光噪声; 也可以先根据 N的实部与第三门限的大小关系, 判断是否包含 相位调制业务信号, 再根据 M与第一门限的大小关系, 判断是否包含幅度 调制业务信号或光噪声。
可选地, 在本发明的一个实施例中, 该方法 200还包括:
若 M 小 于 该 第 一 门 限 , 则 根 据 等 式
N = (2NAC)I (-2(NAC -ID 2 C) + ^R NAC-ID 2 C†- R2NAC(R2NAC-ID 2 C) , 确定 第二参量 其中, R表示执行该光电探测的光探测器的响应度;
若 N的实部小于预设的第三门限, 则确定该波长通道包含真实业务信 号;
若 N的实部大于该第三门限, 则确定该波长通道不包含真实业务信号。 在本实施例中, 先根据式(6), 确定 Μ, 将 Μ与预设的第一门限比较; 若 M大于第一门限, 表示波长通道包含幅度调制业务信号, 因此确定 该波长通道包含真实业务信号。
若 M小于第一门限, 再根据式(10 ), 确定 N, 将 N的实部与预设的第 三门限比较;
若 N的实部小于第三门限,表示波长通道包含相位调制业务信号, 因此 确定该波长通道包含真实业务信号;
若 N的实部大于第三门限, 则确定该波长通道不包含真实业务信号。 可选地, 也可以先根据式(10 ), 确定 N, 将 N的实部与预设的第三门 限比较;
若 N的实部小于第三门限,表示波长通道包含相位调制业务信号, 因此 确定该波长通道包含真实业务信号。
若 N的实部大于第三门限, 再根据式(6 ), 确定 M, 将 M与预设的第 一门限比较;
若 M大于第一门限, 表示波长通道包含幅度调制业务信号, 因此确定 该波长通道包含真实业务信号;
若 M小于第一门限, 则确定该波长通道不包含真实业务信号。
可选地, 在本发明实施例中, 该第三门限为预先获得的至少一个不包含 真实业务信号的假通道的 N的实部中的最小值与至少一个包含相位调制业 务信号的真通道的 N的实部中的最大值之间的值。
与第一门限和第二门限类似, 第三门限也可以根据预配置好的多个波长 通道确定。 例如, 选取各个预配置的假通道的 N的实部中的最小值, 以及各 个预配置的相位调制真通道的 N的实部中的最大值, 取介于这两者之间的 值, 例如, 平均值, 作为第三门限。
在确定了波长通道是否包含真实业务信号后,检测波长通道的装置再根 据相应的结果, 获取波长通道的光功率或者上报网络管理系统。
在本发明实施例中, 可选地, 该方法 200还包括:
若确定该波长通道包含真实业务信号, 则获取该波长通道的光功率; 若确定该波长通道不包含真实业务信号, 则报告该波长通道不包含真实 业务信号。
具体而言,若确定波长通道包含真实业务信号,即该波长通道为真通道, 则获取该波长通道的光功率。获取波长通道光功率的方法可以采用现有技术 中的各种方法, 本发明对此不限定。 若确定波长通道不包含真实业务信号, 即该波长通道为假通道, 则不获取该波长通道的光功率, 还可以上报网络管 理系统该波长通道不包含真实业务信号, 以便于网络管理系统据此进行下一 步的操作和管理。
因此, 本发明实施例的检测波长通道的方法, 根据电信号的频谱的交流 分量与预设门限的关系, 确定波长通道是否包含真实业务信号, 在波长通道 不包含真实业务信号时上报网络管理系统, 能够避免网络管理系统的错误配 置或操作。
一个波长通道里光信号的功率与另一个波长通道里光信号的功率可能 有较大的差别。 在这种情况下, 不同波长通道中同一种类型的光信号或假信 号, 其 NAe也可能差别较大。 为了消除这个影响, 可以将 NAe根据波长通道 里光信号的功率进行归一化。 图。 该方法 300由检测波长通道的装置执行。 例如, 该检测波长通道的装置 可以是图 1中的检测装置 130。 如图 3所示, 该方法 300包括:
S310, 对波长通道的光信号进行光电探测, 得到电信号;
S320, 获取该电信号的频谱;
S330, 根据等式 L = NAe〃^, 确定第三参量 L, 其中, NAe表示电信号 的频谱的交流分量, 表示电信号的频谱的直流分量;
S340,若 L大于预设的第四门限,则确定该波长通道包含真实业务信号。 在本发明实施例中,根据电信号的频谱的交流分量以及直流分量与预设 门限的关系, 确定波长通道是否包含真实业务信号。
检测波长通道的装置先对波长通道的光信号进行光电探测, 得到电信 号。 例如, 检测波长通道的装置将其中的可调光滤波器调到被测波长通道的 中心频率处, 利用接收机对光信号进行接收, 即光电转换, 得到电信号。 接 收机可以是一个低带宽的光接收机, 其带宽可以远远低于光信号的带宽, 比 如是几十 MHz或几百 MHz。 应理解, 探测光信号的步骤还可以采用现有技 术中的其他方法, 本发明实施例对此不限定。
然后, 检测波长通道的装置获取电信号的频谱。 例如, 先将电信号转换 成数字信号, 对数字信号进行傅里叶变换变换到频域, 得到电信号的频谱。 例如, 该傅里叶变换可以是快速傅里叶变换。 也可以通过其他方式如电频谱 仪将所述电信号转换到频域得到其频谱, 本发明对此并不限定。 在得到电信号的频语后,检测波长通道的装置将电信号的频谱的交流分 量根据波长通道里光信号的功率进行归一化。 波长通道里光信号的功率由 反映, 因此, 可以将 NAC根据 /DC进行归一下。
具体地, 在本发明实施例中, 第三参量 L由下式确定:
L = NAC / ID 2 C ( 11 ) 在获取电信号的频语后, 根据式(11 )计算 L, 再将 L与预设的第四门 限比较, 若 L大于第四门限, 表示波长通道包含幅度调制业务信号, 因此确 定波长通道包含真实业务信号。
可选地, 若 L小于预设的第五门限, 表示波长通道包含相位调制业务信 号, 因此确定波长通道包含真实业务信号, 其中, 第六门限小于第五门限。
可选地, 若 L小于第四门限并且大于第五门限, 表示波长通道只包含光 噪声, 因此确定波长通道不包含真实业务信号。
应理解, 在本发明实施例中, 在确定 L后, 也可以先与第五门限比较。 也就是说, 本发明实施例对与第四门限和第五门限比较的先后顺序并不限 定。
本发明实施例的检测波长通道的方法,根据电信号的频谱的交流分量以 及直流分量与预设门限的关系, 确定波长通道是否包含真实业务信号, 能够 避免网络管理系统的错误配置或操作。
可选地, 在本发明实施例中, 该第四门限为预先获得的至少一个包含幅 度调制业务信号的真通道的 L 中的最小值与至少一个不包含真实业务信号 的假通道的 L中的最大值之间的值。
可选地, 在本发明实施例中, 该第五门限为预先获得的至少一个不包含 真实业务信号的假通道的 L 中的最小值与至少一个包含相位调制业务信号 的真通道的 L中的最大值之间的值。
也就是说,第四门限和 /或第五门限可以根据预配置好的多个波长通道确 定。 具体地, 预配置多个波长通道, 即每个波长通道中配置已知的光信号。 预配置的多个波长通道包括多个真通道和至少一个支通道。 多个真通道包括 至少一个包含幅度调制业务信号的真通道和至少一个包含相位调制业务信 号的真通道。 可选地, 多个真通道包含各种码型的各种比特率的业务信号, 其中, 一部分为幅度调制业务信号, 另一部分为相位调制业务信号。 各个真 通道的 OSNR为接收机能够接收的最低 OSNR, 可选地, 可以是背靠背情况 下接收机能够接收的最低 OSNR。
分别确定预配置的多个波长通道中的每个波长通道的 L。
例如, 分别调节 TOF 中心频率到每个波长通道的中心频率处, 对光信 号进行光电转换并转换成数字信号, 然后傅里叶变换到频域, 得到电信号的 频谱。 然后根据式(11 )对每个通道计算
选取各个支通道的 L中的最大值,以及各个幅度调制真通道的 L中的最 小值, 取介于这两者之间的值, 例如, 平均值, 作为第四门限。 选取各个殳 通道的 L中的最小值, 以及各个相位调制真通道的 L中的最大值, 取介于这 两者之间的值, 例如, 平均值, 作为第五门限。
可选地, 在本发明的一个实施例中, 该方法 300还包括:
若 L 小 于 该 第 四 门 限 , 则 根 据 等 式
N = (2NAC) I (-2(NAC - ID 2 C) + » AC - ID 2 Cf - R2NAC(R2NAC - ID 2 C) , 确定 第二参量 其中, R表示执行该光电探测的光探测器的响应度;
若 N的实部小于预设的第三门限, 则确定该波长通道包含真实业务信 号;
若 N的实部大于该第三门限, 则确定该波长通道不包含真实业务信号。 在本实施例中, 先根据式(11 ), 确定 L, 将 L与预设的第四门限比较; 若 L大于第四门限, 表示波长通道包含幅度调制业务信号, 因此确定该 波长通道包含真实业务信号。
若 L小于第五门限, 再根据式(10 ), 确定 N, 将 N的实部与预设的第 三门限比较;
若 N的实部小于第三门限,表示波长通道包含相位调制业务信号, 因此 确定该波长通道包含真实业务信号;
若 N的实部大于第三门限, 则确定该波长通道不包含真实业务信号。 可选地, 也可以先根据式(10 ), 确定 N, 将 N的实部与预设的第三门 限比较;
若 N的实部小于第三门限,表示波长通道包含相位调制业务信号, 因此 确定该波长通道包含真实业务信号。
若 N的实部大于第三门限, 再根据式(11 ), 确定 L, 将 L与预设的第 四门限比较; 若 L大于第四门限, 表示波长通道包含幅度调制业务信号, 因此确定该 波长通道包含真实业务信号;
若 L小于第四门限, 则确定该波长通道不包含真实业务信号。
可选地, 在本发明实施例中, 该第三门限为预先获得的至少一个不包含 真实业务信号的假通道的 N的实部中的最小值与至少一个包含相位调制业 务信号的真通道的 N的实部中的最大值之间的值。
与第四门限和第五门限类似, 第三门限也可以根据预配置好的多个波长 通道确定。 例如, 选取各个预配置的假通道的 N的实部中的最小值, 以及各 个预配置的相位调制真通道的 N的实部中的最大值, 取介于这两者之间的 值, 例如, 平均值, 作为第三门限。
在确定了波长通道是否包含真实业务信号后,检测波长通道的装置再根 据相应的结果, 获取波长通道的光功率或者上报网络管理系统。
在本发明实施例中, 可选地, 该方法 300还包括:
若确定该波长通道包含真实业务信号, 则获取该波长通道的光功率; 若确定该波长通道不包含真实业务信号, 则报告该波长通道不包含真实 业务信号。
具体而言,若确定波长通道包含真实业务信号,即该波长通道为真通道, 则获取该波长通道的光功率。获取波长通道光功率的方法可以采用现有技术 中的各种方法, 本发明对此不限定。 若确定波长通道不包含真实业务信号, 即该波长通道为假通道, 则不获取该波长通道的光功率, 还可以上报网络管 理系统该波长通道不包含真实业务信号, 以便于网络管理系统据此进行下一 步的操作和管理。
因此, 本发明实施例的检测波长通道的方法, 根据电信号的频谱的交流 分量以及直流分量与预设门限的关系, 确定波长通道是否包含真实业务信 号, 在波长通道不包含真实业务信号时上报网络管理系统, 能够避免网络管 理系统的错误配置或操作。
应理解, 在本发明的各种实施例中, 上述各过程的序号的大小并不意味 着执行顺序的先后, 各过程的执行顺序应以其功能和内在逻辑确定, 而不应 对本发明实施例的实施过程构成任何限定。
上文详细描述了根据本发明实施例的检测波长通道的方法, 下面将描述 根据本发明实施例的检测波长通道的装置。 图 4示出了根据本发明实施例的检测波长通道的装置 400 的示意性框 图。 如图 4所示, 该装置 400包括:
探测模块 410, 用于对波长通道的光信号进行光电探测, 得到电信号; 频谱获取模块 420, 用于获取电信号的频谱;
确定模块 430, 用于根据等式^ = NAe , 确定第一参量 M, NAC表示该 电信号的频谱的交流分量, 若 M大于预设的第一门限, 则确定该波长通道 包含真实业务信号, 或者, 根据等式 L = NAC〃^, 确定第三参量 L, NAC表 示该电信号的频谱的交流分量, 表示该电信号的频谱的直流分量, 若 L 大于预设的第四门限, 则确定该波长通道包含真实业务信号。
在本发明实施例中,检测波长通道的装置 400通过探测模块 410对波长 通道的光信号进行光电探测, 得到电信号。 具体地, 探测模块 410可以包括 可调光滤波器和接收机。 可调光滤波器调到被测波长通道的中心频率处, 接 收机对光信号进行接收, 即光电转换, 得到电信号。 接收机可以是一个低带 宽的光接收机, 其带宽可以远远低于光信号的带宽, 比如是几十 MHz或几 百 MHz。
频谱获取模块 420获取电信号的频谱。 例如, 先将电信号转换成数字信 号, 对数字信号进行傅里叶变换变换到频域, 得到电信号的频谱。 例如, 该 傅里叶变换可以是快速傅里叶变换。也可以通过其他方式如电频谱仪将所述 电信号转换到频域得到其频谱, 本发明对此并不限定。
在得到电信号的频语后,确定模块 430根据电信号的频谱的交流分量与 预设门限的关系, 或者根据电信号的频谱的交流分量以及直流分量与预设门 限的关系, 确定该波长通道是否包含真实业务信号。
可选地, 频谱的交流分量可以是频谱在一定频率范围内 (不包括零频) 的功率或能量, 也可以是频谱在某个频率(非零频)上的幅度或在若干个频 率(不包括零频)上的幅度之和。 频谱的直流分量是频谱在零频上的幅度, 该直流分量也可以通过对电信号 (不转换到频域)进行平均而获得。
具体地,确定模块 430可以根据式( 6 )确定第一参量 M,或者根据( 11 ) 确定第三参量 L,再根据 M或 L与相应的预设门限的关系确定波长通道是否 包含真实业务信号。
在采用式(6 ) 的情况下, 确定模块 430用于, 若 M大于预设的第一门 限, 则确定波长通道包含真实业务信号。 可选地, 确定模块 430用于, 若 M小于预设的第二门限, 则确定该波 长通道包含真实业务信号, 该第二门限小于该第一门限。
可选地, 确定模块 430用于, 若 M小于该第一门限并且大于预设的第 二门限, 则确定该波长通道不包含真实业务信号, 该第二门限小于该第一门 限。
在采用式(11 )的情况下, 确定模块 430用于, 若 L大于预设的第四门 限, 则确定该波长通道包含真实业务信号。
可选地, 确定模块 430用于, 若 L小于预设的第五门限, 则确定该波长 通道包含真实业务信号, 该第五门限小于该第四门限。
可选地, 确定模块 430用于, 若 L小于该第四门限并且大于预设的第五 门限,则确定该波长通道不包含真实业务信号,该第五门限小于该第四门限。
这样, 本发明实施例可以判断出波长通道是否包含真实业务信号, 不会 将假信号作为真实业务信号, 从而能够避免网络管理系统的错误配置或操 作。
因此, 本发明实施例的检测波长通道的装置, 根据电信号的频谱的交流 分量或者电信号的频谱的交流分量以及直流分量与预设门限的关系,确定波 长通道是否包含真实业务信号, 能够避免网络管理系统的错误配置或操作。
可选地, 在本发明实施例中, 该第一门限为预先获得的至少一个包含幅 度调制业务信号的真通道的 M 中的最小值与至少一个不包含真实业务信号 的 支通道的 M中的最大值之间的值。
可选地, 在本发明实施例中, 该第二门限为预先获得的至少一个不包含 真实业务信号的假通道的 M 中的最小值与至少一个包含相位调制业务信号 的真通道的 M中的最大值之间的值。
可选地, 在本发明实施例中, 该第四门限为预先获得的至少一个包含幅 度调制业务信号的真通道的 L 中的最小值与至少一个不包含真实业务信号 的假通道的 L中的最大值之间的值。
可选地, 在本发明实施例中, 该第五门限为预先获得的至少一个不包含 真实业务信号的假通道的 L 中的最小值与至少一个包含相位调制业务信号 的真通道的 L中的最大值之间的值。
在本发明实施例中, 可选地, 在采用式(6 ) 的情况下, 确定模块 430 还用于, 若 M 小 于 该 第 一 门 限 , 则 根 据 等 式 N = (2NAC) I (-2(NAC - ID 2 C) + ^R NAC - ID 2 C†- R2NAC(R2NAC - ID 2 C) , 确定 第二参量 其中, R表示执行该光电探测的光探测器的响应度;
若 N的实部小于预设的第三门限, 则确定该波长通道包含真实业务信 号;
若 N的实部大于该第三门限, 则确定该波长通道不包含真实业务信号。 在本实施例中, 确定模块 430先根据式(6 ), 确定 Μ, 将 Μ与预设的 第一门限比较;
若 Μ大于第一门限, 表示波长通道包含幅度调制业务信号, 因此确定 该波长通道包含真实业务信号。
若 Μ小于第一门限, 再根据式(10 ), 确定 N, 将 N的实部与预设的第 三门限比较;
若 N的实部小于第三门限,表示波长通道包含相位调制业务信号, 因此 确定该波长通道包含真实业务信号;
若 N的实部大于第三门限, 则确定该波长通道不包含真实业务信号。 可选地, 在采用式(11 ) 的情况下, 确定模块 430还用于,
若 L 小 于 该 第 四 门 限 , 则 根 据 等 式 Ν = (2NAC) I (-2(NAC - ID 2 C) +」4R4(NAC - ID 2 Cf - R2NAC(R2NAC - ID 2 C) , 确定 第二参量 其中, R表示执行该光电探测的光探测器的响应度;
若 N的实部小于预设的第三门限, 则确定该波长通道包含真实业务信 号;
若 N的实部大于该第三门限, 则确定该波长通道不包含真实业务信号。 在本实施例中, 确定模块 430先根据式(11 ), 确定 L, 将 L与预设的 第四门限比较;
若 L大于第四门限, 表示波长通道包含幅度调制业务信号, 因此确定该 波长通道包含真实业务信号。
若 L小于第五门限, 再根据式(10 ), 确定 N, 将 N的实部与预设的第 三门限比较;
若 N的实部小于第三门限,表示波长通道包含相位调制业务信号, 因此 确定该波长通道包含真实业务信号;
若 N的实部大于第三门限, 则确定该波长通道不包含真实业务信号。 可选地, 在本发明实施例中, 该第三门限为预先获得的至少一个不包含 真实业务信号的假通道的 N的实部中的最小值与至少一个包含相位调制业 务信号的真通道的 N的实部中的最大值之间的值。
在本发明实施例中, 可选地, 如图 5所示, 该装置 400还包括: 光功率获取模块 440, 用于在该确定模块 430确定该波长通道包含真实 业务信号的情况下, 获取该波长通道的光功率;
报告模块 450, 用于在该确定模块 430确定该波长通道不包含真实业务 信号的情况下, 报告该波长通道不包含真实业务信号。
具体而言, 若确定模块 430确定波长通道包含真实业务信号, 即该波长 通道为真通道, 则光功率获取模块 440获取该波长通道的光功率。 获取波长 通道光功率的方法可以采用现有技术中的各种方法, 本发明对此不限定。 若 若确定模块 430确定波长通道不包含真实业务信号,即该波长通道为假通道, 则不获取该波长通道的光功率,还可以由报告模块 450上报网络管理系统该 波长通道不包含真实业务信号, 以便于网络管理系统据此进行下一步的操作 和管理。
根据本发明实施例的检测波长通道的装置 400可对应于根据本发明实施 图 1中的检测装置 130 ), 并且装置 400中的各个模块的上述和其它操作和 / 或功能分别为了实现前述方法实施例中的各个方法的相应流程, 为了筒洁, 在此不再赘述。
本发明实施例的检测波长通道的装置,根据电信号的频谱的交流分量或 者电信号的频谱的交流分量以及直流分量与预设门限的关系,确定波长通道 是否包含真实业务信号,在波长通道不包含真实业务信号时上报网络管理系 统, 能够避免网络管理系统的错误配置或操作。
图 6示出了本发明的又一实施例提供的检测波长通道的装置的结构, 包 括至少一个处理器 602 (例如 CPU ), 至少一个网络接口 605或者其他通信 接口, 存储器 606, 和至少一个通信总线 603 , 用于实现这些部件之间的连 程序。 存储器 606 可能包含高速随机存取存储器(RAM: Random Access Memory ), 也可能还包括非不稳定的存储器( non- volatile memory ), 例如至 少一个磁盘存储器。 通过至少一个网络接口 605 (可以是有线或者无线) 实 现与至少一个其他网元之间的通信连接。
在一些实施方式中,存储器 606存储了程序 6061 ,处理器 602执行程序 6061 , 用于执行以下操作:
对波长通道的光信号进行光电探测, 得到电信号;
获取电信号的频谱;
根据等式^ = NAe , 确定第一参量 M, NAe表示电信号的频谱的交流分 量, 若 M大于预设的第一门限, 则确定该波长通道包含真实业务信号, 或 者, 根据等式 L = NAe〃^, 确定第三参量 L, NAe表示电信号的频谱的交流 分量, 表示电信号的频谱的直流分量, 若 L大于预设的第四门限, 则确 定该波长通道包含真实业务信号。
可选地, 处理器 602还用于:
若 M小于预设的第二门限, 则确定该波长通道包含真实业务信号, 该 第二门限小于该第一门限, 或者, 若 L小于预设的第五门限, 则确定该波长 通道包含真实业务信号, 该第五门限小于该第四门限。
可选地, 处理器 602还用于:
若 M小于该第一门限并且大于预设的第二门限, 则确定该波长通道不 包含真实业务信号, 该第二门限小于该第一门限, 或者, 若 L小于该第四门 限并且大于预设的第五门限, 则确定该波长通道不包含真实业务信号, 该第 五门限小于该第四门限。
可选地, 处理器 602还用于:
若 M 小于该第一门限, 或者, 若 L 小于该第四门限, 则根据等式 N = (2NAC) I (-2(NAC - ID 2 C) +」4R4(NAC - ID 2 Cf - R2NAC(R2NAC - ID 2 C) , 确定 第二参量 其中, R表示执行该光电探测的光探测器的响应度;
若 N的实部小于预设的第三门限, 则确定该波长通道包含真实业务信 号;
若 N的实部大于该第三门限, 则确定该波长通道不包含真实业务信号。 可选地, 该第一门限为预先获得的至少一个包含幅度调制业务信号的真 通道的 Μ中的最小值与至少一个不包含真实业务信号的假通道的 Μ中的最 大值之间的值, 或者, 该第四门限为预先获得的至少一个包含幅度调制业务 信号的真通道的 L中的最小值与至少一个不包含真实业务信号的假通道的 L 中的最大值之间的值; 和 /或, 该第二门限为预先获得的至少一个不包含真实业务信号的假通道的 M 中的最小值与至少一个包含相位调制业务信号的真通道的 M 中的最大值之 间的值, 或者, 该第五门限为预先获得的至少一个不包含真实业务信号的假 通道的 L中的最小值与至少一个包含相位调制业务信号的真通道的 L中的最 大值之间的值; 和 /或,
该第三门限为预先获得的至少一个不包含真实业务信号的假通道的 N 的实部中的最小值与至少一个包含相位调制业务信号的真通道的 N的实部 中的最大值之间的值。
可选地, 处理器 602还用于:
若确定该波长通道包含真实业务信号, 则获取该波长通道的光功率; 若确定该波长通道不包含真实业务信号, 则通过网络接口 605报告该波 长通道不包含真实业务信号。
从本发明实施例提供的以上技术方案可以看出,本发明实施例通过根据 电信号的频谱的交流分量或者电信号的频谱的交流分量以及直流分量与预 设门限的关系, 确定波长通道是否包含真实业务信号, 能够避免网络管理系 统的错误配置或操作。
应理解, 在本发明实施例中, 术语 "和 /或"仅仅是一种描述关联对象的 关联关系, 表示可以存在三种关系。 例如, A和 /或 B, 可以表示: 单独存在 A, 同时存在 A和 B , 单独存在 B这三种情况。 另外, 本文中字符 "/" , 一 般表示前后关联对象是一种 "或" 的关系。
本领域普通技术人员可以意识到, 结合本文中所公开的实施例描述的各 示例的单元及算法步骤, 能够以电子硬件、 计算机软件或者二者的结合来实 现, 为了清楚地说明硬件和软件的可互换性, 在上述说明中已经按照功能一 般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执 行, 取决于技术方案的特定应用和设计约束条件。 专业技术人员可以对每个 特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超 出本发明的范围。
所属领域的技术人员可以清楚地了解到, 为了描述的方便和筒洁, 上述 描述的系统、 装置和单元的具体工作过程, 可以参考前述方法实施例中的对 应过程, 在此不再赘述。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的系统、 装置和 方法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是示 意性的, 例如, 所述单元的划分, 仅仅为一种逻辑功能划分, 实际实现时可 以有另外的划分方式, 例如多个单元或组件可以结合或者可以集成到另一个 系统, 或一些特征可以忽略, 或不执行。 另外, 所显示或讨论的相互之间的 耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或 通信连接, 也可以是电的, 机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作 为单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或 者全部单元来实现本发明实施例方案的目的。
另外, 在本发明各个实施例中的各功能单元可以集成在一个处理单元 中, 也可以是各个单元单独物理存在, 也可以是两个或两个以上单元集成在 一个单元中。 上述集成的单元既可以采用硬件的形式实现, 也可以采用软件 功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销 售或使用时, 可以存储在一个计算机可读取存储介质中。 基于这样的理解, 本发明的技术方案本质上或者说对现有技术做出贡献的部分, 或者该技术方 案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在 一个存储介质中, 包括若干指令用以使得一台计算机设备(可以是个人计算 机, 服务器, 或者网络设备等)执行本发明各个实施例所述方法的全部或部 分步骤。 而前述的存储介质包括: U盘、 移动硬盘、 只读存储器(ROM, Read-Only Memory )、 随机存取存者器 ( RAM, Random Access Memory )、 磁碟或者光盘等各种可以存储程序代码的介质。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到各种等效的修改或替换, 这些修改或替换都应涵盖在本发明的保护范围 之内。 因此, 本发明的保护范围应以权利要求的保护范围为准。

Claims

权利要求
1. 一种检测波长通道的方法, 其特征在于, 包括:
对波长通道的光信号进行光电探测, 得到电信号;
获取所述电信号的频谱;
根据等式 = ^ , 确定第一参量 M, 其中, NAe表示所述电信号的频 谱的交流分量;
若 M大于预设的第一门限, 则确定所述波长通道包含真实业务信号。
2. 根据权利要求 1所述的方法, 其特征在于, 所述方法还包括: 若 M小于预设的第二门限, 则确定所述波长通道包含真实业务信号, 其中, 所述第二门限小于所述第一门限。
3. 根据权利要求 1或 2所述的方法, 其特征在于, 所述方法还包括: 若 M小于所述第一门限并且大于预设的第二门限, 则确定所述波长通 道不包含真实业务信号, 其中, 所述第二门限小于所述第一门限。
4. 根据权利要求 1所述的方法, 其特征在于, 所述方法还包括: 若 M 小 于 所 述 第 一 门 限 , 则 根 据 等 式
N = (2NAC) I (-2(NAC - ID 2 C) +」4R4(NAC - ID 2 Cf - R2NAC(R2NAC - ID 2 C) , 确定 第二参量 其中, R表示执行所述光电探测的光探测器的响应度;
若 N的实部小于预设的第三门限,则确定所述波长通道包含真实业务信 号;
若 N的实部大于所述第三门限,则确定所述波长通道不包含真实业务信 号。
5. 根据权利要求 1至 4中任一项所述的方法, 其特征在于,
所述第一门限为预先获得的至少一个包含幅度调制业务信号的真通道 的 Μ中的最小值与至少一个不包含真实业务信号的假通道的 Μ中的最大值 之间的值; 和 /或,
所述第二门限为预先获得的至少一个不包含真实业务信号的假通道的 Μ中的最小值与至少一个包含相位调制业务信号的真通道的 Μ中的最大值 之间的值; 和 /或,
所述第三门限为预先获得的至少一个不包含真实业务信号的假通道的 Ν 的实部中的最小值与至少一个包含相位调制业务信号的真通道的 Ν的实部 中的最大值之间的值。
6. 根据权利要求 1至 5中任一项所述的方法, 其特征在于, 所述方法 还包括:
若确定所述波长通道包含真实业务信号, 则获取所述波长通道的光功 率;
若确定所述波长通道不包含真实业务信号, 则报告所述波长通道不包含 真实业务信号。
7. 一种检测波长通道的方法, 其特征在于, 包括:
对波长通道的光信号进行光电探测, 得到电信号;
获取所述电信号的频谱;
根据等式 L = NAe〃^, 确定第三参量 L, 其中, NAe表示所述电信号的 频谱的交流分量, 1DC表示所述电信号的频谱的直流分量;
若 L大于预设的第四门限, 则确定所述波长通道包含真实业务信号。
8. 根据权利要求 7所述的方法, 其特征在于, 所述方法还包括: 若 L小于预设的第五门限, 则确定所述波长通道包含真实业务信号, 其 中, 所述第五门限小于所述第四门限。
9. 根据权利要求 7或 8所述的方法, 其特征在于, 所述方法还包括: 若 L小于所述第四门限并且大于预设的第五门限,则确定所述波长通道 不包含真实业务信号, 其中, 所述第五门限小于所述第四门限。
10. 根据权利要求 7所述的方法, 其特征在于, 所述方法还包括: 若 L 小 于 所 述 第 四 门 限 , 则 根 据 等 式
N = (2NAC) I (-2(NAC - ID 2 C) + 4R4(NAC - ID 2 Cf - R2NAC(R2NAC - ID 2 C) , 确定 第二参量 其中, R表示执行所述光电探测的光探测器的响应度;
若 N的实部小于预设的第三门限,则确定所述波长通道包含真实业务信 号;
若 N的实部大于所述第三门限,则确定所述波长通道不包含真实业务信 号。
11. 根据权利要求 7至 10中任一项所述的方法, 其特征在于, 所述第四门限为预先获得的至少一个包含幅度调制业务信号的真通道 的 L中的最小值与至少一个不包含真实业务信号的假通道的 L中的最大值之 间的值; 和 /或,
所述第五门限为预先获得的至少一个不包含真实业务信号的假通道的 L 中的最小值与至少一个包含相位调制业务信号的真通道的 L 中的最大值之 间的值; 和 /或,
所述第三门限为预先获得的至少一个不包含真实业务信号的假通道的 N 的实部中的最小值与至少一个包含相位调制业务信号的真通道的 N的实部 中的最大值之间的值。
12. 根据权利要求 7至 11 中任一项所述的方法, 其特征在于, 所述方 法还包括:
若确定所述波长通道包含真实业务信号, 则获取所述波长通道的光功 率;
若确定所述波长通道不包含真实业务信号, 则报告所述波长通道不包含 真实业务信号。
13. 一种检测波长通道的装置, 其特征在于, 包括:
探测模块, 用于对波长通道的光信号进行光电探测, 得到电信号; 频谱获取模块, 用于获取所述电信号的频谱;
确定模块, 用于根据等式^ = NAe , 确定第一参量 M, NAe表示所述电 信号的频谱的交流分量, 若 M大于预设的第一门限, 则确定所述波长通道 包含真实业务信号, 或者, 根据等式 L = NAC〃^, 确定第三参量 L, NAC表 示所述电信号的频谱的交流分量, 表示所述电信号的频谱的直流分量, 若 L大于预设的第四门限, 则确定所述波长通道包含真实业务信号。
14. 根据权利要求 13所述的装置, 其特征在于, 所述确定模块还用于, 若 M小于预设的第二门限, 则确定所述波长通道包含真实业务信号, 所述第二门限小于所述第一门限, 或者, 若 L小于预设的第五门限, 则确定 所述波长通道包含真实业务信号, 所述第五门限小于所述第四门限。
15. 根据权利要求 13或 14所述的装置, 其特征在于, 所述确定模块还 用于,
若 M小于所述第一门限并且大于预设的第二门限, 则确定所述波长通 道不包含真实业务信号, 所述第二门限小于所述第一门限, 或者, 若 L小于 所述第四门限并且大于预设的第五门限, 则确定所述波长通道不包含真实业 务信号, 所述第五门限小于所述第四门限。
16. 根据权利要求 13所述的装置, 其特征在于, 所述确定模块还用于, 若 M小于所述第一门限, 或者, 若 L小于所述第四门限, 则根据等式 N = (2NAC) I (-2(NAC - ID 2 C) + » AC - ID 2 Cf - R2NAC(R2NAC - ID 2 C) , 确定 第二参量 其中, R表示执行所述光电探测的光探测器的响应度;
若 N的实部小于预设的第三门限,则确定所述波长通道包含真实业务信 号;
若 N的实部大于所述第三门限,则确定所述波长通道不包含真实业务信 号。
17. 根据权利要求 13至 16中任一项所述的装置, 其特征在于, 所述第一门限为预先获得的至少一个包含幅度调制业务信号的真通道 的 M中的最小值与至少一个不包含真实业务信号的假通道的 M中的最大值 之间的值, 或者, 所述第四门限为预先获得的至少一个包含幅度调制业务信 号的真通道的 L中的最小值与至少一个不包含真实业务信号的假通道的 L中 的最大值之间的值; 和 /或,
所述第二门限为预先获得的至少一个不包含真实业务信号的假通道的
M中的最小值与至少一个包含相位调制业务信号的真通道的 M中的最大值 之间的值, 或者, 所述第五门限为预先获得的至少一个不包含真实业务信号 的假通道的 L中的最小值与至少一个包含相位调制业务信号的真通道的 L中 的最大值之间的值; 和 /或,
所述第三门限为预先获得的至少一个不包含真实业务信号的假通道的 N 的实部中的最小值与至少一个包含相位调制业务信号的真通道的 N的实部 中的最大值之间的值。
18. 根据权利要求 13至 17中任一项所述的装置, 其特征在于, 所述装 置还包括:
光功率获取模块,用于在所述确定模块确定所述波长通道包含真实业务 信号的情况下, 获取所述波长通道的光功率;
报告模块, 用于在所述确定模块确定所述波长通道不包含真实业务信号 的情况下, 报告所述波长通道不包含真实业务信号。
PCT/CN2014/073380 2014-03-13 2014-03-13 检测波长通道的方法和装置 WO2015135183A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480000157.2A CN105899267B (zh) 2014-03-13 2014-03-13 检测波长通道的方法和装置
EP14885105.8A EP3110037B1 (en) 2014-03-13 2014-03-13 Method and device for testing a wavelength channel
PCT/CN2014/073380 WO2015135183A1 (zh) 2014-03-13 2014-03-13 检测波长通道的方法和装置
US15/262,632 US10277315B2 (en) 2014-03-13 2016-09-12 Method and apparatus for monitoring wavelength channel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/073380 WO2015135183A1 (zh) 2014-03-13 2014-03-13 检测波长通道的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/262,632 Continuation US10277315B2 (en) 2014-03-13 2016-09-12 Method and apparatus for monitoring wavelength channel

Publications (1)

Publication Number Publication Date
WO2015135183A1 true WO2015135183A1 (zh) 2015-09-17

Family

ID=54070813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/073380 WO2015135183A1 (zh) 2014-03-13 2014-03-13 检测波长通道的方法和装置

Country Status (4)

Country Link
US (1) US10277315B2 (zh)
EP (1) EP3110037B1 (zh)
CN (1) CN105899267B (zh)
WO (1) WO2015135183A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10381797B1 (en) * 2018-06-06 2019-08-13 Bae Systems Information And Electronic Systems Integration Inc. Flexible design for a tunable optical filter (TOF) processing block
EP4096118A1 (en) * 2021-05-28 2022-11-30 ADVA Optical Networking SE Method for determining actual values of one or more characteristics of a phase-modulated optical signal

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100284689A1 (en) * 2007-03-29 2010-11-11 Fujitsu Limited Input signal detection device
US20120106951A1 (en) * 2010-10-29 2012-05-03 Alcatel Lucent Canada, Inc In-band optical signal-to-noise ratio measurement
CN102742185A (zh) * 2012-03-23 2012-10-17 华为技术有限公司 检测光信噪比的方法、装置、节点设备和网络系统
CN102946275A (zh) * 2012-10-29 2013-02-27 中兴通讯股份有限公司 一种实现高速dwdm系统中osnr监测的方法和装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6898214B1 (en) 2001-03-09 2005-05-24 Lucent Technologies Inc. Technique for monitoring SONET signal
US7158723B2 (en) * 2001-10-05 2007-01-02 Tropic Networks Inc. Channel identification in communications networks
US7248798B2 (en) * 2002-09-30 2007-07-24 Tropic Networks Inc. Method and system for identification of channels in an optical network
US7127165B2 (en) * 2003-02-19 2006-10-24 Tropic Networks Inc. Method and system for compensating for side effects of cross gain modulation in amplified optical networks
US7751725B2 (en) * 2005-08-10 2010-07-06 Sumitomo Electric Industries, Ltd. Optical receiver with monitoring unit and a method for detecting consecutive identical state of optical signal
US8787776B2 (en) * 2010-06-04 2014-07-22 The Governing Council Of The University Of Toronto Optical receiver with monolithically integrated photodetector
JP5678527B2 (ja) 2010-09-07 2015-03-04 日本電気株式会社 信号光モニタリング装置および信号光モニタリング方法
EP2782286B1 (en) * 2013-03-22 2019-08-21 Mitsubishi Electric R&D Centre Europe B.V. Method and device for determining whether a configuration of an optical transmission interface has to be adjusted

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100284689A1 (en) * 2007-03-29 2010-11-11 Fujitsu Limited Input signal detection device
US20120106951A1 (en) * 2010-10-29 2012-05-03 Alcatel Lucent Canada, Inc In-band optical signal-to-noise ratio measurement
CN102742185A (zh) * 2012-03-23 2012-10-17 华为技术有限公司 检测光信噪比的方法、装置、节点设备和网络系统
CN102946275A (zh) * 2012-10-29 2013-02-27 中兴通讯股份有限公司 一种实现高速dwdm系统中osnr监测的方法和装置

Also Published As

Publication number Publication date
CN105899267A (zh) 2016-08-24
EP3110037A4 (en) 2017-03-08
US20160380696A1 (en) 2016-12-29
US10277315B2 (en) 2019-04-30
CN105899267B (zh) 2018-09-07
EP3110037A1 (en) 2016-12-28
EP3110037B1 (en) 2019-02-06

Similar Documents

Publication Publication Date Title
RU2590889C2 (ru) Способ и устройство для обнаружения отношения оптического сигнала к шуму, узловое устройство и сетевая система
US10038401B2 (en) Systems and methods for fault detection
CN101834630A (zh) 一种基于能量-循环平稳特征的联合频谱检测方法
JP5598172B2 (ja) 光受信器、光受信方法、および光伝送システム
JP6113761B2 (ja) 光送信インタフェースの設定が調整されなければならないか否かを判定する方法および装置
JP5937981B2 (ja) 光チャネルモニタ及び光チャネルモニタリング方法
JP6586899B2 (ja) チャンネル間パワーインバランス補正方法及び装置並びに受信機
JP6103724B2 (ja) 光受信装置によって受信される信号内においてロック信号の存在を判定する方法および装置
JP2018195997A (ja) 光信号対雑音比を測定する装置および方法
WO2017117322A1 (en) Optical network span sensing
WO2015135183A1 (zh) 检测波长通道的方法和装置
JP5977883B2 (ja) 波長ラベル衝突検出方法及び装置、並びに波長ラベル受信装置
JP5678527B2 (ja) 信号光モニタリング装置および信号光モニタリング方法
JP2005151597A (ja) 光信号品質モニタ
CN110351074B (zh) 一种量子密钥分发系统的同步修正方法以及控制器
JP6439467B2 (ja) 光信号品質モニタ装置、光信号品質モニタ方法、及び光中継器
JP2017195599A (ja) 信号処理装置、チャネル間隔検出装置、方法及びシステム
JP6204379B2 (ja) 光学送信インタフェースの構成を調整する必要があるか否かを判断する方法および装置
US11323187B2 (en) Smart nodes for monitoring a passive distributed antenna system
Ueda et al. A Client-Side Evil-Twin Attack Detection System with Threshold Considering Traffic Load
CN116318388A (zh) 一种f5g全光网络终端环回检测方法及相关设备
JP5345961B2 (ja) 光無線システム評価装置及び光無線システム評価方法
CN113452440A (zh) 光模块的质量检测方法、装置、存储介质及电子设备
GB2567438A (en) Method and system for improving setup of network devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14885105

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014885105

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014885105

Country of ref document: EP