WO2015132986A1 - Breath diagnosis device - Google Patents

Breath diagnosis device Download PDF

Info

Publication number
WO2015132986A1
WO2015132986A1 PCT/JP2014/073936 JP2014073936W WO2015132986A1 WO 2015132986 A1 WO2015132986 A1 WO 2015132986A1 JP 2014073936 W JP2014073936 W JP 2014073936W WO 2015132986 A1 WO2015132986 A1 WO 2015132986A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
concentration
substance
diagnostic apparatus
wavelength
Prior art date
Application number
PCT/JP2014/073936
Other languages
French (fr)
Japanese (ja)
Inventor
康友 塩見
茂行 高木
努 角野
陽 前川
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Publication of WO2015132986A1 publication Critical patent/WO2015132986A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Measuring devices for evaluating the respiratory organs
    • A61B5/082Evaluation by breath analysis, e.g. determination of the chemical composition of exhaled breath
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/031Multipass arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/497Physical analysis of biological material of gaseous biological material, e.g. breath

Definitions

  • Embodiments of the present invention relate to a breath diagnostic device.
  • the gas of breath is measured.
  • the measurement results facilitate disease prevention and early detection.
  • Embodiments of the present invention provide an accurate breath diagnostic device.
  • a breath diagnostic apparatus includes a detection unit and a processing unit.
  • the detection unit includes: a first signal depending on an amount of the first substance in a sample gas including exhalation containing a first substance and a second substance different from the first substance; and a first signal in the sample gas Detecting a second signal dependent on the amount of the second substance.
  • the processing unit is configured to select a first concentration of the first substance in the sample gas and a second concentration of the second substance in the sample gas based on the first signal and the second signal detected by the detection section. Calculate the concentration.
  • the processing unit calculates a correction concentration obtained by correcting the second concentration based on the first concentration, the second concentration, and a third concentration of the first substance in the atmosphere.
  • FIG. 1 is a schematic view illustrating a breath diagnostic apparatus according to a first embodiment; It is a flowchart figure which illustrates operation of a breath diagnostic device concerning a 1st embodiment.
  • FIG. 3A to FIG. 3C are schematic views illustrating another breath diagnostic apparatus according to the first embodiment.
  • FIG. 8 is a schematic view illustrating the operation of another breath diagnosis device according to the first embodiment;
  • FIG. 5A and FIG. 5B are schematic views illustrating characteristics of the breath diagnostic apparatus according to the first embodiment.
  • FIG. 6A and FIG. 6B are schematic cross sections illustrating a part of the breath diagnostic apparatus according to the first embodiment.
  • FIGS. 7A to 7C are schematic views illustrating the breath diagnostic apparatus according to the second embodiment.
  • FIG. 8A to FIG. 8C are schematic views illustrating a part of the breath diagnostic apparatus according to the embodiment.
  • FIG. 1 is a schematic view illustrating the breath diagnostic apparatus according to the first embodiment.
  • the breath diagnostic apparatus 110 includes a detection unit 40 and a processing unit 45.
  • the detection unit 40 detects a substance in the sample gas 50 including the exhalation 50a.
  • the exhalation 50a is exhalation of an animal including, for example, a human.
  • the exhalation 50 a contains the first substance 51 and the second substance 52.
  • the first substance 51 is, for example, carbon dioxide.
  • the second substance 52 is, for example, acetone.
  • the second substance 52 is a substance related to the purpose of diagnosis in the breath diagnostic apparatus 110. For example, when suffering from diabetes, the concentration of acetone in the exhaled breath 50a is increased as compared to when in health. In the breath diagnostic apparatus 110, the health condition is diagnosed by measuring the concentration of a substance (for example, acetone or the like). Examples of the substance will be described later.
  • the first substance 51 is a substance to be a reference when detecting the second substance 52.
  • the detection unit 40 detects the first signal and the second signal.
  • the first signal depends on the amount of the first substance in the sample gas 50.
  • the second signal depends on the amount of the second substance 52 in the sample gas 50.
  • the sample gas 50 may include the breath 50a of the subject and the atmosphere. That is, not all of the sample gas 50 is necessarily the breath 50a.
  • the exhalation 50a and other gas are mixed.
  • the processing unit 45 processes the first signal and the second signal detected by the detection unit 40. An example of the operation of the processing unit 45 will be described later.
  • the breath diagnostic apparatus 110 further includes a supply unit 10i, a light source unit 30, and a cell unit 20.
  • the detection unit 40 performs detection using light.
  • the sample gas 50 is supplied to the supply unit 10i.
  • the light source unit 30 emits measurement light 30L.
  • the light source unit 30 includes a semiconductor light emitting element 30a and a drive unit 30b.
  • the driving unit 30 b is electrically connected to the semiconductor light emitting element 30 a.
  • the driving unit 30 b supplies power for light emission to the semiconductor light emitting element 30 a.
  • a quantum cascade laser QCL
  • An example of the semiconductor light emitting device 30a will be described later.
  • the measurement light 30L includes a wavelength absorbed by the substance contained in the breath 50a.
  • the measurement light 30L includes infrared light (infrared light).
  • the measurement light 30L is, for example, not less than 0.7 micrometers ( ⁇ m) and not more than 1000 ⁇ m.
  • the measurement light 30L may be 2.5 ⁇ m or more and 14 ⁇ m or less.
  • the cell unit 20 includes a first reflection unit 21 and a second reflection unit 22.
  • the first reflecting portion 21 and the second reflecting portion 22 are reflective to the measurement light 30L.
  • the sample gas 50 introduced from the supply unit 10i is introduced into the space 23s between the first reflection unit 21 and the second reflection unit 22.
  • the cell unit 20 further includes, for example, the cell 23.
  • the cell 23 forms a space 23s. At least a part of the space 23 s is disposed between the first reflecting portion 21 and the second reflecting portion 22.
  • the measurement light 30L passes through, for example, the space 23s in a state where the sample gas 50 is introduced into the space 23s.
  • the measurement light 30L is reflected by the first reflecting portion 21 and the second reflecting portion 22, and reciprocates between the first reflecting portion 21 and the second reflecting portion 22 (space 23s) a plurality of times.
  • a part of the measurement light 30L is absorbed by the substances (the first substance 51 and the second substance 52) contained in the sample gas 50.
  • the component of the wavelength specific to the substance in the measurement light 30L is absorbed. The degree of absorption depends on the concentration of the substance.
  • the detection unit 40 detects, for example, the measurement light 30L that has passed through the space 23s in a state where the sample gas 50 is introduced into the space 23s.
  • the detection unit 40 an element having sensitivity in the infrared region is used.
  • a thermopile or a semiconductor element for example, MCT (HgCdTe) or the like is used for the detection unit 40.
  • the detection unit 40 is optional.
  • the sample gas 50 including the breath 50a is irradiated with the measurement light 30L, and the absorption of the measurement light 30L by the substance (the first substance 51 and the second substance 52) contained in the breath 50a is measured. Ru. Thereby, the concentration of the substance contained in the breath 50a is measured.
  • the sample gas 50 introduced from the supply unit 10i is introduced into the cell unit 20 through the first pipe 15a.
  • the first pipe 15 a is provided between the supply unit 10 i and the cell unit 20.
  • the sample gas 50 introduced into the cell unit 20 reaches the discharge unit 10 o through the second pipe 15 b.
  • the sample gas 50 is discharged to the outside through the discharge unit 10o.
  • a housing 10 w is further provided.
  • the cell unit 20, the light source unit 30, the detection unit 40, the first pipe 15a and the second pipe 15b are stored in the housing 10w.
  • the first optical component 36 a is provided between the light source unit 30 and the cell unit 20 on the light path of the measurement light 30 ⁇ / b> L.
  • a second optical component 36 b is provided between the cell unit 20 and the detection unit 40 on the optical path.
  • These optical components include, for example, at least one of a condensing optical element and a collimating optical element.
  • a filter may be used for these optical components.
  • An optical switch may be used for these optical components.
  • the optical components may be provided or omitted as necessary.
  • the breath diagnostic apparatus 110 is provided with the cell unit 20 including the space 23s into which the sample gas 50 is introduced, and the light source unit 30 that emits the measurement light 30L.
  • the detection unit 40 detects the measurement light 30L that has passed through the space 23s into which the sample gas 50 has been introduced, and detects a second signal.
  • the detection unit 40 detects the measurement light 30L that has passed through the space 23s into which the sample gas 50 is introduced, and detects the first signal.
  • the processing unit 45 processes the detection signals (first and second signals) obtained by the detection unit 40.
  • the detection signals first and second signals obtained by the detection unit 40.
  • FIG. 2 is a flowchart illustrating the operation of the breath diagnostic apparatus according to the first embodiment.
  • the first concentration of the first substance 51 in the sample gas 50 and the second substance 52 in the sample gas 50 based on the first signal and the second signal detected by the detection unit 40.
  • the second concentration of the light source step S110.
  • the ratio of the intensity of the measurement light 30L emitted from the sample gas 50 to the intensity of the measurement light 30L incident on the sample gas 50 is calculated.
  • the wavelengths absorbed by the first substance 51 and the second substance 52 are different.
  • the first concentration and the second concentration are calculated by finding the above ratio at a specific wavelength.
  • a corrected concentration in which the second concentration is corrected is calculated (step S120).
  • the sample gas 50 may contain other gas (for example, the atmosphere) in addition to the breath 50a. If another gas is contained, the concentration of the substance in the sample gas 50 is different from the concentration of the substance in the breath 50a. Therefore, when correction is not performed, the concentration of the breath 50a is not accurate because it is different from the original concentration.
  • other gas for example, the atmosphere
  • the atmosphere may flow together.
  • all the gas may not be replaced by the exhalation 50a due to turbulent flow or the like.
  • gas exchange in the lung may be insufficient and air may be directly blown into the supply unit 10i. In these cases, the concentration of the target substance becomes inaccurate. Stable measurement results can not be obtained.
  • the concentration of the target substance (the second substance 52) is corrected by the concentration of the reference substance (the first substance 51).
  • the corrected corrected density is used for diagnosis.
  • the proportion of the exhalation 50 a contained in the sample gas 50 is estimated.
  • the second density is corrected according to the ratio to calculate a corrected density.
  • the proportion of exhalation 50a contained in the sample gas 50 is estimated.
  • the second density is corrected according to the ratio to calculate a corrected density.
  • the concentration of the first substance 51 (the substance to be referred to) is determined in advance.
  • the concentration of carbon dioxide contained in the exhaled breath 50a breathed out sufficiently deeply by a standard human being is, for example, about 40,000 ppm.
  • This concentration may depend on various conditions including, for example, the sex, age, height and weight of the subject. This concentration may be determined for each subject if necessary. The concentration may be determined individually for each of gender, age, height and weight.
  • the concentration of carbon dioxide in exhaled breath is higher than the concentration of carbon dioxide in the atmosphere. This is because carbon dioxide is increased by respiration. Therefore, the concentration of breath 50a (or the concentration of the atmosphere) in the sample gas 50 can be estimated by using, for example, a substance that changes due to respiration as a reference substance, such as carbon dioxide.
  • the concentration of the first substance 51 in the sample gas 50 is set to a first concentration C1.
  • the concentration of the second substance 52 in the sample gas 50 is set to a second concentration C2.
  • the first concentration C1 and the second concentration C2 are measured values.
  • the concentration of the first substance 51 in the atmosphere is taken as a third concentration C3.
  • the third concentration C3 is predetermined for the first substance 51.
  • the first substance 51 is carbon dioxide
  • the third concentration C3 is about 400 ppm. If the third concentration changes due to the temperature, humidity, atmospheric pressure, etc. of the atmosphere, the third concentration C3 may be changed as necessary.
  • the concentration determined for the first substance 51 is taken as a fourth concentration C4.
  • the fourth concentration C4 is predetermined for the first substance 51.
  • the fourth concentration C4 is about 40,000 ppm.
  • the proportion of the exhalation 50a in the sample gas 50 is X.
  • the proportion of the atmosphere in the sample gas 50 is (1-X).
  • the first concentration C1, the third concentration C3 and the fourth concentration C4 satisfy the following relationship.
  • the fifth density C5 is the corrected density after correction.
  • the fifth concentration C5 corresponds to the concentration of the second substance 52 when all of the sample gas 50 is the breath 50a.
  • the second concentration C2 (the concentration of the measurement result) and the fifth concentration C5 satisfy the following relationship.
  • the correction density is a value corresponding to C2 ⁇ (C4 ⁇ C3) / (C1 ⁇ C3). This value itself may be used. It may include an error.
  • the correction density may be 0.9 times or more and 1.1 times or less of C2 ⁇ (C4 ⁇ C3) / (C1 ⁇ C3).
  • the correction concentration corresponds to the concentration (original concentration) of the second substance 52 in the breath 50a.
  • the first substance 51 a substance having a different concentration in the atmosphere and the concentration in the breath 50a is selected. For example, carbon dioxide changes concentration by respiration. Oxygen also changes concentration by breathing. Such a substance is used as the first substance 51. That is, the concentration of the first substance 51 in the atmosphere (third concentration C3) is different from the concentration of the first substance 51 in the breath 50a.
  • the first substance 51 contains at least one of carbon dioxide and oxygen.
  • the second substance 52 is a substance targeted for diagnosis.
  • the second substance 52 is, for example, a carbon dioxide isotope. In this case, for example, information on H. pylori can be obtained.
  • the second substance 52 is, for example, methane. In this case, for example, information on intestinal anaerobic bacteria can be obtained.
  • the second substance 52 is, for example, ethanol. In this case, for example, information on drinking can be obtained.
  • the second substance 52 is, for example, acetaldehyde. In this case, for example, information on drinking metabolites and lung cancer can be obtained.
  • the second substance 52 is, for example, acetone. In this case, for example, information on diabetes can be obtained.
  • the second substance 52 is, for example, nitric oxide. In this case, for example, information on asthma can be obtained.
  • the second substance 52 is, for example, ammonia. In this case, for example, information on hepatitis can be obtained.
  • the second substance 52 is, for example, nonanal. In this case, for example, information on lung cancer can be obtained.
  • the second substance 52 contains at least one of carbon dioxide, methane, ethanol, acetaldehyde, acetone, carbon monoxide, ammonia and nonanal. In embodiments, the second material 52 is optional.
  • FIG. 3A to FIG. 3C are schematic views illustrating another breath diagnostic apparatus according to the first embodiment.
  • the reflection part and the like are omitted.
  • the light source unit 30 is provided with a first light emitting unit 38a and a second light emitting unit 38b.
  • the first light emitting unit 38a emits the first light L1 of the first wavelength.
  • the second light emitting unit 38b emits the second light L2 of the second wavelength.
  • the second wavelength is different from the first wavelength.
  • the first light emitting unit 38a and the second light emitting unit 38b are driven by, for example, the driving unit 30b.
  • the first wavelength when carbon dioxide is used as the first substance 51, the first wavelength is, for example, about 9 ⁇ m.
  • the first wavelength may be, for example, about 5 ⁇ m.
  • the second wavelength is, for example, about 7 ⁇ m.
  • the second wavelength may be, for example, about 8 ⁇ m.
  • Semiconductor light emitting elements for example, quantum cascade lasers or the like are used as the first light emitting unit 38 a and the second light emitting unit 38 b. These light emitting units are included in the semiconductor light emitting element 30a.
  • the measurement light 30L includes a first light L1 of a first wavelength and a second light L2 of a second wavelength.
  • the detection unit 40 detects a first signal by the first light L1, and detects a second signal by the second light L2.
  • an optical element unit (first optical element unit 37a) is provided.
  • the first optical element unit 37a is provided between the light source unit 30 and the detection unit 40 on the optical path of the measurement light 30L.
  • the first optical element unit 37a is provided between the light source unit 30 and the space 23s on the optical path.
  • the first optical component 36a is disposed between the first optical element portion 37a and the space 23s.
  • the first optical element portion 37a reflects one of the first light L1 and the second light L2 and transmits the other of the first light L1 and the second light L2.
  • the first optical element unit 37a is, for example, a beam splitter.
  • the first optical element unit 37a By using the first optical element unit 37a, for example, the first light L1 and the second light L2 can pass through the same place in the space 23s. If the concentration of the exhalation 50a is uneven in the space 23s, accurate measurement is possible.
  • a part of the first light L1 is coaxial with a part of the second light L2. At least a portion of the light path of the first light L1 overlaps with at least a portion of the light path of the second light L2. This can improve the accuracy.
  • the transmittance of the first light L1 in the passage of the space 23s into which the sample gas 50 is introduced is, for example, 0.1% or more and 99.9% or less.
  • the transmittance of the second light L2 in the passage of the space 23s into which the sample gas 50 is introduced is, for example, 0.1% or more and 99.9% or less.
  • the transmittance is preferably 0.1% or more.
  • the transmittance is preferably 99.9% or less.
  • the detection unit 40 includes a first detection element 40a and a second detection element 40b.
  • the first detection element 40a detects the first light L1.
  • the second detection element 40b detects the second light L2.
  • a second optical element unit 37 b is provided.
  • the second optical element unit 37 b is provided between the space 23 s and the detection unit 40 on the optical path of the measurement light 30 L.
  • the second optical element unit 37 b is, for example, a beam splitter.
  • a signal processing unit 41 is provided in the breath diagnostic apparatus 113 according to the present embodiment.
  • the signal processing unit 41 is connected to the first detection element 40a.
  • the signal processed by the signal processing unit 41 is supplied to the processing unit 45.
  • the first light emitting unit 38a emits the first light L1 at the first frequency.
  • the second light emitting unit 38b emits the second light L2 at the second frequency.
  • the second frequency is different from the first frequency.
  • Such an operation is controlled by the drive unit 30b.
  • the signal obtained by the first detection element 40 a is processed by the signal processing unit 41 corresponding to these frequencies.
  • the signal processing unit 41 extracts a signal of the first frequency.
  • the signal processing unit 41 extracts a signal of the second frequency.
  • the signal processing unit 41 performs, for example, frequency detection processing. Thereby, light of a plurality of wavelengths can be efficiently detected by one detection element.
  • FIG. 4 is a schematic view illustrating the operation of another breath diagnostic apparatus according to the first embodiment.
  • FIG. 4 illustrates the intensity DP1 of the first light L1 and the intensity DP2 of the second light L1.
  • the horizontal axis is time.
  • the first light L1 and the second light L2 are emitted at frequencies different from each other.
  • each of the intensity of the first light L1 and the intensity of the second light L2 can be separated.
  • the detection unit 40 detects the first light L1 in a first cycle and detects the second light L2 in a second cycle.
  • the detection unit 40 detects the first light L1 in the first period P1.
  • the detection unit 40 detects the second light L2 in the second period P2.
  • FIG. 5A and FIG. 5B are schematic views illustrating characteristics of the breath diagnostic apparatus according to the first embodiment. These figures illustrate the wavelength characteristics of the measurement light 30L.
  • the horizontal axis is the wavelength ⁇ m.
  • the vertical axis is the intensity of the measurement light 30L.
  • the measurement light 30L includes a component of the first wavelength ⁇ 1 and a component of the second wavelength ⁇ 2. In this example, it further includes the components between them. That is, the measurement light 30L further includes the third light of the third wavelength ⁇ 3 between the first wavelength ⁇ 1 and the second wavelength ⁇ 2.
  • a broad QCL is used as the light source unit 30.
  • the broad QCL emits light having a wavelength in the range of the first wavelength ⁇ 1 to the second wavelength ⁇ 2.
  • the light intensity (absorptivity) is sequentially measured for the light of the first wavelength ⁇ 1, the third wavelength ⁇ 3, and the second wavelength ⁇ 2. The concentration is calculated based on this result.
  • the wavelength for measuring the concentration may be changed continuously or may be changed discretely.
  • the measurement light 30L has a first wavelength ⁇ 1, a second wavelength ⁇ 2, and a wavelength between the first wavelength ⁇ 1 and the second wavelength ⁇ 2.
  • the detection unit 40 may detect the measurement light 30L by changing the wavelength between the first wavelength ⁇ 1 and the second wavelength ⁇ 2.
  • the measurement light 30L may have a first peak of the first wavelength ⁇ 1 and a second peak of the second wavelength ⁇ 2.
  • FIG. 6A and FIG. 6B are schematic cross sections illustrating a part of the breath diagnostic apparatus according to the first embodiment.
  • the first light emitting unit 38a and the second light emitting unit 38b are provided on the substrate 35.
  • the first light emitting unit 38a includes a first ridge portion RG1.
  • the second light emitting unit 38 b includes a second ridge portion RG2.
  • Measurement light 30L (laser light) of different wavelength is emitted from each light emitting portion.
  • the light source unit 30 includes a semiconductor laser element (semiconductor light emitting element 30a).
  • the semiconductor laser device includes a first ridge portion RG1 that emits the first light L1 and a second ridge portion RG2 that emits the second light L2.
  • the first light emitting unit 38a is provided on the substrate 35, and the second light emitting unit 38b is provided on the first light emitting unit 38a.
  • a plurality of light emitting units may be stacked.
  • FIGS. 7A to 7C are schematic views illustrating the breath diagnostic apparatus according to the second embodiment.
  • the detection unit 40 and the processing unit 45 are also provided in the breath diagnostic apparatus 120 according to the present embodiment.
  • a light source unit 30 and a cell unit 20 are further provided.
  • a supply unit 10i, a discharge unit 10o, and a housing 10w may be further provided.
  • detection of the second substance 52 is performed by the measurement light 30L. Then, the detection of the first substance 51 is performed without using the measurement light 30L.
  • the detection unit 40 is provided with a first detector 43a in addition to the first detection element 40a (light detection element).
  • the first detector 43 a detects the first substance 51 in the sample gas 50.
  • the first substance 51 is carbon dioxide
  • a semiconductor sensor can be used as the first detector 43a.
  • the concentration of carbon dioxide can be measured by the semiconductor sensor.
  • the concentration of oxygen can also be measured by the zirconia sensor.
  • the first detector 43a is disposed in the space 23s.
  • the first detector 43a detects the first substance 51 in the space 23s into which the sample gas 50 has been introduced.
  • the first detector 43a is disposed close to the light path of the measurement light 30L. This enables accurate detection even when the concentration of the first substance 51 is uneven in the space 23s.
  • the detection unit 40 is provided with a plurality of detectors.
  • a second detector 43 b and a third detector 43 c are provided.
  • the second detector 43 b and the second detector 43 c detect the concentration of the first substance 51 in the sample gas 50.
  • these detectors detect the first substance 51 in the space 23s into which the sample gas 50 is introduced.
  • semiconductor sensors can be used.
  • the second detector 43b is aligned with the first detector 43a along the optical path of the measurement light 30L in the space 23s.
  • one end of a third pipe 15c is connected to the first pipe 15a.
  • a first detector 43a is provided at the other end of the third pipe 15c.
  • a part of the supplied sample gas 50 is supplied to the space 23s.
  • Another part of the sample gas 50 flows toward the first detector 43a via the third pipe 15c.
  • the first detector 43a may detect the concentration of the first substance 51 at a position different from the space 23s.
  • FIG. 8A to FIG. 8C are schematic views illustrating a part of the breath diagnostic apparatus according to the embodiment.
  • FIG. 8A is a schematic perspective view.
  • FIG. 8 (b) is a cross-sectional view taken along line A1-A2 of FIG. 8 (a).
  • FIG. 8C is a schematic view illustrating the operation of the light source unit 30.
  • a semiconductor light emitting element 30 a is used as the light source unit 30.
  • a laser is used as the semiconductor light emitting element 30a.
  • a quantum cascade laser is used.
  • the semiconductor light emitting device 30a includes the substrate 35, the laminate 31, the first electrode 34a, the second electrode 34b, and the dielectric layer 32 (first dielectric layer). , And the insulating layer 33 (second dielectric layer).
  • a substrate 35 is provided between the first electrode 34 a and the second electrode 34 b.
  • the substrate 35 includes a first portion 35a, a second portion 35b, and a third portion 35c. These parts are arranged in one plane. This plane intersects (eg, is parallel to) the direction from the first electrode 34a to the second electrode 34b.
  • the third portion 35c is disposed between the first portion 35a and the second portion 35b.
  • the stacked body 31 is provided between the third portion 35c and the first electrode 34a.
  • a dielectric layer 32 is provided between the first portion 35a and the first electrode 34a and between the second portion 35b and the first electrode 34a.
  • An insulating layer 33 is provided between the dielectric layer 32 and the first electrode 34a.
  • the stacked body 31 has a stripe shape.
  • the stacked body 31 functions as a ridge waveguide RG.
  • the two end faces of the ridge waveguide RG become mirror surfaces.
  • the light 31L emitted from the laminate 31 is emitted from the end face (light emitting surface).
  • the light 31L is an infrared laser light.
  • the optical axis 31Lx of the light 31L is along the extending direction of the ridge waveguide RG.
  • the stacked body 31 includes, for example, a first cladding layer 31a, a first guide layer 31b, an active layer 31c, a second guide layer 31d, and a second cladding layer 31e. ,including. These layers are arranged in this order along the direction from the substrate 35 toward the first electrode 34a.
  • Each of the refractive index of the first cladding layer 31a and the refractive index of the second cladding layer 31e is determined by the refractive index of the first guide layer 31b, the refractive index of the active layer 31c, and the refractive index of the second guide layer 31d. Too low.
  • the light 31 L generated in the active layer 31 c is confined in the stack 31.
  • the first guide layer 31 b and the first cladding layer 31 a may be collectively referred to as a cladding layer.
  • the second guide layer 31d and the second cladding layer 31e may be collectively referred to as a cladding layer.
  • the stacked body 31 has a first side 31 sa and a second side 31 sb perpendicular to the optical axis 31 Lx.
  • the distance 31w (width) between the first side surface 31sa and the second side surface 31sb is, for example, 5 ⁇ m or more and 20 ⁇ m or less. Thereby, for example, control of the horizontal lateral mode is facilitated, and output improvement is facilitated. If the distance 31 w is excessively long, high-order modes are likely to occur in the horizontal transverse mode, and it is difficult to increase the output.
  • the refractive index of the dielectric layer 32 is lower than the refractive index of the active layer 31c.
  • the ridge waveguide RG is formed by the dielectric layer 32 along the optical axis 31Lx.
  • the active layer 31c has, for example, a cascade structure.
  • the cascade structure for example, the first region r1 and the second region r2 are alternately stacked.
  • the unit structure r3 includes a first region r1 and a second region r2. A plurality of unit structures r3 are provided.
  • first barrier layer BL1 and the first quantum well layer WL1 are provided in the first region r1.
  • the second barrier layer BL2 is provided in the second region.
  • the third barrier layer BL3 and the second quantum well layer WL2 are provided in another first region r1a.
  • a fourth barrier layer BL4 is provided in another second region r2a.
  • an intersubband optical transition of the first quantum well layer WL1 occurs in the first region r1, an intersubband optical transition of the first quantum well layer WL1 occurs. Thereby, for example, light 31La having a wavelength of 3 ⁇ m to 18 ⁇ m is emitted.
  • the energy of carriers c1 (for example, electrons) injected from the first region r1 can be relaxed.
  • the well width WLt is, for example, 5 nm or less.
  • the energy levels are discretely generated, for example, the first sub-band WLa (high level Lu) and the second sub-band WLb (low level Ll).
  • the carriers c1 injected from the first barrier layer BL1 are effectively confined in the first quantum well layer WL1.
  • the carrier c1 transitions from the high level Lu to the low level Ll
  • the light 31La corresponding to the energy difference (the difference between the high level Lu and the low level Ll) is emitted. That is, an optical transition occurs.
  • the quantum well layer may include a plurality of wells with overlapping wave functions.
  • the respective high levels Lu of the plurality of quantum well layers may be identical to each other.
  • the low levels Ll of the plurality of quantum well layers may be the same as one another.
  • intersubband optical transitions occur in either the conduction band or the valence band.
  • recombination of holes and electrons by a pn junction is not necessary.
  • carriers c1 of either holes or electrons cause optical transition to emit light.
  • carriers c1 for example, electrons
  • a barrier layer for example, the first barrier layer BL1
  • the well layer for example, the first quantum well layer WL1 is implanted. This causes an intersubband optical transition.
  • the second region r2 has, for example, a plurality of subbands.
  • the sub band is, for example, a mini band.
  • the energy difference in the subbands is small.
  • the second region r2 for example, light (for example, infrared light having a wavelength of 3 ⁇ m to 18 ⁇ m) is not substantially emitted.
  • the carriers c1 (electrons) of the low level L1 of the first region r1 pass through the second barrier layer BL2, are injected into the second region r2, and are relaxed.
  • the carrier c1 is injected into another cascaded first region r1a. An optical transition occurs in this first region r1a.
  • optical transition occurs in each of the plurality of unit structures r3. This makes it easy to obtain high light output in the entire active layer 31c.
  • the light source unit 30 includes the semiconductor light emitting element 30a.
  • the semiconductor light emitting element 30a emits the measurement light 30L by energy relaxation of electrons in the sub-bands of the plurality of quantum wells (for example, the first quantum well layer WL1 and the second quantum well layer WL2).
  • GaAs is used for the quantum well layers (for example, the first quantum well layer WL1 and the second quantum well layer WL2).
  • Al x Ga 1 -x As (0 ⁇ x ⁇ 1) is used for the barrier layers (eg, the first to fourth barrier layers BL1 to BL4).
  • the barrier layers eg, the first to fourth barrier layers BL1 to BL4.
  • the first cladding layer 31a and the second cladding layer 31e contain, for example, Si as an n-type impurity.
  • the impurity concentration in these layers is, for example, 1 ⁇ 10 18 cm ⁇ 3 or more and 1 ⁇ 10 20 cm ⁇ 3 or less (for example, about 6 ⁇ 10 18 cm ⁇ 3 ).
  • the thickness of each of these layers is, for example, 0.5 ⁇ m or more and 2 ⁇ m or less (for example, about 1 ⁇ m).
  • the first guide layer 31 b and the second guide layer 31 d contain, for example, Si as an n-type impurity.
  • the impurity concentration in these layers is, for example, 1 ⁇ 10 16 cm ⁇ 3 or more and 1 ⁇ 10 17 cm ⁇ 3 or less (for example, about 4 ⁇ 10 16 cm ⁇ 3 ).
  • the thickness of each of these layers is, for example, 2 ⁇ m or more and 5 ⁇ m or less (for example, 3.5 ⁇ m).
  • the distance 31 w (the width of the stack 31, that is, the width of the active layer 31 c) is, for example, 5 ⁇ m or more and 20 ⁇ m or less (for example, about 14 ⁇ m).
  • the length of the ridge waveguide RG is, for example, 1 mm or more and 5 mm or less (for example, about 3 mm).
  • the semiconductor light emitting device 30a (quantum cascade laser) operates at an operating voltage of, for example, 10 V or less.
  • the consumption current is lower than that of a carbon dioxide gas laser device or the like. This enables low power consumption operation.
  • an accurate breath diagnosis device can be provided.
  • breath diagnosis apparatuses that can be appropriately designed and implemented by those skilled in the art based on the breath diagnosis apparatus described above as the embodiment of the present invention also fall within the scope of the present invention as long as the scope of the present invention is included. Belongs to

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Pathology (AREA)
  • Pulmonology (AREA)
  • Biomedical Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Physiology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

In an embodiment, a breath diagnosis device is provided with a detection unit and a processing unit. The detection unit detects a first signal dependent on the amount of a first substance in a sample gas including breath that includes a first substance and a second substance different from the first substance and a second signal dependent on the amount of a second substance in the sample gas. A processing unit calculates a first concentration of the first substance in the sample gas and a second concentration of the second substance in the sample gas on the basis of the first signal and second signal detected by the detection unit. The processing unit calculates a corrected concentration in which the second concentration is corrected on the basis of the first concentration, the second concentration, and a third concentration of the first substance in the atmosphere.

Description

呼気診断装置Breath diagnostic device
 本発明の実施形態は、呼気診断装置に関する。 Embodiments of the present invention relate to a breath diagnostic device.
 呼気診断装置においては、呼気のガスを測定する。この測定結果より、病気の予防や早期発見が容易になる。呼気診断装置において、正確な測定結果を得ることが望まれる。 In the breath diagnostic apparatus, the gas of breath is measured. The measurement results facilitate disease prevention and early detection. In the breath diagnostic apparatus, it is desirable to obtain accurate measurement results.
特開2013-11620号公報JP, 2013-11620, A
 本発明の実施形態は、正確な呼気診断装置を提供する。 Embodiments of the present invention provide an accurate breath diagnostic device.
 本発明の実施形態によれば、検出部と、処理部と、を含む呼気診断装置が提供される。前記検出部は、第1物質と、前記第1物質とは異なる第2物質と、を含む呼気を含む試料気体中の前記第1物質の量に依存する第1信号と、前記試料気体中の前記第2物質の量に依存する第2信号と、を検出する。前記処理部は、前記検出部で検出された第1信号及び第2信号に基づいて、前記試料気体中の前記第1物質の第1濃度と、前記試料気体中の前記第2物質の第2濃度と、を算出する。前記処理部は、前記第1濃度と、前記第2濃度と、大気中の前記第1物質の第3濃度と、に基づいて、前記第2濃度を補正した補正濃度を算出する。 According to an embodiment of the present invention, a breath diagnostic apparatus is provided that includes a detection unit and a processing unit. The detection unit includes: a first signal depending on an amount of the first substance in a sample gas including exhalation containing a first substance and a second substance different from the first substance; and a first signal in the sample gas Detecting a second signal dependent on the amount of the second substance. The processing unit is configured to select a first concentration of the first substance in the sample gas and a second concentration of the second substance in the sample gas based on the first signal and the second signal detected by the detection section. Calculate the concentration. The processing unit calculates a correction concentration obtained by correcting the second concentration based on the first concentration, the second concentration, and a third concentration of the first substance in the atmosphere.
第1の実施形態に係る呼気診断装置を例示する模式図である。1 is a schematic view illustrating a breath diagnostic apparatus according to a first embodiment; 第1の実施形態に係る呼気診断装置の動作を例示するフローチャート図である。It is a flowchart figure which illustrates operation of a breath diagnostic device concerning a 1st embodiment. 図3(a)~図3(c)は、第1の実施形態に係る別の呼気診断装置を例示する模式図である。FIG. 3A to FIG. 3C are schematic views illustrating another breath diagnostic apparatus according to the first embodiment. 第1の実施形態に係る別の呼気診断装置の動作を例示する模式図である。FIG. 8 is a schematic view illustrating the operation of another breath diagnosis device according to the first embodiment; 図5(a)及び図5(b)は、第1の実施形態に係る呼気診断装置の特性を例示する模式図である。FIG. 5A and FIG. 5B are schematic views illustrating characteristics of the breath diagnostic apparatus according to the first embodiment. 図6(a)及び図6(b)は、第1の実施形態に係る呼気診断装置の一部を例示する模式的断面である。FIG. 6A and FIG. 6B are schematic cross sections illustrating a part of the breath diagnostic apparatus according to the first embodiment. 図7(a)~図7(c)は、第2の実施形態に係る呼気診断装置を例示する模式図である。FIGS. 7A to 7C are schematic views illustrating the breath diagnostic apparatus according to the second embodiment. 図8(a)~図8(c)は、実施形態に係る呼気診断装置の一部を例示する模式図である。FIG. 8A to FIG. 8C are schematic views illustrating a part of the breath diagnostic apparatus according to the embodiment.
 以下に、本発明の各実施の形態について図面を参照しつつ説明する。 
 なお、図面は模式的または概念的なものであり、各部分の厚みと幅との関係、部分間の大きさの比率などは、必ずしも現実のものと同一とは限らない。また、同じ部分を表す場合であっても、図面により互いの寸法や比率が異なって表される場合もある。 
 なお、本願明細書と各図において、既出の図に関して前述したものと同様の要素には同一の符号を付して詳細な説明は適宜省略する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
The drawings are schematic or conceptual, and the relationship between the thickness and width of each part, the ratio of sizes between parts, and the like are not necessarily the same as the actual ones. In addition, even in the case of representing the same portion, the dimensions and ratios may be different from one another depending on the drawings.
In the specification of the present application and the drawings, the same elements as those described above with reference to the drawings are denoted by the same reference numerals, and the detailed description will be appropriately omitted.
 (第1の実施形態) 
 図1は、第1の実施形態に係る呼気診断装置を例示する模式図である。 
 図1に表したように、本実施形態に係る呼気診断装置110は、検出部40と、処理部45と、を含む。
First Embodiment
FIG. 1 is a schematic view illustrating the breath diagnostic apparatus according to the first embodiment.
As shown in FIG. 1, the breath diagnostic apparatus 110 according to the present embodiment includes a detection unit 40 and a processing unit 45.
 検出部40は、呼気50aを含む試料気体50中の物質を検出する。呼気50aは、例えば、ヒトを含む動物の呼気である。呼気50aには、第1物質51と、第2物質52と、が含まれる。第1物質51は、例えば、二酸化酸素である。第2物質52は、例えば、アセトンである。第2物質52は、呼気診断装置110において、診断の目的に関係する物質である。例えば、糖尿病に罹患すると、呼気50a中のアセトンの濃度が健康時に比べて上昇する。呼気診断装置110においては、物質(例えばアセトンなど)の濃度を測定することで、健康状態が診断される。物質の例については、後述する。一方、第1物質51は、第2物質52を検出する際に、参照となる物質である。 The detection unit 40 detects a substance in the sample gas 50 including the exhalation 50a. The exhalation 50a is exhalation of an animal including, for example, a human. The exhalation 50 a contains the first substance 51 and the second substance 52. The first substance 51 is, for example, carbon dioxide. The second substance 52 is, for example, acetone. The second substance 52 is a substance related to the purpose of diagnosis in the breath diagnostic apparatus 110. For example, when suffering from diabetes, the concentration of acetone in the exhaled breath 50a is increased as compared to when in health. In the breath diagnostic apparatus 110, the health condition is diagnosed by measuring the concentration of a substance (for example, acetone or the like). Examples of the substance will be described later. On the other hand, the first substance 51 is a substance to be a reference when detecting the second substance 52.
 検出部40は、第1信号及び第2信号を検出する。第1信号は、試料気体50中の第1物質の量に依存する。第2信号は、試料気体50中の第2物質52の量に依存する。 The detection unit 40 detects the first signal and the second signal. The first signal depends on the amount of the first substance in the sample gas 50. The second signal depends on the amount of the second substance 52 in the sample gas 50.
 例えば、試料気体50中には、被検者の呼気50aと、大気と、が含まれる場合がある。すなわち、試料気体50中の全てが、必ずしも呼気50aだけではない。試料気体50においては、呼気50aと、その他の気体(大気)と、が混合されている。 For example, the sample gas 50 may include the breath 50a of the subject and the atmosphere. That is, not all of the sample gas 50 is necessarily the breath 50a. In the sample gas 50, the exhalation 50a and other gas (atmosphere) are mixed.
 処理部45は、検出部40で検出された第1信号及び第2信号の処理を行う。処理部45の動作の例については、後述する。 The processing unit 45 processes the first signal and the second signal detected by the detection unit 40. An example of the operation of the processing unit 45 will be described later.
 図1に表したように、呼気診断装置110は、供給部10iと、光源部30と、セル部20と、をさらに含む。この例では、検出部40は、光を用いて検出を行う。 As shown in FIG. 1, the breath diagnostic apparatus 110 further includes a supply unit 10i, a light source unit 30, and a cell unit 20. In this example, the detection unit 40 performs detection using light.
 供給部10iには、試料気体50が供給される。 The sample gas 50 is supplied to the supply unit 10i.
 光源部30は、測定光30Lを出射する。この例では、光源部30は、半導体発光素子30aと、駆動部30bと、を含む。駆動部30bは、半導体発光素子30aに電気的に接続される。駆動部30bは、半導体発光素子30aに、発光のための電力を供給する。後述するように、半導体発光素子30aとして、例えば、量子カスケードレーザ(QCL)が用いられる。半導体発光素子30aの例については、後述する。 The light source unit 30 emits measurement light 30L. In this example, the light source unit 30 includes a semiconductor light emitting element 30a and a drive unit 30b. The driving unit 30 b is electrically connected to the semiconductor light emitting element 30 a. The driving unit 30 b supplies power for light emission to the semiconductor light emitting element 30 a. As described later, for example, a quantum cascade laser (QCL) is used as the semiconductor light emitting element 30a. An example of the semiconductor light emitting device 30a will be described later.
 測定光30Lは、呼気50aに含まれる物質に吸収される波長を含む。測定光30Lは、赤外光(赤外線)を含む。測定光30Lは、例えば、0.7マイクロメートル(μm)以上1000μm以下である。測定光30Lは、例えば、2.5μm以上14μm以下でも良い。 The measurement light 30L includes a wavelength absorbed by the substance contained in the breath 50a. The measurement light 30L includes infrared light (infrared light). The measurement light 30L is, for example, not less than 0.7 micrometers (μm) and not more than 1000 μm. For example, the measurement light 30L may be 2.5 μm or more and 14 μm or less.
 セル部20は、第1反射部21と、第2反射部22と、を含む。第1反射部21及び第2反射部22は、測定光30Lに対して反射性である。 The cell unit 20 includes a first reflection unit 21 and a second reflection unit 22. The first reflecting portion 21 and the second reflecting portion 22 are reflective to the measurement light 30L.
 供給部10iから導入された試料気体50は、第1反射部21と第2反射部22との間の空間23sに導入される。 The sample gas 50 introduced from the supply unit 10i is introduced into the space 23s between the first reflection unit 21 and the second reflection unit 22.
 例えば、セル部20は、例えば、セル23をさらに含む。例えば、セル23により、空間23sが形成される。第1反射部21と第2反射部22との間に空間23sの少なくとも一部が配置される。 For example, the cell unit 20 further includes, for example, the cell 23. For example, the cell 23 forms a space 23s. At least a part of the space 23 s is disposed between the first reflecting portion 21 and the second reflecting portion 22.
 測定光30Lは、空間23sに試料気体50が導入された状態において、例えば、空間23sを通過する。例えば、測定光30Lは、第1反射部21と第2反射部22とで反射して、第1反射部21と第2反射部22との間(空間23s)を複数回往復する。測定光30Lの一部が、試料気体50に含まれる物質(第1物質51及び第2物質52)により吸収される。測定光30Lのうちの、物質に特有の波長の成分が吸収される。吸収の程度は、物質の濃度に依存する。 The measurement light 30L passes through, for example, the space 23s in a state where the sample gas 50 is introduced into the space 23s. For example, the measurement light 30L is reflected by the first reflecting portion 21 and the second reflecting portion 22, and reciprocates between the first reflecting portion 21 and the second reflecting portion 22 (space 23s) a plurality of times. A part of the measurement light 30L is absorbed by the substances (the first substance 51 and the second substance 52) contained in the sample gas 50. The component of the wavelength specific to the substance in the measurement light 30L is absorbed. The degree of absorption depends on the concentration of the substance.
 検出部40は、例えば、空間23sに試料気体50が導入された状態において空間23sを通過した測定光30Lを検出する。 The detection unit 40 detects, for example, the measurement light 30L that has passed through the space 23s in a state where the sample gas 50 is introduced into the space 23s.
 検出部40には、赤外領域に感度を有する素子が用いられる。検出部40には、例えば、サーモパイルまたは半導体素子(例えばMCT(HgCdTe))などが用いられる。実施形態において、検出部40は任意である。 For the detection unit 40, an element having sensitivity in the infrared region is used. For example, a thermopile or a semiconductor element (for example, MCT (HgCdTe)) or the like is used for the detection unit 40. In the embodiment, the detection unit 40 is optional.
 呼気診断装置110においては、呼気50aを含む試料気体50に測定光30Lを照射し、呼気50aに含まれている物質(第1物質51及び第2物質52)による測定光30Lの吸収が測定される。これにより、呼気50aに含まれる物質の濃度が測定される。 In the breath diagnostic apparatus 110, the sample gas 50 including the breath 50a is irradiated with the measurement light 30L, and the absorption of the measurement light 30L by the substance (the first substance 51 and the second substance 52) contained in the breath 50a is measured. Ru. Thereby, the concentration of the substance contained in the breath 50a is measured.
 呼気診断装置110においては、供給部10iから導入された試料気体50は、第1配管15aを通じてセル部20に導入される。第1配管15aは、供給部10iとセル部20との間に設けられる。一方、セル部20に導入された試料気体50は、第2配管15bを通じて、排出部10oに到達する。試料気体50は、排出部10oを通じて外部に排出される。 In the breath diagnostic apparatus 110, the sample gas 50 introduced from the supply unit 10i is introduced into the cell unit 20 through the first pipe 15a. The first pipe 15 a is provided between the supply unit 10 i and the cell unit 20. On the other hand, the sample gas 50 introduced into the cell unit 20 reaches the discharge unit 10 o through the second pipe 15 b. The sample gas 50 is discharged to the outside through the discharge unit 10o.
 この例では、筐体10wがさらに設けられている。筐体10w中に、例えば、セル部20、光源部30、検出部40、第1配管15a及び第2配管15b、が格納される。 In this example, a housing 10 w is further provided. For example, the cell unit 20, the light source unit 30, the detection unit 40, the first pipe 15a and the second pipe 15b are stored in the housing 10w.
 この例では、測定光30Lの光路上において、光源部30とセル部20との間に、第1光学部品36aが設けられている。光路上において、セル部20と検出部40との間に、第2光学部品36bが設けられている。これらの光学部品は、例えば、集光光学素子及びコリメート光学素子の少なくともいずれかを含む。これらの光学部品に、フィルタを用いても良い。これらの光学部品に、光スイッチを用いても良い。光学部品は必要に応じて設けられ、省略しても良い。 In this example, the first optical component 36 a is provided between the light source unit 30 and the cell unit 20 on the light path of the measurement light 30 </ b> L. A second optical component 36 b is provided between the cell unit 20 and the detection unit 40 on the optical path. These optical components include, for example, at least one of a condensing optical element and a collimating optical element. A filter may be used for these optical components. An optical switch may be used for these optical components. The optical components may be provided or omitted as necessary.
 このように、呼気診断装置110には、試料気体50が導入される空間23sを含むセル部20と、測定光30Lを出射する光源部30と、が設けられている。検出部40は、試料気体50が導入された空間23sを通過した測定光30Lを検出して、第2信号を検出する。この例では、検出部40は、試料気体50が導入された空間23sを通過した測定光30Lを検出して、第1信号を検出する。 Thus, the breath diagnostic apparatus 110 is provided with the cell unit 20 including the space 23s into which the sample gas 50 is introduced, and the light source unit 30 that emits the measurement light 30L. The detection unit 40 detects the measurement light 30L that has passed through the space 23s into which the sample gas 50 has been introduced, and detects a second signal. In this example, the detection unit 40 detects the measurement light 30L that has passed through the space 23s into which the sample gas 50 is introduced, and detects the first signal.
 呼気診断装置110においては、検出部40で得られた検出信号(第1信号及び第2信号)が、処理部45により処理される。以下、処理部45の動作の例について説明する。 In the breath diagnostic apparatus 110, the processing unit 45 processes the detection signals (first and second signals) obtained by the detection unit 40. Hereinafter, an example of the operation of the processing unit 45 will be described.
 図2は、第1の実施形態に係る呼気診断装置の動作を例示するフローチャート図である。 
 図2に表したように、検出部40で検出された第1信号及び第2信号に基づいて、試料気体50中の第1物質51の第1濃度と、試料気体50中の第2物質52の第2濃度と、を算出する(ステップS110)。例えば、試料気体50に入射した測定光30Lの強度に対する、試料気体50を出射した測定光30Lの強度の比を算出する。第1物質51及び第2物質52のそれぞれにおいて、吸収する波長が異なる。特定の波長における上記の比を求めることで、第1濃度及び第2濃度が算出される。
FIG. 2 is a flowchart illustrating the operation of the breath diagnostic apparatus according to the first embodiment.
As shown in FIG. 2, based on the first signal and the second signal detected by the detection unit 40, the first concentration of the first substance 51 in the sample gas 50 and the second substance 52 in the sample gas 50. And the second concentration of the light source (step S110). For example, the ratio of the intensity of the measurement light 30L emitted from the sample gas 50 to the intensity of the measurement light 30L incident on the sample gas 50 is calculated. The wavelengths absorbed by the first substance 51 and the second substance 52 are different. The first concentration and the second concentration are calculated by finding the above ratio at a specific wavelength.
 そして、第1濃度と、第2濃度と、大気中の第1物質51の第3濃度と、に基づいて、第2濃度を補正した補正濃度を算出する(ステップS120)。 Then, based on the first concentration, the second concentration, and the third concentration of the first substance 51 in the air, a corrected concentration in which the second concentration is corrected is calculated (step S120).
 すなわち、上記のように、試料気体50は、呼気50aの他に、他の気体(例えば大気)を含む場合がある。他の気体が含まれていると、試料気体50中の物質とする物質の濃度は、呼気50a中のその物質の濃度とは異なる。このため、補正をしない場合は、呼気50aの濃度は、本来の濃度とは異なるため、正確ではない。 That is, as described above, the sample gas 50 may contain other gas (for example, the atmosphere) in addition to the breath 50a. If another gas is contained, the concentration of the substance in the sample gas 50 is different from the concentration of the substance in the breath 50a. Therefore, when correction is not performed, the concentration of the breath 50a is not accurate because it is different from the original concentration.
 例えば、被検者が呼気診断装置110の供給部10iに呼気を吹き込む際に、大気を一緒に流入させる場合がある。セル部20の内部の気体を呼気50aで置換する際に、乱流などですべての気体が呼気50aで置換されない場合がある。さらに、被検者の呼吸が浅い場合には、肺でのガス交換が不十分となり大気がそのまま供給部10iに吹き込まれる場合がある。これらの場合には、目的とする物質の濃度が不正確になる。安定した測定結果が得られない。 For example, when the subject blows breath into the supply unit 10i of the breath diagnostic apparatus 110, the atmosphere may flow together. When replacing the gas inside the cell unit 20 with the exhalation 50a, all the gas may not be replaced by the exhalation 50a due to turbulent flow or the like. Furthermore, when the subject's breathing is shallow, gas exchange in the lung may be insufficient and air may be directly blown into the supply unit 10i. In these cases, the concentration of the target substance becomes inaccurate. Stable measurement results can not be obtained.
 これに対して、本実施形態に係る呼気診断装置110においては、目的とする物質(第2物質52)の濃度を、参照となる物質(第1物質51)の濃度によって補正する。補正した補正濃度を、診断に用いる。 On the other hand, in the breath diagnostic apparatus 110 according to the present embodiment, the concentration of the target substance (the second substance 52) is corrected by the concentration of the reference substance (the first substance 51). The corrected corrected density is used for diagnosis.
 すなわち、補正濃度の算出においては、試料気体50に含まれる呼気50aの割合を推定する。その割合に応じて、第2濃度を補正して、補正濃度を算出する。 That is, in the calculation of the correction concentration, the proportion of the exhalation 50 a contained in the sample gas 50 is estimated. The second density is corrected according to the ratio to calculate a corrected density.
 例えば、試料気体50に含まれる呼気50aの割合を推定する。その割合に応じて、第2濃度を補正して、補正濃度を算出する。 For example, the proportion of exhalation 50a contained in the sample gas 50 is estimated. The second density is corrected according to the ratio to calculate a corrected density.
 このとき、第1物質51(参照する物質)に対して、濃度が予め定められる。例えば、第1物質51が二酸化炭素である場合、標準的なヒトが十分に深く呼吸して排出される呼気50aに含まれる二酸化炭素の濃度は、例えば、約40,000ppmである。この濃度は、例えば、被検者の性別、年齢、身長及び体重などを含む各種の状態に依存することもある。必要に応じて、被検者のそれぞれに対して、この濃度を定めてもよい。性別、年齢、身長及び体重などのそれぞれに対応して、個別にこの濃度を定めても良い。 At this time, the concentration of the first substance 51 (the substance to be referred to) is determined in advance. For example, when the first substance 51 is carbon dioxide, the concentration of carbon dioxide contained in the exhaled breath 50a breathed out sufficiently deeply by a standard human being is, for example, about 40,000 ppm. This concentration may depend on various conditions including, for example, the sex, age, height and weight of the subject. This concentration may be determined for each subject if necessary. The concentration may be determined individually for each of gender, age, height and weight.
 例えば、呼気中の二酸化炭素の濃度は、大気中の二酸化炭素の濃度に比べて高い。これには、呼吸により二酸化炭素が増えるためである。このため、例えば、二酸化炭素のように、呼吸によって変化する物質を参照物質として用いることで、試料気体50中の呼気50aの濃度(または、大気の濃度)が推定できる。 For example, the concentration of carbon dioxide in exhaled breath is higher than the concentration of carbon dioxide in the atmosphere. This is because carbon dioxide is increased by respiration. Therefore, the concentration of breath 50a (or the concentration of the atmosphere) in the sample gas 50 can be estimated by using, for example, a substance that changes due to respiration as a reference substance, such as carbon dioxide.
 例えば、試料気体50中の第1物質51の濃度を第1濃度C1とする。試料気体50中の第2物質52の濃度を第2濃度C2とする。第1濃度C1及び第2濃度C2は、測定値である。大気中の第1物質51の濃度を第3濃度C3とする。第3濃度C3は、第1物質51に対して予め定められる。第1物質51が二酸化炭素である場合は、第3濃度C3は、約400ppmである。大気の温度、湿度及び気圧などによって、第3濃度が変化する場合、必要に応じて、第3濃度C3を変えても良い。 For example, the concentration of the first substance 51 in the sample gas 50 is set to a first concentration C1. The concentration of the second substance 52 in the sample gas 50 is set to a second concentration C2. The first concentration C1 and the second concentration C2 are measured values. The concentration of the first substance 51 in the atmosphere is taken as a third concentration C3. The third concentration C3 is predetermined for the first substance 51. When the first substance 51 is carbon dioxide, the third concentration C3 is about 400 ppm. If the third concentration changes due to the temperature, humidity, atmospheric pressure, etc. of the atmosphere, the third concentration C3 may be changed as necessary.
 一方、第1物質51に対して定められた濃度を第4濃度C4とする。第4濃度C4は、第1物質51に対して予め定められる。第1物質51が二酸化炭素である場合は、第4濃度C4は、約40,000ppmである。 On the other hand, the concentration determined for the first substance 51 is taken as a fourth concentration C4. The fourth concentration C4 is predetermined for the first substance 51. When the first substance 51 is carbon dioxide, the fourth concentration C4 is about 40,000 ppm.
 例えば、試料気体50中の呼気50aの割合をXとする。試料気体50中の大気の割合は、(1-X)である。 For example, the proportion of the exhalation 50a in the sample gas 50 is X. The proportion of the atmosphere in the sample gas 50 is (1-X).
 このとき、第1濃度C1、第3濃度C3及び第4濃度C4は、以下の関係を満たす。 At this time, the first concentration C1, the third concentration C3 and the fourth concentration C4 satisfy the following relationship.
 C1=X・C4+(1-X)C3
 従って、
 X=(C1-C3)/(C4-C3)
 となる。
C1 = X · C4 + (1-X) C3
Therefore,
X = (C1-C3) / (C4-C3)
It becomes.
 一方、目的とする第2物質52の濃度の本来の値を第5濃度C5とする。第5濃度C5が、補正後の補正濃度である。第5濃度C5は、試料気体50の全てが呼気50aである場合の第2物質52の濃度に対応する。 On the other hand, let the original value of the concentration of the target second substance 52 be the fifth concentration C5. The fifth density C5 is the corrected density after correction. The fifth concentration C5 corresponds to the concentration of the second substance 52 when all of the sample gas 50 is the breath 50a.
 第2濃度C2(測定結果の濃度)と第5濃度C5とは、以下の関係を満たす。 The second concentration C2 (the concentration of the measurement result) and the fifth concentration C5 satisfy the following relationship.
 C2=X・C5
 従って、第5濃度C5は、以下で表される。
C2 = X · C5
Therefore, the fifth concentration C5 is expressed as follows.
 C5=C2・(C4-C3)/(C1-C3)
 本実施形態においては、測定された第2濃度C2を補正して、補正後の値として、第5濃度C5(補正濃度)を用いる。
C5 = C2 · (C4-C3) / (C1-C3)
In the present embodiment, the measured second density C2 is corrected, and the fifth density C5 (corrected density) is used as a value after correction.
 これにより、試料気体50中に呼気50aの他に、大気などの他の気体が含まれる場合においても、正確な結果が安定して得られる。 Thereby, even when the sample gas 50 contains other gases such as the atmosphere in addition to the breath 50a, accurate results can be stably obtained.
 このように、実施形態において、補正濃度(第5濃度)は、C2・(C4-C3)/(C1-C3)に応じた値である。この値そのものでも良い。誤差を含んでも良い。例えば、補正濃度は、C2・(C4-C3)/(C1-C3)の0.9倍以上1.1倍以下でも良い。この補正濃度は、呼気50a中の第2物質52の濃度(本来の濃度)に対応する。 実施形態において、第1物質51として、大気中の濃度と、呼気50a中の濃度が異なる物質が選ばれる。例えば、二酸化炭素は、呼吸により、濃度が変化する。酸素も呼吸により濃度が変化する。このような物質を、第1物質51として用いる。すなわち、大気中の第1物質51の濃度(第3濃度C3)は、呼気50a中の第1物質51の濃度とは異なる。 As described above, in the embodiment, the correction density (fifth density) is a value corresponding to C2 · (C4−C3) / (C1−C3). This value itself may be used. It may include an error. For example, the correction density may be 0.9 times or more and 1.1 times or less of C2 · (C4−C3) / (C1−C3). The correction concentration corresponds to the concentration (original concentration) of the second substance 52 in the breath 50a. In the embodiment, as the first substance 51, a substance having a different concentration in the atmosphere and the concentration in the breath 50a is selected. For example, carbon dioxide changes concentration by respiration. Oxygen also changes concentration by breathing. Such a substance is used as the first substance 51. That is, the concentration of the first substance 51 in the atmosphere (third concentration C3) is different from the concentration of the first substance 51 in the breath 50a.
 実施形態において、例えば、第1物質51は、二酸化炭素及び酸素の少なくともいずれかを含む。 In the embodiment, for example, the first substance 51 contains at least one of carbon dioxide and oxygen.
 一方、第2物質52は、診断の目的とする物質である。 
 第2物質52は、例えば、二酸化炭素同位体である。この場合、例えば、ピロリ菌に関する情報が得られる。第2物質52は、例えば、メタンである。この場合、例えば、腸内嫌気性菌に関する情報が得られる。第2物質52は、例えば、エタノールである。この場合、例えば、飲酒に関する情報が得られる。第2物質52は、例えば、アセトアルデヒドである。この場合、例えば、飲酒代謝産物及び肺がんに関する情報が得られる。第2物質52は、例えば、アセトンである。この場合、例えば、糖尿病に関する情報が得られる。第2物質52は、例えば、一酸化窒素である。この場合、例えば、ぜんそくに関する情報が得られる。第2物質52は、例えば、アンモニアである。この場合、例えば、肝炎に関する情報が得られる。第2物質52は、例えば、ノナナールである。この場合、例えば、肺がんに関する情報が得られる。
On the other hand, the second substance 52 is a substance targeted for diagnosis.
The second substance 52 is, for example, a carbon dioxide isotope. In this case, for example, information on H. pylori can be obtained. The second substance 52 is, for example, methane. In this case, for example, information on intestinal anaerobic bacteria can be obtained. The second substance 52 is, for example, ethanol. In this case, for example, information on drinking can be obtained. The second substance 52 is, for example, acetaldehyde. In this case, for example, information on drinking metabolites and lung cancer can be obtained. The second substance 52 is, for example, acetone. In this case, for example, information on diabetes can be obtained. The second substance 52 is, for example, nitric oxide. In this case, for example, information on asthma can be obtained. The second substance 52 is, for example, ammonia. In this case, for example, information on hepatitis can be obtained. The second substance 52 is, for example, nonanal. In this case, for example, information on lung cancer can be obtained.
 実施形態において、第2物質52は、二酸化炭素、メタン、エタノール、アセトアルデヒド、アセトン、一酸化炭素、アンモニア及びノナナールの少なくともいずれかを含む。実施形態において、第2物質52、任意である。 In the embodiment, the second substance 52 contains at least one of carbon dioxide, methane, ethanol, acetaldehyde, acetone, carbon monoxide, ammonia and nonanal. In embodiments, the second material 52 is optional.
 図3(a)~図3(c)は、第1の実施形態に係る別の呼気診断装置を例示する模式図である。 
 これらの図においては、反射部などは省略されている。
FIG. 3A to FIG. 3C are schematic views illustrating another breath diagnostic apparatus according to the first embodiment.
In these figures, the reflection part and the like are omitted.
 図3(a)に表したように、本実施形態に係る呼気診断装置111においては、光源部30に、第1発光部38aと、第2発光部38bと、が設けられる。第1発光部38aは、第1波長の第1光L1を出射する。第2発光部38bは、第2波長の第2光L2を出射する。第2波長は、第1波長とは異なる。第1発光部38a及び第2発光部38bは、例えば、駆動部30bにより駆動される。 As shown in FIG. 3A, in the breath diagnostic apparatus 111 according to the present embodiment, the light source unit 30 is provided with a first light emitting unit 38a and a second light emitting unit 38b. The first light emitting unit 38a emits the first light L1 of the first wavelength. The second light emitting unit 38b emits the second light L2 of the second wavelength. The second wavelength is different from the first wavelength. The first light emitting unit 38a and the second light emitting unit 38b are driven by, for example, the driving unit 30b.
 例えば、第1物質51として二酸化炭素を用いる場合、第1波長は、例えば約9μmである。第1波長は、例えば約5μmでも良い。第2物質52としてアセトンを用いる場合、第2波長は、例えば約7μmである。第2波長は、例えば約8μmでも良い。物質に併せて、これらの波長が選ばれる。 For example, when carbon dioxide is used as the first substance 51, the first wavelength is, for example, about 9 μm. The first wavelength may be, for example, about 5 μm. When using acetone as the second substance 52, the second wavelength is, for example, about 7 μm. The second wavelength may be, for example, about 8 μm. These wavelengths are chosen according to the substance.
 第1発光部38a及び第2発光部38bとして、半導体発光素子(例えば、量子カスケードレーザなど)が用いられる。これらの発光部は、半導体発光素子30aに含まれる。 Semiconductor light emitting elements (for example, quantum cascade lasers or the like) are used as the first light emitting unit 38 a and the second light emitting unit 38 b. These light emitting units are included in the semiconductor light emitting element 30a.
 測定光30Lは、第1波長の第1光L1と、第2波長の第2光L2と、を含む。検出部40は、例えば、第1光L1により第1信号を検出し、第2光L2により第2信号を検出する。 The measurement light 30L includes a first light L1 of a first wavelength and a second light L2 of a second wavelength. For example, the detection unit 40 detects a first signal by the first light L1, and detects a second signal by the second light L2.
 この例では、光学素子部(第1光学素子部37a)が設けられている。第1光学素子部37aは、測定光30Lの光路上において、光源部30と検出部40との間に設けられる。この例では、第1光学素子部37aは、光路上において、光源部30と空間23sとの間に設けられている。第1光学素子部37aと空間23sとの間に、第1光学部品36aが配置されている。第1光学素子部37aは、第1光L1と第2光L2の一方を反射し、第1光L1と第2光L2の他方を通過させる。第1光学素子部37aは、例えば、ビームスプリッタである。 In this example, an optical element unit (first optical element unit 37a) is provided. The first optical element unit 37a is provided between the light source unit 30 and the detection unit 40 on the optical path of the measurement light 30L. In this example, the first optical element unit 37a is provided between the light source unit 30 and the space 23s on the optical path. The first optical component 36a is disposed between the first optical element portion 37a and the space 23s. The first optical element portion 37a reflects one of the first light L1 and the second light L2 and transmits the other of the first light L1 and the second light L2. The first optical element unit 37a is, for example, a beam splitter.
 第1光学素子部37aを用いることで、例えば、第1光L1及び第2光L2が、空間23s内の同じ場所を通過できる。もし、空間23s内において、呼気50aの濃度が不均一である場合にも、正確な測定が可能になる。 By using the first optical element unit 37a, for example, the first light L1 and the second light L2 can pass through the same place in the space 23s. If the concentration of the exhalation 50a is uneven in the space 23s, accurate measurement is possible.
 この例では、第1光L1の一部は、第2光L2の一部と、同軸である。第1光L1の光路の少なくとも一部は、第2光L2の光路の少なくとも一部と重なる。これにより、正確性を向上できる。 In this example, a part of the first light L1 is coaxial with a part of the second light L2. At least a portion of the light path of the first light L1 overlaps with at least a portion of the light path of the second light L2. This can improve the accuracy.
 試料気体50が導入された空間23sの通過における、第1光L1の透過率は、例えば、0.1%以上99.9%以下である。試料気体50が導入された空間23sの通過における、第2光L2の透過率は、例えば、0.1%以上99.9%以下である。 The transmittance of the first light L1 in the passage of the space 23s into which the sample gas 50 is introduced is, for example, 0.1% or more and 99.9% or less. The transmittance of the second light L2 in the passage of the space 23s into which the sample gas 50 is introduced is, for example, 0.1% or more and 99.9% or less.
 例えば、第1光L1において第1物質51による吸収量が過度に大きい場合、透過光量は、過度に小さくなる。その場合、検出部40で光を測定することが困難となる。そのため、透過率は0.1%以上が好ましい。第1光L1において第1物質51による吸収量が過度に小さい場合、入射光量と透過光量のとの差が過度に小さくなる。その場合、検知部40で透過光量の変化を測定することが困難となる。そのため、透過率は、99.9%以下が好ましい。 For example, when the amount of absorption by the first substance 51 in the first light L1 is excessively large, the amount of transmitted light becomes excessively small. In that case, it becomes difficult for the detection unit 40 to measure light. Therefore, the transmittance is preferably 0.1% or more. When the amount of absorption by the first substance 51 in the first light L1 is excessively small, the difference between the amount of incident light and the amount of transmitted light becomes excessively small. In that case, it becomes difficult for the detection unit 40 to measure the change in the amount of transmitted light. Therefore, the transmittance is preferably 99.9% or less.
 図3(b)に表したように、本実施形態に係る呼気診断装置112においては、検出部40は、第1検出素子40aと、第2検出素子40bと、を含む。第1検出素子40aは、第1光L1を検出する。第2検出素子40bは、第2光L2を検出する。 As shown in FIG. 3B, in the breath diagnostic apparatus 112 according to the present embodiment, the detection unit 40 includes a first detection element 40a and a second detection element 40b. The first detection element 40a detects the first light L1. The second detection element 40b detects the second light L2.
 この例では、第2光学素子部37bが設けられている。第2光学素子部37bは、測定光30Lの光路上において、空間23sと検出部40との間に設けられている。第2光学素子部37bは、例えば、ビームスプリッタである。 In this example, a second optical element unit 37 b is provided. The second optical element unit 37 b is provided between the space 23 s and the detection unit 40 on the optical path of the measurement light 30 L. The second optical element unit 37 b is, for example, a beam splitter.
 図3(c)に表したように、本実施形態に係る呼気診断装置113においては、信号処理部41が設けられている。信号処理部41は、第1検出素子40aに接続されている。信号処理部41により処理された信号が処理部45に供給される。 As shown in FIG. 3C, in the breath diagnostic apparatus 113 according to the present embodiment, a signal processing unit 41 is provided. The signal processing unit 41 is connected to the first detection element 40a. The signal processed by the signal processing unit 41 is supplied to the processing unit 45.
 例えば、第1発光部38aは、第1周波数で第1光L1を出射する。第2発光部38bは、第2周波数で第2光L2を出射する。第2周波数は、第1周波数とは異なる。このような動作は、駆動部30bにより制御される。これらの周波数に対応させて、第1検出素子40aで得られた信号が信号処理部41で処理される。例えば、信号処理部41で、第1周波数の信号が抽出される。例えば、信号処理部41で、第2周波数の信号が抽出される。信号処理部41で、例えば、周波数検波処理が行われる。これにより、1つの検出素子で、複数の波長の光を効率良く検出できる。 For example, the first light emitting unit 38a emits the first light L1 at the first frequency. The second light emitting unit 38b emits the second light L2 at the second frequency. The second frequency is different from the first frequency. Such an operation is controlled by the drive unit 30b. The signal obtained by the first detection element 40 a is processed by the signal processing unit 41 corresponding to these frequencies. For example, the signal processing unit 41 extracts a signal of the first frequency. For example, the signal processing unit 41 extracts a signal of the second frequency. The signal processing unit 41 performs, for example, frequency detection processing. Thereby, light of a plurality of wavelengths can be efficiently detected by one detection element.
 図4は、第1の実施形態に係る別の呼気診断装置の動作を例示する模式図である。 
 図4は、第1光L1の強度DP1及び第2光L1の強度DP2を例示している。横軸は、時間である。
FIG. 4 is a schematic view illustrating the operation of another breath diagnostic apparatus according to the first embodiment.
FIG. 4 illustrates the intensity DP1 of the first light L1 and the intensity DP2 of the second light L1. The horizontal axis is time.
 図4に表したように、互いに異なる周波数で、第1光L1及び第2光L2が出射される。周波数に応じて検出信号を抽出することで、第1光L1の強度及び第2光L2の強度のそれぞれが分離できる。例えば、検出部40は、第1周期で第1光L1を検出し、第2周期で第2光L2を検出する。例えば、検出部40は、第1期間P1に第1光L1を検出する。検出部40は、第2期間P2に、第2光L2を検出する。 As shown in FIG. 4, the first light L1 and the second light L2 are emitted at frequencies different from each other. By extracting the detection signal according to the frequency, each of the intensity of the first light L1 and the intensity of the second light L2 can be separated. For example, the detection unit 40 detects the first light L1 in a first cycle and detects the second light L2 in a second cycle. For example, the detection unit 40 detects the first light L1 in the first period P1. The detection unit 40 detects the second light L2 in the second period P2.
 図5(a)及び図5(b)は、第1の実施形態に係る呼気診断装置の特性を例示する模式図である。 
 これらの図は、測定光30Lの波長特性を例示している。横軸は、波長λmである。縦軸は、測定光30Lの強度である。
FIG. 5A and FIG. 5B are schematic views illustrating characteristics of the breath diagnostic apparatus according to the first embodiment.
These figures illustrate the wavelength characteristics of the measurement light 30L. The horizontal axis is the wavelength λm. The vertical axis is the intensity of the measurement light 30L.
 図5(a)に表したように、測定光30Lは、第1波長λ1の成分と、第2波長λ2の成分と、を含む。この例では、それらの間の成分をさらに含む。すなわち、測定光30Lは、第1波長λ1と第2波長λ2との間の第3波長λ3の第3光をさらに含む。光源部30として、例えば、ブロードQCLが用いられる。このブロードQCLは、第1波長λ1~第2波長λ2の範囲の波長の光を出射する。例えば、第1波長λ1、第3波長λ3及び第2波長λ2の光について、光強度(吸収率)が順次測定される。この結果に基づいて、濃度が算出される。濃度を測定する波長は、連続的に変化させても良き、離散的に変化させても良い。例えば、測定光30Lは、第1波長λ1と、第2波長λ2と、第1波長λ1と第2波長λ2との間の波長とを有する。検出部40は、第1波長λ1と第2波長λ2との間で波長を変えて、測定光30Lを検出しても良い。 As shown in FIG. 5A, the measurement light 30L includes a component of the first wavelength λ1 and a component of the second wavelength λ2. In this example, it further includes the components between them. That is, the measurement light 30L further includes the third light of the third wavelength λ3 between the first wavelength λ1 and the second wavelength λ2. For example, a broad QCL is used as the light source unit 30. The broad QCL emits light having a wavelength in the range of the first wavelength λ1 to the second wavelength λ2. For example, the light intensity (absorptivity) is sequentially measured for the light of the first wavelength λ1, the third wavelength λ3, and the second wavelength λ2. The concentration is calculated based on this result. The wavelength for measuring the concentration may be changed continuously or may be changed discretely. For example, the measurement light 30L has a first wavelength λ1, a second wavelength λ2, and a wavelength between the first wavelength λ1 and the second wavelength λ2. The detection unit 40 may detect the measurement light 30L by changing the wavelength between the first wavelength λ1 and the second wavelength λ2.
 図5(b)に表したように、測定光30Lは、第1波長λ1の第1ピークと、第2波長λ2の第2ピークと、を有しても良い。 As shown in FIG. 5B, the measurement light 30L may have a first peak of the first wavelength λ1 and a second peak of the second wavelength λ2.
 図6(a)及び図6(b)は、第1の実施形態に係る呼気診断装置の一部を例示する模式的断面である。 
 図6(a)に表した例では、基板35の上に、第1発光部38a及び第2発光部38bが設けられる。第1発光部38aは、第1リッジ部RG1を含む。第2発光部38bは、第2リッジ部RG2を含む。それぞれの発光部から、互いに異なる波長の測定光30L(レーザ光)が出射する。
FIG. 6A and FIG. 6B are schematic cross sections illustrating a part of the breath diagnostic apparatus according to the first embodiment.
In the example shown in FIG. 6A, the first light emitting unit 38a and the second light emitting unit 38b are provided on the substrate 35. The first light emitting unit 38a includes a first ridge portion RG1. The second light emitting unit 38 b includes a second ridge portion RG2. Measurement light 30L (laser light) of different wavelength is emitted from each light emitting portion.
 すなわち、この例では、光源部30は、半導体レーザ素子(半導体発光素子30a)を含む。半導体レーザ素子は、第1光L1を放出する第1リッジ部RG1と、第2光L2を放出する第2リッジ部RG2と、を含む。 That is, in this example, the light source unit 30 includes a semiconductor laser element (semiconductor light emitting element 30a). The semiconductor laser device includes a first ridge portion RG1 that emits the first light L1 and a second ridge portion RG2 that emits the second light L2.
 図6(b)に表した例では、基板35の上に、第1発光部38aが設けられ、第1発光部38aの上に、第2発光部38bが設けられる。このように、複数の発光部が積層されても良い。 In the example shown in FIG. 6B, the first light emitting unit 38a is provided on the substrate 35, and the second light emitting unit 38b is provided on the first light emitting unit 38a. Thus, a plurality of light emitting units may be stacked.
 (第2の実施形態) 
 図7(a)~図7(c)は、第2の実施形態に係る呼気診断装置を例示する模式図である。 
 図7(a)に表したように、本実施形態に係る呼気診断装置120においても、検出部40と、処理部45と、が設けられる。呼気診断装置120においても、光源部30及びセル部20がさらに設けられる。供給部10i、排出部10o及び筐体10w(図示を省略)がさらに設けられても良い。
Second Embodiment
FIGS. 7A to 7C are schematic views illustrating the breath diagnostic apparatus according to the second embodiment.
As shown in FIG. 7A, the detection unit 40 and the processing unit 45 are also provided in the breath diagnostic apparatus 120 according to the present embodiment. Also in the breath diagnostic apparatus 120, a light source unit 30 and a cell unit 20 are further provided. A supply unit 10i, a discharge unit 10o, and a housing 10w (not shown) may be further provided.
 呼気診断装置120においては、第2物質52の検出が、測定光30Lにより行われる。そして、第1物質51の検出は、測定光30Lを用いないで検出される。 In the breath diagnostic apparatus 120, detection of the second substance 52 is performed by the measurement light 30L. Then, the detection of the first substance 51 is performed without using the measurement light 30L.
 すなわち、呼気診断装置120においては、検出部40は、第1検出素子40a(光検出素子)の他に、第1検出器43aが設けられる。第1検出器43aは、試料気体50中の第1物質51を検出する。例えば、第1物質51が二酸化炭素である場合、第1検出器43aとして、半導体センサを用いることができる。半導体センサにより、二酸化炭素の濃度が測定できる。ジルコニア式センサにより、酸素の濃度も測定できる。 That is, in the breath diagnostic apparatus 120, the detection unit 40 is provided with a first detector 43a in addition to the first detection element 40a (light detection element). The first detector 43 a detects the first substance 51 in the sample gas 50. For example, when the first substance 51 is carbon dioxide, a semiconductor sensor can be used as the first detector 43a. The concentration of carbon dioxide can be measured by the semiconductor sensor. The concentration of oxygen can also be measured by the zirconia sensor.
 この例では、第1検出器43aは、空間23s内に配置される。この例では、第1検出器43aは、試料気体50が導入された空間23s中の第1物質51を検出する。第1検出器43aは、測定光30Lの光路に近接して配置される。これにより、空間23s内で第1物質51の濃度が不均一である場合にも、正確な検出が可能になる。 In this example, the first detector 43a is disposed in the space 23s. In this example, the first detector 43a detects the first substance 51 in the space 23s into which the sample gas 50 has been introduced. The first detector 43a is disposed close to the light path of the measurement light 30L. This enables accurate detection even when the concentration of the first substance 51 is uneven in the space 23s.
 図7(b)に表したように、本実施形態に係る呼気診断装置121においては、検出部40に複数の検出器が設けられる。この例では、第2検出器43b及び第3検出器43cなどが設けられている。第2検出器43b及び第2検出器43cは、試料気体50中の第1物質51の濃度を検出する。この例では、これらの検出器は、試料気体50が導入された空間23s中の第1物質51を検出する。これらの検出器にも、例えば、半導体センサを用いることができる。 As shown in FIG. 7B, in the breath diagnostic apparatus 121 according to the present embodiment, the detection unit 40 is provided with a plurality of detectors. In this example, a second detector 43 b and a third detector 43 c are provided. The second detector 43 b and the second detector 43 c detect the concentration of the first substance 51 in the sample gas 50. In this example, these detectors detect the first substance 51 in the space 23s into which the sample gas 50 is introduced. For these detectors, for example, semiconductor sensors can be used.
 この例では、第2検出器43bは、空間23s中の測定光30Lの光路に沿って、第1検出器43aと並ぶ。複数の検出器が光路に沿って配置されることで、より正確な値が得られる。 In this example, the second detector 43b is aligned with the first detector 43a along the optical path of the measurement light 30L in the space 23s. By arranging a plurality of detectors along the light path, more accurate values can be obtained.
 図7(c)に表したように、本実施形態に係る呼気診断装置122においては、第1配管15aに、第3配管15cの一端が接続されている。第3配管15cの他端に、第1検出器43aが設けられている。供給された試料気体50の一部が、空間23sに供給される。試料気体50の他の一部が、第3配管15cを介して、第1検出器43aに向かって流れる。このように、第1検出器43aは、空間23sとは異なる位置で、第1物質51の濃度を検出しても良い。 As shown in FIG. 7C, in the breath diagnostic apparatus 122 according to the present embodiment, one end of a third pipe 15c is connected to the first pipe 15a. A first detector 43a is provided at the other end of the third pipe 15c. A part of the supplied sample gas 50 is supplied to the space 23s. Another part of the sample gas 50 flows toward the first detector 43a via the third pipe 15c. Thus, the first detector 43a may detect the concentration of the first substance 51 at a position different from the space 23s.
 以下、光源部30の例について説明する。 
 図8(a)~図8(c)は、実施形態に係る呼気診断装置の一部を例示する模式図である。 
 図8(a)は、模式的斜視図である。図8(b)は、図8(a)のA1-A2線断面図である。図8(c)は、光源部30の動作を例示する模式図である。 
 この例では、光源部30として、半導体発光素子30aが用いられる。半導体発光素子30aとして、レーザが用いられる。この例では、量子カスケードレーザが用いられる。
Hereinafter, an example of the light source unit 30 will be described.
FIG. 8A to FIG. 8C are schematic views illustrating a part of the breath diagnostic apparatus according to the embodiment.
FIG. 8A is a schematic perspective view. FIG. 8 (b) is a cross-sectional view taken along line A1-A2 of FIG. 8 (a). FIG. 8C is a schematic view illustrating the operation of the light source unit 30.
In this example, a semiconductor light emitting element 30 a is used as the light source unit 30. A laser is used as the semiconductor light emitting element 30a. In this example, a quantum cascade laser is used.
 図8(a)に表したように、半導体発光素子30aは、基板35と、積層体31と、第1電極34aと、第2電極34bと、誘電体層32(第1誘電体層)と、絶縁層33(第2誘電体層)と、を含む。 As shown in FIG. 8A, the semiconductor light emitting device 30a includes the substrate 35, the laminate 31, the first electrode 34a, the second electrode 34b, and the dielectric layer 32 (first dielectric layer). , And the insulating layer 33 (second dielectric layer).
 第1電極34aと、第2電極34bと、の間に基板35が設けられる。基板35は、第1部分35aと、第2部分35bと、第3部分35cと、を含む。これらの部分は、1つの面内に配置される。この面は、第1電極34aから第2電極34bに向かう方向に対して交差する(例えば平行)である。第1部分35aと第2部分35bとの間に、第3部分35cが配置される。 A substrate 35 is provided between the first electrode 34 a and the second electrode 34 b. The substrate 35 includes a first portion 35a, a second portion 35b, and a third portion 35c. These parts are arranged in one plane. This plane intersects (eg, is parallel to) the direction from the first electrode 34a to the second electrode 34b. The third portion 35c is disposed between the first portion 35a and the second portion 35b.
 第3部分35cと第1電極34aとの間に積層体31が設けられる。第1部分35aと第1電極34aとの間、及び、第2部分35bと第1電極34aとの間に、誘電体層32が設けられる。誘電体層32と第1電極34aとの間に絶縁層33が設けられる。 The stacked body 31 is provided between the third portion 35c and the first electrode 34a. A dielectric layer 32 is provided between the first portion 35a and the first electrode 34a and between the second portion 35b and the first electrode 34a. An insulating layer 33 is provided between the dielectric layer 32 and the first electrode 34a.
 積層体31は、ストライプの形状を有している。積層体31は、リッジ導波路RGとして機能する。リッジ導波路RGの2つの端面がミラー面となる。積層体31において放出された光31Lは、端面(光出射面)から出射する。光31Lは、赤外線レーザ光である。光31Lの光軸31Lxは、リッジ導波路RGの延在方向に沿う。 The stacked body 31 has a stripe shape. The stacked body 31 functions as a ridge waveguide RG. The two end faces of the ridge waveguide RG become mirror surfaces. The light 31L emitted from the laminate 31 is emitted from the end face (light emitting surface). The light 31L is an infrared laser light. The optical axis 31Lx of the light 31L is along the extending direction of the ridge waveguide RG.
 図8(b)に表したように、積層体31は、例えば、第1クラッド層31aと、第1ガイド層31bと、活性層31cと、第2ガイド層31dと、第2クラッド層31eと、を含む。これらの層は、基板35から第1電極34aに向かう方向に沿って、この順で並ぶ。第1クラッド層31aの屈折率及び第2クラッド層31eの屈折率のそれぞれは、第1ガイド層31bの屈折率、活性層31cの屈折率、及び、第2ガイド層31dの屈折率のそれぞれよりも低い。活性層31cで生じた光31Lは、積層体31内に閉じ込められる。第1ガイド層31bと第1クラッド層31aとを合わせて、クラッド層と呼ぶ場合がある。第2ガイド層31dと第2クラッド層31eとを合わせて、クラッド層と呼ぶ場合がある。 As shown in FIG. 8B, the stacked body 31 includes, for example, a first cladding layer 31a, a first guide layer 31b, an active layer 31c, a second guide layer 31d, and a second cladding layer 31e. ,including. These layers are arranged in this order along the direction from the substrate 35 toward the first electrode 34a. Each of the refractive index of the first cladding layer 31a and the refractive index of the second cladding layer 31e is determined by the refractive index of the first guide layer 31b, the refractive index of the active layer 31c, and the refractive index of the second guide layer 31d. Too low. The light 31 L generated in the active layer 31 c is confined in the stack 31. The first guide layer 31 b and the first cladding layer 31 a may be collectively referred to as a cladding layer. The second guide layer 31d and the second cladding layer 31e may be collectively referred to as a cladding layer.
 積層体31は、光軸31Lxに対して垂直な第1側面31sa及び第2側面31sbを有する。第1側面31saと第2側面31sbとの間の距離31w(幅)は、例えば5μm以上20μm以下である。これにより、例えば、水平横方向モードの制御が容易となり、出力の向上が容易になる。距離31wが過度に長いと、水平横方向モードにおいて高次モードを生じ易くなり、出力を高めにくい。 The stacked body 31 has a first side 31 sa and a second side 31 sb perpendicular to the optical axis 31 Lx. The distance 31w (width) between the first side surface 31sa and the second side surface 31sb is, for example, 5 μm or more and 20 μm or less. Thereby, for example, control of the horizontal lateral mode is facilitated, and output improvement is facilitated. If the distance 31 w is excessively long, high-order modes are likely to occur in the horizontal transverse mode, and it is difficult to increase the output.
 誘電体層32の屈折率は、活性層31cの屈折率よりも低い。これにより、誘電体層32により、光軸31Lxに沿ってリッジ導波路RGが形成される。 The refractive index of the dielectric layer 32 is lower than the refractive index of the active layer 31c. Thus, the ridge waveguide RG is formed by the dielectric layer 32 along the optical axis 31Lx.
 図8(c)に表したように、活性層31cは、例えば、カスケード構造を有する、カスケード構造においては、例えば、第1領域r1と、第2領域r2と、が交互に積層される。単位構造r3は、第1領域r1及び第2領域r2を含む。複数の単位構造r3が設けられる。 As shown in FIG. 8C, the active layer 31c has, for example, a cascade structure. In the cascade structure, for example, the first region r1 and the second region r2 are alternately stacked. The unit structure r3 includes a first region r1 and a second region r2. A plurality of unit structures r3 are provided.
 例えば、第1領域r1には、第1障壁層BL1と、第1量子井戸層WL1と、が設けられる。第2領域には、第2障壁層BL2が設けられる。例えば、別の第1領域r1aには、第3障壁層BL3と、第2量子井戸層WL2と、が設けられる。別の第2領域r2aに、第4障壁層BL4が設けられる。 For example, the first barrier layer BL1 and the first quantum well layer WL1 are provided in the first region r1. The second barrier layer BL2 is provided in the second region. For example, the third barrier layer BL3 and the second quantum well layer WL2 are provided in another first region r1a. A fourth barrier layer BL4 is provided in another second region r2a.
 第1領域r1においては、第1量子井戸層WL1のサブバンド間光学遷移が生じる。これにより、例えば、3μm以上18μm以下の波長の光31Laが放出される。 In the first region r1, an intersubband optical transition of the first quantum well layer WL1 occurs. Thereby, for example, light 31La having a wavelength of 3 μm to 18 μm is emitted.
 第2領域r2においては、第1領域r1から注入されたキャリアc1(例えば電子)のエネルギーは、緩和可能である。 In the second region r2, the energy of carriers c1 (for example, electrons) injected from the first region r1 can be relaxed.
 量子井戸層(例えば第1量子井戸層WL1)において、井戸幅WLtは、例えば、5nm以下である。井戸幅WLtがこのように狭いとき、エネルギー準位が離散して、例えば、第1サブバンドWLa(高準位Lu)及び第2サブバンドWLb(低準位Ll)などを生じる。第1障壁層BL1から注入されたキャリアc1は、第1量子井戸層WL1に効果的に閉じ込められる。 In the quantum well layer (for example, the first quantum well layer WL1), the well width WLt is, for example, 5 nm or less. When the well width WLt is thus narrow, the energy levels are discretely generated, for example, the first sub-band WLa (high level Lu) and the second sub-band WLb (low level Ll). The carriers c1 injected from the first barrier layer BL1 are effectively confined in the first quantum well layer WL1.
 高準位Luから低準位Llへキャリアc1が遷移するときに、エネルギー差(高準位Luと低準位Llとの差)に対応する光31Laが放出される。すなわち、光学遷移が生じる。 When the carrier c1 transitions from the high level Lu to the low level Ll, the light 31La corresponding to the energy difference (the difference between the high level Lu and the low level Ll) is emitted. That is, an optical transition occurs.
 同様に、別の第1領域r1aの第2量子井戸層WL2において、光31Lbが放出される。 実施形態において量子井戸層は、波動関数が重なり合う複数の井戸を含んでも良い。複数の量子井戸層のそれぞれの高準位Luが、互いに同じでも良い。複数の量子井戸層のそれぞれの低準位Llが、互いに同じでも良い。 Similarly, light 31 Lb is emitted in the second quantum well layer WL2 of another first region r1a. In embodiments, the quantum well layer may include a plurality of wells with overlapping wave functions. The respective high levels Lu of the plurality of quantum well layers may be identical to each other. The low levels Ll of the plurality of quantum well layers may be the same as one another.
 例えば、サブバンド間光学遷移は、伝導帯及び価電子帯のいずれかにおいて生じる。例えば、pn接合によるホールと電子との再結合は必要ではない。例えば、ホール及び電子のいずれかのキャリアc1により光学遷移が生じて、光が放出される。 For example, intersubband optical transitions occur in either the conduction band or the valence band. For example, recombination of holes and electrons by a pn junction is not necessary. For example, carriers c1 of either holes or electrons cause optical transition to emit light.
 活性層31cにおいて、例えば、第1電極34aと、第2電極34bと、の間に印加される電圧により、障壁層(例えば第1障壁層BL1)を介して、キャリアc1(例えば電子)が量子井戸層(例えば第1量子井戸層WL1)へ注入される。これにより、サブバンド間光学遷移を生じる。 In the active layer 31c, for example, carriers c1 (for example, electrons) are quantized via a barrier layer (for example, the first barrier layer BL1) by a voltage applied between the first electrode 34a and the second electrode 34b. The well layer (for example, the first quantum well layer WL1) is implanted. This causes an intersubband optical transition.
 第2領域r2は、例えば、複数のサブバンドを有する。サブバンドは、例えば、ミニバンドである。サブバンドにおけるエネルギー差は、小さい。サブバンドにおいて、連続エネルギーバンドに近いことが好ましい。この結果、キャリアc1(電子)のエネルギーが緩和される。 The second region r2 has, for example, a plurality of subbands. The sub band is, for example, a mini band. The energy difference in the subbands is small. In the sub-bands, it is preferable to be close to the continuous energy band. As a result, the energy of the carrier c1 (electron) is relaxed.
 第2領域r2では、例えば、光(例えば3μm以上18μm以下の波長の赤外線)は、実質的に放出されない。第1領域r1の低準位Llのキャリアc1(電子)は、第2障壁層BL2を通過して、第2領域r2へ注入され、緩和される。キャリアc1は、カスケード接続された別の第1領域r1aへ注入される。この第1領域r1aにおいて、光学遷移が生じる。 In the second region r2, for example, light (for example, infrared light having a wavelength of 3 μm to 18 μm) is not substantially emitted. The carriers c1 (electrons) of the low level L1 of the first region r1 pass through the second barrier layer BL2, are injected into the second region r2, and are relaxed. The carrier c1 is injected into another cascaded first region r1a. An optical transition occurs in this first region r1a.
 カスケード構造では、複数の単位構造r3のそれぞれにおいて光学遷移が生じる。これにより、活性層31cの全体において、高い光出力を得ることが容易になる。 In the cascade structure, optical transition occurs in each of the plurality of unit structures r3. This makes it easy to obtain high light output in the entire active layer 31c.
 このように、光源部30は、半導体発光素子30aを含む。半導体発光素子30aは、複数の量子井戸(例えば、第1量子井戸層WL1及び第2量子井戸層WL2など)のサブバンドにおける電子のエネルギー緩和により、測定光30Lを放射する。 Thus, the light source unit 30 includes the semiconductor light emitting element 30a. The semiconductor light emitting element 30a emits the measurement light 30L by energy relaxation of electrons in the sub-bands of the plurality of quantum wells (for example, the first quantum well layer WL1 and the second quantum well layer WL2).
 量子井戸層(例えば第1量子井戸層WL1及び第2量子井戸層WL2など)には、例えば、GaAsが用いられる。例えば、障壁層(例えば、第1~第4障壁層BL1~BL4など)には、例えば、AlGa1-xAs(0<x<1)が用いられる。このとき、例えば、基板35としてGaAsを用いると、量子井戸層及び障壁層において、良好な格子整合が得られる。 For example, GaAs is used for the quantum well layers (for example, the first quantum well layer WL1 and the second quantum well layer WL2). For example, Al x Ga 1 -x As (0 <x <1), for example, is used for the barrier layers (eg, the first to fourth barrier layers BL1 to BL4). At this time, for example, when GaAs is used as the substrate 35, good lattice matching can be obtained in the quantum well layer and the barrier layer.
 第1クラッド層31a及び第2クラッド層31eは、例えば、n形不純物として、Siを含む。これらの層における不純物濃度は、例えば、1×1018cm-3以上1×1020cm-3以下(例えば、約6×1018cm-3)である。これらの層のそれぞれの厚さは、例えば、0.5μm以上2μm以下(例えば約1μm)である。 The first cladding layer 31a and the second cladding layer 31e contain, for example, Si as an n-type impurity. The impurity concentration in these layers is, for example, 1 × 10 18 cm −3 or more and 1 × 10 20 cm −3 or less (for example, about 6 × 10 18 cm −3 ). The thickness of each of these layers is, for example, 0.5 μm or more and 2 μm or less (for example, about 1 μm).
 第1ガイド層31b及び第2ガイド層31dは、例えば、n形不純物として、Siを含む。これらの層における不純物濃度は、例えば1×1016cm-3以上1×1017cm-3以下(例えば、約4×1016cm-3)である。これらの層のそれぞれの厚さは、例えば2μm以上5μm以下(例えば、3.5μm)である。 The first guide layer 31 b and the second guide layer 31 d contain, for example, Si as an n-type impurity. The impurity concentration in these layers is, for example, 1 × 10 16 cm −3 or more and 1 × 10 17 cm −3 or less (for example, about 4 × 10 16 cm −3 ). The thickness of each of these layers is, for example, 2 μm or more and 5 μm or less (for example, 3.5 μm).
 距離31w(積層体31の幅、すなわち、活性層31cの幅)は、例えば、5μm以上20μm以下(例えば、約14μm)である。 The distance 31 w (the width of the stack 31, that is, the width of the active layer 31 c) is, for example, 5 μm or more and 20 μm or less (for example, about 14 μm).
 リッジ導波路RGの長さは、例えば、1mm以上5mm以下(例えば約3mm)である。半導体発光素子30a(量子カスケードレーザ)は、例えば、10V以下の動作電圧で動作する。消費電流は、炭酸ガスレーザ装置などに比べて低い。これにより、低消費電力の動作が可能である。 The length of the ridge waveguide RG is, for example, 1 mm or more and 5 mm or less (for example, about 3 mm). The semiconductor light emitting device 30a (quantum cascade laser) operates at an operating voltage of, for example, 10 V or less. The consumption current is lower than that of a carbon dioxide gas laser device or the like. This enables low power consumption operation.
 実施形態によれば、正確な呼気診断装置が提供できる。 According to the embodiment, an accurate breath diagnosis device can be provided.
 以上、具体例を参照しつつ、本発明の実施の形態について説明した。しかし、本発明は、これらの具体例に限定されるものではない。例えば、呼気診断装置に含まれる供給部、セル部、反射部、光源部、検出部及び処理部などの各要素の具体的な構成に関しては、当業者が公知の範囲から適宜選択することにより本発明を同様に実施し、同様の効果を得ることができる限り、本発明の範囲に包含される。 The embodiments of the present invention have been described above with reference to specific examples. However, the present invention is not limited to these specific examples. For example, with regard to the specific configuration of each element such as the supply unit, the cell unit, the reflection unit, the light source unit, the detection unit, and the processing unit included in the breath diagnostic apparatus, the person skilled in the art can As long as the invention can be practiced similarly and similar effects can be obtained, it is included in the scope of the present invention.
 また、各具体例のいずれか2つ以上の要素を技術的に可能な範囲で組み合わせたものも、本発明の要旨を包含する限り本発明の範囲に含まれる。 Moreover, what combined any two or more elements of each specific example in the technically possible range is also included in the scope of the present invention as long as the gist of the present invention is included.
 その他、本発明の実施の形態として上述した呼気診断装置を基にして、当業者が適宜設計変更して実施し得る全ての呼気診断装置も、本発明の要旨を包含する限り、本発明の範囲に属する。 In addition, all breath diagnosis apparatuses that can be appropriately designed and implemented by those skilled in the art based on the breath diagnosis apparatus described above as the embodiment of the present invention also fall within the scope of the present invention as long as the scope of the present invention is included. Belongs to
 その他、本発明の思想の範疇において、当業者であれば、各種の変更例及び修正例に想到し得るものであり、それら変更例及び修正例についても本発明の範囲に属するものと了解される。 Besides, within the scope of the concept of the present invention, those skilled in the art can conceive of various changes and modifications, and it is understood that the changes and modifications are also within the scope of the present invention. .
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 While certain embodiments of the present invention have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, substitutions, and modifications can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and the gist of the invention, and are included in the invention described in the claims and the equivalent scope thereof.

Claims (20)

  1.  第1物質と、前記第1物質とは異なる第2物質と、を含む呼気を含む試料気体中の前記第1物質の量に依存する第1信号と、前記試料気体中の前記第2物質の量に依存する第2信号と、を検出する検出部と、
      前記検出部で検出された第1信号及び第2信号に基づいて、前記試料気体中の前記第1物質の第1濃度と、前記試料気体中の前記第2物質の第2濃度と、を算出し、
      前記第1濃度と、前記第2濃度と、大気中の前記第1物質の第3濃度と、に基づいて、前記第2濃度を補正した補正濃度を算出する処理部と、
     を備えた呼気診断装置。
    A first signal dependent on the amount of said first substance in a sample gas comprising exhaled breath comprising a first substance and a second substance different from said first substance, and a second signal of said second substance in said sample gas A detection unit for detecting a second signal dependent on the quantity;
    The first concentration of the first substance in the sample gas and the second concentration of the second substance in the sample gas are calculated based on the first signal and the second signal detected by the detection unit. And
    A processing unit that calculates a correction concentration in which the second concentration is corrected, based on the first concentration, the second concentration, and a third concentration of the first substance in the atmosphere;
    Breath diagnostic equipment with.
  2.  前記算出は、前記試料気体に含まれる前記呼気の割合を推定して、前記割合に応じて前記補正濃度を算出することを含む請求項1記載の呼気診断装置。 The breath diagnostic apparatus according to claim 1, wherein the calculation includes estimating the proportion of the exhalation contained in the sample gas and calculating the correction concentration according to the proportion.
  3.  前記算出は、前記第1物質に対して定められた第4濃度にさらに基づいて、前記補正濃度を算出する請求項1記載の呼気診断装置。 The breath diagnostic apparatus according to claim 1, wherein the calculation calculates the correction concentration further based on a fourth concentration determined for the first substance.
  4.  前記第1濃度をC1とし、
     前記第2濃度をC2とし、
     前記第3濃度をC3とし、
     前記第4濃度をC4としたとき、
     前記補正濃度は、C2・(C4-C3)/(C1-C3)に応じた値である請求項3記載の呼気診断装置。
    The first concentration is C1.
    The second concentration is C2.
    The third concentration is C3
    When the fourth concentration is C4,
    4. The breath diagnostic apparatus according to claim 3, wherein the correction concentration is a value corresponding to C2 · (C4−C3) / (C1−C3).
  5.  前記補正濃度は、C2・(C4-C3)/(C1-C3)の0.9倍以上1.1倍以下である請求項4記載の呼気診断装置。 5. The breath diagnostic apparatus according to claim 4, wherein the correction concentration is 0.9 times or more and 1.1 times or less of C2 · (C4−C3) / (C1−C3).
  6.  前記第1物質は、二酸化炭素及び酸素の少なくともいずれかを含む請求項1記載の呼気診断装置。 The breath diagnostic apparatus according to claim 1, wherein the first substance contains at least one of carbon dioxide and oxygen.
  7.  前記第2物質は、二酸化炭素、メタン、エタノール、アセトアルデヒド、アセトン、一酸化炭素、アンモニア及びノナナールの少なくともいずれかを含む請求項6記載の呼気診断装置。 The breath diagnostic apparatus according to claim 6, wherein the second substance contains at least one of carbon dioxide, methane, ethanol, acetaldehyde, acetone, carbon monoxide, ammonia and nonanal.
  8.  前記試料気体が導入される空間を含むセル部と、
     測定光を出射する光源部と、
     をさらに備え、
     前記測定光は、第1波長の第1光と、前記第1波長とは異なる第2波長の第2光と、を含み、
     前記検出部は、前記第1光を検出する第1検出素子と、前記第2光を検出する第2検出素子と、を含む請求項1記載の呼気診断装置。
    A cell unit including a space into which the sample gas is introduced;
    A light source unit that emits measurement light;
    And further
    The measurement light includes a first light of a first wavelength and a second light of a second wavelength different from the first wavelength,
    The breath diagnostic apparatus according to claim 1, wherein the detection unit includes a first detection element that detects the first light and a second detection element that detects the second light.
  9.  前記検出部は、前記試料気体が導入された前記空間を通過した前記測定光を検出して前記第1信号を検出する請求項8記載の呼気診断装置。 The breath diagnostic apparatus according to claim 8, wherein the detection unit detects the first signal by detecting the measurement light that has passed through the space into which the sample gas is introduced.
  10.  前記測定光は、前記第1波長と前記第2波長との間の第3波長の第3光をさらに含む請求項8記載の呼気診断装置。 The breath diagnostic apparatus according to claim 8, wherein the measurement light further includes third light of a third wavelength between the first wavelength and the second wavelength.
  11.  前記第1光の光路の少なくとも一部は、前記第2光の光路の少なくとも一部と重なる請求項10記載の呼気診断装置。 The breath diagnostic apparatus according to claim 10, wherein at least a part of the light path of the first light overlaps with at least a part of the light path of the second light.
  12.  前記測定光の光路上において前記光源部と前記検出部との間に設けられた光学素子部をさらに備え、
     前記光学素子部は、前記第1光と前記第2光の一方を反射し、前記第1光と前記第2光の他方を通過させる請求項11記載の呼気診断装置。
    It further comprises an optical element unit provided between the light source unit and the detection unit on the optical path of the measurement light,
    The breath diagnostic apparatus according to claim 11, wherein the optical element unit reflects one of the first light and the second light and transmits the other of the first light and the second light.
  13.  前記検出部は、
      第1期間に前記第1光を検出し、
      第2期間に前記第2光を検出する請求項10記載の呼気診断装置。
    The detection unit is
    Detecting the first light during a first period,
    The breath diagnostic apparatus according to claim 10, wherein the second light is detected in a second period.
  14.  前記光源部は、半導体レーザ素子を含み、
     前記半導体レーザ素子は、前記第1光を放出する第1リッジ部と、前記第2光を放出する第2リッジ部と、を含む請求項10記載の呼気診断装置。
    The light source unit includes a semiconductor laser device,
    11. The breath diagnostic apparatus according to claim 10, wherein the semiconductor laser device includes a first ridge portion that emits the first light and a second ridge portion that emits the second light.
  15.  前記検出部は、前記試料気体中の前記第1物質を検出する第1検出器を含む請求項8記載の呼気診断装置。 9. The breath diagnostic apparatus according to claim 8, wherein the detection unit includes a first detector that detects the first substance in the sample gas.
  16.  前記検出部は、前記試料気体中の前記第1物質を検出する第2検出器をさらに含み、
     前記第2検出器は、前記空間中の前記測定光の光路に沿って、前記第1検出器と並ぶ請求項15記載の呼気診断装置。
    The detection unit further includes a second detector that detects the first substance in the sample gas,
    The breath diagnostic apparatus according to claim 15, wherein the second detector is aligned with the first detector along an optical path of the measurement light in the space.
  17.  前記試料気体が導入される空間を含むセル部と、
     測定光を出射する光源部と、
     をさらに備え、
     前記測定光は、第1波長と、前記第1波長とは異なる第2波長と、前記第1波長と前記第2波長との間の波長と、を有し、
     前記検出部は、前記第1波長と前記第2波長との間で波長を変えて前記測定光を検出する請求項1記載の呼気診断装置。
    A cell unit including a space into which the sample gas is introduced;
    A light source unit that emits measurement light;
    And further
    The measurement light has a first wavelength, a second wavelength different from the first wavelength, and a wavelength between the first wavelength and the second wavelength,
    The breath diagnostic apparatus according to claim 1, wherein the detection unit detects the measurement light by changing a wavelength between the first wavelength and the second wavelength.
  18.  前記セル部は、
      前記測定光に対して反射性の第1反射部と、
      前記測定光に対して反射性の第2反射部と、
     を含み、
     前記第1反射部と前記第2反射部との間に前記空間が配置され、
     前記測定光は、前記第1反射部と前記第2反射部とを反射して前記空間を通過する請求項8記載の呼気診断装置。
    The cell unit is
    A first reflecting portion that is reflective to the measurement light;
    A second reflecting portion that is reflective to the measurement light;
    Including
    The space is disposed between the first reflective portion and the second reflective portion,
    9. The breath diagnostic apparatus according to claim 8, wherein the measurement light reflects the first reflection part and the second reflection part and passes through the space.
  19.  前記光源部は、半導体発光素子を含み、
     前記半導体発光素子は、複数の量子井戸のサブバンドにおける電子のエネルギー緩和により前記測定光を放射する請求項8記載の呼気診断装置。
    The light source unit includes a semiconductor light emitting element,
    The breath diagnostic apparatus according to claim 8, wherein the semiconductor light emitting element emits the measurement light by energy relaxation of electrons in a plurality of sub-bands of quantum wells.
  20.  前記試料気体が導入された前記空間の通過における前記第1光の透過率は、0.1%以上99.9%以下であり、
     前記試料気体が導入された前記空間の通過における前記第2光の透過率は、0.1%以上99.9%以下である請求項8記載の呼気診断装置。
    The transmittance of the first light in the passage of the space into which the sample gas is introduced is 0.1% to 99.9%,
    The breath diagnostic apparatus according to claim 8, wherein the transmittance of the second light in the passage of the space into which the sample gas is introduced is 0.1% to 99.9%.
PCT/JP2014/073936 2014-03-05 2014-09-10 Breath diagnosis device WO2015132986A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014042931A JP2017078570A (en) 2014-03-05 2014-03-05 Breath diagnostic apparatus
JP2014-042931 2014-03-05

Publications (1)

Publication Number Publication Date
WO2015132986A1 true WO2015132986A1 (en) 2015-09-11

Family

ID=54054813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/073936 WO2015132986A1 (en) 2014-03-05 2014-09-10 Breath diagnosis device

Country Status (2)

Country Link
JP (1) JP2017078570A (en)
WO (1) WO2015132986A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9835550B2 (en) 2015-03-18 2017-12-05 Kabushiki Kaisha Toshiba Breath analyzer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0618411A (en) * 1992-06-30 1994-01-25 Japan Radio Co Ltd Carbon isotope analyzer
JPH07120463A (en) * 1993-10-25 1995-05-12 Kyoto Daiichi Kagaku:Kk Concentration correction method for aspiration component and aspiration analysis device
WO2008081757A1 (en) * 2006-12-28 2008-07-10 Kabushiki Kaisha Toyota Chuo Kenkyusho Gas detecting method and gas detecting apparatus
JP2009222527A (en) * 2008-03-14 2009-10-01 Mitsubishi Heavy Ind Ltd Gas concentration measuring method and apparatus
JP2010164480A (en) * 2009-01-16 2010-07-29 Yokogawa Electric Corp Laser gas analyzer
JP2013038092A (en) * 2011-08-03 2013-02-21 Toshiba Corp Semiconductor laser device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0618411A (en) * 1992-06-30 1994-01-25 Japan Radio Co Ltd Carbon isotope analyzer
JPH07120463A (en) * 1993-10-25 1995-05-12 Kyoto Daiichi Kagaku:Kk Concentration correction method for aspiration component and aspiration analysis device
WO2008081757A1 (en) * 2006-12-28 2008-07-10 Kabushiki Kaisha Toyota Chuo Kenkyusho Gas detecting method and gas detecting apparatus
JP2009222527A (en) * 2008-03-14 2009-10-01 Mitsubishi Heavy Ind Ltd Gas concentration measuring method and apparatus
JP2010164480A (en) * 2009-01-16 2010-07-29 Yokogawa Electric Corp Laser gas analyzer
JP2013038092A (en) * 2011-08-03 2013-02-21 Toshiba Corp Semiconductor laser device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
RISBY T H ET AL.: "Current status of midinfrared quantum and interband cascade lasers for clinical breath analysis", OPTICAL ENGINEERING, vol. 49, no. 11, November 2010 (2010-11-01), pages 111123 - 1 - 111123-14, XP055220331 *
SHORTER J H ET AL.: "Multicomponent Breath Analysis With Infrared Absorption Using Room- Temperature Quantum Cascade Lasers", IEEE SENSORS JOURNAL, vol. 10, no. 1, January 2010 (2010-01-01), pages 76 - 84, XP011286066 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9835550B2 (en) 2015-03-18 2017-12-05 Kabushiki Kaisha Toshiba Breath analyzer

Also Published As

Publication number Publication date
JP2017078570A (en) 2017-04-27

Similar Documents

Publication Publication Date Title
US11692934B2 (en) Solid-state spectrometer
EP2946195B1 (en) Method and apparatus for monitoring a level of a gaseous species of interest
WO2016147451A1 (en) Respiratory analysis device
WO2016117173A1 (en) Breath measurement device, breath measurement method, and gas cell
US20160377596A1 (en) Exhalation diagnistic apparatus
JP2007285842A (en) Device for measuring gas concentration
US20230363665A1 (en) Capnometer
Wojtas et al. Cavity-enhanced absorption spectroscopy and photoacoustic spectroscopy for human breath analysis
US9683933B2 (en) Method and apparatus for detecting an analyte
WO2015132986A1 (en) Breath diagnosis device
WO2015019650A1 (en) Respiratory diagnosis device
WO2016047169A1 (en) Exhalation diagnostic device
JP6283291B2 (en) Gas analyzer and gas cell
WO2015125323A1 (en) Exhaled-air diagnosis device
JP6271707B2 (en) Semiconductor laser device
WO2015136744A1 (en) Exhaled-air diagnosis device
WO2015125327A1 (en) Exhaled-air diagnosis device
WO2015125324A1 (en) Exhaled-air diagnosis device
JP2015155803A (en) Breath diagnosis apparatus
US20210116433A1 (en) Photonic Crystal Gas Sensor
WO2015125328A1 (en) Exhaled-air diagnosis device
US20160374591A1 (en) Bandstructure cascade laser capnography

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14884328

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14884328

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP