WO2015133458A1 - Array antenna and sector antenna - Google Patents

Array antenna and sector antenna Download PDF

Info

Publication number
WO2015133458A1
WO2015133458A1 PCT/JP2015/056173 JP2015056173W WO2015133458A1 WO 2015133458 A1 WO2015133458 A1 WO 2015133458A1 JP 2015056173 W JP2015056173 W JP 2015056173W WO 2015133458 A1 WO2015133458 A1 WO 2015133458A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency band
band dipole
antenna
dipole element
low
Prior art date
Application number
PCT/JP2015/056173
Other languages
French (fr)
Japanese (ja)
Inventor
慎 水村
拓人 中村
張 鵬
泰介 井原
裕之 川合
龍彦 吉原
Original Assignee
日本電業工作株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電業工作株式会社 filed Critical 日本電業工作株式会社
Priority to CN201580008782.6A priority Critical patent/CN106030906A/en
Publication of WO2015133458A1 publication Critical patent/WO2015133458A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/08Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path
    • H01Q21/12Parallel arrangements of substantially straight elongated conductive units
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/20Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path
    • H01Q21/205Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path providing an omnidirectional coverage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • H01Q21/26Turnstile or like antennas comprising arrangements of three or more elongated elements disposed radially and symmetrically in a horizontal plane about a common centre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • H01Q5/42Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements using two or more imbricated arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/06Details
    • H01Q9/065Microstrip dipole antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole

Definitions

  • the present invention relates to an array antenna and a sector antenna.
  • a mobile communication base station antenna base station antenna
  • a plurality of sector antennas that transmit and receive radio waves for each sector set corresponding to the direction of transmitting and receiving radio waves are used in combination.
  • the sector antenna an array antenna in which antenna elements such as a dipole antenna are arranged in an array may be used.
  • a folded reflector having a width of about 0.25 wavelength or less formed by folding back both side portions, a metal plate provided on the folded reflector through a spacer, and supported on the metal plate.
  • the first radiating element and the second radiating element which are held at a predetermined height by the member and are linearly provided at predetermined intervals along the center of the front surface of the folded reflector, and the first radiating element and the second radiating element.
  • a parasitic element provided in parallel with each other at a predetermined interval on each side of the radiating element, a feeding part provided in a substantially central part of the metal plate, and insulated on the metal plate.
  • An object of the present invention is to provide an array antenna and a sector antenna that can suppress influence on directivity in other frequency bands by an antenna element that transmits and receives radio waves in one frequency band by transmitting and receiving radio waves in a plurality of frequency bands.
  • an array antenna to which the present invention is applied intersects a predetermined polarization direction at a first predetermined distance from the reflector made of a conductive material and a reflector.
  • a plurality of first antenna elements arranged in a direction and transmitting / receiving polarized waves in the first frequency band, and a plurality of first antenna elements in the direction at a predetermined second distance from the reflector
  • a plurality of second antenna elements that transmit and receive a polarized wave in a second frequency band higher than the first frequency band, and a plurality of second antenna elements that are adjacent in the direction
  • the member that reflects radio waves is a conductor made of a conductive material having a longitudinal direction in the polarization direction, and is provided at a predetermined third distance from the reflector.
  • the conductor includes a member having a different direction from a member constituting the central portion at the end, and each member may be connected in a direct current manner.
  • the array antenna to which the present invention is applied may further include a third antenna element that transmits and receives a radio wave having a polarization orthogonal to the polarization in the first frequency band.
  • a third antenna element that transmits and receives a radio wave having a polarization orthogonal to the polarization in the first frequency band.
  • You may further provide the 4th antenna element which transmits / receives the electromagnetic wave of the polarization orthogonal to polarization. By doing in this way, it can be set as an array antenna for polarization sharing.
  • the sector antenna to which the present invention is applied crosses a predetermined polarization direction at a first predetermined distance from the reflector made of a conductive material and a reflector.
  • a plurality of first antenna elements arranged in a direction to transmit and receive polarized radio waves in the first frequency band, and a plurality of first antennas in the direction at a predetermined second distance from the reflector.
  • An array antenna comprising: a member that is disposed when any of the plurality of first antenna elements is not disposed between two adjacent second antenna elements, and that reflects a radio wave transmitted and received by the second antenna element. And And it includes a radome housing the antenna. According to this configuration, the sector antenna can be made smaller than in the case without this configuration.
  • an array antenna and a sector antenna that can suppress influence on directivity in other frequency bands by an antenna element that transmits and receives radio waves in one frequency band in an antenna that transmits and receives radio waves in a plurality of frequency bands. To do.
  • FIG. 1 is a perspective view of a base station antenna
  • (b) is a figure explaining the example of installation of a base station antenna.
  • (A) is a plan view
  • (b) is a cross-sectional view taken along line IIIb-IIIb in (a).
  • FIG. 4 is a plan view of an array antenna in a sector antenna to which the first embodiment is not applied as viewed from the direction perpendicular to the reflector and a sectional view in the direction perpendicular to the reflector.
  • (A) is a plan view
  • (b) is a cross-sectional view taken along the line VIIb-VIIb.
  • FIG. 1 In the array antenna to which the first embodiment is not applied, it is a diagram illustrating vertical in-plane directivities of two high frequency band dipole elements sandwiched between two low frequency band dipole elements. .
  • (A) shows the directivity of the high frequency band dipole element arranged on the upper side in the vertical direction
  • (b) shows the directivity of the high frequency band dipole element arranged on the lower side in the vertical direction.
  • (A) shows the vertical in-plane directivity in the horizontal polarization of the high frequency band
  • (b) shows the vertical in-plane directivity in the horizontal polarization of the low frequency band. It is a figure explaining the factor from which the vertical in-plane directivity in the horizontal polarization of a high frequency band differs between the array antenna to which 1st Embodiment is applied, and the array antenna to which 1st Embodiment is not applied.
  • (A) shows an array antenna to which the first embodiment is applied, and (b) shows an array antenna to which the first embodiment is not applied. It is a perspective view which shows an example of the sector antenna to which 2nd Embodiment is applied.
  • FIG. 1 is a diagram illustrating an example of an overall configuration of a base station antenna 1 for mobile communication to which the first embodiment is applied.
  • FIG. 1A is a perspective view of the base station antenna 1
  • FIG. 1B is a diagram illustrating an installation example of the base station antenna 1.
  • the base station antenna 1 includes, for example, three sector antennas 10-1 to 10-3 held in a steel tower 20. Then, as shown in FIG. 1B, the base station antenna 1 transmits and receives radio waves (beams) in the cell 2.
  • the cell 2 is a range where radio waves transmitted by the base station antenna 1 reach and a range where the base station antenna 1 receives radio waves.
  • Each of the sector antennas 10-1 to 10-3 has a cylindrical shape (for example, a radome 500 in FIG. 2 described later), and the cylinder is provided substantially perpendicular to the ground.
  • the cell 2 includes a plurality of sectors 3-1 to 3-3 that are divided by angles in a horizontal plane orthogonal to the vertical direction.
  • Each of the sectors 3-1 to 3-3 is provided corresponding to the three sector antennas 10-1 to 10-3 of the base station antenna 1. That is, when the sector antennas 10-1 to 10-3 radiate radio waves, the direction of the main lobe 11 in which the electric field of the radio waves output from each of the sector antennas 10-1 to 10-3 is large corresponds to the corresponding sector 3-1. It is suitable for ⁇ 3-3.
  • the sector antennas 10-1 to 10-3 are not distinguished from each other, they are referred to as sector antennas 10.
  • the sectors 3-1 to 3-3 are not distinguished from each other, they are represented as sector 3.
  • the base station antenna 1 shown as an example in FIG. 1 includes three sector antennas 10-1 to 10-3 and sectors 3-1 to 3-3 corresponding thereto.
  • the number of sector antennas 10 and sectors 3 may be less than 3 or greater than 3.
  • the sector 3 is configured by dividing the cell 2 into three equal parts (center angle 120 °).
  • the sector 3 may not be equally divided, and any one sector 3 may be the other.
  • the sector 3 may be wider or narrower than the sector 3.
  • Each sector antenna 10 has a low-frequency band dipole element provided in the sector antenna 10 (see low-frequency band dipole elements 110-1 to 110-3 in FIG. 2, which will be described later.
  • a transmission / reception cable 31 for transmitting / receiving a transmission signal and a reception signal (transmission / reception signal) is provided. Further, transmission is made to a high-frequency band dipole element (see high-frequency band dipole elements 120-1 to 120-6 in FIG. 2 to be described later. When not distinguished from each other, they are referred to as high-frequency band dipole elements 120).
  • a transmission / reception cable 32 for transmitting and receiving signals and reception signals (transmission / reception signals) is provided.
  • the transmission / reception cables 31 and 32 are connected to a transmission / reception unit (not shown) that transmits and receives transmission / reception signals provided in a base station (not shown).
  • the transmission / reception cables 31 and 32 are, for example, coaxial cables.
  • the base station antenna 1 mainly transmits radio waves, but the base station antenna 1 can receive radio waves due to the reversibility of the antennas.
  • the signal flow may be reversed with the transmission signal as the reception signal.
  • the sector antenna 10 may also include a phase shifter for making the phases of transmission signals transmitted to the plurality of low frequency band dipole elements 110 included in the sector antenna 10 different from each other. Furthermore, you may provide the other phase shifter for making the phase of the transmission signal transmitted to each of several dipole element 120 for high frequency bands with which the sector antenna 10 is provided mutually differ.
  • the phase of the transmission signal supplied to the plurality of low frequency band dipole elements 110 and / or the high frequency band dipole elements 120 By varying the phase of the transmission signal supplied to the plurality of low frequency band dipole elements 110 and / or the high frequency band dipole elements 120, the radiation direction of the radio wave (beam) is tilted from the horizontal plane to the ground direction (beam tilt). It is possible to set so that the radio wave does not reach outside the cell 2.
  • FIG. 2 is a perspective view showing an example of the sector antenna 10 to which the first embodiment is applied.
  • FIG. 2 shows a perspective view of one of the sector antennas 10-1 to 10-3 shown in FIG.
  • the sector antenna 10 includes an array antenna 100 and a radome 500 that is housed so as to enclose the array antenna 100.
  • the radome 500 is indicated by a broken line so that the array antenna 100 provided inside the radome 500 can be seen.
  • the array antenna 100 is arranged in a vertical direction on the reflector 200 and the reflector 200, and a low frequency band as an example of a first antenna element that transmits and receives radio waves in a low frequency band as an example of a first frequency band.
  • a low frequency band as an example of a first antenna element that transmits and receives radio waves in a low frequency band as an example of a first frequency band.
  • the second dipole elements 110-1 to 110-3 which are similarly arranged in the vertical direction on the reflector 200, and transmit / receive radio waves in the high frequency band as an example of the second frequency band
  • High frequency band dipole elements 120-1 to 120-6, and conductors 130-1 to 130-4 made of a conductive material arranged in the vertical direction on the reflector 200.
  • conductors 130-1 to 130-4 are not distinguished from each other, they are referred to as conductors 130.
  • the low-frequency band dipole element 110, the high-frequency band dipole element 120, and the conductor 130 may be made of a conductive material.
  • a metal plate such as Al or Cu can be used.
  • metal rods, such as Al and Cu, may be sufficient.
  • the low-frequency band dipole element 110, the high-frequency band dipole element 120, and the conductor 130 are formed of a metal layer such as Al or Cu provided on a substrate formed of a dielectric material such as glass epoxy. It may be.
  • FIG. 2 the low-frequency band dipole element 110, the high-frequency band dipole element 120, and the conductor 130 are shown assuming a metal layer provided on a substrate made of a dielectric material such as glass epoxy. .
  • substrate comprised with the dielectric material is abbreviate
  • the reflection plate 200 is a plate-like member made of a conductive material, and here, the longitudinal direction is provided in the vertical direction.
  • a metal plate such as Al or Cu can be applied to the reflecting plate.
  • a metal layer such as Al or Cu provided on a substrate made of a dielectric material such as glass epoxy may be used.
  • the low-frequency band dipole element 110 (low-frequency band dipole elements 110-1 to 110-3) is separated from the reflector 200 by a predetermined first distance (distance D L in FIG. 3 described later) and vertically. They are arranged at intervals P L in the direction. Each low frequency band dipole element 110 is provided such that a pair of element portions are arranged in the horizontal direction, and transmits and receives horizontally polarized waves.
  • the high frequency band dipole element 120 (high frequency band dipole elements 120-1 to 120-6) has a predetermined second distance from the reflector 200 on the side where the low frequency band dipole element 110 is provided. They are arranged at a distance P H in the vertical direction at a distance (distance D H in FIG. 3 described later).
  • the low frequency band dipole elements 110-1 to 110-3 and the high frequency band dipole elements 120-1 to 120-6 are provided with power supply means (not shown) and supplied with transmission / reception signals.
  • the conductors 130-1 to 130-4 have a predetermined third distance from the reflector 200 on the side where the low-frequency band dipole element 110 is provided from the reflector 200 (the distance in FIG. 3 described later). D C ) are spaced apart.
  • Each conductor 130 has a bar shape or a plate shape provided in the horizontal direction, and does not include a power feeding unit.
  • the low-frequency band dipole element 110, the high-frequency band dipole element 120, and the conductor 130 are perpendicular to each other at the point where the perpendicular line extending from the midpoint to the reflection plate 200 intersects the reflection plate 200. They are arranged in a straight line.
  • Two high frequency band dipole elements 120 are arranged between the two low frequency band dipole elements 110.
  • high frequency band dipole elements 120-2 and 120-3 are provided between the low frequency band dipole element 110-1 and the low frequency band dipole element 110-2.
  • the conductor 130 is disposed between two high-frequency band dipole elements 120 provided between the two low-frequency band dipole elements 110.
  • the conductor 130-2 includes a high frequency band dipole element 120-2 and a high frequency band dipole element 120-3 provided between two low frequency band dipole elements 110-1 and 110-2. It is provided between.
  • the conductor 130-2 is disposed at a distance P H / 2 from each of the high frequency band dipole elements 120-2 and 120-3. That is, the low frequency band dipole element 110 and the high frequency band dipole element 120 are mixedly arranged. By arranging in this way, the length of the array antenna 100 in the vertical direction can be shortened as compared with the case where each is arranged separately.
  • the conductor 130 is disposed on the side of the high frequency band dipole element 120 where the low frequency band dipole element 110 is not disposed. That is, the high frequency band dipole element 120 is sandwiched between the low frequency band dipole element 110 and the conductor 130.
  • the low frequency band dipole element 110, the high frequency band dipole element 120, the conductor 130, the high frequency band dipole element 120, and the low frequency band dipole element 110 are arranged in the vertical direction. Arranged to repeat.
  • two high frequency band dipole elements 120 are sandwiched between two adjacent low frequency band dipole elements 110.
  • the low-frequency band dipole element 110 is disposed on one side in the vertical direction, but the low-frequency band dipole element 110 is not disposed on the other side. That is, they are asymmetrical above and below the high frequency band dipole element 120.
  • a conductor 130 is provided on the side of the high frequency band dipole element 120 where the low frequency band dipole element 110 is not provided. Note that the interval between the high frequency band dipole element 120 and the low frequency band dipole element 110 may be different for each location.
  • Three or more high-frequency band dipole elements 120 may be sandwiched between two adjacent low-frequency band dipole elements 110. In this case, if the high frequency band dipole element 120 is not provided above and below the high frequency band dipole element 120 in the vertical direction, the conductor 130 may be provided for both.
  • a conductor 130-1 and a conductor 130-4 are provided at the upper and lower ends in the vertical direction of the reflector 200. That is, in the repetition of the arrangement of the low-frequency band dipole element 110, the high-frequency band dipole element 120, the conductor 130, the high-frequency band dipole element 120, and the low-frequency band dipole element 110, the conductor 130 The array is cut to remain at the lower end.
  • the low frequency band dipole element 110 may be cut so as to remain at the upper end and the lower end.
  • the low frequency band dipole element 110 may be cut off so as to remain on one of the upper end and the lower end, and the conductor 130 may remain on the other of the upper end and the lower end.
  • the high-frequency band dipole element 120 does not remain at either the upper end or the lower end.
  • the numbers of the low-frequency band dipole element 110, the high-frequency band dipole element 120, and the conductors 130 are not limited to the above values.
  • the radome 500 has, for example, a cylindrical shape, and includes a wall portion 501, a lid portion 502, and a bottom portion 503.
  • the array antenna 100 is housed inside the wall portion 501, the lid portion 502, and the bottom portion 503.
  • the sector antenna 10 includes a low-frequency band dipole element 110 that transmits and receives low-frequency horizontal polarization and a high-frequency band dipole element 120 that transmits and receives high-frequency horizontal polarization, the sector antenna 10 is frequency shared. .
  • the terms “low frequency” and “high frequency” are used to distinguish two types of antenna elements.
  • FIG. 3 is a plan view of the array antenna 100 in the sector antenna 10 to which the first embodiment is applied as viewed from the direction perpendicular to the reflector 200 and a sectional view in the direction perpendicular to the reflector 200.
  • 3A is a plan view
  • FIG. 3B is a cross-sectional view taken along line IIIb-IIIb in FIG. 3A.
  • the low-frequency band dipole element 110 has a length W L
  • the high-frequency band dipole element 120 has a length W H
  • the conductor 130 has a length W C.
  • the above-described distance DH of the high-frequency band dipole element 120 from the reflection plate 200 is from the surface of the reflection plate 200 to the center of the vertical direction of the high-frequency band dipole element 120 in the vertical line standing on the reflection plate 200. Is the length of More
  • the wavelength lambda L in a free space of the low-frequency band in the case of the wavelength lambda H in a free space of the high-frequency band, an example of numerical values the parameters such as the length W L of the dipole elements 110 for the low frequency band .
  • Low-frequency-band dipole element 110 has a length W L about 0.45Ramuda L, the distance D L from the reflecting plate 200 is approximately 0.2? L.
  • the high frequency band dipole element 120 has a length WH of about 0.45 ⁇ H and a distance DH from the reflector 200 of about 0.25 ⁇ H.
  • the interval P H between the high frequency band dipole elements 120 is about 0.75 ⁇ H.
  • the interval P L between the low-frequency band dipole elements 110 is about 1.5 ⁇ H in the case of 2 ⁇ interval P H.
  • the conductor 130 has a length W C of about 0.55Ramuda H
  • the distance D C from the reflection plate 200 is about 0.25 [lambda H.
  • a distance D H from the reflecting plate 200 of the high frequency band dipole element 120, and the distance D C from the reflection plate 200 of the conductor 130 are set to be equal to each other.
  • the distance D H and the distance D C may be different. Note that the above parameters may be set to other numerical values.
  • the horizontal polarization and the arrangement direction of the low-frequency band dipole element 110, the high-frequency band dipole element 120, and the conductor 130 are orthogonal to each other.
  • FIG. 4 shows vertical planes of two high-frequency band dipole elements 120 sandwiched between two low-frequency band dipole elements 110 in the array antenna 100 to which the first embodiment is applied. It is a figure which shows internal directivity. 4A shows the directivity of the high-frequency band dipole element 120 arranged on the upper side in the vertical direction, and FIG. 4B shows the directivity of the high-frequency band dipole element 120 arranged on the lower side in the vertical direction. Show directivity. In this specification, in the directivity graph, the vertical direction is set to 0 °, and the direction in which the low-frequency band dipole element 110, the high-frequency band dipole element 120, and the conductor 130 are disposed from the reflector 200 is 90 °. °.
  • Two high-frequency band dipole elements 120 sandwiched between two low-frequency band dipole elements 110 are, for example, a low-frequency band dipole element 110-1 and a low-frequency band dipole element 110-2.
  • the high frequency band dipole element 120-3 is disposed on the upper side in the vertical direction, and the high frequency band dipole element 120-2 is disposed on the lower side in the vertical direction.
  • the dipole element 120 for use.
  • the directivity of the high-frequency band dipole element 120 (for example, the high-frequency band dipole element 120-3) arranged on the upper side in the vertical direction and the lower side in the vertical direction.
  • the difference in directivity of the arranged high frequency band dipole element 120 (for example, the high frequency band dipole element 120-2) is that of the array antenna 100 to which the first embodiment shown in FIG. It is smaller than the high-frequency band dipole element 120.
  • a conductor 130 (for example, conductor 130-2) is provided between two high frequency band dipole elements 120 (for example, high frequency band dipole elements 120-2 and 120-3). It depends on.
  • FIG. 5 shows the vertical in-plane directivity in the horizontal polarization in the high frequency band and the vertical in-plane directivity in the horizontal polarization in the low frequency band in the array antenna 100 to which the first embodiment is applied.
  • FIG. 5A shows the vertical in-plane directivity in the horizontal polarization in the high frequency band
  • FIG. 5B shows the vertical in-plane directivity in the horizontal polarization in the low frequency band.
  • the vertical in-plane directivity in the horizontal polarization in the high frequency band shown in FIG. 5A is a directivity obtained by synthesizing 12 high frequency band dipole elements 120 shown in FIGS. 4A and 4B. It is.
  • the vertical in-plane directivity in the horizontal polarization in the high frequency band and the vertical in-plane directivity in the horizontal polarization in the low frequency band are both sharp in the 90 ° direction. Has a peak.
  • the vertical in-plane directivity in the horizontal polarization in the high frequency band shown in FIG. 5A is compared with the array antenna 100 to which the first embodiment shown in FIG. 9A described later is not applied. Side lobes are kept small.
  • FIG. 6 is a perspective view showing an example of the sector antenna 10 to which the first embodiment is not applied.
  • the sector antenna 10 to which the first embodiment shown in FIG. 6 is not applied does not include the conductor 130 in the array antenna 100 of the sector antenna 10 to which the first embodiment shown in FIG. 2 is applied. Since the other configuration is the same as that of the sector antenna 10 to which the first embodiment shown in FIG. 2 is applied, the same reference numerals are given and description thereof is omitted.
  • FIG. 7 is a plan view of the array antenna 100 in the sector antenna 10 to which the first embodiment is not applied as viewed from the normal direction of the reflection plate 200 and a cross-sectional view of the reflection plate 200 in the normal direction.
  • FIG. 7A shows a plan view
  • FIG. 7B shows a cross-sectional view taken along the line VIIb-VIIb.
  • the array antenna 100 to which the first embodiment shown in FIG. 7 is not applied does not include the conductor 130 in the array antenna 100 to which the first embodiment shown in FIG. 3 is applied.
  • Other configurations are the same as those of the array antenna 100 to which the first embodiment shown in FIG. 3 is applied, and thus the same reference numerals are given and description thereof is omitted.
  • FIG. 8 shows in the vertical plane of each of the two high-frequency band dipole elements 120 sandwiched between the two low-frequency band dipole elements 110 in the array antenna 100 to which the first embodiment is not applied. It is a figure which shows directivity.
  • FIG. 8A shows the directivity of the high frequency band dipole element 120 arranged on the upper side in the vertical direction
  • FIG. 8B shows the directivity of the high frequency band dipole element 120 arranged on the lower side in the vertical direction. Show directivity.
  • Two high-frequency band dipole elements 120 sandwiched between two low-frequency band dipole elements 110 are, for example, a low-frequency band dipole element 110-1 and a low-frequency band dipole element 110-2.
  • the high frequency band dipole element 120-3 is disposed on the upper side in the vertical direction, and the high frequency band dipole element 120-2 is disposed on the lower side in the vertical direction.
  • the dipole element 120 for use.
  • the directivity of the high frequency band dipole element 120 (for example, the high frequency band dipole element 120-3) arranged on the upper side in the vertical direction and the lower side in the vertical direction.
  • the directivity of the high-frequency band dipole element 120 (for example, the high-frequency band dipole element 120-2). That is, the high frequency band dipole element 120 arranged on the upper side in the vertical direction shown in FIG. 8A shows directivity having a peak in the 135 ° direction.
  • the high-frequency band dipole element 120 arranged on the lower side in the vertical direction shown in FIG. 8B shows directivity having a peak in the 45 ° direction.
  • FIG. 9 is a diagram illustrating the vertical in-plane directivity in the high-frequency band horizontal polarization and the vertical in-plane directivity in the low-frequency band horizontal polarization in the array antenna 100 to which the first embodiment is not applied. is there.
  • FIG. 9A shows the vertical in-plane directivity in the horizontal polarization in the high frequency band
  • FIG. 9B shows the vertical in-plane directivity in the horizontal polarization in the low frequency band.
  • the vertical in-plane directivity in the horizontal polarization in the high frequency band shown in FIG. 9A is a directivity obtained by synthesizing 12 high frequency band dipole elements 120 shown in FIGS. 8A and 8B. It is.
  • the horizontal polarization of the high frequency band has a strong peak in the 90 ° direction in the vertical plane, but large side lobes are generated in the 50 ° and 130 ° directions. .
  • This directivity is different from the vertical in-plane directivity in the high frequency band horizontal polarization in the array antenna 100 to which the first embodiment shown in FIG. 5A is applied.
  • the vertical in-plane directivity in the horizontal polarization in the low frequency band shown in FIG. 9B is the low frequency band in the array antenna 100 to which the first embodiment shown in FIG. 5B is applied. There is little difference with the directivity in the vertical plane in horizontal polarization.
  • FIG. 10 is a diagram showing factors that cause differences in vertical in-plane directivity in horizontal polarization in a high frequency band between the array antenna 100 to which the first embodiment is applied and the array antenna 100 to which the first embodiment is not applied. It is a figure explaining.
  • FIG. 10A shows the array antenna 100 to which the first embodiment is applied
  • FIG. 10B shows the array antenna 100 to which the first embodiment is not applied.
  • FIGS. 10A and 10B are both cross-sectional views, and FIG.
  • FIG. 10A shows a low-frequency band dipole element 110-1 and a low-frequency band dipole element 110-2 in FIG. 10 (b) shows a range sandwiched between the low-frequency band dipole element 110-1 and the low-frequency band dipole element 110-2 in FIG. 7 (b).
  • a part ⁇ of the radio wave emitted from the high frequency band dipole element 120-2 is a low frequency band dipole element. After being reflected by 110-1, it goes to the side far from the reflector 200. The other part ⁇ of the radio wave emitted from the high frequency band dipole element 120-2 is reflected by the conductor 130-2 and then travels away from the reflector 200.
  • the low frequency band dipole element 110-1 and the position close to the target are symmetrical to the high frequency band dipole element 120-2.
  • a conductor 130-2 is provided.
  • the directivity of the radio wave emitted from the high frequency band dipole element 120-2 becomes close to vertical symmetry in the vertical plane as shown in FIG. 4B. The same applies to the high-frequency band dipole element 120-3.
  • a part ⁇ of the radio wave emitted from the high frequency band dipole element 120-2 is low frequency. After being reflected by the band dipole element 110-1, it travels away from the reflector 200.
  • the other part ⁇ of the radio wave emitted from the high frequency band dipole element 120-2 is not provided with the conductor 130-2, and goes straight as it is and travels away from the reflector 200.
  • the directivity of the radio wave emitted from the high-frequency band dipole element 120-2 is symmetrical in the vertical plane as shown in FIG. 8B. do not become. The same applies to the high-frequency band dipole element 120-3.
  • the vertical in-plane directivity is vertically symmetrical in the vertical direction. It is trying to become. This suppresses the occurrence of side lobes in the vertical in-plane directivity in the horizontal polarization of the array antenna 100 in the high frequency band.
  • the distance D C from the reflection plate 200 of the conductor 130, the vertical plane directivity of horizontal polarization of the high frequency band of the array antenna 100, may be a position where it is possible to suppress the side lobes occur.
  • the distance D C from the reflection plate 200 of the conductor 130, the reflecting plate 200 of the distance D is the same as the as H, a low frequency band dipole element 110 from the reflective plate 200 of the high frequency band dipole element 120
  • the distance D L may be the same as the distance D L , or between the distance D H and the distance D L. Furthermore, better even smaller than the distance D H, may even larger than the distance D L.
  • the sector antenna 10 (array antenna 100) is configured to share frequencies for transmitting and receiving horizontal polarization in the low frequency band and the high frequency band.
  • the sector antenna 10 (array antenna 100) is frequency sharing and polarization sharing for transmitting and receiving horizontal polarization and vertical polarization in the low frequency band and the high frequency band.
  • the sector antenna 10 and the array antenna 100 different from the first embodiment will be described.
  • FIG. 11 is a perspective view showing an example of the sector antenna 10 to which the second embodiment is applied.
  • the array antenna 100 is different from the sector antenna 10 to which the first embodiment shown in FIG. 2 is applied.
  • different parts will be described, and the same parts are denoted by the same reference numerals, and the description thereof will be omitted.
  • the array antenna 100 in the sector antenna 10 to which the second embodiment is applied is for a low frequency band that transmits and receives horizontal polarization, which is included in the sector antenna 10 to which the first embodiment shown in FIG. 2 is applied.
  • Low-frequency band dipole elements 111-1 to 111-3, low-frequency band dipole elements 112-1 to 112-3, and high-frequency band dipole elements 121-1 to 121-6 as an example of a fourth antenna element It has.
  • the low frequency band dipole elements 111-1 to 111-3 are not distinguished from each other, the low frequency band dipole elements 111 and the low frequency band dipole elements 112-1 to 112-3 are not distinguished from each other.
  • the frequency band dipole element 112 and the high frequency band dipole elements 121-1 to 121-6 are not distinguished from each other, they are referred to as a high frequency band dipole element 121.
  • the low-frequency band dipole element 111 and the low-frequency band dipole element 112 each include a pair of element portions arranged in the vertical direction, and one end portion in the horizontal direction of the low-frequency band dipole element 110. It is provided at the other end.
  • the low frequency band dipole element 111-1 and the low frequency band dipole element 112-1 are provided at one end and the other end of the low frequency band dipole element 110-1.
  • the high-frequency band dipole element 121 includes a pair of element portions arranged side by side in the vertical direction, and is combined with the high-frequency band dipole element 120 in a cross shape.
  • the high frequency band dipole element 121-1 is provided in combination with the high frequency band dipole element 120-1 in a cross shape.
  • the low-frequency band dipole element 111, the low-frequency band dipole element 112, and the high-frequency band dipole element 121 are made of a conductive material, like the low-frequency band dipole element 110, the high-frequency band dipole element 120, and the conductor 130.
  • a metal plate such as Al or Cu can be applied.
  • metal rods such as Al and Cu, may be sufficient.
  • the low frequency band dipole element 111, the low frequency band dipole element 112, and the high frequency band dipole element 121 are made of glass. It may be constituted by a metal layer such as Al or Cu provided on a substrate made of a dielectric material such as epoxy.
  • the sector antenna 10 includes a low-frequency band and high-frequency band horizontally polarized transmission / reception cables 31 and 32 of the first embodiment, and a low-frequency band and high-frequency band vertically-polarized transmission / reception cable 33. , 34 are provided. Note that the numbers of the low-frequency band dipole elements 110, 111, and 112, the high-frequency band dipole elements 120 and 121, and the conductors 130 are not limited to the above values.
  • FIG. 12 is a plan view of the array antenna 100 in the sector antenna 10 to which the second embodiment is applied as viewed from the perpendicular direction of the reflector 200 and a sectional view of the reflector 200 in the perpendicular direction.
  • 12A shows a plan view
  • FIG. 12B shows a cross-sectional view taken along line XIIb-XIIb in FIG. 12A.
  • Low-frequency-band dipole element 110, the dipole elements 120 for high frequency band, (such as the length W L of the low frequency band dipole element 110) parameters of the conductor 130 is the same as in the first embodiment.
  • a low frequency band dipole element 111 low-frequency-band dipole element 112 is a low as well as the frequency band dipole element 110 length W L, provided from the reflection plate 200 at a distance D L.
  • High-frequency-band dipole element 121 is a similarly long W H dipole element 120 for high-frequency bands, provided from the reflection plate 200 at a distance D H.
  • the high frequency band dipole elements 120 and 121 are sandwiched between the low frequency band dipole element 110 and the conductor 130 in the vertical direction. Therefore, in the vertical direction, the radio waves emitted by the horizontally polarized waves can be reflected symmetrically. Thereby, it can suppress that a side lobe generate
  • the polarization is shared in the low frequency band and the high frequency band, but only one of the polarizations may be shared.
  • the distance from the reflection plate 200 in a low frequency band dipole element 111 and the low frequency band dipole element 112 may not necessarily be the same from the reflection plate 200 in a low frequency band dipole element 110 and the distance D L, the distance D L and may be a different distance D L '.
  • the distance from the reflecting plate 200 of the high frequency band dipole element 121 may not be the same necessarily from the reflecting plate 200 of the high frequency band dipole element 120 and the distance D H, the distance D H and different distances D H It may be '.
  • the sector antenna 10 (array antenna 100) to which the third embodiment is applied is vertical in the low frequency band and the high frequency band. Frequency sharing and polarization sharing for transmitting and receiving polarization and horizontal polarization.
  • the sector antenna 10 to which the third embodiment is applied differs from the sector antenna 10 to which the second embodiment shown in FIG. 11 is applied in the array antenna 100.
  • different parts will be described, and the same parts are denoted by the same reference numerals, and the description thereof will be omitted.
  • FIG. 13 is a perspective view showing an example of the sector antenna 10 to which the third embodiment is applied.
  • the array antenna 100 in the sector antenna 10 to which the third embodiment is applied is a low-frequency band dipole element 110-1 to 110-3 that transmits and receives horizontal polarization in the first embodiment shown in FIG.
  • high frequency band dipole elements 120-1 to 120-6 are shifted in the horizontal direction.
  • the second antenna is provided with a pair of element portions arranged in the horizontal direction and arranged in the vertical direction to transmit and receive horizontal polarization.
  • high frequency band dipole elements 122-1 to 122-6 are provided.
  • the high frequency band dipole elements 120-1 to 120-6 and the high frequency band dipole elements 122-1 to 122-6 are provided with the same subscripts (such as -1) arranged in the horizontal direction.
  • low frequency band dipole elements 113-1 to 113-3 as another example of the third antenna element
  • a high frequency band as another example of the fourth antenna element
  • conductors 131-1 to 131-4 and conductors 132-1 to 132-4 are provided in place of the conductors 130-1 to 130-4 in the first and second embodiments. .
  • the low frequency band dipole elements 113-1 to 113-3, the high frequency band dipole elements 122-1 to 122-6, and the high frequency band dipole elements 123-1 to 123-6 are not distinguished from each other, the low frequency band It is expressed as a band dipole element 113, a high frequency band dipole element 122, and a high frequency band dipole element 123.
  • the conductors 131-1 to 131-4 and the conductors 132-1 to 132-4 are not distinguished from each other, they are referred to as a conductor 131 and a conductor 132, respectively.
  • the low-frequency band dipole element 113, the high-frequency band dipole element 121, the high-frequency band dipole element 122, the high-frequency band dipole element 123, the conductor 131, and the conductor 132 are the low-frequency band dipole element 110 and the high-frequency band.
  • the dipole element 120 for a metal it may be made of a conductive material, and for example, a metal plate such as Al or Cu can be applied. Moreover, not only plate shape but metal rods, such as Al and Cu, may be sufficient.
  • the low frequency band dipole element 113 similarly to the low frequency band dipole element 110 and the high frequency band dipole element 120, the low frequency band dipole element 113, the high frequency band dipole element 121, the high frequency band dipole element 122, and the high frequency band dipole.
  • the element 123, the conductor 131, and the conductor 132 may be configured by a metal layer such as Al or Cu provided on a substrate configured by a dielectric material such as glass epoxy.
  • the low frequency band dipole element 113 is combined with the low frequency band dipole element 110 in a cross shape.
  • the low-frequency band dipole element 113-1 is provided in combination with the low-frequency band dipole element 110-1 in a cross shape.
  • the high frequency band dipole element 121 is combined with the high frequency band dipole element 120 in a cross shape.
  • the high frequency band dipole element 121-1 is provided in combination with the high frequency band dipole element 120-1 in a cross shape.
  • the high frequency band dipole element 123 is provided in combination with the high frequency band dipole element 122 in a cross shape.
  • the high-frequency band dipole element 123-1 is provided in combination with the high-frequency band dipole element 122-1 in a cross shape.
  • the conductor 131 has an H-shaped planar shape in a plane parallel to the plane including the reflector 200, and is for two high frequency bands provided between two low frequency band dipole elements 110. It is provided between the dipole elements 120. For example, between the high frequency band dipole element 120-2 and the high frequency band dipole element 120-3 provided between the low frequency band dipole element 110-1 and the low frequency band dipole element 110-2.
  • a conductor 131-2 is provided.
  • the conductor 132 has an H-shaped planar shape in a plane parallel to the plane including the reflector 200, similar to the conductor 131, and the two high-frequency band dipole elements 110 provided between the two high-frequency bands. It is provided between the frequency band dipole elements 122. For example, between the high frequency band dipole element 122-2 and the high frequency band dipole element 122-3 provided between the low frequency band dipole element 110-1 and the low frequency band dipole element 110-2.
  • a conductor 132-2 is provided.
  • the sector antenna 10 includes a low-frequency band and high-frequency band horizontally polarized transmission / reception cables 31 and 32 of the first embodiment, and a low-frequency band and high-frequency band vertically-polarized transmission / reception cable 33. , 34 are provided.
  • the numbers of the low-frequency band dipole elements 110 and 113, the high-frequency band dipole elements 120, 121, 122, and 123, and the conductors 131 and 132 are not limited to the above values.
  • the surface including the conductor 131 and the conductor 132 is not necessarily parallel to the reflecting plate 200, and may be a surface that is perpendicular to the reflecting plate 200 or rotated by 45 degrees, for example.
  • the conductor 131 and the conductor 132 may be formed by bending a rod-shaped conductor into an H shape or a U shape instead of a planar shape. Furthermore, the shape provided with the member in which direction differs from the member which comprises a center part in the edge part may be sufficient. At this time, these members are preferably connected in a direct current manner.
  • FIG. 14 is a plan view of the array antenna 100 in the sector antenna 10 to which the third embodiment is applied as viewed from the perpendicular direction of the reflector 200 and a sectional view of the reflector 200 in the perpendicular direction.
  • 14A shows a plan view
  • FIG. 14B shows a cross-sectional view taken along line XIVb-XIVb in FIG. 14A.
  • Low-frequency-band dipole element 110, (such as the length W L of the low frequency band dipole element 110) parameter of the higher frequency band dipole element 120 is the same as in the first embodiment.
  • the parameters of the low-frequency band dipole element 113 are the same as those of the low-frequency band dipole element 110, and the parameters of the high-frequency band dipole elements 121, 122, and 123 are the same as those of the high-frequency band dipole element 120. is there. Then, the conductor 131 and 132 are provided at a distance D C from the reflecting plate 200.
  • the H-shaped planar shape of the conductors 131 and 132 is to increase the electrical length of the conductors 131 and 132 equivalently.
  • the conductors 131 and 132 are operated as reflectors, and the balance between the reflection by the low-frequency band dipole element 110 and the reflection by the conductor 131 or the conductor 132 of the radio wave emitted from the high-frequency band dipole element 120. This is to ensure the symmetry of directivity between the upper side and the lower side in the vertical plane. Thereby, in the array antenna 100, the side lobe generated in the vertical in-plane directivity in the horizontal polarization of the high frequency band is suppressed.
  • the high frequency band dipole element 120 used for horizontal polarization transmission / reception has the low frequency band dipole on both sides in the vertical direction. Either the element 110 or the conductor 131 is adjacent. Similarly, the high frequency band dipole element 122 is adjacent to either the low frequency band dipole element 110 or the conductor 132 on both sides in the vertical direction. Therefore, in the array antenna 100, the side lobe generated in the vertical in-plane directivity in the horizontal polarization of the high frequency band is suppressed.
  • the high frequency band dipole element 120 is sandwiched between the low frequency band dipole element 110 and the conductor 131 in the vertical direction.
  • the high frequency band dipole element 122 is sandwiched between the low frequency band dipole element 110 and the conductor 132 in the vertical direction. Therefore, the level of the side lobe of the vertical in-plane directivity in the horizontal polarization of the high frequency band of the array antenna 100 can be suppressed.
  • the planar shape of the conductor 130 in the first embodiment and the second embodiment may be an H shape or a U shape.
  • the conductors 130, 131, and 132 are conductors made of a conductive material.
  • any conductor having a function of reflecting radio waves may be used.
  • Carbon materials having lower electrical conductivity can be used.
  • the reflector 200 is a flat plate, but the both ends in the horizontal direction are a low-frequency band dipole element 110 and a high-frequency band dipole element 120. Or may be bent on the side opposite to the side on which the high-frequency band dipole element 120 or the like is provided. Furthermore, the conductor 130 in the first and second embodiments and the conductors 131 and 132 in the third embodiment are parasitic and are not connected to either. The reflector 200 may be electrically connected.
  • a parasitic element for adjusting characteristics such as a standing wave ratio (VSWR) and directivity may be provided.
  • the low-frequency band dipole elements 110, 111, and 112 having the same subscript ( ⁇ 1 or the like) are rotated by 45 ° at the center of the low-frequency band dipole element 110, and A pair of high-frequency band dipole elements 120 and 121 having the same subscript ( ⁇ 1, etc.) is paired and rotated by 45 ° at the center of the high-frequency band dipole elements 120 and 121 to transmit and receive ⁇ 45 ° polarized waves. be able to.
  • the array antenna 100 transmits / receives ⁇ 45 ° polarization instead of vertical polarization and horizontal polarization. Therefore, “vertical” and “horizontal” may be read as “45 °” and “ ⁇ 45 °”. The same applies to polarized waves of other angles.
  • the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the gist of the present invention.
  • SYMBOLS 1 Base station antenna, 2 ... Cell, 3-1, 3-1 to 3-3 ... Sector, 10, 10-1 to 10-3 ... Sector antenna, 11 ... Main lobe, 20 ... Steel tower, 31, 32, 33, 34 ... Transmission / reception cable, 100 ... Array antenna, 110, 110-1 to 110-3, 111, 111-1 to 111-3, 112, 112-1 to 112-3, 113, 113-1 to 113-3 ... Dipole element for low frequency band, 120, 120-1 to 120-6, 121, 121-1 to 121-6, 122, 122-1 to 122-6, 123, 123-1 to 123-6 ... high frequency band Dipole element, 130, 130-1 to 130-4, 131, 131-1 to 131-4, 132, 132-1 to 132-4 ... conductor, 200 ... reflector, 500 ... radome

Abstract

This array antenna (100) is provided with: a reflection plate (200); low-frequency-band dipole elements (110-1 to 110-3) arrayed in the vertical direction above the reflection plate (200); high-frequency-band dipole elements (120-1 to 120-6) similarly arrayed in the vertical direction above the reflection plate (200); and conductors (130-1 to 130-4) configured from a conductive material and similarly arrayed in the vertical direction above the reflection plate (200). The low-frequency-band dipole elements (110) and high-frequency-band dipole elements (120) are arrayed in an intermixed manner, and the conductors (130) are disposed at the side of the high-frequency-band dipole elements (120) at which the low-frequency-band dipole elements (110) are not disposed. As a result, in the transmission/reception of radio waves in a plurality of frequency bands, an effect of the transmission/reception of radio waves at one frequency band by an antenna element on the directivity or the like in another frequency band is suppressed.

Description

アレイアンテナ及びセクタアンテナArray antenna and sector antenna
 本発明は、アレイアンテナ及びセクタアンテナに関する。 The present invention relates to an array antenna and a sector antenna.
 移動体通信の基地局用のアンテナ(基地局アンテナ)には、電波を送受信する方向に対応して設定されたセクタ毎に電波を送受信するセクタアンテナが複数組み合わせて用いられている。セクタアンテナには、ダイポールアンテナなどのアンテナ素子をアレイ状に並べたアレイアンテナが用いられることがある。 As a mobile communication base station antenna (base station antenna), a plurality of sector antennas that transmit and receive radio waves for each sector set corresponding to the direction of transmitting and receiving radio waves are used in combination. As the sector antenna, an array antenna in which antenna elements such as a dipole antenna are arranged in an array may be used.
 特許文献1には、両側部を後方に折返してなる横幅が約0.25波長以下の折返し反射板と、前記折返し反射板上にスペーサを介して設けられる金属板と、前記金属板上に支持部材により所定高さに保持され、前記折返し反射板の前面中央に沿って所定の間隔で直線状に設けられる第1の放射素子及び第2の放射素子と、前記第1の放射素子及び第2の放射素子の両側部にそれぞれ所定の間隔で平行に設けられる無給電の寄生素子と、前記金属板の略中央部に設けられる給電部と、前記金属板上に絶縁して設けられ、前記第1の放射素子及び前記第2の放射素子に前記給電部からの給電信号を供給する給電線路と、前記給電線路に設けられ、前記給電部と前記第1の放射素子及び第2の放射素子との間のインピーダンスを整合するインピーダンス変換部とを具備し、前記折返し反射板と前記第1の放射素子及び第2の放射素子との間隔を約0.09波長に設定した指向性アンテナが記載されている。 In Patent Document 1, a folded reflector having a width of about 0.25 wavelength or less formed by folding back both side portions, a metal plate provided on the folded reflector through a spacer, and supported on the metal plate. The first radiating element and the second radiating element, which are held at a predetermined height by the member and are linearly provided at predetermined intervals along the center of the front surface of the folded reflector, and the first radiating element and the second radiating element. A parasitic element provided in parallel with each other at a predetermined interval on each side of the radiating element, a feeding part provided in a substantially central part of the metal plate, and insulated on the metal plate. A feed line for supplying a feed signal from the feed unit to the first radiating element and the second radiating element; and the feed line, the first radiating element and the second radiating element provided in the feed line; Impedance matching impedance between ; And a Nsu conversion unit, the folding reflection plate and the first radiating element and the second directional antenna is set to about 0.09 wavelength spacing between the radiating elements have been described.
特開2013-115460号公報JP 2013-115460 A
 ところで、異なる周波数帯の電波の送受信ができる小型のアレイアンテナが求められることがある。その際、小型化のために、近接して異なる周波数帯の電波を送受信する複数のアンテナ素子を配置する際、1の周波数帯の電波を送受信するアンテナ素子によって、他の周波数帯の電波の送受信における指向性などに及ぼす影響が少ないことが求められる。
 本発明の目的は、複数の周波数帯の電波の送受信にて、1の周波数帯の電波の送受信するアンテナ素子による他の周波数帯における指向性などに対する影響を抑制できるアレイアンテナ及びセクタアンテナを提供することにある。
By the way, a small array antenna capable of transmitting and receiving radio waves in different frequency bands may be required. At that time, when a plurality of antenna elements that transmit and receive radio waves in different frequency bands are arranged close to each other for miniaturization, the antenna elements that transmit and receive radio waves in one frequency band are used to transmit and receive radio waves in other frequency bands. It is required to have little influence on directivity in
An object of the present invention is to provide an array antenna and a sector antenna that can suppress influence on directivity in other frequency bands by an antenna element that transmits and receives radio waves in one frequency band by transmitting and receiving radio waves in a plurality of frequency bands. There is.
 かかる目的のもと、本発明が適用されるアレイアンテナは、導電材料で構成された反射板と、反射板から予め定められた第1の距離に、予め定められた偏波の方向と交差する方向に配列され、第1の周波数帯における偏波の電波を送受信する複数の第1のアンテナ素子と、反射板から予め定められた第2の距離に、前記方向において複数の第1のアンテナ素子と混在して配列され、第1の周波数帯より高い第2の周波数帯の偏波の電波を送受信する複数の第2のアンテナ素子と、複数の第2のアンテナ素子のうち、前記方向において隣接する2個の第2のアンテナ素子の間に、複数の第1のアンテナ素子のいずれも配置されない場合に配置され、第2のアンテナ素子が送受信する電波を反射する部材とを備えている。
 このようなアレイアンテナにおいて、電波を反射する部材は、偏波の方向に長手方向を有する導電材料で構成された導体であって、反射板から予め定められた第3の距離に設けられている。
 導体は、端部に中央部を構成する部材と向きの異なる部材を備え、それぞれの部材は直流的に接続されていてもよい。
For this purpose, an array antenna to which the present invention is applied intersects a predetermined polarization direction at a first predetermined distance from the reflector made of a conductive material and a reflector. A plurality of first antenna elements arranged in a direction and transmitting / receiving polarized waves in the first frequency band, and a plurality of first antenna elements in the direction at a predetermined second distance from the reflector And a plurality of second antenna elements that transmit and receive a polarized wave in a second frequency band higher than the first frequency band, and a plurality of second antenna elements that are adjacent in the direction And a member that reflects radio waves transmitted and received by the second antenna element, when none of the plurality of first antenna elements is disposed between the two second antenna elements.
In such an array antenna, the member that reflects radio waves is a conductor made of a conductive material having a longitudinal direction in the polarization direction, and is provided at a predetermined third distance from the reflector. .
The conductor includes a member having a different direction from a member constituting the central portion at the end, and each member may be connected in a direct current manner.
 さらに、本発明が適用されるアレイアンテナは、第1の周波数帯において、偏波と直交する偏波の電波を送受信する第3のアンテナ素子をさらに備えてもよく、第2の周波数帯において、偏波と直交する偏波の電波を送受信する第4のアンテナ素子をさらに備えてもよい。
 このようにすることで、偏波共用のアレイアンテナとすることができる。
Furthermore, the array antenna to which the present invention is applied may further include a third antenna element that transmits and receives a radio wave having a polarization orthogonal to the polarization in the first frequency band. In the second frequency band, You may further provide the 4th antenna element which transmits / receives the electromagnetic wave of the polarization orthogonal to polarization.
By doing in this way, it can be set as an array antenna for polarization sharing.
 他の観点から捉えると、本発明が適用されるセクタアンテナは、導電材料で構成された反射板と、反射板から予め定められた第1の距離に、予め定められた偏波の方向と交差する方向に配列され、第1の周波数帯における偏波の電波を送受信する複数の第1のアンテナ素子と、反射板から予め定められた第2の距離に、前記方向において複数の第1のアンテナ素子と混在して配列され、第1の周波数帯より高い第2の周波数帯の偏波の電波を送受信する複数の第2のアンテナ素子と、複数の第2のアンテナ素子のうち、前記方向において隣接する2個の第2のアンテナ素子の間に、複数の第1のアンテナ素子のいずれも配置されない場合に配置され、第2のアンテナ素子が送受信する電波を反射する部材と、を備えるアレイアンテナと、アレイアンテナを収納するレドームを備えている。
 この構成によれば、この構成を有しない場合に比べ、セクタアンテナをより小型にできる。
From another point of view, the sector antenna to which the present invention is applied crosses a predetermined polarization direction at a first predetermined distance from the reflector made of a conductive material and a reflector. A plurality of first antenna elements arranged in a direction to transmit and receive polarized radio waves in the first frequency band, and a plurality of first antennas in the direction at a predetermined second distance from the reflector. Among the plurality of second antenna elements arranged in a mixed manner with the elements and transmitting / receiving radio waves having a polarized wave in the second frequency band higher than the first frequency band, and the plurality of second antenna elements in the direction An array antenna comprising: a member that is disposed when any of the plurality of first antenna elements is not disposed between two adjacent second antenna elements, and that reflects a radio wave transmitted and received by the second antenna element. And And it includes a radome housing the antenna.
According to this configuration, the sector antenna can be made smaller than in the case without this configuration.
 本発明によれば、複数の周波数帯の電波を送受信するアンテナにおいて、1の周波数帯の電波の送受信するアンテナ素子による他の周波数帯における指向性などに対する影響を抑制できるアレイアンテナ及びセクタアンテナを提供する。 According to the present invention, there are provided an array antenna and a sector antenna that can suppress influence on directivity in other frequency bands by an antenna element that transmits and receives radio waves in one frequency band in an antenna that transmits and receives radio waves in a plurality of frequency bands. To do.
第1の実施の形態が適用される移動体通信用の基地局アンテナの全体構成の一例を示す図である。(a)は、基地局アンテナの斜視図であり、(b)は、基地局アンテナの設置例を説明する図である。It is a figure which shows an example of the whole structure of the base station antenna for mobile communication with which 1st Embodiment is applied. (A) is a perspective view of a base station antenna, (b) is a figure explaining the example of installation of a base station antenna. 第1の実施の形態が適用されるセクタアンテナの一例を示す斜視図である。It is a perspective view which shows an example of the sector antenna to which 1st Embodiment is applied. 第1の実施の形態が適用されるセクタアンテナにおけるアレイアンテナを反射板に対して垂線方向から見た平面図及び反射板の垂線方向の断面図である。(a)は、平面図を示し、(b)は、(a)のIIIb-IIIb線での断面図を示す。It is the top view which looked at the array antenna in the sector antenna to which 1st Embodiment is applied from the perpendicular direction with respect to the reflector, and sectional drawing of the perpendicular direction of a reflector. (A) is a plan view, and (b) is a cross-sectional view taken along line IIIb-IIIb in (a). 第1の実施の形態が適用されるアレイアンテナにおいて、2個の低周波数帯用ダイポール素子の間に挟まれた2個の高周波数帯用ダイポール素子のそれぞれの垂直面内指向性を示す図である。(a)は、垂直方向上側に配置された高周波数帯用ダイポール素子の指向性を示し、(b)は、垂直方向下側に配置された高周波数帯用ダイポール素子の指向性を示す。In the array antenna to which the first embodiment is applied, the respective directivity in the vertical plane of two high frequency band dipole elements sandwiched between two low frequency band dipole elements is shown. is there. (A) shows the directivity of the high frequency band dipole element arranged on the upper side in the vertical direction, and (b) shows the directivity of the high frequency band dipole element arranged on the lower side in the vertical direction. 第1の実施の形態が適用されるアレイアンテナにおける、高周波数帯の水平偏波における垂直面内指向性と、低周波数帯の水平偏波における垂直面内指向性とを示す図である。(a)は、高周波数帯の水平偏波における垂直面内指向性を示し、(b)は、低周波数帯の水平偏波における垂直面内指向性を示す。It is a figure which shows the vertical in-plane directivity in the horizontal polarization of a high frequency band in the array antenna to which 1st Embodiment is applied, and the vertical in-plane directivity in the horizontal polarization of a low frequency band. (A) shows the vertical in-plane directivity in the horizontal polarization of the high frequency band, and (b) shows the vertical in-plane directivity in the horizontal polarization of the low frequency band. 第1の実施の形態が適用されないセクタアンテナの一例を示す斜視図である。It is a perspective view which shows an example of the sector antenna to which 1st Embodiment is not applied. 第1の実施の形態が適用されないセクタアンテナにおけるアレイアンテナを反射板の垂線方向から見た平面図及び反射板の垂線方向の断面図である。(a)は、平面図を示し、(b)は、VIIb-VIIb線での断面図を示す。FIG. 4 is a plan view of an array antenna in a sector antenna to which the first embodiment is not applied as viewed from the direction perpendicular to the reflector and a sectional view in the direction perpendicular to the reflector. (A) is a plan view, and (b) is a cross-sectional view taken along the line VIIb-VIIb. 第1の実施の形態が適用されないアレイアンテナにおいて、2個の低周波数帯用ダイポール素子の間に挟まれた2個の高周波数帯用ダイポール素子のそれぞれの垂直面内指向性を示す図である。(a)は、垂直方向上側に配置された高周波数帯用ダイポール素子の指向性を示し、(b)は、垂直方向下側に配置された高周波数帯用ダイポール素子の指向性を示す。In the array antenna to which the first embodiment is not applied, it is a diagram illustrating vertical in-plane directivities of two high frequency band dipole elements sandwiched between two low frequency band dipole elements. . (A) shows the directivity of the high frequency band dipole element arranged on the upper side in the vertical direction, and (b) shows the directivity of the high frequency band dipole element arranged on the lower side in the vertical direction. 第1の実施の形態が適用されないアレイアンテナにおける、高周波数帯の水平偏波における垂直面内指向性と、低周波数帯の水平偏波における垂直面内指向性を示す図である。(a)は、高周波数帯の水平偏波における垂直面内指向性を示し、(b)は、低周波数帯の水平偏波における垂直面内指向性を示す。It is a figure which shows the vertical in-plane directivity in the horizontal polarization of a high frequency band in the array antenna to which 1st Embodiment is not applied, and the vertical in-plane directivity in the horizontal polarization of a low frequency band. (A) shows the vertical in-plane directivity in the horizontal polarization of the high frequency band, and (b) shows the vertical in-plane directivity in the horizontal polarization of the low frequency band. 第1の実施の形態が適用されるアレイアンテナと第1の実施の形態が適用されないアレイアンテナとで、高周波数帯の水平偏波における垂直面内指向性が異なる要因について説明する図である。(a)は、第1の実施の形態が適用されるアレイアンテナを示し、(b)は、第1の実施の形態が適用されないアレイアンテナを示す。It is a figure explaining the factor from which the vertical in-plane directivity in the horizontal polarization of a high frequency band differs between the array antenna to which 1st Embodiment is applied, and the array antenna to which 1st Embodiment is not applied. (A) shows an array antenna to which the first embodiment is applied, and (b) shows an array antenna to which the first embodiment is not applied. 第2の実施の形態が適用されるセクタアンテナの一例を示す斜視図である。It is a perspective view which shows an example of the sector antenna to which 2nd Embodiment is applied. 第2の実施の形態が適用されるセクタアンテナにおけるアレイアンテナを反射板の垂線方向から見た平面図及び反射板の垂線方向の断面図である。(a)は、平面図を示し、(b)は、(a)におけるXIIb-XIIb線での断面図を示す。It is the top view which looked at the array antenna in the sector antenna to which 2nd Embodiment is applied from the perpendicular direction of a reflector, and sectional drawing of the perpendicular direction of a reflector. (A) is a plan view, and (b) is a cross-sectional view taken along line XIIb-XIIb in (a). 第3の実施の形態が適用されるセクタアンテナの一例を示す斜視図である。It is a perspective view which shows an example of the sector antenna to which 3rd Embodiment is applied. 第3の実施の形態が適用されるセクタアンテナにおけるアレイアンテナを反射板の垂線方向から見た平面図及び反射板の垂線方向の断面図である。(a)は、平面図を示し、(b)は、(a)のXIVb-XIVb線での断面図を示す。It is the top view which looked at the array antenna in the sector antenna to which 3rd Embodiment is applied from the perpendicular direction of the reflecting plate, and sectional drawing of the reflecting plate in the perpendicular direction. (A) is a plan view, and (b) is a cross-sectional view taken along line XIVb-XIVb in (a).
 以下、添付図面を参照して、本発明の実施の形態について詳細に説明する。
[第1の実施の形態]
<基地局アンテナ1>
 図1は、第1の実施の形態が適用される移動体通信用の基地局アンテナ1の全体構成の一例を示す図である。図1(a)は、基地局アンテナ1の斜視図であり、図1(b)は、基地局アンテナ1の設置例を説明する図である。
 図1(a)に示すように、基地局アンテナ1は、例えば鉄塔20に保持された3個のセクタアンテナ10-1~10-3を備えている。そして、図1(b)に示すように、基地局アンテナ1は、セル2内において電波(ビーム)を送受信する。すなわち、セル2は、基地局アンテナ1が送信する電波が到達する範囲であり、基地局アンテナ1が電波を受信する範囲である。
 セクタアンテナ10-1~10-3は、それぞれの外形(後述する図2におけるレドーム500)が例えば円筒状であって、その円筒が大地に対してほぼ垂直に設けられている。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings.
[First Embodiment]
<Base station antenna 1>
FIG. 1 is a diagram illustrating an example of an overall configuration of a base station antenna 1 for mobile communication to which the first embodiment is applied. FIG. 1A is a perspective view of the base station antenna 1, and FIG. 1B is a diagram illustrating an installation example of the base station antenna 1.
As shown in FIG. 1A, the base station antenna 1 includes, for example, three sector antennas 10-1 to 10-3 held in a steel tower 20. Then, as shown in FIG. 1B, the base station antenna 1 transmits and receives radio waves (beams) in the cell 2. That is, the cell 2 is a range where radio waves transmitted by the base station antenna 1 reach and a range where the base station antenna 1 receives radio waves.
Each of the sector antennas 10-1 to 10-3 has a cylindrical shape (for example, a radome 500 in FIG. 2 described later), and the cylinder is provided substantially perpendicular to the ground.
 図1(b)に示すように、セル2は、垂直方向に直交する水平面において角度で分割した複数のセクタ3-1~3-3を備えている。セクタ3-1~3-3のそれぞれは、基地局アンテナ1の3個のセクタアンテナ10-1~10-3に対応して設けられている。つまり、セクタアンテナ10-1~10-3が電波を放射する場合、セクタアンテナ10-1~10-3のそれぞれが出力する電波の電界が大きいメインローブ11の方向が、対応するセクタ3-1~3-3に向くようになっている。
 ここでは、セクタアンテナ10-1~10-3をそれぞれ区別しないときは、セクタアンテナ10と表記する。また、セクタ3-1~3-3をそれぞれ区別しないときは、セクタ3と表記する。
As shown in FIG. 1B, the cell 2 includes a plurality of sectors 3-1 to 3-3 that are divided by angles in a horizontal plane orthogonal to the vertical direction. Each of the sectors 3-1 to 3-3 is provided corresponding to the three sector antennas 10-1 to 10-3 of the base station antenna 1. That is, when the sector antennas 10-1 to 10-3 radiate radio waves, the direction of the main lobe 11 in which the electric field of the radio waves output from each of the sector antennas 10-1 to 10-3 is large corresponds to the corresponding sector 3-1. It is suitable for ~ 3-3.
Here, when the sector antennas 10-1 to 10-3 are not distinguished from each other, they are referred to as sector antennas 10. In addition, when the sectors 3-1 to 3-3 are not distinguished from each other, they are represented as sector 3.
 なお、図1に例として示した基地局アンテナ1は、3個のセクタアンテナ10-1~10-3及びこれらに対応するセクタ3-1~3-3を備えている。しかし、セクタアンテナ10及びセクタ3は、3未満又は3を超える数であってよい。また、図1(b)では、セクタ3は、セル2を3等分に分割(中心角120°)して構成されているが、等分でなくともよく、いずれか1つのセクタ3が他のセクタ3に比べ広く又は狭く構成されていてもよい。 Note that the base station antenna 1 shown as an example in FIG. 1 includes three sector antennas 10-1 to 10-3 and sectors 3-1 to 3-3 corresponding thereto. However, the number of sector antennas 10 and sectors 3 may be less than 3 or greater than 3. In FIG. 1B, the sector 3 is configured by dividing the cell 2 into three equal parts (center angle 120 °). However, the sector 3 may not be equally divided, and any one sector 3 may be the other. The sector 3 may be wider or narrower than the sector 3.
 そして、それぞれのセクタアンテナ10は、セクタアンテナ10が備える低周波数帯用のダイポール素子(後述する図2における低周波数帯用ダイポール素子110-1~110-3参照。それぞれを区別しないときは低周波数帯用ダイポール素子110と表記する。)に送信信号及び受信信号(送受信信号)を送受信する送受信ケーブル31を備えている。さらに、高周波数帯用のダイポール素子(後述する図2における高周波数帯用ダイポール素子120-1~120-6参照。それぞれを区別しないときは高周波数帯用ダイポール素子120と表記する。)に送信信号及び受信信号(送受信信号)を送受信する送受信ケーブル32を備えている。
 送受信ケーブル31、32は、基地局(不図示)内に設けられた送受信信号を送受信する送受信部(不図示)に接続されている。送受信ケーブル31、32は、例えば同軸ケーブルである。
Each sector antenna 10 has a low-frequency band dipole element provided in the sector antenna 10 (see low-frequency band dipole elements 110-1 to 110-3 in FIG. 2, which will be described later. A transmission / reception cable 31 for transmitting / receiving a transmission signal and a reception signal (transmission / reception signal) is provided. Further, transmission is made to a high-frequency band dipole element (see high-frequency band dipole elements 120-1 to 120-6 in FIG. 2 to be described later. When not distinguished from each other, they are referred to as high-frequency band dipole elements 120). A transmission / reception cable 32 for transmitting and receiving signals and reception signals (transmission / reception signals) is provided.
The transmission / reception cables 31 and 32 are connected to a transmission / reception unit (not shown) that transmits and receives transmission / reception signals provided in a base station (not shown). The transmission / reception cables 31 and 32 are, for example, coaxial cables.
 なお、以下では主に基地局アンテナ1が電波を送信するとして説明するが、アンテナの可逆性により、基地局アンテナ1は電波を受信することができる。電波を受信する場合は、例えば送信信号を受信信号として、信号の流れを逆にすればよい。 In the following description, it is assumed that the base station antenna 1 mainly transmits radio waves, but the base station antenna 1 can receive radio waves due to the reversibility of the antennas. When receiving radio waves, for example, the signal flow may be reversed with the transmission signal as the reception signal.
 また、セクタアンテナ10は、セクタアンテナ10が備える複数の低周波数帯用ダイポール素子110のそれぞれに送信する送信信号の位相を互いに異ならせるための移相器を備えていてもよい。さらに、セクタアンテナ10が備える複数の高周波数帯用ダイポール素子120のそれぞれに送信する送信信号の位相を互いに異ならせるための他の移相器を備えていてもよい。
 複数の低周波数帯用ダイポール素子110及び/又は高周波数帯用ダイポール素子120に供給する送信信号の位相を異ならせることで、電波(ビーム)の放射方向を水平面から地上方向に傾けて(ビームチルトさせて)、電波がセル2外に到達しないように設定できる。
The sector antenna 10 may also include a phase shifter for making the phases of transmission signals transmitted to the plurality of low frequency band dipole elements 110 included in the sector antenna 10 different from each other. Furthermore, you may provide the other phase shifter for making the phase of the transmission signal transmitted to each of several dipole element 120 for high frequency bands with which the sector antenna 10 is provided mutually differ.
By varying the phase of the transmission signal supplied to the plurality of low frequency band dipole elements 110 and / or the high frequency band dipole elements 120, the radiation direction of the radio wave (beam) is tilted from the horizontal plane to the ground direction (beam tilt). It is possible to set so that the radio wave does not reach outside the cell 2.
<セクタアンテナ10>
 図2は、第1の実施の形態が適用されるセクタアンテナ10の一例を示す斜視図である。図2では、図1に示したセクタアンテナ10-1~10-3の内の一つを横に置いて、斜めから見た斜視図で示している。
 セクタアンテナ10は、アレイアンテナ100とアレイアンテナ100を包むように収納するレドーム500とを備えている。
 図2では、レドーム500を破線で示し、レドーム500の内部に設けられたアレイアンテナ100が見えるようにしている。
<Sector antenna 10>
FIG. 2 is a perspective view showing an example of the sector antenna 10 to which the first embodiment is applied. FIG. 2 shows a perspective view of one of the sector antennas 10-1 to 10-3 shown in FIG.
The sector antenna 10 includes an array antenna 100 and a radome 500 that is housed so as to enclose the array antenna 100.
In FIG. 2, the radome 500 is indicated by a broken line so that the array antenna 100 provided inside the radome 500 can be seen.
 アレイアンテナ100は、反射板200と、反射板200上に垂直方向に配列され、第1の周波数帯の一例としての低周波数帯において電波を送受信する第1のアンテナ素子の一例としての低周波数帯用ダイポール素子110-1~110-3と、同様に反射板200上に垂直方向に配列され、第2の周波数帯の一例としての高周波数帯において電波を送受信する第2のアンテナ素子の一例としての高周波数帯用ダイポール素子120-1~120-6と、同様に反射板200上に垂直方向に配列された導電材料で構成された導体130-1~130-4とを備えている。なお、導体130-1~130-4をそれぞれ区別しないときは、導体130と表記する。
 低周波数帯用ダイポール素子110、高周波数帯用ダイポール素子120、導体130は、導電材料で構成されていればよく、例えばAl、Cuなどの金属板が適用できる。また、板状に限らず、Al、Cuなどの金属棒であってもよい。さらに、低周波数帯用ダイポール素子110、高周波数帯用ダイポール素子120、導体130は、ガラスエポキシなどの誘電材料で構成された基板上に設けられたAl、Cuなどの金属層によって構成されたものであってもよい。
 図2では、低周波数帯用ダイポール素子110、高周波数帯用ダイポール素子120、導体130は、ガラスエポキシなどの誘電材料で構成された基板上に設けられた金属層を想定して表示している。なお、誘電材料で構成された基板の表記は省略している。他の図でも同様である。
The array antenna 100 is arranged in a vertical direction on the reflector 200 and the reflector 200, and a low frequency band as an example of a first antenna element that transmits and receives radio waves in a low frequency band as an example of a first frequency band. As an example of the second dipole elements 110-1 to 110-3, which are similarly arranged in the vertical direction on the reflector 200, and transmit / receive radio waves in the high frequency band as an example of the second frequency band High frequency band dipole elements 120-1 to 120-6, and conductors 130-1 to 130-4 made of a conductive material arranged in the vertical direction on the reflector 200. When the conductors 130-1 to 130-4 are not distinguished from each other, they are referred to as conductors 130.
The low-frequency band dipole element 110, the high-frequency band dipole element 120, and the conductor 130 may be made of a conductive material. For example, a metal plate such as Al or Cu can be used. Moreover, not only plate shape but metal rods, such as Al and Cu, may be sufficient. Further, the low-frequency band dipole element 110, the high-frequency band dipole element 120, and the conductor 130 are formed of a metal layer such as Al or Cu provided on a substrate formed of a dielectric material such as glass epoxy. It may be.
In FIG. 2, the low-frequency band dipole element 110, the high-frequency band dipole element 120, and the conductor 130 are shown assuming a metal layer provided on a substrate made of a dielectric material such as glass epoxy. . In addition, the description of the board | substrate comprised with the dielectric material is abbreviate | omitted. The same applies to other figures.
 反射板200は、導電材料で構成された板状の部材であって、ここでは、長手方向が垂直方向に設けられている。反射板には、例えばAl、Cuなどの金属板が適用できる。また、ガラスエポキシなどの誘電材料で構成された基板上に設けられたAl、Cuなどの金属層であってもよい。 The reflection plate 200 is a plate-like member made of a conductive material, and here, the longitudinal direction is provided in the vertical direction. For example, a metal plate such as Al or Cu can be applied to the reflecting plate. Further, a metal layer such as Al or Cu provided on a substrate made of a dielectric material such as glass epoxy may be used.
 低周波数帯用ダイポール素子110(低周波数帯用ダイポール素子110-1~110-3)は、反射板200から予め定められた第1の距離(後述する図3における距離D)離れて、垂直方向に間隔Pで配列されている。なお、それぞれの低周波数帯用ダイポール素子110は、一対の素子部が水平方向に並ぶように設けられ、水平偏波を送受信する。
 高周波数帯用ダイポール素子120(高周波数帯用ダイポール素子120-1~120-6)は、反射板200から低周波数帯用ダイポール素子110が設けられた側に、予め定められた第2の距離(後述する図3における距離D)離れて、垂直方向に間隔Pで配列されている。なお、それぞれの高周波数帯用ダイポール素子120も、一対の素子部が水平方向に並ぶように設けられ、水平偏波を送受信するように配置されている。なお、間隔P=2×間隔Pである。
 低周波数帯用ダイポール素子110-1~110-3、高周波数帯用ダイポール素子120-1~120-6には、不図示の給電手段を備え、送受信信号が供給される。
 一方、導体130-1~導体130-4は、反射板200から低周波数帯用ダイポール素子110が設けられた側に、反射板200から予め定められた第3の距離(後述する図3における距離D)離れて配列されている。なお、それぞれの導体130は、水平方向に設けられた棒状又は板状であって、給電手段は備えていない。
The low-frequency band dipole element 110 (low-frequency band dipole elements 110-1 to 110-3) is separated from the reflector 200 by a predetermined first distance (distance D L in FIG. 3 described later) and vertically. They are arranged at intervals P L in the direction. Each low frequency band dipole element 110 is provided such that a pair of element portions are arranged in the horizontal direction, and transmits and receives horizontally polarized waves.
The high frequency band dipole element 120 (high frequency band dipole elements 120-1 to 120-6) has a predetermined second distance from the reflector 200 on the side where the low frequency band dipole element 110 is provided. They are arranged at a distance P H in the vertical direction at a distance (distance D H in FIG. 3 described later). Each high-frequency band dipole element 120 is also provided so that a pair of element portions are arranged in the horizontal direction, and is arranged to transmit and receive horizontal polarization. Note that the interval P L = 2 × the interval P H.
The low frequency band dipole elements 110-1 to 110-3 and the high frequency band dipole elements 120-1 to 120-6 are provided with power supply means (not shown) and supplied with transmission / reception signals.
On the other hand, the conductors 130-1 to 130-4 have a predetermined third distance from the reflector 200 on the side where the low-frequency band dipole element 110 is provided from the reflector 200 (the distance in FIG. 3 described later). D C ) are spaced apart. Each conductor 130 has a bar shape or a plate shape provided in the horizontal direction, and does not include a power feeding unit.
 低周波数帯用ダイポール素子110、高周波数帯用ダイポール素子120、導体130は、それぞれの中点から反射板200に下した垂線が反射板200と交わる点が、反射板200上において、垂直方向の一直線上に並ぶように配置されている。
 そして、2個の低周波数帯用ダイポール素子110の間に、2個の高周波数帯用ダイポール素子120が配置されている。例えば、低周波数帯用ダイポール素子110-1と低周波数帯用ダイポール素子110-2との間に、高周波数帯用ダイポール素子120-2、120-3が設けられている。
 また、導体130は、2個の低周波数帯用ダイポール素子110の間に設けられた2個の高周波数帯用ダイポール素子120の間に配置されている。例えば、導体130-2は、2個の低周波数帯用ダイポール素子110-1、110-2の間に設けられた高周波数帯用ダイポール素子120-2と高周波数帯用ダイポール素子120-3との間に設けられている。導体130-2は、高周波数帯用ダイポール素子120-2、120-3のそれぞれから間隔P/2離れて配置されている。
 すなわち、低周波数帯用ダイポール素子110、高周波数帯用ダイポール素子120とは混在して配列されている。このように配列することにより、それぞれを別に配列する場合に比べ、アレイアンテナ100の垂直方向の長さを短くすることができる。
The low-frequency band dipole element 110, the high-frequency band dipole element 120, and the conductor 130 are perpendicular to each other at the point where the perpendicular line extending from the midpoint to the reflection plate 200 intersects the reflection plate 200. They are arranged in a straight line.
Two high frequency band dipole elements 120 are arranged between the two low frequency band dipole elements 110. For example, high frequency band dipole elements 120-2 and 120-3 are provided between the low frequency band dipole element 110-1 and the low frequency band dipole element 110-2.
The conductor 130 is disposed between two high-frequency band dipole elements 120 provided between the two low-frequency band dipole elements 110. For example, the conductor 130-2 includes a high frequency band dipole element 120-2 and a high frequency band dipole element 120-3 provided between two low frequency band dipole elements 110-1 and 110-2. It is provided between. The conductor 130-2 is disposed at a distance P H / 2 from each of the high frequency band dipole elements 120-2 and 120-3.
That is, the low frequency band dipole element 110 and the high frequency band dipole element 120 are mixedly arranged. By arranging in this way, the length of the array antenna 100 in the vertical direction can be shortened as compared with the case where each is arranged separately.
 導体130は、高周波数帯用ダイポール素子120の低周波数帯用ダイポール素子110が配置されていない側に配置されている。すなわち、高周波数帯用ダイポール素子120は、低周波数帯用ダイポール素子110と導体130とに挟まれている。
 以上のように、アレイアンテナ100では、垂直方向に、低周波数帯用ダイポール素子110、高周波数帯用ダイポール素子120、導体130、高周波数帯用ダイポール素子120、低周波数帯用ダイポール素子110が、繰り返すように配列されている。
The conductor 130 is disposed on the side of the high frequency band dipole element 120 where the low frequency band dipole element 110 is not disposed. That is, the high frequency band dipole element 120 is sandwiched between the low frequency band dipole element 110 and the conductor 130.
As described above, in the array antenna 100, the low frequency band dipole element 110, the high frequency band dipole element 120, the conductor 130, the high frequency band dipole element 120, and the low frequency band dipole element 110 are arranged in the vertical direction. Arranged to repeat.
 すなわち、隣接する2個の低周波数帯用ダイポール素子110の間に、2個の高周波数帯用ダイポール素子120が挟まれている。高周波数帯用ダイポール素子120から見ると、垂直方向の一方に低周波数帯用ダイポール素子110が配置されているが、他方には低周波数帯用ダイポール素子110が設けられていない。すなわち、高周波数帯用ダイポール素子120の上下で非対称になっている。そして、高周波数帯用ダイポール素子120の低周波数帯用ダイポール素子110が設けられていない側に、導体130が設けられている。
 なお、高周波数帯用ダイポール素子120と低周波数帯用ダイポール素子110との間隔は、場所ごとに異なっていてもよい。
 そして、隣接する2個の低周波数帯用ダイポール素子110の間に、3個以上の高周波数帯用ダイポール素子120が挟まれていてもよい。この場合、高周波数帯用ダイポール素子120の垂直方向の上下において、高周波数帯用ダイポール素子120が設けられていない場合には、共に導体130を設ければよい。
That is, two high frequency band dipole elements 120 are sandwiched between two adjacent low frequency band dipole elements 110. When viewed from the high-frequency band dipole element 120, the low-frequency band dipole element 110 is disposed on one side in the vertical direction, but the low-frequency band dipole element 110 is not disposed on the other side. That is, they are asymmetrical above and below the high frequency band dipole element 120. A conductor 130 is provided on the side of the high frequency band dipole element 120 where the low frequency band dipole element 110 is not provided.
Note that the interval between the high frequency band dipole element 120 and the low frequency band dipole element 110 may be different for each location.
Three or more high-frequency band dipole elements 120 may be sandwiched between two adjacent low-frequency band dipole elements 110. In this case, if the high frequency band dipole element 120 is not provided above and below the high frequency band dipole element 120 in the vertical direction, the conductor 130 may be provided for both.
 図2において、反射板200の垂直方向の上端部と下端部とには、導体130-1及び導体130-4が設けられている。すなわち、上記の低周波数帯用ダイポール素子110、高周波数帯用ダイポール素子120、導体130、高周波数帯用ダイポール素子120、低周波数帯用ダイポール素子110の配列の繰り返しにおいて、導体130が上端部及び下端部に残るように切られた配列になっている。
 なお、低周波数帯用ダイポール素子110が上端部及び下端部に残るように切られた配列でもよい。また、低周波数帯用ダイポール素子110が上端部又は下端部の一方に残り、導体130が上端部又は下端部の他方に残るように切られた配列としてもよい。
 しかし、後述するように、指向性におけるサイドローブの発生を抑制するためには、高周波数帯用ダイポール素子120が上端部及び下端部のいずれにおいても残らないのが好ましい。
In FIG. 2, a conductor 130-1 and a conductor 130-4 are provided at the upper and lower ends in the vertical direction of the reflector 200. That is, in the repetition of the arrangement of the low-frequency band dipole element 110, the high-frequency band dipole element 120, the conductor 130, the high-frequency band dipole element 120, and the low-frequency band dipole element 110, the conductor 130 The array is cut to remain at the lower end.
The low frequency band dipole element 110 may be cut so as to remain at the upper end and the lower end. Alternatively, the low frequency band dipole element 110 may be cut off so as to remain on one of the upper end and the lower end, and the conductor 130 may remain on the other of the upper end and the lower end.
However, as will be described later, in order to suppress the occurrence of side lobes in directivity, it is preferable that the high-frequency band dipole element 120 does not remain at either the upper end or the lower end.
 なお、低周波数帯用ダイポール素子110、高周波数帯用ダイポール素子120、導体130の個数は上記の数値に限定されない。 The numbers of the low-frequency band dipole element 110, the high-frequency band dipole element 120, and the conductors 130 are not limited to the above values.
 レドーム500は、例えば円筒状であって、壁部501、蓋部502、底部503を備え、壁部501、蓋部502、底部503で囲まれた内部に、アレイアンテナ100を格納している。 The radome 500 has, for example, a cylindrical shape, and includes a wall portion 501, a lid portion 502, and a bottom portion 503. The array antenna 100 is housed inside the wall portion 501, the lid portion 502, and the bottom portion 503.
 セクタアンテナ10は、低周波数帯の水平偏波を送受信する低周波数帯用ダイポール素子110と高周波数帯の水平偏波を送受信する高周波数帯用ダイポール素子120とを備えることから、周波数共用である。なお、「低周波」及び「高周波」の用語は、2種類のアンテナ素子を区別するために使用する。 Since the sector antenna 10 includes a low-frequency band dipole element 110 that transmits and receives low-frequency horizontal polarization and a high-frequency band dipole element 120 that transmits and receives high-frequency horizontal polarization, the sector antenna 10 is frequency shared. . The terms “low frequency” and “high frequency” are used to distinguish two types of antenna elements.
<アレイアンテナ100>
 図3は、第1の実施の形態が適用されるセクタアンテナ10におけるアレイアンテナ100を反射板200に対して垂線方向から見た平面図及び反射板200の垂線方向の断面図である。図3(a)は、平面図を示し、図3(b)は、図3(a)のIIIb-IIIb線での断面図を示す。
 低周波数帯用ダイポール素子110は長さW、高周波数帯用ダイポール素子120は長さW、導体130は長さWである。
 なお、前述した低周波数帯用ダイポール素子110の反射板200からの距離Dは、反射板200に立てた垂線における反射板200の表面から低周波数帯用ダイポール素子110の垂線方向の中心までの長さである。同様に、前述した高周波数帯用ダイポール素子120の反射板200からの距離Dは、反射板200に立てた垂線における反射板200の表面から高周波数帯用ダイポール素子120の垂線方向の中心までの長さである。さらに同様に、前述した導体130の反射板200からの距離Dは、反射板200に立てた垂線における反射板200の表面から導体130の垂線方向の中心までの長さである。
<Array antenna 100>
FIG. 3 is a plan view of the array antenna 100 in the sector antenna 10 to which the first embodiment is applied as viewed from the direction perpendicular to the reflector 200 and a sectional view in the direction perpendicular to the reflector 200. 3A is a plan view, and FIG. 3B is a cross-sectional view taken along line IIIb-IIIb in FIG. 3A.
The low-frequency band dipole element 110 has a length W L , the high-frequency band dipole element 120 has a length W H , and the conductor 130 has a length W C.
The distance D L from the reflection plate 200 in a low frequency band dipole element 110 described above, until the normal direction of the center of the low frequency band dipole element 110 from the surface of the reflecting plate 200 in the vertical line dropped to the reflection plate 200 Length. Similarly, the above-described distance DH of the high-frequency band dipole element 120 from the reflection plate 200 is from the surface of the reflection plate 200 to the center of the vertical direction of the high-frequency band dipole element 120 in the vertical line standing on the reflection plate 200. Is the length of More Similarly, the distance D C from the reflection plate 200 of the conductor 130 described above, the length from the surface of the reflecting plate 200 in the vertical line dropped to the reflection plate 200 to the normal direction of the center conductor 130.
 ここで、低周波数帯の自由空間における波長λ、高周波数帯の自由空間における波長λの場合に、低周波数帯用ダイポール素子110の長さWなどのパラメータについて数値の一例を説明する。
 低周波数帯用ダイポール素子110は、長さWが約0.45λ、反射板200からの距離Dが約0.2λである。
 高周波数帯用ダイポール素子120は、長さWが約0.45λ、反射板200からの距離Dが約0.25λである。そして、高周波数帯用ダイポール素子120の間隔Pが約0.75λである。
 よって、低周波数帯用ダイポール素子110の間隔Pは、2×間隔Pの場合、約1.5λである。
 そして、導体130は、長さWが約0.55λ、反射板200からの距離Dが約0.25λである。
 ここでは、高周波数帯用ダイポール素子120の反射板200からの距離Dと、導体130の反射板200からの距離Dとが等しく設定されている。なお、距離Dと距離Dとが異なっていてもよい。
 なお、上記のパラメータは、上記以外の数値に設定されてもよい。
Here, the wavelength lambda L in a free space of the low-frequency band, in the case of the wavelength lambda H in a free space of the high-frequency band, an example of numerical values the parameters such as the length W L of the dipole elements 110 for the low frequency band .
Low-frequency-band dipole element 110 has a length W L about 0.45Ramuda L, the distance D L from the reflecting plate 200 is approximately 0.2? L.
The high frequency band dipole element 120 has a length WH of about 0.45λ H and a distance DH from the reflector 200 of about 0.25λ H. The interval P H between the high frequency band dipole elements 120 is about 0.75λ H.
Therefore, the interval P L between the low-frequency band dipole elements 110 is about 1.5λ H in the case of 2 × interval P H.
Then, the conductor 130 has a length W C of about 0.55Ramuda H, the distance D C from the reflection plate 200 is about 0.25 [lambda H.
Here, a distance D H from the reflecting plate 200 of the high frequency band dipole element 120, and the distance D C from the reflection plate 200 of the conductor 130 are set to be equal to each other. Incidentally, the distance D H and the distance D C may be different.
Note that the above parameters may be set to other numerical values.
 また、図2、図3では、水平偏波と低周波数帯用ダイポール素子110、高周波数帯用ダイポール素子120、導体130の配列方向とが直交するとしたが、交差してもよい。 2 and 3, the horizontal polarization and the arrangement direction of the low-frequency band dipole element 110, the high-frequency band dipole element 120, and the conductor 130 are orthogonal to each other.
 図4は、第1の実施の形態が適用されるアレイアンテナ100において、2個の低周波数帯用ダイポール素子110の間に挟まれた2個の高周波数帯用ダイポール素子120のそれぞれの垂直面内指向性を示す図である。図4(a)は、垂直方向上側に配置された高周波数帯用ダイポール素子120の指向性を示し、図4(b)は、垂直方向下側に配置された高周波数帯用ダイポール素子120の指向性を示す。なお、本明細書では、指向性のグラフにおいて、垂直方向を0°とし、反射板200から低周波数帯用ダイポール素子110、高周波数帯用ダイポール素子120、導体130が配置されている方向を90°としている。 FIG. 4 shows vertical planes of two high-frequency band dipole elements 120 sandwiched between two low-frequency band dipole elements 110 in the array antenna 100 to which the first embodiment is applied. It is a figure which shows internal directivity. 4A shows the directivity of the high-frequency band dipole element 120 arranged on the upper side in the vertical direction, and FIG. 4B shows the directivity of the high-frequency band dipole element 120 arranged on the lower side in the vertical direction. Show directivity. In this specification, in the directivity graph, the vertical direction is set to 0 °, and the direction in which the low-frequency band dipole element 110, the high-frequency band dipole element 120, and the conductor 130 are disposed from the reflector 200 is 90 °. °.
 図4に示した高周波数帯用ダイポール素子120の垂直面内指向性について、図2、図3で説明する。2個の低周波数帯用ダイポール素子110の間に挟まれた2個の高周波数帯用ダイポール素子120とは、例えば、低周波数帯用ダイポール素子110-1と低周波数帯用ダイポール素子110-2とに挟まれた、高周波数帯用ダイポール素子120-2及び高周波数帯用ダイポール素子120-3である。そして、高周波数帯用ダイポール素子120-3が垂直方向上側に配置された高周波数帯用ダイポール素子120であり、高周波数帯用ダイポール素子120-2が垂直方向下側に配置された高周波数帯用ダイポール素子120である。 The vertical in-plane directivity of the high frequency band dipole element 120 shown in FIG. 4 will be described with reference to FIGS. Two high-frequency band dipole elements 120 sandwiched between two low-frequency band dipole elements 110 are, for example, a low-frequency band dipole element 110-1 and a low-frequency band dipole element 110-2. A high-frequency band dipole element 120-2 and a high-frequency band dipole element 120-3. The high frequency band dipole element 120-3 is disposed on the upper side in the vertical direction, and the high frequency band dipole element 120-2 is disposed on the lower side in the vertical direction. The dipole element 120 for use.
 図4(a)、(b)に示すように、垂直方向上側に配置された高周波数帯用ダイポール素子120(例えば、高周波数帯用ダイポール素子120-3)の指向性と垂直方向下側に配置された高周波数帯用ダイポール素子120(例えば、高周波数帯用ダイポール素子120-2)の指向性とで差が、後述する図8で示す第1の実施の形態が適用されないアレイアンテナ100の高周波数帯用ダイポール素子120に比べて小さい。
 これは、後述するように、2個の高周波数帯用ダイポール素子120(例えば、高周波数帯用ダイポール素子120-2、120-3)の間に導体130(例えば、導体130-2)を設けていることによる。
As shown in FIGS. 4A and 4B, the directivity of the high-frequency band dipole element 120 (for example, the high-frequency band dipole element 120-3) arranged on the upper side in the vertical direction and the lower side in the vertical direction. The difference in directivity of the arranged high frequency band dipole element 120 (for example, the high frequency band dipole element 120-2) is that of the array antenna 100 to which the first embodiment shown in FIG. It is smaller than the high-frequency band dipole element 120.
As will be described later, a conductor 130 (for example, conductor 130-2) is provided between two high frequency band dipole elements 120 (for example, high frequency band dipole elements 120-2 and 120-3). It depends on.
 図5は、第1の実施の形態が適用されるアレイアンテナ100における、高周波数帯の水平偏波における垂直面内指向性と、低周波数帯の水平偏波における垂直面内指向性とを示す図である。図5(a)は、高周波数帯の水平偏波における垂直面内指向性を示し、図5(b)は、低周波数帯の水平偏波における垂直面内指向性を示す。
 なお、図5(a)に示す高周波数帯の水平偏波における垂直面内指向性は、図4(a)、(b)に示した高周波数帯用ダイポール素子120を12個合成した指向性である。
FIG. 5 shows the vertical in-plane directivity in the horizontal polarization in the high frequency band and the vertical in-plane directivity in the horizontal polarization in the low frequency band in the array antenna 100 to which the first embodiment is applied. FIG. 5A shows the vertical in-plane directivity in the horizontal polarization in the high frequency band, and FIG. 5B shows the vertical in-plane directivity in the horizontal polarization in the low frequency band.
The vertical in-plane directivity in the horizontal polarization in the high frequency band shown in FIG. 5A is a directivity obtained by synthesizing 12 high frequency band dipole elements 120 shown in FIGS. 4A and 4B. It is.
 図5(a)、(b)に示すように、高周波数帯の水平偏波における垂直面内指向性及び低周波数帯の水平偏波における垂直面内指向性は、いずれも90°方向に鋭いピークを有している。
 特に、図5(a)に示す高周波数帯の水平偏波における垂直面内指向性は、後述する図9(a)で示す第1の実施の形態が適用されないアレイアンテナ100の場合に比べてサイドローブが小さく抑制されている。
As shown in FIGS. 5A and 5B, the vertical in-plane directivity in the horizontal polarization in the high frequency band and the vertical in-plane directivity in the horizontal polarization in the low frequency band are both sharp in the 90 ° direction. Has a peak.
In particular, the vertical in-plane directivity in the horizontal polarization in the high frequency band shown in FIG. 5A is compared with the array antenna 100 to which the first embodiment shown in FIG. 9A described later is not applied. Side lobes are kept small.
 図6は、第1の実施の形態が適用されないセクタアンテナ10の一例を示す斜視図である。図6に示す第1の実施の形態が適用されないセクタアンテナ10は、図2に示した第1の実施の形態が適用されるセクタアンテナ10のアレイアンテナ100における導体130を備えていない。他の構成は、図2に示した第1の実施の形態が適用されるセクタアンテナ10と同様であるので、同じ符号を付して説明を省略する。 FIG. 6 is a perspective view showing an example of the sector antenna 10 to which the first embodiment is not applied. The sector antenna 10 to which the first embodiment shown in FIG. 6 is not applied does not include the conductor 130 in the array antenna 100 of the sector antenna 10 to which the first embodiment shown in FIG. 2 is applied. Since the other configuration is the same as that of the sector antenna 10 to which the first embodiment shown in FIG. 2 is applied, the same reference numerals are given and description thereof is omitted.
 図7は、第1の実施の形態が適用されないセクタアンテナ10におけるアレイアンテナ100を反射板200の垂線方向から見た平面図及び反射板200の垂線方向の断面図である。図7(a)は、平面図を示し、図7(b)は、VIIb-VIIb線での断面図を示す。
 図7に示す第1の実施の形態が適用されないアレイアンテナ100は、図3に示した第1の実施の形態が適用されるアレイアンテナ100における導体130を備えていない。他の構成は、図3に示した第1の実施の形態が適用されるアレイアンテナ100と同様であるので、同じ符号を付して説明を省略する。
FIG. 7 is a plan view of the array antenna 100 in the sector antenna 10 to which the first embodiment is not applied as viewed from the normal direction of the reflection plate 200 and a cross-sectional view of the reflection plate 200 in the normal direction. FIG. 7A shows a plan view, and FIG. 7B shows a cross-sectional view taken along the line VIIb-VIIb.
The array antenna 100 to which the first embodiment shown in FIG. 7 is not applied does not include the conductor 130 in the array antenna 100 to which the first embodiment shown in FIG. 3 is applied. Other configurations are the same as those of the array antenna 100 to which the first embodiment shown in FIG. 3 is applied, and thus the same reference numerals are given and description thereof is omitted.
 図8は、第1の実施の形態が適用されないアレイアンテナ100において、2個の低周波数帯用ダイポール素子110の間に挟まれた2個の高周波数帯用ダイポール素子120のそれぞれの垂直面内指向性を示す図である。図8(a)は、垂直方向上側に配置された高周波数帯用ダイポール素子120の指向性を示し、図8(b)は、垂直方向下側に配置された高周波数帯用ダイポール素子120の指向性を示す。 FIG. 8 shows in the vertical plane of each of the two high-frequency band dipole elements 120 sandwiched between the two low-frequency band dipole elements 110 in the array antenna 100 to which the first embodiment is not applied. It is a figure which shows directivity. FIG. 8A shows the directivity of the high frequency band dipole element 120 arranged on the upper side in the vertical direction, and FIG. 8B shows the directivity of the high frequency band dipole element 120 arranged on the lower side in the vertical direction. Show directivity.
 図8に示した高周波数帯用ダイポール素子120の垂直面内指向性について、図6、図7で説明する。2個の低周波数帯用ダイポール素子110の間に挟まれた2個の高周波数帯用ダイポール素子120とは、例えば、低周波数帯用ダイポール素子110-1と低周波数帯用ダイポール素子110-2とに挟まれた、高周波数帯用ダイポール素子120-2及び高周波数帯用ダイポール素子120-3である。そして、高周波数帯用ダイポール素子120-3が垂直方向上側に配置された高周波数帯用ダイポール素子120であり、高周波数帯用ダイポール素子120-2が垂直方向下側に配置された高周波数帯用ダイポール素子120である。 The vertical in-plane directivity of the high frequency band dipole element 120 shown in FIG. 8 will be described with reference to FIGS. Two high-frequency band dipole elements 120 sandwiched between two low-frequency band dipole elements 110 are, for example, a low-frequency band dipole element 110-1 and a low-frequency band dipole element 110-2. A high-frequency band dipole element 120-2 and a high-frequency band dipole element 120-3. The high frequency band dipole element 120-3 is disposed on the upper side in the vertical direction, and the high frequency band dipole element 120-2 is disposed on the lower side in the vertical direction. The dipole element 120 for use.
 図8(a)、(b)に示すように、垂直方向上側に配置された高周波数帯用ダイポール素子120(例えば、高周波数帯用ダイポール素子120-3)の指向性と垂直方向下側に配置された高周波数帯用ダイポール素子120(例えば、高周波数帯用ダイポール素子120-2)の指向性とで差がある。
 すなわち、図8(a)に示す垂直方向上側に配置された高周波数帯用ダイポール素子120では、135°方向にピークを有する指向性を示している。
 一方、図8(b)に示す垂直方向下側に配置された高周波数帯用ダイポール素子120では、45°方向にピークを有する指向性を示している。
 これらの指向性は、図4に示した、第1の実施の形態が適用されるアレイアンテナ100における高周波数帯用ダイポール素子120の指向性と異なっている。
As shown in FIGS. 8A and 8B, the directivity of the high frequency band dipole element 120 (for example, the high frequency band dipole element 120-3) arranged on the upper side in the vertical direction and the lower side in the vertical direction. There is a difference in the directivity of the high-frequency band dipole element 120 (for example, the high-frequency band dipole element 120-2).
That is, the high frequency band dipole element 120 arranged on the upper side in the vertical direction shown in FIG. 8A shows directivity having a peak in the 135 ° direction.
On the other hand, the high-frequency band dipole element 120 arranged on the lower side in the vertical direction shown in FIG. 8B shows directivity having a peak in the 45 ° direction.
These directivities are different from the directivities of the high-frequency band dipole elements 120 in the array antenna 100 to which the first embodiment is applied as shown in FIG.
 図9は、第1の実施の形態が適用されないアレイアンテナ100における、高周波数帯の水平偏波における垂直面内指向性と、低周波数帯の水平偏波における垂直面内指向性を示す図である。図9(a)は、高周波数帯の水平偏波における垂直面内指向性を示し、図9(b)は、低周波数帯の水平偏波における垂直面内指向性を示す。
 なお、図9(a)に示す高周波数帯の水平偏波における垂直面内指向性は、図8(a)、(b)に示した高周波数帯用ダイポール素子120を12個合成した指向性である。
FIG. 9 is a diagram illustrating the vertical in-plane directivity in the high-frequency band horizontal polarization and the vertical in-plane directivity in the low-frequency band horizontal polarization in the array antenna 100 to which the first embodiment is not applied. is there. FIG. 9A shows the vertical in-plane directivity in the horizontal polarization in the high frequency band, and FIG. 9B shows the vertical in-plane directivity in the horizontal polarization in the low frequency band.
The vertical in-plane directivity in the horizontal polarization in the high frequency band shown in FIG. 9A is a directivity obtained by synthesizing 12 high frequency band dipole elements 120 shown in FIGS. 8A and 8B. It is.
 図9(a)に示すように、高周波数帯の水平偏波は、垂直面内において、90°方向に強いピークを有するが、50°方向及び130°方向に大きなサイドローブが発生している。これは、図8(a)、(b)に示した2個の高周波数帯用ダイポール素子120が45°方向及び135°方向にピークを有していたことによる。この指向性は、図5(a)に示した第1の実施の形態が適用されるアレイアンテナ100における高周波数帯の水平偏波における垂直面内指向性と異なっている。
 一方、図9(b)に示す低周波数帯の水平偏波における垂直面内指向性は、図5(b)に示した第1の実施の形態が適用されるアレイアンテナ100における低周波数帯の水平偏波における垂直面内指向性との差が少ない。
As shown in FIG. 9A, the horizontal polarization of the high frequency band has a strong peak in the 90 ° direction in the vertical plane, but large side lobes are generated in the 50 ° and 130 ° directions. . This is because the two high frequency band dipole elements 120 shown in FIGS. 8A and 8B have peaks in the 45 ° direction and the 135 ° direction. This directivity is different from the vertical in-plane directivity in the high frequency band horizontal polarization in the array antenna 100 to which the first embodiment shown in FIG. 5A is applied.
On the other hand, the vertical in-plane directivity in the horizontal polarization in the low frequency band shown in FIG. 9B is the low frequency band in the array antenna 100 to which the first embodiment shown in FIG. 5B is applied. There is little difference with the directivity in the vertical plane in horizontal polarization.
 次に、第1の実施の形態が適用されるアレイアンテナ100と第1の実施の形態が適用されないアレイアンテナ100とで、高周波数帯の水平偏波において、指向性が異なる要因について説明する。
 図10は、第1の実施の形態が適用されるアレイアンテナ100と第1の実施の形態が適用されないアレイアンテナ100とで、高周波数帯の水平偏波における垂直面内指向性が異なる要因について説明する図である。図10(a)は、第1の実施の形態が適用されるアレイアンテナ100を示し、図10(b)は、第1の実施の形態が適用されないアレイアンテナ100を示す。
 図10(a)、(b)は、ともに断面図であって、図10(a)は図3(b)における低周波数帯用ダイポール素子110-1と低周波数帯用ダイポール素子110-2とで挟まれた範囲を示し、図10(b)は図7(b)における低周波数帯用ダイポール素子110-1と低周波数帯用ダイポール素子110-2とで挟まれた範囲を示している。
Next, a description will be given of factors in which directivity differs between the array antenna 100 to which the first embodiment is applied and the array antenna 100 to which the first embodiment is not applied in the horizontal polarization of the high frequency band.
FIG. 10 is a diagram showing factors that cause differences in vertical in-plane directivity in horizontal polarization in a high frequency band between the array antenna 100 to which the first embodiment is applied and the array antenna 100 to which the first embodiment is not applied. It is a figure explaining. FIG. 10A shows the array antenna 100 to which the first embodiment is applied, and FIG. 10B shows the array antenna 100 to which the first embodiment is not applied.
FIGS. 10A and 10B are both cross-sectional views, and FIG. 10A shows a low-frequency band dipole element 110-1 and a low-frequency band dipole element 110-2 in FIG. 10 (b) shows a range sandwiched between the low-frequency band dipole element 110-1 and the low-frequency band dipole element 110-2 in FIG. 7 (b).
 図10(a)に示す第1の実施の形態が適用されるアレイアンテナ100では、例えば、高周波数帯用ダイポール素子120-2から出射された電波の一部αは、低周波数帯用ダイポール素子110-1によって反射された後、反射板200から遠い側に向かう。また、高周波数帯用ダイポール素子120-2から出射された電波の他の一部βは、導体130-2によって反射された後、反射板200から遠い側に向かう。
 第1の実施の形態が適用されるアレイアンテナ100では、高周波数帯用ダイポール素子120-2に対して、垂直方向に対称の位置又は対象に近い位置に低周波数帯用ダイポール素子110-1及び導体130-2が設けられている。これにより、高周波数帯用ダイポール素子120-2が出射する電波の指向性が、図4(b)に示したように、垂直面内において、上下対称に近くなる。
 高周波数帯用ダイポール素子120-3においても同様である。
In the array antenna 100 to which the first embodiment shown in FIG. 10A is applied, for example, a part α of the radio wave emitted from the high frequency band dipole element 120-2 is a low frequency band dipole element. After being reflected by 110-1, it goes to the side far from the reflector 200. The other part β of the radio wave emitted from the high frequency band dipole element 120-2 is reflected by the conductor 130-2 and then travels away from the reflector 200.
In the array antenna 100 to which the first embodiment is applied, the low frequency band dipole element 110-1 and the position close to the target are symmetrical to the high frequency band dipole element 120-2. A conductor 130-2 is provided. As a result, the directivity of the radio wave emitted from the high frequency band dipole element 120-2 becomes close to vertical symmetry in the vertical plane as shown in FIG. 4B.
The same applies to the high-frequency band dipole element 120-3.
 これに対して、図10(b)に示す第1の実施の形態が適用されないアレイアンテナ100では、例えば、高周波数帯用ダイポール素子120-2から出射された電波の一部αは、低周波数帯用ダイポール素子110-1によって反射された後、反射板200から遠い側に向かう。しかし、高周波数帯用ダイポール素子120-2から出射された電波の他の一部βは、導体130-2が設けられていないので、そのまま直進し、反射板200から遠い側に向かう。
 第1の実施の形態が適用されないアレイアンテナ100では、高周波数帯用ダイポール素子120-2が出射する電波の指向性が、図8(b)に示したように、垂直面内において、上下対称にならない。
 高周波数帯用ダイポール素子120-3においても同様である。
On the other hand, in the array antenna 100 to which the first embodiment shown in FIG. 10B is not applied, for example, a part α of the radio wave emitted from the high frequency band dipole element 120-2 is low frequency. After being reflected by the band dipole element 110-1, it travels away from the reflector 200. However, the other part β of the radio wave emitted from the high frequency band dipole element 120-2 is not provided with the conductor 130-2, and goes straight as it is and travels away from the reflector 200.
In the array antenna 100 to which the first embodiment is not applied, the directivity of the radio wave emitted from the high-frequency band dipole element 120-2 is symmetrical in the vertical plane as shown in FIG. 8B. do not become.
The same applies to the high-frequency band dipole element 120-3.
 以上説明したように、第1の実施の形態が適用されるアレイアンテナ100では、2個の低周波数帯用ダイポール素子110の間に挟まれた2個の高周波数帯用ダイポール素子120の間に、低周波数帯用ダイポール素子110と同様に、高周波数帯用ダイポール素子120から出射された電波を反射する機能を有する導体130を設けることで、垂直面内指向性を、垂直方向において上下対称になるようにしている。
 これにより、アレイアンテナ100の高周波数帯の水平偏波において垂直面内指向性にサイドローブが発生することを抑制している。
As described above, in the array antenna 100 to which the first embodiment is applied, between the two high frequency band dipole elements 120 sandwiched between the two low frequency band dipole elements 110. Similarly to the low-frequency band dipole element 110, by providing the conductor 130 having a function of reflecting the radio wave emitted from the high-frequency band dipole element 120, the vertical in-plane directivity is vertically symmetrical in the vertical direction. It is trying to become.
This suppresses the occurrence of side lobes in the vertical in-plane directivity in the horizontal polarization of the array antenna 100 in the high frequency band.
 よって、導体130の反射板200からの距離Dは、アレイアンテナ100の高周波数帯の水平偏波における垂直面内指向性に、サイドローブが発生することが抑制できる位置であればよい。
 上記においては、導体130の反射板200からの距離Dは、高周波数帯用ダイポール素子120の反射板200からの距離Dと同じとしたが、低周波数帯用ダイポール素子110の反射板200からの距離Dと同じであってもよく、距離Dと距離Dとの間であってもよい。さらに、距離Dより小さくともよく、距離Dより大きくともよい。
Therefore, the distance D C from the reflection plate 200 of the conductor 130, the vertical plane directivity of horizontal polarization of the high frequency band of the array antenna 100, may be a position where it is possible to suppress the side lobes occur.
In the above, the distance D C from the reflection plate 200 of the conductor 130, the reflecting plate 200 of the distance D is the same as the as H, a low frequency band dipole element 110 from the reflective plate 200 of the high frequency band dipole element 120 The distance D L may be the same as the distance D L , or between the distance D H and the distance D L. Furthermore, better even smaller than the distance D H, may even larger than the distance D L.
[第2の実施の形態]
 第1の実施の形態では、セクタアンテナ10(アレイアンテナ100)は、低周波数帯及び高周波数帯の水平偏波を送受信する周波数共用とした。
 第2の実施の形態では、セクタアンテナ10(アレイアンテナ100)は、低周波数帯及び高周波数帯において、水平偏波及び垂直偏波を送受信する周波数共用且つ偏波共用である。
 以下では、第1の実施の形態と異なるセクタアンテナ10及びアレイアンテナ100を説明する。
[Second Embodiment]
In the first embodiment, the sector antenna 10 (array antenna 100) is configured to share frequencies for transmitting and receiving horizontal polarization in the low frequency band and the high frequency band.
In the second embodiment, the sector antenna 10 (array antenna 100) is frequency sharing and polarization sharing for transmitting and receiving horizontal polarization and vertical polarization in the low frequency band and the high frequency band.
Hereinafter, the sector antenna 10 and the array antenna 100 different from the first embodiment will be described.
<セクタアンテナ10>
 図11は、第2の実施の形態が適用されるセクタアンテナ10の一例を示す斜視図である。
 第2の実施の形態が適用されるセクタアンテナ10は、図2に示した第1の実施の形態が適用されるセクタアンテナ10とは、アレイアンテナ100が異なっている。以下では、異なる部分を説明し、同様な部分は同じ符号を付して説明を省略する。
<Sector antenna 10>
FIG. 11 is a perspective view showing an example of the sector antenna 10 to which the second embodiment is applied.
The array antenna 100 is different from the sector antenna 10 to which the first embodiment shown in FIG. 2 is applied. Hereinafter, different parts will be described, and the same parts are denoted by the same reference numerals, and the description thereof will be omitted.
 第2の実施の形態が適用されるセクタアンテナ10におけるアレイアンテナ100は、図2に示した第1の実施の形態が適用されるセクタアンテナ10が備える、水平偏波を送受信する低周波数帯用ダイポール素子110-1~110-3、高周波数帯用ダイポール素子120-1~120-6、導体130-1~130-4に加え、垂直偏波を送受信する第3のアンテナ素子の一例としての低周波数帯用ダイポール素子111-1~111-3、低周波数帯用ダイポール素子112-1~112-3、第4のアンテナ素子の一例としての高周波数帯用ダイポール素子121-1~121-6を備えている。なお、低周波数帯用ダイポール素子111-1~111-3をそれぞれ区別しないときは低周波数帯用ダイポール素子111と、低周波数帯用ダイポール素子112-1~112-3をそれぞれ区別しないときは低周波数帯用ダイポール素子112と、高周波数帯用ダイポール素子121-1~121-6をそれぞれ区別しないときは高周波数帯用ダイポール素子121と表記する。 The array antenna 100 in the sector antenna 10 to which the second embodiment is applied is for a low frequency band that transmits and receives horizontal polarization, which is included in the sector antenna 10 to which the first embodiment shown in FIG. 2 is applied. In addition to dipole elements 110-1 to 110-3, high frequency band dipole elements 120-1 to 120-6, and conductors 130-1 to 130-4, as an example of a third antenna element that transmits and receives vertically polarized waves Low-frequency band dipole elements 111-1 to 111-3, low-frequency band dipole elements 112-1 to 112-3, and high-frequency band dipole elements 121-1 to 121-6 as an example of a fourth antenna element It has. If the low frequency band dipole elements 111-1 to 111-3 are not distinguished from each other, the low frequency band dipole elements 111 and the low frequency band dipole elements 112-1 to 112-3 are not distinguished from each other. When the frequency band dipole element 112 and the high frequency band dipole elements 121-1 to 121-6 are not distinguished from each other, they are referred to as a high frequency band dipole element 121.
 そして、低周波数帯用ダイポール素子111と低周波数帯用ダイポール素子112とは、それぞれが垂直方向に並べて設けられた一対の素子部を備え、低周波数帯用ダイポール素子110の水平方向の一端部と他端部とに設けられている。例えば、低周波数帯用ダイポール素子111-1と低周波数帯用ダイポール素子112-1は、低周波数帯用ダイポール素子110-1の一端部と他端部とに設けられている。
 一方、高周波数帯用ダイポール素子121は、垂直方向に並べて設けられた一対の素子部を備え、高周波数帯用ダイポール素子120と、十字状に組み合わされて設けられている。例えば、高周波数帯用ダイポール素子121-1は、高周波数帯用ダイポール素子120-1と、十字状に組み合わされて設けられている。
The low-frequency band dipole element 111 and the low-frequency band dipole element 112 each include a pair of element portions arranged in the vertical direction, and one end portion in the horizontal direction of the low-frequency band dipole element 110. It is provided at the other end. For example, the low frequency band dipole element 111-1 and the low frequency band dipole element 112-1 are provided at one end and the other end of the low frequency band dipole element 110-1.
On the other hand, the high-frequency band dipole element 121 includes a pair of element portions arranged side by side in the vertical direction, and is combined with the high-frequency band dipole element 120 in a cross shape. For example, the high frequency band dipole element 121-1 is provided in combination with the high frequency band dipole element 120-1 in a cross shape.
 低周波数帯用ダイポール素子111、低周波数帯用ダイポール素子112、高周波数帯用ダイポール素子121は、低周波数帯用ダイポール素子110、高周波数帯用ダイポール素子120、導体130と同様に、導電材料で構成されていればよく、例えばAl、Cuなどの金属板が適用できる。また、板状に限らず、Al、Cuなどの金属棒であってもよい。さらに、低周波数帯用ダイポール素子110、高周波数帯用ダイポール素子120、導体130と同様に、低周波数帯用ダイポール素子111、低周波数帯用ダイポール素子112、高周波数帯用ダイポール素子121は、ガラスエポキシなどの誘電材料で構成された基板上に設けられたAl、Cuなどの金属層によって構成されたものであってもよい。 The low-frequency band dipole element 111, the low-frequency band dipole element 112, and the high-frequency band dipole element 121 are made of a conductive material, like the low-frequency band dipole element 110, the high-frequency band dipole element 120, and the conductor 130. For example, a metal plate such as Al or Cu can be applied. Moreover, not only plate shape but metal rods, such as Al and Cu, may be sufficient. Further, similarly to the low frequency band dipole element 110, the high frequency band dipole element 120, and the conductor 130, the low frequency band dipole element 111, the low frequency band dipole element 112, and the high frequency band dipole element 121 are made of glass. It may be constituted by a metal layer such as Al or Cu provided on a substrate made of a dielectric material such as epoxy.
 そして、セクタアンテナ10は、第1の実施の形態の低周波数帯及び高周波数帯の水平偏波の送受信ケーブル31、32に加えて、低周波数帯及び高周波数帯の垂直偏波の送受信ケーブル33、34を備えている。
 なお、低周波数帯用ダイポール素子110、111、112、高周波数帯用ダイポール素子120、121、導体130の個数は上記の数値に限定されない。
The sector antenna 10 includes a low-frequency band and high-frequency band horizontally polarized transmission / reception cables 31 and 32 of the first embodiment, and a low-frequency band and high-frequency band vertically-polarized transmission / reception cable 33. , 34 are provided.
Note that the numbers of the low-frequency band dipole elements 110, 111, and 112, the high-frequency band dipole elements 120 and 121, and the conductors 130 are not limited to the above values.
<アレイアンテナ100>
 図12は、第2の実施の形態が適用されるセクタアンテナ10におけるアレイアンテナ100を反射板200の垂線方向から見た平面図及び反射板200の垂線方向の断面図である。図12(a)は、平面図を示し、図12(b)は、図12(a)におけるXIIb-XIIb線での断面図を示す。
 低周波数帯用ダイポール素子110、高周波数帯用ダイポール素子120、導体130のパラメータ(低周波数帯用ダイポール素子110の長さWなど)は第1の実施の形態と同様である。
 そして、低周波数帯用ダイポール素子111と低周波数帯用ダイポール素子112は、低周波数帯用ダイポール素子110と同様に長さWであって、反射板200から距離Dに設けられている。
 高周波数帯用ダイポール素子121は、高周波数帯用ダイポール素子120と同様に長さWであって、反射板200から距離Dに設けられている。
<Array antenna 100>
FIG. 12 is a plan view of the array antenna 100 in the sector antenna 10 to which the second embodiment is applied as viewed from the perpendicular direction of the reflector 200 and a sectional view of the reflector 200 in the perpendicular direction. 12A shows a plan view, and FIG. 12B shows a cross-sectional view taken along line XIIb-XIIb in FIG. 12A.
Low-frequency-band dipole element 110, the dipole elements 120 for high frequency band, (such as the length W L of the low frequency band dipole element 110) parameters of the conductor 130 is the same as in the first embodiment.
Then, a low frequency band dipole element 111 low-frequency-band dipole element 112 is a low as well as the frequency band dipole element 110 length W L, provided from the reflection plate 200 at a distance D L.
High-frequency-band dipole element 121 is a similarly long W H dipole element 120 for high-frequency bands, provided from the reflection plate 200 at a distance D H.
 第2の実施の形態におけるアレイアンテナ100においても、高周波数帯用ダイポール素子120、121は、垂直方向に、低周波数帯用ダイポール素子110と導体130とで挟まれている。よって、垂直方向において、水平偏波の出射する電波が対称に反射させることができる。
 これにより、アレイアンテナ100の高周波数帯の水平偏波における垂直面内指向性にサイドローブが発生することを抑制できる。
Also in the array antenna 100 according to the second embodiment, the high frequency band dipole elements 120 and 121 are sandwiched between the low frequency band dipole element 110 and the conductor 130 in the vertical direction. Therefore, in the vertical direction, the radio waves emitted by the horizontally polarized waves can be reflected symmetrically.
Thereby, it can suppress that a side lobe generate | occur | produces in the vertical in-plane directivity in the horizontal polarization of the high frequency band of the array antenna 100. FIG.
 ここでは、低周波数帯及び高周波数帯において偏波共用としたが、一方のみを偏波共用としてもよい。また、低周波数帯用ダイポール素子111及び低周波数帯用ダイポール素子112の反射板200から距離は、必ずしも低周波数帯用ダイポール素子110の反射板200から距離Dと同じでなくてもよく、距離Dと異なる距離D′としてもよい。同様に、高周波数帯用ダイポール素子121の反射板200から距離は、必ずしも高周波数帯用ダイポール素子120の反射板200から距離Dと同じでなくてもよく、距離Dと異なる距離D′としてもよい。 Here, the polarization is shared in the low frequency band and the high frequency band, but only one of the polarizations may be shared. The distance from the reflection plate 200 in a low frequency band dipole element 111 and the low frequency band dipole element 112 may not necessarily be the same from the reflection plate 200 in a low frequency band dipole element 110 and the distance D L, the distance D L and may be a different distance D L '. Similarly, the distance from the reflecting plate 200 of the high frequency band dipole element 121 may not be the same necessarily from the reflecting plate 200 of the high frequency band dipole element 120 and the distance D H, the distance D H and different distances D H It may be '.
[第3の実施の形態]
 第3の実施の形態が適用されるセクタアンテナ10(アレイアンテナ100)は、第2の実施の形態が適用されるセクタアンテナ10(アレイアンテナ100)と同様に低周波数帯及び高周波数帯の垂直偏波及び水平偏波を送受信する周波数共用且つ偏波共用である。
 第3の実施の形態が適用されるセクタアンテナ10は、図11に示した第2の実施の形態が適用されるセクタアンテナ10と、アレイアンテナ100が異なっている。以下では、異なる部分を説明し、同様な部分は同じ符号を付して説明を省略する。
[Third Embodiment]
Similar to the sector antenna 10 (array antenna 100) to which the second embodiment is applied, the sector antenna 10 (array antenna 100) to which the third embodiment is applied is vertical in the low frequency band and the high frequency band. Frequency sharing and polarization sharing for transmitting and receiving polarization and horizontal polarization.
The sector antenna 10 to which the third embodiment is applied differs from the sector antenna 10 to which the second embodiment shown in FIG. 11 is applied in the array antenna 100. Hereinafter, different parts will be described, and the same parts are denoted by the same reference numerals, and the description thereof will be omitted.
<セクタアンテナ10>
 図13は、第3の実施の形態が適用されるセクタアンテナ10の一例を示す斜視図である。
 第3の実施の形態が適用されるセクタアンテナ10におけるアレイアンテナ100は、図2に示した第1の実施の形態における水平偏波を送受信する低周波数帯用ダイポール素子110-1~110-3、高周波数帯用ダイポール素子120-1~120-6を備えている。なお、高周波数帯用ダイポール素子120-1~120-6は、第1の実施の形態と異なって、水平方向にずらして配置されている。
 そして、高周波数帯用ダイポール素子120-1~120-6と同様に、それぞれが水平方向に並べられた一対の素子部を備えて垂直方向に配置され、水平偏波を送受信する第2のアンテナ素子の他の一例としての高周波数帯用ダイポール素子122-1~122-6を備えている。
 高周波数帯用ダイポール素子120-1~120-6と高周波数帯用ダイポール素子122-1~122-6とは、添字(-1など)が同じものが、水平方向に並べて設けられている。
<Sector antenna 10>
FIG. 13 is a perspective view showing an example of the sector antenna 10 to which the third embodiment is applied.
The array antenna 100 in the sector antenna 10 to which the third embodiment is applied is a low-frequency band dipole element 110-1 to 110-3 that transmits and receives horizontal polarization in the first embodiment shown in FIG. And high frequency band dipole elements 120-1 to 120-6. Unlike the first embodiment, the high frequency band dipole elements 120-1 to 120-6 are shifted in the horizontal direction.
Similarly to the high-frequency band dipole elements 120-1 to 120-6, the second antenna is provided with a pair of element portions arranged in the horizontal direction and arranged in the vertical direction to transmit and receive horizontal polarization. As other examples of the elements, high frequency band dipole elements 122-1 to 122-6 are provided.
The high frequency band dipole elements 120-1 to 120-6 and the high frequency band dipole elements 122-1 to 122-6 are provided with the same subscripts (such as -1) arranged in the horizontal direction.
 そして、垂直偏波を送受信するために、第3のアンテナ素子の他の一例としての低周波数帯用ダイポール素子113-1~113-3、第4のアンテナ素子の他の一例としての高周波数帯用ダイポール素子121-1~121-6、高周波数帯用ダイポール素子123-1~123-6を備えている。
 さらに、第1の実施の形態及び第2の実施の形態における導体130-1~130-4に代えて、導体131-1~131-4、導体132-1~132-4が設けられている。
 低周波数帯用ダイポール素子113-1~113-3、高周波数帯用ダイポール素子122-1~122-6、高周波数帯用ダイポール素子123-1~123-6をそれぞれ区別しないときは、低周波数帯用ダイポール素子113、高周波数帯用ダイポール素子122、高周波数帯用ダイポール素子123と表記する。また、導体131-1~131-4、導体132-1~132-4をそれぞれ区別しないときは、導体131、導体132と表記する。
Then, in order to transmit and receive vertically polarized waves, low frequency band dipole elements 113-1 to 113-3 as another example of the third antenna element, and a high frequency band as another example of the fourth antenna element Dipole elements 121-1 to 121-6 for high frequency and dipole elements 123-1 to 123-6 for high frequency bands.
Furthermore, conductors 131-1 to 131-4 and conductors 132-1 to 132-4 are provided in place of the conductors 130-1 to 130-4 in the first and second embodiments. .
When the low frequency band dipole elements 113-1 to 113-3, the high frequency band dipole elements 122-1 to 122-6, and the high frequency band dipole elements 123-1 to 123-6 are not distinguished from each other, the low frequency band It is expressed as a band dipole element 113, a high frequency band dipole element 122, and a high frequency band dipole element 123. When the conductors 131-1 to 131-4 and the conductors 132-1 to 132-4 are not distinguished from each other, they are referred to as a conductor 131 and a conductor 132, respectively.
 低周波数帯用ダイポール素子113、高周波数帯用ダイポール素子121、高周波数帯用ダイポール素子122、高周波数帯用ダイポール素子123、導体131、導体132は、低周波数帯用ダイポール素子110、高周波数帯用ダイポール素子120と同様に、導電材料で構成されていればよく、例えばAl、Cuなどの金属板が適用できる。また、板状に限らず、Al、Cuなどの金属棒であってもよい。さらに、低周波数帯用ダイポール素子110、高周波数帯用ダイポール素子120と同様に、低周波数帯用ダイポール素子113、高周波数帯用ダイポール素子121、高周波数帯用ダイポール素子122、高周波数帯用ダイポール素子123、導体131、導体132は、ガラスエポキシなどの誘電材料で構成された基板上に設けられたAl、Cuなどの金属層によって構成されたものであってもよい。 The low-frequency band dipole element 113, the high-frequency band dipole element 121, the high-frequency band dipole element 122, the high-frequency band dipole element 123, the conductor 131, and the conductor 132 are the low-frequency band dipole element 110 and the high-frequency band. Similarly to the dipole element 120 for a metal, it may be made of a conductive material, and for example, a metal plate such as Al or Cu can be applied. Moreover, not only plate shape but metal rods, such as Al and Cu, may be sufficient. Further, similarly to the low frequency band dipole element 110 and the high frequency band dipole element 120, the low frequency band dipole element 113, the high frequency band dipole element 121, the high frequency band dipole element 122, and the high frequency band dipole. The element 123, the conductor 131, and the conductor 132 may be configured by a metal layer such as Al or Cu provided on a substrate configured by a dielectric material such as glass epoxy.
 低周波数帯用ダイポール素子113は、低周波数帯用ダイポール素子110と十字状に組み合わされて設けられている。例えば、低周波数帯用ダイポール素子113-1は、低周波数帯用ダイポール素子110-1と、十字状に組み合わされて設けられている。
 高周波数帯用ダイポール素子121は、第2の実施の形態と同様に、高周波数帯用ダイポール素子120と、十字状に組み合わされて設けられている。例えば、高周波数帯用ダイポール素子121-1は、高周波数帯用ダイポール素子120-1と、十字状に組み合わされて設けられている。
 さらに、高周波数帯用ダイポール素子123は、高周波数帯用ダイポール素子122と、十字状に組み合わされて設けられている。例えば、高周波数帯用ダイポール素子123-1は、高周波数帯用ダイポール素子122-1と、十字状に組み合わされて設けられている。
The low frequency band dipole element 113 is combined with the low frequency band dipole element 110 in a cross shape. For example, the low-frequency band dipole element 113-1 is provided in combination with the low-frequency band dipole element 110-1 in a cross shape.
Similarly to the second embodiment, the high frequency band dipole element 121 is combined with the high frequency band dipole element 120 in a cross shape. For example, the high frequency band dipole element 121-1 is provided in combination with the high frequency band dipole element 120-1 in a cross shape.
Further, the high frequency band dipole element 123 is provided in combination with the high frequency band dipole element 122 in a cross shape. For example, the high-frequency band dipole element 123-1 is provided in combination with the high-frequency band dipole element 122-1 in a cross shape.
 さらに、導体131は、反射板200を含む面と平行な面における平面形状がH字状であって、2個の低周波数帯用ダイポール素子110の間に設けられた2個の高周波数帯用ダイポール素子120の間に設けられている。例えば、低周波数帯用ダイポール素子110-1と低周波数帯用ダイポール素子110-2との間に設けられた高周波数帯用ダイポール素子120-2と高周波数帯用ダイポール素子120-3との間に、導体131-2が設けられている。
 導体132は、導体131と同様に反射板200を含む面と平行な面における平面形状がH字状であって、2個の低周波数帯用ダイポール素子110の間に設けられた2個の高周波数帯用ダイポール素子122の間に設けられている。例えば、低周波数帯用ダイポール素子110-1と低周波数帯用ダイポール素子110-2との間に設けられた高周波数帯用ダイポール素子122-2と高周波数帯用ダイポール素子122-3との間に、導体132-2が設けられている。
Further, the conductor 131 has an H-shaped planar shape in a plane parallel to the plane including the reflector 200, and is for two high frequency bands provided between two low frequency band dipole elements 110. It is provided between the dipole elements 120. For example, between the high frequency band dipole element 120-2 and the high frequency band dipole element 120-3 provided between the low frequency band dipole element 110-1 and the low frequency band dipole element 110-2. In addition, a conductor 131-2 is provided.
The conductor 132 has an H-shaped planar shape in a plane parallel to the plane including the reflector 200, similar to the conductor 131, and the two high-frequency band dipole elements 110 provided between the two high-frequency bands. It is provided between the frequency band dipole elements 122. For example, between the high frequency band dipole element 122-2 and the high frequency band dipole element 122-3 provided between the low frequency band dipole element 110-1 and the low frequency band dipole element 110-2. In addition, a conductor 132-2 is provided.
 そして、セクタアンテナ10は、第1の実施の形態の低周波数帯及び高周波数帯の水平偏波の送受信ケーブル31、32に加えて、低周波数帯及び高周波数帯の垂直偏波の送受信ケーブル33、34を備えている。
 なお、低周波数帯用ダイポール素子110、113、高周波数帯用ダイポール素子120、121、122、123、導体131、132の個数は上記の数値に限定されない。
 また、導体131と導体132とを含む面は、必ずしも反射板200と平行でなくともよく、例えば、反射板200に対して垂直方向や、45度に回転した面であってもよい。
 そして、導体131と導体132は、面状ではなく、棒状の導体をH字状やコの字状に曲げたものであってもよい。さらに、端部に中央部を構成する部材と向きが異なる部材を備えた形状であってもよい。このとき、これらの部材が直流的に接続されていることが好ましい。
The sector antenna 10 includes a low-frequency band and high-frequency band horizontally polarized transmission / reception cables 31 and 32 of the first embodiment, and a low-frequency band and high-frequency band vertically-polarized transmission / reception cable 33. , 34 are provided.
The numbers of the low-frequency band dipole elements 110 and 113, the high-frequency band dipole elements 120, 121, 122, and 123, and the conductors 131 and 132 are not limited to the above values.
Further, the surface including the conductor 131 and the conductor 132 is not necessarily parallel to the reflecting plate 200, and may be a surface that is perpendicular to the reflecting plate 200 or rotated by 45 degrees, for example.
The conductor 131 and the conductor 132 may be formed by bending a rod-shaped conductor into an H shape or a U shape instead of a planar shape. Furthermore, the shape provided with the member in which direction differs from the member which comprises a center part in the edge part may be sufficient. At this time, these members are preferably connected in a direct current manner.
<アレイアンテナ100>
 図14は、第3の実施の形態が適用されるセクタアンテナ10におけるアレイアンテナ100を反射板200の垂線方向から見た平面図及び反射板200の垂線方向の断面図である。図14(a)は、平面図を示し、図14(b)は、図14(a)のXIVb-XIVb線での断面図を示す。
 低周波数帯用ダイポール素子110、高周波数帯用ダイポール素子120のパラメータ(低周波数帯用ダイポール素子110の長さWなど)は第1の実施の形態と同様である。
 さらに、低周波数帯用ダイポール素子113のパラメータは、低周波数帯用ダイポール素子110と同じであり、高周波数帯用ダイポール素子121、122、123のパラメータは、高周波数帯用ダイポール素子120と同じである。
 そして、導体131、132は、反射板200から距離Dの位置に設けられている。
<Array antenna 100>
FIG. 14 is a plan view of the array antenna 100 in the sector antenna 10 to which the third embodiment is applied as viewed from the perpendicular direction of the reflector 200 and a sectional view of the reflector 200 in the perpendicular direction. 14A shows a plan view, and FIG. 14B shows a cross-sectional view taken along line XIVb-XIVb in FIG. 14A.
Low-frequency-band dipole element 110, (such as the length W L of the low frequency band dipole element 110) parameter of the higher frequency band dipole element 120 is the same as in the first embodiment.
Further, the parameters of the low-frequency band dipole element 113 are the same as those of the low-frequency band dipole element 110, and the parameters of the high-frequency band dipole elements 121, 122, and 123 are the same as those of the high-frequency band dipole element 120. is there.
Then, the conductor 131 and 132 are provided at a distance D C from the reflecting plate 200.
 導体131、132のH字型の平面形状は、導体131、132の電気的な長さを等価的に長くするためである。長くすることで、導体131、132を反射器として動作させ、高周波数帯用ダイポール素子120が出射する電波の、低周波数帯用ダイポール素子110による反射と、導体131又は導体132による反射とのバランスを取って、垂直面内の上側と下側とで指向性の対称性を確保するためである。これにより、アレイアンテナ100において、高周波数帯の水平偏波における垂直面内指向性に発生するサイドローブを抑制している。 The H-shaped planar shape of the conductors 131 and 132 is to increase the electrical length of the conductors 131 and 132 equivalently. By increasing the length, the conductors 131 and 132 are operated as reflectors, and the balance between the reflection by the low-frequency band dipole element 110 and the reflection by the conductor 131 or the conductor 132 of the radio wave emitted from the high-frequency band dipole element 120. This is to ensure the symmetry of directivity between the upper side and the lower side in the vertical plane. Thereby, in the array antenna 100, the side lobe generated in the vertical in-plane directivity in the horizontal polarization of the high frequency band is suppressed.
 以上説明したように、第3の実施の形態が適用されるアレイアンテナ100においても、水平偏波の送受信に用いられる高周波数帯用ダイポール素子120は、垂直方向の両側に、低周波数帯用ダイポール素子110又は導体131のいずれか一方が隣接する。同様に、高周波数帯用ダイポール素子122は、垂直方向の両側に、低周波数帯用ダイポール素子110又は導体132のいずれか一方が隣接する。よって、アレイアンテナ100において、高周波数帯の水平偏波における垂直面内指向性に発生するサイドローブが抑制されている。 As described above, also in the array antenna 100 to which the third embodiment is applied, the high frequency band dipole element 120 used for horizontal polarization transmission / reception has the low frequency band dipole on both sides in the vertical direction. Either the element 110 or the conductor 131 is adjacent. Similarly, the high frequency band dipole element 122 is adjacent to either the low frequency band dipole element 110 or the conductor 132 on both sides in the vertical direction. Therefore, in the array antenna 100, the side lobe generated in the vertical in-plane directivity in the horizontal polarization of the high frequency band is suppressed.
 第3の実施の形態におけるアレイアンテナ100においても、高周波数帯用ダイポール素子120は、垂直方向には、低周波数帯用ダイポール素子110と導体131とで挟まれている。また、高周波数帯用ダイポール素子122は、垂直方向には、低周波数帯用ダイポール素子110と導体132とで挟まれている。
 よって、アレイアンテナ100の高周波数帯の水平偏波における垂直面内指向性のサイドローブのレベルを抑制できる。
Also in the array antenna 100 according to the third embodiment, the high frequency band dipole element 120 is sandwiched between the low frequency band dipole element 110 and the conductor 131 in the vertical direction. The high frequency band dipole element 122 is sandwiched between the low frequency band dipole element 110 and the conductor 132 in the vertical direction.
Therefore, the level of the side lobe of the vertical in-plane directivity in the horizontal polarization of the high frequency band of the array antenna 100 can be suppressed.
 ここでは、低周波数帯及び高周波数帯において偏波共用としたが、一方のみを偏波共用としてもよい。
 また、第1の実施の形態及び第2の実施の形態における導体130の平面形状をH字状又はコの字状としてもよい。
Here, the polarization is shared in the low frequency band and the high frequency band, but only one of the polarizations may be shared.
The planar shape of the conductor 130 in the first embodiment and the second embodiment may be an H shape or a U shape.
 第1の実施の形態乃至第3の実施の形態において、導体130、131、132は導電材料で構成された導体であるとしたが、電波を反射する機能を有するものであればよく、金属材料より電気伝導度が低い炭素材料などを使用できる。 In the first to third embodiments, the conductors 130, 131, and 132 are conductors made of a conductive material. However, any conductor having a function of reflecting radio waves may be used. Carbon materials having lower electrical conductivity can be used.
 第1の実施の形態乃至第3の実施の形態において、反射板200は、平坦な板状としたが、水平方向の両端部が、低周波数帯用ダイポール素子110、高周波数帯用ダイポール素子120などが設けられた側に折り曲げられていてもよく、高周波数帯用ダイポール素子120などが設けられた側と反対側に折り曲げられていてもよい。
 さらに、第1の実施の形態及び第2の実施の形態の導体130、第3の実施の形態におの導体131、132は、無給電であって、いずれにも接続されていないとしたが、反射板200に電気的に接続されていてもよい。
In the first to third embodiments, the reflector 200 is a flat plate, but the both ends in the horizontal direction are a low-frequency band dipole element 110 and a high-frequency band dipole element 120. Or may be bent on the side opposite to the side on which the high-frequency band dipole element 120 or the like is provided.
Furthermore, the conductor 130 in the first and second embodiments and the conductors 131 and 132 in the third embodiment are parasitic and are not connected to either. The reflector 200 may be electrically connected.
 さらに、第1の実施の形態の低周波数帯用ダイポール素子110、高周波数帯用ダイポール素子120、第2の実施の形態の低周波数帯用ダイポール素子110、111、112、高周波数帯用ダイポール素子120、121、第3の実施の形態の低周波数帯用ダイポール素子110、113、高周波数帯用ダイポール素子120、121、122、123の一部又は全てに、反射板200から遠い側に電圧定在波比(VSWR)や指向性などの特性を調整するための無給電素子が設けられていてもよい。 Further, the low-frequency band dipole element 110, the high-frequency band dipole element 120 according to the first embodiment, the low-frequency band dipole elements 110, 111, and 112 according to the second embodiment, and the high-frequency band dipole element. 120, 121, a part of or all of the low frequency band dipole elements 110, 113 and the high frequency band dipole elements 120, 121, 122, 123 of the third embodiment, and a voltage constant on the side far from the reflector 200. A parasitic element for adjusting characteristics such as a standing wave ratio (VSWR) and directivity may be provided.
 第2の実施の形態及び第3の実施の形態では、垂直偏波及び水平偏波を送受信するとした。
 しかし、第2の実施の形態においては、添字(-1など)が等しい低周波数帯用ダイポール素子110、111、112を組にして低周波数帯用ダイポール素子110の中心で45°回転させるとともに、添字(-1など)が等しい高周波数帯用ダイポール素子120、121を組にして、高周波数帯用ダイポール素子120、121の中心で45°回転させることで、±45°の偏波を送受信することができる。
 このとき、アレイアンテナ100は、垂直偏波及び水平偏波でなく、±45°の偏波を送受信することになる。よって、「垂直」、「水平」を「45°」、「-45°」と読み替えればよい。他の角度の偏波であっても同様である。
In the second embodiment and the third embodiment, vertical polarization and horizontal polarization are transmitted and received.
However, in the second embodiment, the low-frequency band dipole elements 110, 111, and 112 having the same subscript (−1 or the like) are rotated by 45 ° at the center of the low-frequency band dipole element 110, and A pair of high-frequency band dipole elements 120 and 121 having the same subscript (−1, etc.) is paired and rotated by 45 ° at the center of the high-frequency band dipole elements 120 and 121 to transmit and receive ± 45 ° polarized waves. be able to.
At this time, the array antenna 100 transmits / receives ± 45 ° polarization instead of vertical polarization and horizontal polarization. Therefore, “vertical” and “horizontal” may be read as “45 °” and “−45 °”. The same applies to polarized waves of other angles.
 本発明は、上記の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で適宜変更が可能である。 The present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the gist of the present invention.
1…基地局アンテナ、2…セル、3、3-1~3-3…セクタ、10、10-1~10-3…セクタアンテナ、11…メインローブ、20…鉄塔、31、32、33、34…送受信ケーブル、100…アレイアンテナ、110、110-1~110-3、111、111-1~111-3、112、112-1~112-3、113、113-1~113-3…低周波数帯用ダイポール素子、120、120-1~120-6、121、121-1~121-6、122、122-1~122-6、123、123-1~123-6…高周波数帯用ダイポール素子、130、130-1~130-4、131、131-1~131-4、132、132-1~132-4…導体、200…反射板、500…レドーム DESCRIPTION OF SYMBOLS 1 ... Base station antenna, 2 ... Cell, 3-1, 3-1 to 3-3 ... Sector, 10, 10-1 to 10-3 ... Sector antenna, 11 ... Main lobe, 20 ... Steel tower, 31, 32, 33, 34 ... Transmission / reception cable, 100 ... Array antenna, 110, 110-1 to 110-3, 111, 111-1 to 111-3, 112, 112-1 to 112-3, 113, 113-1 to 113-3 ... Dipole element for low frequency band, 120, 120-1 to 120-6, 121, 121-1 to 121-6, 122, 122-1 to 122-6, 123, 123-1 to 123-6 ... high frequency band Dipole element, 130, 130-1 to 130-4, 131, 131-1 to 131-4, 132, 132-1 to 132-4 ... conductor, 200 ... reflector, 500 ... radome

Claims (6)

  1.  導電材料で構成された反射板と、
     前記反射板から予め定められた第1の距離に、予め定められた偏波の方向と交差する方向に配列され、第1の周波数帯における当該偏波の電波を送受信する複数の第1のアンテナ素子と、
     前記反射板から予め定められた第2の距離に、前記方向において前記複数の第1のアンテナ素子と混在して配列され、前記第1の周波数帯より高い第2の周波数帯の前記偏波の電波を送受信する複数の第2のアンテナ素子と、
     前記複数の第2のアンテナ素子のうち、前記方向において隣接する2個の第2のアンテナ素子の間に、前記複数の第1のアンテナ素子のいずれも配置されない場合に配置され、当該第2のアンテナ素子が送受信する電波を反射する部材と
    を備えるアレイアンテナ。
    A reflector made of a conductive material;
    A plurality of first antennas arranged in a direction intersecting with a predetermined polarization direction at a predetermined first distance from the reflecting plate and transmitting / receiving radio waves of the polarization in the first frequency band Elements,
    The polarization of the second frequency band higher than the first frequency band is arranged at a predetermined second distance from the reflector in a mixed manner with the plurality of first antenna elements in the direction. A plurality of second antenna elements for transmitting and receiving radio waves;
    Among the plurality of second antenna elements, the second antenna element is disposed between the two second antenna elements adjacent in the direction when none of the plurality of first antenna elements is disposed. An array antenna comprising a member that reflects radio waves transmitted and received by an antenna element.
  2.  前記電波を反射する部材は、前記偏波の方向に長手方向を有する導電材料で構成された導体であって、前記反射板から予め定められた第3の距離に設けられていることを特徴とする請求項1に記載のアレイアンテナ。 The member that reflects the radio wave is a conductor made of a conductive material having a longitudinal direction in the polarization direction, and is provided at a predetermined third distance from the reflector. The array antenna according to claim 1.
  3.  前記導体は、端部に中央部を構成する部材と向きの異なる部材を備え、それぞれの部材は直流的に接続されていることを特徴とする請求項2に記載のアレイアンテナ。 The array antenna according to claim 2, wherein the conductor includes a member having a different direction from a member constituting the central portion at an end portion, and each member is connected in a direct current manner.
  4.  前記第1の周波数帯において、前記偏波と直交する偏波の電波を送受信する第3のアンテナ素子をさらに備えることを特徴とする請求項1に記載のアレイアンテナ。 The array antenna according to claim 1, further comprising a third antenna element that transmits and receives a radio wave having a polarization orthogonal to the polarization in the first frequency band.
  5.  前記第2の周波数帯において、前記偏波と直交する偏波の電波を送受信する第4のアンテナ素子をさらに備えることを特徴とする請求項1又は2に記載のアレイアンテナ。 The array antenna according to claim 1 or 2, further comprising a fourth antenna element that transmits and receives a radio wave having a polarization orthogonal to the polarization in the second frequency band.
  6.  導電材料で構成された反射板と、当該反射板から予め定められた第1の距離に、予め定められた偏波の方向と交差する方向に配列され、第1の周波数帯における当該偏波の電波を送受信する複数の第1のアンテナ素子と、当該反射板から予め定められた第2の距離に、当該方向において当該複数の第1のアンテナ素子と混在して配列され、当該第1の周波数帯より高い第2の周波数帯の当該偏波の電波を送受信する複数の第2のアンテナ素子と、当該複数の第2のアンテナ素子のうち、当該方向において隣接する2個の第2のアンテナ素子の間に、当該複数の第1のアンテナ素子のいずれも配置されない場合に配置され、当該第2のアンテナ素子が送受信する電波を反射する部材と、を備えるアレイアンテナと、
     前記アレイアンテナを収納するレドームと
    を備えるセクタアンテナ。
    A reflection plate made of a conductive material, and arranged in a direction intersecting a predetermined polarization direction at a predetermined first distance from the reflection plate, and the polarization of the polarization in the first frequency band A plurality of first antenna elements for transmitting and receiving radio waves and a predetermined second distance from the reflector, and arranged in a mixed manner with the plurality of first antenna elements in the direction, the first frequency A plurality of second antenna elements for transmitting and receiving radio waves of the polarization in a second frequency band higher than the band, and two second antenna elements adjacent in the direction among the plurality of second antenna elements An array antenna comprising a member that reflects a radio wave transmitted and received by the second antenna element, which is disposed when none of the plurality of first antenna elements is disposed between,
    A sector antenna comprising a radome that houses the array antenna.
PCT/JP2015/056173 2014-03-04 2015-03-03 Array antenna and sector antenna WO2015133458A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201580008782.6A CN106030906A (en) 2014-03-04 2015-03-03 Array antenna and sector antenna

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-041788 2014-03-04
JP2014041788A JP6267005B2 (en) 2014-03-04 2014-03-04 Array antenna and sector antenna

Publications (1)

Publication Number Publication Date
WO2015133458A1 true WO2015133458A1 (en) 2015-09-11

Family

ID=54055264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/056173 WO2015133458A1 (en) 2014-03-04 2015-03-03 Array antenna and sector antenna

Country Status (3)

Country Link
JP (1) JP6267005B2 (en)
CN (1) CN106030906A (en)
WO (1) WO2015133458A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018046086A1 (en) * 2016-09-08 2018-03-15 Telefonaktiebolaget Lm Ericsson (Publ) Antenna array and arrangement comprising an antenna array and a network node
WO2018236994A1 (en) * 2017-06-21 2018-12-27 Thomson Licensing Low-profile folded metal antenna

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11145968B2 (en) 2017-03-29 2021-10-12 Nihon Dengyo Kosaku Co., Ltd. Array antenna and sector antenna

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000174549A (en) * 1998-12-03 2000-06-23 Ntt Mobil Communication Network Inc Base station antenna system
JP2000307337A (en) * 1999-04-15 2000-11-02 Ntt Docomo Inc Antenna system
JP2002026642A (en) * 2000-07-11 2002-01-25 Ntt Docomo Inc Antenna system
JP2012142879A (en) * 2011-01-06 2012-07-26 Hitachi Cable Ltd Sector antenna

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MXPA03009485A (en) * 2001-04-16 2004-05-05 Fractus Sa Dual-band dual-polarized antenna array.
JP2006025027A (en) * 2004-07-06 2006-01-26 Ntt Docomo Inc Two-element array antenna
JP5312598B2 (en) * 2008-09-22 2013-10-09 ケーエムダブリュ・インコーポレーテッド Dual-band dual-polarized antenna for mobile communication base stations
CN201508910U (en) * 2009-08-12 2010-06-16 江苏捷士通科技股份有限公司 Dual-polarized three frequency bands base station antenna

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000174549A (en) * 1998-12-03 2000-06-23 Ntt Mobil Communication Network Inc Base station antenna system
JP2000307337A (en) * 1999-04-15 2000-11-02 Ntt Docomo Inc Antenna system
JP2002026642A (en) * 2000-07-11 2002-01-25 Ntt Docomo Inc Antenna system
JP2012142879A (en) * 2011-01-06 2012-07-26 Hitachi Cable Ltd Sector antenna

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018046086A1 (en) * 2016-09-08 2018-03-15 Telefonaktiebolaget Lm Ericsson (Publ) Antenna array and arrangement comprising an antenna array and a network node
CN109661751A (en) * 2016-09-08 2019-04-19 瑞典爱立信有限公司 Aerial array and device including aerial array and network node
US10944173B2 (en) 2016-09-08 2021-03-09 Telefonaktiebolaget Lm Ericsson (Publ) Antenna array and arrangement comprising an antenna array and a network node
CN109661751B (en) * 2016-09-08 2021-06-11 瑞典爱立信有限公司 Antenna array and device comprising an antenna array and a network node
WO2018236994A1 (en) * 2017-06-21 2018-12-27 Thomson Licensing Low-profile folded metal antenna
US11145984B2 (en) 2017-06-21 2021-10-12 Thomson Licensing Low-profile folded metal antenna

Also Published As

Publication number Publication date
JP2015167337A (en) 2015-09-24
CN106030906A (en) 2016-10-12
JP6267005B2 (en) 2018-01-24

Similar Documents

Publication Publication Date Title
US20210159605A1 (en) Lensed base station antennas
JP5745582B2 (en) Antenna and sector antenna
JP4890618B2 (en) Dual-band dual-polarized antenna for mobile communication base stations
US10615513B2 (en) Efficient planar phased array antenna assembly
US8462071B1 (en) Impedance matching mechanism for phased array antennas
US6252549B1 (en) Apparatus for receiving and transmitting radio signals
US11336031B2 (en) Antenna, array antenna, sector antenna, and dipole antenna
US20180131078A1 (en) Lensed base station antennas having azimuth beam width stabilization
WO2014115427A1 (en) Array antenna
CN110571517A (en) Wide-angle scanning dual-linear polarization phased array antenna
JP6267005B2 (en) Array antenna and sector antenna
CN105846114B (en) Dual-band common-caliber antenna
WO2015159871A1 (en) Antenna and sector antenna
JP5735591B2 (en) Antenna and sector antenna
Ma et al. Dual-polarized turning torso antenna array for massive MIMO systems
JP6207339B2 (en) Antenna and sector antenna
JP5904805B2 (en) Shaped beam antenna
Kanso et al. Multifeed EBG dual-band antenna for spatial mission
WO2014115653A1 (en) Antenna and sector antenna
JP2009038824A (en) Dipole horizontal array antenna apparatus
CN110462931B (en) Array antenna and sector antenna
Chen et al. Horizontally polarized array on a mast-like form for azimuthal beam switching
JP2001144532A (en) Antenna system
JP6593645B2 (en) Antenna device
JP2017059982A (en) Antenna device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15759004

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15759004

Country of ref document: EP

Kind code of ref document: A1