WO2015133198A1 - Striking tool - Google Patents

Striking tool Download PDF

Info

Publication number
WO2015133198A1
WO2015133198A1 PCT/JP2015/051866 JP2015051866W WO2015133198A1 WO 2015133198 A1 WO2015133198 A1 WO 2015133198A1 JP 2015051866 W JP2015051866 W JP 2015051866W WO 2015133198 A1 WO2015133198 A1 WO 2015133198A1
Authority
WO
WIPO (PCT)
Prior art keywords
striker
striking
piston
tool
impact
Prior art date
Application number
PCT/JP2015/051866
Other languages
French (fr)
Japanese (ja)
Inventor
駒崎 義一
Original Assignee
日立工機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立工機株式会社 filed Critical 日立工機株式会社
Publication of WO2015133198A1 publication Critical patent/WO2015133198A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D11/00Portable percussive tools with electromotor or other motor drive
    • B25D11/005Arrangements for adjusting the stroke of the impulse member or for stopping the impact action when the tool is lifted from the working surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D11/00Portable percussive tools with electromotor or other motor drive
    • B25D11/06Means for driving the impulse member
    • B25D11/12Means for driving the impulse member comprising a crank mechanism
    • B25D11/125Means for driving the impulse member comprising a crank mechanism with a fluid cushion between the crank drive and the striking body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2217/00Details of, or accessories for, portable power-driven percussive tools
    • B25D2217/0011Details of anvils, guide-sleeves or pistons
    • B25D2217/0015Anvils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2217/00Details of, or accessories for, portable power-driven percussive tools
    • B25D2217/0011Details of anvils, guide-sleeves or pistons
    • B25D2217/0019Guide-sleeves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2250/00General details of portable percussive tools; Components used in portable percussive tools
    • B25D2250/035Bleeding holes, e.g. in piston guide-sleeves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2250/00General details of portable percussive tools; Components used in portable percussive tools
    • B25D2250/131Idling mode of tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2250/00General details of portable percussive tools; Components used in portable percussive tools
    • B25D2250/231Sleeve details

Definitions

  • the present invention relates to a striking tool used for crushing roads and buildings, and in particular, reciprocating a piston in a direction along an axis to increase the pressure of a fluid chamber formed between the piston and the striking element.
  • the present invention relates to a striking tool that applies striking force to the striking element.
  • Patent Document 1 A tool is described in Patent Document 1.
  • the striking tool described in Patent Document 1 has a cylindrical crankcase and a cylindrical cylinder case, and the crankcase and the cylinder case are concentrically connected and fixed.
  • a cylindrical cylinder is provided in the crankcase and the cylinder case, and the piston is accommodated in the cylinder so as to be movable in the direction along the axis.
  • the motion conversion part which converts the rotational force of a power source into a reciprocating motion force is provided, and the piston is connected with the motion conversion part.
  • a striker is provided in the cylinder, and the striker is movable in the direction along the axis within the cylinder.
  • a fluid chamber is formed between the piston and the striker.
  • a breathing hole that penetrates the cylinder in the radial direction and communicates with the fluid chamber is provided.
  • a cylindrical tool holder is provided from the inside to the outside of the cylinder case. The tool holder is arranged concentrically with the cylinder, and an intermediate striker is provided in the tool holder. The intermediate striker is movable in a direction along the axis, and a tip tool is attached to the tool holder.
  • the rotational force of the power source is converted into the reciprocating force of the piston.
  • the piston moves in a direction away from the striker, and the breathing hole becomes negative pressure.
  • the striker moves in a direction approaching the piston, and the breathing hole is closed by the striker.
  • the pressure in the air chamber increases, and an impact force is applied to the striker.
  • This striking force is transmitted to the tip tool via the intermediate striking element.
  • the breathing hole is opened and the pressure in the fluid chamber decreases. Thereafter, the piston and the striker move in a direction away from the intermediate striker in preparation for the next strike.
  • the striker opens and closes the breathing hole to adjust the pressure of the fluid chamber, and the striker descends to strike the intermediate striker, After the previous hit, the operation of raising the striker in preparation for the next hit is switched.
  • the impact tool described in Patent Document 1 has the breathing hole fully opened at the time of the second impact, and therefore the pressure of the air chamber after the second impact, that is, the residual pressure, is also different. Thereafter, the position where the piston and the striker rise and the striker rises depends on the residual pressure in the air chamber. This is because the residual pressure in the air chamber becomes a force that prevents the striker from rising. As a result, when the piston descends to perform the third impact, the air pressure in the air chamber is different, and the impact force may become unstable. *
  • An object of the present invention is to provide a striking tool capable of obtaining a stable striking force regardless of the striking force at the time of the previous striking.
  • One embodiment is a striking tool that reciprocates a piston in an axial direction to increase a pressure of a fluid chamber formed between the piston and the striking element to apply a striking force to the striking element,
  • a cylinder that accommodates the piston and the striking element so as to be movable in the axial direction, and a striking force is transmitted from the striking element to operate in the axial direction, and the striking force is transmitted to a tip tool that contacts the object.
  • An intermediate striker a breathing hole provided in the cylinder and allowing fluid to enter and exit from the fluid chamber according to the operation of the piston; a pressure receiving surface provided in the striker and receiving the pressure of the fluid chamber; The pressure receiving surface of the striker that is in contact with the intermediate striker is in the axial direction in a state where the intermediate striker is positioned at a position closest to the striker in the axial direction. Position of breathing hole Located within.
  • the striking tool of the present invention when the pressure of the fluid chamber is different at the previous striking and the amount of movement of the striking member at the previous striking is different, the opening area of the breathing hole opened by the striking member changes. For this reason, the pressure in the fluid chamber after the previous strike is the same, and when the striker is moved after the previous strike, the striker moves to the same position in the direction along the axis, and the impact force generated at the next strike Is stable.
  • FIG. 1 It is front sectional drawing of the striking tool in Embodiment 1 of this invention. It is a partial front sectional view of the impact tool shown in FIG. It is a partial front sectional view of the impact tool shown in FIG. It is a partial front sectional view of the impact tool shown in FIG. It is a partial front sectional view of the impact tool shown in FIG. It is a partial front sectional view of the impact tool shown in FIG. It is a partial front sectional view of the impact tool shown in FIG. (A) is an expanded sectional view which shows the principal part of FIG. 3, (B) is an expanded sectional view which shows the principal part of FIG. FIG. 2 is a front cross-sectional view illustrating an action of preventing an impact of the impact tool shown in FIG. 1.
  • FIG. 1 It is front sectional drawing which shows the example of a change of the breathing hole provided in the cylinder of the impact tool shown in FIG. It is a partial front sectional view of an impact tool of a comparative example. It is a partial front sectional view of an impact tool of a comparative example. It is a partial front sectional view of an impact tool of a comparative example. It is a partial front sectional view of an impact tool of a comparative example. (A) is a time chart which shows the behavior of the impact tool of this invention, (B) is a time chart which shows the behavior of the impact tool of a comparative example.
  • (A) is a time chart which shows the behavior of the impact tool of this invention
  • (B) is a time chart which shows the behavior of the impact tool of a comparative example. It is front sectional drawing of the impact tool in Embodiment 2 of this invention.
  • FIG. 17 is a partial front sectional view of the impact tool shown in FIG. 16.
  • a striking tool 10 shown in FIG. 1 includes a housing 11 and a cylinder case 12 continuous with the housing 11.
  • An electric motor 13 is provided in the housing 11.
  • the electric motor 13 is a power source that converts electric energy into kinetic energy of the output shaft 14.
  • a pinion gear 15 is provided on the output shaft 14 of the electric motor 13.
  • An intermediate shaft 16 is provided in the housing 11, and a first gear 17 and a second gear 18 are provided on the intermediate shaft 16.
  • the number of teeth of the first gear 17 is larger than the number of teeth of the pinion gear 15 and the number of teeth of the second gear 18.
  • the first gear 17 meshes with the pinion gear 15.
  • a crankshaft 19 is provided in the housing 11, and the crankshaft 19 has a third gear 20.
  • the number of teeth of the third gear 20 is larger than the number of teeth of the second gear 18, and the third gear 20 meshes with the second gear 18.
  • the crankshaft 19 has a pin 21 at a position eccentric from the rotation center line.
  • Two handles 22 and 23 are concentrically fixed to the outer wall of the housing 11, and a lever 24 is provided on one handle 23.
  • the lever 24 is operated by an operator.
  • a power cable 25 is connected to the handle 23, and the power cable 25 is connected to a commercial power source.
  • the lever 24 When the lever 24 is operated, power is supplied to the electric motor 13 via the power cable 25, and the output shaft 14 rotates. The rotational force of the output shaft 14 is transmitted to the third gear 20 via the first gear 17 and the second gear 18, and the crankshaft 19 rotates.
  • the reduction gear 26 is configured by the first gear 17, the second gear 18, and the third gear 20, and the rotational force is transmitted from the output shaft 14 to the crankshaft 19, the rotational speed of the crankshaft 19 is the rotational speed of the output shaft 14. And the rotational force is amplified.
  • the cylinder case 12 has a cylindrical shape, and a cylindrical cylinder 27 is provided in the cylinder case 12.
  • the cylinder 27 is made of metal, and the cylinder case 12 and the cylinder 27 are arranged concentrically.
  • the axis A ⁇ b> 1 of the cylinder case 12 and the cylinder 27 is orthogonal to the rotation center line B ⁇ b> 1 of the output shaft 14 of the electric motor 13.
  • a piston 28 is accommodated in the cylinder 27, and the piston 28 is operable in a direction along the axis A1.
  • a connecting rod 48 is connected to the piston 28, and the connecting rod 48 is rotatably connected to the pin 21. For this reason, when the crankshaft 19 rotates, the piston 28 reciprocates in the cylinder 27 in the direction along the axis A1.
  • a striker 29 is provided in the cylinder 27, and the striker 29 is movable in a direction along the axis A1.
  • An air chamber C ⁇ b> 1 is formed in the cylinder 27 between the end face 28 a of the piston 28 and the striker 29.
  • the holder 30 is fixed to the end of the cylinder case 12 opposite to the housing 11 in the direction along the axis A1.
  • the holder 30 is fixed to the cylinder case 12 using a screw member 31 that is a fixing element.
  • the holder 30 has a support hole 32, and the holder 30 is disposed concentrically with the cylinder 27.
  • a sleeve 33 is provided from the support hole 32 of the holder 30 to the inside of the cylinder case 12.
  • the sleeve 33 is made of metal, and the sleeve 33 includes a cylindrical portion 34 and a flange portion 35 projecting outward from the outer peripheral surface of the cylindrical portion 34 in the radial direction of the cylindrical portion 34.
  • the flange portion 35 is disposed in the support hole 32 of the holder 30, and the cylinder portion 34 is disposed in the cylinder case 12.
  • a damper 36 is interposed between the flange portion 35 and the cylinder case 12 in a direction along the axis A1.
  • the damper 36 is integrally formed of a rubber-like elastic material.
  • the sleeve 33 is movable in a direction along the axis A ⁇ b> 1 within a range where the damper 36 is elastically deformed.
  • An intermediate striker 37 is provided from the cylinder 27 to the holder 30.
  • the intermediate striker 37 is made of metal, and the intermediate striker 37 includes a columnar small-diameter portion 38 and a large-diameter portion 39 that is continuous with the small-diameter portion 38.
  • the outer diameter of the large diameter portion 39 is larger than the outer diameter of the small diameter portion 38, and the small diameter portion 38 is disposed in the cylinder portion 34 and the cylinder 27.
  • the large diameter portion 39 is disposed in the support hole 32 of the holder 30.
  • the outer diameter of the large diameter portion 39 is larger than the inner diameter of the cylindrical portion 34.
  • the intermediate striker 37 is movable in the direction along the axis A1 with respect to the sleeve 33. When the intermediate striker 37 moves toward the inside of the cylinder case 12, the large diameter portion 39 comes into contact with the flange portion 35. The sleeve 33 stops. *
  • a stopper 40 is provided at the end of the holder 30 opposite to the cylinder case 12, and a chuck 41 is attached to the stopper 40.
  • the chuck 41 is cylindrical.
  • the stopper 40 is provided with a shaft hole 42, and the inner diameter of the shaft hole 42 is smaller than the inner diameter of the support hole 32 of the holder 30.
  • the chuck 41 holds a tip tool 43.
  • the tip tool 43 is formed by molding a metal material into a rod shape, and the tip tool 43 is arranged from the inside of the support hole 32, the shaft hole 42 and the chuck 41 to the outside of the chuck 41.
  • An end 44 on the outside of the chuck 41 in the tip tool 43 has a wedge shape.
  • the tip tool 43 is movable in the direction along the axis A ⁇ b> 1, and the portion of the tip tool 43 disposed in the support hole 32 contacts the intermediate striker 37.
  • a plurality of breathing holes 45 penetrating the cylinder 27 in the radial direction are provided.
  • a space D1 is formed between the cylinder 27 and the cylinder case 12, and the breathing hole 45 connects the space D1 and the air chamber C1.
  • the breathing hole 45 is a passage through which air as a fluid enters and exits the air chamber C1.
  • the space D1 communicates with the outside of the cylinder case 12.
  • the opening size of the breathing hole 45 in the direction along the axis A ⁇ b> 1 is longer than the opening size in the circumferential direction of the cylinder 27.
  • the breathing hole 45 when the breathing hole 45 is unfolded in a front view, the breathing hole 45 has an elliptical shape or a track shape, the major axis of the breathing hole 45 is arranged in the direction along the axis A1, and the minor axis of the breathing hole 45 is the circle of the cylinder 27. Arranged along the circumferential direction.
  • the plurality of breathing holes 45 have the same dimension in the direction along the axis A1 and the same arrangement area in the direction along the axis A1.
  • the striker 29 has a cylindrical shape, and the striker 29 is provided with a pressure receiving surface 46 that forms an air chamber C1.
  • the pressure receiving surface 46 is an end surface perpendicular to the axis A1, and the pressure receiving surface 46 receives the pressure of the air chamber C1.
  • the striker 29 has a flat end surface 29 a on the side opposite to the pressure receiving surface 46.
  • the end surface 29a is at a position opposite to the pressure receiving surface 46 in the direction along the axis A1.
  • the pressure receiving surface 46 is along the axis A1. It is located in the arrangement area of the breathing hole 45 in the direction. *
  • the intermediate striker 37 is positioned closest to the striker 29 in the axial direction” means the position of the intermediate striker 37 where the large-diameter portion 39 is in contact with the flange portion 35 and stopped. To do. And the pressure receiving surface 46 is located in the arrangement
  • the striking tool 10 has the axis A1 so that the pressure receiving surface 46 is located in the arrangement region of the breathing hole 45 in the direction along the axis A1 when the striking element 29 strikes the intermediate striking element 37.
  • Standards such as the size of the intermediate striker 37 in the direction along the axis, the size of the striker 29 in the direction along the axis A1, and the size of the arrangement region of the breathing hole 45 in the direction along the axis A1 are set. Note that whether or not the pressure-receiving surface 46 is located within the arrangement region of the breathing hole 45 in the direction along the axis A1 is related to the hardness of the object W1 in addition to the above conditions. Set the above standards. *
  • the breathing hole 45 is opened immediately before the striker 29 strikes the intermediate striker 37, and until the piston 28 reaches the bottom dead center, the air in the air chamber C1 passes through the breathing hole 45 and is discharged into the space D1.
  • The When the striking force is transmitted from the intermediate striker 37 to the tip tool 43 and the piston 28 reaches the bottom dead center, the piston 28 moves from the bottom dead center toward the top dead center. Thereafter, while the output shaft 14 of the electric motor 13 is rotating, the piston 28 is repeatedly raised and lowered, and the striker 29 is raised and lowered. Therefore, the striking force of the striker 29 is intermittently transmitted to the tip tool 43 via the intermediate striker 37.
  • the amount that rises after the striker 29 strikes the intermediate striker 37 for the first time is an amount corresponding to the pressure of the air chamber C1 and the repulsive force.
  • the greater the repulsion force when the striker 29 strikes the intermediate striker 37 for the first time the greater the amount that the striker 29 rises after hitting the intermediate striker 37.
  • the striker 29 strikes the intermediate striker 37 for the first time, and then the end surface 29a reaches the reference position E0 as shown in FIG. To rise.
  • the striking element 29 strikes the intermediate striking element 37 for the first time, and then the end surface 29a is above the reference position E0.
  • the first position E1 is reached.
  • Both the reference position E0 and the first position E1 are positions in the direction along the axis A1. The first position E1 is closer to the piston 28 at the top dead center by the difference dy than the reference position E0.
  • the pressure in the air chamber C1 when the striker 29 with the end face 29a at the first position E1 is lowered is the end face 29a. It becomes higher than the pressure of the air chamber C1 when the striker 29 at the reference position E0 is lowered.
  • the compression rate due to the lowering of the piston 28 increases as the striker 29 stops at a position closer to the piston 28.
  • the striking force when the striker 29 with the end face 29a at the first position E1 descends to perform the second strike is the second strike of the striker 29 with the end face 29a at the reference position E0. It becomes larger than the striking force when performing the hit.
  • the amount of air discharged from the air chamber C1 to the space D1 is lower when the striker 29 with the end surface 29a at the first position E1 is lowered when the striker 29 with the end surface 29a at the reference position E0 is lowered. More than if you did. Accordingly, the pressure in the air chamber C1 after the second impact is made when the striker 29 whose end face 29a is at the first position E1 is lowered and when the striker 29 whose end face 29a is at the reference position E0 is lowered. It will be the same as the case. *
  • the piston 28 rises from the bottom dead center shown in FIG. 3, the air chamber C1 becomes negative pressure, and the striker 29 operates in a direction approaching the piston 28.
  • the impactor 29 rising after the second impact is As shown in FIG. 4, the end face 29a reaches the same reference position E0. That is, the pressure in the air chamber C1 before the third impact is the same regardless of the position of the striker 29 before the second impact. Therefore, regardless of the previous impact, that is, the second impact performed by the lowering of the piston 28 shown in FIG. The hitting force is stabilized.
  • the operation of the impact tool 10 when the hardness of the impact surface of the object W1 is lower than the reference value will be described with reference to FIGS.
  • the hardness of the striking surface of the object W1 is lower than the reference value
  • the striker 29 strikes the intermediate striker 37 for the first time
  • the end face 29a is below the reference position E0 as shown in FIG.
  • the second position E2 is reached.
  • the second position E2 is also a position in the direction along the axis A1.
  • the second position E2 is far from the reference position E0 by the difference dy with respect to the piston 28 at the top dead center. This is because the repulsive force when the hardness of the striking surface of the target object W1 is lower than the reference value is smaller than the repulsive force when the hardness of the striking surface of the target object W1 is the standard value.
  • the amount of air discharged from the air chamber C1 to the space D1 at the time of the second blow is the case where the striker 29 whose end surface 29a is at the second position E2 descends before the second blow. This is less than the case where the striker 29 whose end face 29a is at the reference position E0 descends before the second strike. Therefore, the pressure of the air chamber C1 after the striker 29 strikes the intermediate striker 37 for the second time is the same as when the striker 29 with the end face 29a at the second position E2 is lowered and when the end face 29a is at the reference position E0. This is the same as when the striker 29 in the lower position is lowered.
  • the air chamber C1 becomes negative pressure.
  • the end surface 29a of the striker 29 in FIG. 5 is moved to the reference position E0 or the second position E2 before the second strike.
  • the striker 29 that rises in preparation for the third strike reaches the same reference position E0 with the end face 29a as shown in FIG. Therefore, when the piston 28 descends at the time of the third impact, the compression rate of the air chamber C1 becomes the same, and the impact force applied from the impactor 29 to the intermediate impactor 37 at the time of the third impact is stabilized.
  • FIG. 7A shows the main part of FIG. 3
  • FIG. 7B shows the main part of FIG.
  • the position E3 of the pressure receiving surface 46 of the striker 29 shown in FIG. 7A in the direction along the axis A1 is more distant from the piston 28 than the position E4 of the pressure receiving surface 46 of the striker 29 shown in FIG. 7B. It is far away by the difference dy1 minutes.
  • the opening length L1 of the breathing hole 45 shown in FIG. 7A is longer than the opening length L2 of the breathing hole 45 shown in FIG. That is, the opening area of the breathing hole 45 in FIG. 7A is wider than the opening area of the breathing hole 45 in FIG.
  • the piston 28 shown in FIG. 7 (A) is raised and the striker 29 is raised
  • the piston 28 shown in FIG. 7 (B) is raised and the striker 29 is raised.
  • the piston 28 reaches the top dead center the end face 29a of the striker 29 reaches the reference position E0 as shown in FIG. In this way, the striking tool 10 can make the striking force applied from the striking element 29 to the intermediate striking element 37 during the third striking regardless of the repulsive force applied to the striking element 29 during the first striking.
  • the striking tool 10 shown in FIG. 8 is in a state where the axis A ⁇ b> 1 is vertical and the piston 28 is positioned above the striking element 29.
  • the intermediate striker 37 is lowered by its own weight, and the large diameter portion 39 of the intermediate striker 37 comes into contact with the stopper 40 and stops.
  • the striker 29 is also lowered by its own weight, and the striker 29 comes into contact with the intermediate striker 37 and stops. That is, the pressure receiving surface 46 of the striker 29 is in a position along the axis A ⁇ b> 1 and deviated from the arrangement region of the breathing holes 45, and the plurality of breathing holes 45 are fully opened.
  • the breathing hole 45 also serves to prevent idle shots.
  • the breathing hole 45 is circular. Further, the breathing holes 45 are partially different from each other in the arrangement region in the direction along the axis A1, and are different in part. For this reason, in the state where the large diameter portion 39 of the intermediate striker 37 is in contact with the flange portion 35 of the sleeve 33 and the striker 29 is in contact with the intermediate striker 37, the pressure receiving surface 46 has the axis A1. Is located in the arrangement region of at least one breathing hole 45 in the direction along *
  • the pressure receiving surface 46 of the striker 29 is located in the arrangement region of at least one breathing hole 45 in the direction along the axis A1.
  • the comparison example impact tool will be described with reference to FIGS.
  • the striking tool 200 of the comparative example the same components as those of the striking tool 10 of the embodiment are denoted by the same reference numerals.
  • the striking tool 200 is provided with a breathing hole 245 and an idling prevention hole 47 in the cylinder 27.
  • the empty shot prevention hole 47 penetrates the cylinder 27 in the radial direction, and the opening diameter of the empty shot prevention hole 47 is larger than the opening diameter of the breathing hole 245.
  • a plurality of idling prevention holes 47 are arranged in the circumferential direction of the cylinder 27.
  • the idle hit prevention hole 47 is provided between the sleeve 33 and the breathing hole 245 in the direction along the axis A1.
  • the tip tool 43 is pressed against the object W1, the large-diameter portion 39 of the intermediate striker 37 contacts the flange portion 35 of the sleeve 33, and the intermediate striker 37 stops.
  • the pressure receiving surface 46 is located between the breathing hole 245 and the idling prevention hole 47 in the direction along the axis A1. Specifically, the pressure receiving surface 46 is at a position that is out of the region where the breathing hole 245 is disposed in the direction along the axis A1.
  • the impact tool 200 in the comparative example will be described.
  • the striking element 29 strikes the intermediate striking element 37 for the first time, and then the end surface 29a reaches the reference position E0 as shown in FIG. To rise.
  • the striking element 29 strikes the intermediate striking element 37 for the first time, and then the end surface 29a is above the reference position E0.
  • the first position E1 is reached.
  • Both the reference position E0 and the first position E1 are positions in the direction along the axis A1. As shown in FIG. 10, the first position E1 is closer to the piston 28 at the top dead center by the difference dy than the reference position E0. *
  • the piston 28 shown in FIG. 10 is lowered and the striker 29 is lowered, and the second strike is performed as shown in FIG.
  • the striker 29 with the end surface 29a at the first position E1 descends, and the pressure in the air chamber C1 when the second impact is made is the same as before the second impact.
  • the striker 29 with the end face 29a at the reference position E0 descends and becomes higher than the pressure in the air chamber C1 when the second strike is performed. This is because the compression rate due to the lowering of the piston 28 is high.
  • the striker 29 with the end face 29a at the first position E1 descends, and the impact force when performing the second impact is the end face before the second impact.
  • the striking element 29 having 29a at the reference position E0 descends and becomes larger than the striking force when performing the second striking.
  • the area where the striking element 29 descends and the breathing hole 245 is opened at the second striking is such that the end face 29a is at the first position E1 before the second striking. This is the same when the striker 29 at the lower position is lowered and when the striker 29 whose end face 29a is at the reference position E0 is lowered before the second strike. That is, the breathing hole 45 is fully opened as shown in FIG. 11 regardless of the striking force applied from the striker 29 to the intermediate striker 37 during the second strike.
  • the amount of air discharged from the air chamber C1 to the space D1 is the case where the striker 29 with the end surface 29a at the first position E1 descends before the second impact, This is the same as when the striker 29 whose end face 29a is at the reference position E0 is lowered before the second strike. Therefore, the pressure of the air chamber C1 when the striker 29 strikes the intermediate striker 37 is such that the striker 29 with the end surface 29a at the first position E1 descends before the second strike, and the second strike. Is higher than the case where the striker 29 whose end face 29a is at the reference position E0 descends and performs the second strike before the second strike.
  • the end face 29a of the striker 29 is at the first position E1, and the striker 29 that rises after the second strike has the end face 29a as shown in FIG. It rises to a position that becomes the second position E2.
  • the end face 29a of the impactor 29 is at the reference position E0, and the impactor 29 that rises after the second impact is raised to a position where the end face 29a becomes the reference position E0. . That is, the position of the striker 29 differs by the difference dy in the direction along the axis A1.
  • FIG. 10 When the hardness of the striking surface of the target object W1 is lower than the reference value, when the striking element 29 that strikes the intermediate striking element 37 for the first time rises, the end face 29a is below the reference position E0 as shown in FIG. To the second position E2. Both the reference position E0 and the second position E2 are positions in the direction along the axis A1. The second position E2 is far from the reference position E0 by the difference dy with respect to the piston 28 at the top dead center.
  • the pressure of the air chamber C1 in the case where the striker 29 having the end surface 29a at the second position E2 descends and performs the second blow is performed before the second blow. Is lower than the pressure of the air chamber C1 when the striker 29 having the end surface 29a at the reference position E0 descends before the second strike, and the second strike is performed. This is because as the volume of the air chamber C1 between the piston 28 and the striker 29 is larger, the compression rate due to the lowering of the piston 28 is lower.
  • the impact force generated when the impactor 29 whose end surface 29a is at the second position E2 descends is the end surface 29a before the second impact.
  • the area where the striking element 29 descends and the breathing hole 245 is opened at the time of the second striking is the case where the striking element 29 whose end face 29a is at the second position E2 is lowered and the end face 29a. Is the same as when the striker 29 at the reference position E0 is lowered.
  • FIG. 13 shows a state in which the striker 29 having the end surface 29a at the second position E2 descends, strikes the intermediate striker 37, and the breathing hole 245 is opened.
  • the air chamber C1 becomes negative pressure, and the striker 29 also rises.
  • the end face 29a of the striker 29 is in the second position E2 as shown in FIG. 12, and the striker 29 that rises after the second strike is as shown in FIG.
  • the end surface 29a rises to a position where it becomes the first position E1.
  • the end face 29a of the impactor 29 is at the reference position E0, and the impactor 29 that rises after the second impact is as shown in FIG.
  • the end surface 29a rises to a position where it becomes the first position E1. That is, the position of the striker 29 differs by the difference dy in the direction along the axis A1.
  • the striker 29 starts from any position of the reference position E0, the first position E1, and the second position E2. Even if the ball falls and strikes the intermediate striker 37, the pressure receiving surface 46 does not reach the arrangement region of the idling prevention hole 47 in the direction along the axis A1. That is, the blanking prevention hole 47 is closed.
  • the intermediate striker 37 is lowered by its own weight, and the large diameter portion 39 of the intermediate striker 37 is the stopper 40. Touch to stop. Further, the striker 29 also descends by its own weight, and the striker 29 comes into contact with the intermediate striker 37 and stops. That is, the blanking prevention hole 47 is fully opened.
  • the impact tool 200 of the comparative example even if the piston 28 rises, the difference between the pressure in the air chamber C1 and the pressure in the space D1 does not increase, and the striker 29 does not rise. Further, even if the piston 28 descends from the top dead center toward the bottom dead center, the pressure in the air chamber C1 does not rise. Therefore, it is possible to prevent striking force from being applied to the striker 29 in a state where the tip tool 43 is not pressed against the object W1, that is, idling.
  • FIG. 14 shows the displacement of the piston 28, the displacement of the striker 29, the pressure of the air chamber C1, and the strike energy.
  • the displacement of the piston 28 is a change with time of the position of the piston 28 in the direction along the axis A1.
  • the position of the piston 28 can be grasped with reference to the end face 28a, for example.
  • the displacement of the striker 29 is a change with time of the position of the striker 29 in the direction along the axis A1.
  • the position of the striker 29 can be grasped on the basis of the end surface 29a, for example.
  • the impact energy is a value determined from the pressure of the air chamber C1, the area of the pressure receiving surface 46, and the like.
  • FIG. 14A corresponds to the impact tool 10 of the embodiment
  • FIG. 14B corresponds to the impact tool 200 of the comparative example.
  • the position a1 corresponds to the position of the impactor 29 in FIG. 2
  • the position b1 corresponds to the position of the impactor 29 in FIG. 3
  • the position c1 corresponds to FIG. This corresponds to the position of the striker 29 at.
  • the position where the striking element 29 rises before the next striking is the same regardless of the position of the striking element 29 before the previous striking.
  • the position a3 corresponds to the position of the striker 29 in FIG. 10
  • the position b3 corresponds to the position of the striker 29 in FIG. This corresponds to the position of the striker 29 in FIG.
  • the difference S1 is smaller than the difference S2
  • the difference P1 is smaller than the difference P2
  • the difference J1 is smaller than the difference J2. Therefore, it can be seen that the striking force of the striking tool 10 of the embodiment is more stable than the striking force of the striking tool 200 of the comparative example.
  • FIG. 15A corresponds to the impact tool 10 of the embodiment
  • FIG. 15B corresponds to the impact tool 200 of the comparative example.
  • the position a2 corresponds to the position of the impactor 29 in FIG. 5
  • the position b2 corresponds to the position of the impactor 29 in FIG. 6
  • the position c2 corresponds to FIG. This corresponds to the position of the striker 29 at.
  • the position where the striking element 29 rises after the previous striking is the same regardless of the position of the striking element 29 before the previous striking.
  • the position a4 corresponds to the position of the striker 29 in FIG. 12
  • the position b4 corresponds to the position of the striker 29 in FIG. This corresponds to the position of the striker 29 in FIG.
  • the difference S3 is smaller than the difference S4, the difference P3 is smaller than the difference P4, and the difference J3 is smaller than the difference J4. Therefore, it can be seen that the striking force of the striking tool 10 of the embodiment is more stable than the striking force of the striking tool 200 of the comparative example.
  • Embodiment 2 of the impact tool of the present invention is shown in FIG. 16 and FIG.
  • the impact tool 110 is also called a hammer drill, and the tip tool T is detachably attached thereto. A rotational force and a striking force are applied to the tip tool T.
  • the striking tool 110 is used for drilling a target such as concrete or stone.
  • the tool holder 112 has a cylindrical small-diameter portion 112a and a cylindrical large-diameter portion 112b, and the inner diameter of the small-diameter portion 112a is smaller than the inner diameter of the large-diameter portion 112b.
  • a part of the large-diameter portion 112 b is attached to the outer peripheral surface of the cylinder 111.
  • a metal intermediate striker 116 is provided from the tool holder 112 to the cylinder 111.
  • the intermediate striker 116 can reciprocate in the direction along the axis A2, and the intermediate striker 116 has a small diameter part 116a and a large diameter part 116b having a larger diameter than the small diameter part 116a.
  • the large diameter portion 116 b of the intermediate striker 116 is disposed in the small diameter portion 112 a of the tool holder 112.
  • the small diameter portion 116 a of the intermediate striker 116 is disposed from the large diameter portion 112 b to the cylinder 111.
  • annular step 112c is formed between the small diameter portion 112a and the large diameter portion 112b.
  • annular stopper 190, an annular damper 191 and an annular plate 192 are disposed between the step portion 112c and the end of the cylinder 111.
  • the annular damper 191 is disposed between the annular stopper 190 and the annular plate 192.
  • the annular damper 191 is integrally formed of a rubber-like elastic material, and the annular stopper 190 and the annular plate 192 are each formed of a metal material.
  • the small diameter portion 116 a of the intermediate striker 116 is disposed from the annular annular stopper 190, the annular damper 191, and the annular plate 192 to the cylinder 111.
  • the inner diameter of the annular annular stopper 190, the inner diameter of the annular damper 191 and the inner diameter of the annular plate 192 are the same, and the outer diameter of the large diameter portion 116b is the inner diameter of the annular annular stopper 190, The inner diameter of the damper 191 is larger than the inner diameter of the annular plate 192.
  • a striker 117 that applies a strike force to the intermediate striker 116 is provided.
  • the striker 117 can reciprocate in the direction along the axis A2.
  • a piston 118 is provided in the cylinder 111 so as to be reciprocally movable in a direction along the axis A2.
  • An air chamber 119 is provided between the striker 117 and the piston 118. When the piston 118 moves from the top dead center toward the bottom dead center, the air in the air chamber 119 is compressed and the striker 117 is in the middle. It moves in a direction approaching the striker 116. When the striker 117 collides with the intermediate striker 116, the strike force of the striker 117 is transmitted to the tip tool T via the intermediate striker 116.
  • a breathing hole 111a that penetrates the cylinder 111 in the radial direction is provided.
  • a plurality of breathing holes 111 a are provided in the circumferential direction of the cylinder 111.
  • a space 193 is formed between the cylinder 111 and the cylinder housing 114, and the space 193 communicates with the outside of the cylinder housing 114.
  • the breathing hole 111 a connects the air chamber 119 and the space 193.
  • the opening size of the breathing hole 111a in the direction along the axis A2 is longer than the opening size in the circumferential direction of the cylinder 111. That is, the breathing hole 111a has an elliptical shape and a track shape in a plan view of the impact tool 110, the major axis of the breathing hole 111a is arranged in the direction along the axis A2, and the minor axis of the breathing hole 111a is the circle of the cylinder 111. Arranged along the circumferential direction.
  • the plurality of breathing holes 111a shown in FIG. 17 have the same arrangement area along the axis A2.
  • an air chamber 119 is formed between the end surface 118a of the piston 118 and the pressure receiving surface 117a of the striker 117, and the pressure of the air chamber 119 is applied to the pressure receiving surface 117a.
  • the pressure receiving surface 117a is a flat surface perpendicular to the axis A2.
  • the striker 117 has an end surface 117b, and the end surface 117b contacts the small diameter portion 116a.
  • the end surface 117b is a striker 117, and is formed on the side opposite to the pressure receiving surface 117a.
  • a gear housing 114b is provided at the rear end of the cylinder housing 114, and a motor housing 114c is attached to the gear housing 114b.
  • a handle 128 is provided on the motor housing 114c.
  • the electric motor 131 is driven by electric power supplied from a commercial power source, and a power cable 158 is attached to the handle 128.
  • a lever 159 is provided on the handle 128 for switching between a state in which the electric motor 131 is driven and a state in which the electric motor 131 is stopped.
  • An electric motor 131 is accommodated in the motor housing 114c.
  • the output shaft 134 of the electric motor 131 is rotatable about the axis B2.
  • the axis A2 and the axis B2 are at right angles.
  • crankshaft 141 In order to convert the rotational force of the output shaft 134 of the electric motor 131 into the reciprocating force of the piston 118, a crankshaft 141 is rotatably provided in the gear housing 114b.
  • the crankshaft 141 is parallel to the output shaft 134, and a driven gear 142 provided on the crankshaft 141 is engaged with a drive gear 134 a provided on the outer periphery of the output shaft 134.
  • a crankpin 144 is attached to the crankshaft 141 at a position eccentric from the rotation center of the crankshaft 141.
  • One end of a connecting rod 145 is rotatably connected to the crank pin 144, and the other end of the connecting rod 145 is connected to a piston 118. Therefore, when the rotational force of the output shaft 134 is transmitted to the crankshaft 141, the rotational force of the crankshaft 141 is converted into the reciprocating motion force of the piston 118 by the connecting rod 145.
  • the top dead center of the piston 118 is the position where the piston 118 is closest to the crankshaft 141 in the direction along the axis A2, and the bottom dead center of the piston 118 is the direction where the piston 118 is along the axis A2 This is the position farthest from the axis 141.
  • a rotational force transmission shaft 151 is rotatably provided in the gear housing 114b, and a driven gear 153 is provided for the rotational force transmission shaft 151.
  • the driven gear 153 meshes with the drive gear 134a. For this reason, the rotational force of the output shaft 134 is transmitted to the rotational force transmission shaft 151.
  • a bevel gear 155 is provided on the rotational force transmission shaft 151.
  • a cylindrical sleeve 154 is fixed to the outer peripheral surface of the cylinder 111, and a bevel gear 156 is provided on the sleeve 154.
  • Bevel gear 156 meshes with bevel gear 155.
  • the sleeve 154 is rotatably supported by the cylinder housing 114 via a bearing 160. For this reason, the rotational force of the rotational force transmission shaft 151 is transmitted to the cylinder 111 via the bevel gears 155 and 156.
  • the breathing hole 111a is opened immediately before the descending striker 117 strikes the intermediate striker 116, and until the piston 118 reaches the bottom dead center, the air in the air chamber 119 is breathed through the breathing hole 111a. And is discharged into the space 193.
  • the intermediate striker 116 strikes the tip tool T and the piston 118 reaches the bottom dead center, the piston 118 moves from the bottom dead center toward the top dead center.
  • the output shaft 134 of the electric motor 131 is rotating, the striker 117 reciprocates in the cylinder 111 and the striker 117 strikes the intermediate striker 116 intermittently.
  • the rotational force of the output shaft 134 of the electric motor 131 is transmitted to the cylinder 111 via the driven gear 153, the rotational force transmission shaft 151, and the bevel gears 155 and 156, and the cylinder 111 rotates.
  • the rotational force of the cylinder 111 is transmitted to the tip tool T via the tool holder 112.
  • the impact tool 110 transmits the impact force and the rotational force to the tip tool T.
  • the tip tool T is pressed against the object and the striker 117 strikes the intermediate striker 116, a repulsive force is generated.
  • the amount that rises from the position where the striker 117 strikes the intermediate striker 116 is an amount corresponding to the pressure of the air chamber 119 and the repulsive force.
  • the greater the repelling force when the striker 117 strikes the intermediate striker 116 the greater the amount by which the striker 117 rises.
  • the opening area of the breathing hole 111a becomes larger as the descending amount of the impactor 117 at the previous impact is larger. That is, the pressure of the air chamber 119 when the striker 117 rises is the same regardless of the pressure of the air chamber 119 at the time of the previous hit.
  • the arrangement positions of the plurality of breathing holes 111a provided in the cylinder 111 may be the same as the arrangement positions of the plurality of breathing holes 45 shown in FIG. That is, the arrangement positions of the plurality of breathing holes 111a are arranged at different positions in the direction along the axis A2, and the arrangement positions of the breathing holes 111a in the direction along the axis A2 are partially overlapped. *
  • the axis A2 is positioned so that the pressure receiving surface 117a is located in the arrangement region of the breathing hole 111a in the direction along the axis A2.
  • Standards such as the size of the intermediate striker 116 in the direction along the axis A, the size of the striker 117 in the direction along the axis A, and the size of the arrangement region of the breathing hole 11a in the direction along the axis A2 are set.
  • the striking tool 110 is in a state where the axis A2 is vertical and the piston 118 is positioned above the striking element 117.
  • the intermediate striker 116 stops at a position where it is lowered by its own weight, and the striker 117 also descends by its own weight and comes into contact with the intermediate striker 116 and stops.
  • the pressure receiving surface 117a of the striker 117 is in a position along the axis A2 and is out of the arrangement area of the breathing holes 111a, and the plurality of breathing holes 111a are fully opened.
  • the breathing hole 111a also serves to prevent idle shots.
  • the impact tool in Embodiment 2 can also be used for a hammer driver in addition to a hammer drill.
  • the pistons 28 and 118 correspond to the piston of the present invention, and the axes A1 and A2 are
  • the air chamber C1, 119 corresponds to the axis of the present invention
  • the strikers 29, 117 correspond to the striker of the present invention.
  • the cylinders 27 and 111 correspond to the cylinder of the present invention
  • the intermediate strikers 37 and 116 correspond to the intermediate striker of the present invention
  • the breathing holes 45 and 111a correspond to the breathing holes of the present invention
  • the pressure receiving surfaces 46 and 117a correspond to the pressure receiving surfaces of the present invention.
  • the state where the large diameter portion 39 of the intermediate striking member 37 is in contact with the flange portion 35 is the “intermediate striking member is located at a position closest to the striking member in the axial direction”.
  • the state where the large diameter portion 116b of the intermediate impactor 116 is in contact with the stopper 190 indicates that the “intermediate impactor is closest to the impactor in the axial direction” of the present invention.
  • the position state corresponds to “positioned state”.
  • the state in which the intermediate striker 37 is in contact with the stopper 40 is “the intermediate striker is farthest from the striker in the axial direction of the present invention. This corresponds to “a state where the vehicle is stopped at the position”.
  • the impact tool of the present invention includes a structure for supplying the electric power of the storage battery to the electric motor in addition to the structure for supplying the electric power of the commercial power source to the electric motor.
  • the storage battery is detachable from the impact tool, and the storage battery includes a battery pack that houses a plurality of battery cells.
  • the power source that generates the rotational force for reciprocating the piston includes an electric motor, a hydraulic motor, a pneumatic motor, an internal combustion engine, and the like.
  • the hammer drill has a structure for transmitting the driving force of the electric motor to rotate the tip tool. May be.

Abstract

Provided is a striking tool that can stabilize the striking force during a strike regardless of the magnitude of the repelling force applied to the striking element during the previous strike. A striking tool (10) that reciprocally moves a piston (28) along an axis line (A1) and that strikes with a striking element (29) using the pressure of an air chamber (C1) comprises: a cylinder (27) that movably accommodates the piston (28) and the striking element (29); an intermediate striking element (37) that moves along the axis line (A1) by the transmission of the striking force from the striking element (29) and that transmits a striking force to a distal end tool (43); an air hole (45) that is provided in the cylinder (27) and that allows air to enter and exit the air chamber (C1) in response to the movement of the piston (28); and a pressure receiving surface (46) that is provided on the striking element (29) and that receives the air pressure. The pressure receiving surface (46) abutting the intermediate striking element (37) is in the area where the air hole (45) is disposed in a direction along the axis line (A1) when the intermediate striking element (37) is in the position nearest the striking element (29) in the direction of the axis line (A1).

Description

打撃工具Impact tool
本発明は、道路や建造物の破砕等に用いられる打撃工具に関し、特に、ピストンを軸線に沿った方向に往復動させ、ピストンと打撃子との間に形成された流体室の圧力を上昇させて打撃子に打撃力を加える打撃工具に関する。 The present invention relates to a striking tool used for crushing roads and buildings, and in particular, reciprocating a piston in a direction along an axis to increase the pressure of a fluid chamber formed between the piston and the striking element. The present invention relates to a striking tool that applies striking force to the striking element.
従来、ピストンを軸線に沿った方向に往復動させ、ピストンと打撃子との間に形成された流体室の圧力を上昇させて打撃子に打撃力を加える打撃工具が知られており、その打撃工具が特許文献1に記載されている。特許文献1に記載された打撃工具は、筒状のクランクケース及び筒状のシリンダケースを有し、クランクケースとシリンダケースとが同心状に接続されて固定されている。クランクケース内及びシリンダケース内に亘って筒状のシリンダが設けられており、シリンダ内にピストンが軸線に沿った方向に移動可能に収容されている。また、動力源の回転力を往復運動力に変換する運動変換部が設けられており、ピストンは運動変換部に連結されている。  Conventionally, there has been known a striking tool that reciprocates the piston in the direction along the axis, and increases the pressure of the fluid chamber formed between the piston and the striking element to apply a striking force to the striking element. A tool is described in Patent Document 1. The striking tool described in Patent Document 1 has a cylindrical crankcase and a cylindrical cylinder case, and the crankcase and the cylinder case are concentrically connected and fixed. A cylindrical cylinder is provided in the crankcase and the cylinder case, and the piston is accommodated in the cylinder so as to be movable in the direction along the axis. Moreover, the motion conversion part which converts the rotational force of a power source into a reciprocating motion force is provided, and the piston is connected with the motion conversion part. *
さらに、シリンダ内に打撃子が設けられており、打撃子はシリンダ内で軸線に沿った方向に移動可能である。シリンダ内において、ピストンと打撃子との間に流体室が形成されている。また、シリンダを径方向に貫通し、かつ、流体室に通じる呼吸孔が設けられている。さらに、シリンダケースの内部から外部に亘って、筒状の工具ホルダが設けられている。工具ホルダは、シリンダと同心状に配置されており、工具ホルダ内に中間打撃子が設けられている。中間打撃子は軸線に沿った方向に移動可能であり、工具ホルダに先端工具が取り付けられている。  Further, a striker is provided in the cylinder, and the striker is movable in the direction along the axis within the cylinder. In the cylinder, a fluid chamber is formed between the piston and the striker. In addition, a breathing hole that penetrates the cylinder in the radial direction and communicates with the fluid chamber is provided. Furthermore, a cylindrical tool holder is provided from the inside to the outside of the cylinder case. The tool holder is arranged concentrically with the cylinder, and an intermediate striker is provided in the tool holder. The intermediate striker is movable in a direction along the axis, and a tip tool is attached to the tool holder. *
特許文献1に記載された打撃工具は、動力源の回転力がピストンの往復運動力に変換される。ピストンが打撃子から離れる向きで動作し、呼吸孔が負圧となる。すると、打撃子がピストンに近づく向きで動作し、呼吸孔が打撃子により閉じられる。次いで、ピストンが打撃子に近づく向きで動作すると空気室の圧力が上昇し、打撃子に打撃力が加えられる。この打撃力は中間打撃子を経由して先端工具に伝達される。打撃子が中間打撃子を打撃すると、呼吸孔が開かれて流体室の圧力が低下する。その後、次回の打撃に備えてピストン及び打撃子が中間打撃子から離れる向きに動作する。このように、特許文献1に記載された打撃工具は、打撃子が呼吸孔を開閉して流体室の圧力が調整され、打撃子が下降して中間打撃子を打撃する前回の打撃動作と、前回の打撃後、次回の打撃に備えて打撃子が上昇する動作と、が切り替えられる。 In the impact tool described in Patent Document 1, the rotational force of the power source is converted into the reciprocating force of the piston. The piston moves in a direction away from the striker, and the breathing hole becomes negative pressure. Then, the striker moves in a direction approaching the piston, and the breathing hole is closed by the striker. Next, when the piston moves in a direction approaching the striker, the pressure in the air chamber increases, and an impact force is applied to the striker. This striking force is transmitted to the tip tool via the intermediate striking element. When the striker strikes the intermediate striker, the breathing hole is opened and the pressure in the fluid chamber decreases. Thereafter, the piston and the striker move in a direction away from the intermediate striker in preparation for the next strike. Thus, in the impact tool described in Patent Document 1, the striker opens and closes the breathing hole to adjust the pressure of the fluid chamber, and the striker descends to strike the intermediate striker, After the previous hit, the operation of raising the striker in preparation for the next hit is switched.
特開2002-127043号公報JP 2002-127043 A
上記の特許文献1に記載された打撃工具においては、第1回目の打撃時における反発力が異なると、第1回目の打撃後に打撃子が軸線に沿った方向に上昇する量が変化する。つまり、第1回目の打撃時の反発力が異なると、その後に、打撃子が上昇した場合において、空気室の空気圧も異なる。すると、ピストンを下降させて第2回目の打撃を行うと、第2回目の打撃時に打撃子が下降する量も異なり、中間打撃子に加わる打撃力も異なる。  In the impact tool described in the above-mentioned Patent Document 1, if the repulsive force at the first impact is different, the amount by which the impactor rises in the direction along the axis changes after the first impact. That is, if the repulsive force at the time of the first impact is different, the air pressure of the air chamber is also different when the striker is subsequently raised. Then, when the piston is lowered and the second impact is performed, the amount of the impactor descending at the second impact is different, and the impact force applied to the intermediate impactor is also different. *
しかし、特許文献1に記載された打撃工具は、第2回目の打撃時に、打撃子は呼吸孔を全開としているため、第2回目の打撃後における空気室の圧力、つまり、残圧も異なる。その後、ピストン及び打撃子が上昇して、打撃子が上昇する位置は、空気室の残圧により異なる。これは、空気室の残圧が、打撃子の上昇を妨げる力となるからである。その結果、ピストンが下降して第3回目の打撃を行う場合に、空気室の空気圧が異なり、打撃力が不安定となる可能性があった。  However, the impact tool described in Patent Document 1 has the breathing hole fully opened at the time of the second impact, and therefore the pressure of the air chamber after the second impact, that is, the residual pressure, is also different. Thereafter, the position where the piston and the striker rise and the striker rises depends on the residual pressure in the air chamber. This is because the residual pressure in the air chamber becomes a force that prevents the striker from rising. As a result, when the piston descends to perform the third impact, the air pressure in the air chamber is different, and the impact force may become unstable. *
本発明の目的は、前回の打撃時における打撃力に関わりなく、安定的な打撃力を得ることの可能な打撃工具を提供することにある。 An object of the present invention is to provide a striking tool capable of obtaining a stable striking force regardless of the striking force at the time of the previous striking.
一実施の形態は、ピストンを軸線方向に往復動させ、前記ピストンと打撃子との間に形成された流体室の圧力を上昇させて前記打撃子に打撃力を加える打撃工具であって、前記ピストン及び前記打撃子を前記軸線方向に移動可能に収容するシリンダと、前記打撃子から打撃力が伝達されて前記軸線方向に動作し、かつ、対象物に接触する先端工具に打撃力を伝達する中間打撃子と、前記シリンダに設けられ、かつ、前記ピストンの動作に応じて前記流体室に流体を出入りさせる呼吸孔と、前記打撃子に設けられて前記流体室の圧力を受ける受圧面と、を有し、前記中間打撃子が前記軸線方向で前記打撃子に最も近い位置に位置している状態で、前記中間打撃子に当接した前記打撃子の前記受圧面は、前記軸線方向における前記呼吸孔の配置領域内に位置する。 One embodiment is a striking tool that reciprocates a piston in an axial direction to increase a pressure of a fluid chamber formed between the piston and the striking element to apply a striking force to the striking element, A cylinder that accommodates the piston and the striking element so as to be movable in the axial direction, and a striking force is transmitted from the striking element to operate in the axial direction, and the striking force is transmitted to a tip tool that contacts the object. An intermediate striker, a breathing hole provided in the cylinder and allowing fluid to enter and exit from the fluid chamber according to the operation of the piston; a pressure receiving surface provided in the striker and receiving the pressure of the fluid chamber; The pressure receiving surface of the striker that is in contact with the intermediate striker is in the axial direction in a state where the intermediate striker is positioned at a position closest to the striker in the axial direction. Position of breathing hole Located within.
本発明の打撃工具によれば、前回の打撃時に流体室の圧力が異なり、前回の打撃時における打撃子の移動量が異なると、打撃子により開かれる呼吸孔の開口面積が変化する。このため、前回の打撃後における流体室の圧力が同じとなり、前回の打撃後に打撃子を移動する際に、打撃子が軸線に沿った方向で同じ位置まで移動し、次回の打撃時に生じる打撃力が安定する。 According to the striking tool of the present invention, when the pressure of the fluid chamber is different at the previous striking and the amount of movement of the striking member at the previous striking is different, the opening area of the breathing hole opened by the striking member changes. For this reason, the pressure in the fluid chamber after the previous strike is the same, and when the striker is moved after the previous strike, the striker moves to the same position in the direction along the axis, and the impact force generated at the next strike Is stable.
本発明の実施の形態1における打撃工具の正面断面図である。It is front sectional drawing of the striking tool in Embodiment 1 of this invention. 図1に示す打撃工具の部分的な正面断面図である。It is a partial front sectional view of the impact tool shown in FIG. 図1に示す打撃工具の部分的な正面断面図である。It is a partial front sectional view of the impact tool shown in FIG. 図1に示す打撃工具の部分的な正面断面図である。It is a partial front sectional view of the impact tool shown in FIG. 図1に示す打撃工具の部分的な正面断面図である。It is a partial front sectional view of the impact tool shown in FIG. 図1に示す打撃工具の部分的な正面断面図である。It is a partial front sectional view of the impact tool shown in FIG. (A)は図3の要部を示す拡大断面図、(B)は図6の要部を示す拡大断面図である。(A) is an expanded sectional view which shows the principal part of FIG. 3, (B) is an expanded sectional view which shows the principal part of FIG. 図1に示す打撃工具の空打ち防止作用を説明する正面断面図である。FIG. 2 is a front cross-sectional view illustrating an action of preventing an impact of the impact tool shown in FIG. 1. 図1に示す打撃工具のシリンダに設ける呼吸孔の変更例を示す正面断面図である。It is front sectional drawing which shows the example of a change of the breathing hole provided in the cylinder of the impact tool shown in FIG. 比較例の打撃工具の部分的な正面断面図である。It is a partial front sectional view of an impact tool of a comparative example. 比較例の打撃工具の部分的な正面断面図である。It is a partial front sectional view of an impact tool of a comparative example. 比較例の打撃工具の部分的な正面断面図である。It is a partial front sectional view of an impact tool of a comparative example. 比較例の打撃工具の部分的な正面断面図である。It is a partial front sectional view of an impact tool of a comparative example. (A)は本発明の打撃工具の挙動を示すタイムチャートであり、(B)は比較例の打撃工具の挙動を示すタイムチャートである。(A) is a time chart which shows the behavior of the impact tool of this invention, (B) is a time chart which shows the behavior of the impact tool of a comparative example. (A)は本発明の打撃工具の挙動を示すタイムチャートであり、(B)は比較例の打撃工具の挙動を示すタイムチャートである。(A) is a time chart which shows the behavior of the impact tool of this invention, (B) is a time chart which shows the behavior of the impact tool of a comparative example. 本発明の実施の形態2における打撃工具の正面断面図である。It is front sectional drawing of the impact tool in Embodiment 2 of this invention. 図16に示す打撃工具の部分的な正面断面図である。FIG. 17 is a partial front sectional view of the impact tool shown in FIG. 16.
(実施の形態1) 以下、本発明が適用された打撃工具を図面に基づいて詳細に説明する。なお、実施の形態1を説明するための全図において、同一部には原則として同一の符号を付し、その繰り返しの説明は省略する。 (Embodiment 1) Hereinafter, an impact tool to which the present invention is applied will be described in detail with reference to the drawings. Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the first embodiment, and the repetitive description thereof will be omitted.
図1に示す打撃工具10は、ハウジング11と、ハウジング11に連続するシリンダケース12とを有する。ハウジング11内に電動モータ13が設けられている。電動モータ13は、電気エネルギを出力軸14の運動エネルギに変換する動力源である。電動モータ13の出力軸14にピニオンギヤ15が設けられている。また、ハウジング11内に中間軸16が設けられており、中間軸16に第1ギヤ17及び第2ギヤ18が設けられている。第1ギヤ17の歯数は、ピニオンギヤ15の歯数及び第2ギヤ18の歯数よりも多い。第1ギヤ17はピニオンギヤ15と噛み合っている。また、ハウジング11内にクランクシャフト19が設けられており、クランクシャフト19は第3ギヤ20を有する。第3ギヤ20の歯数は第2ギヤ18の歯数よりも多く、第3ギヤ20は第2ギヤ18と噛み合っている。クランクシャフト19は、回転中心線から偏心した位置にピン21を有している。 A striking tool 10 shown in FIG. 1 includes a housing 11 and a cylinder case 12 continuous with the housing 11. An electric motor 13 is provided in the housing 11. The electric motor 13 is a power source that converts electric energy into kinetic energy of the output shaft 14. A pinion gear 15 is provided on the output shaft 14 of the electric motor 13. An intermediate shaft 16 is provided in the housing 11, and a first gear 17 and a second gear 18 are provided on the intermediate shaft 16. The number of teeth of the first gear 17 is larger than the number of teeth of the pinion gear 15 and the number of teeth of the second gear 18. The first gear 17 meshes with the pinion gear 15. A crankshaft 19 is provided in the housing 11, and the crankshaft 19 has a third gear 20. The number of teeth of the third gear 20 is larger than the number of teeth of the second gear 18, and the third gear 20 meshes with the second gear 18. The crankshaft 19 has a pin 21 at a position eccentric from the rotation center line.
ハウジング11の外壁に2本のハンドル22,23が同心状に固定されており、一方のハンドル23にレバー24が設けられている。レバー24は作業者により操作される。ハンドル23には電力ケーブル25が接続されており、電力ケーブル25は商用電源に接続される。レバー24が操作されると、電力ケーブル25を介して電動モータ13に電力が供給され、出力軸14が回転する。出力軸14の回転力は、第1ギヤ17、第2ギヤ18を介して第3ギヤ20に伝達され、クランクシャフト19が回転する。 Two handles 22 and 23 are concentrically fixed to the outer wall of the housing 11, and a lever 24 is provided on one handle 23. The lever 24 is operated by an operator. A power cable 25 is connected to the handle 23, and the power cable 25 is connected to a commercial power source. When the lever 24 is operated, power is supplied to the electric motor 13 via the power cable 25, and the output shaft 14 rotates. The rotational force of the output shaft 14 is transmitted to the third gear 20 via the first gear 17 and the second gear 18, and the crankshaft 19 rotates.
第1ギヤ17、第2ギヤ18、第3ギヤ20により減速機26が構成され、出力軸14からクランクシャフト19に回転力を伝達すると、クランクシャフト19の回転速度は、出力軸14の回転速度よりも低速となり、かつ、回転力が増幅される。 When the reduction gear 26 is configured by the first gear 17, the second gear 18, and the third gear 20, and the rotational force is transmitted from the output shaft 14 to the crankshaft 19, the rotational speed of the crankshaft 19 is the rotational speed of the output shaft 14. And the rotational force is amplified.
シリンダケース12は筒状であり、シリンダケース12内に筒状のシリンダ27が設けられている。シリンダ27は金属製であり、シリンダケース12及びシリンダ27は同心状に配置されている。打撃工具10の正面視で、シリンダケース12及びシリンダ27の軸線A1は、電動モータ13の出力軸14の回転中心線B1に対して直交している。シリンダ27内にピストン28が収納されており、ピストン28は軸線A1に沿った方向に動作可能である。ピストン28にコンロッド48が連結されており、コンロッド48はピン21に対して回転可能に連結されている。このため、クランクシャフト19が回転すると、ピストン28はシリンダ27内を軸線A1に沿った方向に往復動する。 The cylinder case 12 has a cylindrical shape, and a cylindrical cylinder 27 is provided in the cylinder case 12. The cylinder 27 is made of metal, and the cylinder case 12 and the cylinder 27 are arranged concentrically. In the front view of the impact tool 10, the axis A <b> 1 of the cylinder case 12 and the cylinder 27 is orthogonal to the rotation center line B <b> 1 of the output shaft 14 of the electric motor 13. A piston 28 is accommodated in the cylinder 27, and the piston 28 is operable in a direction along the axis A1. A connecting rod 48 is connected to the piston 28, and the connecting rod 48 is rotatably connected to the pin 21. For this reason, when the crankshaft 19 rotates, the piston 28 reciprocates in the cylinder 27 in the direction along the axis A1.
また、シリンダ27内に打撃子29が設けられており、打撃子29は軸線A1に沿った方向に移動可能である。シリンダ27内であって、ピストン28の端面28aと、打撃子29との間に空気室C1が形成される。さらに、シリンダケース12であって、軸線A1に沿った方向でハウジング11とは反対側の端部にホルダ30が固定されている。ホルダ30は、固定要素であるねじ部材31を用いてシリンダケース12に固定されている。ホルダ30は支持孔32を有し、ホルダ30は、シリンダ27と同心状に配置されている。 Further, a striker 29 is provided in the cylinder 27, and the striker 29 is movable in a direction along the axis A1. An air chamber C <b> 1 is formed in the cylinder 27 between the end face 28 a of the piston 28 and the striker 29. Further, the holder 30 is fixed to the end of the cylinder case 12 opposite to the housing 11 in the direction along the axis A1. The holder 30 is fixed to the cylinder case 12 using a screw member 31 that is a fixing element. The holder 30 has a support hole 32, and the holder 30 is disposed concentrically with the cylinder 27.
ホルダ30の支持孔32内から、シリンダケース12内に亘ってスリーブ33が設けられている。スリーブ33は金属製であり、スリーブ33は、筒部34と、筒部34の外周面から、筒部34の半径方向で外側に向けて張り出したフランジ部35と、を有する。フランジ部35がホルダ30の支持孔32内に配置され、筒部34はシリンダケース12内に配置されている。また、軸線A1に沿った方向で、フランジ部35とシリンダケース12との間に、ダンパ36が介在されている。ダンパ36はゴム状弾性材により一体成形されている。スリーブ33は、軸線A1に沿った方向で、ダンパ36の弾性変形する範囲内において移動可能である。 A sleeve 33 is provided from the support hole 32 of the holder 30 to the inside of the cylinder case 12. The sleeve 33 is made of metal, and the sleeve 33 includes a cylindrical portion 34 and a flange portion 35 projecting outward from the outer peripheral surface of the cylindrical portion 34 in the radial direction of the cylindrical portion 34. The flange portion 35 is disposed in the support hole 32 of the holder 30, and the cylinder portion 34 is disposed in the cylinder case 12. In addition, a damper 36 is interposed between the flange portion 35 and the cylinder case 12 in a direction along the axis A1. The damper 36 is integrally formed of a rubber-like elastic material. The sleeve 33 is movable in a direction along the axis A <b> 1 within a range where the damper 36 is elastically deformed.
シリンダ27内からホルダ30内に亘り、中間打撃子37が設けられている。中間打撃子37は、金属製であり、中間打撃子37は、円柱状の小径部38と、小径部38に連続された大径部39と、を有する。大径部39の外径は、小径部38の外径よりも大きく、小径部38は、筒部34内及びシリンダ27内に配置されている。大径部39は、ホルダ30の支持孔32内に配置されている。大径部39の外径は、筒部34の内径よりも大きい。中間打撃子37は、スリーブ33に対して軸線A1に沿った方向に移動可能であり、中間打撃子37が、シリンダケース12内に向けて移動すると、大径部39がフランジ部35に接触してスリーブ33が停止する。  An intermediate striker 37 is provided from the cylinder 27 to the holder 30. The intermediate striker 37 is made of metal, and the intermediate striker 37 includes a columnar small-diameter portion 38 and a large-diameter portion 39 that is continuous with the small-diameter portion 38. The outer diameter of the large diameter portion 39 is larger than the outer diameter of the small diameter portion 38, and the small diameter portion 38 is disposed in the cylinder portion 34 and the cylinder 27. The large diameter portion 39 is disposed in the support hole 32 of the holder 30. The outer diameter of the large diameter portion 39 is larger than the inner diameter of the cylindrical portion 34. The intermediate striker 37 is movable in the direction along the axis A1 with respect to the sleeve 33. When the intermediate striker 37 moves toward the inside of the cylinder case 12, the large diameter portion 39 comes into contact with the flange portion 35. The sleeve 33 stops. *
一方、ホルダ30であって、シリンダケース12とは反対側の端部にストッパ40が設けられており、ストッパ40にチャック41が取り付けられている。チャック41は筒状である。また、ストッパ40に軸孔42が設けられており、軸孔42の内径は、ホルダ30の支持孔32の内径よりも小さい。中間打撃子37がチャック41に近づく向きで軸線A1に沿った方向に移動すると、大径部39がストッパ40に接触して中間打撃子37が停止する。 On the other hand, a stopper 40 is provided at the end of the holder 30 opposite to the cylinder case 12, and a chuck 41 is attached to the stopper 40. The chuck 41 is cylindrical. The stopper 40 is provided with a shaft hole 42, and the inner diameter of the shaft hole 42 is smaller than the inner diameter of the support hole 32 of the holder 30. When the intermediate striker 37 moves in the direction along the axis A <b> 1 so as to approach the chuck 41, the large diameter portion 39 comes into contact with the stopper 40 and the intermediate striker 37 stops.
さらに、チャック41は先端工具43を保持している。先端工具43は金属材料を棒状に成形したものであり、先端工具43は、支持孔32及び軸孔42及びチャック41の内部から、チャック41の外部に亘って配置されている。先端工具43におけるチャック41の外部側の端部44は楔形となっている。先端工具43は、軸線A1に沿った方向に移動可能であり、先端工具43であって支持孔32に配置された箇所は、中間打撃子37に接触する。 Further, the chuck 41 holds a tip tool 43. The tip tool 43 is formed by molding a metal material into a rod shape, and the tip tool 43 is arranged from the inside of the support hole 32, the shaft hole 42 and the chuck 41 to the outside of the chuck 41. An end 44 on the outside of the chuck 41 in the tip tool 43 has a wedge shape. The tip tool 43 is movable in the direction along the axis A <b> 1, and the portion of the tip tool 43 disposed in the support hole 32 contacts the intermediate striker 37.
さらに、シリンダ27を半径方向に貫通する呼吸孔45が、複数個設けられている。シリンダ27とシリンダケース12との間に空間D1が形成されており、呼吸孔45は空間D1と空気室C1とをつなぐ。呼吸孔45は、流体としての空気を空気室C1に出入りさせる通路である。空間D1は、シリンダケース12の外部に通じている。呼吸孔45は、シリンダ27の円周方向における開口寸法よりも、軸線A1に沿った方向の開口寸法の方が長い。つまり、呼吸孔45を正面視で展開すると、楕円形状またはトラック形状であり、呼吸孔45の長軸は、軸線A1に沿った方向に配置され、呼吸孔45の短軸は、シリンダ27の円周方向に沿って配置されている。複数の呼吸孔45は、軸線A1に沿った方向の寸法が同一であり、かつ、軸線A1に沿った方向における配置領域も同一である。  Further, a plurality of breathing holes 45 penetrating the cylinder 27 in the radial direction are provided. A space D1 is formed between the cylinder 27 and the cylinder case 12, and the breathing hole 45 connects the space D1 and the air chamber C1. The breathing hole 45 is a passage through which air as a fluid enters and exits the air chamber C1. The space D1 communicates with the outside of the cylinder case 12. The opening size of the breathing hole 45 in the direction along the axis A <b> 1 is longer than the opening size in the circumferential direction of the cylinder 27. That is, when the breathing hole 45 is unfolded in a front view, the breathing hole 45 has an elliptical shape or a track shape, the major axis of the breathing hole 45 is arranged in the direction along the axis A1, and the minor axis of the breathing hole 45 is the circle of the cylinder 27. Arranged along the circumferential direction. The plurality of breathing holes 45 have the same dimension in the direction along the axis A1 and the same arrangement area in the direction along the axis A1. *
また、打撃子29は円柱形状であり、打撃子29には、空気室C1を形成する受圧面46が設けられている。受圧面46は軸線A1に対して垂直な端面であり、受圧面46は空気室C1の圧力を受ける。打撃子29は、受圧面46とは反対側に平坦な端面29aを有する。端面29aは、軸線A1に沿った方向で受圧面46とは反対の位置にある。さらに、中間打撃子37が軸線A1に沿った方向で打撃子29に最も近い位置に位置し、かつ、打撃子29が中間打撃子37に接した状態で、受圧面46は、軸線A1に沿った方向における呼吸孔45の配置領域内に位置する。  Further, the striker 29 has a cylindrical shape, and the striker 29 is provided with a pressure receiving surface 46 that forms an air chamber C1. The pressure receiving surface 46 is an end surface perpendicular to the axis A1, and the pressure receiving surface 46 receives the pressure of the air chamber C1. The striker 29 has a flat end surface 29 a on the side opposite to the pressure receiving surface 46. The end surface 29a is at a position opposite to the pressure receiving surface 46 in the direction along the axis A1. Further, in a state where the intermediate striker 37 is located closest to the striker 29 in the direction along the axis A1 and the striker 29 is in contact with the intermediate striker 37, the pressure receiving surface 46 is along the axis A1. It is located in the arrangement area of the breathing hole 45 in the direction. *
ここで、「中間打撃子37が軸線方向で打撃子29に最も近い位置に位置し」とは、大径部39がフランジ部35に接触して停止している中間打撃子37の位置を意味する。そして、空気室C1の圧力が上昇して打撃子29が中間打撃子37を打撃した状態で、受圧面46が軸線A1に沿った方向における呼吸孔45の配置領域内に位置する。つまり、呼吸孔45は軸線A1に沿った方向で一部が開かれ、かつ、全開にならない。 Here, “the intermediate striker 37 is positioned closest to the striker 29 in the axial direction” means the position of the intermediate striker 37 where the large-diameter portion 39 is in contact with the flange portion 35 and stopped. To do. And the pressure receiving surface 46 is located in the arrangement | positioning area | region of the breathing hole 45 in the direction along the axis A1 in the state which the pressure of the air chamber C1 raised and the striker 29 struck the intermediate striker 37. That is, the breathing hole 45 is partially opened in the direction along the axis A1 and is not fully opened.
本実施形態の打撃工具10は、打撃子29が中間打撃子37を打撃した場合に、受圧面46が軸線A1に沿った方向における呼吸孔45の配置領域内に位置するように、軸線A1に沿った方向における中間打撃子37の寸法、軸線A1に沿った方向における打撃子29の寸法、軸線A1に沿った方向における呼吸孔45の配置領域の寸法等の規格が設定されている。なお、受圧面46が軸線A1に沿った方向における呼吸孔45の配置領域内に位置するか否かは上記の条件の他、対象物W1の硬度も関与するため、予め実験シミュレーション等を行って上記規格を設定する。  The striking tool 10 according to the present embodiment has the axis A1 so that the pressure receiving surface 46 is located in the arrangement region of the breathing hole 45 in the direction along the axis A1 when the striking element 29 strikes the intermediate striking element 37. Standards such as the size of the intermediate striker 37 in the direction along the axis, the size of the striker 29 in the direction along the axis A1, and the size of the arrangement region of the breathing hole 45 in the direction along the axis A1 are set. Note that whether or not the pressure-receiving surface 46 is located within the arrangement region of the breathing hole 45 in the direction along the axis A1 is related to the hardness of the object W1 in addition to the above conditions. Set the above standards. *
次に、作業者が打撃工具10を使用する例を説明する。まず、先端工具43の端部44を対象物W1に押し付け、レバー24を操作すると、電動モータ13の出力軸14が回転し、ピストン28がシリンダ27内を軸線A1に沿った方向に往復動作する。つまり、出力軸14の回転力は、ピストン28の往復動力に変換される。 Next, an example in which the worker uses the impact tool 10 will be described. First, when the end portion 44 of the tip tool 43 is pressed against the object W1 and the lever 24 is operated, the output shaft 14 of the electric motor 13 rotates and the piston 28 reciprocates in the cylinder 27 in the direction along the axis A1. . That is, the rotational force of the output shaft 14 is converted into the reciprocating power of the piston 28.
ピストン28が上昇すると空気室C1内の圧力が、空間D1の圧力よりも低下し、空間D1の空気は、呼吸孔45を通り空気室C1に空気が吸入されるとともに、打撃子29が上昇する。ピストン28が上昇するとは、軸線A1に沿った方向でクランクシャフト19に近づく向きで移動することである。打撃子29が上昇するとは、軸線A1に沿った方向で中間打撃子37から離れる向きで移動することである。  When the piston 28 rises, the pressure in the air chamber C1 becomes lower than the pressure in the space D1, and the air in the space D1 passes through the breathing hole 45 and is sucked into the air chamber C1, and the striker 29 rises. . The movement of the piston 28 means that the piston 28 moves in a direction along the axis A1 so as to approach the crankshaft 19. Raising the striker 29 means moving in a direction away from the intermediate striker 37 in the direction along the axis A1. *
打撃子29が上昇すると、呼吸孔45は打撃子29により閉じられ、空気室C1に空気は吸い込まれなくなる。また、ピストン28が上死点に到達し、かつ、ピストン28が上死点から下降すると、空気室C1内の圧力が上昇し、空気室C1の圧力に応じて打撃子29に打撃力が加わる。このため、打撃子29は中間打撃子37に近づく向きで下降し、打撃子29が中間打撃子37に衝突する。中間打撃子37に加えられた打撃力は、先端工具43を介して対象物W1に伝達され、対象物W1が砕かれる。  When the striker 29 rises, the breathing hole 45 is closed by the striker 29 and air is not sucked into the air chamber C1. When the piston 28 reaches the top dead center and the piston 28 descends from the top dead center, the pressure in the air chamber C1 rises and a striking force is applied to the striker 29 according to the pressure in the air chamber C1. . For this reason, the striker 29 descends in a direction approaching the intermediate striker 37, and the striker 29 collides with the intermediate striker 37. The striking force applied to the intermediate striking element 37 is transmitted to the object W1 via the tip tool 43, and the object W1 is crushed. *
呼吸孔45は、打撃子29が中間打撃子37を打撃する直前に開かれ、ピストン28が下死点に到達するまでの間、空気室C1の空気は呼吸孔45を通り空間D1へ排出される。中間打撃子37から先端工具43に打撃力が伝達され、かつ、ピストン28が下死点に到達すると、ピストン28は下死点から上死点に向けて移動する。以後、電動モータ13の出力軸14が回転している間、ピストン28の上昇及び下降、打撃子29の上昇及び下降を繰り返す。したがって、打撃子29の打撃力は、中間打撃子37を介して間欠的に先端工具43に伝達される。 The breathing hole 45 is opened immediately before the striker 29 strikes the intermediate striker 37, and until the piston 28 reaches the bottom dead center, the air in the air chamber C1 passes through the breathing hole 45 and is discharged into the space D1. The When the striking force is transmitted from the intermediate striker 37 to the tip tool 43 and the piston 28 reaches the bottom dead center, the piston 28 moves from the bottom dead center toward the top dead center. Thereafter, while the output shaft 14 of the electric motor 13 is rotating, the piston 28 is repeatedly raised and lowered, and the striker 29 is raised and lowered. Therefore, the striking force of the striker 29 is intermittently transmitted to the tip tool 43 via the intermediate striker 37.
ところで、先端工具43が対象物W1に押し付けられている状態で、打撃子29が中間打撃子37を打撃すると反発力が生じる。このため、打撃子29が中間打撃子37を第1回目に打撃した後に上昇する量は、空気室C1の圧力、上記反発力に応じた量となる。具体的には、打撃子29が中間打撃子37を第1回目に打撃した場合の反発力が大きいほど、打撃子29が、中間打撃子37を打撃した後に上昇する量は大きくなる。  By the way, if the striker 29 strikes the intermediate striker 37 in a state where the tip tool 43 is pressed against the object W1, a repulsive force is generated. For this reason, the amount that rises after the striker 29 strikes the intermediate striker 37 for the first time is an amount corresponding to the pressure of the air chamber C1 and the repulsive force. Specifically, the greater the repulsion force when the striker 29 strikes the intermediate striker 37 for the first time, the greater the amount that the striker 29 rises after hitting the intermediate striker 37. *
例えば、対象物W1の打撃面の硬度が基準値である場合、打撃子29は、中間打撃子37を第1回目に打撃した後、図2のように、端面29aが基準位置E0に到達するまで上昇する。これに対して、対象物W1の打撃面の硬度が基準値よりも高い場合は、打撃子29は、中間打撃子37を第1回目に打撃した後、端面29aが基準位置E0よりも上の第1位置E1に到達する。基準位置E0及び第1位置E1は、共に軸線A1に沿った方向の位置である。上死点にあるピストン28に対して、第1位置E1は基準位置E0よりも差dy分、近い。 For example, when the hardness of the strike surface of the object W1 is the reference value, the striker 29 strikes the intermediate striker 37 for the first time, and then the end surface 29a reaches the reference position E0 as shown in FIG. To rise. On the other hand, when the hardness of the striking surface of the object W1 is higher than the reference value, the striking element 29 strikes the intermediate striking element 37 for the first time, and then the end surface 29a is above the reference position E0. The first position E1 is reached. Both the reference position E0 and the first position E1 are positions in the direction along the axis A1. The first position E1 is closer to the piston 28 at the top dead center by the difference dy than the reference position E0.
第1回目の打撃後に、打撃子29が下降して第2回目の打撃を行うと、端面29aが第1位置E1にある打撃子29が下降した場合の空気室C1の圧力は、端面29aが基準位置E0にある打撃子29が下降した場合の空気室C1の圧力よりも高くなる。これは、打撃子29がピストン28に近い位置に停止しているほど、ピストン28の下降による圧縮率が高くなるからである。このため、端面29aが第1位置E1にある打撃子29が下降して第2回目の打撃を行う際の打撃力は、端面29aが基準位置E0にある打撃子29が下降して第2回目の打撃を行う際の打撃力よりも大きくなる。  When the striker 29 is lowered and the second strike is performed after the first strike, the pressure in the air chamber C1 when the striker 29 with the end face 29a at the first position E1 is lowered is the end face 29a. It becomes higher than the pressure of the air chamber C1 when the striker 29 at the reference position E0 is lowered. This is because the compression rate due to the lowering of the piston 28 increases as the striker 29 stops at a position closer to the piston 28. For this reason, the striking force when the striker 29 with the end face 29a at the first position E1 descends to perform the second strike is the second strike of the striker 29 with the end face 29a at the reference position E0. It becomes larger than the striking force when performing the hit. *
その結果、図3のように打撃子29が下降して第2回目の打撃を行った際に、呼吸孔45が開かれる面積は、端面29aが第1位置E1にある打撃子29が下降した場合の方が、端面29aが基準位置E0にある打撃子29が下降した場合よりも大きくなる。 As a result, when the striker 29 is lowered and the second blow is performed as shown in FIG. 3, the area where the breathing hole 45 is opened is the striker 29 having the end surface 29 a at the first position E1. The case becomes larger than the case where the striker 29 having the end surface 29a at the reference position E0 is lowered.
このため、空気室C1から空間D1へ排出される空気量は、端面29aが第1位置E1にある打撃子29が下降した場合の方が、端面29aが基準位置E0にある打撃子29が下降した場合よりも多くなる。したがって、第2回目の打撃を行った後における空気室C1の圧力は、端面29aが第1位置E1にある打撃子29が下降した場合と、端面29aが基準位置E0にある打撃子29が下降した場合とで、同じになる。  For this reason, the amount of air discharged from the air chamber C1 to the space D1 is lower when the striker 29 with the end surface 29a at the first position E1 is lowered when the striker 29 with the end surface 29a at the reference position E0 is lowered. More than if you did. Accordingly, the pressure in the air chamber C1 after the second impact is made when the striker 29 whose end face 29a is at the first position E1 is lowered and when the striker 29 whose end face 29a is at the reference position E0 is lowered. It will be the same as the case. *
そして、第2回目の打撃が終わった後に、ピストン28が図3に示す下死点から上昇して空気室C1が負圧となり、打撃子29がピストン28に近づく向きで動作する。すると、第2回目の打撃前に、図2に示す打撃子29の端面29aが、基準位置E0または第1位置E1のいずれにあったとしても、第2回目の打撃後に上昇する打撃子29は、図4のように、端面29aが同じ基準位置E0まで到達する。つまり、第2回目の打撃前における打撃子29の位置に関わりなく、第3回目の打撃前における空気室C1の圧力は同じとなる。したがって、前回、つまり、第2回目の打撃力に関わりなく、図4に示すピストン28が下降して行う次回の打撃、つまり、第3回目の打撃時に、打撃子29から中間打撃子37に加えられる打撃力が安定する。 Then, after the second impact is finished, the piston 28 rises from the bottom dead center shown in FIG. 3, the air chamber C1 becomes negative pressure, and the striker 29 operates in a direction approaching the piston 28. Then, before the second impact, regardless of whether the end face 29a of the impactor 29 shown in FIG. 2 is at the reference position E0 or the first position E1, the impactor 29 rising after the second impact is As shown in FIG. 4, the end face 29a reaches the same reference position E0. That is, the pressure in the air chamber C1 before the third impact is the same regardless of the position of the striker 29 before the second impact. Therefore, regardless of the previous impact, that is, the second impact performed by the lowering of the piston 28 shown in FIG. The hitting force is stabilized.
さらに、対象物W1の打撃面の硬度が基準値よりも低い場合における打撃工具10の作用を、図4~図6を参照して説明する。例えば、対象物W1の打撃面の硬度が基準値よりも低い場合は、打撃子29が中間打撃子37を第1回目に打撃すると、図5のように、端面29aが基準位置E0よりも下の第2位置E2に到達する。第2位置E2も軸線A1に沿った方向の位置である。図5において、第2位置E2は、上死点にあるピストン28に対して、基準位置E0よりも差dy分、遠い。これは、対象物W1の打撃面の硬度が基準値よりも低い場合の反発力は、対象物W1の打撃面の硬度が基準値である場合の反発力よりも小さいからである。 Further, the operation of the impact tool 10 when the hardness of the impact surface of the object W1 is lower than the reference value will be described with reference to FIGS. For example, when the hardness of the striking surface of the object W1 is lower than the reference value, when the striker 29 strikes the intermediate striker 37 for the first time, the end face 29a is below the reference position E0 as shown in FIG. The second position E2 is reached. The second position E2 is also a position in the direction along the axis A1. In FIG. 5, the second position E2 is far from the reference position E0 by the difference dy with respect to the piston 28 at the top dead center. This is because the repulsive force when the hardness of the striking surface of the target object W1 is lower than the reference value is smaller than the repulsive force when the hardness of the striking surface of the target object W1 is the standard value.
次いで、図5に示すピストン28が上死点から下降して第2回目の打撃を行うと、端面29aが第2位置E2にある打撃子29が下降した場合における空気室C1の圧力は、端面29aが基準位置E0にある打撃子29が下降した場合における空気室C1の圧力よりも低い。これは、ピストン28と打撃子29との間隔が長いほど、ピストン28の移動による圧縮率が低くなるからである。  Next, when the piston 28 shown in FIG. 5 descends from the top dead center and performs the second impact, the pressure in the air chamber C1 when the striker 29 with the end face 29a at the second position E2 descends is the end face. This is lower than the pressure in the air chamber C1 when the striker 29 with 29a at the reference position E0 descends. This is because the longer the distance between the piston 28 and the striker 29, the lower the compression ratio due to the movement of the piston 28. *
このため、図6のように、打撃子29を下降させて第2回目の打撃を行うと、第2回目の打撃前に、端面29aが第2位置E2にある打撃子29が下降して生じる打撃力は、第2回目の打撃前に、端面29aが基準位置E0にある打撃子29が下降して生じる打撃力よりも小さくなる。その結果、第2回目の打撃時に、打撃子29が下降して呼吸孔45が開かれる面積は、第2回目の打撃前に、端面29aが第2位置E2にある打撃子29が下降した場合の方が、第2回目の打撃前に、端面29aが基準位置E0にある打撃子29が下降した場合よりも狭くなる。 For this reason, as shown in FIG. 6, when the striker 29 is lowered and the second strike is performed, the striker 29 having the end surface 29a at the second position E2 is lowered before the second strike. The striking force is smaller than the striking force generated when the striking element 29 whose end face 29a is at the reference position E0 is lowered before the second striking. As a result, the area where the striker 29 descends and the breathing hole 45 is opened at the time of the second strike is the case where the striker 29 whose end face 29a is at the second position E2 is lowered before the second strike. This is narrower than the case where the striker 29 whose end face 29a is at the reference position E0 is lowered before the second strike.
このため、第2回目の打撃の際に、空気室C1から空間D1へ排出される空気量は、第2回目の打撃前に、端面29aが第2位置E2にある打撃子29が下降した場合の方が、第2回目の打撃前に、端面29aが基準位置E0にある打撃子29が下降した場合よりも少なくなる。したがって、打撃子29が中間打撃子37を第2回目に打撃した後における空気室C1の圧力は、端面29aが第2位置E2にある打撃子29が下降した場合と、端面29aが基準位置E0にある打撃子29が下降した場合とで、同じになる。 For this reason, the amount of air discharged from the air chamber C1 to the space D1 at the time of the second blow is the case where the striker 29 whose end surface 29a is at the second position E2 descends before the second blow. This is less than the case where the striker 29 whose end face 29a is at the reference position E0 descends before the second strike. Therefore, the pressure of the air chamber C1 after the striker 29 strikes the intermediate striker 37 for the second time is the same as when the striker 29 with the end face 29a at the second position E2 is lowered and when the end face 29a is at the reference position E0. This is the same as when the striker 29 in the lower position is lowered.
そして、第2回目の打撃後に、第3回目の打撃に備えてピストン28が図6の下死点から上昇すると、空気室C1が負圧となる。また、第3回目の打撃に備えて、打撃子29がピストン28に近づく向きで動作すると、第2回目の打撃前に、図5において打撃子29の端面29aが基準位置E0または第2位置E2のいずれにあったとしても、第3回目の打撃に備えて上昇する打撃子29は、図4のように、端面29aが同じ基準位置E0まで到達する。したがって、第3回目の打撃時にピストン28が下降すると、空気室C1の圧縮率が同じとなり、第3回目の打撃時に、打撃子29から中間打撃子37に加えられる打撃力が安定する。 Then, after the second impact, when the piston 28 rises from the bottom dead center in FIG. 6 in preparation for the third impact, the air chamber C1 becomes negative pressure. Further, in preparation for the third hit, when the striker 29 moves in a direction approaching the piston 28, the end surface 29a of the striker 29 in FIG. 5 is moved to the reference position E0 or the second position E2 before the second strike. In any case, the striker 29 that rises in preparation for the third strike reaches the same reference position E0 with the end face 29a as shown in FIG. Therefore, when the piston 28 descends at the time of the third impact, the compression rate of the air chamber C1 becomes the same, and the impact force applied from the impactor 29 to the intermediate impactor 37 at the time of the third impact is stabilized.
ここで、打撃子29が図3の位置にある場合の呼吸孔45の開口面積と、打撃子29が図6の位置にある場合の呼吸孔45の開口面積との関係を、図7を参照して説明する。図7(A)は図3の要部を示し、図7(B)は図6の要部を示している。軸線A1に沿った方向で、図7(A)に示す打撃子29の受圧面46の位置E3は、図7(B)に示す打撃子29の受圧面46の位置E4よりも、ピストン28から差dy1分、遠い位置にある。また、軸線A1に沿った方向で、図7(A)に示す呼吸孔45の開口長さL1は、図7(B)に示す呼吸孔45の開口長さL2よりも長い。つまり、図7(A)の呼吸孔45の開口面積は、図7(B)の呼吸孔45の開口面積よりも広い。 Here, see FIG. 7 for the relationship between the opening area of the breathing hole 45 when the striker 29 is in the position of FIG. 3 and the opening area of the breathing hole 45 when the striker 29 is in the position of FIG. To explain. 7A shows the main part of FIG. 3, and FIG. 7B shows the main part of FIG. The position E3 of the pressure receiving surface 46 of the striker 29 shown in FIG. 7A in the direction along the axis A1 is more distant from the piston 28 than the position E4 of the pressure receiving surface 46 of the striker 29 shown in FIG. 7B. It is far away by the difference dy1 minutes. In addition, in the direction along the axis A1, the opening length L1 of the breathing hole 45 shown in FIG. 7A is longer than the opening length L2 of the breathing hole 45 shown in FIG. That is, the opening area of the breathing hole 45 in FIG. 7A is wider than the opening area of the breathing hole 45 in FIG.
しかし、図7(A)に示すピストン28が上昇し、かつ、打撃子29が上昇した場合、図7(B)に示すピストン28が上昇し、かつ、打撃子29が上昇した場合のいずれにおいても、ピストン28が上死点に到達すると、打撃子29の端面29aは、図4のように基準位置E0に到達する。このように、打撃工具10は、第1回目の打撃時に打撃子29に加わる反発力に関わりなく、第3回目の打撃時に打撃子29から中間打撃子37に加えられる打撃力を同一にできる。 However, when the piston 28 shown in FIG. 7 (A) is raised and the striker 29 is raised, the piston 28 shown in FIG. 7 (B) is raised and the striker 29 is raised. However, when the piston 28 reaches the top dead center, the end face 29a of the striker 29 reaches the reference position E0 as shown in FIG. In this way, the striking tool 10 can make the striking force applied from the striking element 29 to the intermediate striking element 37 during the third striking regardless of the repulsive force applied to the striking element 29 during the first striking.
(打撃工具の空打ち防止作用) 次に、打撃工具10における空打ち防止作用を、図1、図8を参照して説明する。図8に示す打撃工具10は、軸線A1が垂直となり、かつ、ピストン28が打撃子29よりも上に位置している状態である。先端工具43の端部44が対象物W1に押し付けられていない場合、中間打撃子37が自重で下降し、中間打撃子37の大径部39がストッパ40に接触して停止する。また、打撃子29も自重で下降し、打撃子29は中間打撃子37に当接して停止している。つまり、打撃子29の受圧面46は、軸線A1に沿った方向で、呼吸孔45の配置領域から外れた位置にあり、複数の呼吸孔45は全開となっている。 (Impact prevention action of striking tool) Next, the idling prevention action of the striking tool 10 will be described with reference to FIGS. The striking tool 10 shown in FIG. 8 is in a state where the axis A <b> 1 is vertical and the piston 28 is positioned above the striking element 29. When the end 44 of the tip tool 43 is not pressed against the object W1, the intermediate striker 37 is lowered by its own weight, and the large diameter portion 39 of the intermediate striker 37 comes into contact with the stopper 40 and stops. Further, the striker 29 is also lowered by its own weight, and the striker 29 comes into contact with the intermediate striker 37 and stops. That is, the pressure receiving surface 46 of the striker 29 is in a position along the axis A <b> 1 and deviated from the arrangement region of the breathing holes 45, and the plurality of breathing holes 45 are fully opened.
このため、図1に示す電動モータ13の出力軸14がピストン28に伝達されて、ピストン28が上昇しても、空気室C1の圧力が上昇することを抑制できる。つまり、空気室C1の圧力と空間D1の圧力との差が大きくならず、打撃子29は上昇しない。また、ピストン28が上死点から下死点に向けて下降しても空気室C1の圧力は上昇しない。このように、打撃子29に打撃力が加わることはない。したがって、先端工具43が対象物W1に押し付けられていない状態で、打撃子29に打撃力が加わること、つまり、空打ちを防止できる。このように、呼吸孔45は、空打ちを防止する役割を兼ねている。 For this reason, even if the output shaft 14 of the electric motor 13 shown in FIG. 1 is transmitted to the piston 28 and the piston 28 rises, it is possible to prevent the pressure in the air chamber C1 from rising. That is, the difference between the pressure in the air chamber C1 and the pressure in the space D1 does not increase, and the striker 29 does not rise. Further, even if the piston 28 descends from the top dead center toward the bottom dead center, the pressure in the air chamber C1 does not rise. In this way, the striking force is not applied to the striker 29. Therefore, it is possible to prevent striking force from being applied to the striker 29 in a state where the tip tool 43 is not pressed against the object W1, that is, idling. Thus, the breathing hole 45 also serves to prevent idle shots.
(打撃工具の変更例) 次に、打撃工具10のシリンダ27に設ける呼吸孔の変形例を図9を参照して説明する。図9に示す打撃工具10の正面視で、呼吸孔45は円形である。また、呼吸孔45同士は、軸線A1に沿った方向における配置領域が一部で重なり、一部で異なっている。このため、中間打撃子37の大径部39がスリーブ33のフランジ部35に接触しており、かつ、打撃子29が中間打撃子37に接触している状態において、受圧面46は、軸線A1に沿った方向で少なくとも1つの呼吸孔45の配置領域に位置する。  (Change Example of Impact Tool) Next, a modification of the breathing hole provided in the cylinder 27 of the impact tool 10 will be described with reference to FIG. In the front view of the impact tool 10 shown in FIG. 9, the breathing hole 45 is circular. Further, the breathing holes 45 are partially different from each other in the arrangement region in the direction along the axis A1, and are different in part. For this reason, in the state where the large diameter portion 39 of the intermediate striker 37 is in contact with the flange portion 35 of the sleeve 33 and the striker 29 is in contact with the intermediate striker 37, the pressure receiving surface 46 has the axis A1. Is located in the arrangement region of at least one breathing hole 45 in the direction along *
そして、打撃子29に打撃力が加えられて先端工具43の端部44が対象物W1に食い込み、大径部39がフランジ部35から離れると、開かれる呼吸孔45を合計した開口面積が増加する。このように、打撃子29が移動中、打撃子29の受圧面46は、軸線A1に沿った方向で少なくとも1つの呼吸孔45の配置領域に位置する。 When the striking force is applied to the striking element 29 and the end 44 of the tip tool 43 bites into the object W1, and the large diameter portion 39 moves away from the flange portion 35, the total opening area of the opened breathing holes 45 increases. To do. Thus, while the striker 29 is moving, the pressure receiving surface 46 of the striker 29 is located in the arrangement region of at least one breathing hole 45 in the direction along the axis A1.
図1に示す打撃工具10の呼吸孔45を、図9に示す呼吸孔45に変更しても、図1に示す打撃工具10と同じ作用効果を得ることができる。 Even if the breathing hole 45 of the striking tool 10 shown in FIG. 1 is changed to the breathing hole 45 shown in FIG. 9, the same operational effects as those of the striking tool 10 shown in FIG. 1 can be obtained.
(比較例の打撃工具) 比較例の打撃工具について、図10~図12を参照して説明する。比較例の打撃工具200において、実施の形態の打撃工具10と同じ構成部分については、同じ符号を付してある。打撃工具200は、シリンダ27に呼吸孔245及び空打ち防止孔47が設けられている。空打ち防止孔47は、シリンダ27を半径方向に貫通し、かつ、空打ち防止孔47の開口径は、呼吸孔245の開口径よりも大きい。空打ち防止孔47は、シリンダ27の円周方向に複数配置されている。空打ち防止孔47は、軸線A1に沿った方向でスリーブ33と呼吸孔245との間に設けられている。呼吸孔245は、図11のように、先端工具43が対象物W1に押し付けられて、中間打撃子37の大径部39が、スリーブ33のフランジ部35に接触して中間打撃子37が停止し、かつ、打撃子29が中間打撃子37に接触して停止している状態で、全開となる。つまり、受圧面46は、軸線A1に沿った方向で、呼吸孔245と空打ち防止孔47との間にある。具体的には、受圧面46は、軸線A1に沿った方向で呼吸孔245の配置領域から外れた位置にある。  (Comparison example impact tool) The comparison example impact tool will be described with reference to FIGS. In the striking tool 200 of the comparative example, the same components as those of the striking tool 10 of the embodiment are denoted by the same reference numerals. The striking tool 200 is provided with a breathing hole 245 and an idling prevention hole 47 in the cylinder 27. The empty shot prevention hole 47 penetrates the cylinder 27 in the radial direction, and the opening diameter of the empty shot prevention hole 47 is larger than the opening diameter of the breathing hole 245. A plurality of idling prevention holes 47 are arranged in the circumferential direction of the cylinder 27. The idle hit prevention hole 47 is provided between the sleeve 33 and the breathing hole 245 in the direction along the axis A1. In the breathing hole 245, as shown in FIG. 11, the tip tool 43 is pressed against the object W1, the large-diameter portion 39 of the intermediate striker 37 contacts the flange portion 35 of the sleeve 33, and the intermediate striker 37 stops. In the state where the striker 29 is in contact with the intermediate striker 37 and is stopped, it is fully opened. That is, the pressure receiving surface 46 is located between the breathing hole 245 and the idling prevention hole 47 in the direction along the axis A1. Specifically, the pressure receiving surface 46 is at a position that is out of the region where the breathing hole 245 is disposed in the direction along the axis A1. *
比較例における打撃工具200の作用を説明する。例えば、対象物W1の打撃面の硬度が基準値である場合、打撃子29は中間打撃子37を第1回目に打撃した後、図10のように、端面29aが基準位置E0に到達するまで上昇する。これに対して、対象物W1の打撃面の硬度が基準値よりも高い場合は、打撃子29は、中間打撃子37を第1回目に打撃した後、端面29aが基準位置E0よりも上の第1位置E1に到達する。基準位置E0及び第1位置E1は、共に軸線A1に沿った方向の位置である。図10のように、上死点にあるピストン28に対して、第1位置E1は基準位置E0よりも差dy分、近い。  The operation of the impact tool 200 in the comparative example will be described. For example, when the hardness of the striking surface of the object W1 is the reference value, the striking element 29 strikes the intermediate striking element 37 for the first time, and then the end surface 29a reaches the reference position E0 as shown in FIG. To rise. On the other hand, when the hardness of the striking surface of the object W1 is higher than the reference value, the striking element 29 strikes the intermediate striking element 37 for the first time, and then the end surface 29a is above the reference position E0. The first position E1 is reached. Both the reference position E0 and the first position E1 are positions in the direction along the axis A1. As shown in FIG. 10, the first position E1 is closer to the piston 28 at the top dead center by the difference dy than the reference position E0. *
次いで、図10に示すピストン28が下降し、かつ、打撃子29が下降して、図11のように第2回目の打撃を行う。すると、第2回目の打撃前に、端面29aが第1位置E1にある打撃子29が下降して、第2回目の打撃を行った場合の空気室C1の圧力は、第2回目の打撃前に、端面29aが基準位置E0にある打撃子29が下降して、第2回目の打撃を行った場合の空気室C1の圧力よりも高くなる。これは、ピストン28の下降による圧縮率が高いからである。このため、第2回目の打撃前に、端面29aが第1位置E1にある打撃子29が下降して、第2回目の打撃を行う際の打撃力は、第2回目の打撃前に、端面29aが基準位置E0にある打撃子29が下降して、第2回目の打撃を行う際の打撃力よりも大きくなる。 Next, the piston 28 shown in FIG. 10 is lowered and the striker 29 is lowered, and the second strike is performed as shown in FIG. Then, before the second impact, the striker 29 with the end surface 29a at the first position E1 descends, and the pressure in the air chamber C1 when the second impact is made is the same as before the second impact. In addition, the striker 29 with the end face 29a at the reference position E0 descends and becomes higher than the pressure in the air chamber C1 when the second strike is performed. This is because the compression rate due to the lowering of the piston 28 is high. For this reason, before the second impact, the striker 29 with the end face 29a at the first position E1 descends, and the impact force when performing the second impact is the end face before the second impact. The striking element 29 having 29a at the reference position E0 descends and becomes larger than the striking force when performing the second striking.
しかし、打撃工具200において、図11のように、第2回目の打撃時に打撃子29が下降して呼吸孔245が開かれる面積は、第2回目の打撃前に、端面29aが第1位置E1にある打撃子29が下降した場合と、第2回目の打撃前に、端面29aが基準位置E0にある打撃子29が下降した場合とで、同じとなる。つまり、第2回目の打撃時に、打撃子29から中間打撃子37に加わる打撃力に関わりなく、呼吸孔45は図11のように全開となる。 However, in the striking tool 200, as shown in FIG. 11, the area where the striking element 29 descends and the breathing hole 245 is opened at the second striking is such that the end face 29a is at the first position E1 before the second striking. This is the same when the striker 29 at the lower position is lowered and when the striker 29 whose end face 29a is at the reference position E0 is lowered before the second strike. That is, the breathing hole 45 is fully opened as shown in FIG. 11 regardless of the striking force applied from the striker 29 to the intermediate striker 37 during the second strike.
このため、第2回目の打撃時に、空気室C1から空間D1へ排出される空気量は、第2回目の打撃前に、端面29aが第1位置E1にある打撃子29が下降した場合と、第2回目の打撃前に、端面29aが基準位置E0にある打撃子29が下降した場合とで同じとなる。したがって、打撃子29が中間打撃子37を打撃する際における空気室C1の圧力は、第2回目の打撃前に端面29aが第1位置E1にある打撃子29が下降して第2回目の打撃を行う場合の方が、第2回目の打撃前に端面29aが基準位置E0にある打撃子29が下降して第2回目の打撃を行う場合よりも高くなる。 For this reason, at the time of the second impact, the amount of air discharged from the air chamber C1 to the space D1 is the case where the striker 29 with the end surface 29a at the first position E1 descends before the second impact, This is the same as when the striker 29 whose end face 29a is at the reference position E0 is lowered before the second strike. Therefore, the pressure of the air chamber C1 when the striker 29 strikes the intermediate striker 37 is such that the striker 29 with the end surface 29a at the first position E1 descends before the second strike, and the second strike. Is higher than the case where the striker 29 whose end face 29a is at the reference position E0 descends and performs the second strike before the second strike.
さらに、図11のように下死点にあるピストン28が、第3回目の打撃に備えて上昇すると空気室C1が負圧となり、かつ、打撃子29が上昇する。 Further, as shown in FIG. 11, when the piston 28 at the bottom dead center is raised in preparation for the third blow, the air chamber C1 becomes negative pressure and the striker 29 is raised.
ここで、第2回目の打撃前に、打撃子29の端面29aが第1位置E1にあり、かつ、第2回目の打撃後に上昇する打撃子29は、図12のように、端面29aが第2位置E2となる位置まで上昇する。一方、第2回目の打撃前に、打撃子29の端面29aが基準位置E0にあり、かつ、第2回目の打撃後に上昇する打撃子29は、端面29aが基準位置E0となる位置まで上昇する。つまり、軸線A1に沿った方向で、打撃子29の位置が差dy分、異なる。  Here, before the second strike, the end face 29a of the striker 29 is at the first position E1, and the striker 29 that rises after the second strike has the end face 29a as shown in FIG. It rises to a position that becomes the second position E2. On the other hand, before the second impact, the end face 29a of the impactor 29 is at the reference position E0, and the impactor 29 that rises after the second impact is raised to a position where the end face 29a becomes the reference position E0. . That is, the position of the striker 29 differs by the difference dy in the direction along the axis A1. *
これは、第2回目の打撃後における空気室C1の圧力は、端面29aが第1位置E1にある打撃子29が下降した場合の方が、端面29aが基準位置E0にある打撃子29が下降した場合よりも高く、打撃子29が上昇することを妨げる力が強いからである。したがって、ピストン28が図12の上死点から下降して第3回目の打撃を行う際に、端面29aが第2位置E2にある打撃子29が下降して生じる打撃力は、端面29aが基準位置E0にある打撃子29が下降して生じる打撃力よりも小さくなり、打撃力が不安定となる。 This is because the pressure in the air chamber C1 after the second impact is such that the striker 29 with the end face 29a at the reference position E0 is lowered when the striker 29 with the end face 29a at the first position E1 is lowered. This is because it has a higher force than the case where the striker 29 is prevented from rising. Therefore, when the piston 28 descends from the top dead center in FIG. 12 and performs the third impact, the impact force generated when the striker 29 whose end surface 29a is at the second position E2 descends is based on the end surface 29a. The striking force is unstable because the striking element 29 at the position E0 is lower than the striking force generated by the lowering.
さらに、対象物W1の打撃面の硬度が基準値よりも低い場合の作用を、図10、図12、図13を参照して説明する。対象物W1の打撃面の硬度が基準値よりも低い場合は、中間打撃子37を第1回目に打撃した打撃子29が上昇すると、図12のように、端面29aが基準位置E0よりも下の第2位置E2まで到達する。基準位置E0及び第2位置E2は、共に軸線A1に沿った方向の位置である。上死点にあるピストン28に対して、第2位置E2は基準位置E0よりも差dy分、遠い。 Furthermore, an operation when the hardness of the striking surface of the object W1 is lower than the reference value will be described with reference to FIGS. 10, 12, and 13. FIG. When the hardness of the striking surface of the target object W1 is lower than the reference value, when the striking element 29 that strikes the intermediate striking element 37 for the first time rises, the end face 29a is below the reference position E0 as shown in FIG. To the second position E2. Both the reference position E0 and the second position E2 are positions in the direction along the axis A1. The second position E2 is far from the reference position E0 by the difference dy with respect to the piston 28 at the top dead center.
次いで、第2回目の打撃を行うと、第2回目の打撃前に、端面29aが第2位置E2にある打撃子29が下降して、第2回目の打撃を行う場合における空気室C1の圧力は、第2回目の打撃前に、端面29aが基準位置E0にある打撃子29が下降して、第2回目の打撃を行う場合における空気室C1の圧力よりも低くなる。これは、ピストン28と打撃子29との間の空気室C1の容積が大きいほど、ピストン28の下降による圧縮率が低いからである。 Next, when the second blow is performed, the pressure of the air chamber C1 in the case where the striker 29 having the end surface 29a at the second position E2 descends and performs the second blow is performed before the second blow. Is lower than the pressure of the air chamber C1 when the striker 29 having the end surface 29a at the reference position E0 descends before the second strike, and the second strike is performed. This is because as the volume of the air chamber C1 between the piston 28 and the striker 29 is larger, the compression rate due to the lowering of the piston 28 is lower.
このため、第2回目の打撃時において、第2回目の打撃前に、端面29aが第2位置E2にある打撃子29が下降して生じる打撃力は、第2回目の打撃前に、端面29aが基準位置E0にある打撃子29が下降して生じる打撃力よりも小さくなる。しかし、打撃工具200において、第2回目の打撃時に、打撃子29が下降して呼吸孔245が開かれる面積は、端面29aが第2位置E2にある打撃子29が下降した場合と、端面29aが基準位置E0にある打撃子29が下降した場合とで、同じである。図13は、端面29aが第2位置E2にある打撃子29が下降して、中間打撃子37を打撃して呼吸孔245が開かれた状態である。  For this reason, at the time of the second impact, before the second impact, the impact force generated when the impactor 29 whose end surface 29a is at the second position E2 descends is the end surface 29a before the second impact. Becomes smaller than the striking force generated when the striking element 29 at the reference position E0 descends. However, in the striking tool 200, the area where the striking element 29 descends and the breathing hole 245 is opened at the time of the second striking is the case where the striking element 29 whose end face 29a is at the second position E2 is lowered and the end face 29a. Is the same as when the striker 29 at the reference position E0 is lowered. FIG. 13 shows a state in which the striker 29 having the end surface 29a at the second position E2 descends, strikes the intermediate striker 37, and the breathing hole 245 is opened. *
一方、端面29aが基準位置E0にある打撃子29が下降して、第2回目の打撃が行われると、受圧面46は図13に示す受圧面46よりも下となるが、呼吸孔245は全開となる。このため、第2回目の打撃時に、空気室C1から空間D1へ排出される空気量は、端面29aが第2位置E2にある打撃子29が下降した場合と、端面29aが基準位置E0にある打撃子29が下降した場合とで同じとなる。したがって、第2回目の打撃後における空気室C1の圧力は、端面29aが第2位置E2にある打撃子29が下降した場合の方が、端面29aが基準位置E0にある打撃子29が下降した場合よりも低い。 On the other hand, when the striker 29 whose end face 29a is at the reference position E0 descends and the second strike is performed, the pressure receiving surface 46 becomes lower than the pressure receiving surface 46 shown in FIG. Fully open. For this reason, the amount of air discharged from the air chamber C1 to the space D1 at the time of the second impact is such that the striker 29 with the end surface 29a at the second position E2 is lowered and the end surface 29a is at the reference position E0. This is the same as when the striker 29 is lowered. Therefore, the pressure in the air chamber C1 after the second impact is such that the striker 29 with the end face 29a at the reference position E0 is lowered when the striker 29 with the end face 29a at the second position E2 is lowered. Lower than the case.
さらに、第3回目の打撃に備えて、ピストン28が図13に示す下死点から上昇すると空気室C1が負圧となり、打撃子29も上昇する。ここで、第2回目打撃前に、図12のように打撃子29の端面29aが第2位置E2にあり、かつ、第2回目の打撃後に上昇する打撃子29は、図10のように、端面29aが第1位置E1となる位置まで上昇する。一方、第2回目の打撃前に、図12のように、打撃子29の端面29aが基準位置E0にあり、かつ、第2回目の打撃後に上昇する打撃子29は、図10のように、端面29aが第1位置E1となる位置まで上昇する。つまり、軸線A1に沿った方向で、打撃子29の位置が差dy分、異なる。  Further, in preparation for the third impact, when the piston 28 rises from the bottom dead center shown in FIG. 13, the air chamber C1 becomes negative pressure, and the striker 29 also rises. Here, before the second strike, the end face 29a of the striker 29 is in the second position E2 as shown in FIG. 12, and the striker 29 that rises after the second strike is as shown in FIG. The end surface 29a rises to a position where it becomes the first position E1. On the other hand, before the second impact, as shown in FIG. 12, the end face 29a of the impactor 29 is at the reference position E0, and the impactor 29 that rises after the second impact is as shown in FIG. The end surface 29a rises to a position where it becomes the first position E1. That is, the position of the striker 29 differs by the difference dy in the direction along the axis A1. *
これは、第2回目の打撃後における空気室C1の圧力は、第2回目の打撃前に、端面29aが第2位置E2にある打撃子29が下降した場合の方が、第2回目の打撃前に、端面29aが基準位置E0にある打撃子29が下降した場合よりも低く、第2回目の打撃後に、打撃子29が上昇することを妨げる力が弱いからである。したがって、第2回目の打撃力が変化すると、第3回目の打撃力が不安定となる。 This is because the pressure in the air chamber C1 after the second hit is the second hit when the striker 29 whose end face 29a is at the second position E2 is lowered before the second hit. This is because the force that prevents the striker 29 from rising after the second strike is weaker than when the striker 29 whose end surface 29a is at the reference position E0 is lowered. Therefore, when the second impact force changes, the third impact force becomes unstable.
さらに、先端工具43の端部44が対象物W1に押し付けられた状態において、受圧面46が基準位置E0、第1位置E1、第2位置E2のうち、いずれの位置にある状態から打撃子29が下降して中間打撃子37を打撃しても、受圧面46は、軸線A1に沿った方向で、空打ち防止孔47の配置領域まで到達することはない。すなわち、空打ち防止孔47は閉じられている。 Further, in a state where the end portion 44 of the tip tool 43 is pressed against the object W1, the striker 29 starts from any position of the reference position E0, the first position E1, and the second position E2. Even if the ball falls and strikes the intermediate striker 37, the pressure receiving surface 46 does not reach the arrangement region of the idling prevention hole 47 in the direction along the axis A1. That is, the blanking prevention hole 47 is closed.
なお、比較例の打撃工具200において、先端工具43の端部44が対象物W1に押し付けられていない場合、中間打撃子37が自重で下降し、中間打撃子37の大径部39がストッパ40に接触して停止する。また、打撃子29も自重で下降し、打撃子29は中間打撃子37に接触して停止する。つまり、空打ち防止孔47は全開となる。  In the impact tool 200 of the comparative example, when the end portion 44 of the tip tool 43 is not pressed against the object W1, the intermediate striker 37 is lowered by its own weight, and the large diameter portion 39 of the intermediate striker 37 is the stopper 40. Touch to stop. Further, the striker 29 also descends by its own weight, and the striker 29 comes into contact with the intermediate striker 37 and stops. That is, the blanking prevention hole 47 is fully opened. *
このため、比較例の打撃工具200は、ピストン28が上昇しても、空気室C1の圧力と空間D1の圧力との差が大きくならず、打撃子29は上昇しない。また、ピストン28が上死点から下死点に向けて下降しても空気室C1の圧力は上昇しない。したがって、先端工具43が対象物W1に押し付けられていない状態で、打撃子29に打撃力が加わること、つまり、空打ちを防止できる。 For this reason, in the impact tool 200 of the comparative example, even if the piston 28 rises, the difference between the pressure in the air chamber C1 and the pressure in the space D1 does not increase, and the striker 29 does not rise. Further, even if the piston 28 descends from the top dead center toward the bottom dead center, the pressure in the air chamber C1 does not rise. Therefore, it is possible to prevent striking force from being applied to the striker 29 in a state where the tip tool 43 is not pressed against the object W1, that is, idling.
(実施の形態と比較例との対比) 次に、実施の形態における打撃工具10と、比較例の打撃工具200との差異を、図14を参照して説明する。図14のタイムチャートは、ピストン28の変位、打撃子29の変位、空気室C1の圧力、打撃エネルギが示されている。ピストン28の変位は、軸線A1に沿った方向におけるピストン28の位置の経時変化である。ピストン28の位置は、例えば、端面28aを基準として把握可能である。打撃子29の変位は、軸線A1に沿った方向における打撃子29の位置の経時変化である。打撃子29の位置は、例えば、端面29aを基準として把握可能である。打撃エネルギは、空気室C1の圧力、受圧面46の面積等から定まる値である。図14(A)は実施の形態の打撃工具10に対応し、図14(B)は比較例の打撃工具200に対応する。 (Contrast of Embodiment and Comparative Example) Next, the difference between the impact tool 10 in the embodiment and the impact tool 200 of the comparative example will be described with reference to FIG. The time chart of FIG. 14 shows the displacement of the piston 28, the displacement of the striker 29, the pressure of the air chamber C1, and the strike energy. The displacement of the piston 28 is a change with time of the position of the piston 28 in the direction along the axis A1. The position of the piston 28 can be grasped with reference to the end face 28a, for example. The displacement of the striker 29 is a change with time of the position of the striker 29 in the direction along the axis A1. The position of the striker 29 can be grasped on the basis of the end surface 29a, for example. The impact energy is a value determined from the pressure of the air chamber C1, the area of the pressure receiving surface 46, and the like. FIG. 14A corresponds to the impact tool 10 of the embodiment, and FIG. 14B corresponds to the impact tool 200 of the comparative example.
打撃工具10における打撃子29の変位のうち、位置a1は、図2における打撃子29の位置に対応し、位置b1は、図3における打撃子29の位置に対応し、位置c1は、図4における打撃子29の位置に対応する。実施の形態における打撃工具10は、前回の打撃前における打撃子29の位置に関わりなく、次回の打撃前に打撃子29が上昇する位置は同じとなる。 Of the displacement of the striker 29 in the impact tool 10, the position a1 corresponds to the position of the impactor 29 in FIG. 2, the position b1 corresponds to the position of the impactor 29 in FIG. 3, and the position c1 corresponds to FIG. This corresponds to the position of the striker 29 at. In the striking tool 10 in the embodiment, the position where the striking element 29 rises before the next striking is the same regardless of the position of the striking element 29 before the previous striking.
また、前回の打撃前における打撃子29の位置と、次回の打撃前における打撃子29の位置とに差S1がある。さらに、前回の打撃前における空気室C1の圧力と、次回の打撃前における空気室C1の圧力とに差P1がある。そして、前回の打撃時における打撃エネルギと、次回の打撃時における打撃エネルギとに、差J1がある。 Further, there is a difference S1 between the position of the striker 29 before the previous strike and the position of the striker 29 before the next strike. Further, there is a difference P1 between the pressure of the air chamber C1 before the previous hit and the pressure of the air chamber C1 before the next hit. There is a difference J1 between the impact energy at the previous impact and the impact energy at the next impact.
比較例の打撃工具200における打撃子29の変位のうち、位置a3は、図10における打撃子29の位置に対応し、位置b3は、図11における打撃子29の位置に対応し、位置c3は、図12における打撃子29の位置に対応する。比較例における打撃工具200は、前回の打撃前における打撃子29の位置が異なると、前回の打撃後に打撃子29が上昇する位置は異なる。 Of the displacement of the striker 29 in the impact tool 200 of the comparative example, the position a3 corresponds to the position of the striker 29 in FIG. 10, the position b3 corresponds to the position of the striker 29 in FIG. This corresponds to the position of the striker 29 in FIG. When the position of the striker 29 before the previous strike is different in the impact tool 200 in the comparative example, the position where the striker 29 ascends after the previous strike is different.
このため、前回の打撃前における打撃子29の位置と、次回の打撃前における打撃子29位置とに差S2がある。また、前回の打撃前における空気室C1の圧力と、次回の打撃前における空気室C1の圧力とに差P2がある。さらに、前回の打撃時における打撃エネルギと、次回の打撃時における打撃エネルギとに差J2がある。 For this reason, there is a difference S2 between the position of the striker 29 before the previous strike and the position of the striker 29 before the next strike. Further, there is a difference P2 between the pressure of the air chamber C1 before the previous hit and the pressure of the air chamber C1 before the next hit. Further, there is a difference J2 between the impact energy at the previous impact and the impact energy at the next impact.
そして、差S1は差S2よりも小さく、かつ、差P1は差P2よりも小さく、かつ、差J1は差J2よりも小さい。したがって、実施形態の打撃工具10における打撃力は、比較例の打撃工具200の打撃力よりも安定することが分かる。  The difference S1 is smaller than the difference S2, the difference P1 is smaller than the difference P2, and the difference J1 is smaller than the difference J2. Therefore, it can be seen that the striking force of the striking tool 10 of the embodiment is more stable than the striking force of the striking tool 200 of the comparative example. *
次に、打撃時の反発力が小さい場合において、実施形態の打撃工具10の挙動と、比較例の打撃工具200の挙動とを、図15を参照して対比する。図15(A)は実施の形態の打撃工具10に対応し、図15(B)は比較例の打撃工具200に対応する。  Next, when the repulsive force at the time of impact is small, the behavior of the impact tool 10 of the embodiment is compared with the behavior of the impact tool 200 of the comparative example with reference to FIG. FIG. 15A corresponds to the impact tool 10 of the embodiment, and FIG. 15B corresponds to the impact tool 200 of the comparative example. *
打撃工具10における打撃子29の変位のうち、位置a2は、図5における打撃子29の位置に対応し、位置b2は、図6における打撃子29の位置に対応し、位置c2は、図4における打撃子29の位置に対応する。実施の形態における打撃工具10は、前回の打撃前における打撃子29の位置に関わりなく、前回の打撃後に打撃子29が上昇する位置は同じとなる。 Of the displacement of the striker 29 in the impact tool 10, the position a2 corresponds to the position of the impactor 29 in FIG. 5, the position b2 corresponds to the position of the impactor 29 in FIG. 6, and the position c2 corresponds to FIG. This corresponds to the position of the striker 29 at. In the striking tool 10 in the embodiment, the position where the striking element 29 rises after the previous striking is the same regardless of the position of the striking element 29 before the previous striking.
また、前回の打撃前における打撃子29の位置と、次回の打撃前における打撃子29位置とに差S3がある。さらに、前回の打撃前における空気室C1の圧力と、次回の打撃前における空気室C1の圧力とに差P3がある。そして、前回の打撃時における打撃エネルギと、次回の打撃時における打撃エネルギとに、差J3がある。  Further, there is a difference S3 between the position of the striker 29 before the previous strike and the position of the striker 29 before the next strike. Further, there is a difference P3 between the pressure of the air chamber C1 before the previous hit and the pressure of the air chamber C1 before the next hit. Then, there is a difference J3 between the impact energy at the previous impact and the impact energy at the next impact. *
比較例の打撃工具200における打撃子29の変位のうち、位置a4は、図12における打撃子29の位置に対応し、位置b4は、図13における打撃子29の位置に対応し、位置c4は、図10における打撃子29の位置に対応する。比較例における打撃工具200は、前回の打撃前における打撃子29の位置が異なると、前回の打撃後に打撃子29が上昇する位置は異なる。 Of the displacement of the striker 29 in the impact tool 200 of the comparative example, the position a4 corresponds to the position of the striker 29 in FIG. 12, the position b4 corresponds to the position of the striker 29 in FIG. This corresponds to the position of the striker 29 in FIG. When the position of the striker 29 before the previous strike is different in the impact tool 200 in the comparative example, the position where the striker 29 ascends after the previous strike is different.
このため、前回の打撃前における打撃子29の位置と、次回の打撃前における打撃子29位置とに差S4がある。また、前回の打撃前における空気室C1の圧力と、次回の打撃前における空気室C1の圧力とに差P4がある。さらに、前回の打撃時における打撃エネルギと、次回の打撃時における打撃エネルギとに差J4がある。  For this reason, there is a difference S4 between the position of the striker 29 before the previous strike and the position of the striker 29 before the next strike. Further, there is a difference P4 between the pressure of the air chamber C1 before the previous hit and the pressure of the air chamber C1 before the next hit. Further, there is a difference J4 between the impact energy at the previous impact and the impact energy at the next impact. *
そして、差S3は差S4よりも小さく、かつ、差P3は差P4よりも小さく、かつ、差J3は差J4よりも小さい。したがって、実施形態の打撃工具10における打撃力は、比較例の打撃工具200の打撃力よりも安定することが分かる。 The difference S3 is smaller than the difference S4, the difference P3 is smaller than the difference P4, and the difference J3 is smaller than the difference J4. Therefore, it can be seen that the striking force of the striking tool 10 of the embodiment is more stable than the striking force of the striking tool 200 of the comparative example.
(実施の形態2) 本発明の打撃工具の実施の形態2が、図16及び図17に示されている。打撃工具110は、ハンマドリルとも言われ、先端工具Tが着脱自在に装着される。先端工具Tには、回転力と打撃力とが加えられるようになっている。打撃工具110はコンクリートや石材等の対象物に穴あけ加工等を行うために使用される。 (Embodiment 2) Embodiment 2 of the impact tool of the present invention is shown in FIG. 16 and FIG. The impact tool 110 is also called a hammer drill, and the tip tool T is detachably attached thereto. A rotational force and a striking force are applied to the tip tool T. The striking tool 110 is used for drilling a target such as concrete or stone.
打撃工具110は、筒形状のシリンダハウジング114を有し、シリンダハウジング114に円筒形状のシリンダ111が設けられている。シリンダ111は軸線A2を中心として配置されており、シリンダ111と同心状に、円筒形状の工具保持具112が設けられている。シリンダ111と工具保持具112は一体回転可能に連結され、工具保持具112は、軸受115により回転可能に支持されている。工具保持具112内に先端工具Tが取り付けられ、シリンダ111の回転力は先端工具Tに伝達される。  The striking tool 110 has a cylindrical cylinder housing 114, and a cylindrical cylinder 111 is provided in the cylinder housing 114. The cylinder 111 is arranged around the axis A <b> 2, and a cylindrical tool holder 112 is provided concentrically with the cylinder 111. The cylinder 111 and the tool holder 112 are connected so as to be integrally rotatable, and the tool holder 112 is rotatably supported by a bearing 115. A tip tool T is mounted in the tool holder 112, and the rotational force of the cylinder 111 is transmitted to the tip tool T. *
工具保持具112は、円筒形状の小径部112aと、円筒形状の大径部112bとを有し、小径部112aの内径は大径部112bの内径よりも小さい。大径部112bの一部は、シリンダ111の外周面に取り付けられている。工具保持具112内からシリンダ111内に亘って、金属製の中間打撃子116が設けられている。 The tool holder 112 has a cylindrical small-diameter portion 112a and a cylindrical large-diameter portion 112b, and the inner diameter of the small-diameter portion 112a is smaller than the inner diameter of the large-diameter portion 112b. A part of the large-diameter portion 112 b is attached to the outer peripheral surface of the cylinder 111. A metal intermediate striker 116 is provided from the tool holder 112 to the cylinder 111.
中間打撃子116は、軸線A2に沿った方向に往復動自在であり、中間打撃子116は、小径部116aと、小径部116aよりも大径の大径部116bとを有する。中間打撃子116の大径部116bは、工具保持具112の小径部112a内に配置されている。中間打撃子116の小径部116aは、大径部112b内からシリンダ111内に亘って配置されている。 The intermediate striker 116 can reciprocate in the direction along the axis A2, and the intermediate striker 116 has a small diameter part 116a and a large diameter part 116b having a larger diameter than the small diameter part 116a. The large diameter portion 116 b of the intermediate striker 116 is disposed in the small diameter portion 112 a of the tool holder 112. The small diameter portion 116 a of the intermediate striker 116 is disposed from the large diameter portion 112 b to the cylinder 111.
工具保持具112の内面において、小径部112aと大径部112bとの間に環状の段部112cが形成されている。大径部112b内において、段部112cとシリンダ111の端部との間に、環状のストッパ190及び環状のダンパ191及び環状のプレート192が配置されている。軸線A2に沿った方向で、環状のダンパ191は、環状のストッパ190と環状のプレート192との間に配置されている。環状のダンパ191はゴム状弾性材により一体成形され、環状のストッパ190及び環状のプレート192は、金属材料によりそれぞれ成形されている。そして、中間打撃子116の小径部116aは、環状の環状のストッパ190、環状のダンパ191、環状のプレート192内から、シリンダ111内に亘って配置されている。 On the inner surface of the tool holder 112, an annular step 112c is formed between the small diameter portion 112a and the large diameter portion 112b. In the large diameter portion 112b, an annular stopper 190, an annular damper 191 and an annular plate 192 are disposed between the step portion 112c and the end of the cylinder 111. In the direction along the axis A2, the annular damper 191 is disposed between the annular stopper 190 and the annular plate 192. The annular damper 191 is integrally formed of a rubber-like elastic material, and the annular stopper 190 and the annular plate 192 are each formed of a metal material. The small diameter portion 116 a of the intermediate striker 116 is disposed from the annular annular stopper 190, the annular damper 191, and the annular plate 192 to the cylinder 111.
環状の環状のストッパ190の内径と、環状のダンパ191の内径と、環状のプレート192の内径とは同一であり、大径部116bの外径は、環状の環状のストッパ190の内径、環状のダンパ191の内径、環状のプレート192の内径よりも大きい。 The inner diameter of the annular annular stopper 190, the inner diameter of the annular damper 191 and the inner diameter of the annular plate 192 are the same, and the outer diameter of the large diameter portion 116b is the inner diameter of the annular annular stopper 190, The inner diameter of the damper 191 is larger than the inner diameter of the annular plate 192.
シリンダ111内には、中間打撃子116に打撃力を加える打撃子117が設けられている。打撃子117は、軸線A2に沿った方向に往復動自在である。また、シリンダ111内にピストン118が軸線A2に沿った方向に往復動自在に設けられている。打撃子117とピストン118との間に空気室119が設けられており、ピストン118が上死点から下死点に向けて移動すると、空気室119内の空気が圧縮されて打撃子117が中間打撃子116に近づく向きで移動する。そして、打撃子117が中間打撃子116に衝突すると、打撃子117の打撃力が、中間打撃子116を介して先端工具Tに伝達される。 In the cylinder 111, a striker 117 that applies a strike force to the intermediate striker 116 is provided. The striker 117 can reciprocate in the direction along the axis A2. Further, a piston 118 is provided in the cylinder 111 so as to be reciprocally movable in a direction along the axis A2. An air chamber 119 is provided between the striker 117 and the piston 118. When the piston 118 moves from the top dead center toward the bottom dead center, the air in the air chamber 119 is compressed and the striker 117 is in the middle. It moves in a direction approaching the striker 116. When the striker 117 collides with the intermediate striker 116, the strike force of the striker 117 is transmitted to the tip tool T via the intermediate striker 116.
シリンダ111を半径方向に貫通する呼吸孔111aが設けられている。呼吸孔111aは、シリンダ111の円周方向に複数設けられている。シリンダ111とシリンダハウジング114との間に空間193が形成されており、空間193はシリンダハウジング114の外部に通じている。また、呼吸孔111aは、空気室119と空間193とを接続する。 A breathing hole 111a that penetrates the cylinder 111 in the radial direction is provided. A plurality of breathing holes 111 a are provided in the circumferential direction of the cylinder 111. A space 193 is formed between the cylinder 111 and the cylinder housing 114, and the space 193 communicates with the outside of the cylinder housing 114. The breathing hole 111 a connects the air chamber 119 and the space 193.
呼吸孔111aは、軸線A2に沿った方向の開口寸法が、シリンダ111の円周方向における開口寸法よりも長い。つまり、呼吸孔111aは、打撃工具110の平面視で楕円形状、トラック形状であり、呼吸孔111aの長軸が軸線A2に沿った方向に配置され、呼吸孔111aの短軸がシリンダ111の円周方向に沿って配置されている。図17に示す複数の呼吸孔111aは、軸線A2に沿った配置領域が全て同じである。 The opening size of the breathing hole 111a in the direction along the axis A2 is longer than the opening size in the circumferential direction of the cylinder 111. That is, the breathing hole 111a has an elliptical shape and a track shape in a plan view of the impact tool 110, the major axis of the breathing hole 111a is arranged in the direction along the axis A2, and the minor axis of the breathing hole 111a is the circle of the cylinder 111. Arranged along the circumferential direction. The plurality of breathing holes 111a shown in FIG. 17 have the same arrangement area along the axis A2.
さらに、ピストン118の端面118aと打撃子117の受圧面117aとの間に空気室119が形成されており、空気室119の圧力は受圧面117aに加わる。受圧面117aは軸線A2に対して垂直な平坦面である。そして、先端工具Tを対象物に押し付けると、中間打撃子116の大径部116bがストッパ190に接触して、中間打撃子116が停止する。さらに、停止した中間打撃子116に打撃子117が接触した状態で、受圧面117aは、軸線A2に沿った方向で呼吸孔111aの配置領域に位置する。つまり、空気室119は呼吸孔111aを介して空間193とつながるが、呼吸孔111aは全開ではない。なお、打撃子117は端面117bを有し、端面117bが小径部116aに接触する。端面117bは、打撃子117であって、受圧面117aとは反対側に形成されている。 Further, an air chamber 119 is formed between the end surface 118a of the piston 118 and the pressure receiving surface 117a of the striker 117, and the pressure of the air chamber 119 is applied to the pressure receiving surface 117a. The pressure receiving surface 117a is a flat surface perpendicular to the axis A2. When the tip tool T is pressed against the object, the large diameter portion 116b of the intermediate striker 116 comes into contact with the stopper 190, and the intermediate striker 116 stops. Further, in a state where the striker 117 is in contact with the stopped intermediate striker 116, the pressure receiving surface 117a is located in the arrangement region of the breathing hole 111a in the direction along the axis A2. That is, the air chamber 119 is connected to the space 193 via the breathing hole 111a, but the breathing hole 111a is not fully opened. The striker 117 has an end surface 117b, and the end surface 117b contacts the small diameter portion 116a. The end surface 117b is a striker 117, and is formed on the side opposite to the pressure receiving surface 117a.
一方、シリンダハウジング114の後端部にはギヤハウジング114bが設けられ、このギヤハウジング114bにモータハウジング114cが取り付けられている。モータハウジング114cにハンドル128が設けられている。  On the other hand, a gear housing 114b is provided at the rear end of the cylinder housing 114, and a motor housing 114c is attached to the gear housing 114b. A handle 128 is provided on the motor housing 114c. *
電動モータ131は商用電源から供給される電力で駆動し、ハンドル128に電力ケーブル158が取り付けられている。電動モータ131を駆動させる状態と停止させる状態とに切り換えるために、レバー159が、ハンドル128に設けられている。 The electric motor 131 is driven by electric power supplied from a commercial power source, and a power cable 158 is attached to the handle 128. A lever 159 is provided on the handle 128 for switching between a state in which the electric motor 131 is driven and a state in which the electric motor 131 is stopped.
モータハウジング114c内には電動モータ131が収容されている。電動モータ131の出力軸134は、軸線B2を中心として回転可能である。打撃工具110の正面視で、軸線A2と軸線B2とは直角である。 An electric motor 131 is accommodated in the motor housing 114c. The output shaft 134 of the electric motor 131 is rotatable about the axis B2. In front view of the impact tool 110, the axis A2 and the axis B2 are at right angles.
電動モータ131の出力軸134の回転力を、ピストン118の往復運動力に変換するために、ギヤハウジング114b内にクランク軸141が回転自在に設けられている。クランク軸141は出力軸134と平行であり、クランク軸141に設けられた従動ギヤ142が、出力軸134の外周に設けられた駆動ギヤ134aに噛み合っている。クランク軸141には、クランク軸141の回転中心から偏心した位置にクランクピン144が取り付けられている。 In order to convert the rotational force of the output shaft 134 of the electric motor 131 into the reciprocating force of the piston 118, a crankshaft 141 is rotatably provided in the gear housing 114b. The crankshaft 141 is parallel to the output shaft 134, and a driven gear 142 provided on the crankshaft 141 is engaged with a drive gear 134 a provided on the outer periphery of the output shaft 134. A crankpin 144 is attached to the crankshaft 141 at a position eccentric from the rotation center of the crankshaft 141.
クランクピン144にはコネクティングロッド145の一端部が回転自在に連結され、コネクティングロッド145の他端部は、ピストン118に連結されている。このため、出力軸134の回転力がクランク軸141に伝達されると、クランク軸141の回転力は、コネクティングロッド145により、ピストン118の往復運動力に変換される。ピストン118の上死点は、ピストン118が軸線A2に沿った方向で、クランク軸141に最も近づいた位置であり、ピストン118の下死点は、ピストン118が軸線A2に沿った方向で、クランク軸141から最も離れた位置である。 One end of a connecting rod 145 is rotatably connected to the crank pin 144, and the other end of the connecting rod 145 is connected to a piston 118. Therefore, when the rotational force of the output shaft 134 is transmitted to the crankshaft 141, the rotational force of the crankshaft 141 is converted into the reciprocating motion force of the piston 118 by the connecting rod 145. The top dead center of the piston 118 is the position where the piston 118 is closest to the crankshaft 141 in the direction along the axis A2, and the bottom dead center of the piston 118 is the direction where the piston 118 is along the axis A2 This is the position farthest from the axis 141.
次に、出力軸134の回転力をシリンダ111の回転力に変換する機構を説明する。ギヤハウジング114b内に回転力伝達軸151が回転自在に設けられており、回転力伝達軸151に従動ギヤ153が設けられている。従動ギヤ153は駆動ギヤ134aに噛み合っている。このため、出力軸134の回転力は回転力伝達軸151に伝達される。さらに、回転力伝達軸151にはベベルギヤ155が設けられている。  Next, a mechanism for converting the rotational force of the output shaft 134 into the rotational force of the cylinder 111 will be described. A rotational force transmission shaft 151 is rotatably provided in the gear housing 114b, and a driven gear 153 is provided for the rotational force transmission shaft 151. The driven gear 153 meshes with the drive gear 134a. For this reason, the rotational force of the output shaft 134 is transmitted to the rotational force transmission shaft 151. Further, a bevel gear 155 is provided on the rotational force transmission shaft 151. *
一方、シリンダ111の外周面に円筒形状のスリーブ154が固定されており、スリーブ154にベベルギヤ156が設けられている。ベベルギヤ156はベベルギヤ155と噛み合っている。さらに、スリーブ154は、軸受160を介してシリンダハウジング114により回転可能に支持されている。このため、回転力伝達軸151の回転力は、ベベルギヤ155,156を介してシリンダ111に伝達される。 On the other hand, a cylindrical sleeve 154 is fixed to the outer peripheral surface of the cylinder 111, and a bevel gear 156 is provided on the sleeve 154. Bevel gear 156 meshes with bevel gear 155. Further, the sleeve 154 is rotatably supported by the cylinder housing 114 via a bearing 160. For this reason, the rotational force of the rotational force transmission shaft 151 is transmitted to the cylinder 111 via the bevel gears 155 and 156.
次に、打撃工具110の使用例を説明する。まず、先端工具Tを対象物に押し付け、レバー159を操作して電動モータ131の出力軸134が回転すると、ピストン118がシリンダ111内を軸線A2に沿った方向に往復動作する。つまり、出力軸134の回転力は、ピストン118の往復動力に変換される。 Next, a usage example of the impact tool 110 will be described. First, when the tip tool T is pressed against the object and the lever 159 is operated to rotate the output shaft 134 of the electric motor 131, the piston 118 reciprocates in the cylinder 111 in the direction along the axis A2. That is, the rotational force of the output shaft 134 is converted into the reciprocating power of the piston 118.
ピストン118が上昇すると空気室119内の圧力が、空間193の圧力よりも低下し、空間193の空気は、呼吸孔111aを通り空気室119に吸入されるとともに、打撃子117が上昇する。ピストン118が上昇するとは、軸線A2に沿った方向でクランク軸141に近づく向きで移動することである。打撃子117が上昇するとは、軸線A2に沿った方向で中間打撃子116から離れる向きで移動することである。  When the piston 118 rises, the pressure in the air chamber 119 becomes lower than the pressure in the space 193, and the air in the space 193 passes through the breathing hole 111a and is sucked into the air chamber 119, and the striker 117 rises. The piston 118 is moved up in a direction along the axis A2 so as to approach the crankshaft 141. Raising the striker 117 means moving in a direction away from the intermediate striker 116 in the direction along the axis A2. *
打撃子117が上昇すると、呼吸孔111aは打撃子117により閉じられ、空気室119に空気が吸い込まれなくなる。また、ピストン118が上死点に到達した後、ピストン118が上死点から下死点に向けて下降し、空気室119内の圧力が上昇する。すると、打撃子117が中間打撃子116に近づく向きで下降し、打撃子117が中間打撃子116を打撃する。中間打撃子116に加えられた打撃力は、先端工具Tを介して対象物に伝達され、対象物が破砕される。  When the striker 117 rises, the breathing hole 111a is closed by the striker 117, and air is not sucked into the air chamber 119. Further, after the piston 118 reaches the top dead center, the piston 118 descends from the top dead center toward the bottom dead center, and the pressure in the air chamber 119 increases. Then, the striker 117 descends in a direction approaching the intermediate striker 116, and the striker 117 strikes the intermediate striker 116. The striking force applied to the intermediate striker 116 is transmitted to the object via the tip tool T, and the object is crushed. *
上記の作用中、呼吸孔111aは、下降する打撃子117が中間打撃子116を打撃する直前に開かれ、ピストン118が下死点に到達するまでの間、空気室119の空気は呼吸孔111aを通り空間193へ排出される。中間打撃子116が先端工具Tを打撃し、かつ、ピストン118が下死点に到達すると、ピストン118は下死点から上死点に向けて移動する。以後、電動モータ131の出力軸134が回転している間、打撃子117はシリンダ111内を往復動し、打撃子117は中間打撃子116を間欠的に打撃する。 During the above operation, the breathing hole 111a is opened immediately before the descending striker 117 strikes the intermediate striker 116, and until the piston 118 reaches the bottom dead center, the air in the air chamber 119 is breathed through the breathing hole 111a. And is discharged into the space 193. When the intermediate striker 116 strikes the tip tool T and the piston 118 reaches the bottom dead center, the piston 118 moves from the bottom dead center toward the top dead center. Thereafter, while the output shaft 134 of the electric motor 131 is rotating, the striker 117 reciprocates in the cylinder 111 and the striker 117 strikes the intermediate striker 116 intermittently.
一方、電動モータ131の出力軸134の回転力は、従動ギヤ153、回転力伝達軸151、ベベルギヤ155,156を介してシリンダ111に伝達され、シリンダ111が回転する。シリンダ111の回転力は、工具保持具112を介して先端工具Tに伝達される。このように、打撃工具110は、先端工具Tに打撃力及び回転力が伝達される。 On the other hand, the rotational force of the output shaft 134 of the electric motor 131 is transmitted to the cylinder 111 via the driven gear 153, the rotational force transmission shaft 151, and the bevel gears 155 and 156, and the cylinder 111 rotates. The rotational force of the cylinder 111 is transmitted to the tip tool T via the tool holder 112. Thus, the impact tool 110 transmits the impact force and the rotational force to the tip tool T.
ところで、先端工具Tが対象物に押し付けられ、かつ、打撃子117が中間打撃子116を打撃すると反発力が生じる。このため、打撃子117が中間打撃子116を打撃した位置から上昇する量は、空気室119の圧力、上記反発力に応じた量となる。具体的には、打撃子117が中間打撃子116を打撃した場合の反発力が大きいほど、打撃子117が上昇する量は大きくなる。  By the way, when the tip tool T is pressed against the object and the striker 117 strikes the intermediate striker 116, a repulsive force is generated. For this reason, the amount that rises from the position where the striker 117 strikes the intermediate striker 116 is an amount corresponding to the pressure of the air chamber 119 and the repulsive force. Specifically, the greater the repelling force when the striker 117 strikes the intermediate striker 116, the greater the amount by which the striker 117 rises. *
実施の形態2における打撃工具110においても、前回の打撃時における打撃子117の下降量が大きいほど、呼吸孔111aの開口面積が広くなる。つまり、前回の打撃時における空気室119の圧力に関わりなく、打撃子117が上昇する際の空気室119の圧力は同じとなる。 Also in the impact tool 110 in Embodiment 2, the opening area of the breathing hole 111a becomes larger as the descending amount of the impactor 117 at the previous impact is larger. That is, the pressure of the air chamber 119 when the striker 117 rises is the same regardless of the pressure of the air chamber 119 at the time of the previous hit.
このため、前回の打撃時における打撃力に関わりなく、打撃後に上昇する打撃子117の軸線A2に沿った方向の位置は、同一となる。したがって、次回の打撃時に生じる打撃力が安定する。  For this reason, regardless of the striking force at the time of the previous striking, the position in the direction along the axis A2 of the striker 117 that rises after striking is the same. Therefore, the impact force generated at the next impact is stabilized. *
なお、シリンダ111に設ける複数の呼吸孔111aの配置位置を、図9に示す複数の呼吸孔45の配置位置と同じとしてもよい。つまり、複数の呼吸孔111aの配置位置を、軸線A2に沿った方向で異なる位置に配置し、各呼吸孔111a同士の軸線A2に沿った方向の配置位置を、一部で重ならせる。  The arrangement positions of the plurality of breathing holes 111a provided in the cylinder 111 may be the same as the arrangement positions of the plurality of breathing holes 45 shown in FIG. That is, the arrangement positions of the plurality of breathing holes 111a are arranged at different positions in the direction along the axis A2, and the arrangement positions of the breathing holes 111a in the direction along the axis A2 are partially overlapped. *
実施の形態2の打撃工具110は、打撃子117が中間打撃子116を打撃した場合に、受圧面117aが軸線A2に沿った方向における呼吸孔111aの配置領域内に位置するように、軸線A2に沿った方向における中間打撃子116の寸法、軸線Aに沿った方向における打撃子117の寸法、軸線A2に沿った方向における呼吸孔11aの配置領域の寸法等の規格が設定されている。なお、受圧面117aが軸線A2に沿った方向における呼吸孔111aの配置領域内に位置するか否かは、上記の条件の他、対象物の硬度も関与するため、予め実験シミュレーション等を行って上記規格を設定する。 In the impact tool 110 of the second embodiment, when the impactor 117 strikes the intermediate impactor 116, the axis A2 is positioned so that the pressure receiving surface 117a is located in the arrangement region of the breathing hole 111a in the direction along the axis A2. Standards such as the size of the intermediate striker 116 in the direction along the axis A, the size of the striker 117 in the direction along the axis A, and the size of the arrangement region of the breathing hole 11a in the direction along the axis A2 are set. Note that whether or not the pressure receiving surface 117a is located in the arrangement region of the breathing hole 111a in the direction along the axis A2 is related to the hardness of the object in addition to the above conditions, and therefore, experimental simulation or the like is performed in advance. Set the above standards.
(打撃工具の空打ち防止作用) 次に、打撃工具110における空打ち防止作用を説明する。打撃工具110は、軸線A2が垂直となり、かつ、ピストン118が打撃子117よりも上に位置している状態である。先端工具Tが対象物に押し付けられていない場合、中間打撃子116が自重で下降した位置で停止し、かつ、打撃子117も自重で下降して中間打撃子116に接触して停止する。ここで、打撃子117の受圧面117aは、軸線A2に沿った方向で、呼吸孔111aの配置領域から外れた位置にあり、複数の呼吸孔111aは全開となる。  (Improvement of the impact of the impact tool) Next, the impact of the impact of the impact tool 110 will be described. The striking tool 110 is in a state where the axis A2 is vertical and the piston 118 is positioned above the striking element 117. When the tip tool T is not pressed against the object, the intermediate striker 116 stops at a position where it is lowered by its own weight, and the striker 117 also descends by its own weight and comes into contact with the intermediate striker 116 and stops. Here, the pressure receiving surface 117a of the striker 117 is in a position along the axis A2 and is out of the arrangement area of the breathing holes 111a, and the plurality of breathing holes 111a are fully opened. *
このため、電動モータ131の出力軸134の動力がピストン118に伝達されて、ピストン118が上昇しても、空気室119の圧力と空間193の圧力との差が大きくならず、打撃子117は上昇しない。また、ピストン118が上死点から下死点に向けて下降しても空気室119の圧力は上昇しない。このように、打撃子117が打撃されることはない。したがって、中間打撃子116が対象物に押し付けられていない状態で、打撃子117に打撃力が加わること、つまり、空打ちを防止できる。このように、呼吸孔111aは、空打ちを防止する役割を兼ねている。なお、実施の形態2における打撃工具は、ハンマドリルの他、ハンマドライバに用いることも可能である。 Therefore, even if the power of the output shaft 134 of the electric motor 131 is transmitted to the piston 118 and the piston 118 moves up, the difference between the pressure in the air chamber 119 and the pressure in the space 193 does not increase, and the striker 117 Does not rise. Further, even if the piston 118 descends from the top dead center toward the bottom dead center, the pressure in the air chamber 119 does not rise. Thus, the striker 117 is not hit. Therefore, it is possible to prevent striking force from being applied to the striker 117 in a state where the intermediate striker 116 is not pressed against the object, that is, idling. Thus, the breathing hole 111a also serves to prevent idle shots. In addition, the impact tool in Embodiment 2 can also be used for a hammer driver in addition to a hammer drill.
ここで、実施の形態1及び実施の形態2で説明した構成と、本発明の構成との対応関係を説明すると、ピストン28,118が、本発明のピストンに相当し、軸線A1,A2が、本発明の軸線に相当し、空気室C1,119が、本発明の流体室に相当し、打撃子29,117が、本発明の打撃子に相当する。また、シリンダ27,111が、本発明のシリンダに相当し、中間打撃子37,116が、本発明の中間打撃子に相当し、呼吸孔45,111aが、本発明の呼吸孔に相当し、受圧面46,117aが、本発明の受圧面に相当する。実施の形態1の打撃工具10で、中間打撃子37の大径部39がフランジ部35に接触している状態が、本発明の「中間打撃子が軸線方向で打撃子に最も近い位置に位置している状態」に相当する。また、実施の形態2の打撃工具110で、中間打撃子116の大径部116bがストッパ190に接触している状態が、本発明の「中間打撃子が軸線方向で打撃子に最も近い位置に位置している状態」に相当する。  Here, the correspondence between the configuration described in the first and second embodiments and the configuration of the present invention will be described. The pistons 28 and 118 correspond to the piston of the present invention, and the axes A1 and A2 are The air chamber C1, 119 corresponds to the axis of the present invention, the fluid chamber of the present invention, and the strikers 29, 117 correspond to the striker of the present invention. The cylinders 27 and 111 correspond to the cylinder of the present invention, the intermediate strikers 37 and 116 correspond to the intermediate striker of the present invention, the breathing holes 45 and 111a correspond to the breathing holes of the present invention, The pressure receiving surfaces 46 and 117a correspond to the pressure receiving surfaces of the present invention. In the striking tool 10 of the first embodiment, the state where the large diameter portion 39 of the intermediate striking member 37 is in contact with the flange portion 35 is the “intermediate striking member is located at a position closest to the striking member in the axial direction”. Corresponds to “the state of being performed”. Further, in the impact tool 110 of the second embodiment, the state where the large diameter portion 116b of the intermediate impactor 116 is in contact with the stopper 190 indicates that the “intermediate impactor is closest to the impactor in the axial direction” of the present invention. Corresponds to “positioned state”. *
また、実施の形態1の打撃工具10において、図8のように、中間打撃子37がストッパ40に接触している状態が、本発明の「中間打撃子が軸線方向で打撃子から最も離れた位置に停止している状態」に相当する。 Further, in the impact tool 10 of the first embodiment, as shown in FIG. 8, the state in which the intermediate striker 37 is in contact with the stopper 40 is “the intermediate striker is farthest from the striker in the axial direction of the present invention. This corresponds to “a state where the vehicle is stopped at the position”.
本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。例えば、本発明の打撃工具は、商用電源の電力を電動モータに供給する構造の他、蓄電池の電力を電動モータに供給する構造を含む。蓄電池は、打撃工具に着脱可能であり、蓄電池は、複数の電池セルを収容した電池パックを含む。また、本発明の打撃工具において、ピストンを往復動させるための回転力を発生する動力源は、電動モータの他、油圧モータ、空気圧モータ、内燃機関等を含む。 The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention. For example, the impact tool of the present invention includes a structure for supplying the electric power of the storage battery to the electric motor in addition to the structure for supplying the electric power of the commercial power source to the electric motor. The storage battery is detachable from the impact tool, and the storage battery includes a battery pack that houses a plurality of battery cells. In the impact tool of the present invention, the power source that generates the rotational force for reciprocating the piston includes an electric motor, a hydraulic motor, a pneumatic motor, an internal combustion engine, and the like.
また、上記実施形態のように、電動モータの駆動力が先端工具を打撃するように伝達する構造に加えて、電動モータの駆動力が先端工具を回転させるよう伝達する構造を備えたハンマドリルであっても良い。 In addition to the structure for transmitting the driving force of the electric motor so as to strike the tip tool as in the above embodiment, the hammer drill has a structure for transmitting the driving force of the electric motor to rotate the tip tool. May be.
10,110…打撃工具、27,111…シリンダ、28,118…ピストン、29,117…打撃子、37,116…中間打撃子、43,T…先端工具、45,111a…呼吸孔、46,117a…受圧面、119,C1…空気室、A1,A2…軸線、W1…対象物。 10, 110 ... impact tool, 27, 111 ... cylinder, 28, 118 ... piston, 29, 117 ... striker, 37, 116 ... intermediate striker, 43, T ... tip tool, 45, 111a ... breathing hole, 46, 117a ... pressure receiving surface, 119, C1 ... air chamber, A1, A2 ... axis, W1 ... object.

Claims (6)

  1. ピストンを軸線方向に往復動させ、前記ピストンと打撃子との間に形成された流体室の圧力を上昇させて前記打撃子に打撃力を加える打撃工具であって、前記ピストン及び前記打撃子を前記軸線方向に移動可能に収容するシリンダと、前記打撃子から打撃力が伝達されて前記軸線方向に動作し、かつ、対象物に接触する先端工具に打撃力を伝達する中間打撃子と、前記シリンダに設けられ、かつ、前記ピストンの動作に応じて前記流体室に流体を出入りさせる呼吸孔と、前記打撃子に設けられて前記流体室の圧力を受ける受圧面と、を有し、前記中間打撃子が前記軸線方向で前記打撃子に最も近い位置に位置している状態で、前記中間打撃子に当接した前記打撃子の前記受圧面は、前記軸線方向における前記呼吸孔の配置領域内に位置する、打撃工具。 A striking tool for reciprocating a piston in an axial direction and increasing a pressure of a fluid chamber formed between the piston and the striking element to apply a striking force to the striking element, the piston and the striking element being A cylinder that is movably accommodated in the axial direction, an intermediate striking member that operates in the axial direction when a striking force is transmitted from the striking member, and transmits a striking force to a tip tool that contacts the object; A breathing hole that is provided in the cylinder and allows fluid to enter and exit from the fluid chamber according to the operation of the piston; and a pressure receiving surface that is provided in the striking element and receives the pressure of the fluid chamber. In a state where the striker is located at a position closest to the striker in the axial direction, the pressure receiving surface of the striker that is in contact with the intermediate striker is within the region where the breathing holes are arranged in the axial direction. Located in the撃工 tool.
  2. 前記呼吸孔における前記軸線方向の開口寸法は、前記呼吸孔における前記軸線方向に対して直交する方向の開口寸法よりも大きい、請求項1に記載の打撃工具。 The striking tool according to claim 1, wherein an opening dimension of the breathing hole in the axial direction is larger than an opening dimension of the breathing hole in a direction perpendicular to the axial direction.
  3. 前記呼吸孔は、前記中間打撃子が前記軸線方向で前記打撃子から最も離れた位置に停止している状態で、前記ピストンが前記打撃子に向けて動作した場合に前記流体室から流体を排出して、前記流体室の圧力が上昇することを抑制する、請求項1または2に記載の打撃工具。 The breathing hole discharges fluid from the fluid chamber when the piston operates toward the striker while the intermediate striker is stopped at a position farthest from the striker in the axial direction. And the impact tool of Claim 1 or 2 which suppresses that the pressure of the said fluid chamber raises.
  4. 前記呼吸孔は、前記シリンダの円周方向に複数設けられている、請求項1または2に記載の打撃工具。 The impact tool according to claim 1, wherein a plurality of the breathing holes are provided in a circumferential direction of the cylinder.
  5. 前記複数の呼吸孔は、前記軸線方向における配置領域が一部で重なっている、請求項4に記載の打撃工具。 The impact tool according to claim 4, wherein the plurality of breathing holes are partially overlapped with an arrangement region in the axial direction.
  6. 前記中間打撃子が前記軸線方向で前記打撃子に最も近い位置に位置している状態で、前記中間打撃子に当接した前記打撃子の前記受圧面は、前記複数の呼吸孔のうち、少なくとも1つの呼吸孔の配置領域内に位置する、請求項5に記載の打撃工具。 In a state where the intermediate striker is located at a position closest to the striker in the axial direction, the pressure receiving surface of the striker that is in contact with the intermediate striker is at least of the plurality of breathing holes. The striking tool according to claim 5, which is located in a region where one breathing hole is arranged.
PCT/JP2015/051866 2014-03-03 2015-01-23 Striking tool WO2015133198A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014040890 2014-03-03
JP2014-040890 2014-03-03

Publications (1)

Publication Number Publication Date
WO2015133198A1 true WO2015133198A1 (en) 2015-09-11

Family

ID=54055010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/051866 WO2015133198A1 (en) 2014-03-03 2015-01-23 Striking tool

Country Status (1)

Country Link
WO (1) WO2015133198A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI730897B (en) * 2020-09-09 2021-06-11 劉岳沛 Pneumatic impact tool

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4818050B1 (en) * 1966-12-02 1973-06-02
JPS50302B1 (en) * 1967-01-13 1975-01-08
JPH10309679A (en) * 1997-04-07 1998-11-24 Hilti Ag Drilling and/or chisel device
JPH1158262A (en) * 1997-08-25 1999-03-02 Makita Corp Percussion tool
JP2002127043A (en) * 2000-10-20 2002-05-08 Hitachi Koki Co Ltd Impact tool
JP2002518197A (en) * 1998-06-25 2002-06-25 ワツカー ヴエルケ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング ウント コンパニー コマンデイトゲゼルシヤフト Pneumatic impact mechanism with thin-walled drive piston
JP2003211370A (en) * 2001-11-16 2003-07-29 Hitachi Koki Co Ltd Hammer drill

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4818050B1 (en) * 1966-12-02 1973-06-02
JPS50302B1 (en) * 1967-01-13 1975-01-08
JPH10309679A (en) * 1997-04-07 1998-11-24 Hilti Ag Drilling and/or chisel device
JPH1158262A (en) * 1997-08-25 1999-03-02 Makita Corp Percussion tool
JP2002518197A (en) * 1998-06-25 2002-06-25 ワツカー ヴエルケ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング ウント コンパニー コマンデイトゲゼルシヤフト Pneumatic impact mechanism with thin-walled drive piston
JP2002127043A (en) * 2000-10-20 2002-05-08 Hitachi Koki Co Ltd Impact tool
JP2003211370A (en) * 2001-11-16 2003-07-29 Hitachi Koki Co Ltd Hammer drill

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI730897B (en) * 2020-09-09 2021-06-11 劉岳沛 Pneumatic impact tool

Similar Documents

Publication Publication Date Title
US9044848B2 (en) Impact tool having a vibration reducing member
RU2477211C2 (en) Impact tool
RU2606140C2 (en) Impact tool
US9085075B2 (en) Power tool
US3305031A (en) Power hammer
JP4965334B2 (en) Impact tool
CN105722645A (en) Handheld machine tool
KR100538764B1 (en) Engine braker
WO2015133198A1 (en) Striking tool
US20110180285A1 (en) Implement having an overrunning clutch
EP1980371B1 (en) Impact tool
JPH012878A (en) breaker
JP6160771B2 (en) Hammering machine
JPH0763944B2 (en) Breaker
JP2007007738A (en) Breaker
JP6620555B2 (en) Hammering machine
WO2017199823A1 (en) Impact tool
JP2013193142A (en) Impact tool
JP4341602B2 (en) Impact tool
JP6409315B2 (en) Hammering machine
JP2007175838A (en) Hammering tool
KR20170073440A (en) Pile driver with compressed air
JP2014100760A (en) Impact tool
JP2017226058A (en) Striking work machine
JPS63207570A (en) Breaker

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15758064

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15758064

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP