WO2015125328A1 - Exhaled-air diagnosis device - Google Patents

Exhaled-air diagnosis device Download PDF

Info

Publication number
WO2015125328A1
WO2015125328A1 PCT/JP2014/074522 JP2014074522W WO2015125328A1 WO 2015125328 A1 WO2015125328 A1 WO 2015125328A1 JP 2014074522 W JP2014074522 W JP 2014074522W WO 2015125328 A1 WO2015125328 A1 WO 2015125328A1
Authority
WO
WIPO (PCT)
Prior art keywords
diagnostic apparatus
breath
intermediate portion
unit
sample gas
Prior art date
Application number
PCT/JP2014/074522
Other languages
French (fr)
Japanese (ja)
Inventor
茂行 高木
康友 塩見
努 角野
陽 前川
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Publication of WO2015125328A1 publication Critical patent/WO2015125328A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/497Physical analysis of biological material of gaseous biological material, e.g. breath
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Measuring devices for evaluating the respiratory organs
    • A61B5/082Evaluation by breath analysis, e.g. determination of the chemical composition of exhaled breath
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Measuring devices for evaluating the respiratory organs
    • A61B5/097Devices for facilitating collection of breath or for directing breath into or through measuring devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N2001/2244Exhaled gas, e.g. alcohol detecting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/031Multipass arrangements

Definitions

  • Embodiments of the present invention relate to a breath diagnostic device.
  • the gas of breath is measured.
  • the measurement results facilitate disease prevention and early detection.
  • Embodiments of the present invention provide a high precision breath diagnostic device.
  • a breath diagnostic apparatus includes: a supply unit to which a sample gas containing breath is supplied; a cell unit including a space into which the sample gas is introduced from the supply unit; An introduction pipe provided between the cell unit and guiding the sample gas from the supply unit to the space, a light source unit for causing measurement light to enter the space, and a detection unit for detecting the measurement light having passed through the space ,including.
  • the introduction pipe includes an intermediate portion having a bend.
  • FIG. 2A to FIG. 2C are schematic views illustrating a part of the breath diagnostic apparatus according to the embodiment.
  • FIG. 3A and FIG. 3B are schematic views illustrating a part of the breath diagnostic apparatus according to the embodiment.
  • FIG. 4A and FIG. 4B are schematic views illustrating a part of the breath diagnostic apparatus according to the embodiment.
  • FIG. 5A to FIG. 5C are schematic views illustrating a part of the breath diagnostic apparatus according to the embodiment.
  • FIG. 1 is a schematic view illustrating a breath diagnostic apparatus according to the embodiment.
  • the breath diagnostic apparatus 110 includes a supply unit 10i, a cell unit 20, an introduction pipe 15a, a light source unit 30, and a detection unit 40.
  • a discharge unit 10 o and a discharge pipe 15 b are further provided.
  • the sample gas 50 is supplied to the supply unit 10i.
  • the sample gas 50 includes exhalation 50a.
  • the exhalation 50a is exhalation of an animal including, for example, a human.
  • the exhalation 50a contains a substance to be diagnosed. This substance is, for example, acetone.
  • acetone For example, when suffering from diabetes, the concentration of acetone in the exhaled breath 50a is increased as compared to when in health.
  • the breath diagnostic apparatus 110 the health condition is diagnosed by measuring the concentration of a substance (for example, acetone or the like). Examples of the substance will be described later.
  • the sample gas 50 including the breath 50a is blown from the subject into the supply unit 10i.
  • the cell unit 20 includes a space 23s.
  • the sample gas 50 is introduced into the space 23s from the supply unit 10i.
  • the cell unit 20 includes the cell 23.
  • a space 23s is formed in the cell 23.
  • An introduction pipe 15a is provided between the cell 23 (cell unit 20) and the supply unit 10i.
  • An inlet 20 i is provided in the cell unit 20.
  • the inlet pipe 15a is connected to the inlet 20i.
  • the introduction pipe 15a guides the sample gas 50 from the supply unit 10i to the space 23s.
  • the sample gas 50 supplied to the supply unit 10i is introduced into the space 23s via the introduction pipe 15a.
  • the exhaust unit 10 o is provided between the space 23 s and the atmosphere 10 x.
  • the atmosphere 10 x is outside the breath diagnostic apparatus 110.
  • the discharge pipe 15b is provided between the space 23s and the discharge part 10o.
  • the sample gas 50 in the space 23s of the cell unit 20 is introduced into the discharge unit 10o via the discharge pipe 15b.
  • the sample gas 50 is discharged to the atmosphere 10x by the discharge unit 10o.
  • the light source unit 30 causes the measurement light 30L to enter the space 23s.
  • the detection unit 40 detects the measurement light 30L that has passed through the space 23s.
  • the measurement light 30L is absorbed by a substance (for example, acetone or the like) contained in the breath 50a in the sample gas 50.
  • the absorption of the measurement light 30L changes according to the concentration of the substance.
  • the concentration of the target substance can be measured. A diagnosis is made based on this result.
  • the light source unit 30 includes a semiconductor light emitting element 30a and a drive unit 30b.
  • the driving unit 30 b is electrically connected to the semiconductor light emitting element 30 a.
  • the driving unit 30 b supplies power for light emission to the semiconductor light emitting element 30 a.
  • a quantum cascade laser QCL
  • An example of the semiconductor light emitting device 30a will be described later.
  • the measurement light 30L includes a wavelength absorbed by the substance contained in the breath 50a.
  • the measurement light 30L includes infrared light (infrared light).
  • the measurement light 30L is, for example, not less than 0.7 micrometers ( ⁇ m) and not more than 1000 ⁇ m.
  • the measurement light 30L may be, for example, 2.5 ⁇ m to 11 ⁇ m.
  • the cell unit 20 includes a first reflection unit 21 and a second reflection unit 22.
  • the first reflecting portion 21 and the second reflecting portion 22 are reflective to the measurement light 30L.
  • the sample gas 50 introduced from the supply unit 10i is introduced into the space 23s between the first reflection unit 21 and the second reflection unit 22. At least a part of the space 23 s is disposed between the first reflecting portion 21 and the second reflecting portion 22.
  • the measurement light 30L passes through, for example, the space 23s in a state where the sample gas 50 is introduced into the space 23s.
  • the measurement light 30L is reflected by the first reflecting portion 21 and the second reflecting portion 22, and reciprocates between the first reflecting portion 21 and the second reflecting portion 22 (space 23s) a plurality of times.
  • a part of the measurement light 30 L is absorbed by the substance contained in the sample gas 50.
  • the component of the wavelength specific to the substance in the measurement light 30L is absorbed. The degree of absorption depends on the concentration of the substance.
  • the detection unit 40 detects, for example, the measurement light 30L that has passed through the space 23s in a state where the sample gas 50 is introduced into the space 23s.
  • a photodiode or the like is used for the detection unit 40.
  • the detection unit 40 is optional.
  • a processing unit 45 is further provided.
  • the processing unit 45 processes the signal detected by the detection unit 40 and derives a desired result.
  • a housing 10 w is further provided.
  • the cell unit 20, the light source unit 30, the detection unit 40, the introduction pipe 15a, and the discharge pipe 15b are stored in the housing 10w.
  • the first optical component 36 a is provided between the light source unit 30 and the cell unit 20 on the light path of the measurement light 30 ⁇ / b> L.
  • a second optical component 36 b is provided between the cell unit 20 and the detection unit 40 on the optical path.
  • These optical components include, for example, focusing optics.
  • a filter may be used for these optical components.
  • An optical switch may be used for these optical components.
  • the optical components may be provided or omitted as necessary.
  • an intermediate portion 18 a is provided in the introduction pipe 15 a.
  • the middle portion 18 a has a bending portion 17.
  • a plurality of bending portions (a first bending portion 17a, a second bending portion 17b, a third bending portion 17c, and the like) are provided.
  • the intermediate portion 18a creates turbulent flow in the sample gas 50 guided to the intermediate portion 18a.
  • the sample gas 50 guided to the intermediate portion 18 a collides with the wall surface of the bending portion 17. By hitting the wall, turbulence is formed.
  • turbulent flow is formed, the number of times water molecules contained in the sample gas 50 contact the wall increases. Water molecules, for example, adhere to the wall surface. As a result, the amount of water contained in the sample gas 50 is reduced.
  • condensation may occur in the space 23s for measurement if the amount of water in the sample gas 50 including the exhalation 50a is large. For example, water particles adhere to at least one of the surface of the first reflecting portion 21 and the surface of the second reflecting portion 22.
  • the traveling direction of the measurement light 30L is not the desired direction. For example, the effective distance at which the measurement light 30L passes through the space changes. Because of this, measurement results become inaccurate.
  • a multilayer structure may be used for the first reflecting portion 21 and the second reflecting portion 22. This makes it easy to obtain a desired reflectance for the measurement light 30L of infrared light. It has been found that such multilayer structures are susceptible to degradation in high humidity. When the first reflecting portion 21 and the second reflecting portion 22 are degraded, the accuracy of the measurement result is degraded.
  • the intermediate portion 18 a including the bending portion 17 by providing the intermediate portion 18 a including the bending portion 17, the amount of water in the sample gas 50 can be reduced. This can improve the measurement accuracy.
  • the sample gas 50 may contain particles (for example, dust, pollen, etc.).
  • the particles are irradiated with the measurement light 30L. That is, the measurement light 30L is irradiated to particles which are not substances to be measured. As a result, correct measurement results may not be obtained.
  • the intermediate portion 18 a having the bending portion 17 by providing the intermediate portion 18 a having the bending portion 17, the amount of water contained in the sample gas 50 is reduced. Furthermore, the amount of particles can also be reduced. This enables more accurate measurement.
  • the change in the angle in the extension direction of the intermediate portion 18a in the bending portion 17 is 70 degrees or more. Due to the large angle in the extension direction, for example, the sample gas 50 easily collides with the wall surface of the intermediate portion 18a. For example, turbulent flow is likely to occur. Water and particle capture characteristics are improved.
  • a plurality of bending portions 17 may be provided. At this time, the change of the angle in the extension direction of the intermediate portion 18 a in each of at least two of the plurality of bending portions 17 is 70 degrees or more.
  • the introduction pipe 15 a further includes a connection portion 18 b.
  • the connection portion 18 b is provided between the intermediate portion 18 a and the cell portion 20 (space 23 s).
  • the connection 18b extends in a straight line.
  • the flow direction of the sample gas 50 flowing through the connection portion 18b is taken as the extending direction 18d.
  • the length of the connecting portion 18b along the extending direction 18d is equal to or greater than the length of the connecting portion 18b in the cross-sectional direction perpendicular to the extending direction 18d.
  • FIG. 2A to FIG. 2C are schematic views illustrating a part of the breath diagnostic apparatus according to the embodiment. These drawings illustrate the introduction pipe 15a.
  • the intermediate portion 18a is in a loop shape. The number of loops is arbitrary.
  • the intermediate portion 18a includes a plurality of asperities (convex portions 19p and concave portions 19d).
  • the plurality of irregularities are provided on the inner surface of the introduction pipe 15a.
  • the middle portion 18a includes a bellows.
  • a bellows can be used as the intermediate portion 18a.
  • the provision of the plurality of asperities improves, for example, the capture characteristics of water and / or particles.
  • a bellows as a pipe provided between the mouth of a subject and the supply unit 10i.
  • the subject is easy to use by deforming the pipe.
  • the intermediate portion 18a is not necessarily required to be deformed.
  • the removal characteristic of water or the like in the intermediate portion 18a is effectively exhibited.
  • the housing 10w defines the spatial arrangement between the inlet 20i of the cell unit 20 and the supply unit 10i. good. Even if this spatial arrangement is fixed, the removal characteristic of water or the like in the intermediate portion 18a is effectively exhibited.
  • the intermediate portion 18a has a zigzag shape due to the plurality of bending portions 17 (the first bending portion 17a, the second bending portion 17b, and the like). And, a plurality of irregularities are provided. Also in this case, it is possible to provide a breath diagnostic device with high accuracy.
  • the middle portion 18a may have a portion extending in the opposite direction to the direction of gravity. This portion extends in the opposite direction to the gravity, for example, along the direction from the supply unit 10i to the cell unit 20.
  • the particles contained in the sample gas 50 tend to stay in the lower part of the intermediate portion 18a, for example. Particles can be prevented from flowing into the space 23s.
  • water droplets generated on the wall surface of the intermediate portion 18a tend to stay in the lower portion of the intermediate portion 18a. Water can be prevented from flowing into the space 23s.
  • FIG. 3A and FIG. 3B are schematic views illustrating a part of the breath diagnostic apparatus according to the embodiment.
  • These drawings illustrate the introduction pipe 15a.
  • the introduction pipe 15a further includes a wall 19 in addition to the connection 18b.
  • the wall 19 is provided in the space in the connecting portion 18 b.
  • the wall-like body 19 extends in the extending direction of the connecting portion 18 b.
  • the wall-like body 19 is, for example, a straightening vane.
  • the cross-sectional shape of the wall-like body 19 may be, for example, a honeycomb shape.
  • the connection 18 b regulates the flow of the sample gas 50.
  • the cross-sectional area (thickness) of the connection portion 18b gradually increases along the direction from the intermediate portion 18a toward the cell portion 20 (introduction port 20i).
  • the cross-sectional area is the area of the connecting portion 18b when cut by a plane perpendicular to the flowing direction of the sample gas 50 flowing through the connecting portion 18b. Laminar flow can be easily generated also in such a connecting portion 18b. Also in this example, the connection 18 b regulates the flow of the sample gas 50.
  • FIG. 4A and FIG. 4B are schematic views illustrating a part of the breath diagnostic apparatus according to the embodiment.
  • These drawings illustrate the introduction pipe 15a.
  • the introductory piping 15a contains the adsorption part 17p.
  • the adsorption part 17p is provided inside the introduction pipe 15a.
  • the adsorption unit 17 p adsorbs at least a part of water contained in the sample gas 50. This further reduces the water in the sample gas 50 introduced into the space 23s.
  • the adsorption portion 17 p is provided, for example, on at least a part of the inner surface of the introduction pipe 15 a.
  • the suction portion 17 p may be provided in the bending portion 17.
  • At least one of silica gel and zeolite can be used for the adsorption unit 17p. By using these, water can be adsorbed effectively.
  • a control unit (such as a first control unit 17q and a second control unit 17r) is provided.
  • the first control unit 17 q and the second control unit 17 r can change the temperature of the intermediate unit 18 a.
  • the temperature of the intermediate unit 18a may be increased by the first control unit 17q.
  • the temperature of the intermediate portion 18a is increased until the measurement by the breath diagnostic apparatus 110 is completed and the other sample gases 50 are evaluated.
  • the water in the introductory piping 15a can be evaporated and easily discharged to the outside of the apparatus. For example, it becomes easy to remove the water adhering to the inner wall of the introductory piping 15a.
  • the cooling may be performed by the first control unit 17 q and the heating may be performed by the second control unit 17 r. It may heat by the 1st control part 17q, and may cool by the 2nd control part 17r.
  • the above-mentioned adsorption part 17p may be combined with the composition illustrated in Drawing 2 (a), Drawing 2 (b), Drawing 2 (c), Drawing 3 (a), and Drawing 3 (c).
  • the above control unit may be combined with the configuration illustrated in FIG. 2 (a), FIG. 2 (b), FIG. 2 (c), FIG. 3 (a) and FIG. 3 (c).
  • the substance is, for example, carbon dioxide isotope.
  • information on H. pylori can be obtained.
  • the substance is, for example, methane.
  • information on intestinal anaerobic bacteria can be obtained.
  • the substance is, for example, ethanol.
  • information on drinking can be obtained.
  • the substance is, for example, acetaldehyde.
  • information on drinking metabolites and lung cancer can be obtained.
  • the substance is, for example, acetone.
  • information on diabetes can be obtained.
  • the substance is, for example, nitric oxide.
  • information on asthma can be obtained.
  • the substance is, for example, ammonia.
  • information on hepatitis can be obtained.
  • the substance is, for example, nonanal.
  • information on lung cancer can be obtained.
  • the breath 50a contains at least one of carbon dioxide, methane, ethanol, acetaldehyde, acetone, carbon monoxide, ammonia and nonanal.
  • the substance to be measured contained in the breath 50a is optional.
  • FIG. 5A to FIG. 5C are schematic views illustrating a part of the breath diagnostic apparatus according to the embodiment.
  • FIG. 5A is a schematic perspective view.
  • FIG. 5 (b) is a cross-sectional view taken along line A1-A2 of FIG. 5 (a).
  • FIG. 5C is a schematic view illustrating the operation of the light source unit 30.
  • a semiconductor light emitting element 30 a is used as the light source unit 30.
  • a laser is used as the semiconductor light emitting element 30a.
  • a quantum cascade laser is used.
  • the semiconductor light emitting device 30a includes the substrate 35, the laminate 31, the first electrode 34a, the second electrode 34b, and the dielectric layer 32 (first dielectric layer). , And the insulating layer 33 (second dielectric layer).
  • a substrate 35 is provided between the first electrode 34 a and the second electrode 34 b.
  • the substrate 35 includes a first portion 35a, a second portion 35b, and a third portion 35c. These parts are arranged in one plane. This plane intersects (eg, is parallel to) the direction from the first electrode 34a to the second electrode 34b.
  • the third portion 35c is disposed between the first portion 35a and the second portion 35b.
  • the stacked body 31 is provided between the third portion 35c and the first electrode 34a.
  • a dielectric layer 32 is provided between the first portion 35a and the first electrode 34a and between the second portion 35b and the first electrode 34a.
  • An insulating layer 33 is provided between the dielectric layer 32 and the first electrode 34a.
  • the stacked body 31 has a stripe shape.
  • the stacked body 31 functions as a ridge waveguide RG.
  • the two end faces of the ridge waveguide RG become mirror surfaces.
  • the light 31L emitted from the laminate 31 is emitted from the end face (light emitting surface).
  • the light 31L is an infrared laser light.
  • the optical axis 31Lx of the light 31L is along the extending direction of the ridge waveguide RG.
  • the stacked body 31 includes, for example, a first cladding layer 31a, a first guide layer 31b, an active layer 31c, a second guide layer 31d, and a second cladding layer 31e. ,including. These layers are arranged in this order along the direction from the substrate 35 toward the first electrode 34a.
  • Each of the refractive index of the first cladding layer 31a and the refractive index of the second cladding layer 31e is determined by the refractive index of the first guide layer 31b, the refractive index of the active layer 31c, and the refractive index of the second guide layer 31d. Too low.
  • the light 31 L generated in the active layer 31 c is confined in the stack 31.
  • the first guide layer 31 b and the first cladding layer 31 a may be collectively referred to as a cladding layer.
  • the second guide layer 31d and the second cladding layer 31e may be collectively referred to as a cladding layer.
  • the stacked body 31 has a first side 31 sa and a second side 31 sb perpendicular to the optical axis 31 Lx.
  • the distance 31w (width) between the first side surface 31sa and the second side surface 31sb is, for example, 5 ⁇ m or more and 20 ⁇ m or less. Thereby, for example, control of the horizontal lateral mode is facilitated, and output improvement is facilitated. If the distance 31 w is excessively long, high-order modes are likely to occur in the horizontal transverse mode, and it is difficult to increase the output.
  • the refractive index of the dielectric layer 32 is lower than the refractive index of the active layer 31c.
  • the ridge waveguide RG is formed by the dielectric layer 32 along the optical axis 31Lx.
  • the active layer 31c has, for example, a cascade structure.
  • the cascade structure for example, the first regions r1 and the second regions r2 are alternately stacked.
  • the unit structure r3 includes a first region r1 and a second region r2. A plurality of unit structures r3 are provided.
  • first barrier layer BL1 and the first quantum well layer WL1 are provided in the first region r1.
  • the second barrier layer BL2 is provided in the second region.
  • the third barrier layer BL3 and the second quantum well layer WL2 are provided in another first region r1a.
  • a fourth barrier layer BL4 is provided in another second region r2a.
  • an intersubband optical transition of the first quantum well layer WL1 occurs in the first region r1, an intersubband optical transition of the first quantum well layer WL1 occurs. Thereby, for example, light 31La having a wavelength of 3 ⁇ m to 18 ⁇ m is emitted.
  • the energy of carriers c1 (for example, electrons) injected from the first region r1 can be relaxed.
  • the well width WLt is, for example, 5 nm or less.
  • the energy levels are discretely generated, for example, the first sub-band WLa (high level Lu) and the second sub-band WLb (low level Ll).
  • the carriers c1 injected from the first barrier layer BL1 are effectively confined in the first quantum well layer WL1.
  • the carrier c1 transitions from the high level Lu to the low level Ll
  • the light 31La corresponding to the energy difference (the difference between the high level Lu and the low level Ll) is emitted. That is, an optical transition occurs.
  • the quantum well layer may include a plurality of wells with overlapping wave functions.
  • the respective high levels Lu of the plurality of quantum well layers may be identical to each other.
  • the low levels Ll of the plurality of quantum well layers may be the same as one another.
  • intersubband optical transitions occur in either the conduction band or the valence band.
  • recombination of holes and electrons by a pn junction is not necessary.
  • carriers c1 of either holes or electrons cause optical transition to emit light.
  • carriers c1 for example, electrons
  • a barrier layer for example, the first barrier layer BL1
  • the well layer for example, the first quantum well layer WL1 is implanted. This causes an intersubband optical transition.
  • the second region r2 has, for example, a plurality of subbands.
  • the sub band is, for example, a mini band.
  • the energy difference in the subbands is small.
  • the second region r2 for example, light (for example, infrared light having a wavelength of 3 ⁇ m to 18 ⁇ m) is not substantially emitted.
  • the carriers c1 (electrons) of the low level L1 of the first region r1 pass through the second barrier layer BL2, are injected into the second region r2, and are relaxed.
  • the carrier c1 is injected into another cascaded first region r1a. An optical transition occurs in this first region r1a.
  • optical transition occurs in each of the plurality of unit structures r3. This makes it easy to obtain high light output in the entire active layer 31c.
  • the light source unit 30 includes the semiconductor light emitting element 30a.
  • the semiconductor light emitting element 30a emits the measurement light 30L by energy relaxation of electrons in the sub-bands of the plurality of quantum wells (for example, the first quantum well layer WL1 and the second quantum well layer WL2).
  • GaAs is used for the quantum well layers (for example, the first quantum well layer WL1 and the second quantum well layer WL2).
  • Al x Ga 1 -x As (0 ⁇ x ⁇ 1) is used for the barrier layers (eg, the first to fourth barrier layers BL1 to BL4).
  • the barrier layers eg, the first to fourth barrier layers BL1 to BL4.
  • the first cladding layer 31a and the second cladding layer 31e contain, for example, Si as an n-type impurity.
  • the impurity concentration in these layers is, for example, 1 ⁇ 10 18 cm ⁇ 3 or more and 1 ⁇ 10 20 cm ⁇ 3 or less (for example, about 6 ⁇ 10 18 cm ⁇ 3 ).
  • the thickness of each of these layers is, for example, 0.5 ⁇ m or more and 2 ⁇ m or less (for example, about 1 ⁇ m).
  • the first guide layer 31 b and the second guide layer 31 d contain, for example, Si as an n-type impurity.
  • the impurity concentration in these layers is, for example, 1 ⁇ 10 16 cm ⁇ 3 or more and 1 ⁇ 10 17 cm ⁇ 3 or less (for example, about 4 ⁇ 10 16 cm ⁇ 3 ).
  • the thickness of each of these layers is, for example, 2 ⁇ m or more and 5 ⁇ m or less (for example, 3.5 ⁇ m).
  • the distance 31 w (the width of the stack 31, that is, the width of the active layer 31 c) is, for example, 5 ⁇ m or more and 20 ⁇ m or less (for example, about 14 ⁇ m).
  • the length of the ridge waveguide RG is, for example, 1 mm or more and 5 mm or less (for example, about 3 mm).
  • the semiconductor light emitting device 30a (quantum cascade laser) operates at an operating voltage of, for example, 10 V or less.
  • the consumption current is lower than that of a carbon dioxide gas laser device or the like. This enables low power consumption operation.
  • breath diagnosis apparatuses that can be appropriately designed and implemented by those skilled in the art based on the breath diagnosis apparatus described above as the embodiment of the present invention also fall within the scope of the present invention as long as the scope of the present invention is included. Belongs to

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biophysics (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Pulmonology (AREA)
  • Immunology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

An embodiment of this invention provides an exhaled-air diagnosis device that has the following: a supply section to which a gas sample containing exhaled air is supplied, a cell section that has a space into which said gas sample is introduced from the supply section, an introduction tube that is provided between the supply section and the cell section and that guides the gas sample from the supply section to the aforementioned space, a light-source unit that inputs measurement light to the space, and a detection unit that detects said measurement light after said management light has passed through the space. The introduction tube has an intermediate section that has a curved section.

Description

呼気診断装置Breath diagnostic device
 本発明の実施形態は、呼気診断装置に関する。 Embodiments of the present invention relate to a breath diagnostic device.
 呼気診断装置においては、呼気のガスを測定する。この測定結果より、病気の予防や早期発見が容易になる。呼気診断装置において、高精度の測定結果を得ることが望まれる。 In the breath diagnostic apparatus, the gas of breath is measured. The measurement results facilitate disease prevention and early detection. In a breath diagnostic apparatus, it is desirable to obtain highly accurate measurement results.
特開2013-11620号公報JP, 2013-11620, A
 本発明の実施形態は、高精度の呼気診断装置を提供する。 Embodiments of the present invention provide a high precision breath diagnostic device.
 本発明の実施形態によれば、呼気診断装置は、呼気を含む試料気体が供給される供給部と、前記供給部から前記試料気体が導入される空間を含むセル部と、前記供給部と前記セル部との間に設けられ前記供給部から前記空間に前記試料気体を導く導入配管と、前記空間に測定光を入射させる光源部と、前記空間を通過した前記測定光を検出する検出部と、を含む。前記導入配管は、屈曲部を有する中間部を含む。 According to an embodiment of the present invention, a breath diagnostic apparatus includes: a supply unit to which a sample gas containing breath is supplied; a cell unit including a space into which the sample gas is introduced from the supply unit; An introduction pipe provided between the cell unit and guiding the sample gas from the supply unit to the space, a light source unit for causing measurement light to enter the space, and a detection unit for detecting the measurement light having passed through the space ,including. The introduction pipe includes an intermediate portion having a bend.
実施形態に係る呼気診断装置を例示する模式図である。It is a schematic diagram which illustrates the breath diagnostic device concerning an embodiment. 図2(a)~図2(c)は、実施形態に係る呼気診断装置の一部を例示する模式図である。FIG. 2A to FIG. 2C are schematic views illustrating a part of the breath diagnostic apparatus according to the embodiment. 図3(a)及び図3(b)は、実施形態に係る呼気診断装置の一部を例示する模式図である。FIG. 3A and FIG. 3B are schematic views illustrating a part of the breath diagnostic apparatus according to the embodiment. 図4(a)及び図4(b)は、実施形態に係る呼気診断装置の一部を例示する模式図である。FIG. 4A and FIG. 4B are schematic views illustrating a part of the breath diagnostic apparatus according to the embodiment. 図5(a)~図5(c)は、実施形態に係る呼気診断装置の一部を例示する模式図である。FIG. 5A to FIG. 5C are schematic views illustrating a part of the breath diagnostic apparatus according to the embodiment.
 以下に、本発明の各実施の形態について図面を参照しつつ説明する。 
 なお、図面は模式的または概念的なものであり、各部分の厚みと幅との関係、部分間の大きさの比率などは、必ずしも現実のものと同一とは限らない。また、同じ部分を表す場合であっても、図面により互いの寸法や比率が異なって表される場合もある。 
 なお、本願明細書と各図において、既出の図に関して前述したものと同様の要素には同一の符号を付して詳細な説明は適宜省略する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
The drawings are schematic or conceptual, and the relationship between the thickness and width of each part, the ratio of sizes between parts, and the like are not necessarily the same as the actual ones. In addition, even in the case of representing the same portion, the dimensions and ratios may be different from one another depending on the drawings.
In the specification of the present application and the drawings, the same elements as those described above with reference to the drawings are denoted by the same reference numerals, and the detailed description will be appropriately omitted.
 (実施形態) 
 図1は、実施形態に係る呼気診断装置を例示する模式図である。 
 図1に表したように、本実施形態に係る呼気診断装置110は、供給部10iと、セル部20と、導入配管15aと、光源部30と、検出部40と、を含む。この例では、排出部10o及び排出配管15bが、さらに設けられている。
(Embodiment)
FIG. 1 is a schematic view illustrating a breath diagnostic apparatus according to the embodiment.
As shown in FIG. 1, the breath diagnostic apparatus 110 according to the present embodiment includes a supply unit 10i, a cell unit 20, an introduction pipe 15a, a light source unit 30, and a detection unit 40. In this example, a discharge unit 10 o and a discharge pipe 15 b are further provided.
 供給部10iには、試料気体50が供給される。試料気体50は、呼気50aを含む。呼気50aは、例えば、ヒトを含む動物の呼気である。呼気50aには、診断の目的とする物質が含まれる。この物質は、例えば、アセトンである。例えば、糖尿病に罹患すると、呼気50a中のアセトンの濃度が健康時に比べて上昇する。呼気診断装置110においては、物質(例えばアセトンなど)の濃度を測定することで、健康状態が診断される。物質の例については、後述する。 The sample gas 50 is supplied to the supply unit 10i. The sample gas 50 includes exhalation 50a. The exhalation 50a is exhalation of an animal including, for example, a human. The exhalation 50a contains a substance to be diagnosed. This substance is, for example, acetone. For example, when suffering from diabetes, the concentration of acetone in the exhaled breath 50a is increased as compared to when in health. In the breath diagnostic apparatus 110, the health condition is diagnosed by measuring the concentration of a substance (for example, acetone or the like). Examples of the substance will be described later.
 呼気50aを含む試料気体50が、被検者から、供給部10iに吹き込まれる。 The sample gas 50 including the breath 50a is blown from the subject into the supply unit 10i.
 セル部20は、空間23sを含む。空間23sに、供給部10iから試料気体50が導入される。この例では、セル部20は、セル23を含む。セル23の中に空間23sが形成される。セル23(セル部20)と供給部10iとの間に、導入配管15aが設けられる。セル部20に、導入口20iが設けられる。導入口20iに導入配管15aが接続される。導入配管15aは、供給部10iから空間23sに試料気体50を導く。供給部10iに供給された試料気体50は、導入配管15aを介して空間23sに導入される。 The cell unit 20 includes a space 23s. The sample gas 50 is introduced into the space 23s from the supply unit 10i. In this example, the cell unit 20 includes the cell 23. A space 23s is formed in the cell 23. An introduction pipe 15a is provided between the cell 23 (cell unit 20) and the supply unit 10i. An inlet 20 i is provided in the cell unit 20. The inlet pipe 15a is connected to the inlet 20i. The introduction pipe 15a guides the sample gas 50 from the supply unit 10i to the space 23s. The sample gas 50 supplied to the supply unit 10i is introduced into the space 23s via the introduction pipe 15a.
 排出部10oは、空間23sと、大気10xと、の間に設けられる。大気10xは、呼気診断装置110の外側である。 The exhaust unit 10 o is provided between the space 23 s and the atmosphere 10 x. The atmosphere 10 x is outside the breath diagnostic apparatus 110.
 排出配管15bは、空間23sと排出部10oとの間に設けられる。セル部20の空間23sの中の試料気体50は、排出配管15bを介して排出部10oに導入される。その試料気体50は、排出部10oにより、大気10xに排出される。 The discharge pipe 15b is provided between the space 23s and the discharge part 10o. The sample gas 50 in the space 23s of the cell unit 20 is introduced into the discharge unit 10o via the discharge pipe 15b. The sample gas 50 is discharged to the atmosphere 10x by the discharge unit 10o.
 光源部30は、空間23sに測定光30Lを入射させる。検出部40は、空間23sを通過した測定光30Lを検出する。例えば、試料気体50中の呼気50aに含まれる物質(例えばアセトンなど)により、測定光30Lが吸収される。測定光30Lの吸収は、物質の濃度に応じて変化する。検出部40により、測定光30Lを検出することで、目的とする物質の濃度が測定できる。この結果に基づいて診断が行われる。 The light source unit 30 causes the measurement light 30L to enter the space 23s. The detection unit 40 detects the measurement light 30L that has passed through the space 23s. For example, the measurement light 30L is absorbed by a substance (for example, acetone or the like) contained in the breath 50a in the sample gas 50. The absorption of the measurement light 30L changes according to the concentration of the substance. By detecting the measurement light 30L by the detection unit 40, the concentration of the target substance can be measured. A diagnosis is made based on this result.
 この例では、光源部30は、半導体発光素子30aと、駆動部30bと、を含む。駆動部30bは、半導体発光素子30aに電気的に接続される。駆動部30bは、半導体発光素子30aに、発光のための電力を供給する。後述するように、半導体発光素子30aとして、例えば、量子カスケードレーザ(QCL)が用いられる。半導体発光素子30aの例については、後述する。 In this example, the light source unit 30 includes a semiconductor light emitting element 30a and a drive unit 30b. The driving unit 30 b is electrically connected to the semiconductor light emitting element 30 a. The driving unit 30 b supplies power for light emission to the semiconductor light emitting element 30 a. As described later, for example, a quantum cascade laser (QCL) is used as the semiconductor light emitting element 30a. An example of the semiconductor light emitting device 30a will be described later.
 測定光30Lは、呼気50aに含まれる物質に吸収される波長を含む。測定光30Lは、赤外光(赤外線)を含む。測定光30Lは、例えば、0.7マイクロメートル(μm)以上1000μm以下である。測定光30Lは、例えば、2.5μm以上11μm以下でも良い。 The measurement light 30L includes a wavelength absorbed by the substance contained in the breath 50a. The measurement light 30L includes infrared light (infrared light). The measurement light 30L is, for example, not less than 0.7 micrometers (μm) and not more than 1000 μm. The measurement light 30L may be, for example, 2.5 μm to 11 μm.
 この例では、セル部20は、第1反射部21と、第2反射部22と、を含む。第1反射部21及び第2反射部22は、測定光30Lに対して反射性である。 In this example, the cell unit 20 includes a first reflection unit 21 and a second reflection unit 22. The first reflecting portion 21 and the second reflecting portion 22 are reflective to the measurement light 30L.
 供給部10iから導入された試料気体50は、第1反射部21と第2反射部22との間の空間23sに導入される。第1反射部21と第2反射部22との間に空間23sの少なくとも一部が配置される。 The sample gas 50 introduced from the supply unit 10i is introduced into the space 23s between the first reflection unit 21 and the second reflection unit 22. At least a part of the space 23 s is disposed between the first reflecting portion 21 and the second reflecting portion 22.
 測定光30Lは、空間23sに試料気体50が導入された状態において、例えば、空間23sを通過する。例えば、測定光30Lは、第1反射部21と第2反射部22とで反射して、第1反射部21と第2反射部22との間(空間23s)を複数回往復する。測定光30Lの一部が、試料気体50に含まれる物質により吸収される。測定光30Lのうちの、物質に特有の波長の成分が吸収される。吸収の程度は、物質の濃度に依存する。 The measurement light 30L passes through, for example, the space 23s in a state where the sample gas 50 is introduced into the space 23s. For example, the measurement light 30L is reflected by the first reflecting portion 21 and the second reflecting portion 22, and reciprocates between the first reflecting portion 21 and the second reflecting portion 22 (space 23s) a plurality of times. A part of the measurement light 30 L is absorbed by the substance contained in the sample gas 50. The component of the wavelength specific to the substance in the measurement light 30L is absorbed. The degree of absorption depends on the concentration of the substance.
 検出部40は、例えば、空間23sに試料気体50が導入された状態において空間23sを通過した測定光30Lを検出する。 The detection unit 40 detects, for example, the measurement light 30L that has passed through the space 23s in a state where the sample gas 50 is introduced into the space 23s.
 検出部40には、例えば、フォトダイオードなどが用いられる。実施形態において、検出部40は任意である。 For example, a photodiode or the like is used for the detection unit 40. In the embodiment, the detection unit 40 is optional.
 この例では、処理部45がさらに設けられている。処理部45は、検出部40で検出された信号を処理して、所望の結果を導出する。 In this example, a processing unit 45 is further provided. The processing unit 45 processes the signal detected by the detection unit 40 and derives a desired result.
 この例では、筐体10wがさらに設けられている。筐体10w中に、例えば、セル部20、光源部30、検出部40、導入配管15a及び排出配管15bが格納される。 In this example, a housing 10 w is further provided. For example, the cell unit 20, the light source unit 30, the detection unit 40, the introduction pipe 15a, and the discharge pipe 15b are stored in the housing 10w.
 この例では、測定光30Lの光路上において、光源部30とセル部20との間に、第1光学部品36aが設けられている。光路上において、セル部20と検出部40との間に、第2光学部品36bが設けられている。これらの光学部品は、例えば、集光光学素子を含む。これらの光学部品に、フィルタを用いても良い。これらの光学部品に、光スイッチを用いても良い。光学部品は必要に応じて設けられ、省略しても良い。 In this example, the first optical component 36 a is provided between the light source unit 30 and the cell unit 20 on the light path of the measurement light 30 </ b> L. A second optical component 36 b is provided between the cell unit 20 and the detection unit 40 on the optical path. These optical components include, for example, focusing optics. A filter may be used for these optical components. An optical switch may be used for these optical components. The optical components may be provided or omitted as necessary.
 実施形態において、導入配管15aには、中間部18aが設けられる。中間部18aは、屈曲部17を有する。この例では、複数の屈曲部(第1屈曲部17a、第2屈曲部17b及び第3屈曲部17cなど)が設けられている。 In the embodiment, an intermediate portion 18 a is provided in the introduction pipe 15 a. The middle portion 18 a has a bending portion 17. In this example, a plurality of bending portions (a first bending portion 17a, a second bending portion 17b, a third bending portion 17c, and the like) are provided.
 実施形態においては、中間部18aは、中間部18aを導かれる試料気体50に乱流を形成する。中間部18aを導かれる試料気体50は、屈曲部17の壁面にぶつかる。壁面にぶつかることで、乱流が形成される。乱流が形成されると、試料気体50に含まれる水分子が壁面に接触する回数が増える。水分子は、例えば、壁面に付着する。これにより、試料気体50に含まれる水の量が減少する。 In the embodiment, the intermediate portion 18a creates turbulent flow in the sample gas 50 guided to the intermediate portion 18a. The sample gas 50 guided to the intermediate portion 18 a collides with the wall surface of the bending portion 17. By hitting the wall, turbulence is formed. When turbulent flow is formed, the number of times water molecules contained in the sample gas 50 contact the wall increases. Water molecules, for example, adhere to the wall surface. As a result, the amount of water contained in the sample gas 50 is reduced.
 本願発明者の検討によると、呼気50aを含む試料気体50中の水の量が多いと、測定のための空間23sにおいて、結露が生じる場合があることが分かった。例えば、第1反射部21の表面、及び、第2反射部22の表面の少なくともいずれかに、水の粒子が付着する。結露が生じると、例えば、測定光30Lの進行方向が所望の方向ではなくなる。例えば、測定光30Lが空間を通過する実効的な距離が変化する。このため、測定結果が不正確になる。 According to the study of the inventor of the present application, it has been found that condensation may occur in the space 23s for measurement if the amount of water in the sample gas 50 including the exhalation 50a is large. For example, water particles adhere to at least one of the surface of the first reflecting portion 21 and the surface of the second reflecting portion 22. When condensation occurs, for example, the traveling direction of the measurement light 30L is not the desired direction. For example, the effective distance at which the measurement light 30L passes through the space changes. Because of this, measurement results become inaccurate.
 さらに、第1反射部21及び第2反射部22に多層構造体を用いる場合がある。これにより、赤外光の測定光30Lに対して所望の反射率が得やすくなる。このような多層構造体は、高湿度中で劣化し易いことが分かった。第1反射部21及び第2反射部22が劣化すると、測定結果の精度が劣化する。 Furthermore, a multilayer structure may be used for the first reflecting portion 21 and the second reflecting portion 22. This makes it easy to obtain a desired reflectance for the measurement light 30L of infrared light. It has been found that such multilayer structures are susceptible to degradation in high humidity. When the first reflecting portion 21 and the second reflecting portion 22 are degraded, the accuracy of the measurement result is degraded.
 実施形態においては、屈曲部17を含む中間部18aを設けることで、試料気体50中の水の量を減少させることができる。これにより、測定の精度を向上できる。 In the embodiment, by providing the intermediate portion 18 a including the bending portion 17, the amount of water in the sample gas 50 can be reduced. This can improve the measurement accuracy.
 さらに、このような中間部18aを設けることで、試料気体50中に含まれる粒子が、空間23sに導かれることを抑制できる。 Furthermore, by providing such an intermediate portion 18a, it is possible to suppress that the particles contained in the sample gas 50 are guided to the space 23s.
 例えば、試料気体50に粒子(例えば、ゴミや花粉など)が含まれる場合がある。例えば、試料気体50に粒子が含まれ、粒子が測定のための空間23sに導入されると、粒子に測定光30Lが照射される。すなわち、測定対象とする物質ではない粒子に測定光30Lが照射される。これにより、正しい測定結果が得られない場合がある。 For example, the sample gas 50 may contain particles (for example, dust, pollen, etc.). For example, when the sample gas 50 contains particles and the particles are introduced into the space 23s for measurement, the particles are irradiated with the measurement light 30L. That is, the measurement light 30L is irradiated to particles which are not substances to be measured. As a result, correct measurement results may not be obtained.
 さらに、第1反射部21及び第2反射部22の表面に粒子が付着する場合があり、このために測定結果の精度が劣化することが分かった。 Furthermore, it has been found that particles may adhere to the surfaces of the first reflecting portion 21 and the second reflecting portion 22, and this degrades the accuracy of the measurement result.
 本実施形態においては、屈曲部17を有する中間部18aを設けることで、試料気体50に含まれる水の量を減少させる。さらに、粒子の量も減少させることができる。これにより、より精度が高い測定が可能になる。 In the present embodiment, by providing the intermediate portion 18 a having the bending portion 17, the amount of water contained in the sample gas 50 is reduced. Furthermore, the amount of particles can also be reduced. This enables more accurate measurement.
 実施形態において、例えば、屈曲部17における中間部18aの延在方向の角度の変化は、70度以上である。延在方向の角度が大きいことで、例えば、試料気体50が中間部18aの壁面にぶつかりやすくなる。例えば、乱流が発生し易くなる。水や粒子の捕獲特性が向上する。 In the embodiment, for example, the change in the angle in the extension direction of the intermediate portion 18a in the bending portion 17 is 70 degrees or more. Due to the large angle in the extension direction, for example, the sample gas 50 easily collides with the wall surface of the intermediate portion 18a. For example, turbulent flow is likely to occur. Water and particle capture characteristics are improved.
 例えば、屈曲部17は、複数設けられても良い。このとき、複数の屈曲部17の少なくとも2つのそれぞれにおける、中間部18aの延在方向の角度の変化は、70度以上である。 For example, a plurality of bending portions 17 may be provided. At this time, the change of the angle in the extension direction of the intermediate portion 18 a in each of at least two of the plurality of bending portions 17 is 70 degrees or more.
 一方、図1に例示したように、導入配管15aは、接続部18bをさらに含む。接続部18bは、中間部18aとセル部20(空間23s)との間に設けられる。この例では、接続部18bは、直線状に延びる。このような接続部18bを設けることで、中間部18aで生じた乱流が整えられる。すなわち、接続部18bにおいて、試料気体50の流れが整えられる。これにより、空間23s内での試料気体50が均一になりやすくなる。これにより、測定の精度がより向上する。 On the other hand, as illustrated in FIG. 1, the introduction pipe 15 a further includes a connection portion 18 b. The connection portion 18 b is provided between the intermediate portion 18 a and the cell portion 20 (space 23 s). In this example, the connection 18b extends in a straight line. By providing such a connecting portion 18 b, the turbulent flow generated in the intermediate portion 18 a is adjusted. That is, the flow of the sample gas 50 is adjusted at the connection portion 18 b. As a result, the sample gas 50 in the space 23s is likely to be uniform. This further improves the measurement accuracy.
 例えば、接続部18bを流れる試料気体50の流れる方向を延在方向18dとする。延在方向18dに沿った接続部18bの長さは、延在方向18dに対して垂直な断面方向の接続部18bの長さ以上である。これにより、乱流が整えられ、層流が生じ易くできる。接続部18bの例については、後述する。 For example, the flow direction of the sample gas 50 flowing through the connection portion 18b is taken as the extending direction 18d. The length of the connecting portion 18b along the extending direction 18d is equal to or greater than the length of the connecting portion 18b in the cross-sectional direction perpendicular to the extending direction 18d. Thereby, the turbulent flow can be adjusted and the laminar flow can be easily generated. The example of the connection part 18b is mentioned later.
 図2(a)~図2(c)は、実施形態に係る呼気診断装置の一部を例示する模式図である。 
 これらの図は、導入配管15aを例示している。 
 図2(a)に示した例では、中間部18aは、ループ状である。ループの回数は、任意である。
FIG. 2A to FIG. 2C are schematic views illustrating a part of the breath diagnostic apparatus according to the embodiment.
These drawings illustrate the introduction pipe 15a.
In the example shown in FIG. 2A, the intermediate portion 18a is in a loop shape. The number of loops is arbitrary.
 図2(b)に示した例では、中間部18aは、複数の凹凸(凸部19p及び凹部19d)を含む。複数の凹凸は、導入配管15aの内側面に設けられる。例えば、中間部18aは、ベローズを含む。中間部18aとして、ベローズを用いることができる。凹凸を設けることで、導入配管15a(中間部18a)の内壁の表面積が増える。これにより、水及び粒子の捕獲性が向上する。 In the example shown in FIG. 2B, the intermediate portion 18a includes a plurality of asperities (convex portions 19p and concave portions 19d). The plurality of irregularities are provided on the inner surface of the introduction pipe 15a. For example, the middle portion 18a includes a bellows. A bellows can be used as the intermediate portion 18a. By providing the unevenness, the surface area of the inner wall of the introduction pipe 15a (intermediate portion 18a) is increased. This improves the water and particle capture.
 実施形態においては、複数の凹凸(例えばベローズ)を設けることで、例えば、水及び粒子の少なくともいずれかの捕獲特性が良好になる。 In embodiments, the provision of the plurality of asperities (e.g., bellows) improves, for example, the capture characteristics of water and / or particles.
 被検者の口と、供給部10iと、の間に設けられる配管として、ベローズを用いる参考例がある。この参考例においては、この配管が変形することで、被検者が使い易くなる。 There is a reference example using a bellows as a pipe provided between the mouth of a subject and the supply unit 10i. In this reference example, the subject is easy to use by deforming the pipe.
 これに対して、本実施形態においては、例えば、中間部18aが変形することは必ずしも必要とされない。例えば、中間部18aの両端が固定されている場合も、中間部18aにおける水などの除去特性が有効に発揮される。 On the other hand, in the present embodiment, for example, the intermediate portion 18a is not necessarily required to be deformed. For example, even when both ends of the intermediate portion 18a are fixed, the removal characteristic of water or the like in the intermediate portion 18a is effectively exhibited.
 例えば、図1に例示したように、筐体10wが設けられる場合、例えば、筐体10wは、セル部20の導入口20iと、供給部10iと、の間の空間的配置を規定しても良い。この空間的配置が固定されていても、中間部18aにおける水などの除去特性が有効に発揮される。 For example, as illustrated in FIG. 1, when the housing 10w is provided, for example, the housing 10w defines the spatial arrangement between the inlet 20i of the cell unit 20 and the supply unit 10i. good. Even if this spatial arrangement is fixed, the removal characteristic of water or the like in the intermediate portion 18a is effectively exhibited.
 図2(c)に示した例では、複数の屈曲部17(第1屈曲部17a及び第2屈曲部17bなど)により、中間部18aは、ジグザグ状である。そして、複数の凹凸が設けられている。この場合も、高精度の呼気診断装置が提供できる。 In the example shown in FIG. 2C, the intermediate portion 18a has a zigzag shape due to the plurality of bending portions 17 (the first bending portion 17a, the second bending portion 17b, and the like). And, a plurality of irregularities are provided. Also in this case, it is possible to provide a breath diagnostic device with high accuracy.
 実施形態において、中間部18aは、重力の方向とは逆向きに延びる部分を有しても良い。この部分は、例えば、供給部10iからセル部20に向かう方向に沿って、重力に対して逆向きに延びる。これにより、例えば、試料気体50に含まれる粒子は、例えば、中間部18a中の下側の部分に留まり易い。粒子が空間23sに流入することが抑制できる。例えば、中間部18aの壁面に生じた水滴が、中間部18a中の下側の部分に留まり易い。水が空間23sに流入することが抑制できる。 In the embodiment, the middle portion 18a may have a portion extending in the opposite direction to the direction of gravity. This portion extends in the opposite direction to the gravity, for example, along the direction from the supply unit 10i to the cell unit 20. Thus, for example, the particles contained in the sample gas 50 tend to stay in the lower part of the intermediate portion 18a, for example. Particles can be prevented from flowing into the space 23s. For example, water droplets generated on the wall surface of the intermediate portion 18a tend to stay in the lower portion of the intermediate portion 18a. Water can be prevented from flowing into the space 23s.
 図3(a)及び図3(b)は、実施形態に係る呼気診断装置の一部を例示する模式図である。 
 これらの図は、導入配管15aを例示している。 
 図3(a)に示した例では、導入配管15aは、接続部18b加えて、壁状体19をさらに含む。壁状体19は、接続部18bの中の空間に設けられる。壁状体19は、接続部18bの延在方向に沿う。壁状体19は、例えば、整流板である。壁状体19の断面形状は、例えばハニカム状でも良い。壁状体19を設けることで、層流が生じ易くできる。この例でも、接続部18bは、試料気体50の流れを整える。
FIG. 3A and FIG. 3B are schematic views illustrating a part of the breath diagnostic apparatus according to the embodiment.
These drawings illustrate the introduction pipe 15a.
In the example shown in FIG. 3A, the introduction pipe 15a further includes a wall 19 in addition to the connection 18b. The wall 19 is provided in the space in the connecting portion 18 b. The wall-like body 19 extends in the extending direction of the connecting portion 18 b. The wall-like body 19 is, for example, a straightening vane. The cross-sectional shape of the wall-like body 19 may be, for example, a honeycomb shape. By providing the wall 19, laminar flow can be easily generated. Also in this example, the connection 18 b regulates the flow of the sample gas 50.
 図3(b)に示した例では、接続部18bの断面積(太さ)は、中間部18aからセル部20(導入口20i)に向かう方向に沿って漸増している。断面積は、接続部18bを流れる試料気体50の流れる延在方向に対して垂直な面で切断したときの、接続部18bの面積である。こような接続部18bにおいても、層流が生じ易くできる。この例でも、接続部18bは、試料気体50の流れを整える。 In the example illustrated in FIG. 3B, the cross-sectional area (thickness) of the connection portion 18b gradually increases along the direction from the intermediate portion 18a toward the cell portion 20 (introduction port 20i). The cross-sectional area is the area of the connecting portion 18b when cut by a plane perpendicular to the flowing direction of the sample gas 50 flowing through the connecting portion 18b. Laminar flow can be easily generated also in such a connecting portion 18b. Also in this example, the connection 18 b regulates the flow of the sample gas 50.
 図4(a)及び図4(b)は、実施形態に係る呼気診断装置の一部を例示する模式図である。 
 これらの図は、導入配管15aを例示している。 
 図4(a)に示した例では、導入配管15aは、吸着部17pを含む。吸着部17pは、導入配管15aの内側に設けられる。吸着部17pは、試料気体50に含まれる水の少なくとも一部を吸着する。これにより、空間23sに導入される試料気体50中の水がさらに減少する。
FIG. 4A and FIG. 4B are schematic views illustrating a part of the breath diagnostic apparatus according to the embodiment.
These drawings illustrate the introduction pipe 15a.
In the example shown to Fig.4 (a), the introductory piping 15a contains the adsorption part 17p. The adsorption part 17p is provided inside the introduction pipe 15a. The adsorption unit 17 p adsorbs at least a part of water contained in the sample gas 50. This further reduces the water in the sample gas 50 introduced into the space 23s.
 吸着部17pは、例えば、導入配管15aの内側の面の少なくとも一部に設けられる。例えば、吸着部17pは、屈曲部17に設けられても良い。 The adsorption portion 17 p is provided, for example, on at least a part of the inner surface of the introduction pipe 15 a. For example, the suction portion 17 p may be provided in the bending portion 17.
 実施形態においては、吸着部17pには、シリカゲル及びゼオライトの少なくともいずれかを用いることができる。これらを用いることで、水を効果的に吸着することができる。 In the embodiment, at least one of silica gel and zeolite can be used for the adsorption unit 17p. By using these, water can be adsorbed effectively.
 図4(b)に示した例では、制御部(第1制御部17q及び第2制御部17rなど)が設けられる。第1制御部17q及び第2制御部17rは、中間部18aの温度を変更可能である。 In the example shown in FIG. 4B, a control unit (such as a first control unit 17q and a second control unit 17r) is provided. The first control unit 17 q and the second control unit 17 r can change the temperature of the intermediate unit 18 a.
 例えば、第1制御部17qにより、中間部18aの温度を低下させると、中間部18aにおいて、試料気体50中の水が結露し易くなる。これにより、試料気体50中の水の量を効果的に減らすことができる。 For example, when the temperature of the intermediate portion 18a is decreased by the first control unit 17q, water in the sample gas 50 is easily condensed in the intermediate portion 18a. Thereby, the amount of water in the sample gas 50 can be effectively reduced.
 例えば、第1制御部17qにより、中間部18aの温度を上昇させても良い。例えば、呼気診断装置110による測定が終了し、他の試料気体50を評価するまでの間に、中間部18aの温度を上昇させる。これにより、導入配管15a中の水を蒸発させて、装置の外部に排出し易くできる。例えば、導入配管15aの内壁に付着した水を除去し易くなる。 For example, the temperature of the intermediate unit 18a may be increased by the first control unit 17q. For example, the temperature of the intermediate portion 18a is increased until the measurement by the breath diagnostic apparatus 110 is completed and the other sample gases 50 are evaluated. Thereby, the water in the introductory piping 15a can be evaporated and easily discharged to the outside of the apparatus. For example, it becomes easy to remove the water adhering to the inner wall of the introductory piping 15a.
 実施形態において、例えば、第1制御部17qで冷却して、第2制御部17rで加熱しても良い。第1制御部17qで加熱して、第2制御部17rで冷却しても良い。 In the embodiment, for example, the cooling may be performed by the first control unit 17 q and the heating may be performed by the second control unit 17 r. It may heat by the 1st control part 17q, and may cool by the 2nd control part 17r.
 上記の吸着部17pを、図2(a)、図2(b)、図2(c)、図3(a)及び図3(c)に例示した構成と組み合わせてもよい。上記の制御部を、図2(a)、図2(b)、図2(c)、図3(a)及び図3(c)に例示した構成と組み合わせてもよい。 The above-mentioned adsorption part 17p may be combined with the composition illustrated in Drawing 2 (a), Drawing 2 (b), Drawing 2 (c), Drawing 3 (a), and Drawing 3 (c). The above control unit may be combined with the configuration illustrated in FIG. 2 (a), FIG. 2 (b), FIG. 2 (c), FIG. 3 (a) and FIG. 3 (c).
 実施形態において、測定の対象となる物質の例について説明する。 
 物質は、例えば、二酸化炭素同位体である。この場合、例えば、ピロリ菌に関する情報が得られる。物質は、例えば、メタンである。この場合、例えば、腸内嫌気性菌に関する情報が得られる。物質は、例えば、エタノールである。この場合、例えば、飲酒に関する情報が得られる。物質は、例えば、アセトアルデヒドである。この場合、例えば、飲酒代謝産物及び肺がんに関する情報が得られる。物質は、例えば、アセトンである。この場合、例えば、糖尿病に関する情報が得られる。物質は、例えば、一酸化窒素である。この場合、例えば、ぜんそくに関する情報が得られる。物質は、例えば、アンモニアである。この場合、例えば、肝炎に関する情報が得られる。物質は、例えば、ノナナールである。この場合、例えば、肺がんに関する情報が得られる。
In the embodiment, an example of a substance to be measured will be described.
The substance is, for example, carbon dioxide isotope. In this case, for example, information on H. pylori can be obtained. The substance is, for example, methane. In this case, for example, information on intestinal anaerobic bacteria can be obtained. The substance is, for example, ethanol. In this case, for example, information on drinking can be obtained. The substance is, for example, acetaldehyde. In this case, for example, information on drinking metabolites and lung cancer can be obtained. The substance is, for example, acetone. In this case, for example, information on diabetes can be obtained. The substance is, for example, nitric oxide. In this case, for example, information on asthma can be obtained. The substance is, for example, ammonia. In this case, for example, information on hepatitis can be obtained. The substance is, for example, nonanal. In this case, for example, information on lung cancer can be obtained.
 このように、呼気50aは、二酸化炭素、メタン、エタノール、アセトアルデヒド、アセトン、一酸化炭素、アンモニア及びノナナールの少なくともいずれかを含む。実施形態において、呼気50aに含まれる測定対象の物質は任意である。 Thus, the breath 50a contains at least one of carbon dioxide, methane, ethanol, acetaldehyde, acetone, carbon monoxide, ammonia and nonanal. In the embodiment, the substance to be measured contained in the breath 50a is optional.
 以下、光源部30の例について説明する。 
 図5(a)~図5(c)は、実施形態に係る呼気診断装置の一部を例示する模式図である。 
 図5(a)は、模式的斜視図である。図5(b)は、図5(a)のA1-A2線断面図である。図5(c)は、光源部30の動作を例示する模式図である。 
 この例では、光源部30として、半導体発光素子30aが用いられる。半導体発光素子30aとして、レーザが用いられる。この例では、量子カスケードレーザが用いられる。
Hereinafter, an example of the light source unit 30 will be described.
FIG. 5A to FIG. 5C are schematic views illustrating a part of the breath diagnostic apparatus according to the embodiment.
FIG. 5A is a schematic perspective view. FIG. 5 (b) is a cross-sectional view taken along line A1-A2 of FIG. 5 (a). FIG. 5C is a schematic view illustrating the operation of the light source unit 30.
In this example, a semiconductor light emitting element 30 a is used as the light source unit 30. A laser is used as the semiconductor light emitting element 30a. In this example, a quantum cascade laser is used.
 図5(a)に表したように、半導体発光素子30aは、基板35と、積層体31と、第1電極34aと、第2電極34bと、誘電体層32(第1誘電体層)と、絶縁層33(第2誘電体層)と、を含む。 As shown in FIG. 5A, the semiconductor light emitting device 30a includes the substrate 35, the laminate 31, the first electrode 34a, the second electrode 34b, and the dielectric layer 32 (first dielectric layer). , And the insulating layer 33 (second dielectric layer).
 第1電極34aと、第2電極34bと、の間に基板35が設けられる。基板35は、第1部分35aと、第2部分35bと、第3部分35cと、を含む。これらの部分は、1つの面内に配置される。この面は、第1電極34aから第2電極34bに向かう方向に対して交差する(例えば平行)である。第1部分35aと第2部分35bとの間に、第3部分35cが配置される。 A substrate 35 is provided between the first electrode 34 a and the second electrode 34 b. The substrate 35 includes a first portion 35a, a second portion 35b, and a third portion 35c. These parts are arranged in one plane. This plane intersects (eg, is parallel to) the direction from the first electrode 34a to the second electrode 34b. The third portion 35c is disposed between the first portion 35a and the second portion 35b.
 第3部分35cと第1電極34aとの間に積層体31が設けられる。第1部分35aと第1電極34aとの間、及び、第2部分35bと第1電極34aとの間に、誘電体層32が設けられる。誘電体層32と第1電極34aとの間に絶縁層33が設けられる。 The stacked body 31 is provided between the third portion 35c and the first electrode 34a. A dielectric layer 32 is provided between the first portion 35a and the first electrode 34a and between the second portion 35b and the first electrode 34a. An insulating layer 33 is provided between the dielectric layer 32 and the first electrode 34a.
 積層体31は、ストライプの形状を有している。積層体31は、リッジ導波路RGとして機能する。リッジ導波路RGの2つの端面がミラー面となる。積層体31において放出された光31Lは、端面(光出射面)から出射する。光31Lは、赤外線レーザ光である。光31Lの光軸31Lxは、リッジ導波路RGの延在方向に沿う。 The stacked body 31 has a stripe shape. The stacked body 31 functions as a ridge waveguide RG. The two end faces of the ridge waveguide RG become mirror surfaces. The light 31L emitted from the laminate 31 is emitted from the end face (light emitting surface). The light 31L is an infrared laser light. The optical axis 31Lx of the light 31L is along the extending direction of the ridge waveguide RG.
 図5(b)に表したように、積層体31は、例えば、第1クラッド層31aと、第1ガイド層31bと、活性層31cと、第2ガイド層31dと、第2クラッド層31eと、を含む。これらの層は、基板35から第1電極34aに向かう方向に沿って、この順で並ぶ。第1クラッド層31aの屈折率及び第2クラッド層31eの屈折率のそれぞれは、第1ガイド層31bの屈折率、活性層31cの屈折率、及び、第2ガイド層31dの屈折率のそれぞれよりも低い。活性層31cで生じた光31Lは、積層体31内に閉じ込められる。第1ガイド層31bと第1クラッド層31aとを合わせて、クラッド層と呼ぶ場合がある。第2ガイド層31dと第2クラッド層31eとを合わせて、クラッド層と呼ぶ場合がある。 As shown in FIG. 5B, the stacked body 31 includes, for example, a first cladding layer 31a, a first guide layer 31b, an active layer 31c, a second guide layer 31d, and a second cladding layer 31e. ,including. These layers are arranged in this order along the direction from the substrate 35 toward the first electrode 34a. Each of the refractive index of the first cladding layer 31a and the refractive index of the second cladding layer 31e is determined by the refractive index of the first guide layer 31b, the refractive index of the active layer 31c, and the refractive index of the second guide layer 31d. Too low. The light 31 L generated in the active layer 31 c is confined in the stack 31. The first guide layer 31 b and the first cladding layer 31 a may be collectively referred to as a cladding layer. The second guide layer 31d and the second cladding layer 31e may be collectively referred to as a cladding layer.
 積層体31は、光軸31Lxに対して垂直な第1側面31sa及び第2側面31sbを有する。第1側面31saと第2側面31sbとの間の距離31w(幅)は、例えば5μm以上20μm以下である。これにより、例えば、水平横方向モードの制御が容易となり、出力の向上が容易になる。距離31wが過度に長いと、水平横方向モードにおいて高次モードを生じ易くなり、出力を高めにくい。 The stacked body 31 has a first side 31 sa and a second side 31 sb perpendicular to the optical axis 31 Lx. The distance 31w (width) between the first side surface 31sa and the second side surface 31sb is, for example, 5 μm or more and 20 μm or less. Thereby, for example, control of the horizontal lateral mode is facilitated, and output improvement is facilitated. If the distance 31 w is excessively long, high-order modes are likely to occur in the horizontal transverse mode, and it is difficult to increase the output.
 誘電体層32の屈折率は、活性層31cの屈折率よりも低い。これにより、誘電体層32により、光軸31Lxに沿ってリッジ導波路RGが形成される。 The refractive index of the dielectric layer 32 is lower than the refractive index of the active layer 31c. Thus, the ridge waveguide RG is formed by the dielectric layer 32 along the optical axis 31Lx.
 図5(c)に表したように、活性層31cは、例えば、カスケード構造を有する。カスケード構造においては、例えば、第1領域r1と、第2領域r2と、が交互に積層される。単位構造r3は、第1領域r1及び第2領域r2を含む。複数の単位構造r3が設けられる。 As shown in FIG. 5C, the active layer 31c has, for example, a cascade structure. In the cascade structure, for example, the first regions r1 and the second regions r2 are alternately stacked. The unit structure r3 includes a first region r1 and a second region r2. A plurality of unit structures r3 are provided.
 例えば、第1領域r1には、第1障壁層BL1と、第1量子井戸層WL1と、が設けられる。第2領域には、第2障壁層BL2が設けられる。例えば、別の第1領域r1aには、第3障壁層BL3と、第2量子井戸層WL2と、が設けられる。別の第2領域r2aに、第4障壁層BL4が設けられる。 For example, the first barrier layer BL1 and the first quantum well layer WL1 are provided in the first region r1. The second barrier layer BL2 is provided in the second region. For example, the third barrier layer BL3 and the second quantum well layer WL2 are provided in another first region r1a. A fourth barrier layer BL4 is provided in another second region r2a.
 第1領域r1においては、第1量子井戸層WL1のサブバンド間光学遷移が生じる。これにより、例えば、3μm以上18μm以下の波長の光31Laが放出される。 In the first region r1, an intersubband optical transition of the first quantum well layer WL1 occurs. Thereby, for example, light 31La having a wavelength of 3 μm to 18 μm is emitted.
 第2領域r2においては、第1領域r1から注入されたキャリアc1(例えば電子)のエネルギーは、緩和可能である。 In the second region r2, the energy of carriers c1 (for example, electrons) injected from the first region r1 can be relaxed.
 量子井戸層(例えば第1量子井戸層WL1)において、井戸幅WLtは、例えば、5nm以下である。井戸幅WLtがこのように狭いとき、エネルギー準位が離散して、例えば、第1サブバンドWLa(高準位Lu)及び第2サブバンドWLb(低準位Ll)などを生じる。第1障壁層BL1から注入されたキャリアc1は、第1量子井戸層WL1に効果的に閉じ込められる。 In the quantum well layer (for example, the first quantum well layer WL1), the well width WLt is, for example, 5 nm or less. When the well width WLt is thus narrow, the energy levels are discretely generated, for example, the first sub-band WLa (high level Lu) and the second sub-band WLb (low level Ll). The carriers c1 injected from the first barrier layer BL1 are effectively confined in the first quantum well layer WL1.
 高準位Luから低準位Llへキャリアc1が遷移するときに、エネルギー差(高準位Luと低準位Llとの差)に対応する光31Laが放出される。すなわち、光学遷移が生じる。 When the carrier c1 transitions from the high level Lu to the low level Ll, the light 31La corresponding to the energy difference (the difference between the high level Lu and the low level Ll) is emitted. That is, an optical transition occurs.
 同様に、別の第1領域r1aの第2量子井戸層WL2において、光31Lbが放出される。実施形態において量子井戸層は、波動関数が重なり合う複数の井戸を含んでも良い。複数の量子井戸層のそれぞれの高準位Luが、互いに同じでも良い。複数の量子井戸層のそれぞれの低準位Llが、互いに同じでも良い。 Similarly, light 31 Lb is emitted in the second quantum well layer WL2 of another first region r1a. In embodiments, the quantum well layer may include a plurality of wells with overlapping wave functions. The respective high levels Lu of the plurality of quantum well layers may be identical to each other. The low levels Ll of the plurality of quantum well layers may be the same as one another.
 例えば、サブバンド間光学遷移は、伝導帯及び価電子帯のいずれかにおいて生じる。例えば、pn接合によるホールと電子との再結合は必要ではない。例えば、ホール及び電子のいずれかのキャリアc1により光学遷移が生じて、光が放出される。 For example, intersubband optical transitions occur in either the conduction band or the valence band. For example, recombination of holes and electrons by a pn junction is not necessary. For example, carriers c1 of either holes or electrons cause optical transition to emit light.
 活性層31cにおいて、例えば、第1電極34aと、第2電極34bと、の間に印加される電圧により、障壁層(例えば第1障壁層BL1)を介して、キャリアc1(例えば電子)が量子井戸層(例えば第1量子井戸層WL1)へ注入される。これにより、サブバンド間光学遷移を生じる。 In the active layer 31c, for example, carriers c1 (for example, electrons) are quantized via a barrier layer (for example, the first barrier layer BL1) by a voltage applied between the first electrode 34a and the second electrode 34b. The well layer (for example, the first quantum well layer WL1) is implanted. This causes an intersubband optical transition.
 第2領域r2は、例えば、複数のサブバンドを有する。サブバンドは、例えば、ミニバンドである。サブバンドにおけるエネルギー差は、小さい。サブバンドにおいて、連続エネルギーバンドに近いことが好ましい。この結果、キャリアc1(電子)のエネルギーが緩和される。 The second region r2 has, for example, a plurality of subbands. The sub band is, for example, a mini band. The energy difference in the subbands is small. In the sub-bands, it is preferable to be close to the continuous energy band. As a result, the energy of the carrier c1 (electron) is relaxed.
 第2領域r2では、例えば、光(例えば3μm以上18μm以下の波長の赤外線)は、実質的に放出されない。第1領域r1の低準位Llのキャリアc1(電子)は、第2障壁層BL2を通過して、第2領域r2へ注入され、緩和される。キャリアc1は、カスケード接続された別の第1領域r1aへ注入される。この第1領域r1aにおいて、光学遷移が生じる。 In the second region r2, for example, light (for example, infrared light having a wavelength of 3 μm to 18 μm) is not substantially emitted. The carriers c1 (electrons) of the low level L1 of the first region r1 pass through the second barrier layer BL2, are injected into the second region r2, and are relaxed. The carrier c1 is injected into another cascaded first region r1a. An optical transition occurs in this first region r1a.
 カスケード構造では、複数の単位構造r3のそれぞれにおいて光学遷移が生じる。これにより、活性層31cの全体において、高い光出力を得ることが容易になる。 In the cascade structure, optical transition occurs in each of the plurality of unit structures r3. This makes it easy to obtain high light output in the entire active layer 31c.
 このように、光源部30は、半導体発光素子30aを含む。半導体発光素子30aは、複数の量子井戸(例えば、第1量子井戸層WL1及び第2量子井戸層WL2など)のサブバンドにおける電子のエネルギー緩和により、測定光30Lを放射する。 Thus, the light source unit 30 includes the semiconductor light emitting element 30a. The semiconductor light emitting element 30a emits the measurement light 30L by energy relaxation of electrons in the sub-bands of the plurality of quantum wells (for example, the first quantum well layer WL1 and the second quantum well layer WL2).
 量子井戸層(例えば第1量子井戸層WL1及び第2量子井戸層WL2など)には、例えば、GaAsが用いられる。例えば、障壁層(例えば、第1~第4障壁層BL1~BL4など)には、例えば、AlGa1-xAs(0<x<1)が用いられる。このとき、例えば、基板35としてGaAsを用いると、量子井戸層及び障壁層において、良好な格子整合が得られる。 For example, GaAs is used for the quantum well layers (for example, the first quantum well layer WL1 and the second quantum well layer WL2). For example, Al x Ga 1 -x As (0 <x <1), for example, is used for the barrier layers (eg, the first to fourth barrier layers BL1 to BL4). At this time, for example, when GaAs is used as the substrate 35, good lattice matching can be obtained in the quantum well layer and the barrier layer.
 第1クラッド層31a及び第2クラッド層31eは、例えば、n形不純物として、Siを含む。これらの層における不純物濃度は、例えば、1×1018cm-3以上1×1020cm-3以下(例えば、約6×1018cm-3)である。これらの層のそれぞれの厚さは、例えば、0.5μm以上2μm以下(例えば約1μm)である。 The first cladding layer 31a and the second cladding layer 31e contain, for example, Si as an n-type impurity. The impurity concentration in these layers is, for example, 1 × 10 18 cm −3 or more and 1 × 10 20 cm −3 or less (for example, about 6 × 10 18 cm −3 ). The thickness of each of these layers is, for example, 0.5 μm or more and 2 μm or less (for example, about 1 μm).
 第1ガイド層31b及び第2ガイド層31dは、例えば、n形不純物として、Siを含む。これらの層における不純物濃度は、例えば1×1016cm-3以上1×1017cm-3以下(例えば、約4×1016cm-3)である。これらの層のそれぞれの厚さは、例えば2μm以上5μm以下(例えば、3.5μm)である。 The first guide layer 31 b and the second guide layer 31 d contain, for example, Si as an n-type impurity. The impurity concentration in these layers is, for example, 1 × 10 16 cm −3 or more and 1 × 10 17 cm −3 or less (for example, about 4 × 10 16 cm −3 ). The thickness of each of these layers is, for example, 2 μm or more and 5 μm or less (for example, 3.5 μm).
 距離31w(積層体31の幅、すなわち、活性層31cの幅)は、例えば、5μm以上20μm以下(例えば、約14μm)である。 The distance 31 w (the width of the stack 31, that is, the width of the active layer 31 c) is, for example, 5 μm or more and 20 μm or less (for example, about 14 μm).
 リッジ導波路RGの長さは、例えば、1mm以上5mm以下(例えば約3mm)である。半導体発光素子30a(量子カスケードレーザ)は、例えば、10V以下の動作電圧で動作する。消費電流は、炭酸ガスレーザ装置などに比べて低い。これにより、低消費電力の動作が可能である。 The length of the ridge waveguide RG is, for example, 1 mm or more and 5 mm or less (for example, about 3 mm). The semiconductor light emitting device 30a (quantum cascade laser) operates at an operating voltage of, for example, 10 V or less. The consumption current is lower than that of a carbon dioxide gas laser device or the like. This enables low power consumption operation.
 実施形態によれば、高精度の呼気診断装置が提供できる。 According to the embodiment, it is possible to provide a breath diagnostic device with high accuracy.
 以上、具体例を参照しつつ、本発明の実施の形態について説明した。しかし、本発明は、これらの具体例に限定されるものではない。例えば、呼気診断装置に含まれる供給部、セル部、反射部、光源部、検出部及び処理部などの各要素の具体的な構成に関しては、当業者が公知の範囲から適宜選択することにより本発明を同様に実施し、同様の効果を得ることができる限り、本発明の範囲に包含される。 The embodiments of the present invention have been described above with reference to specific examples. However, the present invention is not limited to these specific examples. For example, with regard to the specific configuration of each element such as the supply unit, the cell unit, the reflection unit, the light source unit, the detection unit, and the processing unit included in the breath diagnostic apparatus, the person skilled in the art can As long as the invention can be practiced similarly and similar effects can be obtained, it is included in the scope of the present invention.
 また、各具体例のいずれか2つ以上の要素を技術的に可能な範囲で組み合わせたものも、本発明の要旨を包含する限り本発明の範囲に含まれる。 Moreover, what combined any two or more elements of each specific example in the technically possible range is also included in the scope of the present invention as long as the gist of the present invention is included.
 その他、本発明の実施の形態として上述した呼気診断装置を基にして、当業者が適宜設計変更して実施し得る全ての呼気診断装置も、本発明の要旨を包含する限り、本発明の範囲に属する。 In addition, all breath diagnosis apparatuses that can be appropriately designed and implemented by those skilled in the art based on the breath diagnosis apparatus described above as the embodiment of the present invention also fall within the scope of the present invention as long as the scope of the present invention is included. Belongs to
 その他、本発明の思想の範疇において、当業者であれば、各種の変更例及び修正例に想到し得るものであり、それら変更例及び修正例についても本発明の範囲に属するものと了解される。 Besides, within the scope of the concept of the present invention, those skilled in the art can conceive of various changes and modifications, and it is understood that the changes and modifications are also within the scope of the present invention. .
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 While certain embodiments of the present invention have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, substitutions, and modifications can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and the gist of the invention, and are included in the invention described in the claims and the equivalent scope thereof.

Claims (20)

  1.  呼気を含む試料気体が供給される供給部と、
     前記供給部から前記試料気体が導入される空間を含むセル部と、
     前記供給部と前記セル部との間に設けられ前記供給部から前記空間に前記試料気体を導く導入配管と、
     前記空間に測定光を入射させる光源部と、
     前記空間を通過した前記測定光を検出する検出部と、
     を備え、
     前記導入配管は、屈曲部を有する中間部を含む呼気診断装置。
    A supply unit to which a sample gas containing exhaled breath is supplied;
    A cell unit including a space into which the sample gas is introduced from the supply unit;
    An introduction pipe which is provided between the supply unit and the cell unit and guides the sample gas from the supply unit to the space;
    A light source unit for causing measurement light to enter the space;
    A detection unit that detects the measurement light that has passed through the space;
    Equipped with
    The exhalation diagnostic device, wherein the introduction pipe includes a middle portion having a bending portion.
  2.  前記中間部は、前記導入配管の内側面に設けられた複数の凹凸を含む請求項1記載の呼気診断装置。 The breath diagnostic apparatus according to claim 1, wherein the intermediate portion includes a plurality of asperities provided on an inner side surface of the introduction pipe.
  3.  前記中間部は、前記中間部を導かれる前記試料気体に乱流を形成する請求項1記載の呼気診断装置。 The breath diagnostic apparatus according to claim 1, wherein the intermediate portion forms a turbulent flow in the sample gas guided to the intermediate portion.
  4.  前記屈曲部における前記中間部の延在方向の角度の変化は、70度以上である請求項1記載の呼気診断装置。 The breath diagnostic apparatus according to claim 1, wherein a change in an angle of the extension direction of the intermediate portion in the bending portion is 70 degrees or more.
  5.  前記屈曲部は複数設けられ、
     前記複数の屈曲部の少なくとも2つのそれぞれにおける前記中間部の延在方向の角度の変化は、70度以上である請求項1記載の呼気診断装置。
    A plurality of the bending portions are provided,
    The breath diagnostic apparatus according to claim 1, wherein a change in an angle of the extension direction of the intermediate portion in each of at least two of the plurality of bending portions is 70 degrees or more.
  6.  前記中間部は、ループ状である請求項1記載の呼気診断装置。 The breath diagnostic apparatus according to claim 1, wherein the intermediate portion is loop-shaped.
  7.  前記中間部は、前記供給部から前記セル部に向かう方向に沿って、重力に対して逆向きに延びる部分を有する請求項1記載の呼気診断装置。 The breath diagnostic apparatus according to claim 1, wherein the intermediate portion includes a portion extending in a direction opposite to gravity along a direction from the supply portion to the cell portion.
  8.  前記導入配管は、前記中間部と前記セル部との間に設けられた接続部をさらに含み、
     前記接続部は、前記試料気体の流れを整える請求項1記載の呼気診断装置。
    The introduction pipe further includes a connection portion provided between the intermediate portion and the cell portion,
    The breath diagnostic apparatus according to claim 1, wherein the connection unit regulates the flow of the sample gas.
  9.  前記導入配管は、前記中間部と前記セル部との間に設けられた接続部をさらに含み、
     前記接続部を流れる前記試料気体の流れる延在方向に沿った前記接続部の長さは、前記延在方向に対して垂直な断面方向の前記接続部の長さ以上である請求項1記載の呼気診断装置。
    The introduction pipe further includes a connection portion provided between the intermediate portion and the cell portion,
    The length of the connection portion along the extension direction in which the sample gas flows in the connection portion is equal to or greater than the length of the connection portion in the cross-sectional direction perpendicular to the extension direction. Breath diagnostic device.
  10.  前記導入配管は、
      前記中間部と前記セル部との間に設けられた接続部と、
      前記接続部の中の空間に設けられ、前記接続部の延在方向に沿う壁状体と、
     をさらに含む請求項1記載の呼気診断装置。
    The introduction pipe is
    A connection portion provided between the intermediate portion and the cell portion;
    A wall-shaped body provided in a space in the connecting portion and extending along the extending direction of the connecting portion;
    The breath diagnostic apparatus according to claim 1, further comprising
  11.  前記導入配管は、前記中間部と前記セル部との間に設けられた接続部をさらに含み、
     前記接続部を流れる前記試料気体の流れる延在方向に対して垂直な面で切断したときの前記接続部の面積は、前記中間部から前記セル部に向かう方向に沿って漸増する請求項1記載の呼気診断装置。
    The introduction pipe further includes a connection portion provided between the intermediate portion and the cell portion,
    The area of the connection when cut in a plane perpendicular to the flowing direction of the sample gas flowing through the connection gradually increases in the direction from the intermediate portion toward the cell. Breath diagnostic device.
  12.  前記導入配管は、前記導入配管の内側に設けられ前記試料気体に含まれる水の少なくとも一部を吸着する吸着部を含む請求項1記載の呼気診断装置。 The breath diagnostic apparatus according to claim 1, wherein the introduction pipe includes an adsorbing portion provided inside the introduction pipe and adsorbing at least a part of water contained in the sample gas.
  13.  前記吸着部は、シリカゲル及びゼオライトの少なくともいずれかを含む請求項12記載の呼気診断装置。 The breath diagnostic apparatus according to claim 12, wherein the adsorption unit contains at least one of silica gel and zeolite.
  14.  前記中間部は、ベローズを含む請求項1記載の呼気診断装置。 The breath diagnostic apparatus according to claim 1, wherein the intermediate portion includes a bellows.
  15.  制御部をさらに備え、
     前記制御部は、前記中間部の温度を変更可能である請求項1記載の呼気診断装置。
    Further comprising a control unit,
    The breath diagnostic apparatus according to claim 1, wherein the control unit is capable of changing the temperature of the intermediate portion.
  16.  前記呼気は、二酸化炭素、メタン、エタノール、アセトアルデヒド、アセトン、一酸化炭素、アンモニア及びノナナールの少なくともいずれかを含む請求項1記載の呼気診断装置。 The breath diagnostic apparatus according to claim 1, wherein the breath contains at least one of carbon dioxide, methane, ethanol, acetaldehyde, acetone, carbon monoxide, ammonia and nonanal.
  17.  前記セル部は、
      前記測定光に対して反射性の第1反射部と、
      前記測定光に対して反射性の第2反射部と、
     を含み、
     前記第1反射部と前記第2反射部との間に前記空間が配置され、
     前記測定光は、前記第1反射部と前記第2反射部とを反射して前記空間を通過する請求項1記載の呼気診断装置。
    The cell unit is
    A first reflecting portion that is reflective to the measurement light;
    A second reflecting portion that is reflective to the measurement light;
    Including
    The space is disposed between the first reflective portion and the second reflective portion,
    The breath diagnostic apparatus according to claim 1, wherein the measurement light reflects the first reflection part and the second reflection part and passes through the space.
  18.  前記測定光は、0.7マイクロメートル以上1000マイクロメートル以下の波長の成分を含む請求項1記載の呼気診断装置。 The breath diagnostic apparatus according to claim 1, wherein the measurement light includes a component having a wavelength of 0.7 micrometers or more and 1000 micrometers or less.
  19.  前記測定光は、2.5マイクロメートル以上11マイクロメートル以下の波長の成分を含む請求項1記載の呼気診断装置。 The breath measuring apparatus according to claim 1, wherein the measurement light includes a component having a wavelength of 2.5 micrometers or more and 11 micrometers or less.
  20.  前記光源部は、半導体発光素子を含み、
     前記半導体発光素子は、複数の量子井戸のサブバンドにおける電子のエネルギー緩和により前記測定光を放射する請求項1記載の呼気診断装置。
    The light source unit includes a semiconductor light emitting element,
    The breath diagnostic apparatus according to claim 1, wherein the semiconductor light emitting element emits the measurement light by energy relaxation of electrons in a plurality of sub-bands of quantum wells.
PCT/JP2014/074522 2014-02-19 2014-09-17 Exhaled-air diagnosis device WO2015125328A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014030069A JP2017072372A (en) 2014-02-19 2014-02-19 Exhalation diagnosis device
JP2014-030069 2014-02-19

Publications (1)

Publication Number Publication Date
WO2015125328A1 true WO2015125328A1 (en) 2015-08-27

Family

ID=53877858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/074522 WO2015125328A1 (en) 2014-02-19 2014-09-17 Exhaled-air diagnosis device

Country Status (2)

Country Link
JP (1) JP2017072372A (en)
WO (1) WO2015125328A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9835550B2 (en) 2015-03-18 2017-12-05 Kabushiki Kaisha Toshiba Breath analyzer

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03131316A (en) * 1989-07-10 1991-06-04 Bai Corp Device and method for separating liquid drop and turbine
JPH06213815A (en) * 1992-12-03 1994-08-05 Hewlett Packard Co <Hp> Calibration of spectrochemical system
JPH10248826A (en) * 1997-03-07 1998-09-22 Seitai Kagaku Kenkyusho:Kk Intraexpiratory isotope analyzer
JP3105317U (en) * 2004-05-18 2004-10-28 啓次 荒倉 High speed wave eliminator
JP2008070369A (en) * 2006-09-13 2008-03-27 Autoliv Development Ab Breath analyzer
JP2010249556A (en) * 2009-04-13 2010-11-04 Sharp Corp Gas component detecting device
JP2012170863A (en) * 2011-02-21 2012-09-10 Fuji Electric Co Ltd Gas-liquid separator
WO2013095284A1 (en) * 2011-12-22 2013-06-27 Aerocrine Ab Method and device for measuring a component in exhaled breath
JP2013239751A (en) * 2013-08-26 2013-11-28 Toshiba Corp Semiconductor light-emitting device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03131316A (en) * 1989-07-10 1991-06-04 Bai Corp Device and method for separating liquid drop and turbine
JPH06213815A (en) * 1992-12-03 1994-08-05 Hewlett Packard Co <Hp> Calibration of spectrochemical system
JPH10248826A (en) * 1997-03-07 1998-09-22 Seitai Kagaku Kenkyusho:Kk Intraexpiratory isotope analyzer
JP3105317U (en) * 2004-05-18 2004-10-28 啓次 荒倉 High speed wave eliminator
JP2008070369A (en) * 2006-09-13 2008-03-27 Autoliv Development Ab Breath analyzer
JP2010249556A (en) * 2009-04-13 2010-11-04 Sharp Corp Gas component detecting device
JP2012170863A (en) * 2011-02-21 2012-09-10 Fuji Electric Co Ltd Gas-liquid separator
WO2013095284A1 (en) * 2011-12-22 2013-06-27 Aerocrine Ab Method and device for measuring a component in exhaled breath
JP2013239751A (en) * 2013-08-26 2013-11-28 Toshiba Corp Semiconductor light-emitting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9835550B2 (en) 2015-03-18 2017-12-05 Kabushiki Kaisha Toshiba Breath analyzer

Also Published As

Publication number Publication date
JP2017072372A (en) 2017-04-13

Similar Documents

Publication Publication Date Title
US11692934B2 (en) Solid-state spectrometer
JP4547385B2 (en) Gas sensor
JP5841542B2 (en) Gas sensor with radiation guide
US10254161B2 (en) Optical wave guide having multiple independent optical path and optical gas sensor using that
WO2016117173A1 (en) Breath measurement device, breath measurement method, and gas cell
JP2007285842A5 (en)
JP2007285842A (en) Device for measuring gas concentration
US20080035848A1 (en) Ultra-high sensitivity NDIR gas sensors
JP6240339B2 (en) Gas analyzer and gas processing apparatus
US7259374B2 (en) Method for detecting a gas species using a super tube waveguide
US20160377596A1 (en) Exhalation diagnistic apparatus
WO2015125328A1 (en) Exhaled-air diagnosis device
WO2015019650A1 (en) Respiratory diagnosis device
WO2015125327A1 (en) Exhaled-air diagnosis device
WO2015125323A1 (en) Exhaled-air diagnosis device
CN106165220B (en) Semicondcutor laser unit
JP2011169738A (en) Chemical material detector
US10884225B2 (en) Highly-folding pendular optical cavity
JP2015155803A (en) Breath diagnosis apparatus
WO2015132986A1 (en) Breath diagnosis device
WO2015125324A1 (en) Exhaled-air diagnosis device
JP2016061754A (en) Gas analyzer and gas cell
WO2015136744A1 (en) Exhaled-air diagnosis device
JPWO2016047169A1 (en) Gas measuring device
US10684214B2 (en) Optical cavity with strong dynamic

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14883456

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14883456

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP