WO2015132424A1 - Sistema de cimentación, anclaje y accionamiento para un seguidor solar de un eje - Google Patents

Sistema de cimentación, anclaje y accionamiento para un seguidor solar de un eje Download PDF

Info

Publication number
WO2015132424A1
WO2015132424A1 PCT/ES2014/070801 ES2014070801W WO2015132424A1 WO 2015132424 A1 WO2015132424 A1 WO 2015132424A1 ES 2014070801 W ES2014070801 W ES 2014070801W WO 2015132424 A1 WO2015132424 A1 WO 2015132424A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar tracker
anchoring
foundation
pillars
drive system
Prior art date
Application number
PCT/ES2014/070801
Other languages
English (en)
French (fr)
Inventor
Pablo MORENO AURIOLES CABEZON
Original Assignee
Moreno Aurioles Cabezon Pablo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Moreno Aurioles Cabezon Pablo filed Critical Moreno Aurioles Cabezon Pablo
Publication of WO2015132424A1 publication Critical patent/WO2015132424A1/es

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S25/60Fixation means, e.g. fasteners, specially adapted for supporting solar heat collector modules
    • F24S25/61Fixation means, e.g. fasteners, specially adapted for supporting solar heat collector modules for fixing to the ground or to building structures
    • F24S25/617Elements driven into the ground, e.g. anchor-piles; Foundations for supporting elements; Connectors for connecting supporting structures to the ground or to flat horizontal surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • F24S30/42Arrangements for moving or orienting solar heat collector modules for rotary movement with only one rotation axis
    • F24S30/425Horizontal axis
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/10Supporting structures directly fixed to the ground
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/30Supporting structures being movable or adjustable, e.g. for angle adjustment
    • H02S20/32Supporting structures being movable or adjustable, e.g. for angle adjustment specially adapted for solar tracking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S2020/10Solar modules layout; Modular arrangements
    • F24S2020/16Preventing shading effects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S2025/01Special support components; Methods of use
    • F24S2025/017Tensioning means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S2025/01Special support components; Methods of use
    • F24S2025/019Means for accommodating irregularities on mounting surface; Tolerance compensation means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S2030/10Special components
    • F24S2030/13Transmissions
    • F24S2030/133Transmissions in the form of flexible elements, e.g. belts, chains, ropes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S2030/10Special components
    • F24S2030/13Transmissions
    • F24S2030/136Transmissions for moving several solar collectors by common transmission elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S2030/10Special components
    • F24S2030/15Bearings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar tracking system, in which a plurality of solar panels arranged in a multi-row support structure with a single tracking axis per row participate.
  • the object of the invention is to achieve a solar tracking system of lower weight than conventional ones and capable of withstanding high wind loads, being also adaptable to high terrain slopes.
  • all kinds of structures can be classified such as those that have beams on pillars, those that have or are of the pergola type and those that the pergola is cable-stayed.
  • the system of beams on pillars can be grouped according to the type of transmission, in a system with transmission bar by east-west thrust, system with type of transmission by gears, and according to the type of axis of rotation of each row , torsion tube and double beam.
  • the pillars receive the horizontal stresses in the upper part, where the substructure where the solar panels are attached, being embedded these pillars by their lower part in the ground, by various foundation systems (foundation with footing, driven pile, concrete pile, screws, tree type anchor, etc.).
  • various foundation systems foundation with footing, driven pile, concrete pile, screws, tree type anchor, etc.
  • a structure as a pergola with braces, because it is composed of a succession of itinerant pillars that are anchored to the ground by means of anchoring shoes, with a multitude of variants, although none is applied to a follower of a multi-axis axis.
  • this type of followers are designed to reach an angle of rotation with respect to the horizontal of approximately 45 e -55 e , because the shadow that is given to some rows to others greatly reduces production when this value is exceeded. It is very normal that the backtracking option is added to the motion control system, which means that the follower stops following the inclination of the sun and moves in the opposite direction to avoid shadows between some rows and others.
  • the followers of an existing axis usually have two types of transmission, one formed by a beam as a pusher, which drives the torsion beams of all rows, so that for each row there is only one union between the pusher and the torsion beam, which causes the efforts of the entire row to fall on said joint, while the other type is based on a gear system that has a very high and precise cost of continuous maintenance.
  • Wind loads cause significant flexural stresses in the rows support, forcing the use of metal profiles of relatively high section, compared to those necessary to support only axial stresses.
  • Wind loads involve great lifting and tipping efforts, which forces large profile lengths in the ground or the use of other types of uneconomic foundations.
  • torsion tube followers In torsion tube followers, torsion with high wind loads involves the use of tubular profiles of high sections to avoid inadmissible deflections in photovoltaic modules.
  • the high flexotraction to which the beams are subjected forces the reduction of the spacing between support piles and movement mechanism.
  • the solar tracking system that is recommended has been conceived to solve the problem described above, so that being a single-axis solar tracking system, of the multifila type type and comprises a series of north-south alignments of solar panels arranged on a substructure that pivots on a succession of pillars, presents as a novelty the fact that structurally a configuration with a low weight is presented, in relation to the high wind loads that can withstand, with respect to the followers that exist Currently in the market.
  • Another of the additional advantages of the invention are the adaptability of the follower to high north-south slopes of the terrain, as well as greater durability and ease of maintenance of the mobile turning parts, allowing the use of conventional profiles without the need for cuts, welding afterwards. of the galvanized parts and the high angular precision of inclination.
  • transversal profiles that participate in the substructure of the mention are driven by a system of braces and pulleys, which in turn are driven by two axes located along the line formed by the midpoint of the rows, communicating the pivotal movement of the horizontal structures.
  • the pillars that participate in the structure of the solar tracker are supported on footings arranged on the ground, whose contact surface can be adjusted in height to adapt to the surface of the ground, being also braced by steel braces that they are anchored in the ground by means of anchors.
  • Another feature of novelty presented by the solar tracking system object of the The invention consists in that the axes of the pulley bearings are screwed to the cross profiles themselves at their two ends, and to the pillars screwed to the base of the pillar, allowing to minimize the load on the pillars themselves.
  • anchor braces are attached to the corresponding pillar head, below the photovoltaic modules, forming an angle with the horizontal that allows the movement of the supporting substructure.
  • articulated joints that are part of the object of the invention, allow the rotation in the longitudinal and transverse axis, so that the follower is adaptable to terrain with high slope.
  • the anchors that are used in the anchorage of the straps to the ground has a shape that allows the introduction into the ground by means of driving, so that when the tension is tensioned later the rotation occurs of the anchor, thereby increasing its resistance to tearing.
  • the solar tracker is enabled, rather it offers a very advantageous structural configuration compared to conventional ones.
  • the solar tracker of the invention has a steel weight of about 30% less than a conventional solar tracker, for greater resistance against solicitation loads, logically affecting the final cost of the solar tracker.
  • the straps head (below the photovoltaic panels to produce no shadow) should slope between 45 and 60 and to allow movement of the follower and simultaneously tipping load support and removal to which the pillars are subjected.
  • the follower battery of the invention has a smaller section and length, which is possible by the ground anchors by means of cables.
  • the lower cost of the cables with respect to the pillars makes it possible to anchor them to the desired depth to obtain high tear resistance of the anchors.
  • the movement transmission system by winches, cables and pulleys which allows to reduce the torsional stresses in the main beam (contributing to the lower structure cost described in advantage 1), while reducing the necessary engine power.
  • This effect is due to two reasons: a.
  • the pulley and tie system decreases the tension in the cable proportionally to the length of the arm divided by the winch radius, and also proportionally to the number of pulleys that are arranged in each hoist.
  • the lower cost of the braces and pulleys with respect to other systems allows their location in all the batteries (so that the efforts are distributed better), and not only in the central batteries as usual.
  • the solar tracker has the possibility of being adaptable to terrain with high slopes
  • the articulated joint (2 axes of rotation, the longitudinal one with bronze bearings, and the transverse one that is fixed after installation) is designed to be adaptable to slopes of up to 10%.
  • a floating upper substructure is provided, attached to the axes of rotation of the pillars by means of cables, avoiding the problem described.
  • All the components of the solar tracker are profiles or standard components, which only require some mechanization, which significantly reduces their cost.
  • all the joints are screwed, so no welding is required on site, and therefore, all the parts keep their factory galvanized intact, avoiding possible weak points for the corrosion of the structure.
  • FIG. 1 Perspective of the solar tracker of the invention in an inclined position.
  • Figure 2 Perspective of the solar tracker of the invention in a horizontal position.
  • Figure 3 Simplified perspective of a part of a row of the solar tracker, where you can see the anchoring systems, movement by cable and pulleys, rotation, and placement of the photovoltaic modules.
  • Figure 4 East-west section of a part of the solar tracker in a horizontal position.
  • Figure 5. East-west section of a part of the inclined solar tracker.
  • Figure 6. Anchor detail.
  • Figure 7. Shoe detail.
  • Figure 8. North-south section of a part of the solar tracker in horizontal terrain.
  • Figure 9. North-south section of a part of the solar tracker on sloping terrain.
  • Figure 10. Detail of battery head and articulated joint.
  • Figure 1 1. Cross beam detail and bolted joints.
  • Figure 12. Fixing detail of photovoltaic modules.
  • Figures 1 and 2 show the representation of the solar tracker of the invention, in an inclined and horizontal position, respectively, composed of two groups of alignments (1) of photovoltaic modules (2). Each alignment is supported by several pillars (3), and between the two groups of alignments are the actuator (4), drive shafts (5) and the additional supports of the shafts (6).
  • Figure 3 shows a part of the tracker, where you can see the supporting substructure of the photovoltaic modules (2), pillars (3), fixing braces (7) and transmission of movement to the substructure.
  • the pivot of the substructure to make the turn, and to be able to follow the sunlight, is controlled by a system of braces (8) and pulleys (9).
  • These braces materialized by means of conventional stainless steel cables or other corrosion-resistant material, of small diameter, suitable for use with pulleys and with high elastic modulus, which have a fixed length, are attached to both sides of the substructure, with a shock absorber of a few millimeters of play.
  • the number of pulleys and cable types are variable, depending on the wind loads considered for each particular case.
  • all braces (8) of each row (1) are connected with two central drive shafts (5), which act as winches, of so that all the braces on the east side are driven by one axis, and those on the west side by the other axis, in a movement synchronized by the actuator motor control system (4).
  • the axes of the pulleys (9) are coupled to the piles and to the transverse beams as a hoist, obtaining the pivot of the transverse beams (14), to which the longitudinal beams (15) are attached. Both types of beams are standard rectangular tubular profiles.
  • the central transmission shafts are those that receive the torque, but reduced in a proportion equal to the ratio between shaft diameter and the radius of rotation of the substructure, and also reduced by the ratio of the pulleys, allowing the central transmission shafts to be of a much smaller diameter than the torsion tubes of the conventional followers, and in turn, give a much greater rigidity to the structure, with suitably sized cable diameters.
  • the braces have lower cost and greater simplicity of maintenance than the gears.
  • Figures 4 and 5 show an east-west section of two adjacent rows, horizontally and inclined respectively, where you can see the foundation system with shoes (12) and ground anchors (13).
  • shoes (12) and ground anchors (13) Unlike in conventional foundations of photovoltaic followers, where the sinking, tipping and tearing resistances are supported by a single foundation element (driven piles, simple shoes or similar systems), on the solar tracker of the invention, on the one hand , the sinking resistance falls on the shoe (12), and on the other hand, the tearing and tipping efforts fall on the ground anchors (13).
  • the anchoring system by braces (7) has the novelty that it is applied to a solar tracker structure of a multi-axis and the forces are applied in the upper part of the batteries, close to the pivot axis of the substructure, but below of the solar panels, so that movement is allowed but no shadows are produced in the panels (if the braces were above the bottom of the photovoltaic modules, inadmissible shadows would be produced for the production of solar energy).
  • This anchoring system allows the support batteries to suffer no effort from flexotraction, and therefore a structural dimensioning of them much lighter, along with a totally rigid structure and resistant to wind loads.
  • Figure 6 shows an anchor design (13), whose innovation is to be composed of standard shaped profiles, with a structural design suitable for high loads. It is composed of a tubular (13 ') of square section (where the driving lance is introduced) and two L-profiles (13 ") that increase the ground anchor surface.
  • Figure 7 shows a metal shoe (12), in which the abutment can be inserted directly.
  • This shoe can be replaced or complemented with another of similar dimensions but reinforced concrete, to reduce cost.
  • the height adjustment of the pillars can be done with extreme precision with a conventional leveling mortar.
  • a north-south section of a part of the tracker can be seen in a horizontal position, in a completely horizontal terrain, and in another terrain with a certain slope.
  • the current solar trackers of the market present difficulties when the slope of the land in the north-south direction exceeds values close to 3-5%, on the one hand due to the impossibility of mounting the structure with a certain inclination, and on the other hand, because the bearings or bearings suffer high fatigue efforts when the entire weight of the substructure and modules falls on them.
  • the solar tracker of the invention manages to avoid these problems by means of an articulated head (20) in the stack with double rotation on self-greasing bronze bearings, which at the same time have hanging braces (1 1) attached in both directions, so that The weight does not fall on the bearing stops.
  • These hanging braces are concentric with the pivot axis of the substructure, so the pivot movement does not affect the length of the cables.
  • FIG. 10 A detail of the set of pieces that form the articulated head (20) of the pillars (3) is shown in Figure 10.
  • the self-greasing bronze bushings (16) are standardized parts that cover a steel shaft (17), forming the inside of the bearings. If it is necessary to change any of the bronze bushings, it is only necessary to loosen the nut of its respective side, and introduce a new bushing, being able to continue the follower in operation during operation.
  • Figure 1 1 shows a detail of the set of parts that form the transverse beams (14), and clamps (18) of the bearings, formed by tubular rectangular section.
  • the fixing of transverse beams (14) and longitudinal beams (15) is also appreciated by means of a screwed connection (19), with a small play that allows longitudinal movement of the longitudinal beams (15), to avoid unwanted internal stresses.
  • Figure 12 shows the fixing by means of a flange assembly (21), screw (22) and clip (23) screwed to the corresponding longitudinal profile.

Abstract

El sistema de seguimiento solar incluye una pluralidad de filas (1) de paneles solares con varios módulos fotovoltaicos (2) en cada fila, soportándose cada una de dichas filas sobre una subestructura susceptible de pivotar y formada a base de perfiles transversales (14) y longitudinales (15) que giran por medio de unas uniones articuladas (20), estando todo el conjunto del seguidor solar soportado por unos pilares (3). El seguidor solar presenta una configuración estructural original con la ayuda de tirantes (7) anclados al terreno permitiendo aligerar el conjunto del seguidor y formar pilas de sección mas esbelta y menos espaciadas entre si. El sistema de transmisión de movimiento en el seguidor solar se realiza mediante cables (8) y poleas (9), que permite reducir el esfuerzo de torsión en las vigas principales de torsión y además resulta más económico que los sistemas convencionales de engranaje y similares.

Description

SISTEMA DE CIMENTACIÓN. ANCLAJE Y ACCIONAMIENTO PARA UN SEGUIDOR
SOLAR DE UN EJE
D E S C R I P C I Ó N
OBJETO DE LA INVENCIÓN
La presente invención se refiere a un sistema de seguimiento solar, en el que participan una pluralidad de paneles solares dispuestos en una estructura soporte de múltiples filas con un solo eje de seguimiento por fila.
El objeto de la invención es conseguir un sistema de seguimiento solar de menor peso que los convencionales y capaz de resistir elevadas cargas de viento, siendo además adaptable a pendientes del terreno elevadas.
ANTECEDENTES DE LA INVENCIÓN
Actualmente se utilizan diversos tipos de estructuras soporte para el sistema de seguimiento solar, y entre cuya tipología pueden considerarse las citadas como estructuras fijas, otras con seguidores de un eje, y otras con seguidores de doble eje.
Pues bien, la utilización de seguidores solares de un eje norte-sur, supone un aumento considerable en la producción de energía, con unos costes de fabricación, instalación y mantenimiento menores que en los sistemas de dos ejes.
Dentro del sistema de seguimiento de un eje, se pueden clasificar todo tipo de estructuras tales como aquellas que tienen vigas sobre pilares, los que tienen o son del tipo pérgola y los que la pérgola es atirantada.
En relación concretamente con los sistemas de seguidores de un eje con vigas sobre pilares, presentan la ventaja de obtener una mayor rigidez, lo que permite que los paneles solares sean capaces de recibir cargas de viento elevadas, además del peso propio y sobrecarga de nieve.
Igualmente, dentro del sistema de vigas sobre pilares, se pueden agrupar según el tipo de transmisión, en sistema con barra de transmisión por empuje este-oeste, sistema con tipo de transmisión por engranajes, y según el tipo de eje de giro de cada fila, tubo de torsión y doble viga.
En este tipo de estructura soporte, los pilares reciben los esfuerzos horizontales en la parte superior, donde se acopla la subestructura donde se fijan los paneles solares, estando empotrados estos pilares por su parte inferior en el terreno, por diversos sistemas de cimentación (cimentación con zapata, pila hincada, pilote de hormigón, tornillos, anclaje tipo árbol, etc.). Mención aparte tiene una estructura como pérgola con tirantes, pues está compuesta por una sucesión de pilares itinerantes que se anclan al terreno mediante zapatas de anclaje, con multitud de variantes, aunque ninguna se aplica a un seguidor de un eje multifila.
Normalmente, este tipo de seguidores se diseñan para alcanzar un ángulo de giro respecto a la horizontal de aproximadamente 45e-55e, debido a que la sombra que se dan unas filas a otras reduce mucho la producción cuando se supera este valor. Es muy normal que en el sistema de control de movimiento se añada la opción de backtracking que consiste en que el seguidor deja de seguir la inclinación del sol y se mueve en sentido contrario para evitar las sombras entre unas filas y otras. Por otro lado, los seguidores de un eje existentes actualmente, suelen tener dos tipos de transmisión, una formada por una viga a modo de empujador, que acciona las vigas de torsión de todas las filas, de manera que por cada fila solo hay una unión entre el empujador y la viga de torsión, lo que provoca que los esfuerzos de toda la fila recaigan sobre dicha unión, mientras que el otro tipo se basa en un sistema de engranaje que tiene un coste muy elevado y precisa de un mantenimiento continuo.
Otros problemas que presentan los seguidores solares de un solo eje suelen ser los siguientes:
Las cargas del viento provocan esfuerzos de flexotracción importantes en la filas soporte, obligando al uso de perfiles metálicos de relativamente elevada sección, en comparación a los necesarios para soportar únicamente esfuerzos axiales.
Las cargas de viento suponen grandes esfuerzos de levantamiento y vuelco, lo que obliga a grandes longitudes de perfil hincadas en el terreno o al uso de otro tipo de cimentaciones antieconómicas.
- Las dos circunstancias anteriores conllevan a estructuras de elevada rigidez y dificultad de montaje, incrementada por las imprecisiones de hincado de perfiles en el terreno.
En los seguidores de tubo de torsión, la torsión con cargas de viento elevadas conlleva el empleo de perfiles tubulares de elevadas secciones para evitar deflexiones inadmisibles en los módulos fotovoltaicos.
En los seguidores de doble fila la elevada flexotracción a las que se ven sometidas las vigas obliga a la reducción del espaciamiento entre pilas soporte y mecanismo de movimiento.
Los actuales seguidores del mercado tienen problemas para adaptarse a pendientes del terreno en sentido norte-sur, lo que suele desaconsejar su uso para pendientes del terreno mayores de 3-5% lo que en la práctica conlleva a desechar muchos terrenos. Este problema suele ser provocado por los sistemas de rodamiento convencionales para el giro, que provocan que todo el peso de la subestructura superior descanse sobre los rodamientos o cojinetes, sometiéndolos a grandes esfuerzos de fatiga.
DESCRIPCIÓN DE LA INVENCIÓN
El sistema de seguimiento solar que se preconiza, ha sido concebido para resolver la problemática anteriormente expuesta, de manera que siendo un sistema de seguimiento solar de un solo eje, del tipo multifila y comprende una serie de alineaciones norte-sur de paneles solares dispuestos sobre una subestructura que pivota sobre una sucesión de pilares, presenta como característica de novedad el hecho de que estructuralmente se presenta una configuración con poco peso, en relación a las elevadas cargas de viento que puede resistir, respecto a los seguidores que existen actualmente en el mercado.
Así mismo se ha previsto una novedosa configuración de cimentación y anclaje de las pilas, las cuales quedan notablemente aligeradas respecto a las convencionales, en base a la utilización de cables que fijan el movimiento de la cabeza del pilar, recibiendo los esfuerzos de vuelco y arrancamiento de dicho pilar, y cuyos cables quedan anclados al terreno, para permitir situar las pilas de sección mas esbeltas y menos espaciadas entre si, sin necesidad de ser empotradas en el terreno.
Además, el sistema de transmisión de movimiento mediante cabestrantes, cables y poleas, permite reducir los esfuerzos de torsión y por lo tanto poner una subestructura mas ligera que las convencionales.
Otra de las ventajas adicionales de la invención, son la adaptabilidad del seguidor a pendientes norte-sur del terreno elevadas, así como una mayor durabilidad y facilidad de mantenimiento de las piezas móviles de giro, permitiendo utilizar perfiles convencionales sin necesidad de cortes, soldaduras después del galvanizado de las piezas y la elevada precisión angular de inclinación.
Para ello, se ha previsto que los perfiles transversales que participan en la subestructura de la mención, sean accionados por un sistema de tirantes y poleas, que a su vez son accionados por dos ejes situados a lo largo de la línea formada por el punto medio de las filas, comunicando el movimiento pivotante de las estructuras horizontal.
En cuanto a los pilares que participan en la estructura del seguidor solar van apoyados sobre zapatas dispuestas en el suelo, cuya superficie de contacto son susceptibles de regularse en altura para adaptarse a la superficie del suelo, estando además arriostradas por unos tirantes de acero que a su vez están anclados en el suelo mediante unas anclas.
Otra característica de novedad que presenta el sistema de seguimiento solar objeto de la invención consiste en que los ejes de los cojinetes de las poleas están atornillados a los propios perfiles transversales en sus dos extremos, y en los pilares atornillados a la base del pilar, permitiendo minimizar la carga en los propios pilares.
También se ha previsto como característica de novedad el hecho de que el pivotamiento de las vigas transversales sobre los correspondientes pilares, se realiza mediante unas uniones articuladas a base de perfiles tubulares y dos ejes de giro, uno en sentido longitudinal para adaptarse a las inclinaciones del terreno y otro en sentido transversal para realizar el seguimiento de la luz solar, complementándose con unos caequillos estándar de bronce autoengrasante formado por los ejes de los cojinetes donde se acoplan las abrazaderas formadas por los perfiles tubulares y unidas mediante tornillos a las propias vigas transversales.
Otra característica de novedad es que los tirantes de anclaje están unidos a la cabeza del pilar correspondiente, por debajo de los módulos fotovoltaicos, formando un ángulo con la horizontal que permite el movimiento de la subestructura portante.
También se ha previsto la incorporación de unos tirantes de anclaje secundarios, anclados a la base del pilar para soportar los esfuerzos debidos al sistema de tirantes y poleas del sistema de transmisión.
Decir igualmente que las uniones articuladas que forman parte del objeto de la invención, permiten el giro en el eje longitudinal y transversal, de manera que el seguidor es adaptable a terrenos con elevada pendiente.
También cabe decir que el uso de los dos caequillos cilindricos de bronce estándar que participan en los cojinetes de las uniones articuladas, pueden ser remplazados en caso de necesidad, permitiendo que el seguidor pueda continuar funcionando durante la operación de remplazo.
Por último decir como otra característica el hecho de que las anclas que se utilizan en el anclaje de los tirantes al terreno, presenta una forma que permite la introducción en el terreno mediante hincado, para que al tensar el tirante posteriormente se produzca el giro del ancla, aumentando con ello su resistencia al arrancamiento.
En base a las características referidas, las ventajas que ofrece el sistema de seguimiento solar de la invención, pueden resumirse en las siguientes:
En virtud de los tirantes de anclaje al terreno, el seguidor solar está posibilitado, mejor dicho ofrece una configuración estructural muy ventajosa respecto de los convencionales.
Concretamente, el seguidor solar de la invención, tiene un peso de acero alrededor de un 30% menor respecto de un seguidor solar convencional, para una mayor resistencia frente a las cargas de solicitación, incidiendo lógicamente en el coste final del seguidor solar.
Esto es posible por la aligeración de las pilas, debido a la configuración de cimentación y anclaje de las mismas, mediante cables que fijan el movimiento de la cabeza del pilar, anclados al terreno, que permite poner pilas de sección más esbelta y menos espaciadas entre sí, y sin necesidad de ser empotradas en el terreno. Esta configuración estructural no es en absoluto obvia, los tirantes en cabeza (por debajo de los paneles fotovoltaicos para no producir sombra) deben tener una inclinación entre 45e y 60e para permitir el movimiento del seguidor y a la vez soportar las cargas de vuelco y arrancamiento a las que se ven sometidos los pilares.
La pila del seguidor de la invención tiene una menor sección y longitud, lo cual es posible por los anclajes al terreno mediante cables. El menor coste de los cables respecto a los pilares hace posible anclarlos a la profundidad deseada para obtener elevada resistencia de arrancamiento de los anclajes.
El sistema de transmisión de movimiento mediante cabestrantes, cables y poleas, que permite reducir los esfuerzos de torsión en la viga principal (contribuyendo al menor coste de estructura descrito en la ventaja 1 ), a la vez que reducir la potencia necesaria del motor. Este efecto se debe a dos motivos: a. El sistema de poleas y tirantes disminuye la tensión en el cable proporcionalmente a la longitud del brazo dividida por el radio del cabestrante, y también proporcionalmente al número de poleas que se dispongan en cada polipasto. b. El menor coste de los tirantes y poleas respecto a otros sistemas permite su ubicación en todas las pilas (de forma que se reparten mejor los esfuerzos), y no solo en las pilas centrales como es habitual.
El seguidor solar tiene la posibilidad de ser adaptable a terrenos con pendientes elevadas
La unión articulada (2 ejes de giro, el longitudinal con cojinetes de bronce, y el transversal que queda fijo después de la instalación) está pensada para ser adaptable a pendientes de hasta el 10%.
Esto puede parecer una obviedad, pero la realidad es que los seguidores del mercado no están preparados para pendientes mayores del 5%, por lo que muchos terrenos deben desecharse por este motivo.
La mayoría de seguidores tienen un sistema de articulación mediante simple eje de giro o mediante rótula esférica. Los que son adaptables a pendientes elevadas tienen el problema de que el peso de toda la subestructura superior recae sobre las uniones articuladas, provocando su rápido deterioro.
En el seguidor solar de la invención se prevé una subestructura superior flotante, atirantada a los ejes de giro de los pilares mediante cables, evitando el problema descrito.
El tipo de articulación ya referida facilita el mantenimiento al no ser necesario los dos caequillos autoengrasantes a la vez para el funcionamiento del seguidor , y todo ello realizado en perfiles mecanizados estándar, sin necesidad de recurrir a complicadas y costosas piezas de fundición.
Todos los componentes del seguidor solar son perfiles o componentes estándar, que solo requieren alguna mecanización, lo cual reduce ostensiblemente su coste. Por otro lado, todas las uniones son atornilladas, por lo que no se requieren soldaduras en obra, y por tanto, todas las piezas mantienen su galvanizado de fábrica intacto, evitando posibles puntos débiles de cara a la corrosión de la estructura.
Debido al sistema de poleas y tirantes, la precisión de giro se multiplica en razón al brazo de giro divido por el radio del cabestrante, y de la relación de poleas.
Esto conlleva a una mayor precisión de seguimiento angular con unos sensores electrónicos más sencillos.
DESCRIPCIÓN DE LOS DIBUJOS
Para complementar la descripción que seguidamente se va a realizar y con objeto de ayudar a una mejor comprensión de las características del invento, de acuerdo con un ejemplo preferente de realización práctica del mismo, se acompaña como parte integrante de dicha descripción, un juego de dibujos en donde con carácter ilustrativo y no limitativo, se ha representado lo siguiente:
Figura 1 . Perspectiva del seguidor solar de la invención en posición inclinada.
Figura 2. Perspectiva del seguidor solar de la invención en posición horizontal.
Figura 3. Perspectiva simplificada de una parte de una fila del seguidor solar, donde se pueden apreciar los sistemas de anclaje, movimiento mediante cable y poleas, giro, y colocación de los módulos fotovoltaicos.
Figura 4. Sección este-oeste de una parte del seguidor solar en posición horizontal. Figura 5. Sección este-oeste de una parte del seguidor solar inclinado. Figura 6. Detalle de ancla. Figura 7. Detalle de zapata.
Figura 8. Sección norte-sur de una parte del seguidor solar en terreno horizontal. Figura 9. Sección norte-sur de una parte del seguidor solar en terreno con pendiente. Figura 10. Detalle de cabeza de las pilas y unión articulada. Figura 1 1 . Detalle de viga transversal y uniones atornilladas. Figura 12. Detalle de fijación de módulos fotovoltaicos.
REALIZACIÓN PREFERENTE DE LA INVENCIÓN
En las figuras 1 y 2 se puede ver la representación del seguidor solar de la invención, en posición inclinada y horizontal, respectivamente, compuesto por dos grupos de alineaciones (1 ) de módulos fotovoltaicos (2). Cada alineación está soportada por varios pilares (3), y entre los dos grupos de alineaciones se sitúan el actuador (4), ejes de transmisión (5) y los apoyos adicionales de los ejes (6).
En la figura 3 se representa una parte del seguidor, donde se puede apreciar la subestructura de apoyo de los módulos fotovoltaicos (2), pilares (3), tirantes de fijación (7) y transmisión de movimiento a la subestructura. El pivote de la subestructura para realizar el giro, y poder seguir la luz solar, se controla mediante un sistema de tirantes (8) y poleas (9). Estos tirantes, materializados mediante unos cables convencionales de acero inoxidable u otro tipo de material resistente a la corrosión, de pequeño diámetro, aptos para su uso con poleas y con módulo de elasticidad elevado , que tienen una longitud fija, van unidos a ambos lados de la subestructura, con una amortiguador de pocos milímetros de juego. El número de poleas y tipos de cable son variables, según las cargas de viento que se consideren para cada caso particular. A su vez, todos los tirantes (8) de cada fila (1 ) se conectan con dos ejes de transmisión centrales (5), que actúan a modo de cabestrantes, de manera que todos los tirantes del lado este son accionados por un eje, y los del lado oeste por el otro eje, en un movimiento sincronizado por el sistema de control del motor del actuador (4). Los ejes de las poleas (9) están acoplados a las pilas y a las vigas transversales a modo de polipasto, consiguiendo el pivote de las vigas transversales (14), a las que están unidas las vigas longitudinales (15). Ambos tipos de vigas son perfiles tubulares rectangulares estándar.
La ventaja de este sistema es que, los ejes de transmisión centrales son los que reciben los esfuerzos de torsión, pero reducidos en una proporción igual a la relación entre diámetro del eje y el radio de giro de la subestructura, y reducidos también por la relación de las poleas, permitiendo que los ejes de transmisión centrales sean de un diámetro mucho menor que los tubos de torsión de los seguidores convencionales, y a su vez, dar una rigidez a la estructura mucho mayor, con diámetros de los cables adecuadamente dimensionados. Con respecto a otros sistemas de transmisión con eje auxiliar mediante engranajes, los tirantes tienen menor coste y mayor sencillez de mantenimiento que los engranajes.
En las figuras 4 y 5 se muestra una sección este-oeste de dos filas contiguas, en posición horizontal e inclinada respectivamente, donde se puede apreciar el sistema de cimentación con zapatas (12) y anclajes al terreno (13). Al contrario que en las cimentaciones convencionales de seguidores fotovoltaicos, donde las resistencias de hundimiento, vuelco y arrancamiento se soportan por un único elemento de cimentación (pilas hincadas, zapatas simples o sistemas similares), en el seguidor solar de la invención, por un lado, la resistencia a hundimiento recae en la zapata (12), y por otro lado, los esfuerzos de arrancamiento y vuelco recaen en los anclajes al terreno (13).
El sistema de anclaje mediante tirantes (7) tiene como novedad que se aplica a una estructura de seguidor solar de un eje multifila y las fuerzas se aplican en la parte alta de las pilas, cercano al eje de pivote de la subestructura, pero por debajo de los paneles solares, por lo que se permite el movimiento pero no se producen sombras en los paneles (si los tirantes estuvieran por encima de la parte inferior de los módulos fotovoltaicos, se producirían sombras inadmisibles para la producción de energía solar).
Este sistema de anclaje permite que las pilas soporte no sufran ningún esfuerzo de flexotracción, y por tanto un dimensionamiento estructural de las mismas mucho más liviano, a la par que una estructura totalmente rígida y resistente a las cargas de viento.
En la figura 6 se representa un diseño del anclaje (13), que tiene como innovación el estar compuesto por perfiles conformados estándar, con un diseño estructural adecuado a cargas elevadas. Está compuesto por un tubular (13') de sección cuadrada (donde se introduce la lanza de hinca) y dos perfiles en L (13") que aumentan la superficie de anclaje al terreno.
En la figura 7 se presenta una zapata metálica (12), en la que se puede introducir directamente el pilar. Esta zapata se puede sustituir o complementar con otra de dimensiones similares pero de hormigón armado, para abaratar coste. El ajuste en altura de los pilares puede hacerse con extrema precisión con un mortero de nivelación convencional.
En las figuras 8 y 9 se puede ver una sección norte-sur de una parte del seguidor en posición horizontal, en un terreno completamente horizontal, y en otro terreno con cierta pendiente. Los actuales seguidores solares del mercado presentan dificultades cuando la pendiente del terreno en dirección norte-sur supera valores cercanos al 3-5%, por un lado por la imposibilidad de montaje de la estructura con cierta inclinación, y por otro lado, porque los rodamientos o cojinetes sufren elevados esfuerzos de fatiga al recaer todo el peso de la subestructura y módulos sobre ellos.
El seguidor solar de la invención consigue evitar estos problemas mediante una cabeza articulada (20) en la pila con doble giro sobre cojinetes de bronce autoengrasante, que a la vez tiene acoplados unos tirantes de cuelgue (1 1 ) en ambos sentidos, de manera que el peso no recae sobre los topes de los cojinetes. Estos tirantes de cuelgue son concéntricos con el eje de pivote de la subestructura, por lo que el movimiento de pivote no afecta a la longitud de los cables.
En la figura 10 se muestra un detalle del conjunto de piezas que forman la cabeza articulada (20) de los pilares (3). Los caequillos de bronce autoengrasante (16) son piezas estandarizadas que cubren un eje de acero (17), formando la parte interior de los cojinetes. En caso de ser necesario cambiar alguno de los caequillos de bronce, solo hace falta desaflojar la tuerca de su lado respectivo, e introducir un nuevo casquillo, pudiendo continuar el seguidor en funcionamiento durante la operación.
En la figura 1 1 se muestra un detalle de conjunto de piezas que forman las vigas transversales (14), y abrazaderas (18) de los cojinetes, formadas por tubulares de sección rectangular. También se aprecia la fijación de vigas transversales (14) y longitudinales (15) mediante unión atornillada (19), con un pequeño juego que permite el movimiento en sentido longitudinal de las vigas longitudinales (15), para evitar esfuerzos internos no deseados.
La figura 12 muestra la fijación mediante un conjunto de brida (21 ), tornillo (22) y grapa (23) atornillada al perfil longitudinal correspondiente.

Claims

R E I V I N D I C A C I O N E S
1 a.- Sistema de cimentación, anclaje y accionamiento para un seguidor solar de un eje, materializado en lo que es considerado como un seguidor solar formado por múltiples filas (1 ) de placas solares que incluyen varios módulos fotovoltaicos (2) donde cada fila (1 ) de placas solares se soporta sobre una subestructura susceptible de pivotar, la cual esta formada por unos perfiles longitudinales (15) y unos perfiles transversales (14) que giran por medio de unas uniones articuladas, y en donde el conjunto del seguidor solar va soportado sobre pilares (3), caracterizado porque los pilares (3) van apoyados sobre unas zapatas (12) en el suelo, siendo su superficie de contacto susceptible de regularse en altura para adaptarse a la superficie del propio suelo, estando dichos pilares (3) arriostrados en cabeza por unos tirantes (7) y que a su vez están anclados en el terreno mediante unos anclajes (13).
2a- Sistema de cimentación, anclaje y accionamiento para un seguidor solar de un eje, según reivindicación 1 a, caracterizado porque los perfiles transversales (14) son accionados por medio de un sistema de tirantes (8) y poleas (9) que a su vez son accionadas por dos ejes situados a lo largo de la línea formada por el punto medio de las filas (1 ) y que comunican el movimiento pivotante de las estructuras horizontales.
3a.- Sistema de cimentación, anclaje y accionamiento para un seguidor solar de un eje, según reivindicación 2a , caracterizado porque los ejes de los cojinetes de las poleas (9) están atornillados a los perfiles transversales (14) en sus dos extremos, mientras que en los pilares (3) están atornillados a su base, permitiendo minimizar la carga en los tirantes.
4a- Sistema de cimentación, anclaje y accionamiento para un seguidor solar de un eje, según reivindicación 1 a, caracterizado porque las vigas transversales (14) van dispuestas con carácter pivotante sobre los pilares (3) mediante uniones articuladas (20), formadas por perfiles tubulares y dos ejes de giro, uno en sentido longitudinal para adaptarse a las inclinaciones del terreno y otro en sentido transversal para realizar el seguimiento de la luz solar, complementándose con caequillos autoengrasantes (16), habiéndose previsto que a los ejes, dotados de cojinetes (17), se acoplan unas abrazaderas (18) formadas por perfiles tubulares y unidas mediante tornillos a las propias vigas transversales (14).
5a - Sistema de cimentación, anclaje y accionamiento para un seguidor solar de un eje, según reivindicación 1 a, caracterizado porque los tirantes de acero (7), como elemento de anclaje para los pilares (3), están unidos a la cabeza del propio pilar (3) por debajo de los módulos fotovoltaicos (2) formando un ángulo con la horizontal que permite el movimiento de la subestructura portante.
6a.- Sistema de cimentación, anclaje y accionamiento para un seguidor solar de un eje, según reivindicación 1 a, caracterizado porque los tirantes, se incluye además unos tirantes de anclaje secundarios a la base del pilar (3), para soportar los esfuerzos debidos al sistema de tirantes (8) y polea (9).
7a.- Sistema de cimentación, anclaje y accionamiento para un seguidor solar de un eje, según reivindicaciones 1 a y 4a, caracterizado porque las uniones articuladas (20) permiten el giro en el eje longitudinal y transversal, posibilitando la adaptación del seguidor a terrenos con elevada pendiente.
8a.- Sistema de cimentación, anclaje y accionamiento para un seguidor solar de un eje, según reivindicaciones 1 a y 4a caracterizado porque uno de los cojinetes de las uniones articuladas (20) permite el uso de dos caequillos cilindricos (6) de bronce estándar, permitiendo además el remplazamiento individual de estos.
9a.- Sistema de cimentación, anclaje y accionamiento para un seguidor solar de un eje, según reivindicaciones 1 a y 4a caracterizado porque las uniones articuladas (20) están articuladas en el eje de giro (17) de los cojinetes.
10.- Sistema de cimentación, anclaje y accionamiento para un seguidor solar de un eje, según reivindicación 1 a, caracterizado porque los anclajes (13) para el anclado de los tirantes (7) sobre el terreno, presentan una configuración que permite la introducción del terreno mediante hincado, de manera que tras el tensado del propio tirante (7) lleva consigo el giro del anclaje (13) correspondiente.
PCT/ES2014/070801 2014-03-06 2014-10-24 Sistema de cimentación, anclaje y accionamiento para un seguidor solar de un eje WO2015132424A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201430303 2014-03-06
ES201430303A ES2547494B1 (es) 2014-03-06 2014-03-06 Sistema de cimentación, anclaje y accionamiento para un seguidor solar de un eje

Publications (1)

Publication Number Publication Date
WO2015132424A1 true WO2015132424A1 (es) 2015-09-11

Family

ID=54054610

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2014/070801 WO2015132424A1 (es) 2014-03-06 2014-10-24 Sistema de cimentación, anclaje y accionamiento para un seguidor solar de un eje

Country Status (2)

Country Link
ES (1) ES2547494B1 (es)
WO (1) WO2015132424A1 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106992748A (zh) * 2017-05-23 2017-07-28 河北大学 自动转角光伏系统及自动转角光伏方阵
ITUB20160641A1 (it) * 2016-02-10 2017-08-10 Strukture S R L Una struttura di supporto e movimentazione di collettori fotovoltaici

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2357727T3 (es) * 2007-04-23 2011-04-29 Haticon Gmbh Dispositivo de instalación de módulos solares.
JP2011108854A (ja) * 2009-11-18 2011-06-02 Fuji Pureamu Kk 太陽光発電装置の設置構造及び設置方法
US20110155218A1 (en) * 2008-07-14 2011-06-30 Buechel Arthur Solar installation
CN202975823U (zh) * 2012-08-20 2013-06-05 王晶慧 绳索牵引式太阳跟踪装置
WO2013162179A1 (ko) * 2012-04-26 2013-10-31 고려그린믹스 주식회사 태양광 발전용 추적장치
ES2431296T3 (es) * 2009-03-10 2013-11-25 R.E.M. S.P.A. Revolution Energy Maker Sistema colector de energía solar

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2357727T3 (es) * 2007-04-23 2011-04-29 Haticon Gmbh Dispositivo de instalación de módulos solares.
US20110155218A1 (en) * 2008-07-14 2011-06-30 Buechel Arthur Solar installation
ES2431296T3 (es) * 2009-03-10 2013-11-25 R.E.M. S.P.A. Revolution Energy Maker Sistema colector de energía solar
JP2011108854A (ja) * 2009-11-18 2011-06-02 Fuji Pureamu Kk 太陽光発電装置の設置構造及び設置方法
WO2013162179A1 (ko) * 2012-04-26 2013-10-31 고려그린믹스 주식회사 태양광 발전용 추적장치
CN202975823U (zh) * 2012-08-20 2013-06-05 王晶慧 绳索牵引式太阳跟踪装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITUB20160641A1 (it) * 2016-02-10 2017-08-10 Strukture S R L Una struttura di supporto e movimentazione di collettori fotovoltaici
CN106992748A (zh) * 2017-05-23 2017-07-28 河北大学 自动转角光伏系统及自动转角光伏方阵
CN106992748B (zh) * 2017-05-23 2019-07-26 河北大学 自动转角光伏系统及自动转角光伏方阵

Also Published As

Publication number Publication date
ES2547494A1 (es) 2015-10-06
ES2547494B1 (es) 2016-05-12

Similar Documents

Publication Publication Date Title
ES2659523T3 (es) Método para erigir un aerogenerador
EP1604407B1 (en) Tracking solar collector assembly
ES2848309T3 (es) Seguidor solar
ES2369669T3 (es) Procedimiento para erigir una torre así como instalación de energía eólica.
ES2386402T3 (es) Estructura portante de cimentación flotante con componentes de flotación, con un diseño de elementos separados
ES2304319B1 (es) Una torre de celosia y un metodo de ereccion de un aerogenerador con una torre de celosia.
US11460004B2 (en) Reduced profile wind tower system for land-based and offshore applications
US20140205384A1 (en) Segmented Ballast Base Support Structure and Rail and Trolley Structures for Unstable Ground
ES2933677T3 (es) Aerogenerador flotante con una pluralidad de unidades de conversión de energía
JP5437029B2 (ja) 太陽光発電装置の設置構造
CN113906669B (zh) 用于单轴跟踪器的力矩优化桁架基础
US20140054433A1 (en) Alignment and/or tracking device for solar collectors
US20110067324A1 (en) Method and apparatus for providing a segmented ballast base support structure for unstable ground installation
ES2587409B1 (es) Seguidor solar adaptable a terrenos irregulares
ES2368402B1 (es) Seguidor solar.
WO2011012755A1 (es) Seguidor solar para módulos solares fotovoltaicos de alta concentración de tipo giratorio para cubierta y huertos solares
KR100941458B1 (ko) 양축식 태양광추적시스템의 안전장치 및 그 구동방법
ES2547494B1 (es) Sistema de cimentación, anclaje y accionamiento para un seguidor solar de un eje
ES2947742T3 (es) Parque eólico con mástiles arriostrados mutuamente
ES2811504T3 (es) Torre de turbina eólica y base de cimentación respectiva
US20210273603A1 (en) Truss foundations for frost-heave environments
CN110905075B (zh) 预应力空间网格结构
WO2009127758A2 (es) Estructura para seguidor solar y procedimiento de instalación
CN101864738B (zh) 用于多次竖转法施工钢拱桥的支架系统
EP3401445B1 (en) Anchoring section for a foundation structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14884675

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 11.11.2016)

122 Ep: pct application non-entry in european phase

Ref document number: 14884675

Country of ref document: EP

Kind code of ref document: A1