WO2015133035A1 - Resistance changing element and non-volatile storage device - Google Patents

Resistance changing element and non-volatile storage device Download PDF

Info

Publication number
WO2015133035A1
WO2015133035A1 PCT/JP2014/083002 JP2014083002W WO2015133035A1 WO 2015133035 A1 WO2015133035 A1 WO 2015133035A1 JP 2014083002 W JP2014083002 W JP 2014083002W WO 2015133035 A1 WO2015133035 A1 WO 2015133035A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
state
magnetization
element according
resistance change
Prior art date
Application number
PCT/JP2014/083002
Other languages
French (fr)
Japanese (ja)
Inventor
石川 貴之
章輔 藤井
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Publication of WO2015133035A1 publication Critical patent/WO2015133035A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/14Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements
    • G11C11/15Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements using multiple magnetic layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1659Cell access
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1675Writing or programming circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/22Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using ferroelectric elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • G11C11/5607Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using magnetic storage elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • G11C11/5657Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using ferroelectric storage elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/10Resistive cells; Technology aspects
    • G11C2213/15Current-voltage curve
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/71Three dimensional array

Definitions

  • Embodiments described herein relate generally to a variable resistance element and a nonvolatile memory device.
  • MTJ Magnetic Tunnel Junction
  • variable resistance element using a tunnel junction using a ferroelectric. Stable operation is desired.
  • Embodiments of the present invention provide a variable resistance element and a nonvolatile memory device capable of stable operation.
  • the variable resistance element includes a ferromagnetic first layer, a ferromagnetic second layer, and a paraelectric property provided between the first layer and the second layer.
  • a fifth layer is provided.
  • FIG. 1A to FIG. 1D are schematic cross-sectional views illustrating the resistance change element according to the first embodiment. It is a graph which illustrates the characteristic of the resistance change element concerning a 1st embodiment.
  • FIG. 5 is a schematic cross-sectional view illustrating another resistance change element according to the first embodiment.
  • FIG. 5 is a schematic cross-sectional view illustrating another resistance change element according to the first embodiment. It is a typical sectional view which illustrates another variable resistance element concerning a 2nd embodiment.
  • FIG. 6A and FIG. 6B are schematic perspective views illustrating the nonvolatile memory device according to the third embodiment.
  • FIG. 1A to FIG. 1D are schematic cross-sectional views illustrating the resistance change element according to the first embodiment.
  • the variable resistance element 110 according to this embodiment includes a first layer 11, a second layer 12, a third layer 23, a fourth layer 24, and a fifth layer 25. And including.
  • the nonvolatile memory device 210 according to the embodiment includes a resistance change element 110 and a control unit 50.
  • the first layer 11 and the second layer 12 are ferromagnetic (ferromagnetic material).
  • the third layer 23 and the fourth layer 24 are paraelectric (paraelectric).
  • the fifth layer 25 is ferroelectric (ferromagnetic).
  • At least one of the first layer 11 and the second layer 12 includes iron, cobalt, nickel, cobalt iron, permalloy, cobalt iron boron, cobalt manganese silicon, cobalt manganese germanium, cobalt iron aluminum, cobalt iron aluminum silicon, At least one of cobalt iron silicon, cobalt iron manganese silicon, iron platinum, and cobalt platinum is used.
  • the material of the first layer 11 may be the same as or different from the material of the second layer 12.
  • the first layer 11 and the second layer 12 are, for example, conductive.
  • magnesium oxide is used for at least one of the third layer 23 and the fourth layer 24.
  • At least one of aluminum oxide, magnesium aluminum oxide, and strontium titanium oxide may be used for at least one of the third layer 23 and the fourth layer 24.
  • the material of the third layer 23 may be the same as or different from the material of the fourth layer 24.
  • magnesium oxide is used for the third layer 23 and the fourth layer 24, for example, high lattice matching between the material of the first layer 11 and the second layer 12 and the third layer 23 and the fourth layer 24. Is obtained. Thereby, for example, a good tunnel interface is easily formed. Thereby, for example, a high tunneling magnetoresistance ratio is easily obtained.
  • the fifth layer 25 includes hafnium oxide.
  • the fifth layer 25 may further include at least one of zirconium, aluminum, yttrium, strontium, silicon, and gadolinium.
  • Each of the thickness of the third layer 23 and the thickness of the fourth layer 24 is, for example, 5 nanometers (nm) or less. At least one of the thickness of the third layer 23 and the thickness of the fourth layer 24 is preferably 2 nm or less, for example. When the thickness of the third layer 23 and the thickness of the fourth layer 24 are thin, for example, the resistance change element 110 can easily obtain a large output signal.
  • the thickness of the third layer 23 is preferably different from the thickness of the fourth layer 24. If the thickness of the third layer 23 is different from the thickness of the fourth layer 24, the difference between a plurality of resistance values depending on the ferroelectric polarization direction becomes large.
  • the absolute value of the difference between the thickness of the third layer 23 and the thickness of the fourth layer 24 is 0.5 nm. Thereby, the difference of several resistance value can be enlarged.
  • the difference in thickness is excessively large, for example, the thickness of one layer becomes excessively thick, and the operating voltage increases. Alternatively, the thickness of one layer becomes excessively thin and the characteristics become unstable.
  • the absolute value of the difference between the thickness of the third layer 23 and the thickness of the fourth layer 24 is, for example, 2 nm or less. Stable operating characteristics can be obtained.
  • a voltage is applied between the first layer 11 and the second layer 12. This applied voltage is distributed to the third layer 23, the fourth layer 24, and the fifth layer 25, for example.
  • the voltage distribution depends on, for example, the difference (for example, ratio) between the relative dielectric constant of the third layer 23, the relative dielectric constant of the fourth layer 24, and the relative dielectric constant of the fifth layer 25.
  • the relative permittivity of the fifth layer 25 by reducing the relative permittivity of the fifth layer 25, the difference between the relative permittivity of the third layer 23, the relative permittivity of the fourth layer 24, and the relative permittivity of the fifth layer 25 (for example, Ratio) can be reduced.
  • the relative dielectric constant of hafnium oxide is low among materials exhibiting ferroelectricity.
  • the difference between the relative permittivity of the third layer 23 and the relative permittivity of the fifth layer 25 and the difference between the relative permittivity of the fourth layer 24 and the relative permittivity of the fifth layer 25 are excessively large, It is difficult to obtain desired characteristics. For example, when the polarization inversion is caused in the fifth layer 25 by the voltage, the electrical breakdown is likely to occur in the third layer 23 and the fourth layer 24 before the polarization inversion in the fifth layer 25. By reducing the difference in relative permittivity, polarization inversion can be obtained in the fifth layer 25 without causing electrical breakdown.
  • the relative dielectric constant of the fifth layer 25 is not more than four times that of the third layer 23 and not more than four times that of the fourth layer 24.
  • high reliability and stable operation can be obtained by reducing the difference (ratio) in relative permittivity.
  • the thickness of the fifth layer 25 is, for example, 10 nm or less.
  • the thickness of the fifth layer 25 is preferably 5 nm or less, for example. If the thickness of the fifth layer 25 is thin, for example, the operating voltage can be reduced. A large output signal is easily obtained.
  • the total thickness of the third layer 23, the fourth layer 24, and the fifth layer 25 is, for example, 20 nm or less.
  • 1A to 1D correspond to the first state ST1 to the fourth state ST4, respectively.
  • the first magnetization 11m of the first layer 11 is along the second magnetization 12m of the second layer 12. That is, the first magnetization 11m is “parallel” to the second magnetization 12m and is not “antiparallel”.
  • the “parallel” state of the first magnetization 11m and the second magnetization 12m is not limited to a state in which the relative angle between the magnetizations is strictly 0 degrees.
  • the “parallel” state includes, for example, a state deviated from 0 degree.
  • the deviation angle is, for example, not less than ⁇ 45 degrees and not more than +45 degrees.
  • the “anti-parallel” state of the first magnetization 11m and the second magnetization 12m is not limited to a state in which the relative angle between the magnetizations is strictly 180 degrees.
  • the “anti-parallel” state includes, for example, a state deviated from 180 degrees.
  • the angle of deviation is not less than ⁇ 45 degrees and not more than +45 degrees.
  • the polarization direction D5 of the fifth layer 25 is along the direction from the second layer 12 toward the first layer 11.
  • the first magnetization 11m is along the second magnetization 12m. That is, the first magnetization 11m is “parallel” to the second magnetization 12m.
  • the polarization direction D5 of the fifth layer 25 is along the direction from the first layer 11 toward the second layer 12.
  • the first magnetization 11m is opposite to the second magnetization 12m. That is, the first magnetization 11m is “antiparallel” with the second magnetization 12m.
  • the polarization direction D5 of the fifth layer 25 is along the direction from the second layer 12 toward the first layer 11.
  • the first magnetization 11m is opposite to the second magnetization 12m. That is, the first magnetization 11m is “antiparallel” with the second magnetization 12m.
  • the polarization direction D5 of the fifth layer 25 is along the direction from the first layer 11 toward the second layer 12.
  • the electrical resistance (hereinafter simply referred to as “resistance”) between the first layer 11 and the second layer 12 is different from each other.
  • the reversal of the polarization direction in the fifth layer 25 is performed, for example, by applying a voltage to the resistance change element 110.
  • the reversal of the first magnetization 11m of the first layer 11 and the reversal of the second magnetization 12m of the second layer 12 are performed by, for example, a current (spin transfer torque) accompanying voltage application to the resistance change element 110. Is done.
  • the reversal of the first magnetization 11m and the reversal of the second magnetization 12m may be performed by a current magnetic field generated by a current flowing through the wiring.
  • a control unit 50 is provided.
  • the controller 50 is electrically connected to the first layer 11 and the second layer 12.
  • the state of being electrically connected includes a state in which two conductors are in direct contact and a state in which another conductor between the two conductors is inserted and a current flows between the two conductors. Further, in the electrically connected state, a switch element (for example, a transistor or a diode) is inserted between the two conductors, and a current can flow between the two conductors according to the operation of the switch element. Includes state.
  • a switch element for example, a transistor or a diode
  • a potential difference is formed between the first layer 11 and the second layer 12 by the control unit 50. Due to this potential difference (voltage), inversion of the polarization direction in the fifth layer 25 (inversion of the direction D5) is performed. Inversion of the first magnetization 11m and inversion of the second magnetization 12m are performed by the current accompanying this potential difference.
  • a difference is provided between the ease of magnetization reversal in the first layer 11 and the ease of magnetization reversal in the second layer 12.
  • an antiferromagnetic layer is provided in contact with the second layer 12 or in the vicinity of the second layer 12.
  • no antiferromagnetic layer is provided in the vicinity of the first layer 11. Thereby, the magnetization reversal can be obtained in the first layer 11 more easily than in the second layer 12.
  • the material of the first layer 11 may be changed from the material of the second layer 12.
  • the size of the first layer 11 may be changed from the size of the second layer 12.
  • the size includes a length in a direction perpendicular to the stacking direction.
  • the size includes a thickness (a length along the stacking direction).
  • the shape of the first layer 11 may be changed to the shape of the second layer 12. Thereby, the magnetization reversal can be obtained in the first layer 11 more easily than in the second layer 12.
  • the second state ST2 is an initial state.
  • the magnetizations of the two ferromagnetic layers (first layer 11 and second layer 12) are in a parallel state, and the polarization direction of the ferroelectric layer (fifth layer 25) is downward.
  • the initial state is formed, for example, by applying a voltage of a predetermined value or more between the second layer 12 and the first layer 11. For example, a positive voltage is applied to the first layer 11 with the second layer 12 as a reference.
  • the write operation is performed by applying a voltage (applied voltage Vap) between the first layer 11 and the second layer 12, for example.
  • a voltage applied voltage Vap
  • the reversal of the polarization direction of the fifth layer 25 or the reversal of the first magnetization 11m of the first layer 11 occurs.
  • the first state ST1 is formed.
  • the fourth state ST4 occurs. That is, a state transition occurs.
  • the transition to the first state ST1 occurs, for example, when the voltage applied to the fifth layer 25 exceeds the threshold voltage (V FE ) in ferroelectric polarization reversal.
  • the transition to the fourth state ST4 occurs when the current flowing through the resistance change element 110 exceeds the threshold current (I FM ) in the reversal of the first magnetization 11m of the first layer 11.
  • the reversal of the first magnetization 11m is caused by, for example, spin transfer torque.
  • Transition states (first state ST1 or the fourth state ST4) is by application of a voltage to the resistance variable element 110, more than one threshold and the threshold voltage V FE and the threshold current I FM earlier It depends on what. Which threshold of threshold voltage V FE and threshold current I FM is exceeded first is determined by, for example, the thickness of each of third layer 23, fourth layer 24, and fifth layer 25, and It depends on the value depending on the material. The value depending on the material includes a relative dielectric constant and the like.
  • the voltage applied to the fifth layer 25 exceeds the threshold voltage V FE, current exceeds the threshold current I FM. That is, both the reversal of the polarization direction of the fifth layer 25 and the reversal of the first magnetization 11m occur. Thereby, the third state ST3 occurs.
  • FIG. 2 is a graph illustrating characteristics of the variable resistance element according to the first embodiment.
  • the horizontal axis in FIG. 2 represents the applied voltage Vap applied between the first layer 11 and the second layer 12.
  • the vertical axis represents the current Ic flowing between the first layer 11 and the second layer 12.
  • the resistance change element 110 by applying a voltage to the resistance change element 110, in addition to the second state ST2 and the third state ST3, at least one of the first state ST1 and the fourth state ST4 is obtained.
  • the number of states obtained is three or more. That is, three or more multi-value resistors can be obtained.
  • Reading of these states is performed by applying a voltage to the resistance change element 110.
  • the polarity (current direction) of the voltage at this time is arbitrary. That is, a current flowing from the first layer 11 toward the second layer 12 may be used. A current flowing from the second layer 12 toward the first layer 11 may be used.
  • the resistors in the first state ST1 to the fourth state ST4 are referred to as a first resistor R1 to a fourth resistor R4.
  • the third resistor R3 is higher than the second resistor R2.
  • the first resistor R1 and the fourth resistor R4 are between the second resistor R2 and the third resistor R3.
  • the first resistor R1 is higher or lower than the fourth resistor R4. That is, R2 ⁇ R1 ⁇ R4 ⁇ R3. Or, R2 ⁇ R4 ⁇ R1 ⁇ R3. Which of these relations is obtained is determined by, for example, the materials and thicknesses of the first layer 11 to the fifth layer 25.
  • the erasing operation can be performed, for example, by applying a voltage having a polarity opposite to that of writing. For example, a positive voltage is applied to the first layer 11 with the second layer 12 as a reference. As a result, a transition to the first state ST1 occurs. An initial state is obtained.
  • three or more states can be obtained by the voltage Vap applied to the resistance change element 110. Three or more resistance values corresponding to these states can be obtained.
  • a resistance change element using MTJ there is a resistance change element using MTJ.
  • the tunnel current value changes depending on whether the relative magnetization arrangement in the two ferromagnetic layers is parallel or antiparallel.
  • MRAM Magnetoresistive Random Access Memory
  • a ferroelectric as the MTJ tunnel insulating film.
  • a resistance change depending on the ferromagnetic magnetization arrangement a resistance change depending on the polarization direction of the ferroelectric substance can be obtained.
  • a multi-value operation of three or more values can be obtained.
  • perovskite oxide-based PbZrTiO 3 or BaTiO 3 as the ferroelectric layer.
  • perovskite oxide since a special material system called perovskite oxide is used, the affinity with the ferromagnetic material system is low. For this reason, it is difficult to obtain a high tunnel magnetoresistance ratio.
  • this reference example requires a high-temperature process, and mixing occurs at the tunnel interface, making it difficult to obtain desired characteristics.
  • a ferroelectric fifth layer 25 is provided between the ferromagnetic first layer 11 and the ferromagnetic second layer 12.
  • a paraelectric third layer 23 is provided between the first layer 11 and the fifth layer 25, and a fourth layer 24 is provided between the second layer 12 and the fifth layer 25. Controllability of change in magnetization and change in polarization is enhanced. For example, the selection range of the material of the fifth layer 25 is expanded.
  • a material having a small relative dielectric constant difference from the material of the third layer 23 and a small relative dielectric constant difference from the material of the fourth layer 24 is selected as the material of the fifth layer 25.
  • hafnium oxide having a low relative dielectric constant in the ferroelectric material group is preferably selected as the material of the fifth layer 25.
  • hafnium oxide there is an advantage that the process temperature is not excessively high and desired characteristics can be obtained.
  • the third layer 23 and the fourth layer 24 By using an appropriate material for the third layer 23 and the fourth layer 24, high crystallinity is obtained, and a high tunneling magnetoresistance ratio is easily obtained.
  • a multi-value resistance change can be obtained stably.
  • a variable resistance element capable of stable operation and a nonvolatile memory device using the variable resistance element can be provided.
  • FIG. 3 is a schematic cross-sectional view illustrating another variable resistance element according to the first embodiment.
  • the resistance change element 111 according to this embodiment further includes an antiferromagnetic layer 12 a in addition to the first layer 11 to the fifth layer 25.
  • the nonvolatile memory element 211 according to the embodiment includes a resistance change element 111 and a control unit 50.
  • the second layer 12 is disposed between the antiferromagnetic layer 12 a and the fourth layer 24. Thereby, inversion of the second magnetization 12m in the second layer 12 becomes more difficult than inversion of the first magnetization 11m in the first layer 11. More stable operation can be obtained.
  • an antiferromagnetic material for example, iridium manganese or platinum manganese
  • an antiferromagnetic layer 12a is used for the antiferromagnetic layer 12a.
  • a combination of a laminated ferrimagnetic structure and an antiferromagnetic material may be applied as the antiferromagnetic layer 12a.
  • the antiferromagnetic layer 12a for example, a laminated structure of ruthenium / cobalt iron / iridium manganese may be applied.
  • FIG. 4 is a schematic cross-sectional view illustrating another variable resistance element according to the first embodiment.
  • the variable resistance element 112 according to the present embodiment further includes a first conductive layer 31 in addition to the first layer 11 to the fifth layer 25.
  • the nonvolatile memory element 212 according to the embodiment includes the resistance change element 112 and the control unit 50.
  • a current is passed through the first conductive layer 31 during a write operation.
  • the first layer 11 is heated by the generated Joule heat.
  • the first magnetization 11m of the first layer 11 is easily reversed. It becomes easier to form the fourth state ST4. This facilitates the generation of the first state ST1 and the generation of the fourth state ST4 separately.
  • the same read operation and erase operation as the resistance change element 110 can be performed.
  • the transition voltage V4 to the fourth state ST4 by voltage application is set lower than the transition voltage V1 to the first state ST1 by voltage application. Then, Joule heat assist is used for the transition to the fourth state 4. In this example, the transition voltage V4 is set low. In the present embodiment, for example, the material of the first layer 11 and the material and thickness of the fifth layer 25 are appropriately set. Thereby, the transition voltage V4 and the transition voltage V1 are set appropriately.
  • a transition from the second state ST2 to the fourth state ST4 can be caused by a relatively small current. Therefore, for example, it is advantageous when writing a quaternary state for a fine cell structure (for example, a cell size of 100 nm or less).
  • FIG. 5 is a schematic cross-sectional view illustrating another resistance change element according to the second embodiment.
  • the variable resistance element 120 according to the present embodiment further includes a first conductive layer 31 and a first insulating layer 3 i in addition to the first layer 11 to the fifth layer 25.
  • the nonvolatile memory element 220 according to the embodiment includes a resistance change element 120 and a control unit 50.
  • the first layer 11 is disposed between the first conductive layer 31 and the third layer 23.
  • a first insulating layer 31 i is disposed between the first layer 11 and the first conductive layer 31.
  • a current can be passed through the first conductive layer 31.
  • the current flowing through the first conductive layer 31 is controlled separately from the current flowing between the first layer 11 and the second layer 12. This current is controlled by the control unit 50, for example.
  • a magnetic field generated by a current flowing through the first conductive layer 31 is applied to the first layer 11.
  • the first magnetization 11m of the first layer 11 is reversed. That is, the first magnetization 11 m can be reversed by a current flowing through the first conductive layer 31. For example, a current greater than or equal to a predetermined value is passed through the first conductive layer 31. If the direction of the current is changed, the first magnetization 11m can be reversed.
  • the first magnetization 11m of the first layer 11 can be controlled by the current flowing through the first conductive layer 31 separately from the applied voltage Vap between the first layer 11 and the second layer 12. Thereby, the controllability of the first magnetization 11m is enhanced.
  • the transition from the second state ST2 to the first state ST1 is performed by applying a voltage between the first layer 11 and the second layer 12.
  • a transition from the second state ST2 to the fourth state ST4 causes a current to flow through the first conductive layer 31.
  • the reversal of the first magnetization 11m of the first layer 11 occurs due to the current magnetic field generated by the current.
  • the transition from the second state ST2 to the third state ST3 is performed by applying a high voltage between the first layer 11 and the second layer 12.
  • a four-value state can be written by a simpler method.
  • the first conductive layer 31 is used.
  • the formation stability of the state ST1 and the fourth state ST4 is increased. Thereby, four states can be obtained more stably.
  • the same read operation and erase operation as the resistance change element 110 can be performed.
  • the first conductive layer 31 for example, at least one of tungsten (W), aluminum (Al), and copper (Cu) is used.
  • W tungsten
  • Al aluminum
  • Cu copper
  • at least one of silicon oxide and silicon nitride is used for the first insulating layer 31i.
  • the thickness of the first insulating layer 31i is, for example, not less than 5 nm and not more than 100 nm.
  • variable resistance element examples of layers included in the variable resistance element according to the first embodiment and the second embodiment will be described.
  • cobalt iron manganese silicon is used as the first layer 11 and the second layer 12.
  • Magnesium oxide is used for the third layer 23 and the fourth layer 24.
  • hafnium oxide is used as the fifth layer 25
  • a cobalt iron manganese silicon layer is formed as the second layer 12 by, for example, sputtering. Thereafter, heat treatment is performed, for example, under reduced pressure (for example, in vacuum). Thereby, the crystallinity of the cobalt iron manganese silicon layer is improved.
  • the base layer of the second layer 12 is (001) oriented.
  • a magnesium oxide layer is formed by using, for example, a sputtering method or an electron beam evaporation method. Cobalt iron manganese silicon and magnesium oxide have good lattice matching. For this reason, the magnesium oxide layer is epitaxially grown on the cobalt iron manganese silicon layer.
  • the magnesium oxide layer formed thereon is (001) oriented.
  • a high tunnel magnetoresistance ratio can be obtained by orienting the fourth layer 24 to (001).
  • a hafnium oxide layer is formed by sputtering or ALD (Atomic Layer Deposition) method. By setting the formation temperature of the hafnium oxide layer low, an amorphous hafnium oxide layer can be obtained.
  • a magnesium oxide layer is formed using, for example, sputtering or electron beam evaporation.
  • Magnesium oxide is preferentially (001) oriented. For this reason, when a magnesium oxide layer is deposited on an amorphous film as a base, it becomes a (001) orientation layer. Thereby, the magnesium oxide layer of the third layer 23 is also (001) oriented in the same manner as the fourth layer 24. This makes it easy to obtain a high tunnel magnetoresistance ratio.
  • a cobalt iron manganese silicon layer is formed by, for example, sputtering. Crystallinity is improved by heat-treating the cobalt iron manganese silicon layer of the first layer 11 under reduced pressure. By this heat treatment, for example, the ferroelectricity is improved in the hafnium oxide layer of the fifth layer 25.
  • Cobalt iron manganese silicon is a half-metal material. Thereby, it is easy to obtain a high tunnel magnetoresistance ratio.
  • Hafnium oxide having a dielectric constant comparable to magnesium oxide is used. Thereby, the electric field inversion of the ferroelectric polarization in the hafnium oxide layer can be performed without causing dielectric breakdown of the magnesium oxide layer.
  • the modulation effect of the tunnel current value according to the ferroelectric polarization direction can be increased.
  • a multi-value state with a large output signal difference is obtained.
  • dielectric breakdown is suppressed. Thereby, a highly reliable resistance change operation is obtained.
  • the present embodiment relates to a nonvolatile memory device.
  • the nonvolatile memory device according to the embodiment includes any of the nonvolatile memory devices described in regard to the first and second embodiments, and modifications thereof.
  • the nonvolatile memory device according to the present embodiment includes, for example, any one of the resistance change elements described above and the control unit 50 that applies a voltage between the first layer 11 and the second layer 12.
  • a nonvolatile memory device capable of stable operation can be provided.
  • FIG. 6A and FIG. 6B are schematic perspective views illustrating the nonvolatile memory device according to the third embodiment.
  • the nonvolatile memory device 250 according to the present embodiment includes a plurality of first wirings WR1, a plurality of second wirings WR2, and a plurality of memory cells MC.
  • the plurality of memory cells MC include the resistance change element according to the embodiment and modifications thereof.
  • the plurality of first wirings WR1 cross three-dimensionally with the plurality of second wirings WR2.
  • the first wiring WR1 extends along the X-axis direction.
  • the second wiring WR2 extends along the Y-axis direction.
  • the Y-axis direction is orthogonal to the X-axis direction.
  • a direction orthogonal to the X-axis direction and the Y-axis direction is taken as a Z-axis direction.
  • the second wiring WR1 is separated from the first wiring WR1 in the Z-axis direction.
  • Each of the plurality of memory cells MC (resistance change elements) is disposed at a position between the plurality of first wirings WR1 and the plurality of second wirings WR2.
  • the first wiring WR1 and the second wiring WR2 are electrically connected to the control unit 50.
  • a voltage is applied to the memory cell MC through the first wiring WR1 and the second wiring WR2, and the above operation is performed.
  • the first wiring WR1 includes, for example, first to third bits BL1 to BL3.
  • the second wiring WR2 includes first to third word lines WL1 to WL3. The state of the memory cell MC is written, read, or erased by these bit lines and word lines.
  • a rectifying element for example, a diode
  • a rectifying element may be provided at least at a position between the first wiring WR1 and the resistance change element and between the second wiring WR2 and the resistance change element.
  • the nonvolatile memory element 251 includes a plurality of element memory layers MA stacked on each other.
  • the plurality of element memory layers MA are stacked, for example, along the Z-axis direction.
  • four element memory layers MA that is, first to fourth element memory layers MA1 to MA4 are provided.
  • the number of element memory layers MA is arbitrary.
  • Each of the element memory layers MA includes a first wiring WR1, a second wiring WR2, and a memory cell MC.
  • the first element memory layer MA1 includes a first layer bit line BLL1 (including bit lines BL11, BL12, and BL13), a first layer word line WLL1 (including word lines WL11, WL12, and WL13), and a first layer memory.
  • Cell MC1 includes a first layer bit line BLL1 (including bit lines BL11, BL12, and BL13), a first layer word line WLL1 (including word lines WL11, WL12, and WL13), and a first layer memory.
  • the second element memory layer MA2 includes a second layer bit line BLL2 (including bit lines BL21, BL22, and BL23), a first layer word line WLL1 (including word lines WL11, WL12, and WL13), and a second layer memory.
  • Cell MC2 includes a second layer bit line BLL2 (including bit lines BL21, BL22, and BL23), a first layer word line WLL1 (including word lines WL11, WL12, and WL13), and a second layer memory.
  • the third element memory layer MA2 includes a second layer bit line BLL2 (including bit lines BL21, BL22, and BL23), a second layer word line WLL2 (including word lines WL21, WL22, and WL23), and a third layer memory.
  • the fourth element memory layer MA4 includes a third layer bit line BLL3 (including bit lines BL31, BL32, and BL33), a second layer word line WLL2 (including word lines WL21, WL22, and WL23), and a fourth layer memory.
  • Cell MC4 includes a third layer bit line BLL3 (including bit lines BL31, BL32, and BL33), a second layer word line WLL2 (including word lines WL21, WL22, and WL23), and a fourth layer memory.
  • the bit line BL or the word line WL is shared in the element memory layers MA adjacent along the Z-axis direction.
  • the embodiment is not limited to this.
  • an interlayer insulating film may be provided between element memory layers MA adjacent along the Z-axis direction, and a bit line BL and a word line WL may be provided in each of the element memory layers MA.
  • the extending direction of the bit line BL and the extending direction of the word line WL in each of the element memory layers MA are arbitrary.
  • writing in a multi-valued state with a large output signal ratio can be realized with high reliability by utilizing the characteristics of both a ferromagnetic material and a ferroelectric material. According to the embodiment, a highly reliable element with multi-value operation can be obtained.
  • vertical and parallel include not only strictly vertical and strictly parallel, but also include, for example, variations in the manufacturing process, and may be substantially vertical and substantially parallel. It ’s fine.
  • variable resistance elements and nonvolatile memory devices that can be implemented by those skilled in the art based on the variable resistance elements and nonvolatile memory devices described above as embodiments of the present invention are also included in the present invention. As long as the gist is included, it belongs to the scope of the present invention.

Abstract

According to the embodiment, a resistance changing element comprises a ferromagnetic first layer, a ferromagnetic second layer, a paraelectric third layer provided between the first layer and the second layer, a paraelectric fourth layer provided between the third layer and the second layer, and a ferroelectric fifth layer provided between the third layer and the fourth layer.

Description

抵抗変化素子及び不揮発性記憶装置Resistance change element and nonvolatile memory device
 本発明の実施形態は、抵抗変化素子及び不揮発性記憶装置に関する。 Embodiments described herein relate generally to a variable resistance element and a nonvolatile memory device.
 磁気トンネル接合(MTJ:Magnetic Tunnel Junction )を用いた抵抗変化素子がある。強誘電体を用いたトンネル接合を用いた抵抗変化素子もある。安定した動作が望まれている。 There is a resistance change element using a magnetic tunnel junction (MTJ: Magnetic Tunnel Junction). There is also a variable resistance element using a tunnel junction using a ferroelectric. Stable operation is desired.
 本発明の実施形態は、安定した動作が可能な抵抗変化素子及び不揮発性記憶装置を提供する。 Embodiments of the present invention provide a variable resistance element and a nonvolatile memory device capable of stable operation.
 本発明の実施形態によれば、抵抗変化素子は、強磁性の第1層と、強磁性の第2層と、前記第1層と前記第2層との間に設けられた常誘電性の第3層と、前記第3層と前記第2層との間に設けられた常誘電性の第4層と、前記第3層と前記第4層との間に設けられた強誘電性の第5層と、を含む。 According to the embodiment of the present invention, the variable resistance element includes a ferromagnetic first layer, a ferromagnetic second layer, and a paraelectric property provided between the first layer and the second layer. A third layer, a paraelectric fourth layer provided between the third layer and the second layer, and a ferroelectric material provided between the third layer and the fourth layer. And a fifth layer.
図1(a)~図1(d)は、第1の実施形態に係る抵抗変化素子を例示する模式的断面図である。FIG. 1A to FIG. 1D are schematic cross-sectional views illustrating the resistance change element according to the first embodiment. 第1の実施形態に係る抵抗変化素子の特性を例示するグラフ図である。It is a graph which illustrates the characteristic of the resistance change element concerning a 1st embodiment. 第1の実施形態に係る別の抵抗変化素子を例示する模式的断面図である。FIG. 5 is a schematic cross-sectional view illustrating another resistance change element according to the first embodiment. 第1の実施形態に係る別の抵抗変化素子を例示する模式的断面図である。FIG. 5 is a schematic cross-sectional view illustrating another resistance change element according to the first embodiment. 第2の実施形態に係る別の抵抗変化素子を例示する模式的断面図である。It is a typical sectional view which illustrates another variable resistance element concerning a 2nd embodiment. 図6(a)及び図6(b)は、第3の実施形態に係る不揮発性記憶装置を例示する模式的斜視図である。FIG. 6A and FIG. 6B are schematic perspective views illustrating the nonvolatile memory device according to the third embodiment.
 以下に、本発明の各実施の形態について図面を参照しつつ説明する。 
 なお、図面は模式的または概念的なものであり、各部分の厚みと幅との関係、部分間の大きさの比率などは、必ずしも現実のものと同一とは限らない。また、同じ部分を表す場合であっても、図面により互いの寸法や比率が異なって表される場合もある。 
 なお、本願明細書と各図において、既出の図に関して前述したものと同様の要素には同一の符号を付して詳細な説明は適宜省略する。
Embodiments of the present invention will be described below with reference to the drawings.
The drawings are schematic or conceptual, and the relationship between the thickness and width of each part, the size ratio between the parts, and the like are not necessarily the same as actual ones. Further, even when the same part is represented, the dimensions and ratios may be represented differently depending on the drawings.
Note that, in the present specification and each drawing, the same elements as those described above with reference to the previous drawings are denoted by the same reference numerals, and detailed description thereof is omitted as appropriate.
 (第1の実施形態) 
 図1(a)~図1(d)は、第1の実施形態に係る抵抗変化素子を例示する模式的断面図である。 
 図1(a)に表したように、本実施形態に係る抵抗変化素子110は、第1層11と、第2層12と、第3層23と、第4層24と、第5層25と、を含む。実施形態に係る不揮発性記憶装置210は、抵抗変化素子110と制御部50とを含む。
(First embodiment)
FIG. 1A to FIG. 1D are schematic cross-sectional views illustrating the resistance change element according to the first embodiment.
As shown in FIG. 1A, the variable resistance element 110 according to this embodiment includes a first layer 11, a second layer 12, a third layer 23, a fourth layer 24, and a fifth layer 25. And including. The nonvolatile memory device 210 according to the embodiment includes a resistance change element 110 and a control unit 50.
 第1層11及び第2層12は、強磁性(強磁性体)である。第3層23及び第4層24は、常誘電性(常誘電体)である。第5層25は、強誘電性(強磁性体)である。 The first layer 11 and the second layer 12 are ferromagnetic (ferromagnetic material). The third layer 23 and the fourth layer 24 are paraelectric (paraelectric). The fifth layer 25 is ferroelectric (ferromagnetic).
 例えば、第1層11及び第2層12の少なくともいずれかには、鉄、コバルト、ニッケル、コバルト鉄、パーマロイ、コバルト鉄ボロン、コバルトマンガンシリコン、コバルトマンガンゲルマニウム、コバルト鉄アルミニウム、コバルト鉄アルミニウムシリコン、コバルト鉄シリコン、コバルト鉄マンガンシリコン、鉄白金及びコバルト白金の少なくともいずれかが用いられる。第1層11の材料は、第2層12の材料と同じでも良く、異なっても良い。第1層11及び第2層12は、例えば、導電性である。 For example, at least one of the first layer 11 and the second layer 12 includes iron, cobalt, nickel, cobalt iron, permalloy, cobalt iron boron, cobalt manganese silicon, cobalt manganese germanium, cobalt iron aluminum, cobalt iron aluminum silicon, At least one of cobalt iron silicon, cobalt iron manganese silicon, iron platinum, and cobalt platinum is used. The material of the first layer 11 may be the same as or different from the material of the second layer 12. The first layer 11 and the second layer 12 are, for example, conductive.
 例えば、第3層23及び第4層24の少なくともいずれかには、酸化マグネシウムが用いられる。第3層23及び第4層24の少なくともいずれかに、酸化アルミニウム、酸化マグネシウムアルミニウム、及び、ストロンチウムチタン酸化物の少なくともいずれかを用いても良い。第3層23の材料は、第4層24の材料と同じでも良く、異なっても良い。 For example, magnesium oxide is used for at least one of the third layer 23 and the fourth layer 24. At least one of aluminum oxide, magnesium aluminum oxide, and strontium titanium oxide may be used for at least one of the third layer 23 and the fourth layer 24. The material of the third layer 23 may be the same as or different from the material of the fourth layer 24.
 第3層23及び第4層24として酸化マグネシウムを用いると、例えば、第1層11及び第2層12の材料と、第3層23及び第4層24と、の間において、高い格子整合性が得られる。これにより、例えば、良好なトンネル界面が形成され易くなる。これにより、例えば、高いトンネル磁気抵抗比が得易くなる。 When magnesium oxide is used for the third layer 23 and the fourth layer 24, for example, high lattice matching between the material of the first layer 11 and the second layer 12 and the third layer 23 and the fourth layer 24. Is obtained. Thereby, for example, a good tunnel interface is easily formed. Thereby, for example, a high tunneling magnetoresistance ratio is easily obtained.
 例えば、第5層25は、酸化ハフニウムを含む。第5層25は、ジルコニウム、アルミニウム、イットリウム、ストロンチウム、シリコン及びガドリニウムの少なくともいずれかをさらに含んでも良い。第5層25として、チタン酸バリウム、チタン酸ジルコン酸鉛、及び、ビスマスフェライトの少なくともいずれかを用いても良い。 For example, the fifth layer 25 includes hafnium oxide. The fifth layer 25 may further include at least one of zirconium, aluminum, yttrium, strontium, silicon, and gadolinium. As the fifth layer 25, at least one of barium titanate, lead zirconate titanate, and bismuth ferrite may be used.
 第3層23の厚さ及び第4層24の厚さのそれぞれは、例えば、5ナノメートル(nm)以下である。第3層23の厚さ及び第4層24の厚さのすくなくとも一方は、例えば、2nm以下であることが好ましい。第3層23の厚さ及び第4層24の厚さが薄いと、例えば、抵抗変化素子110において、大きな出力信号を得易くなる。 Each of the thickness of the third layer 23 and the thickness of the fourth layer 24 is, for example, 5 nanometers (nm) or less. At least one of the thickness of the third layer 23 and the thickness of the fourth layer 24 is preferably 2 nm or less, for example. When the thickness of the third layer 23 and the thickness of the fourth layer 24 are thin, for example, the resistance change element 110 can easily obtain a large output signal.
 例えば、第3層23の厚さは、第4層24の厚さと異なることが好ましい。第3層23の厚さが第4層24の厚さと異なると、強誘電分極方向に依存した複数の抵抗値の差が大きくなる。例えば、第3層23の厚さと、第4層24の厚さと、の差の絶対値は、0.5nmである。これにより複数の抵抗値の差が大きくできる。 For example, the thickness of the third layer 23 is preferably different from the thickness of the fourth layer 24. If the thickness of the third layer 23 is different from the thickness of the fourth layer 24, the difference between a plurality of resistance values depending on the ferroelectric polarization direction becomes large. For example, the absolute value of the difference between the thickness of the third layer 23 and the thickness of the fourth layer 24 is 0.5 nm. Thereby, the difference of several resistance value can be enlarged.
 厚さの差を過度に大きくすると、例えば、一方の層の厚さが過度に厚くなり、動作電圧が上昇する。または、一方の層の厚さが過度に薄くなり、特性が不安定になる。第3層23の厚さと第4層24の厚さとの差の絶対値は、例えば、2nm以下である。安定した動作特性を得られる。 If the difference in thickness is excessively large, for example, the thickness of one layer becomes excessively thick, and the operating voltage increases. Alternatively, the thickness of one layer becomes excessively thin and the characteristics become unstable. The absolute value of the difference between the thickness of the third layer 23 and the thickness of the fourth layer 24 is, for example, 2 nm or less. Stable operating characteristics can be obtained.
 抵抗変化素子110において、例えば、第1層11と第2層12との間に電圧が印加される。この印加電圧は、例えば、第3層23、第4層24及び第5層25に分配される。電圧の分配は、例えば、第3層23の比誘電率と、第4層24の比誘電率と、第5層25の比誘電率と、の差(例えば比)に依存する。 In the resistance change element 110, for example, a voltage is applied between the first layer 11 and the second layer 12. This applied voltage is distributed to the third layer 23, the fourth layer 24, and the fifth layer 25, for example. The voltage distribution depends on, for example, the difference (for example, ratio) between the relative dielectric constant of the third layer 23, the relative dielectric constant of the fourth layer 24, and the relative dielectric constant of the fifth layer 25.
 第3層23の比誘電率と、第4層24の比誘電率と、第5層25の比誘電率と、の差(例えば比)を小さくすることで、いずれかの層に高い電圧が加わることが抑制できる。 By reducing the difference (for example, the ratio) between the relative dielectric constant of the third layer 23, the relative dielectric constant of the fourth layer 24, and the relative dielectric constant of the fifth layer 25, a high voltage is applied to any layer. Addition can be suppressed.
 例えば、第5層25の比誘電率を低くすることで、第3層23の比誘電率と、第4層24の比誘電率と、第5層25の比誘電率と、の差(例えば比)を小さくすることができる。例えば、酸化ハフニウムの比誘電率は、強誘電性を示す材料の中では低い。第5層25として、酸化ハフニウムを用いることで、例えば、抵抗変化素子110において、高い信頼性が得やすくなる。 For example, by reducing the relative permittivity of the fifth layer 25, the difference between the relative permittivity of the third layer 23, the relative permittivity of the fourth layer 24, and the relative permittivity of the fifth layer 25 (for example, Ratio) can be reduced. For example, the relative dielectric constant of hafnium oxide is low among materials exhibiting ferroelectricity. By using hafnium oxide as the fifth layer 25, for example, in the resistance change element 110, high reliability can be easily obtained.
 例えば、第3層23の比誘電率と第5層25の比誘電率との差、及び、第4層24の比誘電率と第5層25の比誘電率との差が過度に大きいと、所望の特性が得にくい。例えば、電圧により第5層25において分極反転を生じさせる際に、第5層25における分極反転よりも先に、第3層23及び第4層24において電気的絶縁破壊が生じ易くなる。比誘電率の差を小さくすることで、電気的絶縁破壊を生じさせずに、第5層25において分極反転が得られる。 For example, if the difference between the relative permittivity of the third layer 23 and the relative permittivity of the fifth layer 25 and the difference between the relative permittivity of the fourth layer 24 and the relative permittivity of the fifth layer 25 are excessively large, It is difficult to obtain desired characteristics. For example, when the polarization inversion is caused in the fifth layer 25 by the voltage, the electrical breakdown is likely to occur in the third layer 23 and the fourth layer 24 before the polarization inversion in the fifth layer 25. By reducing the difference in relative permittivity, polarization inversion can be obtained in the fifth layer 25 without causing electrical breakdown.
 例えば、第5層25の比誘電率は、第3層23の比誘電率の4倍以下であり、第4層24の比誘電率の4倍以下である。このように、比誘電率の差(比)を小さくすることで、高信頼性と安定した動作とが得られる。 For example, the relative dielectric constant of the fifth layer 25 is not more than four times that of the third layer 23 and not more than four times that of the fourth layer 24. Thus, high reliability and stable operation can be obtained by reducing the difference (ratio) in relative permittivity.
 第5層25の厚さは、例えば、10nm以下である。第5層25の厚さは、例えば、5nm以下であることが望ましい。第5層25の厚さが薄いと、例えば、動作電圧が低下できる。大きな出力信号が得易くなる。 The thickness of the fifth layer 25 is, for example, 10 nm or less. The thickness of the fifth layer 25 is preferably 5 nm or less, for example. If the thickness of the fifth layer 25 is thin, for example, the operating voltage can be reduced. A large output signal is easily obtained.
 第3層23、第4層24及び第5層25の合計の厚さは、例えば、20nm以下である。 The total thickness of the third layer 23, the fourth layer 24, and the fifth layer 25 is, for example, 20 nm or less.
 抵抗変化素子110において、例えば、4つの状態を得ることができる。図1(a)~図1(d)は、第1状態ST1~第4状態ST4のそれぞれに対応する。 In the resistance change element 110, for example, four states can be obtained. 1A to 1D correspond to the first state ST1 to the fourth state ST4, respectively.
 図1(a)に表したように、第1状態ST1においては、第1層11の第1磁化11mは、第2層12の第2磁化12mに沿っている。すなわち、第1磁化11mは、第2磁化12mと「平行」であり、「反平行」ではない。 As shown in FIG. 1A, in the first state ST1, the first magnetization 11m of the first layer 11 is along the second magnetization 12m of the second layer 12. That is, the first magnetization 11m is “parallel” to the second magnetization 12m and is not “antiparallel”.
 実施形態において、第1磁化11mと第2磁化12mとの「平行」状態は、それらの磁化の間の相対角度が、厳密に0度である状態に限らない。「平行」状態には、例えば、0度からずれている状態も含まれる。ずれの角度は、例えば、-45度以上+45度以下である。第1磁化11mと第2磁化12mとの「反平行」状態は、それらの磁化の間の相対角度が、厳密に180度である状態に限らない。「反平行」状態には、例えば、180度からずれている状態も含まれる。ずれの角度は、-45度以上+45度以下である。 In the embodiment, the “parallel” state of the first magnetization 11m and the second magnetization 12m is not limited to a state in which the relative angle between the magnetizations is strictly 0 degrees. The “parallel” state includes, for example, a state deviated from 0 degree. The deviation angle is, for example, not less than −45 degrees and not more than +45 degrees. The “anti-parallel” state of the first magnetization 11m and the second magnetization 12m is not limited to a state in which the relative angle between the magnetizations is strictly 180 degrees. The “anti-parallel” state includes, for example, a state deviated from 180 degrees. The angle of deviation is not less than −45 degrees and not more than +45 degrees.
 第1状態ST1においては、第5層25の分極の方向D5は、第2層12から第1層11に向かう方向に沿っている。 In the first state ST1, the polarization direction D5 of the fifth layer 25 is along the direction from the second layer 12 toward the first layer 11.
 図1(b)に表したように、第2状態ST2においては、第1磁化11mは、第2磁化12mに沿っている。すなわち、第1磁化11mは、第2磁化12mと「平行」である。第2状態ST2においては、第5層25の分極の方向D5は、第1層11から第2層12に向かう方向に沿っている。 As shown in FIG. 1B, in the second state ST2, the first magnetization 11m is along the second magnetization 12m. That is, the first magnetization 11m is “parallel” to the second magnetization 12m. In the second state ST2, the polarization direction D5 of the fifth layer 25 is along the direction from the first layer 11 toward the second layer 12.
 図1(c)に表したように、第3状態ST3においては、第1磁化11mは、第2磁化12mと逆である。すなわち、第1磁化11mは、第2磁化12mと「反平行」である。第3状態ST3においては、第5層25の分極の方向D5は、第2層12から第1層11に向かう方向に沿っている。 As shown in FIG. 1C, in the third state ST3, the first magnetization 11m is opposite to the second magnetization 12m. That is, the first magnetization 11m is “antiparallel” with the second magnetization 12m. In the third state ST3, the polarization direction D5 of the fifth layer 25 is along the direction from the second layer 12 toward the first layer 11.
 図1(d)に表したように、第4状態ST4においては、第1磁化11mは、第2磁化12mと逆である。すなわち、第1磁化11mは、第2磁化12mと「反平行」である。第4状態ST4においては、第5層25の分極の方向D5は、第1層11から第2層12に向かう方向に沿っている。 As shown in FIG. 1D, in the fourth state ST4, the first magnetization 11m is opposite to the second magnetization 12m. That is, the first magnetization 11m is “antiparallel” with the second magnetization 12m. In the fourth state ST4, the polarization direction D5 of the fifth layer 25 is along the direction from the first layer 11 toward the second layer 12.
 後述するように、これらの複数の状態において、第1層11と第2層12との間の電気抵抗(以下、単に「抵抗」と言う)は、互いに異なる。 As will be described later, in these plural states, the electrical resistance (hereinafter simply referred to as “resistance”) between the first layer 11 and the second layer 12 is different from each other.
 例えば、第5層25における分極方向の反転(方向D5の反転)は、例えば、抵抗変化素子110への電圧の印加により行われる。 For example, the reversal of the polarization direction in the fifth layer 25 (inversion of the direction D5) is performed, for example, by applying a voltage to the resistance change element 110.
 一方、第1層11の第1磁化11mの反転、及び、第2層12の第2磁化12mの反転は、例えば、抵抗変化素子110への電圧印加に伴う電流(スピントランスファートルク)により、実施される。または、後述するように、配線に流れる電流により生じる電流磁場により、第1磁化11mの反転、及び、第2磁化12mの反転が実施されても良い。 On the other hand, the reversal of the first magnetization 11m of the first layer 11 and the reversal of the second magnetization 12m of the second layer 12 are performed by, for example, a current (spin transfer torque) accompanying voltage application to the resistance change element 110. Is done. Alternatively, as described later, the reversal of the first magnetization 11m and the reversal of the second magnetization 12m may be performed by a current magnetic field generated by a current flowing through the wiring.
 例えば、制御部50が設けられる。制御部50は、第1層11及び第2層12と電気的に接続される。 For example, a control unit 50 is provided. The controller 50 is electrically connected to the first layer 11 and the second layer 12.
 実施形態において、電気的に接続される状態は、2つの導体が直接接する状態、及び、2つの導体の間の別の導体が挿入されて2つの導体の間に電流が流れる状態を含む。さらに、電気的に接続される状態は、2つの導体の間にスイッチ素子(例えばトランジスタまたはダイオードなど)が挿入され、スイッチ素子の動作に応じて2つの導体の間に電流が流れることが可能な状態を含む。 In the embodiment, the state of being electrically connected includes a state in which two conductors are in direct contact and a state in which another conductor between the two conductors is inserted and a current flows between the two conductors. Further, in the electrically connected state, a switch element (for example, a transistor or a diode) is inserted between the two conductors, and a current can flow between the two conductors according to the operation of the switch element. Includes state.
 制御部50により、第1層11と第2層12との間に電位差が形成される。この電位差(電圧)により、第5層25における分極方向の反転(方向D5の反転)が実施される。この電位差に伴う電流により、第1磁化11mの反転、及び、第2磁化12mの反転が実施される。 A potential difference is formed between the first layer 11 and the second layer 12 by the control unit 50. Due to this potential difference (voltage), inversion of the polarization direction in the fifth layer 25 (inversion of the direction D5) is performed. Inversion of the first magnetization 11m and inversion of the second magnetization 12m are performed by the current accompanying this potential difference.
 以下では、まず、第1層11と第2層12との間への電圧印加により、分極反転及び磁化反転を得る場合について説明する。 Hereinafter, first, a case where polarization reversal and magnetization reversal are obtained by applying a voltage between the first layer 11 and the second layer 12 will be described.
 実施形態において、例えば、第1層11における磁化反転の容易さと、第2層12の磁化反転の容易さ、の間に差を設ける。 In the embodiment, for example, a difference is provided between the ease of magnetization reversal in the first layer 11 and the ease of magnetization reversal in the second layer 12.
 以下の説明では、第1層11において、第2層12よりも容易に磁化反転が得られる場合について説明する。 In the following description, a case where magnetization reversal can be obtained in the first layer 11 more easily than in the second layer 12 will be described.
 例えば、第2層12に接して、または、第2層12の近傍に、反強磁性層を設ける。一方、第1層11の近傍には、反強磁性層を設けない。これにより、第1層11において、第2層12よりも容易に磁化反転が得られる。 For example, an antiferromagnetic layer is provided in contact with the second layer 12 or in the vicinity of the second layer 12. On the other hand, no antiferromagnetic layer is provided in the vicinity of the first layer 11. Thereby, the magnetization reversal can be obtained in the first layer 11 more easily than in the second layer 12.
 第1層11の材料を、第2層12の材料と変えても良い。第1層11のサイズを、第2層12のサイズと変えても良い。サイズは、積層方向に対して垂直な方向の長さを含む。サイズは、厚さ(積層方向に沿った長さ)を含む。さらに、第1層11の形状を、第2層12の形状と変えても良い。これにより、第1層11において、第2層12よりも容易に磁化反転が得られる。 The material of the first layer 11 may be changed from the material of the second layer 12. The size of the first layer 11 may be changed from the size of the second layer 12. The size includes a length in a direction perpendicular to the stacking direction. The size includes a thickness (a length along the stacking direction). Further, the shape of the first layer 11 may be changed to the shape of the second layer 12. Thereby, the magnetization reversal can be obtained in the first layer 11 more easily than in the second layer 12.
 以下、第1状態ST1~第4状態ST4の例について説明する。 
 例えば、第2状態ST2が、初期状態とする。第2状態ST2においては、2つの強磁性層(第1層11及び第2層12)の磁化が平行状態であり、強誘電層(第5層25)の分極方向が下向きである。初期状態は、例えば、第2層12と第1層11との間に、所定の値以上の電圧を印加することにより形成される。例えば、第2層12を基準として、第1層11に、正極性の電圧を印加する。
Hereinafter, examples of the first state ST1 to the fourth state ST4 will be described.
For example, the second state ST2 is an initial state. In the second state ST2, the magnetizations of the two ferromagnetic layers (first layer 11 and second layer 12) are in a parallel state, and the polarization direction of the ferroelectric layer (fifth layer 25) is downward. The initial state is formed, for example, by applying a voltage of a predetermined value or more between the second layer 12 and the first layer 11. For example, a positive voltage is applied to the first layer 11 with the second layer 12 as a reference.
 すなわち、抵抗変化素子110において、書き込み動作は、例えば、第1層11と第2層12との間に、電圧(印加電圧Vap)を印加することにより行われる。これにより、第5層25の分極方向の反転、または、第1層11の第1磁化11mの反転が生じる。第5層25の反転が生じると、第1状態ST1が形成される。第1磁化11mの反転が生じると、第4状態ST4が生じる。すなわち、状態の遷移が生じる。 That is, in the resistance change element 110, the write operation is performed by applying a voltage (applied voltage Vap) between the first layer 11 and the second layer 12, for example. Thereby, the reversal of the polarization direction of the fifth layer 25 or the reversal of the first magnetization 11m of the first layer 11 occurs. When the inversion of the fifth layer 25 occurs, the first state ST1 is formed. When the reversal of the first magnetization 11m occurs, the fourth state ST4 occurs. That is, a state transition occurs.
 第1状態ST1への遷移は、例えば、第5層25に加わる電圧が、強誘電分極反転におけるしきい値電圧(VFE)を超えたときに生じる。 The transition to the first state ST1 occurs, for example, when the voltage applied to the fifth layer 25 exceeds the threshold voltage (V FE ) in ferroelectric polarization reversal.
 第4状態ST4への遷移は、抵抗変化素子110を流れる電流が第1層11の第1磁化11mの反転におけるしきい値電流(IFM)を超えたときに生じる。第1磁化11mの反転は、例えば、スピントランスファトルクによる。 The transition to the fourth state ST4 occurs when the current flowing through the resistance change element 110 exceeds the threshold current (I FM ) in the reversal of the first magnetization 11m of the first layer 11. The reversal of the first magnetization 11m is caused by, for example, spin transfer torque.
 遷移する状態(第1状態ST1または第4状態ST4)は、抵抗変化素子110への電圧の印加により、しきい値電圧VFEとしきい値電流IFMとのいずれのしきい値を先に超えるかによって定まる。しきい値電圧VFEとしきい値電流IFMとのいずれのしきい値を先に超えるかは、例えば、第3層23、第4層24及び第5層25のそれぞれの厚さ、及び、材料に依存する値により定まる。材料に依存する値は、比誘電率などを含む。 Transition states (first state ST1 or the fourth state ST4) is by application of a voltage to the resistance variable element 110, more than one threshold and the threshold voltage V FE and the threshold current I FM earlier It depends on what. Which threshold of threshold voltage V FE and threshold current I FM is exceeded first is determined by, for example, the thickness of each of third layer 23, fourth layer 24, and fifth layer 25, and It depends on the value depending on the material. The value depending on the material includes a relative dielectric constant and the like.
 さらに、抵抗変化素子110への印加電圧Vapをさらに高めると、第5層25に加わる電圧がしきい値電圧VFEを超え、電流がしきい値電流IFMを超える。すなわち、第5層25の分極方向の反転と、第1磁化11mの反転と、の両方が生じた状態となる。これにより、第3状態ST3が生じる。 Furthermore, when further increasing the applied voltage Vap to the resistance variable element 110, the voltage applied to the fifth layer 25 exceeds the threshold voltage V FE, current exceeds the threshold current I FM. That is, both the reversal of the polarization direction of the fifth layer 25 and the reversal of the first magnetization 11m occur. Thereby, the third state ST3 occurs.
 図2は、第1の実施形態に係る抵抗変化素子の特性を例示するグラフ図である。 
 図2の横軸は、第1層11と第2層12との間に印加する印加電圧Vapである。縦軸は、第1層11と第2層12との間に流れる電流Icである。
FIG. 2 is a graph illustrating characteristics of the variable resistance element according to the first embodiment.
The horizontal axis in FIG. 2 represents the applied voltage Vap applied between the first layer 11 and the second layer 12. The vertical axis represents the current Ic flowing between the first layer 11 and the second layer 12.
 この例では、第2状態ST2において、印加電圧Vapを上昇させると、所定の電圧を超えると、第4状態ST4への転移が生じる。または、第1状態ST1への遷移が生じる。印加電圧Vapをさらに上昇させると、第3状態ST3への遷移が生じる。第3状態ST3から印加電圧Vapを低下させても、第3状態ST3は維持される。 In this example, when the applied voltage Vap is increased in the second state ST2, when a predetermined voltage is exceeded, a transition to the fourth state ST4 occurs. Alternatively, a transition to the first state ST1 occurs. When the applied voltage Vap is further increased, a transition to the third state ST3 occurs. Even if the applied voltage Vap is decreased from the third state ST3, the third state ST3 is maintained.
 このように、抵抗変化素子110に電圧を印加することにより、第2状態ST2及び第3状態ST3に加えて、第1状態ST1及び第4状態ST4の少なくともいずれかの状態が得られる。得られる状態の数は、3つ以上である。すなわち、3つ以上の多値の抵抗が得られる。 Thus, by applying a voltage to the resistance change element 110, in addition to the second state ST2 and the third state ST3, at least one of the first state ST1 and the fourth state ST4 is obtained. The number of states obtained is three or more. That is, three or more multi-value resistors can be obtained.
 これらの状態の読み出しは、抵抗変化素子110に電圧を印加することにより行う。このときの電圧の極性(電流方向)は、任意である。すなわち第1層11から第2層12に向けて流れる電流を用いても良い。第2層12から第1層11に向けて流れる電流を用いても良い。 Reading of these states is performed by applying a voltage to the resistance change element 110. The polarity (current direction) of the voltage at this time is arbitrary. That is, a current flowing from the first layer 11 toward the second layer 12 may be used. A current flowing from the second layer 12 toward the first layer 11 may be used.
 例えば、第1状態ST1~第4状態ST4のそれぞれの抵抗を第1抵抗R1~第4抵抗R4とする。例えば、第1層11から第2層12に向けて電流を流す場合は、以下となる。第3抵抗R3は、第2抵抗R2よりも高い。第1抵抗R1及び第4抵抗R4は、第2抵抗R2と第3抵抗R3との間である。第1抵抗R1は第4抵抗R4よりも高い、または、低い。すなわち、R2<R1<R4<R3となる。または、R2<R4<R1<R3となる。これらのいずれの関係が得られるかは、例えば、第1層11~第5層25の材料及び厚さにより定まる。 For example, the resistors in the first state ST1 to the fourth state ST4 are referred to as a first resistor R1 to a fourth resistor R4. For example, when a current is passed from the first layer 11 toward the second layer 12, the following occurs. The third resistor R3 is higher than the second resistor R2. The first resistor R1 and the fourth resistor R4 are between the second resistor R2 and the third resistor R3. The first resistor R1 is higher or lower than the fourth resistor R4. That is, R2 <R1 <R4 <R3. Or, R2 <R4 <R1 <R3. Which of these relations is obtained is determined by, for example, the materials and thicknesses of the first layer 11 to the fifth layer 25.
 抵抗変化素子110において、消去動作は、例えば、書き込みとは逆極性の電圧を印加することにより、実施できる。例えば、第2層12を基準として、正極性の電圧を第1層11に印加する。これにより、第1状態ST1への遷移が生じる。初期状態が得られる。 In the variable resistance element 110, the erasing operation can be performed, for example, by applying a voltage having a polarity opposite to that of writing. For example, a positive voltage is applied to the first layer 11 with the second layer 12 as a reference. As a result, a transition to the first state ST1 occurs. An initial state is obtained.
 以上のように、書き込み動作においては、抵抗変化素子110への印加電圧Vapにより、3つ以上の状態を得ることができる。これらの状態に対応した、3値以上の抵抗値を得ることができる。 As described above, in the write operation, three or more states can be obtained by the voltage Vap applied to the resistance change element 110. Three or more resistance values corresponding to these states can be obtained.
 例えば、MTJを用いた抵抗変化素子がある。この素子においては、2つの強磁性層における相対的な磁化配置が、平行か反平行かでトンネル電流値が変化する。このような抵抗変化素子を磁気抵抗変化メモリ(MRAM:Magnetoresistive Random Access Memory)のメモリセルなどへ応用することが検討されている。 For example, there is a resistance change element using MTJ. In this element, the tunnel current value changes depending on whether the relative magnetization arrangement in the two ferromagnetic layers is parallel or antiparallel. Application of such a resistance change element to a memory cell of a magnetoresistive change memory (MRAM: Magnetoresistive Random Access Memory) has been studied.
 MTJ素子において多値動作を実現する方法として、平行及び反平行以外の磁化配置を利用する参考例がある。しかしながら、一般的に、2つの状態の他の磁化配置は、不安定であり、安定した動作が困難である。 There is a reference example using a magnetization arrangement other than parallel and antiparallel as a method for realizing multi-valued operation in an MTJ element. However, in general, the other magnetization arrangements of the two states are unstable and difficult to operate stably.
 一方、強誘電体を用いたトンネル接合を用いた抵抗変化素子がある。この素子においては、強誘電体の分極方向の向きに依存してトンネル障壁のポテンシャルの変調が生じて、トンネル電流値が変化する。 On the other hand, there is a resistance change element using a tunnel junction using a ferroelectric. In this element, the potential of the tunnel barrier is modulated depending on the direction of the polarization direction of the ferroelectric, and the tunnel current value changes.
 例えば、MTJのトンネル絶縁膜として強誘電体を用いることが考えられる。強磁性の磁化配置に依存した抵抗変化に加えて、強誘電体の分極方向に依存した抵抗変化が得られる。これにより、3値以上の多値動作が得られる。 For example, it is conceivable to use a ferroelectric as the MTJ tunnel insulating film. In addition to the resistance change depending on the ferromagnetic magnetization arrangement, a resistance change depending on the polarization direction of the ferroelectric substance can be obtained. As a result, a multi-value operation of three or more values can be obtained.
 このとき、強誘電体層として、ペロブスカイト酸化物系のPbZrTiOやBaTiOを用いる参考例がある。しかしながら、ペロブスカイト酸化物という特殊な材料系を用いているため、強磁性材料系との親和性が低い。このため、高いトンネル磁気抵抗比を得るのが困難である。さらに、この参考例は、高温プロセスが必要であり、トンネル界面においてミキシングが生じ、所望の特性を得ることが困難である。 At this time, there is a reference example using perovskite oxide-based PbZrTiO 3 or BaTiO 3 as the ferroelectric layer. However, since a special material system called perovskite oxide is used, the affinity with the ferromagnetic material system is low. For this reason, it is difficult to obtain a high tunnel magnetoresistance ratio. Furthermore, this reference example requires a high-temperature process, and mixing occurs at the tunnel interface, making it difficult to obtain desired characteristics.
 本実施形態においては、強磁性の第1層11と強磁性の第2層12との間に、強誘電性の第5層25を設ける。第1層11と第5層25との間に、常誘電性の第3層23を設け、第2層12と第5層25との間に、第4層24を設ける。磁化の変化と、分極変化と、の制御性が高まる。例えば、第5層25の材料の選択範囲が広がる。 In the present embodiment, a ferroelectric fifth layer 25 is provided between the ferromagnetic first layer 11 and the ferromagnetic second layer 12. A paraelectric third layer 23 is provided between the first layer 11 and the fifth layer 25, and a fourth layer 24 is provided between the second layer 12 and the fifth layer 25. Controllability of change in magnetization and change in polarization is enhanced. For example, the selection range of the material of the fifth layer 25 is expanded.
 特に、第5層25の材料として、第3層23の材料との比誘電率差が小さく、第4層24の材料との比誘電率差が小さい材料を選択する。これにより、磁化の変化と、分極変化と、の制御性が高まる。この点で、第5層25の材料として例えば、強誘電体材料群の中では比誘電率が低い、酸化ハフニウムを選択することが好ましい。加えて、酸化ハフニウムを選択することで、プロセス温度が過度に高くなく、所望の特性が得られるという利点も存在する。 Particularly, a material having a small relative dielectric constant difference from the material of the third layer 23 and a small relative dielectric constant difference from the material of the fourth layer 24 is selected as the material of the fifth layer 25. Thereby, the controllability of magnetization change and polarization change is enhanced. In this respect, for example, hafnium oxide having a low relative dielectric constant in the ferroelectric material group is preferably selected as the material of the fifth layer 25. In addition, by selecting hafnium oxide, there is an advantage that the process temperature is not excessively high and desired characteristics can be obtained.
 第3層23および第4層24として適正な材料を用いることで、高い結晶性が得られ、高いトンネル磁気抵抗比が得やすくなる。この点において、第3層23および第4層24の材料として、例えば酸化マグネシウムを用いることが好ましい。 By using an appropriate material for the third layer 23 and the fourth layer 24, high crystallinity is obtained, and a high tunneling magnetoresistance ratio is easily obtained. In this respect, it is preferable to use, for example, magnesium oxide as the material of the third layer 23 and the fourth layer 24.
 実施形態によれば、多値の抵抗変化が安定して得られる。安定した動作が可能な抵抗変化素子及びそれを用いた不揮発性記憶装置が提供できる。 According to the embodiment, a multi-value resistance change can be obtained stably. A variable resistance element capable of stable operation and a nonvolatile memory device using the variable resistance element can be provided.
 図3は、第1の実施形態に係る別の抵抗変化素子を例示する模式的断面図である。 
 図3に表したように、本実施形態に係る抵抗変化素子111は、第1層11~第5層25に加えて、反強磁性層12aをさらに含む。実施形態に係る不揮発性記憶素子211は、抵抗変化素子111と制御部50とを含む。
FIG. 3 is a schematic cross-sectional view illustrating another variable resistance element according to the first embodiment.
As shown in FIG. 3, the resistance change element 111 according to this embodiment further includes an antiferromagnetic layer 12 a in addition to the first layer 11 to the fifth layer 25. The nonvolatile memory element 211 according to the embodiment includes a resistance change element 111 and a control unit 50.
 反強磁性層12aと第4層24との間に、第2層12が配置される。これにより、第2層12における第2磁化12mの反転は、第1層11における第1磁化11mの反転よりも困難になる。より安定した動作が得られる。 The second layer 12 is disposed between the antiferromagnetic layer 12 a and the fourth layer 24. Thereby, inversion of the second magnetization 12m in the second layer 12 becomes more difficult than inversion of the first magnetization 11m in the first layer 11. More stable operation can be obtained.
 反強磁性層12aには、例えば、反強磁性材料(例えば、イリジウムマンガン、または、白金マンガンなど)が用いられる。反強磁性層12aとして、積層フェリ構造と反強磁性材料との組み合わせを適用しても良い。反強磁性層12aとして、例えば、ルテニウム/コバルト鉄/イリジウムマンガンの積層構造を適用しても良い。 For example, an antiferromagnetic material (for example, iridium manganese or platinum manganese) is used for the antiferromagnetic layer 12a. A combination of a laminated ferrimagnetic structure and an antiferromagnetic material may be applied as the antiferromagnetic layer 12a. As the antiferromagnetic layer 12a, for example, a laminated structure of ruthenium / cobalt iron / iridium manganese may be applied.
 図4は、第1の実施形態に係る別の抵抗変化素子を例示する模式的断面図である。 
 図4に表したように、本実施形態に係る抵抗変化素子112は、第1層11~第5層25に加えて、第1導電層31をさらに含む。実施形態に係る不揮発性記憶素子212は、抵抗変化素子112と制御部50とを含む。
FIG. 4 is a schematic cross-sectional view illustrating another variable resistance element according to the first embodiment.
As shown in FIG. 4, the variable resistance element 112 according to the present embodiment further includes a first conductive layer 31 in addition to the first layer 11 to the fifth layer 25. The nonvolatile memory element 212 according to the embodiment includes the resistance change element 112 and the control unit 50.
 例えば、書き込み動作の際に、第1導電層31に電流を流す。発生するジュール熱により、第1層11が加熱される。第1層11の第1磁化11mが反転し易くなる。第4状態ST4が形成し易くなる。これにより、第1状態ST1の生成と、第4状態ST4の生成と、を分離して生成することが容易になる。 For example, a current is passed through the first conductive layer 31 during a write operation. The first layer 11 is heated by the generated Joule heat. The first magnetization 11m of the first layer 11 is easily reversed. It becomes easier to form the fourth state ST4. This facilitates the generation of the first state ST1 and the generation of the fourth state ST4 separately.
 抵抗変化素子112においても、抵抗変化素子110と同様の読み出し動作及び消去動作が実施できる。 Also in the resistance change element 112, the same read operation and erase operation as the resistance change element 110 can be performed.
 抵抗変化素子112においては、この場合には、電圧の印加による第4状態ST4への遷移電圧V4は、電圧印加による第1状態ST1への遷移電圧V1よりも低く設定される。そして、第4状態4への遷移に、ジュール熱によるアシストが用いられる。この例では、遷移電圧V4は、低く設定される。本実施形態において、例えば、第1層11の材料、及び、第5層25の材料及び厚さが、適切に設定される。これにより、遷移電圧V4及び遷移電圧V1が適正に設定される。 In the variable resistance element 112, in this case, the transition voltage V4 to the fourth state ST4 by voltage application is set lower than the transition voltage V1 to the first state ST1 by voltage application. Then, Joule heat assist is used for the transition to the fourth state 4. In this example, the transition voltage V4 is set low. In the present embodiment, for example, the material of the first layer 11 and the material and thickness of the fifth layer 25 are appropriately set. Thereby, the transition voltage V4 and the transition voltage V1 are set appropriately.
 抵抗変化素子112においては、比較的小さな電流により、第2状態ST2から第4状態ST4への遷移を生じさせることができる。このため、例えば、微細なセル構造(例えば100nm以下のセルサイズ)に対して4値状態を書き込む場合に、有利である。 In the resistance change element 112, a transition from the second state ST2 to the fourth state ST4 can be caused by a relatively small current. Therefore, for example, it is advantageous when writing a quaternary state for a fine cell structure (for example, a cell size of 100 nm or less).
 (第2の実施形態) 
 図5は、第2の実施形態に係る別の抵抗変化素子を例示する模式的断面図である。 
 図5に表したように、本実施形態に係る抵抗変化素子120は、第1層11~第5層25に加えて、第1導電層31及び第1絶縁層3iをさらに含む。実施形態に係る不揮発性記憶素子220は、抵抗変化素子120と制御部50とを含む。
(Second Embodiment)
FIG. 5 is a schematic cross-sectional view illustrating another resistance change element according to the second embodiment.
As shown in FIG. 5, the variable resistance element 120 according to the present embodiment further includes a first conductive layer 31 and a first insulating layer 3 i in addition to the first layer 11 to the fifth layer 25. The nonvolatile memory element 220 according to the embodiment includes a resistance change element 120 and a control unit 50.
 第1導電層31と第3層23との間に、第1層11が配置される。第1層11と第1導電層31との間に第1絶縁層31iが配置される。 The first layer 11 is disposed between the first conductive layer 31 and the third layer 23. A first insulating layer 31 i is disposed between the first layer 11 and the first conductive layer 31.
 第1導電層31には電流を流すことができる。第1導電層31に流れる電流は、第1層11と第2層12との間に流れる電流とは別に制御される。この電流は、例えば、制御部50により制御される。 A current can be passed through the first conductive layer 31. The current flowing through the first conductive layer 31 is controlled separately from the current flowing between the first layer 11 and the second layer 12. This current is controlled by the control unit 50, for example.
 第1導電層31に流れる電流により生じる磁場が、第1層11に加わる。これにより、第1層11の第1磁化11mが反転する。すなわち、第1磁化11mは、第1導電層31に流れる電流により反転可能である。例えば、第1導電層31に所定の値以上の電流を流す。電流の向きを変えると、第1磁化11mを反転させることができる。 A magnetic field generated by a current flowing through the first conductive layer 31 is applied to the first layer 11. As a result, the first magnetization 11m of the first layer 11 is reversed. That is, the first magnetization 11 m can be reversed by a current flowing through the first conductive layer 31. For example, a current greater than or equal to a predetermined value is passed through the first conductive layer 31. If the direction of the current is changed, the first magnetization 11m can be reversed.
 これにより、第1層11の第1磁化11mを、第1層11と第2層12との間への印加電圧Vapとは別に、第1導電層31に流れる電流より制御することができる。これにより、第1磁化11mの制御性が高まる。 Thereby, the first magnetization 11m of the first layer 11 can be controlled by the current flowing through the first conductive layer 31 separately from the applied voltage Vap between the first layer 11 and the second layer 12. Thereby, the controllability of the first magnetization 11m is enhanced.
 例えば、第2状態ST2から第1状態ST1への遷移は、第1層11と第2層12との間に電圧を印加することにより行われる。一方で、第2状態ST2から第4状態ST4への遷移は、第1導電層31に電流を流す。電流により生じる電流磁場により、第1層11の第1磁化11mの反転が生じる。第2状態ST2から第3状態ST3への遷移は、第1層11と第2層12との間に高い電圧を印加することにより行われる。この例では、より簡単な方法で4値の状態を書き込むことができる。 For example, the transition from the second state ST2 to the first state ST1 is performed by applying a voltage between the first layer 11 and the second layer 12. On the other hand, a transition from the second state ST2 to the fourth state ST4 causes a current to flow through the first conductive layer 31. The reversal of the first magnetization 11m of the first layer 11 occurs due to the current magnetic field generated by the current. The transition from the second state ST2 to the third state ST3 is performed by applying a high voltage between the first layer 11 and the second layer 12. In this example, a four-value state can be written by a simpler method.
 例えば、第1層11と第2層12との間への印加電圧Vapだけで、第1状態ST1及び第4状態ST4を得る場合に比べて、第1導電層31を用いることで、第1状態ST1及び第4状態ST4の形成の安定性が高まる。これにより、4つの状態をより安定して得ることができる。 For example, by using the first conductive layer 31 as compared with the case where the first state ST1 and the fourth state ST4 are obtained only by the voltage Vap applied between the first layer 11 and the second layer 12, the first conductive layer 31 is used. The formation stability of the state ST1 and the fourth state ST4 is increased. Thereby, four states can be obtained more stably.
 抵抗変化素子120においても、抵抗変化素子110と同様の読み出し動作及び消去動作が実施できる。 Also in the resistance change element 120, the same read operation and erase operation as the resistance change element 110 can be performed.
 第1導電層31には、例えば、タングステン(W)、アルミニウム(Al)及び銅(Cu)の少なくともいずれかが用いられる。第1絶縁層31iには、例えば、酸化シリコン及び窒化シリコンの少なくともいずれかが用いられる。第1絶縁層31iの厚さは、例えば、5nm以上100nm以下である。 For the first conductive layer 31, for example, at least one of tungsten (W), aluminum (Al), and copper (Cu) is used. For example, at least one of silicon oxide and silicon nitride is used for the first insulating layer 31i. The thickness of the first insulating layer 31i is, for example, not less than 5 nm and not more than 100 nm.
 以下、上記の第1実施形態及び第2実施形態に係る抵抗変化素子に含まれる層の例について説明する。 Hereinafter, examples of layers included in the variable resistance element according to the first embodiment and the second embodiment will be described.
 例えば、第1層11及び第2層12として、コバルト鉄マンガンシリコンが用いられる。第3層23及び第4層24として、酸化マグネシウムが用いられる。第5層25として、酸化ハフニウムが用いられる。 For example, cobalt iron manganese silicon is used as the first layer 11 and the second layer 12. Magnesium oxide is used for the third layer 23 and the fourth layer 24. As the fifth layer 25, hafnium oxide is used.
 例えば、第2層12として、コバルト鉄マンガンシリコン層を、例えばスパッタ法などにより形成する。その後、例えば減圧中(例えば真空中)で、熱処理を行う。これにより、コバルト鉄マンガンシリコン層の結晶性が向上する。例えば、第2層12の下地層を、(001)配向化させておく。 For example, a cobalt iron manganese silicon layer is formed as the second layer 12 by, for example, sputtering. Thereafter, heat treatment is performed, for example, under reduced pressure (for example, in vacuum). Thereby, the crystallinity of the cobalt iron manganese silicon layer is improved. For example, the base layer of the second layer 12 is (001) oriented.
 第4層24として、酸化マグネシウム層を、例えば、スパッタ法または電子ビーム蒸着法を用いて形成する。コバルト鉄マンガンシリコンと酸化マグネシウムとは、格子マッチングが良い。このため、酸化マグネシウム層は、コバルト鉄マンガンシリコン層の上にエピタキシャル成長する。 As the fourth layer 24, a magnesium oxide layer is formed by using, for example, a sputtering method or an electron beam evaporation method. Cobalt iron manganese silicon and magnesium oxide have good lattice matching. For this reason, the magnesium oxide layer is epitaxially grown on the cobalt iron manganese silicon layer.
 例えば、第2層12(例えば、コバルト鉄マンガンシリコン層)を(001)配向させておくと、その上に形成される酸化マグネシウム層は、(001)配向する。第4層24を(001)配向させることで、高いトンネル磁気抵抗比が得られる。 For example, when the second layer 12 (for example, cobalt iron manganese silicon layer) is (001) oriented, the magnesium oxide layer formed thereon is (001) oriented. A high tunnel magnetoresistance ratio can be obtained by orienting the fourth layer 24 to (001).
 第5層25として、酸化ハフニウム層を、スパッタ法、または、ALD(Atomic Layer Deposition)法などにより形成する。酸化ハフニウム層の形成温度を低く設定することで、アモルファス状態の酸化ハフニウム層が得られる。 As the fifth layer 25, a hafnium oxide layer is formed by sputtering or ALD (Atomic Layer Deposition) method. By setting the formation temperature of the hafnium oxide layer low, an amorphous hafnium oxide layer can be obtained.
 第3層23として、酸化マグネシウム層を、例えば、スパッタまたは電子ビーム蒸着法を用いて形成する。酸化マグネシウムは、優先的に(001)配向する。このため、下地となるアモルファス膜の上に酸化マグネシウム層を堆積すると、(001)配向層になり易い。これにより、第3層23の酸化マグネシウム層も第4層24と同様に、(001)配向する。これにより、高いトンネル磁気抵抗比が得やすくなる。 As the third layer 23, a magnesium oxide layer is formed using, for example, sputtering or electron beam evaporation. Magnesium oxide is preferentially (001) oriented. For this reason, when a magnesium oxide layer is deposited on an amorphous film as a base, it becomes a (001) orientation layer. Thereby, the magnesium oxide layer of the third layer 23 is also (001) oriented in the same manner as the fourth layer 24. This makes it easy to obtain a high tunnel magnetoresistance ratio.
 第1層11として、コバルト鉄マンガンシリコン層を、例えば、スパッタ法などにより形成する。第1層11のコバルト鉄マンガンシリコン層を減圧中で加熱処理することで、結晶性が向上する。この熱処理により、例えば、第5層25の酸化ハフニウム層において、強誘電性が向上する。 As the first layer 11, a cobalt iron manganese silicon layer is formed by, for example, sputtering. Crystallinity is improved by heat-treating the cobalt iron manganese silicon layer of the first layer 11 under reduced pressure. By this heat treatment, for example, the ferroelectricity is improved in the hafnium oxide layer of the fifth layer 25.
 実施形態において、例えば、コバルト鉄マンガンシリコンと酸化マグネシウムとの組み合わせが用いられる。コバルト鉄マンガンシリコンは、ハーフメタル材料である。これにより、高いトンネル磁気抵抗比が得やすい。 In the embodiment, for example, a combination of cobalt iron manganese silicon and magnesium oxide is used. Cobalt iron manganese silicon is a half-metal material. Thereby, it is easy to obtain a high tunnel magnetoresistance ratio.
 酸化マグネシウムと同程度の比誘電率を有する酸化ハフニウムが用いられる。これにより、酸化マグネシウム層を絶縁破壊させることなく、酸化ハフニウム層における強誘電分極を電界反転させることができる。 Hafnium oxide having a dielectric constant comparable to magnesium oxide is used. Thereby, the electric field inversion of the ferroelectric polarization in the hafnium oxide layer can be performed without causing dielectric breakdown of the magnesium oxide layer.
 例えば、第3層23及び第4層24において、厚さに差を設けることにより、強誘電分極方向に応じたトンネル電流値の変調効果を大きくすることができる。 For example, by providing a difference in thickness in the third layer 23 and the fourth layer 24, the modulation effect of the tunnel current value according to the ferroelectric polarization direction can be increased.
 実施形態によれば、例えば、出力信号差の大きい多値状態が得られる。実施形態によれば、絶縁破壊が抑制される。これにより、信頼性の高い抵抗変化動作が得られる。 According to the embodiment, for example, a multi-value state with a large output signal difference is obtained. According to the embodiment, dielectric breakdown is suppressed. Thereby, a highly reliable resistance change operation is obtained.
 (第3の実施形態) 
 本実施形態は、不揮発性記憶装置に係る。実施形態に係る不揮発性記憶装置は、第1、第2の実施形態に関して説明した不揮発性記憶装置のいずれか、及び、その変形を含む。例えば、本実施形態に係る不揮発性記憶装置は、例えば、上記のいずれかの抵抗変化素子と、第1層11と第2層12との間に電圧を印加する制御部50と、を含む。本実施形態によれば、安定した動作が可能な不揮発性記憶装置が提供できる。
(Third embodiment)
The present embodiment relates to a nonvolatile memory device. The nonvolatile memory device according to the embodiment includes any of the nonvolatile memory devices described in regard to the first and second embodiments, and modifications thereof. For example, the nonvolatile memory device according to the present embodiment includes, for example, any one of the resistance change elements described above and the control unit 50 that applies a voltage between the first layer 11 and the second layer 12. According to the present embodiment, a nonvolatile memory device capable of stable operation can be provided.
 図6(a)及び図6(b)は、第3の実施形態に係る不揮発性記憶装置を例示する模式的斜視図である。 
 図6(a)に表したように、本実施形態に係る不揮発性記憶装置250は、複数の第1配線WR1と、複数の第2配線WR2と、複数のメモリセルMCと、を含む。複数のメモリセルMCは、実施形態に係る抵抗変化素子及びその変形を含む。
FIG. 6A and FIG. 6B are schematic perspective views illustrating the nonvolatile memory device according to the third embodiment.
As illustrated in FIG. 6A, the nonvolatile memory device 250 according to the present embodiment includes a plurality of first wirings WR1, a plurality of second wirings WR2, and a plurality of memory cells MC. The plurality of memory cells MC include the resistance change element according to the embodiment and modifications thereof.
 複数の第1配線WR1は、複数の第2配線WR2と、3次元的に交差する。例えば、第1配線WR1は、X軸方向に沿って延びる。第2配線WR2は、Y軸方向に沿って延びる。この例では、Y軸方向は、X軸方向に対して直交する。X軸方向とY軸方向とに対して直交する方向をZ軸方向とする。この例では、第2配線WR1は、Z軸方向において、第1配線WR1と離間する。 The plurality of first wirings WR1 cross three-dimensionally with the plurality of second wirings WR2. For example, the first wiring WR1 extends along the X-axis direction. The second wiring WR2 extends along the Y-axis direction. In this example, the Y-axis direction is orthogonal to the X-axis direction. A direction orthogonal to the X-axis direction and the Y-axis direction is taken as a Z-axis direction. In this example, the second wiring WR1 is separated from the first wiring WR1 in the Z-axis direction.
 複数のメモリセルMC(抵抗変化素子)のそれぞれは、複数の第1配線WR1と複数の第2配線WR2との間のそれぞれの位置に配置される。 Each of the plurality of memory cells MC (resistance change elements) is disposed at a position between the plurality of first wirings WR1 and the plurality of second wirings WR2.
 第1配線WR1と第2配線WR2は、制御部50に電気的に接続される。第1配線WR1及び第2配線WR2を介して、メモリセルMCに電圧が印加され、上記の動作が行われる。 The first wiring WR1 and the second wiring WR2 are electrically connected to the control unit 50. A voltage is applied to the memory cell MC through the first wiring WR1 and the second wiring WR2, and the above operation is performed.
 第1配線WR1は、例えば、第1~第3ビットBL1~BL3を含む。第2配線WR2は、第1~第3ワード線WL1~WL3を含む。これらのビット線及びワード線によりメモリセルMCの状態が、書き込まれ、読み取られ、または、消去される。 The first wiring WR1 includes, for example, first to third bits BL1 to BL3. The second wiring WR2 includes first to third word lines WL1 to WL3. The state of the memory cell MC is written, read, or erased by these bit lines and word lines.
 実施形態において、第1配線WR1と抵抗変化素子との間、及び、第2配線WR2と抵抗変化素子との間の少なくともいずれかの位置に、整流素子(例えばダイオード)を設けても良い。 In the embodiment, a rectifying element (for example, a diode) may be provided at least at a position between the first wiring WR1 and the resistance change element and between the second wiring WR2 and the resistance change element.
 図6(b)に表したように、本実施形態に係る不揮発性記憶素子251においては、互いに積層された複数の要素メモリ層MAを有する。複数の要素メモリ層MAは、例えばZ軸方向に沿って積層される。この例では、4つの要素メモリ層MA、すなわち、第1~第4要素メモリ層MA1~MA4が設けられている。要素メモリ層MAの数は、任意である。 As shown in FIG. 6B, the nonvolatile memory element 251 according to this embodiment includes a plurality of element memory layers MA stacked on each other. The plurality of element memory layers MA are stacked, for example, along the Z-axis direction. In this example, four element memory layers MA, that is, first to fourth element memory layers MA1 to MA4 are provided. The number of element memory layers MA is arbitrary.
 要素メモリ層MAのそれぞれは、第1配線WR1と、第2配線WR2と、メモリセルMCと、を含む。 Each of the element memory layers MA includes a first wiring WR1, a second wiring WR2, and a memory cell MC.
 第1要素メモリ層MA1は、第1層ビット線BLL1(ビット線BL11、BL12及びBL13を含む)と、第1層ワード線WLL1(ワード線WL11、WL12及びWL13を含む)と、第1層メモリセルMC1と、を含む。 The first element memory layer MA1 includes a first layer bit line BLL1 (including bit lines BL11, BL12, and BL13), a first layer word line WLL1 (including word lines WL11, WL12, and WL13), and a first layer memory. Cell MC1.
 第2要素メモリ層MA2は、第2層ビット線BLL2(ビット線BL21、BL22及びBL23を含む)と、第1層ワード線WLL1(ワード線WL11、WL12及びWL13を含む)と、第2層メモリセルMC2と、を含む。 The second element memory layer MA2 includes a second layer bit line BLL2 (including bit lines BL21, BL22, and BL23), a first layer word line WLL1 (including word lines WL11, WL12, and WL13), and a second layer memory. Cell MC2.
 第3要素メモリ層MA2は、第2層ビット線BLL2(ビット線BL21、BL22及びBL23を含む)と、第2層ワード線WLL2(ワード線WL21、WL22及びWL23を含む)と、第3層メモリセルMC3と、を含む。 The third element memory layer MA2 includes a second layer bit line BLL2 (including bit lines BL21, BL22, and BL23), a second layer word line WLL2 (including word lines WL21, WL22, and WL23), and a third layer memory. Cell MC3.
 第4要素メモリ層MA4は、第3層ビット線BLL3(ビット線BL31、BL32及びBL33を含む)と、第2層ワード線WLL2(ワード線WL21、WL22及びWL23を含む)と、第4層メモリセルMC4と、を含む。 The fourth element memory layer MA4 includes a third layer bit line BLL3 (including bit lines BL31, BL32, and BL33), a second layer word line WLL2 (including word lines WL21, WL22, and WL23), and a fourth layer memory. Cell MC4.
 この例では、Z軸方向に沿って隣接する要素メモリ層MAにおいて、ビット線BLまたはワード線WLが共有される。実施形態はこれに限らない。例えば、Z軸方向に沿って隣接する要素メモリ層MAどうしの間に層間絶縁膜が設けられ、要素メモリ層MAのそれぞれに、ビット線BL及びワード線WLが設けられても良い。この場合、要素メモリ層MAのそれぞれにおけるビット線BLの延在方向及びワード線WLの延在方向は任意である。 In this example, the bit line BL or the word line WL is shared in the element memory layers MA adjacent along the Z-axis direction. The embodiment is not limited to this. For example, an interlayer insulating film may be provided between element memory layers MA adjacent along the Z-axis direction, and a bit line BL and a word line WL may be provided in each of the element memory layers MA. In this case, the extending direction of the bit line BL and the extending direction of the word line WL in each of the element memory layers MA are arbitrary.
 本実施形態によれば、強磁性体と強誘電体との両方の特性を利用し、出力信号比が大きな多値状態の書き込みを、信頼性良く実現できる。実施形態によれば、高信頼性で、多値動作の素子が得られる。 According to the present embodiment, writing in a multi-valued state with a large output signal ratio can be realized with high reliability by utilizing the characteristics of both a ferromagnetic material and a ferroelectric material. According to the embodiment, a highly reliable element with multi-value operation can be obtained.
 実施形態によれば、安定した動作が可能な抵抗変化素子及び不揮発性記憶装置が提供できる。 According to the embodiment, it is possible to provide a variable resistance element and a non-volatile memory device capable of stable operation.
 なお、本願明細書において、「垂直」及び「平行」は、厳密な垂直及び厳密な平行だけではなく、例えば製造工程におけるばらつきなどを含むものであり、実質的に垂直及び実質的に平行であれば良い。 In the present specification, “vertical” and “parallel” include not only strictly vertical and strictly parallel, but also include, for example, variations in the manufacturing process, and may be substantially vertical and substantially parallel. It ’s fine.
 以上、具体例を参照しつつ、本発明の実施の形態について説明した。しかし、本発明は、これらの具体例に限定されるものではない。例えば、抵抗変化素子及び不揮発性記憶装置に含まれる第1~第5層、導電層、絶縁層、反強磁性層、制御部及び配線などの各要素の具体的な層構成に関しては、当業者が公知の範囲から適宜選択することにより本発明を同様に実施し、同様の効果を得ることができる限り、本発明の範囲に包含される。 
 また、各具体例のいずれか2つ以上の要素を技術的に可能な範囲で組み合わせたものも、本発明の要旨を包含する限り本発明の範囲に含まれる。
The embodiments of the present invention have been described above with reference to specific examples. However, the present invention is not limited to these specific examples. For example, a person skilled in the art has a specific layer configuration of each element such as the first to fifth layers, the conductive layer, the insulating layer, the antiferromagnetic layer, the control unit, and the wiring included in the variable resistance element and the nonvolatile memory device Is appropriately included in the scope of the present invention as long as the present invention can be carried out in the same manner and the same effects can be obtained by appropriately selecting from the known ranges.
Moreover, what combined any two or more elements of each specific example in the technically possible range is also included in the scope of the present invention as long as the gist of the present invention is included.
 その他、本発明の実施の形態として上述した抵抗変化素子及び不揮発性記憶装置を基にして、当業者が適宜設計変更して実施し得る全ての抵抗変化素子及び不揮発性記憶装置も、本発明の要旨を包含する限り、本発明の範囲に属する。 In addition, all variable resistance elements and nonvolatile memory devices that can be implemented by those skilled in the art based on the variable resistance elements and nonvolatile memory devices described above as embodiments of the present invention are also included in the present invention. As long as the gist is included, it belongs to the scope of the present invention.
 その他、本発明の思想の範疇において、当業者であれば、各種の変更例及び修正例に想到し得るものであり、それら変更例及び修正例についても本発明の範囲に属するものと了解される。 In addition, in the category of the idea of the present invention, those skilled in the art can conceive of various changes and modifications, and it is understood that these changes and modifications also belong to the scope of the present invention. .
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although several embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

Claims (20)

  1.  強磁性の第1層と、
     強磁性の第2層と、
     前記第1層と前記第2層との間に設けられた常誘電性の第3層と、
     前記第3層と前記第2層との間に設けられた常誘電性の第4層と、
     前記第3層と前記第4層との間に設けられた強誘電性の第5層と、
     を備えた抵抗変化素子。
    A ferromagnetic first layer;
    A second ferromagnetic layer;
    A paraelectric third layer provided between the first layer and the second layer;
    A paraelectric fourth layer provided between the third layer and the second layer;
    A ferroelectric fifth layer provided between the third layer and the fourth layer;
    A variable resistance element.
  2.  前記第5層の比誘電率は、前記第3層の比誘電率の4倍以下であり、前記第4層の比誘電率の4倍以下である請求項1記載の抵抗変化素子。 The resistance change element according to claim 1, wherein a relative dielectric constant of the fifth layer is not more than four times that of the third layer and not more than four times that of the fourth layer.
  3.  前記第3層及び前記第4層の少なくともいずれかは、酸化マグネシウム、酸化アルミニウム、酸化マグネシウムアルミニウム、及び、ストロンチウムチタン酸化物を含む請求項1記載の抵抗変化素子。 2. The variable resistance element according to claim 1, wherein at least one of the third layer and the fourth layer includes magnesium oxide, aluminum oxide, magnesium aluminum oxide, and strontium titanium oxide.
  4.  前記第5層は、酸化ハフニウムを含む請求項1記載の抵抗変化素子。 The resistance change element according to claim 1, wherein the fifth layer contains hafnium oxide.
  5.  前記第5層は、ジルコニウム、アルミニウム、イットリウム、ストロンチウム、シリコン及びガドリニウムの少なくともいずれかをさらに含む請求項4記載の抵抗変化素子。 5. The variable resistance element according to claim 4, wherein the fifth layer further includes at least one of zirconium, aluminum, yttrium, strontium, silicon, and gadolinium.
  6.  前記第1層及び前記第2層の少なくともいずれかは、鉄、コバルト、ニッケル、コバルト鉄、パーマロイ、コバルト鉄ボロン、コバルトマンガンシリコン、コバルトマンガンゲルマニウム、コバルト鉄アルミニウム、コバルト鉄アルミニウムシリコン、コバルト鉄シリコン、コバルト鉄マンガンシリコン、鉄白金及びコバルト白金の少なくともいずれかを含む請求項1記載の抵抗変化素子。 At least one of the first layer and the second layer is made of iron, cobalt, nickel, cobalt iron, permalloy, cobalt iron boron, cobalt manganese silicon, cobalt manganese germanium, cobalt iron aluminum, cobalt iron aluminum silicon, cobalt iron silicon. The resistance change element according to claim 1, comprising at least one of cobalt iron manganese silicon, iron platinum, and cobalt platinum.
  7.  前記第5層の厚さは、10ナノメートル以下である請求項1記載の抵抗変化素子。 The resistance change element according to claim 1, wherein the thickness of the fifth layer is 10 nanometers or less.
  8.  前記第3層の厚さ及び前記第4層の厚さのそれぞれは、5ナノメートル以下である請求項1記載の抵抗変化素子。 The resistance change element according to claim 1, wherein each of the thickness of the third layer and the thickness of the fourth layer is 5 nanometers or less.
  9.  前記第3層の厚さと前記第4層の厚さとの差の絶対値は、0.5ナノメートル以上である請求項1記載の抵抗変化素子。 The resistance change element according to claim 1, wherein an absolute value of a difference between the thickness of the third layer and the thickness of the fourth layer is 0.5 nanometer or more.
  10.  前記第3層の厚さと前記第4層の厚さとの差の絶対値は、2ナノメートル以下である請求項9記載の抵抗変化素子。 The resistance change element according to claim 9, wherein an absolute value of a difference between the thickness of the third layer and the thickness of the fourth layer is 2 nanometers or less.
  11.  前記第3層、前記第4層及び前記第5層の合計の厚さは、20ナノメートル以下である請求項1記載の抵抗変化素子。 The resistance change element according to claim 1, wherein a total thickness of the third layer, the fourth layer, and the fifth layer is 20 nanometers or less.
  12.  第1状態が形成可能であり、
     前記第1状態においては、前記第1層の第1磁化は、前記第2層の第2磁化に沿っており、前記第5層の分極の方向は、前記第2層から前記第1層に向かう方向に沿っている請求項1記載の抵抗変化素子。
    A first state can be formed;
    In the first state, the first magnetization of the first layer is along the second magnetization of the second layer, and the polarization direction of the fifth layer is changed from the second layer to the first layer. The resistance change element according to claim 1, wherein the resistance change element is along a direction of heading.
  13.  第2状態がさらに形成可能であり、
     前記第2状態においては、前記第1磁化は、前記第2磁化に沿っており、前記分極の前記方向は、前記第1層から前記第2層に向かう方向に沿っている請求項12記載の抵抗変化素子。
    A second state can be further formed;
    The said 1st magnetization is along the said 2nd magnetization in the said 2nd state, The said direction of the said polarization is along the direction which goes to the said 2nd layer from the said 1st layer. Variable resistance element.
  14.  第3状態がさらに形成可能であり、
     前記第3状態においては、前記第1磁化は、前記第2磁化と逆であり、前記分極の前記方向は、前記第2層から前記第1層に向かう方向に沿っている請求項13記載の抵抗変化素子。
    A third state can be further formed;
    The said 1st magnetization is reverse to the said 2nd magnetization in the said 3rd state, The said direction of the said polarization is along the direction which goes to the said 1st layer from the said 2nd layer. Variable resistance element.
  15.  第4状態がさらに形成可能であり、
     前記第4状態においては、前記第1磁化は、前記第2磁化と逆であり、前記分極の前記方向は、前記第1層から前記第2層に向かう方向に沿っている請求項14記載の抵抗変化素子。
    A fourth state can be further formed;
    15. In the fourth state, the first magnetization is opposite to the second magnetization, and the direction of the polarization is along a direction from the first layer toward the second layer. Variable resistance element.
  16.  導電層をさらに備え、
     前記導電層と前記第3層との間に前記第1層が配置される請求項1記載の抵抗変化素子。
    A conductive layer;
    The variable resistance element according to claim 1, wherein the first layer is disposed between the conductive layer and the third layer.
  17.  絶縁層をさらに備え、
     前記第1層と前記導電層との間に前記絶縁層が配置される請求項1記載の抵抗変化素子。
    Further comprising an insulating layer;
    The variable resistance element according to claim 1, wherein the insulating layer is disposed between the first layer and the conductive layer.
  18.  反強磁性層をさらに備え、
     前記反強磁性層と前記第4層との間に前記第2層が配置される請求項1記載の抵抗変化素子。
    Further comprising an antiferromagnetic layer,
    The resistance change element according to claim 1, wherein the second layer is disposed between the antiferromagnetic layer and the fourth layer.
  19.  請求項1記載の抵抗変化素子と、
     前記第1層と前記第2層との間に電圧を印加する制御部と、
     を備えた不揮発性記憶装置。
    The variable resistance element according to claim 1,
    A controller that applies a voltage between the first layer and the second layer;
    A non-volatile storage device.
  20.  複数の第1配線と、
     複数の第2配線と、
     をさらに備え、
     複数の第1配線は、前記複数の第2配線と交差し、
     前記抵抗変化素子は複数設けられ、
     前記複数の抵抗変化素子のそれぞれは、前記複数の第1配線と前記複数の第2配線との間のそれぞれの位置に配置される請求項19記載の不揮発性記憶装置。
    A plurality of first wires;
    A plurality of second wires;
    Further comprising
    The plurality of first wirings intersect with the plurality of second wirings,
    A plurality of the variable resistance elements are provided,
    The nonvolatile memory device according to claim 19, wherein each of the plurality of resistance change elements is disposed at a position between the plurality of first wirings and the plurality of second wirings.
PCT/JP2014/083002 2014-03-04 2014-12-12 Resistance changing element and non-volatile storage device WO2015133035A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014041902A JP2015170610A (en) 2014-03-04 2014-03-04 Resistance change element nonvolatile storage
JP2014-041902 2014-03-04

Publications (1)

Publication Number Publication Date
WO2015133035A1 true WO2015133035A1 (en) 2015-09-11

Family

ID=54054858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/083002 WO2015133035A1 (en) 2014-03-04 2014-12-12 Resistance changing element and non-volatile storage device

Country Status (2)

Country Link
JP (1) JP2015170610A (en)
WO (1) WO2015133035A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019169573A (en) 2018-03-23 2019-10-03 東芝メモリ株式会社 Storage device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6347049B1 (en) * 2001-07-25 2002-02-12 International Business Machines Corporation Low resistance magnetic tunnel junction device with bilayer or multilayer tunnel barrier
JP2007095734A (en) * 2005-09-27 2007-04-12 Toshiba Corp Magnetic recording apparatus
JP2007150265A (en) * 2005-10-28 2007-06-14 Toshiba Corp Magnetoresistive element and magnetic storage
JP2007266538A (en) * 2006-03-30 2007-10-11 Fujitsu Ltd Semiconductor storage device and method of manufacturing same, and data write method and data read method for same
WO2010032574A1 (en) * 2008-09-22 2010-03-25 株式会社日立製作所 Magnetic recording element, magnetic memory cell, and magnetic random access memory
JP2012099210A (en) * 2010-11-04 2012-05-24 Seagate Technology Llc Memory device and operation method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6347049B1 (en) * 2001-07-25 2002-02-12 International Business Machines Corporation Low resistance magnetic tunnel junction device with bilayer or multilayer tunnel barrier
JP2007095734A (en) * 2005-09-27 2007-04-12 Toshiba Corp Magnetic recording apparatus
JP2007150265A (en) * 2005-10-28 2007-06-14 Toshiba Corp Magnetoresistive element and magnetic storage
JP2007266538A (en) * 2006-03-30 2007-10-11 Fujitsu Ltd Semiconductor storage device and method of manufacturing same, and data write method and data read method for same
WO2010032574A1 (en) * 2008-09-22 2010-03-25 株式会社日立製作所 Magnetic recording element, magnetic memory cell, and magnetic random access memory
JP2012099210A (en) * 2010-11-04 2012-05-24 Seagate Technology Llc Memory device and operation method thereof

Also Published As

Publication number Publication date
JP2015170610A (en) 2015-09-28

Similar Documents

Publication Publication Date Title
CN109036485A (en) The memory cell of erect spin track torque magnetic random access memory
US8947919B2 (en) High capacity low cost multi-stacked cross-line magnetic memory
KR100885184B1 (en) Memory Devices Having Resistance Property Capable Of Being Independently Controlled By Electric And Magnetic Fields And Methods Of Operating The Same
US8804414B2 (en) Spin torque transfer memory cell structures and methods
US6765821B2 (en) Magnetic memory
US10953319B2 (en) Spin transfer MRAM element having a voltage bias control
JP3863484B2 (en) Magnetoresistive element and magnetic memory
JP6861996B2 (en) Magnetoresistive element and magnetic memory device
KR102306333B1 (en) Nonvolatile memory cell, memory cell unit, information writing method, and electronic device
TWI569485B (en) Magnetoresistive element
US20080204946A1 (en) Magnetoresistance effect element and magnetic memory device
US11056640B2 (en) Magnetoresistive memory device including a high dielectric constant capping layer and methods of making the same
KR101983077B1 (en) Manufacturing method of storage element
JPWO2017208576A1 (en) Magnetic laminated film, magnetic memory element, magnetic memory, and manufacturing method thereof
US11005034B1 (en) Magnetoresistive memory device including a high dielectric constant capping layer and methods of making the same
US10991407B1 (en) Magnetoresistive memory device including a high dielectric constant capping layer and methods of making the same
JP6355162B2 (en) Half-metal ferromagnetic junction structure, five-layer magnetic tunnel junction element using the same, and magnetic memory device
US20140301135A1 (en) Mram having novelself-referenced read method
KR101476932B1 (en) Magnetic tunnel junction structure having perpendicular magnetic anisotropy, method of manufacturing the same and magnetic device including the same
JP2019057598A (en) Magnetic memory
WO2001024289A1 (en) Magnetoresistance effect memory device and method for producing the same
WO2021101585A1 (en) Magnetoresistive memory device including a high dielectric constant capping layer and methods of making the same
JP2010205931A (en) Method of manufacturing magnetic memory device, and magnetic memory device
US11404632B2 (en) Magnetoresistive memory device including a magnesium containing dust layer
KR20150095187A (en) Magnetic tunnel junction structure with perpendicular magnetic anisotropy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14885059

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14885059

Country of ref document: EP

Kind code of ref document: A1