WO2015133568A1 - Accumulator element - Google Patents

Accumulator element Download PDF

Info

Publication number
WO2015133568A1
WO2015133568A1 PCT/JP2015/056484 JP2015056484W WO2015133568A1 WO 2015133568 A1 WO2015133568 A1 WO 2015133568A1 JP 2015056484 W JP2015056484 W JP 2015056484W WO 2015133568 A1 WO2015133568 A1 WO 2015133568A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
outer diameter
shaft core
electrode plate
storage element
Prior art date
Application number
PCT/JP2015/056484
Other languages
French (fr)
Japanese (ja)
Inventor
雅彰 関谷
櫻井 淳
徳孝 江口
貴史 増井
若松 喜美
Original Assignee
新神戸電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新神戸電機株式会社 filed Critical 新神戸電機株式会社
Priority to JP2016506548A priority Critical patent/JPWO2015133568A1/en
Publication of WO2015133568A1 publication Critical patent/WO2015133568A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • H01M50/469Separators, membranes or diaphragms characterised by their shape tubular or cylindrical
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G13/00Apparatus specially adapted for manufacturing capacitors; Processes specially adapted for manufacturing capacitors not provided for in groups H01G4/00 - H01G11/00
    • H01G13/02Machines for winding capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0404Machines for assembling batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a storage element such as a lithium ion capacitor element and a lithium ion battery element configured by winding an electrode plate group around an axis.
  • Patent Document 1 discloses a wound-type power storage device in which a laminate in which positive and negative electrode plates are laminated through a paper separator is wound around an axis. An example is shown. In this type of conventional power storage element, a tubular shaft core having a constant outer diameter is used.
  • a wound-type power storage device in which a laminated body in which such positive and negative electrode plates are stacked via a papermaking separator is wound around the shaft core, the winding density of the stacked body is increased to improve the performance of the power storage device. Therefore, when the electrode plate group is wound around the shaft core, a predetermined tension is applied to the papermaking separator.
  • An object of the present invention is to provide a power storage device capable of increasing the tension applied to a papermaking separator as compared with the prior art at the time of initial winding of the papermaking separator around an axis.
  • Another object of the present invention is to reduce the thickness of the paper separator and increase the tension applied to the paper separator as compared with the prior art.
  • An object of the present invention is to provide a power storage element in which no soot is generated.
  • the inventor examined why wrinkles occur when using a papermaking separator, even though so-called resin separators are used, so that wrinkles do not occur at the initial stage of winding.
  • the papermaking separator has a characteristic that the stretchability is lower than that of the resin separator, and this characteristic causes wrinkles.
  • the distribution of the force applied to the end of the separator varies along the width direction of the end depending on the joined state or the fixed state of the end of the separator and the shaft core.
  • wrinkles are generated at the initial winding stage of the papermaking separator having low elasticity.
  • An object of the present invention is to improve a power storage device in which a laminated body formed by laminating a belt-like positive electrode plate and a belt-like negative electrode plate via a belt-shaped paper separator is wound around an axis.
  • the shaft core has a shape in which the outer diameter dimension decreases from the central region in the longitudinal direction toward both ends in the longitudinal direction at a predetermined reduction rate.
  • region of an axial center is an area
  • the predetermined reduction rate is set to a value that does not generate wrinkles in the paper separator during the initial winding of winding the electrode plate group around the axis.
  • the decreasing rate may be constant or may vary. If the outer diameter of the shaft core is determined in this way, even if there is a large variation in the force applied to the end of the papermaking separator during the initial winding, the force applied to the papermaking separator is directed from the central region of the shaft core toward both ends. Shows a decreasing distribution trend. The inventor believes that such a force distribution tendency prevents wrinkles from forming on the low-stretch paper-making separator even when the paper-making separator is thinned and the tension is increased. .
  • the predetermined reduction rate is determined so that the difference between the maximum outer diameter dimension and the minimum outer diameter dimension of the winding portion of the shaft core is a value in a range of 30% ⁇ 10% of the thickness dimension of the papermaking separator. It is preferable. Experiments have confirmed that such a value can more effectively prevent wrinkles.
  • the papermaking separator may be any material as long as it is produced by a papermaking method used in the production of paper, and the raw material to be made may be any material as long as it has insulating properties.
  • a so-called paper separator formed using the cellulose fiber as a main raw material is used, a power storage element can be manufactured at low cost.
  • this invention is especially suitable when the thickness is thinner than 35 micrometers.
  • the present invention can also be understood as an axial core having a shape in which the outer diameter dimension decreases from the central region in the longitudinal direction toward both ends in the longitudinal direction at a predetermined reduction rate.
  • the predetermined reduction rate is that when the laminated body constituted by laminating the belt-like positive electrode plate and the belt-like negative electrode plate through the belt-like papermaking separator is wound, the papermaking separator is wrinkled. The value is not set.
  • the present invention is suitable for application to a lithium ion capacitor element, which often uses a paper separator.
  • FIG. 4 is a partially omitted enlarged cross-sectional view schematically showing exaggerated changes in the outer diameter of the shaft center.
  • 6 is a table showing the presence or absence of wrinkles in the paper separators of Examples 1 and 2 and Comparative Examples 1 to 3 using a paper separator having a thickness of 30 ⁇ m.
  • FIG. 1 is a perspective view of a lithium ion capacitor element schematically showing a structure when the present invention is applied to a lithium ion capacitor element.
  • FIG. 2 is a front view in which a part of the shaft core 7 used in the embodiment of the present invention is omitted.
  • FIG. 3 is a partially omitted enlarged sectional view schematically showing exaggerated changes in the outer diameter of the shaft core 7. 2 and 3, R1 indicates a first end region, R2 indicates a central region, and R3 indicates a second end region.
  • the first end region R1, the central region R2, and the second end region R3 each have a length that is 1/3 of the total length of the axial center 7 in the longitudinal direction.
  • the first end region R1, the central region R2, and the second end region R3 form a winding portion of the axial core.
  • a laminated body configured by laminating a belt-like positive electrode plate and a belt-like negative electrode plate via a belt-like papermaking separator 3 is wound around the shaft core 7.
  • a tabless type electrode plate group 5 is configured.
  • the positive electrode plate in the electrode plate group 5 is configured by forming a positive electrode active material layer on a belt-shaped current collector plate so as to leave a welded portion on one end side in the width direction.
  • the negative electrode plate is configured by forming a negative electrode active material layer on a belt-shaped current collector plate so as to leave a welded portion on one end side in the width direction. Then, a laminated body formed by laminating the positive electrode plate and the negative electrode plate via the papermaking separator 3 so that the welded portion of the positive electrode plate and the welded portion of the negative electrode plate are located at both end portions of the electrode plate group 5 is provided.
  • the electrode group 5 is formed by winding around 7.
  • the thickness dimension of the positive electrode plate and the negative electrode plate is in the range of 50 ⁇ m to 115 ⁇ m
  • the thickness dimension of the papermaking separator 3 is less than 50 ⁇ m
  • the positive electrode plate, the negative electrode plate, and the papermaking separator 3 The width dimension is in the range of 90.3 mm to 133.3 mm.
  • the papermaking separator 3 a so-called paper separator formed using cellulose fibers spun by treatment with a solvent as a main raw material is used.
  • PPS poly phenylene sulfide
  • the shaft core 7 of the present embodiment is integrally formed of a hollow cylindrical PPS (polyphenylene sulfide) resin.
  • the shaft core 7 may be made of other resins such as polypropylene and polyimide.
  • a pair of fitting grooves 12 into which jigs for rotating the shaft core 7 are fitted are formed at both end portions 11 and 13 of the shaft core 7 so as to face each other in the radial direction. Further, at both end portions 11 and 13 of the shaft core 7, a small-diameter protruding portion 14 on which the electrode plate group 5 is not mounted is integrally provided.
  • a tapered surface that is continuous from the central region R2 to the first end region R1 and the second end region R3 is formed on the outer surface of the region where the electrode plate group 5 of the shaft core 7 is mounted. That is, the outer diameter dimension decreases from the central portion 17 in the longitudinal direction of the central region R2 toward the end portion 11 at a predetermined decreasing rate from the first end region R1. Similarly, the outer diameter dimension decreases from the central portion 17 in the longitudinal direction of the central region R2 toward the end portion 13 at a predetermined decreasing rate from the second end region R3. In the central region R2, the reduction rate of the outer diameter dimension gradually decreases toward the central portion 17, and finally the reduction rate becomes zero.
  • the reduction ratio of the outer diameter dimension in the first end region R1 and the reduction ratio of the outer diameter dimension in the second end region R3 are constant, and the central portion 17 of the central region R2 is The reduction rate of the outer diameter dimension of the excluded portion is also constant, as is the reduction rate in the first and second end regions.
  • the outer diameter size of the central portion 17 in the longitudinal direction of the central region R2 of the shaft core 7 is the maximum outer diameter size of the shaft core 7, and the end portions of the first and second end regions R1 and R3.
  • the outer diameter dimension at the extreme end position in 11 and 13 is the minimum outer diameter dimension. In each of the first and second end regions R1 and R3, the outer diameter dimension decreases from the central region R2 at a constant decreasing rate in a direction in which both end portions 11 and 13 are located.
  • the predetermined reduction ratio of the outer diameter dimension of the shaft core 7 is set to a value that does not cause wrinkles in the papermaking separator 3 during the initial winding of the electrode plate group 5 around the shaft core 7.
  • the reduction ratio of the outer diameter dimension of the shaft core 7 is such that the difference between the maximum outer diameter dimension and the minimum outer diameter dimension of the shaft core 7 is 30 mm of the thickness dimension of the papermaking separator 3. It is determined to be a value in the range of ⁇ 10%.
  • the reduction ratio of the main portion excluding the central portion 17 of the outer diameter dimension in the central region R2 may be different from the reduction ratio of the outer diameter dimension in the first end region R1 and the second end region R3. That is, when the outer diameter dimension continuously decreases when the transition from the first end region R1 to the central region R2, and the decreasing rate gradually approaches 0 in the central portion 17 of the central region R2, the central region
  • the aspect of the change in the decrease rate in R2 is arbitrary.
  • the reduction ratio of the outer diameter may be zero in a relatively wide region including the central portion 17 of the central region R2.
  • the outer diameter may be reduced at a predetermined reduction rate.
  • the maximum outer diameter of the shaft core 7 is in the range of 13.03 mm to 13.20 mm, and the minimum outer diameter is in the range of 13.01 mm to 13.18 mm.
  • the length of the shaft core 7 is in the range of 97.25 mm to 139.45 mm.
  • the decreasing rate is constant in the first and second end regions R1 and R3. That is, in the first and second end regions R1 and R3, the angles of the tapered surfaces 15 and 19 appearing on the outer surface (the tangential plane in the central portion 17 of the central region R2 and the tapered surfaces 15 and 19 of the end regions R1 and R3) The angle between 19) is constant.
  • the reduction rate is set so that the reduction rate gradually becomes 0 toward the central portion 17. That is, the taper angle appearing on the outer surface of the central region R2 becomes 0 as it approaches the central portion 17.
  • FIG. 4 shows the result of an experiment conducted on the ease of occurrence of wrinkles in the paper separator for the lithium ion capacitor element of the example of the above embodiment and the lithium ion capacitor element of the comparative example.
  • FIG. 4 shows the tension during winding of the lithium ion capacitor elements of Examples 1 and 2 and Comparative Examples 1 to 3 and the presence or absence of wrinkling of the paper separator using a paper separator having a thickness of 30 ⁇ m. It is a table.
  • lithium ion capacitor elements of Examples 1 and 2 and Comparative Examples 1 to 3 were prepared, and the presence or absence of wrinkles in the paper separator was examined while changing the tension during winding.
  • the lithium ion capacitor element of Example 1 is the lithium ion capacitor element of the above embodiment shown in FIGS. That is, the maximum outer diameter dimension of the shaft core 7 is 13.11 mm, the minimum outer diameter dimension is 13.09 mm, and the length dimension of the shaft core 7 is 97.25 mm.
  • the outer diameters of the first end region R1 and the second end region R3 are set such that the difference between the maximum outer diameter dimension and the minimum outer diameter dimension of the shaft core 7 is 30% of the thickness dimension of the papermaking separator 3.
  • the reduction ratio of the diameter dimension and the reduction ratio of the central region R2 were determined.
  • the reduction ratio of the outer diameter dimension of the first end region R1 and the second end region R3 is constant, and in the central region R2, the reduction ratio of the outer diameter dimension gradually increases toward the central portion 17 in the longitudinal direction.
  • the reduction rate was determined to be 0.
  • the lithium ion capacitor element of Example 2 has a taper at the end region of a quarter near the both ends in the longitudinal direction of the axial core (the outer diameter dimension decreases from the central region toward both ends in the longitudinal direction at a predetermined reduction rate. Has a smaller shape).
  • wrinkles are observed when the tension is increased.
  • Example 1 when the first end region R1 and the second end region R3 are about 1/3 of the longitudinal dimension of the shaft core 7, particularly good results can be obtained.
  • the lithium ion capacitor element of Comparative Example 1 uses a shaft core whose outer diameter increases at a constant rate from the central region in the longitudinal direction of the shaft core toward both ends in the longitudinal direction.
  • the specific increase ratio was such that the difference between the maximum outer diameter dimension and the minimum outer diameter dimension of the shaft core was 30% of the thickness dimension of the papermaking separator.
  • the outer diameter decreases from the central region in the longitudinal direction of the shaft core toward both ends in the longitudinal direction as in the embodiment, but the reduction ratio is large (the maximum of the shaft core).
  • a shaft core is used in which the difference between the outer diameter dimension and the minimum outer diameter dimension is 60% larger than the range of 30% ⁇ 10% of the thickness dimension of the papermaking separator.
  • the lithium ion capacitor element of Example 1 did not generate wrinkles even when wound with a tension of 3100 g. .
  • the lithium ion capacitor element of Example 2 was wrinkled on the papermaking separator for the first time when it was wound with a tension of 2200 g.
  • the lithium ion capacitor elements of Comparative Examples 1 to 3 were wrinkled on the paper separator with a tension of 2000 g or less. Therefore, even in the case of Example 2, it is possible to increase the tension during winding of the papermaking separator as compared with the comparative example to which the present invention is not applied.
  • the lithium ion capacitor elements of Examples 1 and 2 are more effective than the lithium ion capacitor elements of Comparative Examples 1 to 3, even when a strong tension is applied or the thickness of the paper separator is reduced. It can be seen that wrinkles are less likely to occur.
  • a power storage device in which wrinkles are not easily generated in a papermaking separator at the initial winding time when the papermaking separator is wound around an axis even when the papermaking separator is thinned and the tension is increased. be able to.

Abstract

Provided is an accumulator element allowing the tension applied to a sheet-formed separator during initial winding to be higher than in prior art. An axial core (7) has a shape in which the external diameter dimension decreases at a predetermined ratio from a central region (R2) in the longitudinal direction toward the two ends (11) and (13) in the longitudinal direction. The predetermined decreasing ratio is set to such a value that no wrinkles occur in the sheet-formed separator (3) during the initial winding in which an electrode plate group (5) is wound around the axial core (7).

Description

蓄電素子Electricity storage element
 本発明は、極板群を軸芯に捲回して構成されるリチウムイオンキャパシタ素子及びリチウムイオン電池素子等の蓄電素子に関するものである。 The present invention relates to a storage element such as a lithium ion capacitor element and a lithium ion battery element configured by winding an electrode plate group around an axis.
 特開2012-079943号公報(特許文献1)には、正負極板が抄造されたセパレータを介して積層された積層体が軸芯の周囲に捲回されて構成された捲回タイプの蓄電素子の一例が示されている。従来のこの種の蓄電素子では、外径寸法が一定の管状の軸芯が用いられている。 Japanese Patent Laying-Open No. 2012-079943 (Patent Document 1) discloses a wound-type power storage device in which a laminate in which positive and negative electrode plates are laminated through a paper separator is wound around an axis. An example is shown. In this type of conventional power storage element, a tubular shaft core having a constant outer diameter is used.
特開2012-079943号公報JP 2012-079943 A
 このような正負極板が抄造セパレータを介して積層された積層体が軸芯に捲回されてなる捲回タイプの蓄電素子においては、積層体の捲回密度を高めて蓄電素子の性能を向上させるために、極板群を軸芯に捲回する際に、抄造セパレータに所定の張力を加えている。 In a wound-type power storage device in which a laminated body in which such positive and negative electrode plates are stacked via a papermaking separator is wound around the shaft core, the winding density of the stacked body is increased to improve the performance of the power storage device. Therefore, when the electrode plate group is wound around the shaft core, a predetermined tension is applied to the papermaking separator.
 しかしながら、張力が大きくなるほど、抄造セパレータを軸芯に捲回する初期段階において、抄造セパレータに皺が発生するという問題がある。なおこの問題は、抄造セパレータの厚みが薄くなるほど顕著に発生する。このような初期捲回時に皺が発生すると、さらに捲回を継続しても皺が解消されることはなく、皺が発生した部分では、正極板または負極板の一部が抄造セパレータに食い込んだ状態となり、将来的に短絡を生じさせる原因となる。そのため抄造セパレータに皺が発生した蓄電素子は、不良品として処分されることになり、従来は蓄電素子の製造歩留まりを高めることができなかった。 However, as the tension increases, there is a problem that wrinkles occur in the paper separator at the initial stage of winding the paper separator around the shaft core. This problem becomes more prominent as the paper separator becomes thinner. When wrinkles occur during such initial winding, the wrinkles are not eliminated even if the winding is continued, and in the portion where wrinkles have occurred, a part of the positive electrode plate or the negative electrode plate bites into the paper separator This will cause a short circuit in the future. Therefore, the electricity storage element in which wrinkles are generated in the papermaking separator is disposed as a defective product, and conventionally, the production yield of the electricity storage device cannot be increased.
 本発明の目的は、抄造セパレータを軸芯に捲回する初期捲回時において、従来よりも抄造セパレータに印加する張力を高めることができる蓄電素子を提供することにある。 An object of the present invention is to provide a power storage device capable of increasing the tension applied to a papermaking separator as compared with the prior art at the time of initial winding of the papermaking separator around an axis.
 本発明の他の目的は、抄造セパレータの厚みを薄くして、しかも従来よりも抄造セパレータに印加する張力を高めても、抄造セパレータを軸芯に捲回する初期捲回時において、抄造セパレータに皺が発生することのない蓄電素子を提供することにある。 Another object of the present invention is to reduce the thickness of the paper separator and increase the tension applied to the paper separator as compared with the prior art. An object of the present invention is to provide a power storage element in which no soot is generated.
 発明者は、いわゆる樹脂製のセパレータを用いる場合には、捲回の初期段階で皺が発生することがないのに、抄造セパレータを用いる場合に、なぜ皺が発生するのかを検討した。その結果、抄造セパレータは樹脂製のセパレータと比べて、伸縮性が低いという特性があり、この特性が皺発生の原因になっていることを発見した。特に、セパレータの端部と軸芯との接合状態または固定状態によっては、セパレータの端部に加わる力の分布が、端部の幅方向に沿って変動し、この力の分布の変動が、原因となって、伸縮性が低い抄造セパレータの捲回初期段階で皺が発生するものと推測される。 The inventor examined why wrinkles occur when using a papermaking separator, even though so-called resin separators are used, so that wrinkles do not occur at the initial stage of winding. As a result, it was discovered that the papermaking separator has a characteristic that the stretchability is lower than that of the resin separator, and this characteristic causes wrinkles. In particular, the distribution of the force applied to the end of the separator varies along the width direction of the end depending on the joined state or the fixed state of the end of the separator and the shaft core. Thus, it is presumed that wrinkles are generated at the initial winding stage of the papermaking separator having low elasticity.
 本発明は、帯状の正極板と帯状の負極板とが帯状の抄造セパレータを介して積層されて構成された積層体が、軸芯の周囲に捲回されてなる蓄電素子を改良の対象とする。本発明では、軸芯は長手方向の中央領域から長手方向の両端部に向かって外径寸法が所定の減少割合で小さくなる形状を有している。なお軸芯の中央領域とは、軸芯の長手方向の中心位置を含む所定の範囲の領域である。この中央領域においては、軸芯の外径寸法は減少しても、減少しなくてもよい。所定の減少割合は、極板群を軸芯に捲回する初期捲回時に、抄造セパレータに皺が発生しない値に定められている。減少割合は、一定でも、また変化するものでもよい。このように軸芯の外径寸法を定めると、初期捲回時に抄造セパレータの端部に加わる力に大きなバラツキが生じても、抄造セパレータに加わる力は軸芯の中央領域から両端部に向かって減少する分布傾向を示す。発明者は、このような力の分布傾向が、抄造セパレータの厚みを薄くして、しかも張力を大きくしても、伸縮性の低い抄造セパレータに皺が生じることを防いでいるものと考えている。 An object of the present invention is to improve a power storage device in which a laminated body formed by laminating a belt-like positive electrode plate and a belt-like negative electrode plate via a belt-shaped paper separator is wound around an axis. . In the present invention, the shaft core has a shape in which the outer diameter dimension decreases from the central region in the longitudinal direction toward both ends in the longitudinal direction at a predetermined reduction rate. In addition, the center area | region of an axial center is an area | region of the predetermined range containing the center position of the longitudinal direction of an axial center. In this central region, the outer diameter of the shaft core may or may not decrease. The predetermined reduction rate is set to a value that does not generate wrinkles in the paper separator during the initial winding of winding the electrode plate group around the axis. The decreasing rate may be constant or may vary. If the outer diameter of the shaft core is determined in this way, even if there is a large variation in the force applied to the end of the papermaking separator during the initial winding, the force applied to the papermaking separator is directed from the central region of the shaft core toward both ends. Shows a decreasing distribution trend. The inventor believes that such a force distribution tendency prevents wrinkles from forming on the low-stretch paper-making separator even when the paper-making separator is thinned and the tension is increased. .
 所定の減少割合は、軸芯の捲回部の最大外径寸法と最小外径寸法との差が、抄造セパレータの厚み寸法の30%±10%の範囲の値になるように定められていることが好ましい。このような値にすると、皺の発生をより効果的に防止することができることが実験により確認されている。 The predetermined reduction rate is determined so that the difference between the maximum outer diameter dimension and the minimum outer diameter dimension of the winding portion of the shaft core is a value in a range of 30% ± 10% of the thickness dimension of the papermaking separator. It is preferable. Experiments have confirmed that such a value can more effectively prevent wrinkles.
 また、抄造セパレータは、紙を製造する場合に用いる抄造法によって製造されたものであればよく、抄造される原材料は絶縁性を有するものであれば任意であるが、例えば溶剤で処理して紡糸したセルロース繊維を主原料として形成されたいわゆる紙セパレータを用いると、安価に蓄電素子を製造することができる。なおこの抄造セパレータを用いる場合には、その厚みが35μmよりも薄い場合に、特に本発明は適している。また中央領域の両側に位置して外径寸法が減少する減少領域の長手方向の長さは、軸芯の長さ寸法の1/4よりも長いことが好ましい。これは、減少領域の長手方向の長さが、短くなり過ぎると、減少領域を設ける効果が得られなくなるためである。 In addition, the papermaking separator may be any material as long as it is produced by a papermaking method used in the production of paper, and the raw material to be made may be any material as long as it has insulating properties. When a so-called paper separator formed using the cellulose fiber as a main raw material is used, a power storage element can be manufactured at low cost. In addition, when using this papermaking separator, this invention is especially suitable when the thickness is thinner than 35 micrometers. Moreover, it is preferable that the length of the reduction | decrease area | region which is located in the both sides of a center area | region and whose outer diameter dimension reduces is longer than 1/4 of the length dimension of an axial center. This is because the effect of providing the reduction region cannot be obtained if the length of the reduction region in the longitudinal direction becomes too short.
 なお本発明は、長手方向の中央領域から長手方向の両端部に向かって外径寸法が所定の減少割合で小さくなる形状を有している軸芯としても把握することができる。この場合も、所定の減少割合は、帯状の正極板と帯状の負極板とが帯状の抄造セパレータを介して積層されて構成された積層体が捲回されるときに、抄造セパレータに皺が発生しない値に定められる。 It should be noted that the present invention can also be understood as an axial core having a shape in which the outer diameter dimension decreases from the central region in the longitudinal direction toward both ends in the longitudinal direction at a predetermined reduction rate. Also in this case, the predetermined reduction rate is that when the laminated body constituted by laminating the belt-like positive electrode plate and the belt-like negative electrode plate through the belt-like papermaking separator is wound, the papermaking separator is wrinkled. The value is not set.
 本発明は、抄造セパレータを用いることが多い、リチウムイオンキャパシタ素子に適用するのに適している。 The present invention is suitable for application to a lithium ion capacitor element, which often uses a paper separator.
本発明の実施の形態の蓄電素子の一種であるリチウムイオンキャパシタ素子の構造を概略的に示す斜視図である。It is a perspective view which shows roughly the structure of the lithium ion capacitor element which is 1 type of the electrical storage element of embodiment of this invention. 本発明の実施の形態で使用する軸芯の正面図である。It is a front view of the shaft core used in the embodiment of the present invention. 軸心の外径寸法の変化を誇張して概略的に示す一部省略拡大断面図である。FIG. 4 is a partially omitted enlarged cross-sectional view schematically showing exaggerated changes in the outer diameter of the shaft center. 厚さ30μmの抄造セパレータを用いて、実施例1及び2と比較例1~3の抄造セパレータの皺の発生の有無を示した表である。6 is a table showing the presence or absence of wrinkles in the paper separators of Examples 1 and 2 and Comparative Examples 1 to 3 using a paper separator having a thickness of 30 μm.
 以下、図面を参照して、本発明を蓄電素子の一種であるリチウムイオンキャパシタ素子に適用した実施の形態について説明する。図1は、本発明をリチウムイオンキャパシタ素子に適用した場合の構造を概略的に示すリチウムイオンキャパシタ素子の斜視図である。図2は、本発明の実施の形態で使用する軸芯7の一部を省略して示した正面図である。図3は、軸芯7の外径寸法の変化を誇張して概略的に示す一部省略拡大断面図である。図2及び図3において、R1は第1の端部領域を示し、R2は中央領域を示し、R3は第2の端部領域を示している。第1の端部領域R1、中央領域R2及び第2の端部領域R3はそれぞれ軸芯7の長手方向の全長寸法の1/3の長さを有している。第1の端部領域R1、中央領域R2及び第2の端部領域R3が軸芯の捲回部を構成している。 Hereinafter, an embodiment in which the present invention is applied to a lithium ion capacitor element which is a kind of power storage element will be described with reference to the drawings. FIG. 1 is a perspective view of a lithium ion capacitor element schematically showing a structure when the present invention is applied to a lithium ion capacitor element. FIG. 2 is a front view in which a part of the shaft core 7 used in the embodiment of the present invention is omitted. FIG. 3 is a partially omitted enlarged sectional view schematically showing exaggerated changes in the outer diameter of the shaft core 7. 2 and 3, R1 indicates a first end region, R2 indicates a central region, and R3 indicates a second end region. The first end region R1, the central region R2, and the second end region R3 each have a length that is 1/3 of the total length of the axial center 7 in the longitudinal direction. The first end region R1, the central region R2, and the second end region R3 form a winding portion of the axial core.
 本実施の形態のリチウムイオンキャパシタ素子1では、帯状の正極板と帯状の負極板とが帯状の抄造セパレータ3を介して積層されて構成された積層体が、軸芯7の周囲に捲回されてタブレスタイプの極板群5が構成されている。 In the lithium ion capacitor element 1 of the present embodiment, a laminated body configured by laminating a belt-like positive electrode plate and a belt-like negative electrode plate via a belt-like papermaking separator 3 is wound around the shaft core 7. Thus, a tabless type electrode plate group 5 is configured.
 極板群5中の正極板は、幅方向の一端側に被溶接部を残すように帯状の集電板に正極活物質層が形成されて構成されている。同様に、負極板は、幅方向の一端側に被溶接部を残すように帯状の集電板に負極活物質層が形成されて構成されている。そして正極板の被溶接部と負極板の被溶接部が極板群5の両端部に位置するように、正極板と負極板とを抄造セパレータ3を介して積層してなる積層体を軸芯7の周りに捲回して、極板群5が構成されている。 The positive electrode plate in the electrode plate group 5 is configured by forming a positive electrode active material layer on a belt-shaped current collector plate so as to leave a welded portion on one end side in the width direction. Similarly, the negative electrode plate is configured by forming a negative electrode active material layer on a belt-shaped current collector plate so as to leave a welded portion on one end side in the width direction. Then, a laminated body formed by laminating the positive electrode plate and the negative electrode plate via the papermaking separator 3 so that the welded portion of the positive electrode plate and the welded portion of the negative electrode plate are located at both end portions of the electrode plate group 5 is provided. The electrode group 5 is formed by winding around 7.
 なお、本実施の形態においては、正極板及び負極板の厚み寸法は、50μm~115μmの範囲にあり、抄造セパレータ3の厚み寸法は、50μm未満であり、正極板、負極板及び抄造セパレータ3の幅寸法は90.3mm~133.3mmの範囲にある。抄造セパレータ3としては、溶剤で処理して紡糸したセルロース繊維を主原料として形成されたいわゆる紙セパレータを用いている。なお抄造セパレータ3としては、原材料として、絶縁性を有するPPS(ポリ・フェニレン・サルファイド)樹脂等を用いるものを使用することができる。 In the present embodiment, the thickness dimension of the positive electrode plate and the negative electrode plate is in the range of 50 μm to 115 μm, the thickness dimension of the papermaking separator 3 is less than 50 μm, and the positive electrode plate, the negative electrode plate, and the papermaking separator 3 The width dimension is in the range of 90.3 mm to 133.3 mm. As the papermaking separator 3, a so-called paper separator formed using cellulose fibers spun by treatment with a solvent as a main raw material is used. In addition, as the papermaking separator 3, what uses PPS (poly phenylene sulfide) resin etc. which have insulation as a raw material can be used.
 本実施の形態の軸芯7は、中空円筒状のPPS(ポリ・フェニレン・サルファイド)樹脂により一体成形されている。なお、軸芯7は、ポリプロピレン、ポリイミド等のその他の樹脂により製造されていてもよい。軸芯7の両端部11及び13には、軸芯7を回転させるための治具が嵌合される一対の嵌合溝12がそれぞれ径方向に対向するように形成されている。また軸芯7の両端部11及び13には、極板群5が捲装されない小径の突出部14がそれぞれ一体に設けられている。 The shaft core 7 of the present embodiment is integrally formed of a hollow cylindrical PPS (polyphenylene sulfide) resin. The shaft core 7 may be made of other resins such as polypropylene and polyimide. A pair of fitting grooves 12 into which jigs for rotating the shaft core 7 are fitted are formed at both end portions 11 and 13 of the shaft core 7 so as to face each other in the radial direction. Further, at both end portions 11 and 13 of the shaft core 7, a small-diameter protruding portion 14 on which the electrode plate group 5 is not mounted is integrally provided.
 そして軸芯7の極板群5が捲装される領域の外面には、中央領域R2から第1の端部領域R1及び第2の端部領域R3にわたって連続するテーパ面が形成されている。すなわち中央領域R2の長手方向の中心部17から第1の端部領域R1にわたって、端部11に向かって所定の減少割合で外径寸法が減少している。同様に、中央領域R2の長手方向の中心部17から第2の端部領域R3にわたって、端部13に向かって所定の減少割合で外径寸法が減少している。中央領域R2では外径寸法の減少割合が、中心部17に向かって徐々に小さくなり、最終的に減少割合が0になる。したがって本実施の形態の軸芯7では、中央領域R2の中央に稜線が現れることはない。本実施の形態では、第1の端部領域R1における外径寸法の減少割合と、第2の端部領域R3における外径寸法の減少割合は一定であり、また中央領域R2の中心部17を除く部分の外径寸法の減少割合も、第1及び第2の端部領域における減少割合と同じく一定である。 Further, a tapered surface that is continuous from the central region R2 to the first end region R1 and the second end region R3 is formed on the outer surface of the region where the electrode plate group 5 of the shaft core 7 is mounted. That is, the outer diameter dimension decreases from the central portion 17 in the longitudinal direction of the central region R2 toward the end portion 11 at a predetermined decreasing rate from the first end region R1. Similarly, the outer diameter dimension decreases from the central portion 17 in the longitudinal direction of the central region R2 toward the end portion 13 at a predetermined decreasing rate from the second end region R3. In the central region R2, the reduction rate of the outer diameter dimension gradually decreases toward the central portion 17, and finally the reduction rate becomes zero. Therefore, in the shaft core 7 of the present embodiment, no ridge line appears at the center of the central region R2. In the present embodiment, the reduction ratio of the outer diameter dimension in the first end region R1 and the reduction ratio of the outer diameter dimension in the second end region R3 are constant, and the central portion 17 of the central region R2 is The reduction rate of the outer diameter dimension of the excluded portion is also constant, as is the reduction rate in the first and second end regions.
 本実施の形態では、軸芯7の中央領域R2の長手方向の中心部17の外径寸法が軸芯7の最大外径寸法となり、第1及び第2の端部領域R1及びR3の端部11及び13における最も端の位置における外径寸法が最小外径寸法となる。そして第1及び第2の端部領域R1及びR3では、それぞれ中央領域R2から連続して、両端部11及び13のある方向に向かって外径寸法が一定の減少割合で減少している。 In the present embodiment, the outer diameter size of the central portion 17 in the longitudinal direction of the central region R2 of the shaft core 7 is the maximum outer diameter size of the shaft core 7, and the end portions of the first and second end regions R1 and R3. The outer diameter dimension at the extreme end position in 11 and 13 is the minimum outer diameter dimension. In each of the first and second end regions R1 and R3, the outer diameter dimension decreases from the central region R2 at a constant decreasing rate in a direction in which both end portions 11 and 13 are located.
 軸芯7の外径寸法の所定の減少割合は、極板群5を軸芯7に捲回する初期捲回時に、抄造セパレータ3に皺が発生しない値に定められている。具体的には、本実施の形態においては、軸芯7の外径寸法の減少割合は、軸芯7の最大外径寸法と最小外径寸法との差が、抄造セパレータ3の厚み寸法の30%±10%の範囲の値になるように定められている。このように軸芯7の外径寸法を定めると、初期捲回時に抄造セパレータ3に張力を加えても、皺を生じさせる力が軸芯7の中央領域R2から両端部11及び13に向かって減少する傾向が現れる。その結果、抄造セパレータ3に皺が生じることを防ぐことができる。 The predetermined reduction ratio of the outer diameter dimension of the shaft core 7 is set to a value that does not cause wrinkles in the papermaking separator 3 during the initial winding of the electrode plate group 5 around the shaft core 7. Specifically, in the present embodiment, the reduction ratio of the outer diameter dimension of the shaft core 7 is such that the difference between the maximum outer diameter dimension and the minimum outer diameter dimension of the shaft core 7 is 30 mm of the thickness dimension of the papermaking separator 3. It is determined to be a value in the range of ± 10%. When the outer diameter dimension of the shaft core 7 is determined in this way, even if tension is applied to the papermaking separator 3 during the initial winding, the force that generates wrinkles is directed from the central region R2 of the shaft core 7 toward both ends 11 and 13. A tendency to decrease appears. As a result, wrinkles can be prevented from occurring in the papermaking separator 3.
 軸芯7の最大外径寸法と最小外径寸法との差が、抄造セパレータ3の厚み寸法の30%+10%より大きくなると、寸法差が原因となって皺が発生する傾向が見られることが実験により確認されている。また軸芯7の最大外径寸法と最小外径寸法との差が、抄造セパレータ3の厚み寸法の30%-10%より小さくなると、皺が発生する傾向を抑制して皺の発生を防止する効果が得られないことが実験により確認されている。 When the difference between the maximum outer diameter dimension and the minimum outer diameter dimension of the shaft core 7 is larger than 30% + 10% of the thickness dimension of the papermaking separator 3, there is a tendency that wrinkles tend to occur due to the dimensional difference. It has been confirmed by experiments. Further, when the difference between the maximum outer diameter dimension and the minimum outer diameter dimension of the shaft core 7 is smaller than 30% -10% of the thickness dimension of the papermaking separator 3, the tendency to generate wrinkles is suppressed and the generation of wrinkles is prevented. Experiments have confirmed that no effect can be obtained.
 中央領域R2における外径寸法の中心部17を除く主要部分の減少割合、第1の端部領域R1及び第2の端部領域R3における外径寸法の減少割合とは異なってもよい。すなわち第1の端部領域R1から中央領域R2に移行する際に、連続的に外径寸法が減少し、中央領域R2の中心部17において減少割合が徐々に0に近づくのであれば、中央領域R2における減少割合の変化の態様は任意である。また中央領域R2の中心部17を含む比較的に広い領域において、外径寸法の減少割合が0になっていてもよいのは勿論である。本発明においては、少なくとも第1及び第2の端部領域R1及びR3において、外径寸法が所定の減少割合で減少すればよい。 The reduction ratio of the main portion excluding the central portion 17 of the outer diameter dimension in the central region R2 may be different from the reduction ratio of the outer diameter dimension in the first end region R1 and the second end region R3. That is, when the outer diameter dimension continuously decreases when the transition from the first end region R1 to the central region R2, and the decreasing rate gradually approaches 0 in the central portion 17 of the central region R2, the central region The aspect of the change in the decrease rate in R2 is arbitrary. Of course, the reduction ratio of the outer diameter may be zero in a relatively wide region including the central portion 17 of the central region R2. In the present invention, at least in the first and second end regions R1 and R3, the outer diameter may be reduced at a predetermined reduction rate.
 本実施の形態の実施例においては、具体的に、軸芯7の最大外径寸法が、13.03mm~13.20mmの範囲にあり、最小外径寸法が13.01mm~13.18mmの範囲にあり、軸芯7の長さ寸法は、97.25mm~139.45mmの範囲にある。そして減少割合は、第1及び第2の端部領域R1及びR3においては一定である。すなわち第1及び第2の端部領域R1及びR3においては、外表面に現れるテーパ面15及び19の角度(中央領域R2の中心部17における接平面と端部領域R1及びR3のテーパ面15及び19の間の角度)は一定である。中央領域R2においては、その中心部17に向かって、徐々に減少割合が0になるように、減少割合が定められている。すなわち中央領域R2の外表面に現れるテーパの角度が中心部17に近づくに従って0になる。 In the examples of the present embodiment, specifically, the maximum outer diameter of the shaft core 7 is in the range of 13.03 mm to 13.20 mm, and the minimum outer diameter is in the range of 13.01 mm to 13.18 mm. The length of the shaft core 7 is in the range of 97.25 mm to 139.45 mm. The decreasing rate is constant in the first and second end regions R1 and R3. That is, in the first and second end regions R1 and R3, the angles of the tapered surfaces 15 and 19 appearing on the outer surface (the tangential plane in the central portion 17 of the central region R2 and the tapered surfaces 15 and 19 of the end regions R1 and R3) The angle between 19) is constant. In the central region R <b> 2, the reduction rate is set so that the reduction rate gradually becomes 0 toward the central portion 17. That is, the taper angle appearing on the outer surface of the central region R2 becomes 0 as it approaches the central portion 17.
 上記実施の形態の実施例のリチウムイオンキャパシタ素子と、比較例におけるリチウムイオンキャパシタ素子について、抄造セパレータの皺の発生し易さについて実験を行った結果を図4に示す。図4は、厚さ30μmの抄造セパレータを用いて、実施例1及び2と比較例1~3のリチウムイオンキャパシタ素子の捲回時の張力(テンション)と抄造セパレータの皺の発生の有無を示した表である。 FIG. 4 shows the result of an experiment conducted on the ease of occurrence of wrinkles in the paper separator for the lithium ion capacitor element of the example of the above embodiment and the lithium ion capacitor element of the comparative example. FIG. 4 shows the tension during winding of the lithium ion capacitor elements of Examples 1 and 2 and Comparative Examples 1 to 3 and the presence or absence of wrinkling of the paper separator using a paper separator having a thickness of 30 μm. It is a table.
 この実験では、実施例1及び2と比較例1~3のリチウムイオンキャパシタ素子をそれぞれ作成し、捲回時の張力(テンション)を変えながら抄造セパレータの皺の発生の有無を調べた。実施例1のリチウムイオンキャパシタ素子は、図1~3に示す上記実施の形態のリチウムイオンキャパシタ素子である。すなわち軸芯7の最大外径寸法が、13.11mmであり、最小外径寸法が13.09mmであり、軸芯7の長さ寸法が97.25mmである。そして軸芯7の最大外径寸法と最小外径寸法との差が、抄造セパレータ3の厚み寸法の30%となるように、第1の端部領域R1と第2の端部領域R3の外径寸法の減少割合及び中央領域R2の減少割合を定めた。第1の端部領域R1と第2の端部領域R3の外径寸法の減少割合は一定であり、中央領域R2においては、長手方向の中心部17に向かって外径寸法の減少割合が徐々に0になるように減少割合を定めた。 In this experiment, lithium ion capacitor elements of Examples 1 and 2 and Comparative Examples 1 to 3 were prepared, and the presence or absence of wrinkles in the paper separator was examined while changing the tension during winding. The lithium ion capacitor element of Example 1 is the lithium ion capacitor element of the above embodiment shown in FIGS. That is, the maximum outer diameter dimension of the shaft core 7 is 13.11 mm, the minimum outer diameter dimension is 13.09 mm, and the length dimension of the shaft core 7 is 97.25 mm. The outer diameters of the first end region R1 and the second end region R3 are set such that the difference between the maximum outer diameter dimension and the minimum outer diameter dimension of the shaft core 7 is 30% of the thickness dimension of the papermaking separator 3. The reduction ratio of the diameter dimension and the reduction ratio of the central region R2 were determined. The reduction ratio of the outer diameter dimension of the first end region R1 and the second end region R3 is constant, and in the central region R2, the reduction ratio of the outer diameter dimension gradually increases toward the central portion 17 in the longitudinal direction. The reduction rate was determined to be 0.
 実施例2のリチウムイオンキャパシタ素子は、軸芯の長手方向の両端部付近4分の1の端部領域にテーパ(中央領域から長手方向の両端部に向かって外径寸法が所定の減少割合で小さくなる形状)を有している。実施例2では、テンションが大きくなると、皺の発生が見られる。実験によると、第1の端部領域R1及び第2の端部領域R3が軸芯7の長手方向の寸法の1/4よりも長くなれば、一定の本発明の効果は得られることが確認されている。特に実施例1のように、第1の端部領域R1及び第2の端部領域R3が軸芯7の長手方向の寸法の1/3程度であると、特に良好な結果が得られる。 The lithium ion capacitor element of Example 2 has a taper at the end region of a quarter near the both ends in the longitudinal direction of the axial core (the outer diameter dimension decreases from the central region toward both ends in the longitudinal direction at a predetermined reduction rate. Has a smaller shape). In Example 2, wrinkles are observed when the tension is increased. According to experiments, it is confirmed that if the first end region R1 and the second end region R3 are longer than ¼ of the longitudinal dimension of the shaft core 7, a certain effect of the present invention can be obtained. Has been. In particular, as in Example 1, when the first end region R1 and the second end region R3 are about 1/3 of the longitudinal dimension of the shaft core 7, particularly good results can be obtained.
 比較例1のリチウムイオンキャパシタ素子は、軸芯の長手方向の中央領域から長手方向の両端部に向かって外径寸法が一定の割合で増加する軸芯を用いた。具体的な増加割合は、軸芯の最大外径寸法と最小外径寸法との差が抄造セパレータの厚み寸法の30%になるようにした。 The lithium ion capacitor element of Comparative Example 1 uses a shaft core whose outer diameter increases at a constant rate from the central region in the longitudinal direction of the shaft core toward both ends in the longitudinal direction. The specific increase ratio was such that the difference between the maximum outer diameter dimension and the minimum outer diameter dimension of the shaft core was 30% of the thickness dimension of the papermaking separator.
 比較例2のリチウムイオンキャパシタ素子は、軸芯の外径寸法が一定である軸芯を用いた。 For the lithium ion capacitor element of Comparative Example 2, a shaft core having a constant outer diameter dimension was used.
 比較例3のリチウムイオンキャパシタ素子は、実施例と同様に軸芯の長手方向の中央領域から長手方向の両端部に向かって外径寸法が減少するものの、その減少割合が大きい(軸芯の最大外径寸法と最小外径寸法との差が抄造セパレータの厚み寸法の30%±10%の範囲よりも大きい60%にした)軸芯を用いている。 In the lithium ion capacitor element of Comparative Example 3, the outer diameter decreases from the central region in the longitudinal direction of the shaft core toward both ends in the longitudinal direction as in the embodiment, but the reduction ratio is large (the maximum of the shaft core). A shaft core is used in which the difference between the outer diameter dimension and the minimum outer diameter dimension is 60% larger than the range of 30% ± 10% of the thickness dimension of the papermaking separator.
 図4に示すように、厚さが30μmの抄造セパレータを用いた場合において、実施例1のリチウムイオンキャパシタ素子は3100gのテンション(張力)で捲回した場合でも抄造セパレータに皺は発生しなかった。また、実施例2のリチウムイオンキャパシタ素子は2200gのテンション(張力)で捲回した場合に初めて抄造セパレータに皺が発生した。これに対し、比較例1~3のリチウムイオンキャパシタ素子は2000g以下のテンション(張力)で抄造セパレータに皺が発生した。したがって実施例2の場合でも、本発明を適用していない比較例と比べて、抄造セパレータの捲回時のテンションを高めることができる。 As shown in FIG. 4, when a paper separator having a thickness of 30 μm was used, the lithium ion capacitor element of Example 1 did not generate wrinkles even when wound with a tension of 3100 g. . In addition, the lithium ion capacitor element of Example 2 was wrinkled on the papermaking separator for the first time when it was wound with a tension of 2200 g. In contrast, the lithium ion capacitor elements of Comparative Examples 1 to 3 were wrinkled on the paper separator with a tension of 2000 g or less. Therefore, even in the case of Example 2, it is possible to increase the tension during winding of the papermaking separator as compared with the comparative example to which the present invention is not applied.
 発明者の実験によると、抄造セパレータの厚みが35μmを超えると、実施例1と比較例2の場合において、皺の発生条件に殆ど差が生じないことが確認されている。 According to the inventors' experiments, it has been confirmed that when the thickness of the papermaking separator exceeds 35 μm, there is almost no difference in wrinkling conditions between Example 1 and Comparative Example 2.
 上記の実験では、厚さが30μmの抄造セパレータを用いたが、抄造セパレータの厚みが30μmよりも増すと皺自体が発生し難くなるため、抄造セパレータの厚みが増すに従い、徐々に本発明の効果が減少する。一方で、抄造セパレータの厚みが薄くなる場合は、皺が発生し易くなるため、上記の実験よりも本発明の効果が顕著になるのは当然である。 In the above experiment, a paper separator having a thickness of 30 μm was used. However, when the thickness of the paper separator increases beyond 30 μm, wrinkles are less likely to occur. Decrease. On the other hand, when the thickness of the papermaking separator is reduced, wrinkles are likely to occur, and it is natural that the effect of the present invention becomes more remarkable than the above experiment.
 以上より、実施例1及び2のリチウムイオンキャパシタ素子は、比較例1~3のリチウムイオンキャパシタ素子に比べて、強い張力を加えても、また抄造セパレータの厚みが薄くなった場合でも、抄造セパレータに皺が生じにくいことが分かる。 As described above, the lithium ion capacitor elements of Examples 1 and 2 are more effective than the lithium ion capacitor elements of Comparative Examples 1 to 3, even when a strong tension is applied or the thickness of the paper separator is reduced. It can be seen that wrinkles are less likely to occur.
 本発明によれば、抄造セパレータの厚みを薄くして、しかも張力を大きくしても、抄造セパレータを軸芯に捲回する初期捲回時において、抄造セパレータに皺が生じにくい蓄電素子を提供することができる。 According to the present invention, there is provided a power storage device in which wrinkles are not easily generated in a papermaking separator at the initial winding time when the papermaking separator is wound around an axis even when the papermaking separator is thinned and the tension is increased. be able to.
 1 リチウムイオンキャパシタ素子
 3 抄造セパレータ
 5 極板群
 7 軸芯
DESCRIPTION OF SYMBOLS 1 Lithium ion capacitor element 3 Papermaking separator 5 Electrode board group 7 Shaft core

Claims (7)

  1.  帯状の正極板と帯状の負極板とが帯状の抄造セパレータを介して積層されて構成された積層体が、軸芯の周囲に捲回されてなる蓄電素子であって、
     前記軸芯は長手方向の中央領域から長手方向の両端部に向かって外径寸法が所定の減少割合で小さくなる形状を有しており、
     前記所定の減少割合が、極板群を前記軸芯に捲回する初期捲回時に、前記抄造セパレータに皺が発生しない値に定められていることを特徴とする蓄電素子。
    A laminated body constituted by laminating a belt-like positive electrode plate and a belt-like negative electrode plate via a belt-shaped paper separator is a power storage element formed by winding around a shaft core,
    The shaft core has a shape in which the outer diameter dimension decreases from the central region in the longitudinal direction toward both ends in the longitudinal direction at a predetermined reduction rate,
    The storage element according to claim 1, wherein the predetermined reduction rate is set to a value that does not generate wrinkles in the paper separator during initial winding of the electrode plate group around the shaft core.
  2.  前記所定の減少割合が、前記軸芯の捲回部の最大外径寸法と最小外径寸法との差が、前記抄造セパレータの厚み寸法の30%±10%の範囲の値になるように定められていることを特徴とする請求項1に記載の蓄電素子。 The predetermined reduction ratio is determined so that a difference between the maximum outer diameter dimension and the minimum outer diameter dimension of the winding portion of the shaft core is a value in a range of 30% ± 10% of the thickness dimension of the papermaking separator. The electrical storage element according to claim 1, wherein the electrical storage element is provided.
  3.  前記抄造セパレータは、溶剤で処理して紡糸したセルロース繊維を主原料として形成されたものである請求項1または2に記載の蓄電素子。 3. The electricity storage device according to claim 1, wherein the papermaking separator is formed using cellulose fibers spun by treatment with a solvent as a main raw material.
  4.  前記抄造セパレータの厚みが、35μmより薄い請求項3に記載の蓄電素子。 The electric storage element according to claim 3, wherein the paper separator has a thickness of less than 35 µm.
  5.  前記中央領域の両側に位置して外径寸法が減少する減少領域の前記長手方向の長さは、前記軸芯の長さ寸法の1/4よりも長いことを特徴とする請求項4に記載の蓄電素子。 5. The length in the longitudinal direction of a decreasing region located on both sides of the central region and having a reduced outer diameter is longer than ¼ of the length of the shaft core. 6. Power storage element.
  6.  前記蓄電素子が、リチウムイオンキャパシタ素子である請求項1乃至5のいずれか1項に記載の蓄電素子。 The power storage element according to claim 1, wherein the power storage element is a lithium ion capacitor element.
  7.  長手方向の中央領域から長手方向の両端部に向かって外径寸法が所定の減少割合で小さくなる形状を有し、
     前記所定の減少割合が、帯状の正極板と帯状の負極板とが帯状の抄造セパレータを介して積層されて構成された積層体が捲回されるときに、前記抄造セパレータに皺が発生しない値に定められている軸芯。
    The outer diameter dimension has a shape that decreases at a predetermined reduction rate from the central region in the longitudinal direction toward both ends in the longitudinal direction,
    The predetermined reduction rate is a value that does not generate wrinkles in the papermaking separator when a laminate composed of a beltlike positive electrode plate and a beltlike negative electrode plate laminated via a beltlike papermaking separator is wound. The shaft core specified in
PCT/JP2015/056484 2014-03-06 2015-03-05 Accumulator element WO2015133568A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016506548A JPWO2015133568A1 (en) 2014-03-06 2015-03-05 Electricity storage element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014043991 2014-03-06
JP2014-043991 2014-03-06

Publications (1)

Publication Number Publication Date
WO2015133568A1 true WO2015133568A1 (en) 2015-09-11

Family

ID=54055368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/056484 WO2015133568A1 (en) 2014-03-06 2015-03-05 Accumulator element

Country Status (2)

Country Link
JP (1) JPWO2015133568A1 (en)
WO (1) WO2015133568A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005022766A (en) * 2003-06-30 2005-01-27 Konica Minolta Opto Inc Cellulose ester film web and its storage method and transportation method
US20110052973A1 (en) * 2009-09-02 2011-03-03 Samsung Sdi Co., Ltd. Cylinder type lithium ion secondary battery
JP2013062029A (en) * 2011-09-12 2013-04-04 Hitachi Ltd Lithium ion secondary battery
JP2013191414A (en) * 2012-03-14 2013-09-26 Sony Corp Battery, center pin, battery pack, electronic apparatus, electric tool, electric vehicle, electrical storage apparatus and electricity system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005022766A (en) * 2003-06-30 2005-01-27 Konica Minolta Opto Inc Cellulose ester film web and its storage method and transportation method
US20110052973A1 (en) * 2009-09-02 2011-03-03 Samsung Sdi Co., Ltd. Cylinder type lithium ion secondary battery
JP2013062029A (en) * 2011-09-12 2013-04-04 Hitachi Ltd Lithium ion secondary battery
JP2013191414A (en) * 2012-03-14 2013-09-26 Sony Corp Battery, center pin, battery pack, electronic apparatus, electric tool, electric vehicle, electrical storage apparatus and electricity system

Also Published As

Publication number Publication date
JPWO2015133568A1 (en) 2017-04-06

Similar Documents

Publication Publication Date Title
KR102262668B1 (en) Cylindrical electrochemical cells and method of manufacture
US9443663B2 (en) Electric double-layer capacitor
US20120308863A1 (en) Wound type battery and method for fabricating same
KR102499324B1 (en) Rolling Device for Secondary Battery
JP2017084697A (en) Method of manufacturing electrode plate and method of manufacturing secondary battery
CN220106612U (en) Winding electric core and battery
JP2017084696A (en) Method of manufacturing electrode plate and method of manufacturing secondary battery
JP2014515165A5 (en)
WO2017057335A1 (en) Separator for electrochemical device and electrochemical device
JP6429820B2 (en) Electrochemical devices
JP5935670B2 (en) Electrode manufacturing apparatus and electrode manufacturing method
WO2015133568A1 (en) Accumulator element
JP2010212000A (en) Manufacturing method of electrode body, and manufacturing method of battery
JP3613407B2 (en) Winding battery
KR20180134757A (en) Electrode And Secondary Battery Comprising the Same
JP6439872B2 (en) ROLLED ELECTRODE FOR TRANSPORT, AND METHOD FOR PRODUCING ROLLED ELECTRODE FOR TRANSPORT
KR101835215B1 (en) Cylinderical Secondary Battery And Method For Manufacturing The Same
JP5501270B2 (en) Battery using coated electrode group
WO2018002986A1 (en) Separator for electrochemical element, electrochemical element, automobile, and electronic device
JP2012019006A (en) Separator and capacitor using the same
JP6139072B2 (en) Electrochemical device and manufacturing method thereof
JPH08102427A (en) Film capacitor
JP2014110105A (en) Power storage device
KR20150144984A (en) Manufacturing method for jelly-roll type electrode assembly and jelly-roll type electrode assembly manufactured using the same
JP2008108492A (en) Battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15759002

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016506548

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15759002

Country of ref document: EP

Kind code of ref document: A1