WO2015133697A1 - Electricity generation apparatus using atmospheric (air) latent heat - Google Patents

Electricity generation apparatus using atmospheric (air) latent heat Download PDF

Info

Publication number
WO2015133697A1
WO2015133697A1 PCT/KR2014/009845 KR2014009845W WO2015133697A1 WO 2015133697 A1 WO2015133697 A1 WO 2015133697A1 KR 2014009845 W KR2014009845 W KR 2014009845W WO 2015133697 A1 WO2015133697 A1 WO 2015133697A1
Authority
WO
WIPO (PCT)
Prior art keywords
ammonia
steam
heat
air
heat exchanger
Prior art date
Application number
PCT/KR2014/009845
Other languages
French (fr)
Korean (ko)
Inventor
한상구
Original Assignee
주식회사 레시아
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 레시아 filed Critical 주식회사 레시아
Priority to CN201480001340.4A priority Critical patent/CN105102773A/en
Publication of WO2015133697A1 publication Critical patent/WO2015133697A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K5/00Plants characterised by use of means for storing steam in an alkali to increase steam pressure, e.g. of Honigmann or Koenemann type
    • F01K5/02Plants characterised by use of means for storing steam in an alkali to increase steam pressure, e.g. of Honigmann or Koenemann type used in regenerative installation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/04Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using pressure differences or thermal differences occurring in nature

Definitions

  • the present invention relates to an electricity generating device using latent (air) latent heat, wherein ammonia (NH 3 ), which is a working fluid of a refrigerating device, is used as a working fluid for drawing latent heat in the air, To produce a heat source and heat the evaporated fluid with the R-123 refrigerant as the secondary working fluid to operate the steam engine equipped with the generator, thereby producing electricity using atmospheric (air) latent heat that produces electricity. It relates to a generating device.
  • ammonia NH 3
  • R-123 refrigerant which is a working fluid of a refrigerating device
  • 'internal combustion engine' refers to a power generating device that converts thermal energy generated by burning fuel into mechanical work, and mixes hydrocarbon fuel (coal, petroleum, etc.) with air at an appropriate ratio and burns it inside the engine. When the gas is hot and high pressure is generated, the power is obtained by using the expansion pressure of the gas.
  • Such internal combustion engines include engines that generate power by the expansion force of a gas produced by combustion and explosion of fuel in a cylinder, that is, a diesel engine, a gasoline engine, a gas turbine engine, and the like.
  • the 'external combustion engine' is the heat transfer surface of the boiler or heater ( As a heat engine that generates power by a fluid heated by a heating medium (water or gas), a combustion device must be provided separately from the body of the external combustion engine. In general, the heat transfer efficiency is bad and large.
  • Such external combustion engines include steam engines, steam turbines and closed gas turbines, but they are used only in special places due to their low efficiency.
  • the Coefficient of Performance (COP) of the refrigerator is a measure of determining whether the freezer's thermal efficiency is good or bad, and the COP is the atmospheric temperature (evaporation temperature), condenser temperature, condensation method, heat transfer method and material, It depends on variables such as compression method and compressor performance.
  • the refrigerator can calculate the COP by applying the variables of these COPs, which is 6.5 or less, and this COP can not be used at all by using the power generated by itself. Rather, it cannot afford even its own load inside the system.
  • the present invention has been made in accordance with the necessity of the above development, by producing a power or electric energy by itself by using ammonia as the working fluid and the latent heat at 25 °C into the device to utilize the energy generated by the self-circulation of the fluid
  • the purpose of the present invention is to provide an electricity generating device using latent (air) latent heat that can be used as an external power source.
  • the R-123 refrigerant (CHCL2CF3) is a fluid that is widely used as a fluid that generates steam instead of water to produce electricity on a small scale by using heat sources such as waste heat or underground heat of a factory.
  • R-123 is naturally compressed to 0.61Mpa (89 °C), it is thermally expanded by adiabatic expansion inside the steam engine like the existing steam engine (the condition for thermal expansion is to lower the instantaneous temperature or decrease the atmospheric pressure).
  • the generator is rotated at 180 RPM / MIN to produce electricity required for the industry.
  • the use of latent heat at an atmospheric temperature of 25 °C requires the use of the R-123 fluid can obtain a pressure of 0.6Mpa in the region of 89 °C, after the adiabatic expansion of the R-123 to liquefy by cooling the wet steam and permanently It is characterized by reusing.
  • the present invention absorbs latent heat in the air into the apparatus, uses ammonia as a working fluid, and condenses steel using R-123 (CHCL2CF3) as a heat exchanger refrigerant, thereby converting thermal energy into electrical energy, thereby eliminating insufficient power shortages.
  • R-123 CHCL2CF3
  • FIG. 1 is a cross-sectional view showing an electricity generating device using latent air (atmosphere) of the present invention.
  • T-S temperature-entropy
  • FIG. 1 is a cross-sectional view showing an electric generator using the latent (air) latent heat of the present invention
  • Figure 2 is a diagram showing the T-S (temperature-entropy) diagram and the thermal efficiency for each section.
  • the ammonia evaporator 20 absorbs heat using ammonia (NH 3 ) refrigerant in the pipe, using the atmosphere at 25 ° C. as the heat source among the heat (latent heat) contained in the atmosphere 10.
  • NH 3 ammonia
  • the used air (air) is discharged to the outside through the first forced fan 50.
  • the temperature rise to 119 °C is used as a high heat source energy for vaporizing the R-123 refrigerant 110 of the heat exchanger (100).
  • the increase in temperature after compression is possible with the help of a compressor that is powered from the outside according to Clausius expression in the second law of thermodynamics, and according to Boyle-Charles' law, a certain gas increases in temperature under pressure.
  • the elevated temperature is adiabatic and used as a heat source to obtain mechanical energy.
  • Kelvin Franks one of the laws of thermodynamics, states that "ideally operating heat engines cannot achieve 100% thermal efficiency," the thermal efficiency of the adiabatic expansion process that operates the steam engine according to the logic (after calculation 14.86) Calculate the output by calculating%).
  • the steam of about 118 ° C. of compressed ammonia (NH 3 ) is used as a high heat source to vaporize the R-123 solution (CHCL2CF3).
  • the steam engine 120 is saturated steam of the R-123 refrigerant 110 at 0.61 MPa. By converting heat into work by adiabatic expansion as a heat source to operate the steam engine 120, the electricity is produced by the BL generator 130 interlocked with the steam engine 120.
  • the vaporized R-123 solution (CHCL2CF3) is vaporized using about 118 ° C. vapor of compressed ammonia (NH 3 ) as a high heat source, and the characteristics of R-123 are shown in Table 1.
  • the steam engine 120 functions to convert heat into work by adiabatic expansion using R-123 saturated steam in a 0.61 MPa (88.935 ° C.) state as a heat source as shown in the above table.
  • the wet steam exiting the steam engine 120 is compressed through the second compression motor 90 to liquefy while passing through the wet steam cooler 70, and discharges the discharged heat through the second forced exhaust fan 60. .
  • the R-123 refrigerant In order to continuously use the R-123 refrigerant, it must be liquefied and accelerated through the compression motor 80 to be re-introduced into the heat exchanger 100.
  • the cooler does not make a cooling device in which a separate power is consumed. After the evaporator 20, the wet steam cooler 70 is installed to naturally cool.
  • the amount of thermal energy absorbing latent heat in the atmosphere is described as a coefficient of performance (COP) indicating the efficiency of the refrigerating device, wherein the coefficient of coefficient (COP) is the atmospheric temperature (evaporation temperature), condenser temperature, condensation method, heat transfer method and material, compression method And various performances such as compressor performance and inverter application.
  • COP coefficient of performance
  • the atmospheric temperature is based on 25 °C
  • the condensation temperature is 57.893 °C in the temperature rise section
  • the vaporization section is 89 °C
  • ammonia (NH 3 ) and R-123 refrigerant as a working fluid
  • the condensation method is changed to forced convection rather than forced air in the temperature rise section, and the actual grade coefficient is calculated by using the phase change that is much faster than the forced convection in the vaporization section.
  • Table 5 Calculate Thermal Efficiency by Substituting the Rankine Cycle Formula Temperature (°C) Pressure (MPa) Enthalpy (kj / kg) Entropy (kj / kgK) Saturated liquid hf Saturated steam Saturated Liquid Saturated Steam 26.85 0.098 224.43 393.14 1.0851 1.6475 88.93 0.610 288.95 429.14 1.2789 1.6661
  • the grade factor is calculated and the thermal efficiency is calculated.
  • the storage day is 16.82kw / h and the sum of input days consumed by each system's own load is 5.1402kw / h as shown in Table 6 below. Big.
  • the air in the atmosphere at 25 ° C. is drawn into the apparatus, and the condensation method is changed to forced convection instead of forced air in the temperature rise section, and heat transfer is much faster than forced convection in the secondary vaporization section.
  • ammonia (NH 3 ) and R-123 refrigerant as the working fluid, it is possible to produce more than 16.82kw / h power generation as in the above example by realizing the grade factor more than 12.74. Even if the amount of electricity used is 5.1402 kw / h, it is possible to produce surplus electricity which can use more than 11.6798 kw / h as an external power source.

Abstract

The present invention relates to an electricity generation apparatus using atmospheric (air) latent heat, comprising: an ammonia evaporator which vaporizes ammonia (NH3) and absorbs hot air by drawing the latent heat included in the atmosphere into the apparatus and allowing the NH3 to pass through a pipe therein, whereby power or electric energy is autonomously produced by absorbing the latent heat at 25°C into the apparatus using NH3 as a working fluid and using energy produced by self-circulation of the fluid; a first forced ventilator which discharges the used atmosphere (air) to the outside; a heat pump which compresses the vaporized NH3 refrigerant to further increase the temperature; a heat exchanger which generates steam by allowing the compressed and vaporized NH3 refrigerant to pass through the pipe so that an R-123 solution accommodated therein is boiled; a steam engine which is operated by adiabatically expanding the generated steam; a BL generator which generates electricity by the operation of the steam engine; a wet steam cooler which liquefies the R-123, which is in a wet steam state after the adiabatic expansion, by compressing the R-123 with a second compression motor and allowing the R-123 to pass through the pipe, followed by further cooling of the liquefied R-123; a second forced ventilator which discharges hot ambient air to the outside; a first compression motor which accelerates the R-123 that has passed through the wet steam cooler so that the R-123 is injected into the heat exchanger; and an expansion valve which decompresses the high-pressure NH3 that has passed through the heat exchanger to a low pressure before the NH3 is sent to the ammonia evaporator and adjusts the flow of the NH3.

Description

대기(공기)잠열을 이용한 전기 발생 장치Electric generator using atmospheric (air) latent heat
본 발명은 대기(공기)잠열을 이용한 전기 발생 장치에 관한 것으로서, 냉동장치의 작동 유체인 암모니아(NH3)를 대기 중의 잠열을 끌어들어기 위한 작동유체로 하고, 히트펌프를 이용하여 흡수된 열을 압축하여 열원을 생산한 후 R-123 냉매를 제2차의 작동 유체로 하여 기화한 유체를 단열팽창시켜 발전기가 장착된 증기기관을 작동함으로써, 전기를 생산하는 대기(공기)잠열을 이용한 전기 발생 장치에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electricity generating device using latent (air) latent heat, wherein ammonia (NH 3 ), which is a working fluid of a refrigerating device, is used as a working fluid for drawing latent heat in the air, To produce a heat source and heat the evaporated fluid with the R-123 refrigerant as the secondary working fluid to operate the steam engine equipped with the generator, thereby producing electricity using atmospheric (air) latent heat that produces electricity. It relates to a generating device.
주지된 바와 같이 '내연기관'은 연료를 연소시켜서 생긴 열에너지를 기계적인 일로 바꾸는 동력발생장치를 말하는 것으로서, 탄화수소계의 연료(석탄, 석유류 등)와 공기를 적절한 비율로 혼합하여 기관의 내부에서 연소시키면 고온, 고압의 가스가 발생하는데, 이 가스의 팽창압력을 이용하여 동력을 얻는 것이다. 이러한 내연기관으로는 실린더 안에서 연료를 연소 폭발시켜 생긴 가스의 팽창력으로 동력을 일으키는 기관 즉, 디젤 기관, 가솔린 기관, 가스 터빈 기관 등이 있다.As is well known, 'internal combustion engine' refers to a power generating device that converts thermal energy generated by burning fuel into mechanical work, and mixes hydrocarbon fuel (coal, petroleum, etc.) with air at an appropriate ratio and burns it inside the engine. When the gas is hot and high pressure is generated, the power is obtained by using the expansion pressure of the gas. Such internal combustion engines include engines that generate power by the expansion force of a gas produced by combustion and explosion of fuel in a cylinder, that is, a diesel engine, a gasoline engine, a gas turbine engine, and the like.
또한, '외연기관'은 보일러 또는 가열기의 전열면(
Figure PCTKR2014009845-appb-I000001
)을 통해서 가열된 유체(作動流體:물 또는 기체)에 의해 동력을 일으키도록 하는 열기관으로서, 외연기관의 몸체와는 별도로 연소장치가 구비되어야 하며, 이 때문에 비교적 나쁜 연료를 이용할 수 장점이 있으나, 일반적으로 전열효율이 나쁘고 대형이다. 이러한 외연기관으로는 증기기관, 증기터빈 및 클로즈드 가스터빈 등이 있으나 효율이 낮아서 특수한 곳에서만 사용된다.
In addition, the 'external combustion engine' is the heat transfer surface of the boiler or heater (
Figure PCTKR2014009845-appb-I000001
As a heat engine that generates power by a fluid heated by a heating medium (water or gas), a combustion device must be provided separately from the body of the external combustion engine. In general, the heat transfer efficiency is bad and large. Such external combustion engines include steam engines, steam turbines and closed gas turbines, but they are used only in special places due to their low efficiency.
이러한 내연기관 및 외연기관은 그 자체에서 발생된 동력을 이용하여 운전되거나 전기에너지를 생산하는데, 근래에는 환경 문제와 더불어서 지하자원인 화석에너지의 매장량이 급격히 감소하면서 에너지절약이 중요시되고 있는 한편, 대체 에너지를 생산하기 위한 다각적인 방법이 시도되고 있다.      These internal combustion engines and external combustion engines operate using power generated by themselves, or produce electric energy. In recent years, energy conservation has become important, as environmental reserves and fossil energy reserves decrease rapidly. Multifaceted ways to produce energy have been tried.
한편, 냉동기의 성적계수(Coefficient Of Performance, C.O.P)는 냉동기의 열효율이 좋고 나쁨을 판정하는 척도로서, 성적계수(C.O.P)는 대기온도(증발온도), 응축기 온도, 응축방법, 열전달 방법 및 재질, 압축방법 및 압축기 성능 등의 변수에 따라 다르게 나타난다.      On the other hand, the Coefficient of Performance (COP) of the refrigerator is a measure of determining whether the freezer's thermal efficiency is good or bad, and the COP is the atmospheric temperature (evaporation temperature), condenser temperature, condensation method, heat transfer method and material, It depends on variables such as compression method and compressor performance.
일반적인 냉동기는 이들 성적계수의 변수를 적용하여 성적계수(C.O.P)를 산출하여 보면, 6.5 이하로서, 이 정도 성적계수(C.O.P)로는 자체에서 발생된 동력을 이용하여 외부 전원으로는 전혀 사용할 수 없을 뿐만 아니라, 시스템 내부의 자체 부하조차 감당할 수 없는 실정이다.      In general, the refrigerator can calculate the COP by applying the variables of these COPs, which is 6.5 or less, and this COP can not be used at all by using the power generated by itself. Rather, it cannot afford even its own load inside the system.
본 발명은 상기의 개발의 필요성에 따라 안출된 것으로, 암모니아를 작동 유체로 하고 25℃에서의 잠열을 장치 내로 흡수하여 유체의 자체 순환으로 발생되는 에너지를 이용함으로써, 자체적으로 동력 또는 전기에너지를 생산하여 이를 외부 전원으로 사용할 수 있는 대기(공기) 잠열을 이용한 전기 발생 장치를 제공하는데 그 목적이 있다.The present invention has been made in accordance with the necessity of the above development, by producing a power or electric energy by itself by using ammonia as the working fluid and the latent heat at 25 ℃ into the device to utilize the energy generated by the self-circulation of the fluid The purpose of the present invention is to provide an electricity generating device using latent (air) latent heat that can be used as an external power source.
상기한 목적에 따른 본 발명의 대기(공기) 잠열을 이용한 전기 발생 장치는 대기 중에 포함된 잠열을 장치 내로 끌어들여 그 내부의 배관에 암모니아(NH3)를 통과시켜 상기 암모니아(NH3)를 기화시켜 열기를 흡수하는 암모니아 증발기; 이용된 대기(공기)를 외부로 배출시키는 제1강제 환풍기; 기화한 암모니아(NH3) 냉매를 압축하여 온도를 더욱 높이는 히트펌프; 배관 내부로 압축된 기화한 암모니아(NH3) 냉매를 통과시켜 내부에 수용된 R-123용액을 끓게 하여 증기를 발생시키는 열교환기; 발생된 증기를 단열팽창시켜 작동되는 증기기관; 상기 증기기관의 작동에 의해 전기를 발생시키는 BL발전기; 배관 내부로 단열팽창 후 습증기 상태가 된 R-123을 제2압축모터로 압축하여 통과시켜 R-123을 액화시키기 위해 냉각시키는 습증기 냉각기; 상기 습증기 냉각기에서 방출된 주변의 열기를 외부로 배출시키는 제2강제 환풍기; 상기 습증기 냉각기를 통과한 R-123을 가속시켜 상기 열교환기의 내부로 투입시키는 제1압축모터; 상기 열교환기를 통과한 고압의 암모니아를 상기 암모니아 증발기에 보내기 전에 저압으로 감압시키고 암모니아의 유량을 조절하는 팽창밸브;를 포함하는 대기(공기) 잠열을 이용한 전기 발생 장치를 제공한다.Was passed through the ammonia (NH 3) the latent heat contained in the electricity generating device using the atmosphere (air), the latent heat of the present invention, the atmosphere in the inside of the pipe by bringing into the apparatus according to the above-mentioned object vaporize the ammonia (NH 3) Ammonia evaporator to absorb hot air; A first forced exhaust fan for discharging the used air (air) to the outside; A heat pump for compressing the vaporized ammonia (NH 3 ) refrigerant to further increase the temperature; A heat exchanger passing vaporized ammonia (NH 3 ) refrigerant compressed into the pipe to boil the R-123 solution contained therein to generate steam; A steam engine operated by adiabatic expansion of the generated steam; BL generator for generating electricity by the operation of the steam engine; A wet steam cooler that cools to liquefy R-123 by compressing and passing R-123, which is in the state of wet steam, after the adiabatic expansion into a pipe with a second compression motor; A second forced fan for discharging the surrounding heat discharged from the wet steam cooler to the outside; A first compression motor for accelerating R-123 passing through the wet steam cooler and introducing the same into the heat exchanger; It provides an electric generator using atmospheric (air) latent heat, including; an expansion valve for reducing the high pressure ammonia passed through the heat exchanger to a low pressure before adjusting the flow rate of ammonia before sending to the ammonia evaporator.
상기 R-123냉매(CHCL2CF3)는 현재 공장의 폐열이나 지하열 등의 열원을 이용하여 작은 규모의 전기를 생산하기 위한 물 대신 증기를 발생시키는 유체로 널리 사용되는 유체로서, 상기 열교환기 내부에 수용된 R-123을 0.61Mpa(89℃)까지 자연 압축시킨 후 기존의 증기기관처럼 증기기관 내부에서 단열팽창(단열팽창하기 위한 조건은 순간 온도를 낮추거나 기압을 떨어뜨리는 방법이 있다.)시켜 열에너지를 운동에너지로 전환하여 발전기를 180RPM/MIN으로 회전시켜 산업에 필요한 전기를 생산하는 것을 특징으로 한다.        The R-123 refrigerant (CHCL2CF3) is a fluid that is widely used as a fluid that generates steam instead of water to produce electricity on a small scale by using heat sources such as waste heat or underground heat of a factory. After R-123 is naturally compressed to 0.61Mpa (89 ℃), it is thermally expanded by adiabatic expansion inside the steam engine like the existing steam engine (the condition for thermal expansion is to lower the instantaneous temperature or decrease the atmospheric pressure). By converting into kinetic energy, the generator is rotated at 180 RPM / MIN to produce electricity required for the industry.
또한, 대기온도 25℃에서의 잠열을 사용하므로 89℃의 영역에서 0.6Mpa의 압력을 얻을 수 있는 R-123 유체의 사용이 필요하며, 상기 R-123의 단열팽창 후 습증기를 냉각시켜 액화하여 영구적으로 재사용하는 것을 특징으로 한다.In addition, the use of latent heat at an atmospheric temperature of 25 ℃ requires the use of the R-123 fluid can obtain a pressure of 0.6Mpa in the region of 89 ℃, after the adiabatic expansion of the R-123 to liquefy by cooling the wet steam and permanently It is characterized by reusing.
본 발명은 대기 중의 잠열을 장치 내로 흡수하고, 암모니아를 작동 유체로 사용함과 동시에, 열교환기 냉매로 R-123(CHCL2CF3)을 사용하여 강재 대류 시킴으로써, 열에너지를 전기에너지로 전환시켜 부족한 전력난을 해소시킴과 동시에, 현재 지구의 환경조건에서 석탄, 석유와 같은 탄소를 매개로 한 고열원의 사용 억제를 통해 이산화탄소의 증가와 대기중의 잠열의 증가 문제를 해결할 수 있는 특별한 효과가 있다. The present invention absorbs latent heat in the air into the apparatus, uses ammonia as a working fluid, and condenses steel using R-123 (CHCL2CF3) as a heat exchanger refrigerant, thereby converting thermal energy into electrical energy, thereby eliminating insufficient power shortages. At the same time, there is a special effect to solve the problem of the increase of carbon dioxide and the increase of latent heat in the atmosphere by suppressing the use of carbon-based high heat sources such as coal and petroleum under the current global environmental conditions.
도 1은 본 발명의 공기(대기) 잠열을 이용한 전기 발생 장치를 도시한 단면도이다.1 is a cross-sectional view showing an electricity generating device using latent air (atmosphere) of the present invention.
도 2는 T-S(온도-엔트로피)선도 및 구간별 열효율을 도시한 도면이다.2 is a diagram illustrating a T-S (temperature-entropy) diagram and thermal efficiency of each section.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention.
도 1은 본 발명의 대기(공기) 잠열을 이용한 전기 발생 장치를 도시한 단면도이고, 도 2는 T-S(온도-엔트로피)선도 및 구간별 열효율을 도시한 도면이다.      1 is a cross-sectional view showing an electric generator using the latent (air) latent heat of the present invention, Figure 2 is a diagram showing the T-S (temperature-entropy) diagram and the thermal efficiency for each section.
대기(10) 중에 포함된 열기(잠열) 중 25℃의 대기를 열원으로 하여 암모니아 증발기(20)에서 배관 내의 암모니아(NH3) 냉매를 이용하여 열기를 흡수한다.The ammonia evaporator 20 absorbs heat using ammonia (NH 3 ) refrigerant in the pipe, using the atmosphere at 25 ° C. as the heat source among the heat (latent heat) contained in the atmosphere 10.
이용된 대기(공기)를 제1강제환풍기(50)을 통해 외부로 배출시킨다.      The used air (air) is discharged to the outside through the first forced fan 50.
히트펌프(30)를 통해 기화한 암모니아(NH3) 냉매를 압축하여 4.94 압축비로의 토출온도는1687.7kj/kg+44.4kj/kg=1732.1kj/kg이므로, 과열증기표를 보면 약 118℃~119℃까지 상승한 온도를 이용하여 열교환기(100)의 R-123 냉매(110)를 기화시키기 위한 고열원 에너지로 사용한다.The discharge temperature at 4.94 compression ratio by compressing the ammonia (NH 3 ) refrigerant vaporized through the heat pump 30 is 1687.7kj / kg + 44.4kj / kg = 1732.1kj / kg, so the superheated steam table shows about 118 ° C ~ By using the temperature rise to 119 ℃ is used as a high heat source energy for vaporizing the R-123 refrigerant 110 of the heat exchanger (100).
여기서 압축 후 온도의 상승은 열역학 제2법칙의 표현 중 Clausius 표현에 따라 외부로부터 동력을 받는 압축기의 도움으로 가능한 것이며, 또한 보일-샤를의 법칙에 따라 일정한 기체는 압력을 받으면 온도가 증가한다는 원리에 따라 상승시킨 온도를 단열팽창시켜 기계에너지를 얻기 위한 열원으로 사용한다.     Here, the increase in temperature after compression is possible with the help of a compressor that is powered from the outside according to Clausius expression in the second law of thermodynamics, and according to Boyle-Charles' law, a certain gas increases in temperature under pressure. As a result, the elevated temperature is adiabatic and used as a heat source to obtain mechanical energy.
또한, 열역학 법칙 중 다른 하나인 켈빈 프랑크의 서술처럼 "이상적으로 작동하는 열기관도 열효율이 100%가 될 수 없다."는 논리에 따라 증기기관을 작동하는 단열팽창 과정의 열효율(이후에 계산시 14.86%)을 산출하여 출력을 계산한다.      Also, as Kelvin Franks, one of the laws of thermodynamics, states that "ideally operating heat engines cannot achieve 100% thermal efficiency," the thermal efficiency of the adiabatic expansion process that operates the steam engine according to the logic (after calculation 14.86) Calculate the output by calculating%).
압축된 암모니아(NH3)의 약 118℃ 정도의 증기를 고열원으로 하여 R-123 용액(CHCL2CF3)을 기화시키는데, 증기기관(120)은 0.61MPa 상태에서 R-123 냉매(110)의 포화증기를 열원으로 하여 단열팽창시킴으로써 열을 일로 전환시켜 증기기관(120)을 작동시키고, 상기 증기기관(120)과 연동된 BL발전기(130)에 의해 전기를 생산한다.The steam of about 118 ° C. of compressed ammonia (NH 3 ) is used as a high heat source to vaporize the R-123 solution (CHCL2CF3). The steam engine 120 is saturated steam of the R-123 refrigerant 110 at 0.61 MPa. By converting heat into work by adiabatic expansion as a heat source to operate the steam engine 120, the electricity is produced by the BL generator 130 interlocked with the steam engine 120.
여기서 압축된 암모니아(NH3)의 약 118℃정도의 증기를 고열원으로 하여 R-123 용액(CHCL2CF3)을 기화시키는데 R-123의 특성은 표 1과 같다.Here, the vaporized R-123 solution (CHCL2CF3) is vaporized using about 118 ° C. vapor of compressed ammonia (NH 3 ) as a high heat source, and the characteristics of R-123 are shown in Table 1.
표 1 성적계수를 가중 산출을 유도하기 위한 기초 상태량 R-123 용액의 열상태량
압력(MPa) 온도(℃) 포화액(kj/kg) 포화증기(kj/kg)
0..098 26.85 224.43 393.14
0.61 88.95 288.95 429.14
Table 1 Basic state quantity to induce weighted calculation of grade factor R-123 Thermal state quantity of solution
Pressure (MPa) Temperature (℃) Saturated liquid (kj / kg) Saturated Steam (kj / kg)
0..098 26.85 224.43 393.14
0.61 88.95 288.95 429.14
상기 증기기관(120)은 위 표에서와 같이 0.61MPa(88.935℃) 상태의 R-123 포화증기를 열원으로 하여 단열팽창시킴으로써 열을 일로 전환시키는 작용을 한다. The steam engine 120 functions to convert heat into work by adiabatic expansion using R-123 saturated steam in a 0.61 MPa (88.935 ° C.) state as a heat source as shown in the above table.
상기 증기기관(120)을 빠져나온 습증기는 제2압축모터(90)을 통해 압축되어 습증기 냉각기(70)를 통과하면서 액화시키고, 방출된 주변의 열기를 제2강제 환풍기(60)를 통해 배출시킨다.      The wet steam exiting the steam engine 120 is compressed through the second compression motor 90 to liquefy while passing through the wet steam cooler 70, and discharges the discharged heat through the second forced exhaust fan 60. .
R-123 냉매를 계속 반복하여 사용하기 위해 액화시켜 압축모터(80)를 통해 가속시켜 열교환기(100) 내로 재투입하여야 하는데 냉각기는 별도의 전력이 소비되는 냉각 장치를 만들지 않고 냉풍이 발생하는 암모니아 증발기(20) 뒤에 상기 습증기 냉각기(70)를 설치하여 자연 냉각시키는 방법을 사용한다.     In order to continuously use the R-123 refrigerant, it must be liquefied and accelerated through the compression motor 80 to be re-introduced into the heat exchanger 100. The cooler does not make a cooling device in which a separate power is consumed. After the evaporator 20, the wet steam cooler 70 is installed to naturally cool.
한편, 상기 열교환기(100)를 통과한 고압의 암모니아를 상기 암모니아 증발기(20)에 보내기 전에 팽창밸브(40)를 통해 저압으로 감압시키고 암모니아의 유량을 조절한다.     On the other hand, before sending the high pressure ammonia passed through the heat exchanger 100 to the ammonia evaporator 20 to the low pressure through the expansion valve 40 to adjust the flow rate of ammonia.
여기서 대기 중의 잠열을 흡수하는 열에너지 양은 냉동장치 효율을 나타내는 성적계수(C.O.P)로 설명되는데, 상기 성적계수(C.O.P)는 대기온도(증발온도), 응축기 온도, 응축방법, 열전달 방법 및 재질, 압축방법 및 압축기 성능, 인버터 방식 적용 여부 등 여러 변수에 의해 다르게 나타난다.       Here, the amount of thermal energy absorbing latent heat in the atmosphere is described as a coefficient of performance (COP) indicating the efficiency of the refrigerating device, wherein the coefficient of coefficient (COP) is the atmospheric temperature (evaporation temperature), condenser temperature, condensation method, heat transfer method and material, compression method And various performances such as compressor performance and inverter application.
본 발명은 대기온도는 25℃를 기준으로 하고, 응축온도에서 온도 상승구간에서는 57.893℃으로, 기화구간은 89℃로 하고, 작동 유체로는 암모니아(NH3)와 R-123 냉매 등을 사용하여 성적계수(C.O.P)를 산출 및 R-123 용액의 열전달 과정의 변화에 따른 열량 산출은 다음과 같이 기화 온도까지 온도를 상승시키는 단계와 88.935℃에서 기화되는 과정의 단계로 구별해서 열에너지 소비하는 비율을 구하여 보면, In the present invention, the atmospheric temperature is based on 25 ℃, the condensation temperature is 57.893 ℃ in the temperature rise section, the vaporization section is 89 ℃, using ammonia (NH 3 ) and R-123 refrigerant as a working fluid Calculation of the COP and calorie according to the change of the heat transfer process of the R-123 solution is divided into the step of raising the temperature to the vaporization temperature and the step of vaporizing at 88.935 ° C as follows. If you look at it,
1) 온도상승구간(R-123 냉매의 27℃에서 89℃까지 상승구간)에서의 성적계수 및 열소모량 산출1) Calculation of grade coefficient and heat consumption in temperature rise section (rise section from 27 ℃ to 89 ℃ of R-123 refrigerant)
(273.15+57.893)/(273.15+57.893)-(273.15+25)=10.064이고(27℃는 R-123 냉매의 통상 온도, 89℃는 R-123 냉매가 기화하기 직전 온도이다), (여기서 57.893은 위 출원의 R-123 온도 상승 과정의 중간 응축 온도임), R-123 재투입 후 (26.85℃에서 88.935℃까지 상승시키기 위한 열량산출단계(제1단계로 표현함)는 288.95Kj/kg-224.43Kj/kg=64.52Kj/kg 의 열량이 소모된다. (273.15 + 57.893) / (273.15 + 57.893)-(273.15 + 25) = 10.064 (27 ° C is the normal temperature of the R-123 refrigerant, 89 ° C is the temperature just before the R-123 refrigerant evaporates), (where 57.893 Is the intermediate condensation temperature of the R-123 temperature rise process of the above application), and the calorific calculation step (expressed as the first step) to raise the R-123 from 26.85 ° C to 88.935 ° C is 288.95 Kj / kg-224.43 Kj / kg = 64.52 Kj / kg of heat is consumed.
2) 기화구간(89℃에서 기화하는 구간)에서의 성적계수 및 열소모량 산출 2) Calculation of grade coefficient and heat consumption in vaporization section (evaporation section at 89 ℃)
(273.15+89)/[273.15+89)-(273.15+25)]=5.66이고, R-123 냉매가 88.93℃ 포화액 상태에서 포화증기로 상변화를 일으켜 기화시키는데 소요되는 열량 산출 단계(제2단계로 표현함)는 429.14Kj/kg - 288.95Kj/kg = 140.19Kj/kg의 열량이 소모된다. 요약하면 아래 표 2와 같다.(273.15 + 89) / [273.15 + 89)-(273.15 + 25)] = 5.66, and the calorie calculation step for the R-123 refrigerant to evaporate by phase change to saturated steam in a 88.93 ° C saturated state (second step) In steps) consumes 429.14 Kj / kg-288.95 Kj / kg = 140.19 Kj / kg. In summary, it is shown in Table 2 below.
표 2 R-123의 온도 상승구간 및 기화구간에서의 열소모량
증발기 온도 응축기 온도 온도 차이 공식에 대입한 성적계수 열소모 비율
일반 냉동기 -15℃ 34.5℃ 49.5℃ 5.16
본 발명의 실시예 25℃(대기) 57.893℃ 32.893℃ 10.064 온도 상승구간(64.52)
89℃ 64℃ 5.66 기화구간(140.19)
TABLE 2 Heat dissipation in temperature rise section and vaporization section of R-123
Evaporator temperature Condenser temperature Temperature difference The grade factor assigned to the formula Heat consumption rate
General freezer -15 ℃ 34.5 ℃ 49.5 ℃ 5.16
Embodiment of the present invention 25 ° C (standby) 57.893 ℃ 32.893 ℃ 10.064 Temperature Rise Zone (64.52)
89 ℃ 64 ℃ 5.66 Vaporization section (140.19)
여기서 응축방법을 온도 상승구간에서 강제대기가 아닌 강제대류로 바꾸고, 기화구간에서 강제대류보다 열전달이 월등히 빠른 상변화를 이용하여 실제 성적계수를 산출하면 아래 표 3과 같다. Here, the condensation method is changed to forced convection rather than forced air in the temperature rise section, and the actual grade coefficient is calculated by using the phase change that is much faster than the forced convection in the vaporization section.
표 3 성적계수(C.O.P) 산출의 비교 분석
일반 냉동기(비교예) 본 발명의 실시예 (T/S선도)
온도 상승구간 기화구간
증발기 온도 -15℃ 25℃ 25℃
응축기 온도 30℃ 57.893℃ 89℃
응축방법 강제대기 강제대류(R-123) 상변화(기화)
열전달계수h(w/m2,k) 85 3,500~11,000 5,000~100,000
온도 차이 45℃ 32.893℃ 64℃
NH3 압축 온도 98℃ 118℃ 118℃
실제 성적계수 4.94 18.2 10.24
가중 평균치 12.74 이상
비고 강제대류 및 상변화이므로, 최소 81% 상승 예상으로 계산된 것임.
TABLE 3 Comparative analysis of COP calculation
General freezer (comparative example) Embodiment of the present invention (T / S diagram)
Temperature rise section Vaporization section
Evaporator temperature -15 ℃ 25 ℃ 25 ℃
Condenser temperature 30 ℃ 57.893 ℃ 89 ℃
Condensation Method Forced waiting Forced Convection (R-123) Phase change (vaporization)
Heat transfer coefficient h (w / m 2 , k) 85 3,500-11,000 5,000-100,000
Temperature difference 45 ℃ 32.893 ℃ 64 ℃
NH 3 compression temperature 98 ℃ 118 ℃ 118 ℃
Actual grade factor 4.94 18.2 10.24
Weighted average 12.74 or more
Remarks Because it is forced convection and phase change, it is estimated to be at least 81% higher.
위의 표 3에서 본 바와 같이, 온도 상승구간 성적계수와 기화구간 성적계수의 가중 평균치를 구하면, 가중평균계산[(64.52*18.2)+(140.19*10.24)/(64.52+140.19)]=12.74이므로, 따라서 성적계수 12.74 이상 가능하다.As shown in Table 3 above, when the weighted average of the coefficient of temperature rise and the coefficient of vaporization is found, the weighted average calculation [(64.52 * 18.2) + (140.19 * 10.24) / (64.52 + 140.19)] = 12.74 Therefore, a grade factor of 12.74 or more is possible.
한편, 도 2에 도시된 바와 같이, 성적계수 개념으로 T-S선도(온도와 엔트로피의 상관관계)를 보면, 열역학 제1법칙에 따른 총 에너지 Q=h+(w* 열펌프 성적계수) (여기서 h은 R-123의 재투입시의 열 상태량(아래 T-S선도의 면적 a), w은 열펌프 소요 전기량이므로, 아래 T-S선도에서 Q= a+b이다.    On the other hand, as shown in Figure 2, when looking at the TS diagram (correlation between temperature and entropy) as a concept of the sexual coefficient, the total energy Q = h + (w * heat pump sexual coefficient) according to the first law of thermodynamics (where h is The thermal state quantity (area a in the TS diagram below) and w at the time of re-entry of R-123 are the electric power requirements of the heat pump, so Q = a + b in the TS diagram below.
T-S(온도-엔트로피)선도 및 구간별 설명(R-123일 경우)을 상세히 살펴보면, Looking closely at the T-S (temperature-entropy) diagram and the section-by-section description (in case of R-123),
h3→0 단열팽창과정h3 → 0 adiabatic expansion process
0→h4 단열팽창과정 및 이후의 자연 냉각 및 손실과정0 → h4 adiabatic expansion followed by natural cooling and loss
h4→h1 단열팽창과정 이후의 작동 유체(습증기)의 냉각을 통한 수분화(응축) 과정 h4 → h1 Moisture (condensation) process by cooling working fluid (wet steam) after adiabatic expansion process
h1→h2 강제 압축 투입과정(영구적으로 재사용)하며 계산시 h1≒h2로 한다.h1 → h2 Forced compression injection process (permanently reused) and calculated as h1 ≒ h2.
h2→p 열 방출기의 예열과정(온도상승 과정) (R-123 냉매의 온도 상승과정, 1단계로 표현함) h2 → p Preheating process (temperature rise process) of heat emitter (R-123 refrigerant temperature rise process, expressed as 1 step)
p→h3 등압 증발과정(R-123 냉매의 기화 과정, 2단계로 표현함)이다.p → h3 isotropic evaporation process (represented in two stages, evaporation of R-123 refrigerant).
또한, 열효율을 산출에서 압축기 용량을 4.2402 kw/h라고 가정하여 상기 성적계수(C.O.P) 12.74를 대입하고 계산하여 보면 표 4와 같다.     In addition, in calculating the thermal efficiency, suppose that the compressor capacity is 4.2402 kw / h. Substituting the calculated coefficient (C.O.P) 12.74 and calculating the results are shown in Table 4 below.
표 4 열효율 계산
압축기 용량 4.2402 kw/h 열흡수량 (NH3 성적계수12.74)4.2402×12.74=54.02 재투입에너지 산출54.02×1.096=59.20kj/kg
방열량(증발잠열) 54.02kj/kg(T-S선도의 면적 b) 재투입에너지 59.20kj/kg(T-S선도의 면적 a)
총 엔탈피 : a+b = 54.02+59.20 = 113.22kj/kg
Table 4 Calculation of thermal efficiency
Compressor capacity 4.2402 kw / h Heat Absorption (NH 3 Grade Coefficient 12.74) 4.2402 × 12.74 = 54.02 Calculated re-energy energy54.02 × 1.096 = 59.20kj / kg
Heat dissipation amount (evaporation latent heat) 54.02kj / kg (area b of TS diagram) Re-entry energy 59.20kj / kg (area of TS diagram a)
Total Enthalpy: a + b = 54.02 + 59.20 = 113.22kj / kg
본 발명은 R-123 작동 유체의 기화에너지를 단열팽창시키므로, 랭킨사이클 공식에 대입하여 열효율을 계산하여 보면 표 5와 같다. Since the present invention thermally expands the vaporization energy of the R-123 working fluid, it is shown in Table 5 when the thermal efficiency is calculated by substituting the Rankine cycle formula.
표 5 랭킨사이클 공식에 대입하여 열효율 계산
온도(℃) 압력(MPa) 엔탈피(kj/kg) 엔트로피(kj/kgK)
포화액 hf 포화증기hg 포화액sf 포화증기sg
26.85 0.098 224.43 393.14 1.0851 1.6475
88.93 0.610 288.95 429.14 1.2789 1.6661
Table 5 Calculate Thermal Efficiency by Substituting the Rankine Cycle Formula
Temperature (℃) Pressure (MPa) Enthalpy (kj / kg) Entropy (kj / kgK)
Saturated liquid hf Saturated steam Saturated Liquid Saturated Steam
26.85 0.098 224.43 393.14 1.0851 1.6475
88.93 0.610 288.95 429.14 1.2789 1.6661
여기서 h1≒h2이므로, Where h1 ≒ h2,
S4=S1f+X4(Slfg)에서 S4 = S1f + X4 (Slfg)
X4=(1.6661-1.0815)/(1.6475-1.0851)=1.03307 X4 = (1.6661-1.0815) / (1.6475-1.0851) = 1.03307
h4=224.43+1.03307(393.14-224.43)=398.72 h4 = 224.43 + 1.03307 (393.14-224.43) = 398.72
따라서 열효율 = 1-(h4-h1)/(h3-h2) Therefore thermal efficiency = 1- (h4-h1) / (h3-h2)
= 1-(398.72-224.43)/(429.14-224.43)                = 1- (398.72-224.43) / (429.14-224.43)
= 0.1486                = 0.1486
= 14.86%(열효율)이다.                = 14.86% (thermal efficiency).
앞에서 살펴 본 바와 같이, 성적계수가 산출되고, 열효율의 계산치가 나왔으므로  As we saw earlier, the grade factor is calculated and the thermal efficiency is calculated.
성적계수*열효율=전기생산량이 되므로 Since grade factor * thermal efficiency = electricity output
이에따라 전기생산량을 구해보기위해 [표4]에서처럼,In order to calculate the electricity output accordingly, as shown in [Table 4],
입력일을 4.2402kw/h(히트펌프 성능)이라고 가정하면, Assuming the input date is 4.2402 kw / h (heat pump performance),
4.2402*12.74(성적계수) = 54.02kj/kg4.2402 * 12.74 (Grade Coefficient) = 54.02kj / kg
재투입 에너지 54.02kj/kg*1.096배=59.20kj/kg이므로 둘을 합하고 열효율을 곱하면, (54.02kj/kg+59.20kj/kg)*14.86%=16.82kw/hThe reentry energy is 54.02kj / kg * 1.096 times = 59.20kj / kg, so if you add the two together and multiply the thermal efficiency, (54.02kj / kg + 59.20kj / kg) * 14.86% = 16.82kw / h
즉, 성적계수가 12.74이면 축력일은 16.82kw/h이고 아래표6과 같이 시스템의 자체 각 부하에서 소모되는 입력일의 합은 5.1402kw/h이므로, 발전량인 출력일이 시스템 내부에서 소모되는 입력일보다 더 크다.In other words, if the grading coefficient is 12.74, the storage day is 16.82kw / h and the sum of input days consumed by each system's own load is 5.1402kw / h as shown in Table 6 below. Big.
다른방법으로,Alternatively,
[표3]에서 실제 성적계수를 구하였을 때 위 출원이 강제대류와 상변화를 통한 기화과정이므로 성적계수를 최소 81% 상승예상하여 구하였으나,When the actual grade factor was calculated in [Table 3], since the above application was a process of vaporization through forced convection and phase change, the grade factor was expected to be increased by at least 81%.
만약 대기 온도를 15℃이라고 가정하고,If we assume that the air temperature is 15 ° C,
또한 강제대류와 상변화 조건을 무시하고 강제대기조건으로 성적계수를 공식에 대입하여 산출했을 경우에도, 산업에 필요한 잉여 전기가 발생하는지 산출해 보면,In addition, even if the calculation results are calculated by substituting the coefficients of formula as the forced waiting conditions, ignoring the forced convection and phase change conditions, the calculation of whether the surplus electricity required for the industry occurs,
온도상승구간Temperature rise section
(273.15+57.893)/[(273.15+57.893)-(273.15+15)]=331.043/42.893=7.71(273.15 + 57.893) / [(273.15 + 57.893)-(273.15 + 15)] = 331.043 / 42.893 = 7.71
기화구간Vaporization section
(273.15 + 89)/[(273.15 + 89)-(273.15 + 15)] = 362.15/74 = 4.89(273.15 + 89) / [(273.15 + 89)-(273.15 + 15)] = 362.15 / 74 = 4.89
위 두 구간의 가중평균 성적계수를 산출해보면,If you calculate the weighted average grade coefficients of the above two intervals,
[(64.52*7.71)+(140.19*4.89)]/(64.52 + 140.19) = (497.44 + 685.52)/204.71 = 5.77[(64.52 * 7.71) + (140.19 * 4.89)] / (64.52 + 140.19) = (497.44 + 685.52) /204.71 = 5.77
[표4]에서처럼 가정하여 실제 전기 생산량을 산출하면,If we calculate the actual electricity production on the assumption that [Table 4],
4.2402*5.77=24.4659kj/kg이고 재투입에너지는 24.4659*1.096=26.8146kj/kg이므로4.2402 * 5.77 = 24.4659kj / kg and the reentry energy is 24.4659 * 1.096 = 26.8146kj / kg
위 둘을 합하면 24.4659 + 26.8146 = 51.2805kj/kg이므로 열효율 14.86%를 곱해보면If you add the two together, 24.4659 + 26.8146 = 51.2805kj / kg, so multiply your thermal efficiency by 14.86%
51.2805kj/kg*14.86% = 7.6202kw/h이므로51.2805kj / kg * 14.86% = 7.6202kw / h
[표 6]에서, 시스템에서 소모되는 전기사용량은 5.1402kw/h이므로 위 둘을 비교하면 전기생산량(비관적 최저치) 7.6202kw/h > 5.1402kw/h이다.In Table 6, the electricity consumption in the system is 5.1402 kw / h, so comparing the two above yields 7.6202 kw / h> 5.1402 kw / h.
표 6 본 발명의 장치에서 각 부하의 전기소요량과 발전량과의 비교
내용 전기량(kw/h) 비고
압축기(컴푸레샤) 4.2402 시스템의 각 부하에서 소모되는 전기량 즉 입력일 합 5.1402kw/h
강제환풍기 2대 0.15*2=0.30
압축(순환)모터 2대 0.30*2=0.60
발전량 16.82kw/h
여유전기량 16.82-5.1402=11.6798kw/h 외부 전원으로 사용할 수 있음
Table 6 Comparison of electricity demand and power generation of each load in the device of the present invention
Contents Electricity (kw / h) Remarks
Compressor (Compressor) 4.2402 The amount of electricity consumed by each load in the system, i.e. the sum of the inputs 5.1402kw / h
Forced ventilator 2 0.15 * 2 = 0.30
2 compressed (circulating) motors 0.30 * 2 = 0.60
Power generation 16.82kw / h
Extra electricity 16.82-5.1402 = 11.6798kw / h Can be used as an external power source
본 발명의 경우 25℃의 대기 중의 열기를 장치 내로 끌어들이고, 응축방법으로, 온도상승구간에서 강제대기가 아닌 강제대류로 바꾸고, 2차 기화구간에서 강제대류보다 열 전달이 월등히 빠른 R-123의 상변화를 이용하며,In the case of the present invention, the air in the atmosphere at 25 ° C. is drawn into the apparatus, and the condensation method is changed to forced convection instead of forced air in the temperature rise section, and heat transfer is much faster than forced convection in the secondary vaporization section. Using phase change,
작동 유체로는 암모니아(NH3)와 R-123 냉매 등을 사용함으로써, 성적계수를 12.74 이상 실현함으로써, 위 예에서와 같이 16.82kw/h 이상의 발전량을 생산할 수 있으므로, 시스템의 내부 각 부하에서 소모되는 전기량인 5.1402kw/h를 사용하여도 11.6798kw/h 이상을 외부 전원으로 사용할 수 있는 잉여 전기를 생산할 수 있다.By using ammonia (NH 3 ) and R-123 refrigerant as the working fluid, it is possible to produce more than 16.82kw / h power generation as in the above example by realizing the grade factor more than 12.74. Even if the amount of electricity used is 5.1402 kw / h, it is possible to produce surplus electricity which can use more than 11.6798 kw / h as an external power source.
이상, 본 발명을 바람직한 실시예들을 통해 설명하였으나, 이는 본 발명의 기술적 내용에 대한 이해를 돕고자 하는 것일 뿐 발명의 기술적 범위를 이에 한정하고자 함이 아니다.As mentioned above, although the present invention has been described through preferred embodiments, it is only intended to help understanding of the technical contents of the present invention and is not intended to limit the technical scope of the present invention.
즉, 본 발명의 기술적 요지를 벗어나지 않고도 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 다양한 변형이나 개조가 가능함은 물론이고, 그와 같은 변경이나 개조는 청구범위의 해석상 본 발명의 기술적 범위 내에 있음은 말할 나위가 없다. That is, those skilled in the art without departing from the technical gist of the present invention can be variously modified or modified, as well as such changes or modifications, the technical scope of the present invention in the interpretation of the claims. It is hard to say that I am within.
[부호의 설명][Description of the code]
10 : 대기(공기) 20 : 암모니아 증발기10: atmosphere (air) 20: ammonia evaporator
30 : 히트펌프 40 : 팽창밸브30: heat pump 40: expansion valve
50 : 제1강제순환기 60 : 제2강제순환기50: first forced circulator 60: second forced circulator
70 : 습증기 냉각기 80 : 제1압축모터70: wet steam cooler 80: first compression motor
90 : 제2압축모터 100 : 열교환기90: second compression motor 100: heat exchanger
110 : R-123 냉매 120 : 증기기관110: R-123 refrigerant 120: steam engine
130 : BL발전기       130: BL generator

Claims (1)

  1. 대기 중에 포함된 잠열을 장치 내로 끌어들여 그 내부의 배관에 암모니아(NH3)를 통과시켜 상기 암모니아(NH3)를 기화시켜 열기를 흡수하는 암모니아 증발기; By bringing the latent heat contained in the air into the apparatus is passed through the ammonia (NH 3) in the interior of the pipe ammonia evaporator to absorb the heat to vaporize the ammonia (NH 3);
    이용된 대기(공기)를 외부로 배출시키는 제1강제 환풍기;A first forced exhaust fan for discharging the used air (air) to the outside;
    기화한 암모니아(NH3) 냉매를 압축하여 온도를 더욱 높이는 히트펌프;A heat pump for compressing the vaporized ammonia (NH 3 ) refrigerant to further increase the temperature;
    배관 내부로 압축된 기화한 암모니아(NH3) 냉매를 통과시켜 내부에 수용된 R-123용액을 끓게 하여 증기를 발생시키는 열교환기;A heat exchanger passing vaporized ammonia (NH 3 ) refrigerant compressed into the pipe to boil the R-123 solution contained therein to generate steam;
    발생된 증기를 단열팽창 시키기 위한 증기기관을 포함하는 단열팽창기관;An adiabatic expansion engine including a steam engine for adiabatic expansion of the generated steam;
    상기 증기기관의 작동에 의해 전기를 발생시키는 BL발전기;BL generator for generating electricity by the operation of the steam engine;
    배관 내부로 단열팽창 후 습증기 상태가 된 R-123을 제2압축모터로 압축하여 통과시켜 R-123을 액화시키기 위해 냉각시키는 습증기 냉각기;A wet steam cooler that cools to liquefy R-123 by compressing and passing R-123, which is in the state of wet steam, after the adiabatic expansion into a pipe with a second compression motor;
    상기 습증기 냉각기에서 방출된 주변의 열기를 외부로 배출시키는 제2강제 환풍기;A second forced fan for discharging the surrounding heat discharged from the wet steam cooler to the outside;
    상기 습증기 냉각기를 통과한 R-123을 가속시켜 상기 열교환기의 내부로 투입시키는 제1압축모터;A first compression motor for accelerating R-123 passing through the wet steam cooler and introducing the same into the heat exchanger;
    상기 열교환기를 통과한 고압의 암모니아를 상기 암모니아 증발기에 보내기 전에 저압으로 감압시키고 암모니아의 유량을 조절하는 팽창밸브;를 포함하는 공기(대기) 잠열을 이용한 전기 발생 장치.And an expansion valve for reducing the high pressure ammonia passing through the heat exchanger to low pressure and adjusting the flow rate of the ammonia before sending the high pressure ammonia to the ammonia evaporator.
PCT/KR2014/009845 2014-03-07 2014-10-20 Electricity generation apparatus using atmospheric (air) latent heat WO2015133697A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201480001340.4A CN105102773A (en) 2014-03-07 2014-10-20 Electricity generation apparatus using atmospheric (air) latent heat

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0026916 2014-03-07
KR1020140026916A KR101391071B1 (en) 2014-03-07 2014-03-07 Electric generating apparatus using latent heat air

Publications (1)

Publication Number Publication Date
WO2015133697A1 true WO2015133697A1 (en) 2015-09-11

Family

ID=50659056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/009845 WO2015133697A1 (en) 2014-03-07 2014-10-20 Electricity generation apparatus using atmospheric (air) latent heat

Country Status (3)

Country Link
KR (1) KR101391071B1 (en)
CN (1) CN105102773A (en)
WO (1) WO2015133697A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104454049A (en) * 2014-12-08 2015-03-25 忻元敏 Novel energy conversion system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010099302A (en) * 2001-09-20 2001-11-09 이은진 Fluid recovery device using heat pump temperature difference
US20060186669A1 (en) * 2002-04-16 2006-08-24 Frank Ruggieri Power generation methods and systems
US20120102996A1 (en) * 2010-10-29 2012-05-03 General Electric Company Rankine cycle integrated with absorption chiller

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3990245A (en) * 1976-01-30 1976-11-09 Volkmar Heilemann Energy converter device
RU2006139188A (en) * 2004-06-01 2008-07-20 Нобору МАСАДА (JP) HIGH EFFICIENCY HEAT CYCLE DEVICE
KR101528935B1 (en) * 2009-03-15 2015-06-15 임효진 The generating system using the waste heat of condenser

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010099302A (en) * 2001-09-20 2001-11-09 이은진 Fluid recovery device using heat pump temperature difference
US20060186669A1 (en) * 2002-04-16 2006-08-24 Frank Ruggieri Power generation methods and systems
US20120102996A1 (en) * 2010-10-29 2012-05-03 General Electric Company Rankine cycle integrated with absorption chiller

Also Published As

Publication number Publication date
CN105102773A (en) 2015-11-25
KR101391071B1 (en) 2014-04-30

Similar Documents

Publication Publication Date Title
Pu et al. Experimental study on Organic Rankine cycle for low grade thermal energy recovery
Ho et al. Increased power production through enhancements to the Organic Flash Cycle (OFC)
US7047744B1 (en) Dynamic heat sink engine
US8707701B2 (en) Ultra-high-efficiency engines and corresponding thermodynamic system
Kumar et al. A critical review on waste heat recovery utilization with special focus on Organic Rankine Cycle applications
JP4989905B2 (en) Waste heat utilization system
KR20090035735A (en) Method and apparatus for use of low-temperature heat for electricity generation
JP7181690B2 (en) Cryogenic generator
RU133250U1 (en) GAS DISTRIBUTION STATION
KR20090019759A (en) A single loop heat pump generator
US20130286591A1 (en) Power Electronics Cooling
JP2008175151A (en) Cogeneration system using cold of liquefied gas and method for operating same
WO2015133697A1 (en) Electricity generation apparatus using atmospheric (air) latent heat
JP2011231778A (en) Waste heat recovery system
WO2015019886A1 (en) Waste heat recovery device
CN112041542B (en) Novel steam engine with working medium for circularly acting
US10815835B2 (en) Apparatus and method for energy storage
CN104595707B (en) A kind of gain recycling system of cold energy of liquefied natural gas
KR20120070197A (en) Power generation system using heat from transformer
RU2127815C1 (en) Heat power plant with cooler
KR20210028696A (en) Power plant equipment that performs natural gas regasification
RU2582536C1 (en) Trigeneration cycle and device therefor
CN204511792U (en) Solar energy ORC produces compressed-air actuated system
RU2525041C1 (en) Method of gas distributing station operation
RU2557823C2 (en) Method of operation of combined gas-turbine unit of gas distribution system

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480001340.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14884496

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20.01.2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14884496

Country of ref document: EP

Kind code of ref document: A1