WO2015133048A1 - 水処理支援システム、プログラム - Google Patents

水処理支援システム、プログラム Download PDF

Info

Publication number
WO2015133048A1
WO2015133048A1 PCT/JP2015/000082 JP2015000082W WO2015133048A1 WO 2015133048 A1 WO2015133048 A1 WO 2015133048A1 JP 2015000082 W JP2015000082 W JP 2015000082W WO 2015133048 A1 WO2015133048 A1 WO 2015133048A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
water quality
unit
information
support system
Prior art date
Application number
PCT/JP2015/000082
Other languages
English (en)
French (fr)
Inventor
ハリーシュ プティーヤ ヴィーティル
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2015524959A priority Critical patent/JP5866501B1/ja
Publication of WO2015133048A1 publication Critical patent/WO2015133048A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/008Control or steering systems not provided for elsewhere in subclass C02F
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/001Upstream control, i.e. monitoring for predictive control
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/005Processes using a programmable logic controller [PLC]
    • C02F2209/006Processes using a programmable logic controller [PLC] comprising a software program or a logic diagram
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes

Definitions

  • the present invention generally relates to a water treatment support system and program, and more particularly to a water treatment support system that supports construction of a water treatment apparatus that improves water quality, and a program that causes a computer to function as the water treatment support system.
  • Reference 1 lists a reverse osmosis device, an electrochemical device, an ultrafiltration device, a microfiltration device, and a distillation device as examples of treatment devices for improving water quality.
  • Reference 3 Japanese Patent Application Publication No. 06-269766
  • Reference 3 describes a configuration in which wastewater in the region is collected by water quality grade, and the collected water is purified and stored by use. Has been.
  • literature 3 when the water stored for any use is insufficient, the water whose water quality grade is higher than the water for this use is replenished.
  • Documents 2 and 3 classify water quality according to the use of water, and Document 2 treats water according to the target water quality. Furthermore, Document 1 describes that various treatment apparatuses are used in combination for improving water quality.
  • the present invention aims to provide a water treatment support system that makes it possible to optimize the configuration of a water treatment device in accordance with the components of water to be collected. Furthermore, an object of this invention is to provide the program for functioning a computer as this water treatment assistance system.
  • the water treatment support system corresponds to a first storage unit that stores a component contained in water in correspondence with a water quality level divided into a plurality of stages, and a treatment technique for each component contained in water.
  • a second storage unit that stores the information, a first interface unit that acquires information on components contained in water that requires water quality improvement as input information, and a processing technique that removes the components as output information.
  • the second interface unit that outputs to the presentation device, and the input information is collated with the first storage unit and the second storage unit, thereby extracting the water quality level classification and removing the component
  • a determination unit that generates the output information by combining processing techniques for each of the sections.
  • the program according to the present invention is for causing a computer to function as any of the water treatment support systems described above.
  • the present invention is not limited to a program, and may be a computer-readable recording medium that records the program.
  • FIG. 1 It is a block diagram showing a water treatment support system of an embodiment. It is a schematic block diagram which shows the measuring apparatus used for embodiment. It is a schematic block diagram which shows the usage example of the sensor apparatus used for embodiment. It is a schematic block diagram which shows the example of the water treatment apparatus designed using embodiment.
  • a water treatment support system 10 includes a first storage unit 11, a second storage unit 12, a first interface unit 13, a second interface unit 14, and a determination unit 15.
  • the first storage unit 11 stores the components contained in the water in correspondence with the water quality levels divided into a plurality of stages.
  • storage part 12 has matched and memorize
  • the 1st interface part 13 acquires the information of the component contained in the water which needs water quality improvement as input information.
  • the second interface unit 14 outputs the processing technique for removing the component to the presentation device 20 as output information.
  • the determination unit 15 collates the input information with the first storage unit 11 and the second storage unit 12 to extract the water quality level division and combine the processing technology for removing the components for each division to output the output information. Generate.
  • the water quality level is divided into a plurality of stages according to the components contained in the water, and the treatment technology for removing these components according to the components contained in the water for improving the water quality is provided. Output information is generated in combination.
  • This configuration has the advantage that it is possible to assist in properly configuring the water treatment device according to the components of the collected water.
  • the water quality improvement can be achieved by removing the components determined for each stage so that the water quality level according to the water use can be obtained. As a result, it is only necessary to improve the water quality for each stage, and it becomes possible to handle the treatment technique as a unit for each stage, and the design and maintenance become easy.
  • the first interface unit 13 obtains input information from the sensor device 30 that measures components contained in water that requires water quality improvement.
  • the second interface unit 14 preferably includes the input information and the water quality level extracted by the determination unit 15 in the output information and outputs the output information to the presentation device 20.
  • the input information includes information on the geographical location where water that requires water quality improvement exists
  • the water treatment support system 10 includes information on components contained in water that requires water quality improvement and information on the geographical location. It is desirable to include a third storage unit 16 that stores the corresponding information.
  • the water quality level that requires water quality improvement is classified into three stages of “medium”, “low”, and “unusable”, and uses after the water quality improvement is “drinking”, “ It is classified into three stages, “for laundry” and “for chores”.
  • the use corresponds to the water quality level.
  • the “medium” level corresponds to “for laundry”
  • the “low” level corresponds to “for chores”.
  • “Unusable” level means a water quality level that is not suitable for use.
  • “Drinking” water has a “high” level of water quality.
  • the water quality level is divided into four levels: a water quality level that requires water quality improvement (“medium” level, “low” level, “unusable level”) and a water quality level that does not require water quality improvement (“high” level). is there.
  • the name of the application indicates a typical application, but it does not mean that it is used only for the application indicated by the name.
  • “drinking” means that the water quality is safe to use for drinking, and it causes health damage or infection damage even if it is ingested or touched for a long time, such as for food or bathing. It means no water quality.
  • “for washing” means that the water quality is such that it does not cause health damage or infection damage even if it is temporarily touched by a human body such as bathing or showering.
  • chlorores is not suitable for use in contact with humans, but represents water quality that may be used for applications that do not contact humans, such as vehicle washing or toilet flushing.
  • Table 1 shows an example of the correspondence between the components to be removed for use in each application and the water quality level classification when the corresponding components are included. Table 1 is an example, and the relationship between the components to be removed from the water to be improved in water quality and the classification of the water quality level can be determined elsewhere.
  • the treatment technology is associated with each water quality level category, but as shown in Table 2 later, the treatment technology is associated with each component to be removed, and the relationship in Table 1 is merely an example.
  • the components to be removed and the usage after treatment do not have to be in the correspondence relationship shown in Table 1. For example, if the hardness, pH, sulfide, etc. are adjusted to an appropriate range, they may be suitable for drinking.
  • the water quality level corresponds to each component to be removed.
  • the treatment technology corresponds to each water quality level.
  • the evaporation residue is TDS (Total Dissolved Solids)
  • the NF film is a nanofiltration (Nanofiltration Membrane).
  • Deep filtration is a treatment technique that removes impurities using a filter medium selected from vegetation, gravel, sand, ceramics, polymer fibers, charcoal and the like.
  • the treatment technique for pH means adjusting to a pH value suitable for drinking (for example, 5.8 to 8.6).
  • the hardness is also adjusted to an appropriate range according to the purpose of use.
  • the water quality level that is the target of water quality improvement is classified into three levels, and the uses after treatment are classified into three types.
  • the water quality level and types of applications can be determined as appropriate. It is. Therefore, the components are also appropriately selected according to the water quality level or the setting of the application. For example, two uses of “for laundry” and “for agriculture” may be set between “drinking” and “chores”. In this case, “for laundry” removes the components shown in Table 1, and “for agriculture” removes arsenic, mercury, lead, etc., and iron, copper, nitride, etc. are left at an appropriate concentration. May be.
  • the feature of the present embodiment is that the water quality level is determined stepwise according to the application, and when a specific component contained in the water is removed, the water quality level is increased by one step and one step higher. It can be used for applications corresponding to the water quality level.
  • the water treatment device 40 includes a treatment unit configured to increase the water quality level by one level (for example, the first treatment unit 41, the second treatment unit 42, and the third treatment unit illustrated in FIG. 4).
  • the processing unit 43 is used.
  • the number of processing units is determined by the number of stages between the water quality level of the raw water and the highest water quality level among the required water quality levels.
  • the removal of the specific component is not limited to the complete removal of the specific component, and may be a reduction of the specific component.
  • Table 2 shows examples of processing technologies that can be applied to the components to be removed.
  • anion exchange indicates that ion exchange is performed using a strong acid
  • cation exchange indicates that ion exchange is performed using a strong base.
  • water softening indicates ion exchange using salt.
  • the processing technology is selected in consideration of various conditions. These types of conditions include post-treatment water quality, treatment performance (processing volume per unit time), treatment technology introduction costs (ie initial investment) and operational costs (ie running costs), availability, maintainability. (Serviceability) etc.
  • the availability here means a low failure rate (corresponding to 1- ⁇ if the failure rate is ⁇ ), and maintainability is the availability of consumables and the ease of repair in the event of a failure. And so on.
  • water sources available to humans include rainwater, river water (including lake water), groundwater, domestic wastewater, etc.
  • the water quality level of water taken from the water source depends on the location. Different. For example, in agriculture and industry, when production expands, not only is more water required, but surface water (rain water, river water, etc.) and groundwater can be contaminated. Therefore, in the vicinity of farmland or factories, water taken from water sources may affect health if used for drinking without improving water quality.
  • raw water may contain inorganic arsenic in Southeast Asia, including Bangladesh, and raw water may contain fluorine in many countries, including China and India. is there. Such naturally occurring pollutants also affect the safety when supplying water.
  • the water treatment support system is used to facilitate the construction of a water treatment device by proposing treatment technology suitable for raw water. Further, the water treatment support system described below makes it possible to include the economic power of the area where the water treatment apparatus is introduced and the required amount of water to be treated. As a result, this water treatment support system can propose a water treatment apparatus having a structure and scale optimized to suit the local site.
  • the water treatment support system includes a processor that operates according to a program.
  • This processor is used together with a memory, an interface device and the like to constitute a computer. That is, the water treatment support system uses a computer as a main hardware element.
  • the program is provided in a state of being recorded in advance in a ROM (Read Only Memory) or provided through an electric communication line such as the Internet. Alternatively, the program is provided using a computer-readable recording medium.
  • the water treatment support system As a computer constituting the water treatment support system, a general-purpose computer such as a personal computer is used so as to be used at a place where a water treatment apparatus is constructed. This type of computer is preferably portable.
  • the water treatment support system may be configured to be provided with input information acquired at a remote location. That is, the water treatment support system may be configured to acquire input information through communication, or may be configured to input input information manually.
  • the water treatment support system 10 includes a first interface unit 13 (hereinafter referred to as “I / F unit”) that receives input information, and a second I / O from which output information is extracted. F section 14 is provided.
  • the input information received by the first I / F unit 13 includes conditions necessary for constructing the water treatment device 40 (see FIG. 4).
  • the input information includes a component and a concentration of the component in the raw water to be processed by the water treatment apparatus 40, but only the component may be included.
  • the water quality level determined based on experience can be used as input information.
  • the determination of the water quality level based on experience can be made based on human vision and olfaction, for example, at the “unusable” level shown in Table 1.
  • the “low” level or the “medium” level can be estimated from the state of health damage or infection damage that has occurred in the past. Such information can be acquired by an interview using a checklist. It is also possible to inspect the components by using reagents or test paper.
  • This type of sensor device 30 uses either a water quality analyzer that analyzes a large number of target components with a single unit or a configuration that combines a plurality of sensors that analyze a small number of components.
  • the sensor is selected from an electrochemical sensor, a biosensor, an optical sensor, and the like.
  • the water quality analyzer can analyze many kinds of components with high accuracy, but is relatively expensive, and the water quality analyzer for analyzing many kinds of components is relatively large. Therefore, this type of water quality analyzer is difficult to use at the raw water collection site. Therefore, the management body of the water quality analyzer is a public institution or a water quality inspection company, and the water analysis support system receives the sample of the water to be inspected by the public institution or company and analyzes the results of the water quality analyzer. 10 is desirable.
  • sensors such as electrochemical sensors, biosensors, and optical sensors are relatively small, and a small sensor device 30 configured using this type of sensor can be used at a raw water collection site. It is. That is, this type of sensor device 30 can be provided attached to the water treatment support system 10 when the water treatment support system 10 is used at a raw water collection site.
  • the provision of the sensor device 30 attached to the water treatment support system 10 means that the sensor device 30 is connected to the water treatment support system 10 by wire, or between the water treatment support system 10 and the sensor device 30 by a wireless signal. This means that information is transmitted. In this case, the distance between the water treatment support system 10 and the sensor device 30 is relatively short (for example, 10 m or less).
  • the sensor device 30 can also be provided independently of the water treatment support system 10 when the water treatment support system 10 is not used at the raw water collection site.
  • the analysis result when the sensor device 30 is a water quality analysis device is delivered to the water treatment support system 10 by using an electric communication line such as the Internet or a recording medium as data in a format that can be used by the water treatment support system 10.
  • the analysis result by the water quality analyzer may be provided in writing to the user of the water treatment support system 10.
  • input information to the water treatment support system 10 is manually input by the user using the input device 21 connected to the first I / F unit 13. That is, the first I / F unit 13 has at least one of a configuration having a function of communicating with the water quality analyzer (sensor device 30) through an electric communication line and a configuration having a function of receiving input information from the input device 21. Adopted.
  • the sensor device 30 When the sensor device 30 is configured to be relatively small using a sensor such as an electrochemical sensor, a biosensor, or an optical sensor, the sensor device 30 can be directly connected to the first I / F unit 13. is there.
  • the sensor device 30 may be configured to deliver the measurement result to the water treatment support system 10 through an electric communication line, or to display or print the measurement result.
  • the sensor device 30 delivers the measurement result to the water treatment support system 10 through the electric communication line
  • a configuration in which the sensor and the communication I / F unit are combined is adopted.
  • the sensor device 30 employs a configuration in which a sensor and an I / F unit are combined when displaying or printing a measurement result.
  • the I / F unit is configured to output information measured by the sensor device 30 to a display (display) or a printing device (printer).
  • the first I / F unit 13 has a configuration in which the sensor device 30 is directly connected, a configuration in which the sensor device 30 communicates with the sensor device 30 through an electric communication line, and a configuration in which input information is received from the input device 21. Is adopted.
  • FIG. 2 shows a configuration example of the sensor device 30.
  • the sensor device 30 shown in FIG. 2 is configured by combining a sensor 31, a processing unit 32, an I / F unit 33, and a display 34.
  • the sensor 31 is assumed to be an electrochemical sensor, and includes an electrode 311 immersed in water WT to be measured.
  • the processing unit 32 performs processing for obtaining the type and concentration of the component contained in the water WT using the electrical output of the sensor 31.
  • the processing unit 32 includes a device that operates according to a program as a main hardware element. That is, a device selected from a microprocessor, a DSP (Digital Signal Processor), an FPGA (Field-Programmable Gate Array), or the like is used.
  • the I / F unit 33 is provided to display the output of the processing unit 32 on the display 34, and the display 34 is a flat panel display such as a liquid crystal display capable of displaying characters. The type and concentration of the component obtained by the processing unit 32 are displayed.
  • the user when the raw water component is measured using the sensor device 30 as shown in FIG. 2, the user can know the water quality level of the raw water from the display content of the display 34. Therefore, if the component displayed on the display 34 of the sensor device 30 is notified to the operator of the water treatment support system 10, the component contained in the raw water is passed through the operator through the first I / F unit 13 of the water treatment support system 10. Can be provided as input information. It is also possible for the user to read the water quality level displayed on the display 34 of the sensor device 30 and to provide it as input information to the first I / F unit 13 of the water treatment support system 10 through an electric communication line. . In the case of processing in the latter case, the first I / F unit 13 is required to be able to communicate with a terminal device operated by a user.
  • the configuration example shown in FIG. 1 assumes a configuration in which the sensor device 30 is directly connected to the first I / F unit 13 of the water treatment support system 10, but also includes the input device 21.
  • the water treatment support system 10 includes the third I / F unit 17 so that a constraint condition for constructing the water treatment device 40 (see FIG. 4) can be input from the input device 21.
  • the constraint condition input to the third I / F unit 17 is a required specification for the treated water.
  • the required specification includes water quality to be supplied, supply amount per unit time, introduction cost and operation cost, Includes availability and maintainability.
  • the input device 21 may also be used as the presentation device 20 that presents output information extracted from the second I / F unit 14.
  • the input device 21 and the presentation device 20 can be provided as dedicated devices in the water treatment support system 10.
  • the first I / F unit 13, the second I / F unit 14, and the third I / F unit 17 can use general-purpose devices as the input device 21 and the presentation device 20. It may be configured. This type of general-purpose device is selected from smartphones, tablet terminals, and the like.
  • Input information from the first I / F unit 13 and the third I / F unit 17 is given to the determination unit 15.
  • the determination unit 15 collates the input information given from the first I / F unit 13 with the first storage unit 11 and the second storage unit 12.
  • Each of the first storage unit 11 and the second storage unit 12 constitutes a data table.
  • the first storage unit 11 corresponds to a water quality level (“unusable”, “low”, “medium”) in which components contained in water are divided into a plurality of stages (three stages in Table 1). Let me remember. That is, the first storage unit 11 stores each of a plurality of components contained in water in association with one of a plurality of water quality levels.
  • the second storage unit 12 stores a processing technique corresponding to each component contained in water. That is, the second storage unit 12 associates at least one processing technique for removing the component contained in the water among the plurality of processing techniques for each of the components contained in the water. I remember.
  • the determination unit 15 collates the input information input from the first I / F unit 13 with the first storage unit 11 to obtain the classification of the water quality level corresponding to the component, and the first I / F The input information input from the F unit 13 is collated with the second storage unit 12 to obtain a processing technique corresponding to the component. Further, the determination unit 15 extracts the lowest water quality level from the obtained water quality levels, and determines the water quality level of the raw water. In other words, the determination unit 15 compares the input information with the first storage unit 11 and the second storage unit 12, thereby changing the water content level from multiple levels to components contained in water that requires water quality improvement. Extract the corresponding water quality level. And the determination part 15 produces
  • the determination unit 15 obtains the number of stages between the highest water quality level necessary for the designated use and the water quality level of the raw water. .
  • the raw water is at the “unusable” level and the highest required water quality level is at the “medium” level.
  • the processing units for example, the first processing unit 41, the second processing unit 42, and the third processing unit 43 shown in FIG. 4 constituting the water treatment apparatus 40 (see FIG. 4) Since the level is improved by one level, the water treatment apparatus 40 corresponding to this example requires two treatment units.
  • the determination unit 15 determines the components to be removed by the processing unit for each stage of the water treatment device 40 by comparing the components contained in the raw water with the second storage unit 12, and optimizes the configuration of the processing unit for each stage. . Optimization of the configuration of the processing unit is usually performed on the condition that the configuration is simplified by reducing the types of processing techniques to be applied. However, when a constraint condition is input from the third I / F unit 17, the optimization of the configuration of the processing unit configures the processing unit so as to meet the constraint condition. For example, if the constraint condition is the minimization of the introduction cost, priority is given to adopting a low-cost processing technology rather than reducing the processing technology applied to the processing unit.
  • a plurality of proposals are possible for the configuration of the processing unit, not only the configuration of the processing unit after optimization but also other configurations may be proposed as candidates.
  • a treatment technique a plurality of treatment technique candidates may be proposed, such as a combination of reverse osmosis membrane and ultraviolet disinfection, a combination of water softening and activated carbon filter, and water softening.
  • the second storage unit 12 not only stores the correspondence between the processing target and the processing technology, but also introduces the cost and operation for each processing technology. It is desirable to store information such as cost, availability, and maintainability. These pieces of information may be registered in a database system provided separately from the second storage unit 12.
  • This type of database system may be configured to communicate with the water treatment support system 10 through an electric communication line such as the Internet or a mobile communication network, in addition to the structure attached to the water treatment support system 10. If the database system is provided separately from the water treatment support system 10, the information stored in the database system can be shared by the plurality of water treatment support systems 10. In addition, management of information stored in the database system is unified, and information updating or maintenance becomes easy.
  • the determination unit 15 generates the output information extracted from the second I / F unit 14 by using the input information regarding the component of the raw water input through the first I / F unit 13.
  • the 2nd I / F part 14 outputs the processing technique which removes the component contained in the water which needs water quality improvement to the presentation apparatus 20 as output information.
  • the determination unit 15 uses input information related to the constraint condition input through the third I / F unit 17 as necessary.
  • the output information provides information related to the configuration of an appropriate processing unit for configuring the water treatment apparatus 40 (see FIG. 4) that obtains water of a target water quality level from raw water. Therefore, the output information from the water treatment support system 10 supports the design of the water treatment device 40.
  • the water treatment support system 10 is configured to propose a treatment technique (treatment technique applied to the treatment unit) necessary for generating water of a water quality level according to the use from raw water.
  • the water treatment support system 10 may be configured so as to propose design information of the water treatment device 40 including how to combine treatment techniques.
  • a storage unit that stores rule information for combining candidate processing techniques extracted by the determination unit 15 is provided, and the determination unit 15 appropriately uses the rule information stored in the storage unit. It is desirable to combine them.
  • the determination unit 15 when the output information including the treatment technology for improving the quality of the raw water into the water of the quality according to the use is generated, the determination unit 15 outputs the output information through the second I / F unit 14.
  • the presentation device 20 is made to present it. It is desirable that the determination unit 15 presents not only a combination of processing technologies but also an introduction cost and an operation cost of processing technologies as output information to be presented to the presentation device 20.
  • the introduction cost and the operation cost together with the processing technology to the presentation device 20 if there are a plurality of combinations of the processing technologies, it is desirable to present the introduction cost and the operation cost side by side for each combination. If a plurality of options are presented in this way, it is possible to select an option that the user considers desirable.
  • the input information of the water treatment support system 10 requires raw water components, and the raw water components are measured by the sensor device 30.
  • the sensor device 30 has a configuration that is difficult to use at the raw water collection site, such as a stationary water quality analyzer, and a configuration that can be used by being attached to the water treatment support system 10 at the raw water collection site.
  • the sensor device 30 shown in FIG. 2 can be separated from the water treatment support system 10 and can measure the components at the raw water collection site.
  • a sensor device 30 can measure water components independently at various locations. Therefore, even if it is not the purpose of obtaining the input information of the water treatment support system 10, the user becomes interested in the raw water component by measuring the water component. In other words, measuring components contained in water using this type of sensor device 30 is a motivation for improving awareness of maintaining the water quality level.
  • the water treatment support system 10 desirably includes a third storage unit 16 that stores the raw water component measured by the sensor device 30 in association with the collection information.
  • the third storage unit 16 is provided in the database server 160 that communicates with the determination unit 15 through the fourth I / F unit 18.
  • FIG. 3 only a part of the configuration of the water treatment support system 10 is shown, but the other configuration is the same as the configuration shown in FIG.
  • the fourth I / F unit 18 and the database server 160 are configured to communicate through an electric communication line 19 such as the Internet.
  • an electric communication line 19 such as the Internet.
  • the configuration for communicating through the telecommunication line 19 is not essential.
  • the above-described collection information includes at least the geographical position (latitude and lightness are desirable) of the location where the raw water was collected and the date and time (year / month / day and time) when the raw water was collected.
  • the database server 160 may be composed of a single server, but is preferably constructed with a cloud computing system. When the database server 160 is constructed by a cloud computing system, it becomes easy to collect water components in various regions on the earth.
  • the sensor device 30 shown in FIG. 2 can be used independently from the water treatment support system 10, as described above, the measured component is not used as input information for the water treatment support system 10. It can only be used to measure water components. Since the sensor device 30 described above includes the display device 34, the user of the sensor device 30 reads the water quality measured by the sensor device 30 from the display device 34 and inputs the measured water quality to the mobile terminal 22. Transmit to the database server 160.
  • the mobile terminal 22 is selected from a mobile phone, a smartphone, a tablet terminal, a laptop personal computer, and the like.
  • the water quality read from the sensor device 30 is combined with the geographical position measured by the positioning system and the date and time measured by the built-in clock. What is necessary is just to transmit to the database server 160.
  • the sensor device 30 includes a communication I / F unit, the water component measured at an appropriate timing may be automatically transmitted to the database server 160.
  • the database server 160 not only the water component measured by the sensor device 30 but also the geographical position acquired by the sensor device 30 is transmitted to the database server 160.
  • the water component When the water component is registered together with the geographical position in the database server 160 provided with the third storage unit 16, when a new water treatment device is installed, the water quality in the vicinity of the place where the water treatment device is installed is referred to. Thus, it is possible to narrow down the treatment technology applied to the water treatment apparatus. For example, when a new water treatment apparatus is installed, it is possible to propose a treatment technology candidate suitable for the local site without measuring the water quality. Further, when considering whether or not to introduce a water treatment device, it becomes possible to estimate the treatment technology necessary for the water treatment device from the information on the water quality of the neighborhood registered in the database server 160, and as a result. In addition, the introduction cost and the operation cost can be estimated. That is, the information registered in the database server 160 can be used for decision making when introducing the water treatment apparatus.
  • the water treatment apparatus 40 shown in FIG. 4 has a water quality level of “unusable” in the raw water, so that it is possible to take out water used for three types of applications, “drinking”, “washing”, and “miscellaneous”. It is configured.
  • the raw water has the lowest water quality level (“unusable” level), and the use includes the highest water quality level (“high” level). Yes. From the “unusable” level to the “high” level, the water quality needs to be improved in three stages.
  • the water treatment device 40 described below includes three treatment units (that is, a first treatment unit 41, a second treatment unit 42, and a third treatment unit 43).
  • this water treatment device 40 shown in FIG. 4 does not consider the constraint conditions such as introduction cost, operation cost, availability, and maintainability in principle. That is, this water treatment device 40 is intended to generate water that can be used for “drinking” from raw water in an environment where only raw water with a poor quality state of “unusable” is available. It is configured.
  • the water treatment apparatus 40 includes a three-stage treatment unit. That is, the water treatment apparatus 40 includes a first treatment unit 41 that improves the water quality from the “unusable” level to the “low” level, and a second treatment unit that improves the water quality from the “low” level to the “medium” level. 42 and a third processing unit 43 for improving water quality from “medium” level to “high” level. Water whose water quality has been improved by the first processing unit 41 is “chores”, water whose water quality has been improved by the second processing unit 42 is “for washing”, and water quality has been improved by the third processing unit 43. Water that has been made is “drinkable”.
  • each of the first treatment unit 41, the second treatment unit 42, and the third treatment unit 43 improves the water quality level by one level. Therefore, the degree to which each of the 2nd processing part 42 and the 3rd processing part 43 is polluted is reduced compared with the case where the composition which improves a water quality level in a plurality of steps with a single processing part is adopted.
  • the first processing unit 41, the second processing unit 42, and the third processing unit 43 only need to adopt processing techniques according to the components at each stage, and do not consider the components at other stages. Since it is good, the design for performing the treatment of the target water quality level becomes easy.
  • a first water tank 44 for storing “low” level water is provided between the first processing unit 41 and the second processing unit 42, and the second processing unit 42
  • a second water storage tank 45 for storing “medium” level water is provided between the third processing section 43 and the third processing section 43.
  • the “high” level water whose water quality has been improved by the third processing unit 43 is stored in the third water tank 46.
  • the “low” level water processed by the first processing unit 41 is stored not only in the first water tank 44 but also in the fourth water tank 47.
  • the water stored in the first water tank 44 is improved in water quality to the “medium” level through the second processing unit 42, and further improved in water quality to the “high” level through the third processing unit 43.
  • the “low” level water stored in the first reservoir 44 is distributed to produce “washing” and “drinking” water.
  • the “low” level water stored in the fourth water tank 47 is used as a “chore” for purposes such as washing toilets (for flush toilets), washing vehicles, and nurturing plants that are not edible.
  • the water treatment apparatus 40 shown in FIG. 4 includes a first valve 48 between the first water storage tank 44 and the second processing section 42, and the second water storage tank 45 and the third processing section 43.
  • a second valve 49 is provided in between.
  • the first valve 48 and the second valve 49 are manually operated in order to reduce the introduction cost of the water treatment device 40.
  • it is desirable that the first valve 48 and the second valve 49 are operated by electric signals.
  • the first valve 48 and the second valve 49 may be configured to only open and close, but a configuration capable of adjusting the opening amount is more desirable.
  • the water treatment device 40 is appropriately provided with a pressurizing pump.
  • a pressurizing pump For example, when gravity is used to feed water in the order of the first processing unit 41, the second processing unit 42, and the third processing unit 43, the raw water introduced into the first processing unit 41 is pumped up by a pump. Is adopted.
  • the structure pressurized with a pump may be sufficient.
  • This water treatment device 40 can take out water of a water quality level according to the use from the second water tank 45, the third water tank 46, and the fourth water tank 47.
  • the water treatment apparatus 40 also has a function of treating the waste water after use. Waste water is handled differently depending on whether the water before use is “high”, “medium” or “low”.
  • Wastewater after using “high” level water can be reused or discarded.
  • the third valve 51 is provided in the reuse path, and the fourth valve 52 is provided in the disposal path.
  • the third valve 51 and the fourth valve 52 can be selected from three states, a state where only one of them is open and a state where both are closed.
  • a purification facility 60 is provided in the path for reusing wastewater, and when the third valve 51 is opened, the wastewater is introduced into the purification facility 60. Further, waste water after using “medium” level water is also introduced into the purification facility 60.
  • the purification facility 60 is a facility for improving the water quality of the introduced water to at least the same level as that of the raw water, and includes a septic tank 61, an aeration tank 62, and a disinfecting device 63.
  • the septic tank 61 is configured to treat the wastewater in the tank with anaerobic microorganisms, and the aeration tank 62 filters the wastewater that has passed through the septic tank 61 and then treats the wastewater in the tank with aerobic microorganisms. It is configured.
  • the disinfecting device 63 is configured to disinfect the waste water taken out from the aeration tank 62 with ultraviolet rays. Of the waste water in the septic tank 61, waste water that is not sent to the aeration tank 62 is discarded through the fifth valve 53.
  • the control device opens and closes the third valve 51 and the fourth valve 52.
  • a sensor device 54 is provided to monitor (detect) the quality of wastewater after using “high” level water.
  • the sensor device 54 includes a sensor selected from an electrochemical sensor, a biosensor, an optical sensor, and the like.
  • the control device controls the opening and closing of the third valve 51 and the fourth valve 52 according to the water quality measured by the sensor device 54.
  • the control device when the control device determines that the water quality measured by the sensor device 54 is good, the control device introduces waste water into the purification facility 60 by opening the third valve 51. Further, when the control device determines that the water quality measured by the sensor device 54 is poor, the control device discards the waste water by opening the fourth valve 52. Note that the control device desirably closes the third valve 51 and the fourth valve 52 when waste water does not pass through the sensor device 54.
  • the fifth valve 53 is opened by a manual operation or an electric signal operation when discarding sewage from the septic tank 61.
  • the wastewater treated by the purification facility 60 is relatively clean and the water quality is improved to be equal to or higher than that of the raw water, it was introduced into a treatment pond 64 where a sewage treatment plant (STP) was planted. Thereafter, the process is returned to the first processing unit 41.
  • STP sewage treatment plant
  • As the sewage treatment plant for example, a reed is used.
  • the treatment pond 64 is provided outside the water treatment apparatus 40.
  • devices third valve 51, fourth valve 52, fifth valve 53, sensor device 54, purification equipment 60 used for wastewater treatment can be provided integrally with the water treatment device 40. However, it may be provided outside the water treatment apparatus 40.
  • the 1st processing part 41, the 2nd processing part 42, and the 3rd processing part 43 are constituted as a module according to each processing object. Therefore, if the combination of modules is selected according to the quality of raw water available at the site where the water treatment device 40 is installed and the water quality level to be taken out according to the application, the water treatment device 40 suitable for the site can be assembled. It becomes possible. Moreover, since the module which comprises the water treatment apparatus 40 is independent, it is possible to replace
  • capacitance is prepared beforehand according to the processing amount of water.
  • a typical configuration of a housing or a building for configuring the water treatment device 40 using the modules is designed in advance according to a typical combination of modules and a water treatment amount.
  • the water treatment device 40 preferably includes a sensor device that measures the quality of water to be used (water quality).
  • the water quality here means not the above-described water quality level but the degree of concentration of components contained in water.
  • the configuration example illustrated in FIG. 4 includes a first processing unit 41, a second processing unit 42, and a third processing unit 43. Therefore, in the configuration example shown in FIG. 4, the water extracted from the first processing unit 41, the water extracted from the second processing unit 42, and the water quality extracted from the third processing unit 43 are measured. A sensor device is required.
  • the control device can notify the replacement time of the module or the failure of the module.
  • the quality of raw water is “unusable” level, and at least a part of waste water after using “high” level water and waste water after using “medium” level water. Is configured to play and use.
  • the first processing unit 41, the aeration tank 62, the disinfection device 63, The treatment pond 64 is not necessary. That is, the first processing unit 41 can be omitted depending on the quality of raw water, and the third processing unit 43 can be omitted if “drinking” water is not required.
  • the structure of the water treatment apparatus 40 is changed according to the water quality level of the raw water, the water quality level according to the application, how to handle the water after use, and the like.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

 本発明の課題は、採取される水の成分に応じて水処理装置を適正に構成するように支援することである。本発明の水処理支援システム(10)において、第1の記憶部(11)は、水に含まれる成分を複数の段階に区分した水質レベルに対応させて記憶する。第2の記憶部(12)は、水に含まれる成分ごとに処理技術を対応させて記憶する。第1のインターフェイス部(13)は、水質改善が必要な水に含まれている成分の情報を入力情報として取得する。第2のインターフェイス部(14)は、成分を取り除く処理技術を出力情報として提示装置(20)に出力する。判定部(15)は、水質レベルの区分を抽出し、かつ成分を取り除く処理技術を区分ごとに組み合わせて出力情報を生成する。

Description

水処理支援システム、プログラム
 本発明は、一般に水処理支援システムおよびプログラムに関し、より詳細には、水質改善を行う水処理装置の構築を支援する水処理支援システム、およびコンピュータを水処理支援システムとして機能させるためのプログラムに関する。
 今日、人が生活する上で必要な水を確保することが重要な課題になってきている。とくに、著しく人口が増加し始めているアジアおよびアフリカなどの一部の地域では、利用に適さない不純物が陸水に混入していることが多い。したがって、これらの地域では、他の地域以上に水質の改善が喫緊の課題になっている。
 水質改善には、物理的処理、化学的処理、生物的処理を単独または複合して用いる様々な技術が提案されている。たとえば、カルシウムあるいはマグネシウムのような成分の濃度を低減させる水処理の技術として電気脱イオン化装置あるいはイオン交換樹脂を用いる技術が記載されている(たとえば、日本国特許出願公表番号2007-513749(以下「文献1」という)参照)。文献1には、水質改善のための処理装置の例として、逆浸透装置、電気化学装置、限外濾過装置、精密濾過装置、蒸留装置が列記されている。
 また、雨水貯留槽で浄化した雨水を中水とし、中水を洗車、散水、トイレ、風呂、洗濯機などの用途に利用し、水道からの上水を調理場で利用する構成が知られている(たとえば、日本国特許出願公開番号10-337557(以下「文献2」という)参照)。
 さらに、日本国特許出願公開番号06-269766(以下「文献3」という)には、地域内における廃水を水質グレード別に集水し、集水した水を浄化処理した後に用途別に貯水する構成が記載されている。文献3では、いずれかの用途のために貯水している水が不足すると、この用途のための水よりも水質グレードがより上位である水を補給している。
 文献2、文献3では、水の用途に応じて水質を分類しており、また、文献2では、目的の水質に応じて水を処理している。さらに、文献1には、水質改善のために種々の処理装置を併用することが記載されている。
 しかしながら、文献1、文献2、文献3に記載された技術は、処理装置の構成が固定的である。そのため、これらの技術は、水質改善が必要な場所での水質および用途に応じて技術を適正化することが難しいという課題がある。
 本発明は、採取される水の成分に応じて水処理装置の構成を適正化することを可能にした水処理支援システムを提供することを目的とする。さらに、本発明は、コンピュータを、この水処理支援システムとして機能させるためのプログラムを提供することを目的とする。
 本発明に係る水処理支援システムは、水に含まれる成分を複数の段階に区分した水質レベルに対応させて記憶している第1の記憶部と、水に含まれる成分ごとに処理技術を対応させて記憶している第2の記憶部と、水質改善が必要な水に含まれている成分の情報を入力情報として取得する第1のインターフェイス部と、前記成分を取り除く処理技術を出力情報として提示装置に出力する第2のインターフェイス部と、前記入力情報を前記第1の記憶部および前記第2の記憶部に照合することにより、前記水質レベルの区分を抽出し、かつ前記成分を取り除く前記処理技術を前記区分ごとに組み合わせて前記出力情報を生成する判定部とを備えることを特徴とする。
 本発明に係るプログラムは、コンピュータを、上述したいずれかの水処理支援システムとして機能させるためのものである。本発明は、プログラムに限らず、当該プログラムを記録したコンピュータ読み取り可能な記録媒体であってもよい。
 本発明の好ましい実施形態をより詳細に記述する。本発明の他の特徴および利点は、以下の詳細な記述および添付図面に関連して一層よく理解される。
実施形態の水処理支援システムを示すブロック図である。 実施形態に用いる測定装置を示す概略構成図である。 実施形態に用いるセンサ装置の利用例を示す概略構成図である。 実施形態を用いて設計される水処理装置の例を示す概略構成図である。
 図1に示すように、以下に説明する水処理支援システム10は、第1の記憶部11と第2の記憶部12と第1のインターフェイス部13と第2のインターフェイス部14と判定部15とを備える。第1の記憶部11は、水に含まれる成分を複数の段階に区分した水質レベルに対応させて記憶している。第2の記憶部12は、水に含まれる成分ごとに処理技術を対応させて記憶している。第1のインターフェイス部13は、水質改善が必要な水に含まれている成分の情報を入力情報として取得する。第2のインターフェイス部14は、成分を取り除く処理技術を出力情報として提示装置20に出力する。判定部15は、入力情報を第1の記憶部11および第2の記憶部12に照合することにより、水質レベルの区分を抽出し、かつ成分を取り除く処理技術を区分ごとに組み合わせて出力情報を生成する。
 上記水処理支援システム10の構成によれば、水に含まれる成分に応じて水質レベルを複数段階に区分し、水質改善を行う水に含まれた成分に応じて、この成分を取り除く処理技術を組み合わせて出力情報を生成している。この構成により、採取される水の成分に応じて水処理装置を適正に構成するように支援することが可能になるという利点を有する。とくに、水質レベルを水に含まれる成分に応じて区分しているから、水質改善は、水の用途に応じた水質レベルが得られるように、段階ごとに定めた成分を取り除けばよい。その結果、段階ごとに水質改善を行えばよく、処理技術を段階ごとの単位として扱うことが可能になり、設計および保守が容易になる。
 また、第1のインターフェイス部13は、水質改善が必要な水に含まれている成分を計測するセンサ装置30から入力情報を取得することが望ましい。第2のインターフェイス部14は、入力情報および判定部15が抽出した水質レベルの区分を出力情報に含めて提示装置20に出力することが望ましい。
 さらに、入力情報は水質改善が必要な水が存在する地理的位置に関する情報を含んでおり、水処理支援システム10は、水質改善が必要な水に含まれる成分の情報と地理的位置に関する情報とを対応させて記憶する第3の記憶部16を備えることが望ましい。
 以下、本実施形態についてさらに詳しく説明する。本実施形態において、水質改善が必要な水の水質レベルは、「中」、「低」、「使用不可」の3段階に分類され、水質改善を行った後の用途は、「飲用」、「洗濯用」、「雑用」の3段階に分類されている。用途は水質レベルに対応している。たとえば、「中」レベルは「洗濯用」に対応し、「低」レベルは「雑用」に対応する。「使用不可」レベルは、利用に適さない水質レベルを意味する。なお、「飲用」の水は「高」レベルの水質になる。すなわち、水質レベルは、水質改善が必要な水質レベル(「中」レベル、「低」レベル、「使用不可レベル」)と、水質改善が不要な水質レベル(「高」レベル)との4段階である。
 用途の名称は、代表的な用途を示しているが、名称が示す用途にのみ用いることを意味していない。たとえば、「飲用」は、飲用に使用して差し支えがない水質であることを表し、食用あるいは入浴用のように、摂取したり人体に触れる時間が比較的長くても健康被害あるいは感染被害が生じない程度の水質であることを意味する。また、「洗濯用」は、洗濯に用いるだけではなく、水浴あるいはシャワーのように人体に一時的に触れても健康被害あるいは感染被害が生じない程度の水質であることを意味する。さらに、「雑用」は、人に接触する用途には不向きであるが、乗り物の洗浄あるいは便器の洗浄のように、人に接触しない用途であれば利用してもよい程度の水質を表す。
 それぞれの用途に用いるために取り除くべき成分と、該当する成分を含む場合の水質レベルの区分とを対応させた例を表1に示す。表1は一例であって、水質改善の対象である水から取り除く成分と水質レベルの区分との関係は他に定めることが可能である。また、表1では水質レベルの区分ごとに処理技術を対応させているが、後に表2で示すように、処理技術は取り除く成分ごとに対応させてあり、表1の関係は一例にすぎない。取り除く成分と処理後の用途とは、表1の対応関係でなくてもよい。たとえば、硬度、pH、硫化物などは適正範囲に調整されていれば、飲用に適する場合もある。表1では、取り除くべき成分ごとに水質レベルが対応している。さらに、表1では、水質レベルごとに処理技術が対応している。
Figure JPOXMLDOC01-appb-T000001
 表1において、蒸発残留物は、TDS(Total Dissolved Solids)のことであり、NF膜はナノフィルタ(Nanofiltration Membrane)のことである。深濾過は、草木、礫、砂、セラミック、ポリマー繊維、炭などから選択される濾材を用いて、不純物を除去する処理技術である。また、pHに対する処理技術は、飲用に適したpH値(たとえば、5.8~8.6)に調節することを意味する。硬度についても、利用目的に応じて適正範囲に調整される。
 なお、表1では水質改善の対象である水質レベルが3段階に分類され、処理後の用途が3種類に分類されているが、水質レベルの段階および用途の種類は、適宜に定めることが可能である。したがって、成分についても、水質レベルあるいは用途の設定に応じて適宜に選択される。たとえば、「飲用」と「雑用」との間に、「洗濯用」と「農業用」との2用途を設定してもよい。この場合、「洗濯用」は、表1に示した成分を取り除き、「農業用」では、ヒ素、水銀、鉛などを取り除いて、鉄、銅、窒化物などは適宜の濃度で残留させるようにしてもよい。
 本実施形態の特徴は、表1のように、水質レベルが用途に応じて段階的に定められ、かつ水に含まれる特定の成分が取り除かれると、水質レベルが1段階上がって、1段階上の水質レベルに対応した用途に用いることができるようになることである。つまり、水処理装置40(図4参照)には、水質レベルを1段階高めるように構成された処理部(たとえば、図4に示す第1の処理部41、第2の処理部42、第3の処理部43)が用いられる。処理部の個数は、後述するように、原水の水質レベルと、要求される水質レベルの中で一番高い水質レベルとの間の段数によって定められる。ここで、特定の成分が取り除かれることとは、特定の成分が完全に取り除かれることに限定されず、特定の成分が低減されることであってもよい。
 取り除くべき成分に対して適用可能な処理技術の例を表2に示す。表2において、アニオン交換は強酸を用いてイオン交換を行うことを示し、カチオン交換は強塩基を用いてイオン交換を行うことを示している。また同様に、軟水化は塩を用いてイオン交換を行うことを示している。
 表2から明らかなように、多くの処理技術は、複数の成分に対して有効である。すなわち、水に含まれる成分がわかれば、1種類の成分に対して複数種類の処理技術が選択可能になる場合がある。逆に、1種類の処理技術を複数種類の成分に対して適用可能である場合もある。
Figure JPOXMLDOC01-appb-T000002
 1種類の成分に対して複数種類の処理技術が選択可能である場合、種々の条件を考慮して処理技術が選択される。この種の条件は、処理後の水質、処理性能(単位時間当たりの処理量)、処理技術に対する導入コスト(つまり、初期投資)と運用コスト(つまり、ランニングコスト)、可用性(Availability)、保守性(Serviceability)などを含む。ここでの可用性は、故障率の低さの程度(故障率をρとすると、1-ρに相当)を意味しており、保守性は、消耗品の入手容易性、故障時の修理容易性などを表している。
 たとえば、高機能な消耗品は経済的に豊かな地域でなければ入手困難と考えられる。また、高度な処理技術を採用している水処理装置は、専門家でなければ修理することができない場合がある。すなわち、地域性の条件によって保守性にばらつきが生じる。さらに、消耗品の入手に時間が要する場合、あるいは修理に時間を要する場合には、可用性が低下することになる。
 ところで、人が利用可能な水源には、雨水、河川水(湖沼水を含む)、地下水、生活廃水などがあり、水源から取り入れた水(以下、「原水」という)の水質レベルは、場所によって異なる。たとえば、農業および工業では、生産が拡大すれば、水が多く必要になるばかりでなく、表面水(雨水、河川水など)および地下水が汚染される可能性がある。したがって、農地あるいは工場の近辺では、水源から取り入れた水は、水質改善を行わずに飲用などに供すると健康に影響を及ぼすことがある。
 また、人工的な汚染だけではなく、バングラデシュを含む東南アジア地域では原水(raw water)に無機ヒ素が含まれることがあり、中国およびインドを含む多くの国で原水にフッ素が含まれていることがある。このような自然に発生している汚染物質も水を供給する際の安全性に影響を及ぼしている。
 安全な水を確保することは喫緊の課題であり、安全な水を得るには原水の水質レベルに応じた適正な処理技術を用いて水質を改善する必要がある。そのため、地球規模で地域ごとの水質の情報を収集する努力がなされているが、経済力が十分ではない地域では、試験的な調査が行われているにすぎず、原水の水質に関して十分な情報が得られていないのが現状である。
 以下では、原水に含まれる成分に応じた水処理装置の構築を支援する水処理支援システムについて説明する。さらに、本実施形態では、水処理支援システムを運用することにより、地域ごとに得られる原水の水質に関する情報を収集可能にする技術についても説明する。
 水処理支援システムは、原水に適合した処理技術を提案することにより、水処理装置の構築を容易にするために用いられる。また、以下に説明する水処理支援システムは、水処理装置を導入する地域の経済力および要求される水の処理量なども条件に含めることを可能にしている。その結果、この水処理支援システムは、現地に適合するように構成および規模を適正化した水処理装置を提案することが可能になっている。
 水処理支援システムは、プログラムに従って動作するプロセッサを備える。このプロセッサは、メモリ、インターフェイス用のデバイスなどとともに用いてコンピュータを構成する。すなわち、水処理支援システムは、コンピュータを主なハードウェア要素とする。また、プログラムは、ROM(Read Only Memory)にあらかじめ記録された状態で提供されるか、インターネットのような電気通信回線を通して提供される。あるいはまた、プログラムは、コンピュータで読取可能な記録媒体を用いて提供される。
 水処理支援システムを構成するコンピュータは、水処理装置を構築する場所で利用するように、パーソナルコンピュータのような汎用のコンピュータが用いられる。この種のコンピュータは、可搬型であることが望ましい。ただし、後述するように、水処理支援システムは、離れた場所で取得された入力情報が与えられる構成であってもよい。すなわち、水処理支援システムは、通信により入力情報を取得する構成、あるいは、手作業で入力情報が入力される構成であってもよい。
 図1に示すように、水処理支援システム10は、入力情報を受け付ける第1のインターフェイス部(以下、インターフェイス部を「I/F部」という)13と、出力情報が取り出される第2のI/F部14とを備える。第1のI/F部13が受け付ける入力情報は、水処理装置40(図4参照)の構築に必要な条件を含む。
 入力情報は、水処理装置40の処理対象である原水における成分および成分の濃度を条件に含むことが望ましいが、成分のみであってもよい。また、成分の抽出が困難である場合は、経験に基づいて判断した水質レベルを入力情報に用いることも可能である。
 経験に基づく水質レベルの判断は、たとえば、表1に示した「使用不可」レベルであれば人の視覚と嗅覚とによって判断することが可能である。また、「低」レベルあるいは「中」レベルは、過去に生じた健康被害あるいは感染被害の状況などから推定することが可能である。これらの情報は、チェックリストを用いたインタビューにより取得することが可能である。また、試薬あるいは試験紙を用いることにより成分を検査することも可能である。
 以下では、原水の成分および濃度がセンサ装置30により計測され、センサ装置30に計測された原水の成分に関する情報が入力情報として第1のI/F部13に入力される場合を例として説明する。この種のセンサ装置30は、1台で目的とする多数の成分を分析する水質分析装置と、少数の成分を分析する複数のセンサを組み合わせた構成とのいずれかが用いられる。センサは、電気化学センサ、バイオセンサ、光学式センサなどから選択される。
 水質分析装置は、多種類の成分の分析を高精度に行うことができるが、比較的高価である上に、多種類の成分を分析する水質分析装置は比較的大型である。そのため、この種の水質分析装置は、原水の採取場所で利用することが困難である。したがって、水質分析装置の管理主体を公的機関あるいは水質検査を行う事業者とし、検査対象である水の試料を公的機関あるいは事業者が受け取って水質分析装置での分析結果を水処理支援システム10に与えることが望ましい。
 一方、電気化学センサ、バイオセンサ、光学式センサのようなセンサは、比較的小型であり、この種のセンサを用いて構成した小型のセンサ装置30は、原水の採取場所で利用することが可能である。つまり、この種のセンサ装置30は、原水の採取場所で水処理支援システム10が用いられる場合、水処理支援システム10に付属させて設けることが可能である。水処理支援システム10にセンサ装置30を付属させて設けるとは、水処理支援システム10にセンサ装置30を有線で接続するか、あるいは水処理支援システム10とセンサ装置30との間で無線信号による情報の伝送を行うことを意味している。また、この場合、水処理支援システム10とセンサ装置30との距離は比較的短くなる(たとえば、10m以下)。センサ装置30は、原水の採取場所で水処理支援システム10が用いられない場合、水処理支援システム10とは独立して設けることも可能である。
 センサ装置30が水質分析装置である場合の分析結果は、水処理支援システム10が利用可能な形式のデータとしてインターネットのような電気通信回線あるいは記録媒体を用いて水処理支援システム10に引き渡される。また、水質分析装置による分析結果は水処理支援システム10の利用者に書面として提供されるようにしてもよい。この場合、水処理支援システム10への入力情報は、第1のI/F部13に接続された入力装置21を用いて利用者が手入力で入力する。すなわち、第1のI/F部13は、水質分析装置(センサ装置30)と電気通信回線を通して通信する機能を有する構成と、入力装置21から入力情報を受け取る機能を有する構成との少なくとも一方が採用される。
 センサ装置30が電気化学センサ、バイオセンサ、光学式センサのようなセンサを用いて比較的小型に構成される場合、第1のI/F部13にセンサ装置30を直接接続することが可能である。また、センサ装置30は、電気通信回線を通して計測結果を水処理支援システム10に引き渡す構成、あるいは、計測結果を表示または印刷する構成であってもよい。
 言い換えると、センサ装置30は、電気通信回線を通して計測結果を水処理支援システム10に引き渡す場合、センサと通信I/F部とを組み合わせた構成が採用される。また、センサ装置30は、計測結果を表示または印刷する場合、センサとI/F部とを組み合わせた構成が採用される。I/F部は、センサ装置30が計測した情報を、表示器(ディスプレイ)または印刷装置(プリンタ)に出力するように構成される。
 センサ装置30を用いる場合、第1のI/F部13は、センサ装置30が直接接続される構成と、電気通信回線を通してセンサ装置30と通信する構成と、入力装置21から入力情報を受け取る構成とのいずれかが採用される。
 図2にセンサ装置30の構成例を示す。図2に示すセンサ装置30は、センサ31と処理部32とI/F部33と表示器34とを組み合わせて構成されている。図示例において、センサ31は電気化学センサを想定しており、計測対象である水WTに浸漬される電極311を備える。処理部32は、センサ31の電気出力を用いて水WTに含まれる成分の種類と濃度とを求める処理を行う。この処理部32は、プログラムに従って動作するデバイスを主なハードウェア要素として備える。すなわち、マイクロプロセッサ、DSP(Digital Signal Processor)、FPGA(Field-Programmable Gate Array)などから選択されたデバイスが用いられる。I/F部33は処理部32の出力を表示器34に表示するために設けられており、表示器34は、文字を表示することが可能な液晶表示器のようなフラットパネルディスプレイであって、処理部32が求めた成分の種類および濃度を表示するように構成されている。
 図2に示すようなセンサ装置30を用いて原水の成分を計測すると、利用者は、表示器34の表示内容によって原水の水質のレベルを知ることができる。したがって、センサ装置30の表示器34に表示された成分を、水処理支援システム10のオペレータに通知すれば、オペレータを通して原水に含まれる成分を水処理支援システム10の第1のI/F部13に入力情報として与えることが可能になる。また、センサ装置30の表示器34に表示された水質のレベルを利用者が読み取り、電気通信回線を通して水処理支援システム10の第1のI/F部13に入力情報として与えることも可能である。後者のように処理する場合、第1のI/F部13は、利用者が操作する端末装置と通信可能であることが要求される。
 図1に示す構成例は、水処理支援システム10の第1のI/F部13にセンサ装置30が直接接続された構成を想定しているが入力装置21を併記している。ここに、水処理支援システム10は、水処理装置40(図4参照)を構築する際の制約条件を入力装置21から入力することができるように第3のI/F部17を備えている。第3のI/F部17に入力される制約条件は、処理後の水に対する要求仕様であって、この要求仕様には、供給する水質、単位時間当たりの供給量、導入コストおよび運用コスト、可用性、保守性などが含まれる。
 入力装置21は、第2のI/F部14から取り出される出力情報を提示する提示装置20と兼用されていてもよい。入力装置21および提示装置20は、水処理支援システム10に専用の装置として設けることが可能である。ただし、第1のI/F部13と第2のI/F部14と第3のI/F部17とは、汎用の装置を入力装置21および提示装置20として用いることが可能になるように構成されていてもよい。この種の汎用の装置は、スマートフォン、タブレット端末などから選択される。
 第1のI/F部13および第3のI/F部17からの入力情報は判定部15に与えられる。判定部15は、入力情報が与えられると、第1のI/F部13から与えられた入力情報を第1の記憶部11および第2の記憶部12と照合する。第1の記憶部11および第2の記憶部12は、それぞれデータテーブルを構成している。第1の記憶部11は表1に示したように、水に含まれる成分を複数の段階(表1では3段階)に区分した水質レベル(「使用不可」「低」「中」)に対応させて記憶している。すなわち、第1の記憶部11は、水に含まれる複数の成分の各々を複数段階の水質レベルのいずれかに対応させて記憶している。第2の記憶部12は表2に示したように、水に含まれる成分ごとに処理技術を対応させて記憶している。すなわち、第2の記憶部12は、水に含まれる複数の成分について、水に含まれる成分ごとに、複数の処理技術のうち、上記水に含まれる成分を取り除く少なくとも1つの処理技術を対応させて記憶している。
 したがって、判定部15は、第1のI/F部13から入力された入力情報を第1の記憶部11に照合して成分に対応する水質レベルの区分を求め、また、第1のI/F部13から入力された入力情報を第2の記憶部12に照合して成分に対応する処理技術を求める。さらに、判定部15は、求めた水質レベルの中で最低の水質レベルを抽出し、原水の水質レベルを定める。言い換えると、判定部15は、入力情報を第1の記憶部11および第2の記憶部12に照合することにより、複数段階の水質レベルから、水質改善が必要な水に含まれている成分に対応する水質レベルを抽出する。そして、判定部15は、水質改善が必要な水に含まれている成分を取り除く処理技術を上記抽出した水質レベルと組み合わせて出力情報を生成する。
 ここで、第3のI/F部17から制約条件が入力されている場合、判定部15は、指定された用途において必要なもっとも高い水質レベルと、原水の水質レベルとの間の段数を求める。いま、原水が「使用不可」レベルであって、必要な最高の水質レベルが「中」レベルである仮定する。つまり、「使用不可」レベルの原水から、少なくとも用途が「洗濯用」である「中」レベルの水まで水質改善を行うことが要求されていると仮定する。この場合、「使用不可」レベルから「低」レベル(「雑用」)に水質改善を行う段階と、「低」レベルから「中」レベル(「選択用」)に水質改善を行う段階とが必要であるから、水質改善を行う水質レベルの段数は2段になる。上述のように、水処理装置40(図4参照)を構成する処理部(たとえば、図4に示す第1の処理部41、第2の処理部42、第3の処理部43)は、水質レベルを1段階だけ向上させるから、この例に対応する水処理装置40には2個の処理部が必要である。
 判定部15は、原水に含まれる成分を第2の記憶部12と照合することによって、水処理装置40の段階ごとに処理部で取り除く成分を定め、段階ごとの処理部の構成を最適化する。処理部の構成の最適化は、通常、適用する処理技術の種類を減らすことによって構成を簡易化するという条件で行われる。ただし、第3のI/F部17から制約条件が入力されている場合、処理部の構成の最適化は、制約条件に適合するように処理部を構成することになる。たとえば、制約条件が導入コストの最小化であるとすれば、処理部に適用する処理技術を少なくすることよりも、低コストの処理技術を採用することを優先することが最適化に該当する。
 なお、処理部の構成について複数の提案が可能である場合、最適化した後の処理部の構成だけではなく、他の構成も候補として提案するようにしてもよい。たとえば、処理技術として、逆浸透膜と紫外線消毒の組み合わせ、軟水化と活性炭フィルタとの組み合わせ、軟水化のように、処理技術の候補を複数提案してもよい。この場合、各候補には導入コストと運用コストとを出力情報に含めることが望ましい。
 制約条件は、導入コストおよび運用コスト、可用性、保守性を含むから、第2の記憶部12は、処理対象と処理技術との対応関係を記憶するだけではなく、処理技術ごとに導入コスト、運用コスト、可用性、保守性などの情報を記憶していることが望ましい。また、これらの情報は、第2の記憶部12とは別に設けられたデータベースシステムに登録されていてもよい。
 この種のデータベースシステムは、水処理支援システム10に付属させる構成のほか、インターネットあるいは移動体通信網のような電気通信回線を通して水処理支援システム10と通信するように構成されていてもよい。データベースシステムが水処理支援システム10とは別に設けられていれば、複数の水処理支援システム10でデータベースシステムが記憶している情報を共用することが可能になる。また、データベースシステムが記憶している情報の管理が一元化され、情報の更新あるいは保守が容易になる。
 以上説明したように、判定部15は、第1のI/F部13を通して入力される原水の成分に関する入力情報を用いることにより、第2のI/F部14から取り出す出力情報を生成する。第2のI/F部14は、水質改善が必要な水に含まれている成分を取り除く処理技術を出力情報として提示装置20に出力する。また、判定部15は、出力情報の生成に際して、必要に応じて、第3のI/F部17を通して入力される制約条件に関する入力情報を用いる。出力情報は、原水から目的の水質レベルの水を得る水処理装置40(図4参照)を構成するための適切な処理部の構成に関する情報を提供する。したがって、水処理支援システム10からの出力情報は、水処理装置40の設計を支援することになる。
 上述した例において、水処理支援システム10は、用途に応じた水質レベルの水を原水から生成するのに必要な処理技術(処理部に適用する処理技術)を提案するように構成されている。これに対して、処理技術の組み合わせ方を含む水処理装置40の設計情報を提案するように水処理支援システム10が構成されていてもよい。この場合、判定部15が抽出した処理技術の候補を組み合わせるためのルールの情報を格納した記憶部が設けられ、判定部15は記憶部に格納されたルールの情報を用いて処理技術を適正に組み合わせることが望ましい。
 上述のようにして、原水を用途に応じた水質の水に水質改善するための処理技術を含む出力情報が生成されると、判定部15は、第2のI/F部14を通して出力情報を提示装置20に提示させる。判定部15は、提示装置20に提示する出力情報として、処理技術の組み合わせだけではなく、処理技術の導入コストおよび運用コストを併せて提示することが望ましい。提示装置20に導入コストおよび運用コストを処理技術と併せて提示する場合、処理技術の組み合わせが複数種類あれば、それぞれの組み合わせについて導入コストおよび運用コストを並べて提示することが望ましい。このように複数の選択肢を提示すれば、利用者が望ましいと考える選択肢を選択することが可能になる。
 ところで、水処理支援システム10の入力情報には、原水の成分が必要であり、原水の成分はセンサ装置30が計測する。センサ装置30は、据置型の水質分析装置のように原水の採取場所での利用が困難な構成と、原水の採取場所で水処理支援システム10に付属させて利用できる構成とがある。
 たとえば、図2に示したセンサ装置30は、水処理支援システム10から分離して、原水の採取場所で成分の計測が可能である。このようなセンサ装置30は、様々な場所で水の成分を単独で計測することが可能である。したがって、水処理支援システム10の入力情報を得る目的ではなくとも、利用者が水の成分を計測することによって、原水の成分に関心を持つようになる。すなわち、この種のセンサ装置30を用いて水に含まれる成分を計測することは、水質レベルの維持に対する意識向上の動機付けになる。
 上述したように、水処理支援システム10に与える原水に関する入力情報は、種々の形態で収集できる。そこで、水処理支援システム10は、図3のように、センサ装置30で計測した原水の成分を採取情報に対応させて記憶させる第3の記憶部16を備えることが望ましい。図示例では、第3の記憶部16は第4のI/F部18を通して判定部15と通信するデータベースサーバ160に設けられている。なお、図3では水処理支援システム10の一部の構成のみを記載しているが、他の構成は図1に示した構成と同様である。
 図3に示す構成例では、第4のI/F部18とデータベースサーバ160とは、インターネットのような電気通信回線19を通して通信を行うように構成されている。ただし、電気通信回線19を通して通信する構成は必須ではなく、図1に示した水処理支援システム10の構成において、判定部15が通信することなく第3の記憶部16に情報を直接記憶させる構成であってもよい。
 上述した採取情報は、原水を採取した場所の地理的位置(緯度および軽度が望ましい)と原水を採取した日時(年月日と時刻)とを少なくとも含む。データベースサーバ160は、単独のサーバで構成されていてもよいが、望ましくは、クラウドコンピューティングシステムで構築されていることが望ましい。データベースサーバ160がクラウドコンピューティングシステムで構築されていると、地球上の様々な地域での水の成分を収集することが容易になる。
 また、図2に示したセンサ装置30は、水処理支援システム10から独立して単独で用いることができるから、上述したように、計測した成分を水処理支援システム10の入力情報に用いずに、水の成分を測定するためにのみ用いることが可能である。上述したセンサ装置30は表示器34を備えているから、センサ装置30の利用者が、センサ装置30で計測された水質を表示器34から読み取り、計測された水質をモバイル端末22に入力してデータベースサーバ160に伝送する。モバイル端末22は、携帯電話機、スマートフォン、タブレット端末、ノート型のパーソナルコンピュータなどから選択される。
 モバイル端末22が測位システム(たとえば、全地球測位システム)の端末を内蔵する場合、センサ装置30から読み取った水質を、測位システムで計測した地理的位置および内蔵時計で計時している日時と併せてデータベースサーバ160に伝送すればよい。センサ装置30が通信I/F部を備える場合、適宜のタイミングで計測した水の成分をデータベースサーバ160に自動的に伝送するようしてもよい。なお、データベースサーバ160には、センサ装置30が計測した水の成分だけではなく、センサ装置30が取得した地理的位置も併せて送信される。
 第3の記憶部16を備えたデータベースサーバ160に地理的位置とともに水の成分が登録されると、新たに水処理装置を設置する場合に、水処理装置を設置する場所の近隣における水質を参照して水処理装置に適用する処理技術を絞り込むことが可能になる。たとえば、新たな水処理装置を設置する場合、水質の計測を実施しなくとも現地に適合する処理技術の候補を提案することが可能になる。また、水処理装置を導入するか否かを検討する場合に、データベースサーバ160に登録された近隣の水質の情報によって、水処理装置として必要な処理技術を推定することが可能になり、結果的に、導入コストおよび運用コストを見積もることが可能になる。すなわち、データベースサーバ160に登録された情報は、水処理装置を導入する際の意思決定に利用することができる。
 以下では、上述した水処理支援システム10により抽出された処理技術を組み合わせて構築された水処理装置40(図4参照)の例について説明する。図4に示す水処理装置40は、原水の水質レベルが「使用不可」であり、「飲用」、「洗濯用」、「雑用」の3種類の用途に用いる水を取り出すことが可能になるように構成されている。つまり、本実施形態で説明している4段階の水質レベルにおいて、原水はもっとも低い水質レベル(「使用不可」レベル)であり、用途にはもっとも高い水質レベル(「高」レベル)が含まれている。「使用不可」レベルから「高」レベルまで水質レベルまでは3段階の水質改善が必要である。したがって、以下に説明する水処理装置40は、3個の処理部(つまり、第1の処理部41、第2の処理部42、第3の処理部43)を備える。
 なお、図4に示す水処理装置40は、導入コストおよび運用コスト、可用性、保守性などの制約条件は原則として考慮していない。すなわち、この水処理装置40は、水質のレベルが「使用不可」という劣悪な状態の原水しか入手できないという環境下で、「飲用」という用途に利用可能な水を原水から生成することを目的として構成されている。
 上述した目的を達成するために、水処理装置40は、3段階の処理部を備える。すなわち、水処理装置40は、「使用不可」レベルから「低」レベルに水質改善を行う第1の処理部41と、「低」レベルから「中」レベルに水質改善を行う第2の処理部42と、「中」レベルから「高」レベルに水質改善を行う第3の処理部43とを備える。第1の処理部41で水質改善がなされた水は「雑用」であり、第2の処理部42で水質改善がなされた水は「洗濯用」であり、第3の処理部43で水質改善がなされた水は「飲用」である。
 この水処理装置40は、第1の処理部41と第2の処理部42と第3の処理部43との各々で、水質レベルを1段階ずつ向上させている。そのため、単独の処理部で水質レベルを複数段階向上させる構成を採用する場合に比較して、第2の処理部42および第3の処理部43のそれぞれが汚染される程度が軽減される。また、第1の処理部41と第2の処理部42と第3の処理部43とは、各段階の成分に応じた処理技術を採用すればよく、他の段階の成分を考慮しなくてよいから、目的とする水質レベルの処理を行うための設計が容易になる。
 図4に示す構成例では、第1の処理部41と第2の処理部42との間に「低」レベルの水を貯める第1の貯水槽44が設けられ、第2の処理部42と第3の処理部43との間に「中」レベルの水を溜める第2の貯水槽45が設けられる。また、第3の処理部43で水質が改善された「高」レベルの水は第3の貯水槽46に貯められる。図示例では、第1の処理部41で処理された「低」レベルの水は、第1の貯水槽44だけではなく、第4の貯水槽47にも貯められる。
 第1の貯水槽44に貯められた水は、第2の処理部42を通して「中」レベルに水質改善がなされ、さらに第3の処理部43を通して「高」レベルに水質改善がなされる。言い換えると、第1の貯水槽44に貯められた「低」レベルの水は、「洗濯用」と「飲用」との水を生成するために分配される。第4の貯水槽47に貯められた「低」レベルの水は、「雑用」として、便器の洗浄(水洗便所用)、乗り物の洗浄、食用ではない植物の育生などの目的で用いられる。
 図4に示す水処理装置40は、第1の貯水槽44と第2の処理部42との間に第1のバルブ48を備え、第2の貯水槽45と第3の処理部43との間に第2のバルブ49を備える。第1のバルブ48および第2のバルブ49は、水処理装置40の導入コストを抑制する場合には、手動で操作する構成が採用される。ただし、第1のバルブ48および第2のバルブ49は、電気信号で操作する構成が望ましい。また、第1のバルブ48および第2のバルブ49は、開閉のみを行う構成でよいが、開量の調節が可能である構成がより望ましい。
 水処理装置40は、適宜に加圧用のポンプを備えていることが望ましい。たとえば、第1の処理部41、第2の処理部42、第3の処理部43の順に送水するために重力を利用する場合、第1の処理部41に導入する原水をポンプで揚水する構成が採用される。また、第2の貯水槽45と第3の貯水槽46と第4の貯水槽47とにそれぞれ貯めた水を利用に供するために、ポンプで加圧する構成であってもよい。
 この水処理装置40は、第2の貯水槽45と第3の貯水槽46と第4の貯水槽47とから用途に応じた水質レベルの水を取り出すことが可能になっている。また、この水処理装置40は、利用後の廃水を処理する機能も有している。廃水は、利用前の水が「高」レベルか「中」レベルか「低」レベルかに応じて扱う方法が異なる。
 「高」レベルの水を利用した後の廃水は、再利用するか廃棄するかが選択される。図示例では、再利用する経路に第3のバルブ51が設けられ、廃棄する経路に第4のバルブ52が設けられている。第3のバルブ51および第4のバルブ52は、いずれか一方のみが開いた状態と、両方が閉じた状態との3状態が選択可能になっている。廃水を再利用する経路には浄化設備60が設けられ、第3のバルブ51が開放されている場合には、廃水が浄化設備60に導入される。また、浄化設備60には「中」レベルの水を利用した後の廃水も導入される。
 浄化設備60は、導入された水を少なくとも原水と同程度の水質レベルに水質改善する設備であって、腐敗槽61と曝気槽62と消毒装置63とを備える。腐敗槽61は、槽内の廃水を嫌気性微生物により処理するように構成され、曝気槽62は、腐敗槽61を通った廃水を濾過した後に、槽内の廃水を好気性微生物により処理するように構成されている。消毒装置63は、曝気槽62から取り出された廃水を紫外線により消毒するように構成されている。腐敗槽61の廃水のうちで曝気槽62に送られない廃水は、第5のバルブ53を通して廃棄される。
 第3のバルブ51および第4のバルブ52の開閉は制御装置が行う。図4に示す構成例では、「高」レベルの水を利用した後の廃水の水質を監視(検出)するためにセンサ装置54が設けられている。センサ装置54は、電気化学センサ、バイオセンサ、光学式センサなどから選択されるセンサを備える。制御装置は、センサ装置54が計測した水質に応じて、第3のバルブ51および第4のバルブ52の開閉を制御する。
 すなわち、制御装置は、センサ装置54が計測した水質を良好と判断した場合、第3のバルブ51を開放することによって、廃水を浄化設備60に導入する。また、制御装置は、センサ装置54が計測した水質が不良であると判断した場合、第4のバルブ52を開放することによって廃水を廃棄する。なお、制御装置は、廃水がセンサ装置54を通過していない場合、第3のバルブ51および第4のバルブ52を閉じることが望ましい。なお、第5のバルブ53は、腐敗槽61から汚水を廃棄する場合に手動による操作または電気信号による操作で開放される。
 浄化設備60により処理された廃水は、比較的清浄であって水質が原水と同等以上に改善されているから、汚水処理植物(STP:Sewage Treatment Plant)が植えられた処理池64に導入された後、第1の処理部41に戻される。汚水処理植物は、たとえばアシが用いられる。
 上述した構成において、処理池64は水処理装置40の外部に設けられる。また、廃水の処理に用いる装置(第3のバルブ51、第4のバルブ52、第5のバルブ53、センサ装置54、浄化設備60)は、水処理装置40と一体に設けることが可能であるが、水処理装置40の外部に設けてもよい。
 ところで、第1の処理部41と第2の処理部42と第3の処理部43とは、それぞれの処理対象に応じたモジュールとして構成されている。したがって、水処理装置40を設置する現場において入手可能な原水の水質と、用途に応じて取り出す水質レベルとに応じてモジュールの組み合わせを選択すれば、現場に適合した水処理装置40を組み立てることが可能になる。また、水処理装置40を構成するモジュールが独立しているから、導入される水質に応じて必要なモジュールを個別に交換することが可能である。しかも、モジュールが個別に交換可能であるから、保守時のコスト増を抑制できる。
 なお、第1の処理部41と第2の処理部42と第3の処理部43とは、水の処理量に応じて、異なる容量のモジュールがあらかじめ用意されていることが望ましい。また、モジュールの典型的な組み合わせ方および水の処理量に応じて、モジュールを用いて水処理装置40を構成するための筐体または建物の典型的な構成についてあらかじめ設計されていることが望ましい。筐体または建物とモジュールとをあらかじめ準備しておくことにより、要求仕様に応じた水処理装置40を迅速に提供することが可能になる。
 本実施形態ではとくに記載していないが、水処理装置40は、利用する水質(水の品質)を計測するセンサ装置を備えることが望ましい。ここでの水質は、上述した水質レベルではなく、水に含まれる成分の濃度の程度を意味する。図4に示した構成例では、第1の処理部41と第2の処理部42と第3の処理部43とを備える。したがって、図4に示した構成例では、第1の処理部41から取り出した水、第2の処理部42から取り出した水、第3の処理部43から取り出した水質をそれぞれ計測する3個のセンサ装置が必要である。
 センサ装置が計測した水質に関する時間変化を制御装置に設けた履歴記憶部に格納しておけば、第1の処理部41と第2の処理部42と第3の処理部43との経時変化などによる性能の劣化の程度を知ることが可能になる。水質は、たとえば、1日、1週間、1ヶ月などから選択される時間間隔で計測される。履歴記憶部に情報が格納されていれば、制御装置はモジュールの交換時期あるいはモジュールの故障を通知することが可能になる。
 上述した水処理装置40は、原水の水質が「使用不可」レベルであり、「高」レベルの水を利用した後の廃水と「中」レベルの水を利用した後の廃水との少なくとも一部を再生して利用するように構成されている。一方、雨水を原水とする場合のように、原水の水質が「低」レベルであり、かつ利用後の廃水を再生しない場合には、第1の処理部41、曝気槽62、消毒装置63、処理池64などは不要になる。つまり、原水の品質によっては第1の処理部41は省略可能であり、また、「飲用」の水を必要としなければ第3の処理部43は省略可能である。このように、原水の水質レベル、用途に応じた水質レベル、利用後の水の扱い方などに応じて水処理装置40の構成は変更される。
 なお、上述した実施形態は本発明の一例である。このため、本発明は、上述の実施形態に限定されることはなく、この実施形態以外であっても、本発明に係る技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能であることはもちろんのことである。

Claims (5)

  1.  水に含まれる成分を複数の段階に区分した水質レベルに対応させて記憶している第1の記憶部と、
     水に含まれる成分ごとに処理技術を対応させて記憶している第2の記憶部と、
     水質改善が必要な水に含まれている成分の情報を入力情報として取得する第1のインターフェイス部と、
     前記成分を取り除く処理技術を出力情報として提示装置に出力する第2のインターフェイス部と、
     前記入力情報を前記第1の記憶部および前記第2の記憶部に照合することにより、前記水質レベルの区分を抽出し、かつ前記成分を取り除く前記処理技術を前記区分ごとに組み合わせて前記出力情報を生成する判定部とを備える
     ことを特徴とする水処理支援システム。
  2.  前記第1のインターフェイス部は、水質改善が必要な前記水に含まれている前記成分を計測するセンサ装置から前記入力情報を取得する
     請求項1記載の水処理支援システム。
  3.  前記第2のインターフェイス部は、前記入力情報および前記判定部が抽出した前記水質レベルの前記区分を前記出力情報に含めて前記提示装置に出力する
     請求項1又は2記載の水処理支援システム。
  4.  前記入力情報は水質改善が必要な前記水が存在する地理的位置に関する情報を含んでおり、
     水質改善が必要な前記水に含まれる前記成分の情報と前記地理的位置に関する情報とを対応させて記憶する第3の記憶部を備える
     請求項1~3のいずれか1項に記載の水処理支援システム。
  5.  コンピュータを、請求項1~4のいずれか1項に記載の水処理支援システムとして機能させるためのプログラム。
PCT/JP2015/000082 2014-03-03 2015-01-09 水処理支援システム、プログラム WO2015133048A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015524959A JP5866501B1 (ja) 2014-03-03 2015-01-09 水処理支援システム、プログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014040645 2014-03-03
JP2014-040645 2014-03-03

Publications (1)

Publication Number Publication Date
WO2015133048A1 true WO2015133048A1 (ja) 2015-09-11

Family

ID=54054870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/000082 WO2015133048A1 (ja) 2014-03-03 2015-01-09 水処理支援システム、プログラム

Country Status (2)

Country Link
JP (1) JP5866501B1 (ja)
WO (1) WO2015133048A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017170274A (ja) * 2016-03-18 2017-09-28 栗田工業株式会社 水処理システムの提案支援装置、提案支援方法、及びプログラム
JP2018142105A (ja) * 2017-02-27 2018-09-13 栗田工業株式会社 水処理システム提案支援装置、水処理システム提案支援方法、及びプログラム
JP2018142104A (ja) * 2017-02-27 2018-09-13 栗田工業株式会社 水処理システム提案支援装置、水処理システム提案支援方法、及びプログラム
JP2018142103A (ja) * 2017-02-27 2018-09-13 栗田工業株式会社 水処理システム提案支援装置、水処理システム提案支援方法、及びプログラム
WO2021095819A1 (ja) * 2019-11-14 2021-05-20 Wota株式会社 水処理装置、水処理システム、水処理方法、コンピュータ装置
WO2021095820A1 (ja) * 2019-11-14 2021-05-20 Wota株式会社 水処理装置、水処理システム、水処理方法、コンピュータ装置
JP2021159873A (ja) * 2020-03-31 2021-10-11 栗田工業株式会社 設計支援システム及び設計支援方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06269766A (ja) * 1993-03-17 1994-09-27 Shimizu Corp 地域排水再利用システム
JP2007513749A (ja) * 2003-11-13 2007-05-31 ユーエスフィルター・コーポレイション 水処理システム及び方法
JP2010247072A (ja) * 2009-04-16 2010-11-04 Ihi Corp 廃水処理方法及び廃水処理装置並びにエネルギーガスの精製方法及び精製システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06269766A (ja) * 1993-03-17 1994-09-27 Shimizu Corp 地域排水再利用システム
JP2007513749A (ja) * 2003-11-13 2007-05-31 ユーエスフィルター・コーポレイション 水処理システム及び方法
JP2010247072A (ja) * 2009-04-16 2010-11-04 Ihi Corp 廃水処理方法及び廃水処理装置並びにエネルギーガスの精製方法及び精製システム

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017170274A (ja) * 2016-03-18 2017-09-28 栗田工業株式会社 水処理システムの提案支援装置、提案支援方法、及びプログラム
JP2018142105A (ja) * 2017-02-27 2018-09-13 栗田工業株式会社 水処理システム提案支援装置、水処理システム提案支援方法、及びプログラム
JP2018142104A (ja) * 2017-02-27 2018-09-13 栗田工業株式会社 水処理システム提案支援装置、水処理システム提案支援方法、及びプログラム
JP2018142103A (ja) * 2017-02-27 2018-09-13 栗田工業株式会社 水処理システム提案支援装置、水処理システム提案支援方法、及びプログラム
WO2021095819A1 (ja) * 2019-11-14 2021-05-20 Wota株式会社 水処理装置、水処理システム、水処理方法、コンピュータ装置
WO2021095820A1 (ja) * 2019-11-14 2021-05-20 Wota株式会社 水処理装置、水処理システム、水処理方法、コンピュータ装置
JP2021159873A (ja) * 2020-03-31 2021-10-11 栗田工業株式会社 設計支援システム及び設計支援方法
JP7363644B2 (ja) 2020-03-31 2023-10-18 栗田工業株式会社 設計支援システム及び設計支援方法

Also Published As

Publication number Publication date
JPWO2015133048A1 (ja) 2017-04-06
JP5866501B1 (ja) 2016-02-17

Similar Documents

Publication Publication Date Title
JP5866501B1 (ja) 水処理支援システム、プログラム
Benaissa et al. Optimization and kinetic modeling of electrocoagulation treatment of dairy wastewater
Hey et al. Evaluation of direct membrane filtration and direct forward osmosis as concepts for compact and energy-positive municipal wastewater treatment
Pontié Old RO membranes: solutions for reuse
Amaral et al. Nanofiltration as post-treatment of MBR treating landfill leachate
Bogati et al. Optimization of chemical cleaning for improvement of membrane performance and fouling control in drinking water treatment
Hey et al. Potential of combining mechanical and physicochemical municipal wastewater pre-treatment with direct membrane filtration
Ilhan et al. Recovery of mixed acid and base from wastewater with bipolar membrane electrodialysis—A case study
Raffin et al. Optimising operation of an integrated membrane system (IMS)—A Box–Behnken approach
de Almeida et al. Technical and economic aspects of a sequential MF+ NF+ zeolite system treating landfill leachate
KR101791207B1 (ko) 워터블랜딩을 이용한 해수담수화 시스템
Kuusik et al. Reverse osmosis and nanofiltration of biologically treated leachate
Zawadzki et al. Municipal wastewater reclamation: Reclaimed water for hydrogen production by electrolysis–A case study
Ribera et al. Pilot plant comparison study of two commercial nanofiltration membranes in a drinking water treatment plant
JP5171729B2 (ja) 水質管理システム
Căilean et al. Technical performances of ultrafiltration applied to municipal wastewater treatment plant effluents
Erabee et al. Effects of electric potential, NaCl, pH and distance between electrodes on efficiency of electrolysis in landfill leachate treatment
Liu et al. Application of microfiltration–nanofiltration combined technology for drinking water advanced treatment in a large-scale engineering project
Huang et al. Municipal wastewater treatment with anaerobic membrane Bioreactors for non-potable reuse: A review
Saha et al. Hybrid membrane process for water treatment: a short review
Trifonova et al. An integrated innovative technology for the treatment of municipal solid waste landfill leachate
Dong et al. Analysis of organic foulants in the coagulation-microfiltration process for the treatment of Taihu Lake
Indarawis et al. Evaluation of ion exchange pretreatment options to decrease fouling of a reverse osmosis membrane
Suárez et al. One-year operational experience with ultrafiltration as pretreatment of seawater reverse osmosis desalination system (Maspalomas-I Plant)
Bick et al. Immersed Membrane BioReactor (IMBR) for treatment of combined domestic and dairy wastewater in an isolated farm: An exploratory case study implementing the Facet Analysis (FA)

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015524959

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15758318

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15758318

Country of ref document: EP

Kind code of ref document: A1