WO2015133049A1 - Water treatment system and program - Google Patents

Water treatment system and program Download PDF

Info

Publication number
WO2015133049A1
WO2015133049A1 PCT/JP2015/000083 JP2015000083W WO2015133049A1 WO 2015133049 A1 WO2015133049 A1 WO 2015133049A1 JP 2015000083 W JP2015000083 W JP 2015000083W WO 2015133049 A1 WO2015133049 A1 WO 2015133049A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
sensor
unit
processing unit
wastewater
Prior art date
Application number
PCT/JP2015/000083
Other languages
French (fr)
Japanese (ja)
Inventor
ハリーシュ プティーヤ ヴィーティル
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2015133049A1 publication Critical patent/WO2015133049A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/008Control or steering systems not provided for elsewhere in subclass C02F
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/442Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by nanofiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/001Upstream control, i.e. monitoring for predictive control
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/003Downstream control, i.e. outlet monitoring, e.g. to check the treating agents, such as halogens or ozone, leaving the process
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • C02F3/2866Particular arrangements for anaerobic reactors
    • C02F3/288Particular arrangements for anaerobic reactors comprising septic tanks combined with a filter

Definitions

  • the present invention relates to a small-scale water treatment system and program for improving the quality of raw water. More specifically, the present invention relates to a water treatment system having a treatment capacity sufficient for use in a single building or an area composed of several houses, and a program for causing a computer to function as a control unit in the water treatment system.
  • Reference 1 lists a reverse osmosis device, an electrochemical device, an ultrafiltration device, a microfiltration device, and a distillation device as examples of treatment devices for improving water quality.
  • Document 1 describes various treatment apparatuses for improving water quality.
  • treated water obtained by passing water from a water source through a treatment device for example, an electrodeionization device
  • a treatment device for example, an electrodeionization device
  • Reference 2 describes a water purification system comprising a primary water tank and a secondary water tank, purifies the introduced water through a filter and an ozone generator / mixer, and supplies this water to the primary water tank.
  • the storage configuration is described.
  • the technique described in Document 2 adopts a configuration in which water is circulated between a primary water tank, a filter, and an ozone generator / mixer as necessary.
  • the techniques described in Document 1 and Document 2 are techniques proposed for producing water suitable for drinking. That is, the techniques of Documents 1 and 2 are techniques for generating water with a high water quality level, and there is no viewpoint in Documents 1 and 2 that water quality is improved in order to increase water use efficiency.
  • the object of the present invention is to provide a water treatment system in which water quality is improved in order to enhance water use efficiency. Furthermore, an object of this invention is to provide the program for functioning a computer as a control part of this water treatment system.
  • the water treatment system includes a first sensor for monitoring components contained in water before use, a second sensor for monitoring components contained in waste water after use, and the waste water.
  • a processing unit that removes at least a part of the contained components to improve water quality, a distribution unit that distributes the use of water to one of a plurality of uses based on the component detected by the first sensor, and the waste water
  • a switching unit that switches a route between reprocessing and discarding the wastewater, and controlling the switching unit based on information on the wastewater component detected by the second sensor; and
  • the control part which provides the information of the instruction
  • the program according to the present invention is for causing a computer to function as the control unit used in any of the water treatment systems described above.
  • the present invention is not limited to a program, and may be a computer-readable recording medium that records the program.
  • the water treatment system 10 described below includes a treatment unit 11, a distribution unit 12, a switching unit 13, a control unit 20, a first sensor 21, and a second sensor 22.
  • the first sensor 21 monitors components contained in the water before use
  • the second sensor 22 monitors components contained in the waste water after use.
  • the process part 11 removes at least one part of the component contained in wastewater, and performs water quality improvement.
  • the distribution unit 12 distributes the use of water to one of a plurality of uses based on the component detected by the first sensor 21.
  • the switching unit 13 switches a route for transferring the waste water to the processing unit 11 and performing reprocessing or discarding the waste water.
  • the control unit 20 controls the switching unit 13 based on the information on the wastewater component detected by the second sensor 22 and provides the processing unit 11 with information on instructions regarding water quality improvement when reprocessing the wastewater. .
  • the components of water before use are monitored, the water is distributed to any of a plurality of uses based on the monitored results, and the components are also monitored for waste water.
  • the route for reprocessing or discarding is selected. That is, by assigning the use of water according to the components contained in the water before use, it is possible to use water that is not suitable for drinking for other uses.
  • waste water can be reused by reprocessing depending on the components to improve water quality. As a result, it is possible to reduce the amount of water that is discarded in the unit period of the introduced water, and it is possible to increase the use efficiency of water.
  • water other than drinking has the advantage that the degree of water quality improvement can be kept low, and the configuration of the processing unit is simplified and the life of the processing unit is also extended.
  • the processing unit 11 is configured to remove specific components from the raw water and waste water collected from the water source 42 for use. It is desirable for the first sensor 21 to monitor the components contained in the water before being used after the water quality is improved in the processing unit 11.
  • the water treatment system 10 preferably further includes a third sensor 23 that monitors the quality of the raw water.
  • the processing unit 11 includes a first processing unit 111 configured to remove specific components contained in the raw water, and a second processing unit 112 configured to remove specific components contained in the waste water.
  • the first processing unit 111 improves the water quality by combining the water and the raw water after the second processing unit 112 performs the reprocessing of the wastewater (processing for reusing the wastewater).
  • the water treatment system 10 includes a management unit 24 that collects history information.
  • the history information is information in which information about the components detected by the first sensor 21 and the second sensor 22 is associated with the date and time when this information is acquired.
  • the history information preferably includes the geographical position of the place where the processing unit 11 is provided.
  • the management unit 24 is preferably provided in the server 30 that collects history information through the telecommunication line 33.
  • the server 30 includes a storage unit 31 that collects and records history information through the telecommunication line 33, and a monitoring unit 32 that monitors the performance of the processing unit 11 using the history information recorded in the storage unit 31. desirable.
  • the water quality level that requires water quality improvement is classified into three stages of “medium”, “low”, and “unusable”, and uses after the water quality improvement is “drinking”, “ It is classified into three stages, “for laundry” and “for chores”.
  • the use corresponds to the water quality level.
  • the “medium” level corresponds to “for laundry”
  • the “low” level corresponds to “for chores”.
  • “Unusable” level means a water quality level that is not suitable for use.
  • “Drinking” water has a “high” level of water quality.
  • the water quality level is divided into four levels: a water quality level that requires water quality improvement (“medium” level, “low” level, “unusable level”) and a water quality level that does not require water quality improvement (“high” level). is there.
  • the name of the application indicates a typical application, but it does not mean that it is used only for the application indicated by the name.
  • “drinking” means that the water quality that can be used for drinking is safe, even if it is consumed for a long time or touches the human body, such as for food or bathing, damage to health or infection It means that the water quality is such that no water is generated.
  • “for washing” means that the water quality is such that it does not cause health damage or infection damage even if it is temporarily touched by a human body such as bathing or showering.
  • chlorores is not suitable for use in contact with humans, but represents water quality that may be used for applications that do not contact humans, such as vehicle washing or toilet flushing.
  • Table 1 shows an example of the correspondence between the components to be removed for use in each application and the water quality level classification when the corresponding components are included. Table 1 is an example, and the relationship between the components to be removed from the water to be improved in water quality and the classification of the water quality level can be determined elsewhere.
  • the treatment technology is associated with each water quality level category, but as shown in Table 2 later, the treatment technology is associated with each component to be removed, and the relationship in Table 1 is merely an example.
  • the components to be removed and the usage after treatment do not have to be in the correspondence relationship shown in Table 1. For example, if the hardness, pH, sulfide, etc. are adjusted to an appropriate range, they may be suitable for drinking.
  • the water quality level corresponds to each component to be removed.
  • the treatment technology corresponds to each water quality level.
  • the evaporation residue is TDS (Total Dissolved Solids)
  • the NF film is a nanofiltration (Nanofiltration Membrane).
  • Deep filtration is a treatment technique that removes impurities using a filter medium selected from vegetation, gravel, sand, ceramics, polymer fibers, charcoal and the like.
  • the treatment technique for pH means adjusting to a pH value suitable for drinking (for example, 5.8 to 8.6).
  • the hardness is also adjusted to an appropriate range according to the purpose of use.
  • the water quality level that is the target of water quality improvement is classified into three levels, and the uses after treatment are classified into three types.
  • the water quality level and types of applications can be determined as appropriate. It is. Therefore, the components are also appropriately selected according to the water quality level or the setting of the application. For example, two uses of “for laundry” and “for agriculture” may be set between “drinking” and “chores”. In this case, “for laundry” removes the components shown in Table 1, and “for agriculture” removes arsenic, mercury, lead, etc., and iron, copper, nitride, etc. are left at an appropriate concentration. May be.
  • Table 2 shows examples of processing technologies that can be applied to the components to be removed.
  • anion exchange indicates that ion exchange is performed using a strong acid
  • cation exchange indicates that ion exchange is performed using a strong base.
  • water softening indicates ion exchange using salt.
  • the water treatment system 10 to be described below has a treatment capacity enough to be used in an area composed of one building or several houses. That is, the water treatment system 10 of this embodiment is not a centralized system such as a city-scale water supply or sewerage system, but a distributed power source suitable for one or a plurality of buildings, such as a distributed power supply for a centralized power generation facility. Used as a mold system.
  • FIG. 1 shows a configuration example in the case where “high” level water is supplied from the water purification plant 41
  • FIG. 2 shows that the “high” level water is generated by improving the quality of raw water taken from the water source 42.
  • a configuration example is shown. That is, the configuration example shown in FIG. 1 is the water treatment system 10 when the water supply can be used, and the configuration example shown in FIG. 2 is the water treatment system 10 when the water supply cannot be used.
  • the water treatment system 10 having the configuration shown in FIG. 1 can be used even in a place where the water of the water supply can be used for every application. If the water treatment system 10 having such a configuration is adopted, the water treatment system 10 can be used. It becomes possible to reduce the supply amount of water. Further, in the configuration example shown in FIG. 1, since “drinking” water is supplied from the water supply, it is not necessary to generate “drinking” water from raw water unlike the configuration example shown in FIG. In addition, the structural example shown in FIG. 1 and FIG. 2 is only an example, and it is possible to employ
  • Raw water that can be used by humans includes groundwater, river water (including lake water), and rainwater, and the quality of raw water varies depending on the location. For example, in agriculture and industry, when production expands, not only is more water required, but surface water (rain water, river water, etc.) and groundwater can be contaminated. Therefore, in the vicinity of farmland or factories, the water taken from the water source 42 may affect health if used for drinking without improving the water quality.
  • raw water may contain inorganic arsenic, and raw water may contain fluorine in many countries including China and India.
  • naturally occurring pollutants also affect the safety when supplying water.
  • the water treatment system 10 is required to be constructed so as to be adapted to the site.
  • “drinking” water having a “high” level is supplied from a water purification plant 41 through a water supply 43, and “washing” and “miscellaneous” water uses groundwater or surface water as a water source 42. Supplied as Depending on the components contained in the water supply 43, the water quality of the water in the water supply 43 may need to be improved.
  • the processing unit 113 (corresponding to the processing unit 11) is provided to improve the water quality of the water in the water supply 43, but whether or not the processing unit 113 is provided depends on the components contained in the water in the water supply 43. Is selected accordingly.
  • two water supply tanks 51 and 52 are installed in the upper part of the building 50.
  • One water supply tank 51 is provided for supplying “drinking” level water
  • the other water supply tank 52 is provided for supplying water that is not “drinking” level.
  • the water supplied from the water supply tank 52 is not at the “drinking” level but at a higher water quality level than the “unusable” level, and in this embodiment, becomes “washing” or “chores”.
  • FIG. 1 shows four types of applications of “drinking”, “for laundry”, “for miscellaneous use”, and “for toilet bowl cleaning”, it is classified into five or more types (that is, the water quality level is five or more levels). May be.
  • a water quality level of “for bathing” may be provided between “drinking” and “for laundry”, and “chores” is classified into two stages of “others” and “for toilets” May be.
  • the water stored in the water supply tank 51 and the water supply tank 52 is configured to fall naturally due to gravity, and to obtain the pressure required for the water used in the building 50.
  • a pump 53 for pumping water into the water supply tank 51 and a pump 54 for pumping water into the water supply tank 52 are provided.
  • the component (first component) is monitored (detected) by the sensor 211 (first sensor 21).
  • a water purifier 55 for removing impurities before being used is provided.
  • the processing unit 113 and the water purifier 55 described above are not essential. However, there is a variation in the degree of water quality improvement in the water supply 43, and when water is stored in the water supply tank 51 for a long time, there is a possibility that foreign matter is mixed in or bacteria are propagated. Therefore, it is desirable to improve water quality by applying an appropriate treatment technique in the processing unit 113 and the water purifier 55.
  • the water purifier 55 may be configured to remove the assumed components.
  • the water supply tank 52 passes the raw water from the water source 42 through the first processing unit 111 to improve the water quality and waste water described later through the second processing unit 112, and further passes through the first processing unit 111.
  • the first processing unit 111 and the second processing unit 112 constitute the processing unit 11. Similar to the water stored in the water supply tank 51, the component (first component) of the water stored in the water supply tank 52 is monitored (detected) by the sensor 212 (first sensor 21) before use. . That is, the water before use includes water before being used after the water quality is improved by the processing unit 11.
  • the processing capability of the first processing unit 111, the second processing unit 112, and the processing unit 113 is adjusted according to the concentration (or amount) of the component to be removed. For example, when the concentration of the component to be removed is high, the flow rate of the water passing through the first processing unit 111, the second processing unit 112, and the processing unit 113 is adjusted so that the passing time becomes longer. In addition, when the water quality is improved by mixing the drug, the amount or concentration of the drug is adjusted, and when the water quality is improved using physical energy (light, heat, electricity, etc.), the energy amount is adjusted.
  • the control unit 20 determines the water quality level according to the component detected by the sensor 212.
  • the water supplied from the water supply tank 52 is distributed by the distribution unit 12 according to use. That is, the distribution unit 12 distributes the use of water before use to any of a plurality of uses based on the component detected by the sensor 212 (first sensor 21).
  • the distribution unit 12 can store the small-capacity water storage tanks (the second water storage tank 122, the third water storage tank 123, and the fourth water storage tank 124 in FIG. 2). Temporarily).
  • the distribution unit 12 is controlled by the control unit 20 based on the components detected by the sensor 212.
  • the sensor 211 and the sensor 212 function as the first sensor 21 for monitoring the components contained in the water before use.
  • This embodiment is characterized in that it is possible to select whether to reprocess waste water or discard waste water according to the components contained in the waste water after using water. Therefore, a second sensor 22 that monitors (detects) a component of the wastewater (second component) and a switching unit 13 that switches the path of the wastewater according to the component detected by the second sensor 22 are provided. Wastewater to be reprocessed is introduced into the first processing unit 111 after being introduced into the second processing unit 112 to remove specific components.
  • the removal of the specific component is not limited to the complete removal of the specific component, and may be a reduction of the specific component.
  • the component that is the detection target of the first sensor 21 and the component that is the detection target of the second sensor 22 may be the same or different.
  • the first processing unit 111 is provided to obtain water of a water quality level that can be supplied to the water supply tank 52 by removing specific components from the raw water.
  • the first processing unit 111 is designed according to the components contained in the raw water collected from the water source 42. However, since the types and concentrations of the components contained in the raw water may vary depending on the timing at which the raw water is collected from the water source 42, the water quality stored in the water supply tank 52 after the first treatment unit 111 has improved the water quality. The level may vary.
  • the components contained in the waste water are mainly food components, detergents, sebum, etc. if the toilet flushing water is separated, and the concentration of the components removed by the second processing unit 112 may vary. There is little variation in types. Therefore, the water quality level after the specific component is removed by the second processing unit 112 is relatively high. Therefore, the component of the raw water is diluted by confirming the component with the sensor 212 which is the first sensor 21 before being used, and further mixing the water whose component is confirmed with the second sensor 22 into the raw water. It will be.
  • the water quality is improved by the first processing unit 111, so that water having a relatively high water quality level can be obtained. It is possible to store in the water supply tank 52. In the illustrated example, a pump 56 is provided to take the raw water into the first processing unit 111.
  • the switching unit 13 always selects a route for reprocessing wastewater, and the wastewater is introduced into the second processing unit 112 through the switching unit 13.
  • the second sensor 22 monitors the component after the water quality has been improved by the second processing unit 112, and gives the control unit 20 information regarding the component contained in the water processed by the second processing unit 112.
  • the control unit 20 instructs the switching unit 13 to select the wastewater path according to the information acquired from the second sensor 22. Since the control part 20 acquires the information regarding the component after removing a specific component from wastewater in the 2nd processing part 112 from the 2nd sensor 22, the water quality improvement of wastewater is fully carried out by the 2nd processing part 112. It becomes possible to evaluate whether or not it can be performed. When it is evaluated that the waste water is not suitable for reprocessing, the control unit 20 instructs the switching unit 13 to select a route for discarding water.
  • the waste water to be discarded includes not only the waste water whose path to be discarded by the switching unit 13 is selected but also water used for cleaning the toilet bowl.
  • the waste water discarded in this way is discarded after reducing the load on the natural world in order to wait for natural purification.
  • a treatment pond 61 in which a sewage treatment plant (STP: Sewage Treatment Plant) is planted and a microbial fuel cell 62 (MFC: Microbial Fuel Cell) are used.
  • STP Sewage Treatment Plant
  • MFC Microbial Fuel Cell
  • the microbial fuel cell 62 is used as an energy source for driving a fan for aeration processing for introducing air because the energy that can be taken out is small.
  • the control unit 20 includes a processor that operates according to a program.
  • This processor is used together with a memory, an interface device and the like to constitute a computer.
  • the processor may be a microcomputer integrated with a memory, an interface, and the like.
  • the control unit 20 uses a device including a processor as a main hardware element.
  • the program is provided in a state of being recorded in advance in a ROM (Read Only Memory) or provided through an electric communication line such as the Internet. Alternatively, the program is provided using a computer-readable recording medium.
  • the control unit 20 includes an acquisition unit 201 that acquires information on components monitored from the sensors 211 and 212 (first sensor 21) and the second sensor 22. Further, the control unit 20 determines whether the first processing unit 111, the second processing unit 112 (including the processing unit 113 in some cases), the distribution unit 12, and the switching unit 13 based on the information acquired through the acquisition unit 201. A determination unit 202 that generates information to be instructed is provided.
  • the acquisition unit 201 acquires information regarding the component detected by the sensor 211 from the sensor 211 and acquires information regarding the component detected by the sensor 212 from the sensor 212. Further, the acquisition unit 201 acquires information about the component detected by the second sensor 22 from the second sensor 22.
  • the determination unit 202 determines the water quality level by collating the information about the components detected by the first sensor 21 and the second sensor 22 with the storage unit 203 storing the contents corresponding to Table 1. Furthermore, the determination unit 202 generates information instructing the processing unit 11, the distribution unit 12, and the switching unit 13 so as to distribute water to uses according to the water quality level.
  • the information generated by the determination unit 202 is given to the processing unit 11, the distribution unit 12, and the switching unit 13 through the output unit 204.
  • the 1st sensor 21 and the 2nd sensor 22 are selected from an electrochemical sensor, a biosensor, an optical sensor etc., and are used independently or are used in combination.
  • control unit 20 is not shown in FIG. 2, the control unit 20 has the same configuration as the control unit 20 shown in FIG. That is, the control unit 20 acquires information on components detected by the first sensor 21, the second sensor 22, and the third sensor 23, and provides information to instruct the processing unit 11, the distribution unit 12, and the switching unit 13. give.
  • the water treatment system 10 shown in FIG. 2 has a first treatment unit 111 configured to remove a specific component contained in raw water and a specific component contained in waste water, as in the configuration example shown in FIG. And a second processing unit 112 configured to remove.
  • the first processing unit 111 includes three stages of processing units 1111, 1112, and 1113.
  • the first processing unit 111 includes a processing unit 1111 that improves the water quality from the “unusable” level to the “low” level, a processing unit 1112 that improves the water quality from the “low” level to the “medium” level, And a processing unit 1113 for improving the water quality from the “medium” level to the “high” level.
  • Water whose water quality has been improved by the processing unit 1111 is “chores”, water whose water quality has been improved by the processing unit 1112 is “for laundry”, and water whose water quality has been improved by the processing unit 1113 is “drinking”. is there.
  • the first processing unit 111 improves the water quality level one step at a time in three steps of the processing unit 1111, the processing unit 1112, and the processing unit 1113. Therefore, the degree to which each of the processing unit 1112 and the processing unit 1113 is contaminated is reduced as compared with a case where a single processing unit is used to improve the water quality level in a plurality of stages.
  • the processing unit 1111, the processing unit 1112, and the processing unit 1113 only have to adopt a processing technique according to the components at each stage, and it is not necessary to consider the components at other stages. Design for processing is facilitated.
  • a first water storage tank 121 for storing “low” level water is provided between the processing unit 1111 and the processing unit 1112, and “middle” is provided between the processing unit 1112 and the processing unit 1113.
  • a second water reservoir 122 is provided to store “level” water.
  • the “high” level water whose water quality has been improved by the processing unit 1113 is stored in the third water tank 123.
  • the “low” level water processed by the processing unit 1111 is stored not only in the first water tank 121 but also in the fourth water tank 124.
  • the water stored in the first water tank 121 is improved to a “medium” level through the processing unit 1112, and further improved to a “high” level through the processing unit 1113.
  • the “low” level water stored in the first water tank 121 is distributed to produce “washing” and “drinking” water.
  • the “low” level water stored in the fourth water storage tank 124 is used as a “chore” for purposes such as toilet flushing (for flush toilets), vehicle washing, and non-edible plant growth.
  • the water treatment system 10 shown in FIG. 2 includes a first valve 125 between the first water tank 121 and the treatment unit 1112, and a second valve between the second water tank 122 and the treatment unit 1113. 126.
  • the first valve 125 and the second valve 126 are operated by an electric signal including an instruction content from the control unit 20.
  • the first valve 125 and the second valve 126 are configured to open and close only, but a configuration that can adjust the opening amount is more desirable.
  • the second water tank 122, the third water tank 123, the fourth water tank 124, the first valve 125, and the second valve 126 receive water whose water quality has been improved by the first processing unit 111. Since it distributes for every use, it functions as the distribution unit 12.
  • the outlets of the second water tank 122, the third water tank 123, and the fourth water tank 124 are included in the water of each water quality level.
  • Sensors 213, 214, 215 are arranged to monitor the components being monitored.
  • a sensor 213 disposed at the outlet of the second water tank 122 monitors components contained in the “washing” water.
  • a sensor 214 disposed at the outlet of the third water tank 123 monitors components contained in “drinkable” water.
  • a sensor 215 located at the outlet of the fourth reservoir 124 monitors the components contained in the “chores” water.
  • the sensors 213, 214, and 215 are provided as the first sensor 21 in order to monitor components contained in the water to be used.
  • the place where the sensors 213, 214, and 215 are arranged is not limited to the position described above, but the first sensor 21 is desirably arranged so that the water component for each application can be monitored.
  • the configuration example shown in FIG. 2 does not include the water supply tanks 51 and 52 shown in FIG. 1, but the functions corresponding to the water supply tanks 51 and 52 are the first water storage tank 121, the second water storage tank 122, The third water tank 123 and the fourth water tank 124 are in charge. Moreover, it is desirable that the water treatment system 10 includes a pump as appropriate. For example, when gravity is used to supply water in the order of the processing unit 1111, the processing unit 1112, and the processing unit 1113, a configuration in which raw water introduced into the processing unit 1111 is pumped is adopted. Moreover, in order to use the water stored in the 2nd water tank 122, the 3rd water tank 123, and the 4th water tank 124, respectively, the structure which pumps water may be sufficient.
  • This water treatment system 10 takes out water of a water quality level according to the use from the second water tank 122, the third water tank 123, and the fourth water tank 124. Furthermore, the water treatment system 10 also has a function of treating waste water after use. Wastewater is handled differently depending on whether the water before use is “high”, “medium” or “low”.
  • Wastewater after using “high” level water is reprocessed or discarded.
  • the third valve 131 is provided in the reprocessing path
  • the fourth valve 132 is provided in the disposal path.
  • the third valve 131 and the fourth valve 132 can be selected from three states, a state in which only one of them is open and a state in which both are closed.
  • a purification facility 70 constituting the second processing unit 112 is provided in the path for reprocessing wastewater, and when the third valve 131 is opened, the wastewater is introduced into the purification facility 70.
  • waste water after using “medium” level water is also introduced into the purification facility 70.
  • the purification facility 70 is a facility for improving the water quality of the introduced water to at least the same water quality level as the raw water, and includes a septic tank 71, an aeration tank 72, and a disinfection device 73.
  • the septic tank 71 is configured to treat the wastewater in the tank with anaerobic microorganisms
  • the aeration tank 72 filters the wastewater that has passed through the septic tank 71 and then treats the wastewater in the tank with aerobic microorganisms. It is configured.
  • the disinfecting device 73 is configured to disinfect the waste water taken out from the aeration tank 72 with ultraviolet rays. Of the waste water in the septic tank 71, waste water that is not sent to the aeration tank 72 is discarded through the fifth valve 133.
  • the controller 20 opens and closes the third valve 131, the fourth valve 132, and the fifth valve 133.
  • a second sensor 22 is provided to monitor the quality of the wastewater after using “high” level water.
  • the second sensor 22 is selected from an electrochemical sensor, a biosensor, an optical sensor, and the like, and used alone or in combination.
  • the control unit 20 has a function of controlling opening and closing of the third valve 131, the fourth valve 132, and the fifth valve 133 according to the water quality measured by the second sensor 22.
  • the control unit 20 opens the third valve 131 when it is determined that the water quality can be improved in the second processing unit 112 based on the wastewater component monitored by the second sensor 22. As a result, the waste water is introduced into the purification equipment 70.
  • the control unit 20 determines that it is difficult to improve the water quality in the second processing unit 112 with respect to the components of the wastewater monitored by the second sensor 22, the control unit 20 opens the fourth valve 132 to open the wastewater. Discard.
  • the control unit 20 desirably closes the third valve 131 and the fourth valve 132 when the wastewater does not pass through the second sensor 22.
  • the fifth valve 133 is opened by an operation based on an electrical signal from the control unit 20 when waste water is discarded from the septic tank 71.
  • the wastewater after the water quality is improved by the purification facility 70 is relatively clean and the water quality is improved to the same level or higher than the raw water. Therefore, the treatment pond in which the sewage treatment plant (STP) is planted. After being introduced to 74, it is returned to the processing unit 1111. As the sewage treatment plant, for example, a reed is used. In the configuration example illustrated in FIG. 2, the processing pond 74 also functions as the second processing unit 112.
  • the third valve 131, the fourth valve 132, and the fifth valve 133 function as the switching unit 13 that selects the wastewater path. Further, the purification facility 70 and the treatment pond 74 function as the second treatment unit 112.
  • the third sensor 23 monitors (detects) the component (third component) contained in the raw water. Similar to the configuration example illustrated in FIG. 1, the control unit 20 controls the distribution unit 12 according to the component detected by the first sensor 21 (the component detected by the third sensor 23 is also used).
  • the first processing unit 111 since the first processing unit 111 includes the three-stage processing units 1111, 1112, and 1113, in most cases, “drinking” Can be produced.
  • the distribution unit 12 has a function of adjusting the amount to be distributed when the water whose water quality has been improved by the first processing unit 111 is distributed for each application.
  • the component that is the detection target of the third sensor 23 may be the same as or different from the component that is the detection target of the first sensor 21 or the component that is the detection target of the second sensor 22. Also good.
  • the processing unit 1111, the processing unit 1112, and the processing unit 1113 are configured as modules corresponding to respective processing targets. Therefore, if the combination of modules is selected according to the water quality of raw water available at the site where the water treatment system 10 is installed and the water quality level to be taken out according to the application, the water treatment system 10 suitable for the site can be assembled. It becomes possible. Moreover, since the module which comprises the water treatment system 10 is independent, it is possible to replace
  • capacitance is prepared beforehand according to the processing amount of water.
  • the first sensor 21 monitors the water component before use
  • the second sensor 22 monitors the waste water component
  • the raw water component is third if necessary.
  • the sensor 23 is monitoring. If the information about the components monitored by the first sensor 21 and the second sensor 22 is associated with the date and time when the information was acquired and stored as history information, the operation of the water treatment system 10 can be managed. Is possible.
  • the history information includes information in which information on the component (first component) detected by the first sensor 21 is associated with the date and time when the management unit 24 acquired this information.
  • the history information includes information that associates information about the component (second component) detected by the second sensor 22 with the date and time when the management unit 24 acquired this information.
  • the history information includes not only information on the components monitored by the first sensor 21 and the second sensor 22, but also information on the components monitored by the third sensor 23.
  • the date and time to be included in the history information is counted by a built-in clock provided in the control unit 20.
  • history information is collected, it becomes possible to know the degree of deterioration of performance due to changes with time of the first processing unit 111 and the second processing unit 112.
  • the configuration shown in FIG. 2 includes three sensors 213, 214, and 215 that function as the first sensor 21, it is possible to know the degree of performance degradation for each of the processing units 1111, 1112, and 1113. It is. Therefore, it is possible to detect the replacement time of the module or the failure of the module based on the history information.
  • history information may be collected at time intervals selected from one day, one week, one month, and the like.
  • the history information is collected by the management unit 24.
  • the management unit 24 can be provided in the control unit 20, since the control unit 20 is basically provided for each water treatment system 10, when the management unit 24 is provided in the control unit 20, Only history information relating to a single water treatment system 10 can be collected. Therefore, in the configuration example shown in FIG. 3, the management unit 24 is provided in the server 30 that communicates with the control unit 20 through an electric communication line 33 such as an Internet line or a mobile communication network.
  • the server 30 includes a storage unit 31 that collects and stores history information. Furthermore, the first processing unit 111 and the second processing unit 112 are deteriorated using the history information stored in the storage unit 31.
  • a monitoring unit 32 for determining the degree is provided. That is, the storage unit 31 and the monitoring unit 32 constitute the management unit 24. From the above, the storage unit 31 stores history information. Specifically, the storage unit 31 stores history information collected through the telecommunication line 33.
  • the history information includes information on the geographical position of the place where the water treatment system 10 (that is, the treatment unit 11) is installed. Articles such as consumables are prepared in advance and delivered to the water treatment system 10 in which the performance of the processing unit 11 has deteriorated due to the history information including geographical location information. It becomes possible.
  • the server 30 disposed far from the water treatment system 10 includes the management unit 24 to monitor the necessity of articles such as consumables. It becomes possible to cooperate with the business that delivers the goods. That is, it can be expected that the water treatment system 10 is not only used at the time of introduction but also used for a long time by exchanging consumables and the like.
  • the amount of wastewater to be discarded can be greatly reduced.
  • the amount of new water introduced from the water source 42 can be reduced, and the availability of available water is facilitated.
  • the second processing unit 112 performs reprocessing to improve the water quality, so that the waste water can be reused. That is, it becomes possible to reduce the amount of water discarded in the unit period among the water introduced from the water source 42, and as a result, the water use efficiency increases.
  • the configuration of the processing unit 11 is simplified, and the life of the processing unit 11 may be increased.

Abstract

The present invention addresses the problem of increasing the utilization efficiency of introduced water. In this water treatment system (10), a first sensor (21) monitors the components contained in the water before use and a second sensor (22) monitors the components contained in waste water after use. A treatment unit (11) improves water quality by removing at least a portion of the components contained in waste water. A distribution unit (12) distributes water use to any of multiple uses on the basis of the components detected by the first sensor (21). A switching unit (13) switches between a path for delivering the waste water to the treatment unit (11) and performing re-treatment and a path for discarding the waste water. A control unit (20) controls the switching unit (13) on the basis of the waste water component information detected by the second sensor (22) and when performing re-treatment of waste water, gives information on instructions relating to the improvement of water quality to the treatment unit (11).

Description

水処理システム、プログラムWater treatment system, program
 本発明は、原水の水質改善を行う小規模の水処理システムおよびプログラムに関する。さらに詳しくは、1軒の建物あるいは数軒で構成される地域で使用する程度の処理能力を有する水処理システム、およびコンピュータを水処理システムにおける制御部として機能させるためのプログラムに関する。 The present invention relates to a small-scale water treatment system and program for improving the quality of raw water. More specifically, the present invention relates to a water treatment system having a treatment capacity sufficient for use in a single building or an area composed of several houses, and a program for causing a computer to function as a control unit in the water treatment system.
 今日、人が生活する上で必要な水を確保することが重要な課題になってきている。とくに、著しく人口が増加し始めているアジアおよびアフリカなどの一部の地域では、利用に適さない不純物が陸水に混入していることが多い。したがって、これらの地域では、他の地域以上に水質の改善が喫緊の課題になっている。 Securing water necessary for people to live is an important issue today. In particular, in some areas such as Asia and Africa, where the population has begun to increase significantly, impurities that are not suitable for use are often mixed in land water. Therefore, improvement of water quality is an urgent issue in these areas more than other areas.
 水質改善には、物理的処理、化学的処理、生物的処理を単独または複合して用いる様々な技術が提案されている。たとえば、カルシウムあるいはマグネシウムのような成分の濃度を低減させる水処理の技術として電気脱イオン化装置あるいはイオン交換樹脂を用いる技術が記載されている(たとえば、日本国特許出願公表番号2007-513749(以下「文献1」という)参照)。文献1には、水質改善のための処理装置の例として、逆浸透装置、電気化学装置、限外濾過装置、精密濾過装置、蒸留装置が列記されている。 Various techniques using physical treatment, chemical treatment, or biological treatment alone or in combination have been proposed for water quality improvement. For example, a technique using an electrodeionization apparatus or an ion exchange resin is described as a water treatment technique for reducing the concentration of a component such as calcium or magnesium (for example, Japanese Patent Application Publication No. 2007-513749 (hereinafter “ Reference 1))). Reference 1 lists a reverse osmosis device, an electrochemical device, an ultrafiltration device, a microfiltration device, and a distillation device as examples of treatment devices for improving water quality.
 また、河川水、井戸水、雨水などの水質改善を行って飲用などの用途に利用可能にする小規模施設用の水質浄化システムが提案されている(たとえば、日本国特許出願公開番号2013-86034(以下「文献2」という)参照)。 Further, there has been proposed a water purification system for small-scale facilities that can be used for drinking and the like by improving the water quality of river water, well water, rainwater (for example, Japanese Patent Application Publication No. 2013-86034 ( Refer to “Reference 2” below).
 文献1には、水質改善を行う種々の処理装置が記載されている。文献1に記載された構成では、水源からの水を処理装置(たとえば、電気脱イオン化装置)に通した処理水は、洗濯器、皿洗い機、台所流し、シャワーヘッドなどで使用される。 Document 1 describes various treatment apparatuses for improving water quality. In the configuration described in Document 1, treated water obtained by passing water from a water source through a treatment device (for example, an electrodeionization device) is used in a washing machine, a dishwasher, a kitchen sink, a shower head, and the like.
 また、文献2には、一次貯水槽と二次貯水槽とを備える水質浄化システムが記載され、導入された水をフィルタおよびオゾン生成・混合器に通して浄化し、この水を一次貯水槽に貯える構成が記載されている。文献2に記載された技術は、必要に応じて、一次貯水槽とフィルタおよびオゾン生成・混合器との間で水を循環させる構成が採用されている。 Reference 2 describes a water purification system comprising a primary water tank and a secondary water tank, purifies the introduced water through a filter and an ozone generator / mixer, and supplies this water to the primary water tank. The storage configuration is described. The technique described in Document 2 adopts a configuration in which water is circulated between a primary water tank, a filter, and an ozone generator / mixer as necessary.
 文献1、文献2に記載された技術は、飲用に適した水を生成するために提案された技術である。すなわち、文献1、文献2の技術は、高い水質レベルの水を生成する技術であって、水の利用効率を高めるために水質改善を行うという観点は、文献1、文献2には存在しない。 The techniques described in Document 1 and Document 2 are techniques proposed for producing water suitable for drinking. That is, the techniques of Documents 1 and 2 are techniques for generating water with a high water quality level, and there is no viewpoint in Documents 1 and 2 that water quality is improved in order to increase water use efficiency.
 本発明は、水の利用効率を高めるために水質改善を行うようにした水処理システムを提供することを目的とする。さらに、本発明は、コンピュータを、この水処理システムの制御部として機能させるためのプログラムを提供することを目的とする。 The object of the present invention is to provide a water treatment system in which water quality is improved in order to enhance water use efficiency. Furthermore, an object of this invention is to provide the program for functioning a computer as a control part of this water treatment system.
 本発明に係る水処理システムは、利用前の水に含まれている成分を監視する第1のセンサと、利用後の廃水に含まれている成分を監視する第2のセンサと、前記廃水に含まれる成分の少なくとも一部を取り除いて水質改善を行う処理部と、前記第1のセンサが検出した成分に基づいて水の用途を複数の用途のいずれかに振り分ける分配部と、前記廃水を前記処理部に引き渡して再処理を行うか前記廃水を廃棄するかの経路を切り替える切替部と、前記第2のセンサが検出した前記廃水の成分の情報に基づいて前記切替部を制御し、かつ前記廃水の前記再処理を行う場合に、前記水質改善に関する指示の情報を前記処理部に与える制御部とを備えることを特徴とする。 The water treatment system according to the present invention includes a first sensor for monitoring components contained in water before use, a second sensor for monitoring components contained in waste water after use, and the waste water. A processing unit that removes at least a part of the contained components to improve water quality, a distribution unit that distributes the use of water to one of a plurality of uses based on the component detected by the first sensor, and the waste water A switching unit that switches a route between reprocessing and discarding the wastewater, and controlling the switching unit based on information on the wastewater component detected by the second sensor; and When performing the said reprocessing of wastewater, the control part which provides the information of the instruction | indication regarding the said water quality improvement to the said process part is provided, It is characterized by the above-mentioned.
 本発明に係るプログラムは、コンピュータを、上述したいずれかの水処理システムに用いられる前記制御部として機能させるためのものである。本発明は、プログラムに限らず、当該プログラムを記録したコンピュータ読み取り可能な記録媒体であってもよい。 The program according to the present invention is for causing a computer to function as the control unit used in any of the water treatment systems described above. The present invention is not limited to a program, and may be a computer-readable recording medium that records the program.
 本発明の好ましい実施形態をより詳細に記述する。本発明の他の特徴および利点は、以下の詳細な記述および添付図面に関連して一層よく理解される。
実施形態の水処理システムを示す概略構成図である。 実施形態の他の水処理システムを示す概略構成図である。 実施形態の利用例を示す概略構成図である。
Preferred embodiments of the invention are described in more detail. Other features and advantages of the present invention will be better understood with reference to the following detailed description and accompanying drawings.
It is a schematic block diagram which shows the water treatment system of embodiment. It is a schematic block diagram which shows the other water treatment system of embodiment. It is a schematic block diagram which shows the usage example of embodiment.
 図1に示すように、以下に説明する水処理システム10は、処理部11と分配部12と切替部13と制御部20と第1のセンサ21と第2のセンサ22とを備える。第1のセンサ21は、利用前の水に含まれている成分を監視し、第2のセンサ22は、利用後の廃水に含まれている成分を監視する。処理部11は、廃水に含まれる成分の少なくとも一部を取り除いて水質改善を行う。分配部12は、第1のセンサ21が検出した成分に基づいて水の用途を複数の用途のいずれかに振り分ける。切替部13は、廃水を処理部11に引き渡して再処理を行うか廃水を廃棄するかの経路を切り替える。制御部20は、第2のセンサ22が検出した廃水の成分の情報に基づいて切替部13を制御し、かつ廃水の再処理を行う場合に、水質改善に関する指示の情報を処理部11に与える。 As shown in FIG. 1, the water treatment system 10 described below includes a treatment unit 11, a distribution unit 12, a switching unit 13, a control unit 20, a first sensor 21, and a second sensor 22. The first sensor 21 monitors components contained in the water before use, and the second sensor 22 monitors components contained in the waste water after use. The process part 11 removes at least one part of the component contained in wastewater, and performs water quality improvement. The distribution unit 12 distributes the use of water to one of a plurality of uses based on the component detected by the first sensor 21. The switching unit 13 switches a route for transferring the waste water to the processing unit 11 and performing reprocessing or discarding the waste water. The control unit 20 controls the switching unit 13 based on the information on the wastewater component detected by the second sensor 22 and provides the processing unit 11 with information on instructions regarding water quality improvement when reprocessing the wastewater. .
 上記水処理システム10の構成によれば、利用前の水の成分を監視し、監視した結果に基づいて水を複数の用途のいずれかに振り分けており、さらに、廃水についても成分を監視した結果に基づいて、再処理を行うか廃棄するかの経路を選択している。すなわち、利用前の水に含まれる成分に応じて水の用途を振り分けることによって、飲用などに適さない水でも他の用途に利用することを可能にしている。また、廃水についても成分によっては水質改善のための再処理を行うことによって、水の再利用を可能にしている。その結果、導入した水のうち単位期間に廃棄する水の量を低減させることが可能になり、水の利用効率を高めることが可能になる。また、飲用以外の水は水質改善の程度を低く抑えることが可能であり、処理部の構成が簡単になる上に処理部の寿命も長くなるという利点がある。 According to the configuration of the water treatment system 10, the components of water before use are monitored, the water is distributed to any of a plurality of uses based on the monitored results, and the components are also monitored for waste water. Based on the above, the route for reprocessing or discarding is selected. That is, by assigning the use of water according to the components contained in the water before use, it is possible to use water that is not suitable for drinking for other uses. In addition, waste water can be reused by reprocessing depending on the components to improve water quality. As a result, it is possible to reduce the amount of water that is discarded in the unit period of the introduced water, and it is possible to increase the use efficiency of water. In addition, water other than drinking has the advantage that the degree of water quality improvement can be kept low, and the configuration of the processing unit is simplified and the life of the processing unit is also extended.
 処理部11は、利用のために水源42から採取された原水と廃水とから特定の成分を取り除くように構成されている。第1のセンサ21は、処理部11で水質改善が行われた後に利用される前の水に含まれている成分を監視することが望ましい。 The processing unit 11 is configured to remove specific components from the raw water and waste water collected from the water source 42 for use. It is desirable for the first sensor 21 to monitor the components contained in the water before being used after the water quality is improved in the processing unit 11.
 水処理システム10は、原水の水質を監視する第3のセンサ23をさらに備えることが望ましい。この場合、処理部11は、原水に含まれる特定の成分を取り除くように構成された第1の処理部111と、廃水に含まれる特定の成分を取り除くように構成された第2の処理部112とを備える。第1の処理部111は、第2の処理部112で廃水の再処理(廃水を再利用するための処理)を行った後の水と原水とを併せて水質改善を行う。 The water treatment system 10 preferably further includes a third sensor 23 that monitors the quality of the raw water. In this case, the processing unit 11 includes a first processing unit 111 configured to remove specific components contained in the raw water, and a second processing unit 112 configured to remove specific components contained in the waste water. With. The first processing unit 111 improves the water quality by combining the water and the raw water after the second processing unit 112 performs the reprocessing of the wastewater (processing for reusing the wastewater).
 水処理システム10は、履歴情報を収集する管理部24を備えることが望ましい。履歴情報は、第1のセンサ21および第2のセンサ22により検出された成分に関する情報とこの情報を取得した日時とを対応させた情報である。 It is desirable that the water treatment system 10 includes a management unit 24 that collects history information. The history information is information in which information about the components detected by the first sensor 21 and the second sensor 22 is associated with the date and time when this information is acquired.
 履歴情報は、処理部11が設けられている場所の地理的位置を含んでいることが望ましい。また、管理部24は、電気通信回線33を通して履歴情報を収集するサーバ30に設けられることが望ましい。サーバ30は、電気通信回線33を通して履歴情報を収集し記録する記憶部31と、記憶部31が記録している履歴情報を用いて処理部11の性能を監視する監視部32とを備えることが望ましい。 The history information preferably includes the geographical position of the place where the processing unit 11 is provided. The management unit 24 is preferably provided in the server 30 that collects history information through the telecommunication line 33. The server 30 includes a storage unit 31 that collects and records history information through the telecommunication line 33, and a monitoring unit 32 that monitors the performance of the processing unit 11 using the history information recorded in the storage unit 31. desirable.
 以下、本実施形態についてさらに詳しく説明する。本実施形態において、水質改善が必要な水の水質レベルは、「中」、「低」、「使用不可」の3段階に分類され、水質改善を行った後の用途は、「飲用」、「洗濯用」、「雑用」の3段階に分類されている。用途は水質レベルに対応している。たとえば、「中」レベルは「洗濯用」に対応し、「低」レベルは「雑用」に対応する。「使用不可」レベルは、利用に適さない水質レベルを意味する。なお、「飲用」の水は「高」レベルの水質になる。すなわち、水質レベルは、水質改善が必要な水質レベル(「中」レベル、「低」レベル、「使用不可レベル」)と、水質改善が不要な水質レベル(「高」レベル)との4段階である。 Hereinafter, this embodiment will be described in more detail. In the present embodiment, the water quality level that requires water quality improvement is classified into three stages of “medium”, “low”, and “unusable”, and uses after the water quality improvement is “drinking”, “ It is classified into three stages, “for laundry” and “for chores”. The use corresponds to the water quality level. For example, the “medium” level corresponds to “for laundry” and the “low” level corresponds to “for chores”. “Unusable” level means a water quality level that is not suitable for use. “Drinking” water has a “high” level of water quality. In other words, the water quality level is divided into four levels: a water quality level that requires water quality improvement (“medium” level, “low” level, “unusable level”) and a water quality level that does not require water quality improvement (“high” level). is there.
 用途の名称は、代表的な用途を示しているが、名称が示す用途にのみ用いることを意味していない。たとえば、「飲用」は、飲用に使用して差し支えがない水質であることを表し、食用あるいは入浴用のように、摂取したり人体に触れたりする時間が比較的長くても健康被害あるいは感染被害が生じない程度の水質であることを意味する。また、「洗濯用」は、洗濯に用いるだけではなく、水浴あるいはシャワーのように人体に一時的に触れても健康被害あるいは感染被害が生じない程度の水質であることを意味する。さらに、「雑用」は、人に接触する用途には不向きであるが、乗り物の洗浄あるいは便器の洗浄のように、人に接触しない用途であれば利用してもよい程度の水質を表す。 The name of the application indicates a typical application, but it does not mean that it is used only for the application indicated by the name. For example, “drinking” means that the water quality that can be used for drinking is safe, even if it is consumed for a long time or touches the human body, such as for food or bathing, damage to health or infection It means that the water quality is such that no water is generated. Further, “for washing” means that the water quality is such that it does not cause health damage or infection damage even if it is temporarily touched by a human body such as bathing or showering. Furthermore, “chores” is not suitable for use in contact with humans, but represents water quality that may be used for applications that do not contact humans, such as vehicle washing or toilet flushing.
 それぞれの用途に用いるために取り除くべき成分と、該当する成分を含む場合の水質レベルの区分とを対応させた例を表1に示す。表1は一例であって、水質改善の対象である水から取り除く成分と水質レベルの区分との関係は他に定めることが可能である。また、表1では水質レベルの区分ごとに処理技術を対応させているが、後に表2で示すように、処理技術は取り除く成分ごとに対応させてあり、表1の関係は一例にすぎない。取り除く成分と処理後の用途とは、表1の対応関係でなくてもよい。たとえば、硬度、pH、硫化物などは適正範囲に調整されていれば、飲用に適する場合もある。表1では、取り除くべき成分ごとに水質レベルが対応している。さらに、表1では、水質レベルごとに処理技術が対応している。 Table 1 shows an example of the correspondence between the components to be removed for use in each application and the water quality level classification when the corresponding components are included. Table 1 is an example, and the relationship between the components to be removed from the water to be improved in water quality and the classification of the water quality level can be determined elsewhere. In Table 1, the treatment technology is associated with each water quality level category, but as shown in Table 2 later, the treatment technology is associated with each component to be removed, and the relationship in Table 1 is merely an example. The components to be removed and the usage after treatment do not have to be in the correspondence relationship shown in Table 1. For example, if the hardness, pH, sulfide, etc. are adjusted to an appropriate range, they may be suitable for drinking. In Table 1, the water quality level corresponds to each component to be removed. Furthermore, in Table 1, the treatment technology corresponds to each water quality level.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1において、蒸発残留物は、TDS(Total Dissolved Solids)のことであり、NF膜はナノフィルタ(Nanofiltration Membrane)のことである。深濾過は、草木、礫、砂、セラミック、ポリマー繊維、炭などから選択される濾材を用いて、不純物を除去する処理技術である。また、pHに対する処理技術は、飲用に適したpH値(たとえば、5.8~8.6)に調節することを意味する。硬度についても、利用目的に応じて適正範囲に調整される。 In Table 1, the evaporation residue is TDS (Total Dissolved Solids), and the NF film is a nanofiltration (Nanofiltration Membrane). Deep filtration is a treatment technique that removes impurities using a filter medium selected from vegetation, gravel, sand, ceramics, polymer fibers, charcoal and the like. The treatment technique for pH means adjusting to a pH value suitable for drinking (for example, 5.8 to 8.6). The hardness is also adjusted to an appropriate range according to the purpose of use.
 なお、表1では水質改善の対象である水質レベルが3段階に分類され、処理後の用途が3種類に分類されているが、水質レベルの段階および用途の種類は、適宜に定めることが可能である。したがって、成分についても、水質レベルあるいは用途の設定に応じて適宜に選択される。たとえば、「飲用」と「雑用」との間に、「洗濯用」と「農業用」との2用途を設定してもよい。この場合、「洗濯用」は、表1に示した成分を取り除き、「農業用」では、ヒ素、水銀、鉛などを取り除いて、鉄、銅、窒化物などは適宜の濃度で残留させるようにしてもよい。 In Table 1, the water quality level that is the target of water quality improvement is classified into three levels, and the uses after treatment are classified into three types. However, the water quality level and types of applications can be determined as appropriate. It is. Therefore, the components are also appropriately selected according to the water quality level or the setting of the application. For example, two uses of “for laundry” and “for agriculture” may be set between “drinking” and “chores”. In this case, “for laundry” removes the components shown in Table 1, and “for agriculture” removes arsenic, mercury, lead, etc., and iron, copper, nitride, etc. are left at an appropriate concentration. May be.
 取り除くべき成分に対して適用可能な処理技術の例を表2に示す。表2において、アニオン交換は強酸を用いてイオン交換を行うことを示し、カチオン交換は強塩基を用いてイオン交換を行うことを示している。また同様に、軟水化は塩を用いてイオン交換を行うことを示している。 Table 2 shows examples of processing technologies that can be applied to the components to be removed. In Table 2, anion exchange indicates that ion exchange is performed using a strong acid, and cation exchange indicates that ion exchange is performed using a strong base. Similarly, water softening indicates ion exchange using salt.
 表2から明らかなように、多くの処理技術は、複数の成分に対して有効である。すなわち、水に含まれる成分がわかれば、1種類の成分に対して複数種類の処理技術が選択可能になる場合がある。逆に、1種類の処理技術を複数種類の成分に対して適用可能である場合もある。 As is clear from Table 2, many processing techniques are effective for a plurality of components. That is, if a component contained in water is known, a plurality of types of treatment techniques may be selectable for one type of component. Conversely, one type of processing technique may be applicable to a plurality of types of components.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 以下に水処理システム10の構成例について説明する。以下に説明する水処理システム10は、1軒の建物あるいは数軒で構成される地域で使用する程度の処理能力を備える。すなわち、本実施形態の水処理システム10は、都市規模の上水道あるいは下水道のような集中型のシステムではなく、集中型の発電設備に対する分散型電源のように、1ないし複数の建物に適合する分散型のシステムとして用いられる。 Hereinafter, a configuration example of the water treatment system 10 will be described. The water treatment system 10 to be described below has a treatment capacity enough to be used in an area composed of one building or several houses. That is, the water treatment system 10 of this embodiment is not a centralized system such as a city-scale water supply or sewerage system, but a distributed power source suitable for one or a plurality of buildings, such as a distributed power supply for a centralized power generation facility. Used as a mold system.
 また、図1は、「高」レベルの水が浄水場41から供給される場合の構成例を示し、図2は、「高」レベルの水が水源42から取り入れた原水の水質改善によって生成される場合の構成例を示している。すなわち、図1に示す構成例は、上水道が利用できる場合の水処理システム10であり、図2に示す構成例は、上水道が利用できない場合の水処理システム10である。 FIG. 1 shows a configuration example in the case where “high” level water is supplied from the water purification plant 41, and FIG. 2 shows that the “high” level water is generated by improving the quality of raw water taken from the water source 42. A configuration example is shown. That is, the configuration example shown in FIG. 1 is the water treatment system 10 when the water supply can be used, and the configuration example shown in FIG. 2 is the water treatment system 10 when the water supply cannot be used.
 図1に示す構成の水処理システム10は、あらゆる用途に上水道の水が利用できるような場所であっても使用可能であって、このような構成の水処理システム10を採用すれば、上水道からの水の供給量を低減させることが可能になる。また、図1に示す構成例は、「飲用」の水が上水道から供給されているから、図2に示す構成例のように「飲用」の水を原水から生成する必要がない。なお、図1および図2に示す構成例は一例に過ぎず、上水道あるいは原水に含まれる成分に応じて異なる構成を採用することが可能である。 The water treatment system 10 having the configuration shown in FIG. 1 can be used even in a place where the water of the water supply can be used for every application. If the water treatment system 10 having such a configuration is adopted, the water treatment system 10 can be used. It becomes possible to reduce the supply amount of water. Further, in the configuration example shown in FIG. 1, since “drinking” water is supplied from the water supply, it is not necessary to generate “drinking” water from raw water unlike the configuration example shown in FIG. In addition, the structural example shown in FIG. 1 and FIG. 2 is only an example, and it is possible to employ | adopt a different structure according to the component contained in waterworks or raw | natural water.
 人が利用可能な原水(raw water)は、地下水、河川水(湖沼水を含む)、雨水などがあり、原水の水質レベルは、場所によって異なる。たとえば、農業および工業では、生産が拡大すれば、水が多く必要になるばかりでなく、表面水(雨水、河川水など)および地下水が汚染される可能性がある。したがって、農地あるいは工場の近辺では、水源42から取り入れた水は、水質改善を行わずに飲用などに供すると健康に影響を及ぼすことがある。 Raw water that can be used by humans includes groundwater, river water (including lake water), and rainwater, and the quality of raw water varies depending on the location. For example, in agriculture and industry, when production expands, not only is more water required, but surface water (rain water, river water, etc.) and groundwater can be contaminated. Therefore, in the vicinity of farmland or factories, the water taken from the water source 42 may affect health if used for drinking without improving the water quality.
 また、人工的な汚染だけではなく、バングラデシュを含む東南アジア地域では原水に無機ヒ素が含まれることがあり、中国およびインドを含む多くの国で原水にフッ素が含まれていることがある。このように自然に発生している汚染物質も水を供給する際の安全性に影響を及ぼしている。このような事情から水処理システム10は、現地に適合するように構築することが要求される。 In addition, not only artificial pollution, but also Southeast Asia including Bangladesh, raw water may contain inorganic arsenic, and raw water may contain fluorine in many countries including China and India. Thus, naturally occurring pollutants also affect the safety when supplying water. Under such circumstances, the water treatment system 10 is required to be constructed so as to be adapted to the site.
 図1に示す水処理システム10は、浄水場41から「高」レベルである「飲用」の水が上水道43を通して供給され、「洗濯用」および「雑用」の水は地下水あるいは表面水を水源42として供給される。上水道43に含まれる成分によっては、上水道43の水についても水質改善が必要になる場合がある。図示例では、上水道43の水について水質改善を行うために処理部113(処理部11に相当)を設けているが、処理部113を設けるか否かは、上水道43の水に含まれる成分に応じて選択される。 In the water treatment system 10 shown in FIG. 1, “drinking” water having a “high” level is supplied from a water purification plant 41 through a water supply 43, and “washing” and “miscellaneous” water uses groundwater or surface water as a water source 42. Supplied as Depending on the components contained in the water supply 43, the water quality of the water in the water supply 43 may need to be improved. In the illustrated example, the processing unit 113 (corresponding to the processing unit 11) is provided to improve the water quality of the water in the water supply 43, but whether or not the processing unit 113 is provided depends on the components contained in the water in the water supply 43. Is selected accordingly.
 図示例は、建物50の上部には2個の給水タンク51、52が設置される。一方の給水タンク51は「飲用」レベルの水を供給するために設けられ、他方の給水タンク52は「飲用」レベルではない水を供給するために設けられる。給水タンク52から供給される水は、「飲用」レベルではないが「使用不可」レベルよりは高い水質レベルであって、本実施形態では、「洗濯用」または「雑用」になる。なお、図1には「飲用」「洗濯用」「雑用」「便器洗浄用」の4種類の用途を記載しているが、5種類以上の用途(つまり、水質レベルが5段階以上)に区分されていてもよい。たとえば、「飲用」と「洗濯用」との間に「入浴用」の水質レベルが設けられていてもよく、また「雑用」が「その他用」と「水洗便所用」との2段階に区分されていてもよい。 In the illustrated example, two water supply tanks 51 and 52 are installed in the upper part of the building 50. One water supply tank 51 is provided for supplying “drinking” level water, and the other water supply tank 52 is provided for supplying water that is not “drinking” level. The water supplied from the water supply tank 52 is not at the “drinking” level but at a higher water quality level than the “unusable” level, and in this embodiment, becomes “washing” or “chores”. In addition, although FIG. 1 shows four types of applications of “drinking”, “for laundry”, “for miscellaneous use”, and “for toilet bowl cleaning”, it is classified into five or more types (that is, the water quality level is five or more levels). May be. For example, a water quality level of “for bathing” may be provided between “drinking” and “for laundry”, and “chores” is classified into two stages of “others” and “for toilets” May be.
 給水タンク51および給水タンク52に貯められた水は重力で自然落下し、建物50で使用する水に必要な圧力が得られるように構成してある。また、給水タンク51に水を汲み上げるためのポンプ53と、給水タンク52に水を汲み上げるためのポンプ54とが設けられている。 The water stored in the water supply tank 51 and the water supply tank 52 is configured to fall naturally due to gravity, and to obtain the pressure required for the water used in the building 50. A pump 53 for pumping water into the water supply tank 51 and a pump 54 for pumping water into the water supply tank 52 are provided.
 給水タンク51に貯められた水は、「飲用」に利用する前にセンサ211(第1のセンサ21)によって成分(第1の成分)が監視(検出)される。また、図示例では、利用に供する前に不純物を除去するための浄水器55が設けられている。上述した処理部113および浄水器55は必須ではない。ただし、上水道43での水質改善の程度にはばらつきがあり、また、給水タンク51に長時間に亘って水が貯留されていた場合、異物の混入あるいは雑菌の繁殖が生じる可能性がある。そのため、処理部113と浄水器55とにおいて適宜の処理技術を適用し、水質改善を図ることが望ましい。 Before the water stored in the water supply tank 51 is used for “drinking”, the component (first component) is monitored (detected) by the sensor 211 (first sensor 21). In the illustrated example, a water purifier 55 for removing impurities before being used is provided. The processing unit 113 and the water purifier 55 described above are not essential. However, there is a variation in the degree of water quality improvement in the water supply 43, and when water is stored in the water supply tank 51 for a long time, there is a possibility that foreign matter is mixed in or bacteria are propagated. Therefore, it is desirable to improve water quality by applying an appropriate treatment technique in the processing unit 113 and the water purifier 55.
 上水道43における成分は必ずしも一定ではないから、センサ211が検出した成分の種類および濃度に応じて処理部113に対して水質改善に関する指示の情報を与えることが望ましい。一方、給水タンク51おいて水質に影響を与える要素は限られているから、浄水器55は、想定された成分を取り除くように構成されていればよい。 Since the components in the water supply 43 are not necessarily constant, it is desirable to give instruction information regarding water quality improvement to the processing unit 113 according to the type and concentration of the components detected by the sensor 211. On the other hand, since the elements affecting the water quality in the water supply tank 51 are limited, the water purifier 55 may be configured to remove the assumed components.
 ところで、給水タンク52は、水源42からの原水を第1の処理部111に通して水質改善を行った水と、後述する廃水を第2の処理部112に通し、さらに第1の処理部111に通して水質改善を行った水とを貯める。第1の処理部111と第2の処理部112とは処理部11を構成する。給水タンク52に貯められた水は、給水タンク51に貯められた水と同様に、利用の前にセンサ212(第1のセンサ21)によって成分(第1の成分)が監視(検出)される。すなわち、利用前の水は、処理部11で水質改善が行われた後に利用される前の水を含む。 By the way, the water supply tank 52 passes the raw water from the water source 42 through the first processing unit 111 to improve the water quality and waste water described later through the second processing unit 112, and further passes through the first processing unit 111. To store water with improved water quality. The first processing unit 111 and the second processing unit 112 constitute the processing unit 11. Similar to the water stored in the water supply tank 51, the component (first component) of the water stored in the water supply tank 52 is monitored (detected) by the sensor 212 (first sensor 21) before use. . That is, the water before use includes water before being used after the water quality is improved by the processing unit 11.
 第1の処理部111、第2の処理部112、処理部113は、取り除く成分の濃度(あるいは量)に応じて処理能力が調節される。たとえば、取り除く成分の濃度が高い場合には、通過する時間が長くなるように、第1の処理部111、第2の処理部112、処理部113を通過する水の流量が調節される。また、薬剤を混合することにより水質改善を行う場合、薬剤の量あるいは濃度が調節され、物理エネルギー(光、熱、電気など)を用いて水質改善を行う場合、エネルギー量が調節される。 The processing capability of the first processing unit 111, the second processing unit 112, and the processing unit 113 is adjusted according to the concentration (or amount) of the component to be removed. For example, when the concentration of the component to be removed is high, the flow rate of the water passing through the first processing unit 111, the second processing unit 112, and the processing unit 113 is adjusted so that the passing time becomes longer. In addition, when the water quality is improved by mixing the drug, the amount or concentration of the drug is adjusted, and when the water quality is improved using physical energy (light, heat, electricity, etc.), the energy amount is adjusted.
 給水タンク52に貯められた水は、原水あるいは廃水に由来しているから、処理部11により水質改善を行っていても成分にばらつきが生じる可能性がある。そのため、センサ212が検出した成分に応じて制御部20が水質レベルを判断する。給水タンク52から供給される水は分配部12によって用途別に振り分けられる。すなわち、分配部12は、センサ212(第1のセンサ21)が検出した成分に基づいて利用前の水の用途を複数の用途のいずれかに振り分ける。分配部12は、用途別に振り分けた水を、それぞれの用途に用いるために、小容量の貯水槽(図2における第2の貯水槽122、第3の貯水槽123、第4の貯水槽124に相当)に一時的に貯える。分配部12は、センサ212が検出した成分に基づいて制御部20が制御する。なお、センサ211およびセンサ212は、利用前の水に含まれる成分を監視するための第1のセンサ21として機能する。 Since the water stored in the water supply tank 52 is derived from raw water or wastewater, the components may vary even if the water quality is improved by the processing unit 11. Therefore, the control unit 20 determines the water quality level according to the component detected by the sensor 212. The water supplied from the water supply tank 52 is distributed by the distribution unit 12 according to use. That is, the distribution unit 12 distributes the use of water before use to any of a plurality of uses based on the component detected by the sensor 212 (first sensor 21). In order to use the water distributed according to the application for each application, the distribution unit 12 can store the small-capacity water storage tanks (the second water storage tank 122, the third water storage tank 123, and the fourth water storage tank 124 in FIG. 2). Temporarily). The distribution unit 12 is controlled by the control unit 20 based on the components detected by the sensor 212. In addition, the sensor 211 and the sensor 212 function as the first sensor 21 for monitoring the components contained in the water before use.
 本実施形態は、水を利用した後の廃水に含まれる成分に応じて、廃水を再処理するか廃水を廃棄するかを選択できる点を一つの特徴にしている。そのため、廃水の成分(第2の成分)を監視(検出)する第2のセンサ22と、第2のセンサ22が検出した成分に応じて廃水の経路を切り替える切替部13とを備える。再処理が行われる廃水は行う廃水は、第2の処理部112に導入されて特定の成分が取り除かれた後に、第1の処理部111に導入される。ここで、特定の成分が取り除かれることとは、特定の成分が完全に取り除かれることに限定されず、特定の成分が低減されることであってもよい。なお、第1のセンサ21の検出対象である成分と第2のセンサ22の検出対象である成分とは、同じであってもよいし、異なっていてもよい。 This embodiment is characterized in that it is possible to select whether to reprocess waste water or discard waste water according to the components contained in the waste water after using water. Therefore, a second sensor 22 that monitors (detects) a component of the wastewater (second component) and a switching unit 13 that switches the path of the wastewater according to the component detected by the second sensor 22 are provided. Wastewater to be reprocessed is introduced into the first processing unit 111 after being introduced into the second processing unit 112 to remove specific components. Here, the removal of the specific component is not limited to the complete removal of the specific component, and may be a reduction of the specific component. The component that is the detection target of the first sensor 21 and the component that is the detection target of the second sensor 22 may be the same or different.
 第1の処理部111は、原水から特定の成分を取り除いて給水タンク52に供給可能な水質レベルの水を得るために設けられている。第1の処理部111は、水源42から採取される原水に含まれる成分に応じて設計されている。ただし、原水に含まれる成分の種類および濃度は、原水を水源42から採取するタイミングによって変動する可能性があるから、第1の処理部111で水質改善を行った後に給水タンク52に貯えられる水質レベルにはばらつきが生じる可能性がある。 The first processing unit 111 is provided to obtain water of a water quality level that can be supplied to the water supply tank 52 by removing specific components from the raw water. The first processing unit 111 is designed according to the components contained in the raw water collected from the water source 42. However, since the types and concentrations of the components contained in the raw water may vary depending on the timing at which the raw water is collected from the water source 42, the water quality stored in the water supply tank 52 after the first treatment unit 111 has improved the water quality. The level may vary.
 一方、廃水に含まれる成分は、便器の洗浄水を分離しておけば、食品成分、洗剤、皮脂などが主体であり、第2の処理部112で取り除く成分の濃度には変化があるとしても種類のばらつきは少ない。そのため、第2の処理部112で特定の成分を取り除いた後の水質レベルは比較的高くなる。そのため、利用に供する前に第1のセンサ21であるセンサ212で成分を確認し、さらに、第2のセンサ22で成分を確認した水を原水に混合することにより、原水の成分が希釈されることになる。 On the other hand, the components contained in the waste water are mainly food components, detergents, sebum, etc. if the toilet flushing water is separated, and the concentration of the components removed by the second processing unit 112 may vary. There is little variation in types. Therefore, the water quality level after the specific component is removed by the second processing unit 112 is relatively high. Therefore, the component of the raw water is diluted by confirming the component with the sensor 212 which is the first sensor 21 before being used, and further mixing the water whose component is confirmed with the second sensor 22 into the raw water. It will be.
 すなわち、第2の処理部112で水質改善を行った水を原水に混合し、原水の成分を希釈した後に第1の処理部111で水質改善を行うことにより、水質レベルが比較的高い水を給水タンク52に貯えることが可能になる。なお、図示例において、第1の処理部111に原水を取り込むためにポンプ56が設けられている。 That is, by mixing the water whose water quality has been improved by the second processing unit 112 with the raw water and diluting the components of the raw water, the water quality is improved by the first processing unit 111, so that water having a relatively high water quality level can be obtained. It is possible to store in the water supply tank 52. In the illustrated example, a pump 56 is provided to take the raw water into the first processing unit 111.
 切替部13は、常時は廃水を再処理する経路を選択しており、廃水は切替部13を通して第2の処理部112に導入される。第2のセンサ22は、第2の処理部112で水質改善された後の成分を監視し、第2の処理部112が処理した水に含まれる成分に関する情報を制御部20に与える。制御部20は、第2のセンサ22から取得した情報に応じて、廃水の経路を選択するように切替部13に指示する。制御部20は、第2の処理部112で廃水から特定の成分を除去した後の成分に関する情報を第2のセンサ22から取得するから、第2の処理部112により廃水の水質改善を十分に行えるか否かを評価することが可能になる。廃水が再処理に適さないと評価した場合には、制御部20は、切替部13に水を廃棄する経路を選択するように指示する。 The switching unit 13 always selects a route for reprocessing wastewater, and the wastewater is introduced into the second processing unit 112 through the switching unit 13. The second sensor 22 monitors the component after the water quality has been improved by the second processing unit 112, and gives the control unit 20 information regarding the component contained in the water processed by the second processing unit 112. The control unit 20 instructs the switching unit 13 to select the wastewater path according to the information acquired from the second sensor 22. Since the control part 20 acquires the information regarding the component after removing a specific component from wastewater in the 2nd processing part 112 from the 2nd sensor 22, the water quality improvement of wastewater is fully carried out by the 2nd processing part 112. It becomes possible to evaluate whether or not it can be performed. When it is evaluated that the waste water is not suitable for reprocessing, the control unit 20 instructs the switching unit 13 to select a route for discarding water.
 図1に示す構成例では、廃棄される廃水は、切替部13で廃棄する経路が選択された廃水だけではなく、便器の洗浄に用いられた水も含まれる。このように廃棄される廃水は、自然浄化を待つために、自然界への負荷を低減させてから廃棄される。自然界への負荷を低減させるために、図示例では、汚水処理植物(STP:Sewage Treatment Plant)が植えられた処理池61と、微生物燃料電池62(MFC:Microbial Fuel Cells)とを用いている。汚水処理植物は、たとえばアシが用いられる。また、微生物燃料電池62は、取り出せるエネルギーが小さいから空気を導入する曝気処理のためのファンを駆動するエネルギー源などに用いられる。 In the configuration example shown in FIG. 1, the waste water to be discarded includes not only the waste water whose path to be discarded by the switching unit 13 is selected but also water used for cleaning the toilet bowl. The waste water discarded in this way is discarded after reducing the load on the natural world in order to wait for natural purification. In order to reduce the load on the natural world, in the illustrated example, a treatment pond 61 in which a sewage treatment plant (STP: Sewage Treatment Plant) is planted and a microbial fuel cell 62 (MFC: Microbial Fuel Cell) are used. As the sewage treatment plant, for example, a reed is used. Also, the microbial fuel cell 62 is used as an energy source for driving a fan for aeration processing for introducing air because the energy that can be taken out is small.
 制御部20は、プログラムに従って動作するプロセッサを備える。このプロセッサは、メモリ、インターフェイス用のデバイスなどとともに用いてコンピュータを構成する。あるいはまた、プロセッサは、メモリ、インターフェイスなどと一体化されたマイコン(Microcontroller)であってもよい。制御部20は、プロセッサを備えるデバイスを主なハードウェア要素とする。また、プログラムは、ROM(Read Only Memory)にあらかじめ記録された状態で提供されるか、インターネットのような電気通信回線を通して提供される。あるいはまた、プログラムは、コンピュータで読取可能な記録媒体を用いて提供される。 The control unit 20 includes a processor that operates according to a program. This processor is used together with a memory, an interface device and the like to constitute a computer. Alternatively, the processor may be a microcomputer integrated with a memory, an interface, and the like. The control unit 20 uses a device including a processor as a main hardware element. The program is provided in a state of being recorded in advance in a ROM (Read Only Memory) or provided through an electric communication line such as the Internet. Alternatively, the program is provided using a computer-readable recording medium.
 制御部20は、センサ211、212(第1のセンサ21)および第2のセンサ22から監視した成分に関する情報を取得する取得部201を備える。また、制御部20は、取得部201を通して取得した情報に基づいて、第1の処理部111、第2の処理部112(場合によっては処理部113を含む)、分配部12、切替部13に指示する情報を生成する判定部202を備える。 The control unit 20 includes an acquisition unit 201 that acquires information on components monitored from the sensors 211 and 212 (first sensor 21) and the second sensor 22. Further, the control unit 20 determines whether the first processing unit 111, the second processing unit 112 (including the processing unit 113 in some cases), the distribution unit 12, and the switching unit 13 based on the information acquired through the acquisition unit 201. A determination unit 202 that generates information to be instructed is provided.
 取得部201は、センサ211が検出した成分に関する情報をセンサ211から取得し、センサ212が検出した成分に関する情報をセンサ212から取得する。さらに、取得部201は、第2のセンサ22が検出した成分に関する情報を第2のセンサ22から取得する。 The acquisition unit 201 acquires information regarding the component detected by the sensor 211 from the sensor 211 and acquires information regarding the component detected by the sensor 212 from the sensor 212. Further, the acquisition unit 201 acquires information about the component detected by the second sensor 22 from the second sensor 22.
 判定部202は、第1のセンサ21および第2のセンサ22が検出した成分に関する情報を、表1に相当する内容を記憶している記憶部203と照合して水質レベルを判定する。さらに、判定部202は、水質レベルに応じた用途に水を振り分けるように、処理部11、分配部12、切替部13に指示する情報を生成する。 The determination unit 202 determines the water quality level by collating the information about the components detected by the first sensor 21 and the second sensor 22 with the storage unit 203 storing the contents corresponding to Table 1. Furthermore, the determination unit 202 generates information instructing the processing unit 11, the distribution unit 12, and the switching unit 13 so as to distribute water to uses according to the water quality level.
 判定部202が生成した情報は、出力部204を通して処理部11、分配部12、切替部13に与えられる。なお、第1のセンサ21および第2のセンサ22は、電気化学センサ、バイオセンサ、光学式センサなどから選択され、単独で用いられるか、複合して用いられる。 The information generated by the determination unit 202 is given to the processing unit 11, the distribution unit 12, and the switching unit 13 through the output unit 204. In addition, the 1st sensor 21 and the 2nd sensor 22 are selected from an electrochemical sensor, a biosensor, an optical sensor etc., and are used independently or are used in combination.
 図1に示した構成例は、上水道から「飲用」の水が供給され、採取した原水および廃水の水質改善を行って「飲用」以外の用途の水を生成している。また、「飲用」以外の用途の水は、成分を評価することによって、用途を振り分けている。一方、以下に説明する図2の構成例は、上水道を利用せずに、原水および廃水のみを用いて「飲用」の水も生成している。 In the configuration example shown in FIG. 1, “drinking” water is supplied from the water supply, and the quality of the collected raw water and waste water is improved to generate water for purposes other than “drinking”. Moreover, the water of uses other than "drinking" distributes the use by evaluating a component. On the other hand, the configuration example of FIG. 2 described below generates “drinkable” water using only raw water and waste water without using the water supply.
 なお、図2において制御部20は記載していないが、制御部20は、図1に示した制御部20と同様の構成を備える。つまり、制御部20は、第1のセンサ21、第2のセンサ22、第3のセンサ23が検出した成分の情報を取得し、処理部11、分配部12、切替部13に指示する情報を与える。 Although the control unit 20 is not shown in FIG. 2, the control unit 20 has the same configuration as the control unit 20 shown in FIG. That is, the control unit 20 acquires information on components detected by the first sensor 21, the second sensor 22, and the third sensor 23, and provides information to instruct the processing unit 11, the distribution unit 12, and the switching unit 13. give.
 図2に示す水処理システム10は、図1に示した構成例と同様に、原水に含まれる特定の成分を取り除くように構成された第1の処理部111と、廃水に含まれる特定の成分を取り除くように構成された第2の処理部112とを備える。ただし、第1の処理部111は、3段階の処理部1111、1112、1113により構成されている。 The water treatment system 10 shown in FIG. 2 has a first treatment unit 111 configured to remove a specific component contained in raw water and a specific component contained in waste water, as in the configuration example shown in FIG. And a second processing unit 112 configured to remove. However, the first processing unit 111 includes three stages of processing units 1111, 1112, and 1113.
 すなわち、第1の処理部111は、「使用不可」レベルから「低」レベルに水質改善を行う処理部1111と、「低」レベルから「中」レベルに水質改善を行う処理部1112と、「中」レベルから「高」レベルに水質改善を行う処理部1113とを備える。処理部1111で水質改善がなされた水は「雑用」であり、処理部1112で水質改善がなされた水は「洗濯用」であり、処理部1113で水質改善がなされた水は「飲用」である。 That is, the first processing unit 111 includes a processing unit 1111 that improves the water quality from the “unusable” level to the “low” level, a processing unit 1112 that improves the water quality from the “low” level to the “medium” level, And a processing unit 1113 for improving the water quality from the “medium” level to the “high” level. Water whose water quality has been improved by the processing unit 1111 is “chores”, water whose water quality has been improved by the processing unit 1112 is “for laundry”, and water whose water quality has been improved by the processing unit 1113 is “drinking”. is there.
 このように、第1の処理部111は、処理部1111と処理部1112と処理部1113との3段階で、水質レベルを1段階ずつ向上させている。そのため、単独の処理部で水質レベルを複数段階向上させる構成を採用する場合に比較して、処理部1112および処理部1113のそれぞれが汚染される程度が軽減される。また、処理部1111と処理部1112と処理部1113とは、各段階の成分に応じた処理技術を採用すればよく、他の段階の成分を考慮しなくてよいから、目的とする水質レベルの処理を行うための設計が容易になる。 As described above, the first processing unit 111 improves the water quality level one step at a time in three steps of the processing unit 1111, the processing unit 1112, and the processing unit 1113. Therefore, the degree to which each of the processing unit 1112 and the processing unit 1113 is contaminated is reduced as compared with a case where a single processing unit is used to improve the water quality level in a plurality of stages. In addition, the processing unit 1111, the processing unit 1112, and the processing unit 1113 only have to adopt a processing technique according to the components at each stage, and it is not necessary to consider the components at other stages. Design for processing is facilitated.
 図2に示す構成例では、処理部1111と処理部1112との間に「低」レベルの水を貯める第1の貯水槽121が設けられ、処理部1112と処理部1113との間に「中」レベルの水を溜める第2の貯水槽122が設けられる。また、処理部1113で水質が改善された「高」レベルの水は第3の貯水槽123に貯められる。図示例では、処理部1111で処理された「低」レベルの水は、第1の貯水槽121だけではなく、第4の貯水槽124にも貯められる。 In the configuration example shown in FIG. 2, a first water storage tank 121 for storing “low” level water is provided between the processing unit 1111 and the processing unit 1112, and “middle” is provided between the processing unit 1112 and the processing unit 1113. A second water reservoir 122 is provided to store “level” water. Further, the “high” level water whose water quality has been improved by the processing unit 1113 is stored in the third water tank 123. In the illustrated example, the “low” level water processed by the processing unit 1111 is stored not only in the first water tank 121 but also in the fourth water tank 124.
 第1の貯水槽121に貯められた水は、処理部1112を通して「中」レベルに水質改善がなされ、さらに処理部1113を通して「高」レベルに水質改善がなされる。言い換えると、第1の貯水槽121に貯められた「低」レベルの水は、「洗濯用」と「飲用」との水を生成するために分配される。第4の貯水槽124に貯められた「低」レベルの水は、「雑用」として、便器の洗浄(水洗便所用)、乗り物の洗浄、食用ではない植物の育生などの目的で用いられる。 The water stored in the first water tank 121 is improved to a “medium” level through the processing unit 1112, and further improved to a “high” level through the processing unit 1113. In other words, the “low” level water stored in the first water tank 121 is distributed to produce “washing” and “drinking” water. The “low” level water stored in the fourth water storage tank 124 is used as a “chore” for purposes such as toilet flushing (for flush toilets), vehicle washing, and non-edible plant growth.
 図2に示す水処理システム10は、第1の貯水槽121と処理部1112との間に第1のバルブ125を備え、第2の貯水槽122と処理部1113との間に第2のバルブ126を備える。第1のバルブ125および第2のバルブ126は、制御部20からの指示内容を含む電気信号で操作される。第1のバルブ125および第2のバルブ126は、開閉のみを行うように構成されているが、開量の調節が可能である構成がより望ましい。 The water treatment system 10 shown in FIG. 2 includes a first valve 125 between the first water tank 121 and the treatment unit 1112, and a second valve between the second water tank 122 and the treatment unit 1113. 126. The first valve 125 and the second valve 126 are operated by an electric signal including an instruction content from the control unit 20. The first valve 125 and the second valve 126 are configured to open and close only, but a configuration that can adjust the opening amount is more desirable.
 第2の貯水槽122と第3の貯水槽123と第4の貯水槽124と第1のバルブ125と第2のバルブ126とは、第1の処理部111で水質改善が行われた水を用途ごとに振り分けるから、分配部12として機能する。 The second water tank 122, the third water tank 123, the fourth water tank 124, the first valve 125, and the second valve 126 receive water whose water quality has been improved by the first processing unit 111. Since it distributes for every use, it functions as the distribution unit 12.
 利用前の水に含まれている成分を監視するために、第2の貯水槽122と第3の貯水槽123と第4の貯水槽124との出口には、それぞれの水質レベルの水に含まれる成分を監視するためにセンサ213、214、215が配置される。第2の貯水槽122の出口に配置されたセンサ213は「洗濯用」の水に含まれる成分を監視する。また、第3の貯水槽123の出口に配置されたセンサ214は「飲用」の水に含まれる成分を監視する。さらに、第4の貯水槽124の出口に配置されたセンサ215は「雑用」の水に含まれる成分を監視する。センサ213、214、215は、利用する水に含まれている成分を監視するために第1のセンサ21として設けられている。センサ213、214、215を配置する場所は、上述した位置に限らないが、第1のセンサ21として、用途ごとの水の成分を監視できるように配置することが望ましい。 In order to monitor the components contained in the water before use, the outlets of the second water tank 122, the third water tank 123, and the fourth water tank 124 are included in the water of each water quality level. Sensors 213, 214, 215 are arranged to monitor the components being monitored. A sensor 213 disposed at the outlet of the second water tank 122 monitors components contained in the “washing” water. In addition, a sensor 214 disposed at the outlet of the third water tank 123 monitors components contained in “drinkable” water. In addition, a sensor 215 located at the outlet of the fourth reservoir 124 monitors the components contained in the “chores” water. The sensors 213, 214, and 215 are provided as the first sensor 21 in order to monitor components contained in the water to be used. The place where the sensors 213, 214, and 215 are arranged is not limited to the position described above, but the first sensor 21 is desirably arranged so that the water component for each application can be monitored.
 図2に示す構成例は、図1に示した給水タンク51、52を備えていないが、給水タンク51、52に相当する機能は、第1の貯水槽121、第2の貯水槽122、第3の貯水槽123、第4の貯水槽124が受け持つ。また、水処理システム10は、適宜にポンプを備えていることが望ましい。たとえば、処理部1111、処理部1112、処理部1113の順に送水するために重力を利用する場合、処理部1111に導入する原水をポンプで揚水する構成が採用される。また、第2の貯水槽122と第3の貯水槽123と第4の貯水槽124とにそれぞれ貯めた水を利用に供するために、ポンプで送水する構成であってもよい。 The configuration example shown in FIG. 2 does not include the water supply tanks 51 and 52 shown in FIG. 1, but the functions corresponding to the water supply tanks 51 and 52 are the first water storage tank 121, the second water storage tank 122, The third water tank 123 and the fourth water tank 124 are in charge. Moreover, it is desirable that the water treatment system 10 includes a pump as appropriate. For example, when gravity is used to supply water in the order of the processing unit 1111, the processing unit 1112, and the processing unit 1113, a configuration in which raw water introduced into the processing unit 1111 is pumped is adopted. Moreover, in order to use the water stored in the 2nd water tank 122, the 3rd water tank 123, and the 4th water tank 124, respectively, the structure which pumps water may be sufficient.
 この水処理システム10は、第2の貯水槽122と第3の貯水槽123と第4の貯水槽124とから用途に応じた水質レベルの水が取り出される。さらに、水処理システム10は、利用後の廃水を処理する機能も有している。廃水は、利用前の水が「高」レベルか「中」レベルか「低」レベルかに応じて扱い方が異なる。 This water treatment system 10 takes out water of a water quality level according to the use from the second water tank 122, the third water tank 123, and the fourth water tank 124. Furthermore, the water treatment system 10 also has a function of treating waste water after use. Wastewater is handled differently depending on whether the water before use is “high”, “medium” or “low”.
 「高」レベルの水を利用した後の廃水は、再処理を行うか廃棄するかが選択される。図示例では、再処理する経路に第3のバルブ131が設けられ、廃棄する経路に第4のバルブ132が設けられている。第3のバルブ131および第4のバルブ132は、いずれか一方のみが開いた状態と、両方が閉じた状態との3状態が選択可能になっている。廃水を再処理する経路には第2の処理部112を構成する浄化設備70が設けられ、第3のバルブ131が開放されている場合には、廃水が浄化設備70に導入される。また、浄化設備70には「中」レベルの水を利用した後の廃水も導入される。 廃 Wastewater after using “high” level water is reprocessed or discarded. In the illustrated example, the third valve 131 is provided in the reprocessing path, and the fourth valve 132 is provided in the disposal path. The third valve 131 and the fourth valve 132 can be selected from three states, a state in which only one of them is open and a state in which both are closed. A purification facility 70 constituting the second processing unit 112 is provided in the path for reprocessing wastewater, and when the third valve 131 is opened, the wastewater is introduced into the purification facility 70. In addition, waste water after using “medium” level water is also introduced into the purification facility 70.
 浄化設備70は、導入された水を少なくとも原水と同程度の水質レベルに水質改善を行う設備であって、腐敗槽71と曝気槽72と消毒装置73とを備える。腐敗槽71は、槽内の廃水を嫌気性微生物により処理するように構成され、曝気槽72は、腐敗槽71を通った廃水を濾過した後に、槽内の廃水を好気性微生物により処理するように構成されている。消毒装置73は、曝気槽72から取り出された廃水を紫外線により消毒するように構成されている。腐敗槽71の廃水のうちで曝気槽72に送られない廃水は、第5のバルブ133を通して廃棄される。 The purification facility 70 is a facility for improving the water quality of the introduced water to at least the same water quality level as the raw water, and includes a septic tank 71, an aeration tank 72, and a disinfection device 73. The septic tank 71 is configured to treat the wastewater in the tank with anaerobic microorganisms, and the aeration tank 72 filters the wastewater that has passed through the septic tank 71 and then treats the wastewater in the tank with aerobic microorganisms. It is configured. The disinfecting device 73 is configured to disinfect the waste water taken out from the aeration tank 72 with ultraviolet rays. Of the waste water in the septic tank 71, waste water that is not sent to the aeration tank 72 is discarded through the fifth valve 133.
 第3のバルブ131、第4のバルブ132、第5のバルブ133の開閉は制御部20が行う。また、「高」レベルの水を利用した後の廃水の水質を監視するために第2のセンサ22が設けられている。第2のセンサ22は、第1のセンサ21と同様に、電気化学センサ、バイオセンサ、光学式センサなどから選択され、単独または複合して用いられる。制御部20は、第2のセンサ22が計測した水質に応じて、第3のバルブ131、第4のバルブ132、第5のバルブ133の開閉を制御する機能を有する。 The controller 20 opens and closes the third valve 131, the fourth valve 132, and the fifth valve 133. Also, a second sensor 22 is provided to monitor the quality of the wastewater after using “high” level water. Similarly to the first sensor 21, the second sensor 22 is selected from an electrochemical sensor, a biosensor, an optical sensor, and the like, and used alone or in combination. The control unit 20 has a function of controlling opening and closing of the third valve 131, the fourth valve 132, and the fifth valve 133 according to the water quality measured by the second sensor 22.
 すなわち、制御部20は、第2のセンサ22が監視している廃水の成分に基づいて、第2の処理部112での水質改善が可能と判断した場合に、第3のバルブ131を開放することによって、廃水を浄化設備70に導入する。また、制御部20は、第2のセンサ22が監視している廃水の成分について第2の処理部112での水質改善が困難と判断した場合に、第4のバルブ132を開放することによって廃水を廃棄する。なお、制御部20は、廃水が第2のセンサ22を通過していない場合、第3のバルブ131および第4のバルブ132を閉じることが望ましい。第5のバルブ133は、腐敗槽71から汚水を廃棄する場合に制御部20からの電気信号による操作で開放される。 That is, the control unit 20 opens the third valve 131 when it is determined that the water quality can be improved in the second processing unit 112 based on the wastewater component monitored by the second sensor 22. As a result, the waste water is introduced into the purification equipment 70. In addition, when the control unit 20 determines that it is difficult to improve the water quality in the second processing unit 112 with respect to the components of the wastewater monitored by the second sensor 22, the control unit 20 opens the fourth valve 132 to open the wastewater. Discard. Note that the control unit 20 desirably closes the third valve 131 and the fourth valve 132 when the wastewater does not pass through the second sensor 22. The fifth valve 133 is opened by an operation based on an electrical signal from the control unit 20 when waste water is discarded from the septic tank 71.
 浄化設備70により水質改善が行われた後の廃水は、比較的清浄であって水質が原水と同等以上に改善されているから、汚水処理植物(STP:Sewage Treatment Plant)が植えられた処理池74に導入された後、処理部1111に戻される。汚水処理植物は、たとえばアシが用いられる。図2に示す構成例では、処理池74も第2の処理部112として機能する。 The wastewater after the water quality is improved by the purification facility 70 is relatively clean and the water quality is improved to the same level or higher than the raw water. Therefore, the treatment pond in which the sewage treatment plant (STP) is planted. After being introduced to 74, it is returned to the processing unit 1111. As the sewage treatment plant, for example, a reed is used. In the configuration example illustrated in FIG. 2, the processing pond 74 also functions as the second processing unit 112.
 上述した構成から明らかなように、第3のバルブ131、第4のバルブ132、第5のバルブ133は、廃水の経路を選択する切替部13として機能する。また、浄化設備70および処理池74は第2の処理部112として機能する。図2の構成例において、原水に含まれる成分(第3の成分)は第3のセンサ23が監視(検出)している。図1に示した構成例と同様に、制御部20は、第1のセンサ21が検出した成分(第3のセンサ23が検出した成分も併用される)に応じて分配部12を制御する。ただし、図2に示す構成例では、第1の処理部111が3段階の処理部1111、1112、1113を備えていることにより、原水に含まれる成分によらず、ほとんどの場合に、「飲用」の水を生成することが可能である。したがって、分配部12は、第1の処理部111で水質改善を行った水を用途ごとに振り分ける際に、振り分ける量を調節する機能を有することが望ましい。なお、第3のセンサ23の検出対象である成分は、第1のセンサ21の検出対象である成分または第2のセンサ22の検出対象である成分と同じであってもよいし、異なっていてもよい。 As is clear from the above-described configuration, the third valve 131, the fourth valve 132, and the fifth valve 133 function as the switching unit 13 that selects the wastewater path. Further, the purification facility 70 and the treatment pond 74 function as the second treatment unit 112. In the configuration example of FIG. 2, the third sensor 23 monitors (detects) the component (third component) contained in the raw water. Similar to the configuration example illustrated in FIG. 1, the control unit 20 controls the distribution unit 12 according to the component detected by the first sensor 21 (the component detected by the third sensor 23 is also used). However, in the configuration example shown in FIG. 2, since the first processing unit 111 includes the three- stage processing units 1111, 1112, and 1113, in most cases, “drinking” Can be produced. Therefore, it is desirable that the distribution unit 12 has a function of adjusting the amount to be distributed when the water whose water quality has been improved by the first processing unit 111 is distributed for each application. The component that is the detection target of the third sensor 23 may be the same as or different from the component that is the detection target of the first sensor 21 or the component that is the detection target of the second sensor 22. Also good.
 ところで、処理部1111と処理部1112と処理部1113とは、それぞれの処理対象に応じたモジュールとして構成されている。したがって、水処理システム10を設置する現場において入手可能な原水の水質と、用途に応じて取り出す水質レベルとに応じてモジュールの組み合わせを選択すれば、現場に適合した水処理システム10を組み立てることが可能になる。また、水処理システム10を構成するモジュールが独立しているから、導入される水質に応じて必要なモジュールを個別に交換することが可能である。しかも、モジュールが個別に交換可能であるから、保守時のコスト増を抑制できる。 Incidentally, the processing unit 1111, the processing unit 1112, and the processing unit 1113 are configured as modules corresponding to respective processing targets. Therefore, if the combination of modules is selected according to the water quality of raw water available at the site where the water treatment system 10 is installed and the water quality level to be taken out according to the application, the water treatment system 10 suitable for the site can be assembled. It becomes possible. Moreover, since the module which comprises the water treatment system 10 is independent, it is possible to replace | exchange a required module separately according to the water quality introduced. In addition, since the modules can be individually replaced, an increase in cost during maintenance can be suppressed.
 なお、処理部1111と処理部1112と処理部1113とは、水の処理量に応じて、異なる容量のモジュールがあらかじめ用意されていることが望ましい。また、モジュールの典型的な組み合わせ方および水の処理量に応じて、モジュールを用いて水処理システム10を構成するための筐体または建物の典型的な構成についてあらかじめ設計されていることが望ましい。筐体または建物とモジュールとをあらかじめ準備しておくことにより、要求仕様に応じた水処理システム10を迅速に提供することが可能になる。 In addition, as for the process part 1111, the process part 1112, and the process part 1113, it is desirable that the module of a different capacity | capacitance is prepared beforehand according to the processing amount of water. Moreover, it is desirable to design in advance about the typical structure of the housing | casing or building for comprising the water treatment system 10 using a module according to the typical combination method of a module and the amount of water treatment. By preparing the casing or building and the module in advance, it is possible to quickly provide the water treatment system 10 according to the required specifications.
 ところで、上述した構成例において、利用前の水の成分は第1のセンサ21が監視し、廃水の成分は第2のセンサ22が監視し、また、必要に応じて、原水の成分を第3のセンサ23が監視している。第1のセンサ21および第2のセンサ22が監視している成分に関する情報を、その情報を取得した日時に対応させ、履歴情報として記憶しておけば、水処理システム10の動作を管理することが可能になる。履歴情報は、第1のセンサ21により検出された成分(第1の成分)に関する情報とこの情報を管理部24が取得した日時とを対応させた情報を含む。また、履歴情報は、第2のセンサ22により検出された成分(第2の成分)に関する情報とこの情報を管理部24が取得した日時とを対応させた情報を含む。履歴情報は、第1のセンサ21と第2のセンサ22とが監視した成分の情報だけではなく、第3のセンサ23が監視した成分の情報も加えることが望ましい。履歴情報に含める日時は、制御部20が備える内蔵時計により計時される。 By the way, in the configuration example described above, the first sensor 21 monitors the water component before use, the second sensor 22 monitors the waste water component, and the raw water component is third if necessary. The sensor 23 is monitoring. If the information about the components monitored by the first sensor 21 and the second sensor 22 is associated with the date and time when the information was acquired and stored as history information, the operation of the water treatment system 10 can be managed. Is possible. The history information includes information in which information on the component (first component) detected by the first sensor 21 is associated with the date and time when the management unit 24 acquired this information. The history information includes information that associates information about the component (second component) detected by the second sensor 22 with the date and time when the management unit 24 acquired this information. It is desirable that the history information includes not only information on the components monitored by the first sensor 21 and the second sensor 22, but also information on the components monitored by the third sensor 23. The date and time to be included in the history information is counted by a built-in clock provided in the control unit 20.
 履歴情報を収集すれば、第1の処理部111、第2の処理部112の経時変化などによる性能の劣化の程度を知ることが可能になる。また、図2に示した構成では、第1のセンサ21として機能する3個のセンサ213、214、215を備えるから、処理部1111、1112、1113ごとに性能の劣化の程度を知ることが可能である。したがって、履歴情報に基づいて、モジュールの交換時期あるいはモジュールの故障の検知が可能になる。ここに、このような目的の場合、たとえば、1日、1週間、1ヶ月などから選択される時間間隔で履歴情報を収集すればよい。 If the history information is collected, it becomes possible to know the degree of deterioration of performance due to changes with time of the first processing unit 111 and the second processing unit 112. In addition, since the configuration shown in FIG. 2 includes three sensors 213, 214, and 215 that function as the first sensor 21, it is possible to know the degree of performance degradation for each of the processing units 1111, 1112, and 1113. It is. Therefore, it is possible to detect the replacement time of the module or the failure of the module based on the history information. Here, for such a purpose, for example, history information may be collected at time intervals selected from one day, one week, one month, and the like.
 図3に示すように、履歴情報は管理部24が収集する。管理部24は、制御部20に設けることが可能であるが、制御部20は基本的に水処理システム10ごとに設けられているから、管理部24が制御部20に設けられている場合、単独の水処理システム10に関する履歴情報しか収集できない。そのため、図3に示す構成例では、インターネット回線あるいは移動体通信網のような電気通信回線33を通して制御部20と通信するサーバ30に管理部24を設けている。このサーバ30は、履歴情報を収集して記憶する記憶部31を備え、さらに、記憶部31が記憶している履歴情報を用いて第1の処理部111、第2の処理部112について劣化の程度を判断する監視部32を備える。すなわち、記憶部31および監視部32により、管理部24が構成される。上記より、記憶部31は、履歴情報を記憶する。具体的には、記憶部31は、電気通信回線33を通して収集された履歴情報を記憶する。 As shown in FIG. 3, the history information is collected by the management unit 24. Although the management unit 24 can be provided in the control unit 20, since the control unit 20 is basically provided for each water treatment system 10, when the management unit 24 is provided in the control unit 20, Only history information relating to a single water treatment system 10 can be collected. Therefore, in the configuration example shown in FIG. 3, the management unit 24 is provided in the server 30 that communicates with the control unit 20 through an electric communication line 33 such as an Internet line or a mobile communication network. The server 30 includes a storage unit 31 that collects and stores history information. Furthermore, the first processing unit 111 and the second processing unit 112 are deteriorated using the history information stored in the storage unit 31. A monitoring unit 32 for determining the degree is provided. That is, the storage unit 31 and the monitoring unit 32 constitute the management unit 24. From the above, the storage unit 31 stores history information. Specifically, the storage unit 31 stores history information collected through the telecommunication line 33.
 図3に示す構成を採用する場合、履歴情報は水処理システム10(すなわち、処理部11)が設置されている場所の地理的位置の情報を含むことが望ましい。履歴情報が地理的位置の情報を含むことによって、処理部11の性能が劣化している水処理システム10に対して、あらかじめ消耗品のような物品をあらかじめ用意し、この種の物品を配送することが可能になる。 When the configuration shown in FIG. 3 is adopted, it is desirable that the history information includes information on the geographical position of the place where the water treatment system 10 (that is, the treatment unit 11) is installed. Articles such as consumables are prepared in advance and delivered to the water treatment system 10 in which the performance of the processing unit 11 has deteriorated due to the history information including geographical location information. It becomes possible.
 たとえば、水源42の確保が容易ではないような地域では、一般的に消耗品のような物品の入手が困難な場合が多い。これに対して、図3に示す構成では、水処理システム10に対して遠方に配置されたサーバ30が管理部24を備えることにより、消耗品のような物品の要否を監視し、この種の物品の配送を行う事業と連携させることが可能になる。すなわち、水処理システム10が導入時に使用されるだけではなく、消耗品などの交換によって長期にわたって使用されることが期待できる。 For example, in areas where it is not easy to secure the water source 42, it is often difficult to obtain articles such as consumables. On the other hand, in the configuration shown in FIG. 3, the server 30 disposed far from the water treatment system 10 includes the management unit 24 to monitor the necessity of articles such as consumables. It becomes possible to cooperate with the business that delivers the goods. That is, it can be expected that the water treatment system 10 is not only used at the time of introduction but also used for a long time by exchanging consumables and the like.
 図1、図2に示した構成例のように、廃水の水質改善を行う再処理を行うことにより、廃棄する廃水の量を大幅に低減させることが可能になる。その結果、水源42の確保に労力を要するような地域であっても、水源42から新たな水を導入する量を低減させることが可能になり、利用可能な水の確保が容易になる。 As in the configuration examples shown in FIGS. 1 and 2, by performing reprocessing for improving the quality of wastewater, the amount of wastewater to be discarded can be greatly reduced. As a result, even in an area where labor is required to secure the water source 42, the amount of new water introduced from the water source 42 can be reduced, and the availability of available water is facilitated.
 上述したように、利用前の水に含まれる成分に応じて水の用途を振り分けるから、飲用などに適さない水でも他の用途に利用することが可能になる。しかも、廃水についても成分によっては第2の処理部112で再処理を行って水質改善を行うから、廃水の再利用が可能になる。すなわち、水源42から導入した水のうち単位期間に廃棄する水の量を低減させることが可能になり、結果的に、水の利用効率が高まることになる。しかも、飲用以外の水は水質改善の程度が低く抑えられるから、処理部11の構成が簡単になり、しかも処理部11の寿命も長くなる可能性がある。 As described above, since the use of water is distributed according to the components contained in the water before use, water that is not suitable for drinking can be used for other purposes. In addition, depending on the components of the waste water, the second processing unit 112 performs reprocessing to improve the water quality, so that the waste water can be reused. That is, it becomes possible to reduce the amount of water discarded in the unit period among the water introduced from the water source 42, and as a result, the water use efficiency increases. In addition, since the water quality other than drinking is suppressed to a low level, the configuration of the processing unit 11 is simplified, and the life of the processing unit 11 may be increased.
 なお、上述した実施形態は本発明の一例である。このため、本発明は、上述の実施形態に限定されることはなく、この実施形態以外であっても、本発明に係る技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能であることはもちろんのことである。 The above-described embodiment is an example of the present invention. For this reason, the present invention is not limited to the above-described embodiment, and various modifications can be made according to design and the like as long as the technical idea according to the present invention is not deviated from this embodiment. Of course, it can be changed.

Claims (6)

  1.  利用前の水に含まれている成分を監視する第1のセンサと、
     利用後の廃水に含まれている成分を監視する第2のセンサと、
     前記廃水に含まれる成分の少なくとも一部を取り除いて水質改善を行う処理部と、
     前記第1のセンサが検出した成分に基づいて水の用途を複数の用途のいずれかに振り分ける分配部と、
     前記廃水を前記処理部に引き渡して再処理を行うか前記廃水を廃棄するかの経路を切り替える切替部と、
     前記第2のセンサが検出した前記廃水の成分の情報に基づいて前記切替部を制御し、かつ前記廃水の前記再処理を行う場合に、前記水質改善に関する指示の情報を前記処理部に与える制御部とを備える
     ことを特徴とする水処理システム。
    A first sensor for monitoring a component contained in water before use;
    A second sensor for monitoring components contained in the wastewater after use;
    A treatment unit that removes at least a part of the components contained in the wastewater to improve water quality;
    A distribution unit that distributes the use of water to one of a plurality of uses based on the component detected by the first sensor;
    A switching unit that switches a path of whether the wastewater is delivered to the processing unit and reprocessed or the wastewater is discarded;
    Control for controlling the switching unit based on the component information of the wastewater detected by the second sensor and providing the processing unit with information on the water quality improvement when the reprocessing of the wastewater is performed. And a water treatment system.
  2.  前記処理部は、
      利用のために水源から採取された原水と前記廃水とから特定の成分を取り除くように構成されており、
     前記第1のセンサは、前記処理部で前記水質改善が行われた後に利用される前の水に含まれている成分を監視する
     請求項1記載の水処理システム。
    The processor is
    It is configured to remove specific components from the raw water collected from the water source for use and the waste water,
    The water treatment system according to claim 1, wherein the first sensor monitors a component contained in water before being used after the water quality is improved by the treatment unit.
  3.  前記原水の水質を監視する第3のセンサをさらに備え、
     前記処理部は、
      前記原水に含まれる特定の成分を取り除くように構成された第1の処理部と、
      前記廃水に含まれる特定の成分を取り除くように構成された第2の処理部とを備え、
      前記第1の処理部は、前記第2の処理部で前記廃水の前記再処理を行った後の水と前記原水とを併せて前記水質改善を行う
     請求項2記載の水処理システム。
    A third sensor for monitoring the quality of the raw water;
    The processor is
    A first processing unit configured to remove a specific component contained in the raw water;
    A second treatment unit configured to remove a specific component contained in the wastewater,
    The water treatment system according to claim 2, wherein the first treatment unit performs the water quality improvement by combining the water after the retreatment of the wastewater by the second treatment unit and the raw water.
  4.  前記第1のセンサおよび前記第2のセンサにより検出された前記成分に関する情報と前記情報を取得した日時とを対応させた履歴情報を収集する管理部をさらに備える
     請求項1~3のいずれか1項に記載の水処理システム。
    4. The information processing apparatus according to claim 1, further comprising: a management unit that collects history information in which information about the component detected by the first sensor and the second sensor is associated with a date and time when the information is acquired. The water treatment system according to item.
  5.  前記履歴情報は、前記処理部が設けられている場所の地理的位置を含み、
     前記管理部は、
      電気通信回線を通して前記履歴情報を収集するサーバに設けられ、
     前記サーバは、
      前記電気通信回線を通して前記履歴情報を収集し記録する記憶部と、
      前記記憶部が記録している前記履歴情報を用いて前記処理部の性能を監視する監視部とを備える
     請求項4記載の水処理システム。
    The history information includes a geographical position of a place where the processing unit is provided,
    The management unit
    Provided in a server for collecting the history information through a telecommunication line,
    The server
    A storage unit for collecting and recording the history information through the telecommunication line;
    The water treatment system according to claim 4, further comprising: a monitoring unit that monitors the performance of the processing unit using the history information recorded in the storage unit.
  6.  コンピュータを、請求項1~5のいずれか1項に記載の水処理システムに用いられる前記制御部として機能させるためのプログラム。 A program for causing a computer to function as the control unit used in the water treatment system according to any one of claims 1 to 5.
PCT/JP2015/000083 2014-03-03 2015-01-09 Water treatment system and program WO2015133049A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-040646 2014-03-03
JP2014040646A JP2017077501A (en) 2014-03-03 2014-03-03 Water treatment system, and program

Publications (1)

Publication Number Publication Date
WO2015133049A1 true WO2015133049A1 (en) 2015-09-11

Family

ID=54054871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/000083 WO2015133049A1 (en) 2014-03-03 2015-01-09 Water treatment system and program

Country Status (2)

Country Link
JP (1) JP2017077501A (en)
WO (1) WO2015133049A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112965444A (en) * 2021-01-14 2021-06-15 北京朗新明环保科技有限公司 Emergency pool system for intelligent water treatment system
JP7276412B1 (en) 2021-12-07 2023-05-18 栗田工業株式会社 Water treatment information system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06269766A (en) * 1993-03-17 1994-09-27 Shimizu Corp Area waste water reusing system
JP2004290719A (en) * 2003-03-25 2004-10-21 Mitsubishi Electric Corp Water environment index selling system
JP2011190663A (en) * 2010-03-17 2011-09-29 Hitachi Ltd Water treatment management system and water treatment management server
CN102787629A (en) * 2012-05-26 2012-11-21 戎贵文 Novel household wastewater recycling device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06269766A (en) * 1993-03-17 1994-09-27 Shimizu Corp Area waste water reusing system
JP2004290719A (en) * 2003-03-25 2004-10-21 Mitsubishi Electric Corp Water environment index selling system
JP2011190663A (en) * 2010-03-17 2011-09-29 Hitachi Ltd Water treatment management system and water treatment management server
CN102787629A (en) * 2012-05-26 2012-11-21 戎贵文 Novel household wastewater recycling device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112965444A (en) * 2021-01-14 2021-06-15 北京朗新明环保科技有限公司 Emergency pool system for intelligent water treatment system
JP7276412B1 (en) 2021-12-07 2023-05-18 栗田工業株式会社 Water treatment information system
WO2023105869A1 (en) * 2021-12-07 2023-06-15 栗田工業株式会社 Water treatment information system
JP2023084184A (en) * 2021-12-07 2023-06-19 栗田工業株式会社 Water treatment information system

Also Published As

Publication number Publication date
JP2017077501A (en) 2017-04-27

Similar Documents

Publication Publication Date Title
AU2016202093B2 (en) Method and system for treating water used for industrial purposes
US20120228117A1 (en) System and method of purifying and recycling or discharging septic tank effluent, graywater, rainwater and stormwater
CN104016529A (en) Multi-stage countercurrent electrodialyzer reversal-based method for treating saline wastewater in coal chemical industry
CN101774737A (en) Method and device for treating and recycling tobacco wastewater with double-membrane process
Abdel-Jawad et al. Advanced technologies for municipal wastewater purification: technical and economic assessment
KR101791207B1 (en) A system for seawater desalination using water blending
Pellegrin et al. Membrane processes
Arabi et al. Membrane processes
WO2015133049A1 (en) Water treatment system and program
KR100346500B1 (en) Treating device and methode of the same for phosphoric acid ion containing water
IE86828B1 (en) Rainwater purification system
CN107721102A (en) A kind of sewage disposal system
KR20120110997A (en) Apparatus for desalinating seawater in container
EP4095105A1 (en) Multistage greywater treatment system
EP2435374B1 (en) Water purification plant
CN202170281U (en) Domestic waste penetrating fluid treatment system
CN108017208A (en) Scale seawater desalination system and technique
KR101642379B1 (en) System and Method for treating drinking water using multi-source water
KR100670769B1 (en) Non-discharge cleaning apparatus using reverse osmotic membrane and electric oxidation method
CN107055949B (en) A kind of efficient low-consume Rubber Industrial Wastewater processing method and system that can flexibly switch technique
KR200364038Y1 (en) Advanced drinking water purification system by membrain filtration equipment using demanganese tower
Rajhans et al. Review paper on wastewater treatment plant using PLC & SCADA
US20240101457A1 (en) Greywater treatment systems
US20220112103A1 (en) Methods and systems for wastewater treatment
CN102718352A (en) One-body domestic-sewage treatment system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15757997

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15757997

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP