WO2015131619A1 - 过滤器以及具有循环水过滤系统的洗衣机 - Google Patents

过滤器以及具有循环水过滤系统的洗衣机 Download PDF

Info

Publication number
WO2015131619A1
WO2015131619A1 PCT/CN2014/094266 CN2014094266W WO2015131619A1 WO 2015131619 A1 WO2015131619 A1 WO 2015131619A1 CN 2014094266 W CN2014094266 W CN 2014094266W WO 2015131619 A1 WO2015131619 A1 WO 2015131619A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
filter
chamber
water inlet
fluid check
Prior art date
Application number
PCT/CN2014/094266
Other languages
English (en)
French (fr)
Inventor
李冬
劳春峰
刘立田
张江涛
张静静
肖田
郝世龙
李以民
Original Assignee
海尔集团技术研发中心
海尔集团公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海尔集团技术研发中心, 海尔集团公司 filed Critical 海尔集团技术研发中心
Publication of WO2015131619A1 publication Critical patent/WO2015131619A1/zh

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F39/00Details of washing machines not specific to a single type of machines covered by groups D06F9/00 - D06F27/00 
    • D06F39/10Filtering arrangements

Definitions

  • the present invention relates to the field of filter technology, and more particularly to a filter suitable for a circulating water filtration system and a washing machine having a circulating water filtration system.
  • the workflow of the conventional conventional washing machine laundry usually includes water infusion, washing-drying-discharging, multiple rinsing-drying-draining, etc., wherein each rinsing requires a large amount of fresh water to be consumed.
  • the current pulsator washing machine can consume 20-30 liters of water per kilogram of laundry per wash, and the existing drum washing machine consumes 12 liters of water per kilogram of laundry. That is to say, when the conventional washing machine (whether the pulsator type washing machine or the drum type washing machine, whether it is a semi-automatic washing machine or a fully automatic washing machine) works, the laundry wastewater is generally discharged directly to the washing machine, and a large amount of fresh water is re-injected. The laundry is rinsed multiple times, resulting in a large amount of water consumption throughout the laundry process.
  • Solution 1 Add a water storage tank to the washing machine to collect the rinsing water, and set a filter to simply filter the collected rinsing water and apply it to the next washing process.
  • Option 2 Add a reverse osmosis filter to the washing machine to purify the laundry wastewater, and apply the purified purified water to the next washing process.
  • Option 3 Purify the laundry wastewater using an auxiliary device such as a large water treatment device and an ozone generator, and apply the purified purified water to the next laundry process.
  • an auxiliary device such as a large water treatment device and an ozone generator
  • Option 1 The filter and storage tanks added in Option 1 can simply remove the lint from the rinse water.
  • the solution 1 cannot truly solve the water quality problem of the rinsing water.
  • such a solution usually requires manual cleaning of the water tank and the filter screen, which is inconvenient to maintain.
  • Scheme 2 uses a reverse osmosis filter to purify the laundry wastewater. This requires not only the use of a high pressure pump, but also a slow rate of purification of the produced water. It is difficult to ensure the normal use of the washing machine. In addition, this solution requires regular replacement of the reverse osmosis filter at a higher cost.
  • Option 3 uses a large water treatment unit and an auxiliary device such as an ozone generator to carry out the laundry wastewater. Purification, these ancillary equipment are not only expensive, occupy a large space, but also need a lot of supporting devices and related cleaning devices, further greatly increasing equipment costs and maintenance costs, completely unsuitable for ordinary household use.
  • the filter assembly (filter, reverse osmosis filter) is common in the field of water treatment technology.
  • the structure and piping settings of the washing machine are not considered.
  • the filter assembly in the conventional washing machine itself has no check member, and it is easy to cause the water in the filter assembly to flow back to the washing tub.
  • the filter assembly is contaminated during filtration, which causes the filtration flux to gradually decrease with the running time. Since the filter assembly currently used in the washing machine cannot be cleaned without being disassembled, the cleaning is troublesome or needs to be compared. Frequent replacement and short service life.
  • a secondary circulating water filtration system including, for example, a pre-filter and a downstream filter (such as an ultrafiltration membrane module) in a washing machine can effectively solve the wire scraping. Blocking problems and increasing the operating life of downstream filters.
  • the filter structure is specially designed in combination with the internal piping of the washing machine, which can be cleaned and maintained online after the filter of the washing machine runs for a certain period of time, prolonging the life of the filter in the washing machine and ensuring that it always has a high filtration. Flux.
  • a further object of the invention is to provide a specially designed filter for a water-saving washing machine.
  • Another further object of the present invention is to provide a washing machine having a circulating water filtration system.
  • the present invention provides a filter comprising a housing and a screen disposed within the housing, the screen separating the internal chamber of the housing into a water inlet chamber and a water filtering chamber,
  • the filter also includes:
  • a fluid check member is disposed on the water inlet of the water inlet chamber for opening or closing the water inlet.
  • fluid check member can be configured to:
  • the upward pressure exerted by the water pressure acting on the bottom end of the fluid check member is greater than the fluid check structure
  • the weight of the piece and the downward pressure of the water and gas in the inlet chamber are raised in the inlet chamber to open the water inlet;
  • the upward pressure exerted by the water pressure acting on the bottom end of the fluid check member is less than the sum of the gravity of the fluid check member and the downward pressure of the water and gas in the inlet chamber, and falls back within the inlet chamber. To close the water inlet.
  • the fluid check member may have a density greater than a density of water in the water inlet chamber.
  • center of gravity of the fluid check member may deviate from its geometric center.
  • the fluid check member may have a spherical surface.
  • the filter may further include a bottom termination member disposed at a bottom of the housing with a water inlet passage leading to the water inlet chamber.
  • a two-stage annular step which is sequentially reduced may be provided at a connection between the bottom termination member and the water inlet chamber, and a bottom end of the two-stage annular step forms a water inlet of the water inlet chamber;
  • the bottom annular step surface of the two-stage annular step and the water inlet may have a curved shape matching the surface of the fluid check member.
  • the filter may further include:
  • An intake passage disposed inside the bottom termination member, is configured to cause a gas delivery device to pump airflow through the intake passage into the inlet chamber to purify the screen.
  • the filter may further include:
  • An airflow distributor is disposed at a junction of the bottom termination member and the bottom of the water filtration chamber, and the air inlet passage communicates with the water filtration chamber through the airflow distributor.
  • a top end member of the water inlet chamber may be provided with a top end member sealingly engaging with the inlet chamber, and the top end member may be provided with a rich discharge port communicating with the water inlet chamber;
  • a plurality of radial projections are evenly distributed on the top termination member, and the water flow and the air flow in the drainage chamber flow out from the recess between the adjacent radial projections.
  • the present invention also provides a washing machine having a circulating water filtration system in which any of the filters as described above is provided.
  • the filter of the invention can automatically open/close the water inlet of the filter inlet chamber according to the working process by setting the fluid check member to prevent the dirty water from flowing backward.
  • the filter of the present invention is particularly suitable for use in filtering washing water and/or rinsing water in a washing machine having a circulating water filtration system.
  • the filter of the present invention can be applied to a washing machine to solve the problem of wire dusting and to facilitate online cleaning thereof. Further, when it is applied as a pre-filter to a washing machine, It can effectively extend the life of the downstream filter and ensure that both have a high filtration flux.
  • the filter of the present invention can serve as a partial flow path in the wash water draining process of the washing machine, simplifying the internal piping arrangement of the washing machine.
  • FIG. 1 is a schematic structural view of a filter according to an embodiment of the present invention.
  • Figure 2 is a schematic cross-sectional view of a fluid check member in accordance with one embodiment of the present invention.
  • FIG 3 is a schematic cross-sectional view of a gas flow distributor in accordance with one embodiment of the present invention.
  • the filter may include a housing 110 and a screen 120 disposed within the housing 110.
  • the screen 120 divides the interior chamber of the housing 110 into a water inlet chamber 122 and a water filtration chamber 124.
  • the water entering the water inlet chamber 122 is filtered through the screen 120 and then enters the water filtering chamber 124.
  • a fluid check member 130 is provided on the water inlet of the water inlet chamber 122 for opening or closing the water inlet.
  • the water inlet of the inlet cavity 122 may be located at the bottom thereof.
  • the fluid check member 130 can open or close the water inlet according to the following conditions. Specifically, when the water to be filtered flows to the bottom end of the fluid check member 130, if the water pressure acting on the bottom end of the fluid check member 130 provides an upward thrust greater than the gravity of the fluid check member 130 and the water received thereto The downward pressure of water and gas in the chamber 122 (when there is no water in the inlet chamber 122, the downward pressure of the upper water is zero) rises in the inlet chamber 122 to open the inlet, thereby opening The lower water is caused to flow into the water inlet chamber 122.
  • the upward pressure provided as the water pressure for the bottom end of the fluid check member 130 is smaller than the sum of the gravity of the fluid check member 130 and the downward pressure of the water and gas in the inlet chamber 122, and is in the inlet chamber 122.
  • the inside falls back to close the water inlet. This prevents water entering the water inlet chamber 122 from flowing back from the water inlet to the outside of the filter.
  • the density of the fluid check member 130 is preferably greater than the density of water in the water inlet chamber 122.
  • the center of gravity of the fluid check member 130 deviates from its geometric center, allowing it to more accurately fall back to the water inlet and more stably block the water inlet.
  • the surface profile of the fluid check member 130 in the present invention may be spherical, ellipsoidal or square, etc., in order to seal it as much as possible with the water inlet, the fluid check member 130 preferably has a spherical surface such that when the water inlet is circular, A better seal can be achieved regardless of which portion of the surface of the fluid check member 130 is in contact with the water inlet.
  • a bottom termination member 112 may be provided at the bottom of the housing 110 with a water inlet passage 114 leading to the bottom of the inlet chamber 122.
  • the water to be filtered enters the water inlet chamber 122 from the water inlet passage 114 of the bottom termination member 112.
  • the size of the nozzle should be smaller than the size of the fluid check member 130, and the size of the fluid check member 130 should be smaller than the inner diameter of the inlet chamber 122.
  • a two-stage annular step 150 that is sequentially reduced may be disposed at the junction of the bottom termination member 112 and the inlet cavity 122.
  • the inner diameter of the top annular step surface of the two-stage annular step 150 may be greater than or equal to the inlet cavity.
  • the inner diameter of 122, the bottom end of the two-stage annular step 150 forms the water inlet of the inlet chamber 122.
  • a portion of the outer surface of the fluid check member 130 abuts against the water inlet to achieve a hermetic seal.
  • the bottom annular step surface 152 of the two-stage annular step 150 and the water inlet have a curved shape 154 that matches the surface of the fluid check member 130.
  • the fluid check member 130 can be made to have a spherical surface whose spherical surface and curved shape 154 should be as smooth as possible to maximize the seal when they abut each other.
  • the fluid check member 130 may be placed at two stages when falling downward from the inside of the water inlet chamber 122. Instead of falling back to the water inlet, one of the two annular step faces of the annular step 150 is lowered. This does not function to block the flow path between the water inlet passage 114 and the water inlet chamber 122, thereby possibly causing the water in the inlet water chamber 122 to flow downward downward.
  • the fluid check member 130 is preferably arranged to have an "eccentric" configuration with the center of gravity deviating from its geometric center.
  • FIG. 2 shows a schematic cross-sectional view of a fluid check member 130 of one embodiment.
  • the fluid check member 130 has a standard ball structure 132, and within the ball structure 132, an eccentric control block 134 is provided that is different from the rest of the ball structure 132. Density. In one embodiment, the density of the eccentric control block 134 may be less than the density of other portions of the ball structure 132, such as may be a hollow structure, in which case the average density of the fluid check member 130 is greater than the water in the inlet cavity 122. density.
  • the density of the eccentric control block 134 may be greater than the density of other portions of the ball structure 132, as well as ensuring that the average density of the fluid check member 130 is greater than the density of water in the inlet cavity 122.
  • the fluid check member 130 having the "eccentric" structure can make it fall back to the water inlet accurately every time when it falls back downward, thereby performing water check (ie, preventing water from flowing backward). effect.
  • the amount of eccentricity of the fluid check member 130 is related to factors such as its own density and the thrust of the lower water flow, the pressure of the upper water and gas, and the desired fallback time.
  • an intake passage 116 may be provided in the interior of the bottom termination member 112 for causing the gas delivery device to pump airflow through the intake passage 116 into the drainage chamber 124 to purge the filter screen 120.
  • the gas delivery device is preferably an air pump, because the air pump generates a larger amount of bubbles than the other gas delivery devices such as a centrifugal pump, the air bubbles are more delicate, the contact area with the filter 120 is larger, and the bubbles can be continuously blasted and blasted. Greater force and low wear rate make it easier to flush the filter (especially the filter of the pre-filter).
  • an airflow distributor 160 may be provided at the bottom connection of the bottom termination member 112 and the water filtration chamber 124 to allow the inlet passage 116 It is in communication with the water filtration chamber 124 through the airflow distributor 160.
  • the airflow distributor 160 can include an annular cavity 162 having a plurality of air holes for injecting airflow into the water filtration chamber 124 on the top wall of the annular cavity 162.
  • the intake passage 116 is disposed in communication with the annular chamber 162.
  • a check valve may be disposed on the line between the gas delivery device and the intake passage 116, configured such that gas and liquid can only flow from the gas delivery device to the filter intake passage 116, but not from the filter intake passage 116 The gas delivery device flows to prevent water in the drainage chamber 124 from flowing through the vents of the gas flow distributor 160 to the gas delivery device.
  • the curved shape 154 may be formed by a portion of the surface of the airflow distributor 160.
  • the inner side surface of the airflow distributor 160 i.e., the surface facing the side of the broken line in Fig. 3 forms a two-stage annular step 150 and a partial water inlet passage 114, respectively.
  • the curved shape 154 forms a water inlet 156 at the bottom of the curved shape 154 between the bottom annular step surface 152 of the two-stage annular step 150 and the water inlet passage 114.
  • the outer upper surface of the airflow distributor 160 forms the bottom surface of the water filtering chamber 124, and together with the screen 120 and the housing 110, defines a cavity structure of the water filtering chamber 124.
  • Airflow distributor 160 A portion of the outer side surface forms a portion of the surface of the annular cavity 162 and a portion of the upper surface of the bottom termination member 112 encloses an annular cavity 162.
  • the bottom annular step surface 152 extends radially outwardly with an extension portion having an upper surface and a lower surface as the bottom surface of the water filtering chamber 124 and the upper surface of the annular chamber 162, respectively.
  • a plurality of air holes 164 are provided in the extension portion to allow the gas in the annular chamber 162 to be injected into the water filtering chamber 124 through the air holes 164.
  • the air flow in the water filtering chamber 124 can enter the water inlet chamber 122 from the radially outer side of the screen 120, the air flow in the water inlet chamber 122 can apply a horizontal component and a vertical direction to the fluid check member 130.
  • Component force (downward pressure) at this time, the relatively heavy (especially the "eccentric" structure) fluid check member 130 is more difficult to be blown by the airflow (horizontal sway or rolling), and the airflow is downward Under the action of pressure, it can always block the water inlet 156 to prevent the airflow from passing through the drain pump into the washing cylinder.
  • the top of the inlet cavity 122 may also be provided with a top termination member 140 that is in sealing engagement therewith.
  • the top termination member 140 is provided with a rich discharge port 142 that communicates with the water inlet chamber 122.
  • the filter of the present invention is applied to a washing machine having a circulating water filtration system, and when the rich discharge port 142 is in communication with a line between the washing machine drain pipe, the water inlet chamber is unfiltered. Water can be drained from the rich discharge port 142 and discharged to the outside of the washing machine through the washing machine drain pipe.
  • a plurality of radial projections 144 are evenly distributed on the top termination member 140, and the filtered water flow in the drainage chamber 124 and the air flow for purging the filter may be adjacent
  • the recesses between the radial projections 144 flow upward.
  • the recess between adjacent radial projections 144 corresponds to the water outlet of the water filtration chamber 124.
  • the filter of the present invention can be applied to a pre-filter in a water filtration system, disposed upstream of another filter (such as an ultrafiltration membrane module), adjacent to the radial direction of the filter of the present invention.
  • the filter of the present invention is particularly suitable for use in a washing machine having a circulating water filtration system, particularly as a pre-filter of a circulating water filtration system having at least two filters.
  • the water pump in the washing tub of the washing machine can be sent out to the circulating water filtration system for filtration, and then recycled back to the washing tub for reuse, as needed, for example, in a washing program or a rinsing program of the washing machine.
  • the working process of the pre-filter may include a washing water draining process, a rinsing water filtering process, a gas-washing pre-filter process, and a gas-washing downstream filter process.
  • the specific working process is as follows:
  • Washing water draining process During this process, the line between the rich drain port 142 of the pre-filter and the drain pipe of the washing machine is turned on. The washing water in the washing tub enters the water inlet passage 114 through the drain pump of the washing machine and reaches below the fluid check member 130, and the upward thrust provided by the water pressure acting on the bottom end of the fluid check member is greater than the gravity of the fluid check member 130 The fluid check member 130 is pushed open, floated up, the water inlet 156 is opened, the wash water enters the water inlet chamber 122, and passes through the rich drain port, in response to the sum of the downward pressure of water and gas in the inlet chamber 122.
  • the portion of the drain line can be formed by the inlet chamber 122 of the pre-filter, which reduces the setting of the internal piping of the washing machine.
  • the thrust provided by the drain pump is not fully utilized, or the drain pump is stopped, the thrust provided by the water pressure becomes small so that the water pressure acting on the bottom end of the fluid check member 130 is upward.
  • the thrust is less than the sum of the gravity of the fluid check member 130 and the downward pressure of the water and gas in the inlet chamber 122.
  • the fluid check member 130 is lowered downward and blocks the water inlet 156, blocking the water inlet passage. The flow path between 114 and the inlet chamber 122.
  • the process can also be referred to as a wash pre-filter process.
  • Rinsing water filtration process During this operation, the line between the rich discharge port 142 of the pre-filter and the drain pipe of the washing machine is closed. The rinsing water in the washing tub enters the water inlet passage 114 through the drain pump of the washing machine and reaches below the fluid check member 130, and the upward thrust provided by the water pressure acting on the bottom end of the fluid check member 130 is greater than that of the fluid check member 130 The gravity is in contact with the downward pressure of the water and gas in the inlet chamber 122, the fluid check member 130 is raised, the water inlet 156 is opened, and the rinsing water enters the inlet chamber 122, filtered through the screen 120, and then filtered.
  • the water chamber 124 flows upwardly through the recess between adjacent radial projections 144 of the top termination member 140 and into the inlet cavity of the downstream filter.
  • the rinse water filtered through the downstream filter is returned to the washing tub of the washing machine to rinse the laundry therein.
  • the drain pump stops working, and the fluid check member 130 falls back down and blocks the water inlet 156, blocking the flow path between the water inlet passage 114 and the water inlet chamber 122.
  • Air-washing pre-filter process During this operation, the line between the rich discharge port 142 of the pre-filter and the drain pipe of the washing machine is turned on. The upward pressure exerted by the water pressure acting on the bottom end of the fluid check member 130 is zero, and the downward combined force is large, and the fluid check member 130 blocks the water inlet 156.
  • the gas is provided by a gas delivery device that enters the annular chamber 162 of the airflow distributor 160 via the intake passage 116 and injects airflow into the drainage chamber 124 through the air vent 164. The airflow radially agitates the filter screen 120, so that dirt such as dirt and wire dust on the filter screen 120 is peeled off, and is discharged from the rich discharge port 142 through the washing machine drain pipe.
  • the airflow distributor 160 Due to the action of the airflow distributor 160, the airflow can enter the water inlet cavity 122 from the radially outer side of the filter screen 120. Thus, due to the presence of a certain air pressure in the water inlet cavity 122, the downward force of the fluid check member 130 can be increased. The water inlet 156 is always blocked to prevent the airflow from passing through the drain pump into the washing tub.
  • Air-washing the downstream filter process while the pre-filter is air-washed, the gas in the water-receiving chamber 124 can flow upward through the recess between the adjacent radial projections 144 of the top termination member 140 of the pre-filter And flowing into the inlet chamber of the downstream filter to purify the downstream filter.
  • the state of the fluid check member 130 is the same as that in the air pre-filter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Detail Structures Of Washing Machines And Dryers (AREA)

Abstract

一种过滤器以及具有循环水过滤系统的洗衣机。过滤器,包括壳体(110)和设置在所述壳体(110)内的滤网(120),所述滤网(120)将所述壳体(110)的内部腔室分隔成进水腔(122)和滤水腔(124),所述过滤器还包括流体止回构件(130),设置在所述进水腔(122)的进水口上,用于打开或关闭所述进水口。过滤器通过设置流体止回构件(130),可根据工作过程打开/关闭过滤器的进水口,防止脏水逆流。过滤器特别适合于应用在具有循环水过滤系统的洗衣机中对洗涤水和/或漂洗水进行过滤。

Description

过滤器以及具有循环水过滤系统的洗衣机 技术领域
本发明涉及过滤器技术领域,特别是涉及一种适用于循环水过滤系统的过滤器以及具有循环水过滤系统的洗衣机。
背景技术
现有常规洗衣机洗衣时的工作流程通常包括进水、洗涤-甩干-排水、多次漂洗-甩干-排水等,其中每次漂洗均需要消耗大量的清水。一般而言,现有波轮式洗衣机一次洗衣整个工作流程的耗水量能达到每公斤衣物20-30升,而现有滚筒洗衣机一次洗衣整个工作流程的耗水量也要达到每公斤衣物12L水。也就是说,现有常规洗衣机(不管波轮式洗衣机还是滚筒式洗衣机,也不管是半自动洗衣机还是全自动洗衣机)工作时,一般都是将洗衣废水直接排放到洗衣机外,并重新注入大量清水对衣物进行多次漂洗,导致整个洗衣过程耗水量较大。
为实现洗衣机节水的目的,现有技术一般采用以下方案对洗衣废水进行处理:
方案1:在洗衣机中增加储水箱收集漂洗水,并设置滤网将收集的漂洗水简单过滤后应用于下次洗衣过程。
方案2:在洗衣机中增加反渗透过滤器,对洗衣废水进行净化,并将净化后的净化水应用于下次洗衣过程。
方案3:使用大型水处理装置及臭氧发生器等附属设备对洗衣废水进行净化,将净化后的净化水应用于下次洗衣过程。
然而,上述几种方案的实际应用效果均不理想,主要原因如下。
方案1增加的滤网和储水箱只能简单地去除漂洗水中的线屑。然而,由于漂洗水杂质多,水质不稳定,导致方案1不能真正解决漂洗水的水质问题。而且,这种方案通常需要人工清洁储水箱和滤网,维护不便。
方案2使用反渗透过滤器对洗衣废水进行净化,这不但需要使用高压泵,而且净化产水速率慢,出水量很难保证洗衣机的正常使用需求。此外,这种方案需要定期更换反渗透过滤器,成本较高。
方案3使用大型水处理装置及臭氧发生器等附属设备对洗衣废水进行 净化,这些附属设备不但本身价格昂贵,占用空间大,而且还需要很多配套装置和相关清理装置,进一步大幅增加设备成本和维护成本,完全不适合普通家庭使用。
可以看出,在本身具有循环水过滤系统的现有技术的洗衣机中,例如根据前述方案1和2的洗衣机,其采用的过滤组件(滤网、反渗透过滤器)均为水处理技术领域通用的,组装到洗衣机上时并没有考虑洗衣机自身的结构和管路设置特点。并且,现有洗衣机中的过滤组件自身没有止回部件,容易使过滤组件内的水逆流回洗涤筒。此外,过滤组件在进行过滤时会被污染,导致过滤通量随运行时间而逐渐下降,由于现有应用于洗衣机中的过滤组件在不拆卸的情况下无法进行清洗,导致其清理麻烦或需要较为频繁地更换,使用寿命短。
在具有循环水过滤系统的洗衣机领域中,急需研制针对洗衣机内部管路设置专门设计的过滤组件。
发明内容
针对现有技术中存在的至少一个问题,本申请的发明人发现洗衣机中采用例如包括前置过滤器与下游过滤器(如超滤膜组件)的二级循环水过滤系统可有效解决线屑污堵问题,并可提高下游过滤器运行寿命。此外,结合洗衣机内部管路设置对过滤器结构进行特殊设计,可在洗衣机的过滤器运行一定周期后对其进行在线清洁维护,延长了洗衣机中过滤器的寿命并保证其始终具有较高的过滤通量。
本发明的一个目的是要提供一种防止水逆流的过滤器。本发明的一个进一步的目的是要针对节水洗衣机提供一种特别设计的过滤器。本发明另一个进一步的目的是提供一种具有循环水过滤系统的洗衣机。
特别地,本发明提供了一种过滤器,包括壳体和设置在所述壳体内的滤网,所述滤网将所述壳体的内部腔室分隔成进水腔和滤水腔,所述过滤器还包括:
流体止回构件,设置在所述进水腔的进水口上,用于打开或关闭所述进水口。
进一步地,所述流体止回构件可被配置成:
作用于流体止回构件底端的水压所提供的向上的推力大于流体止回构 件的重力与其受到的进水腔内的水和气体的向下压力之和时在所述进水腔内上升,以打开所述进水口;
作用于流体止回构件底端的水压所提供的向上的推力小于流体止回构件的重力与其受到的进水腔内的水和气体的向下压力之和时在所述进水腔内回落,以关闭所述进水口。
进一步地,所述流体止回构件的密度可大于所述进水腔中的水的密度。
进一步地,所述流体止回构件的重心可偏离其几何中心。
进一步地,所述流体止回构件可具有球形表面。
进一步地,所述过滤器还可包括底部端接构件,设置在所述壳体的底部,其内具有通向所述进水腔的进水通道。
进一步地,在所述底部端接构件与所述进水腔的连接处可设有依次缩小的两级环形台阶,所述两级环形台阶的底端形成所述进水腔的进水口;
所述两级环形台阶的底层环形台阶面与所述进水口之间可具有与所述流体止回构件的表面相匹配的弧面形状。
进一步地,所述过滤器还可包括:
进气通道,设置在所述底部端接构件内部,用于使气体输送装置通过所述进气通道向所述进水腔中泵送气流,以对所述滤网进行气洗。
进一步地,所述过滤器还可包括:
气流分配器,设置在所述底部端接构件与所述滤水腔底部连接处,所述进气通道通过所述气流分配器与所述滤水腔连通。
进一步地,所述进水腔的顶部可设有与其密封配合的顶部端接构件,所述顶部端接构件上可设有与所述进水腔连通的浓排口;
所述顶部端接构件上还可均匀分布多个径向凸起,所述滤水腔中的水流和气流从相邻径向凸起之间的凹口中流出。
本发明还提供了一种具有循环水过滤系统的洗衣机,所述循环水过滤系统中设置有如前所述的任一过滤器。
本发明过滤器通过设置流体止回构件,可根据工作过程自动导通/关闭过滤器进水腔的进水口,防止脏水逆流。本发明的过滤器特别适合于应用在具有循环水过滤系统的洗衣机中对洗涤水和/或漂洗水进行过滤。
进一步地,本发明的过滤器应用于洗衣机中可解决线屑污堵问题,且便于对其进行在线清洗。进一步地,在其作为前置过滤器应用于洗衣机中时, 可有效延长下游过滤器的寿命,并保证两者均具有较高的过滤通量。此外,本发明的过滤器可在洗衣机的洗涤水排污流程中充当部分流路,简化了洗衣机内部管路设置。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例过滤器的示意性结构图;
图2是根据本发明一个实施例流体止回构件的示意性剖视图;
图3是根据本发明一个实施例气流分配器的示意性剖视图。
具体实施方式
图1是根据本发明一个实施例的过滤器的示意性结构图。如图1所示,过滤器可包括壳体110和设置在壳体110内的滤网120。滤网120将壳体110的内部腔室分隔成进水腔122和滤水腔124。进入进水腔122内的水经滤网120过滤后进入滤水腔124中。在进水腔122的进水口上设置有流体止回构件130,用于打开或关闭所述进水口。
在本发明的一些实施例中,进水腔122的进水口可位于其底部。在进一步的实施例中,流体止回构件130可根据如下条件打开或关闭所述进水口。具体地,当待过滤的水流至流体止回构件130的底端时,如果作用于流体止回构件130底端的水压所提供的向上的推力大于流体止回构件130的重力与其受到的进水腔122内的水和气体的向下压力(当进水腔122中没有水时,上方水的向下压力为零)之和时在进水腔122内上升,以打开所述进水口,从而使下方的水流入进水腔122中。当作用于流体止回构件130底端的水压所提供的向上的推力小于流体止回构件130的重力与其受到的进水腔122内的水和气体的向下压力之和时在进水腔122内回落,以关闭所述进水口。这样可防止进入进水腔122中的水从进水口逆流到过滤器外部。在本发明实施例中,为了使流体止回构件130能够在静态水或水流较小时顺利向下回落,流体止回构件130的密度优选大于进水腔122中的水的密度。在本发明的一 个实施例中,流体止回构件130的重心偏离其几何中心,使其更加准确地回落至进水口处且更加稳定地封堵住进水口。
本发明中流体止回构件130的表面轮廓可为球形、椭球形或方形等,为了使其尽可能与进水口密封,流体止回构件130优选具有球形表面,这样当进水口为圆形时,无论流体止回构件130的哪部分表面与进水口接触,都可实现较好的密封。
在一个实施例中,在壳体110的底部可设置有底部端接构件112,其内具有通向进水腔122底部的进水通道114。待过滤的水从底部端接构件112的进水通道114进入进水腔122中。本领域技术人员可以理解,本发明的一些实施例中,为了使流体止回构件130较好地起到导通或阻断进水通道114与进水腔122之间的流路的作用,进水口的尺寸应小于流体止回构件130的尺寸,且流体止回构件130的尺寸应小于进水腔122的内径。在一些实施例中,可在底部端接构件112与进水腔122的连接处设置依次缩小的两级环形台阶150,两级环形台阶150的顶层环形台阶面的内径可大于或等于进水腔122的内径,两级环形台阶150的底端形成进水腔122的进水口。流体止回构件130的部分外表面与该进水口抵靠接触,以实现气密密封。为了进一步提高进水口处的气密性,两级环形台阶150的底层环形台阶面152与进水口之间具有与流体止回构件130的表面相匹配的弧面形状154。这样设置可增加两者之间的接触面积,更有利于流体止回构件130在关闭进水口(即阻断进水通道114与进水腔122之间的流路)时的密封性。在进一步优选的实施例中,可使流体止回构件130具有球形表面,其球形表面与弧面形状154应该尽量光滑,以尽可能提高其相互抵靠时的密封性。
进一步地,在本发明的一些实施例中,由于进水腔122的底端设置有两级环形台阶150,流体止回构件130从进水腔122内部向下回落时可能会静置于两级环形台阶150的两个环形台阶面中的一个环形台阶面上,而不是回落至进水口处。这样就起不到阻断进水通道114与进水腔122之间的流路的作用,由此可能会导致进水腔122中的水向下逆流。为了尽量避免发生这种情况,流体止回构件130优选设置成具有重心偏离其几何中心的“偏心”结构。图2示出了一个实施例的流体止回构件130的示意性剖视图。如图2所示,在该实施例中,流体止回构件130具有标准的球体结构132,在球体结构132的内部,设有偏心控制块134,其与球体结构132其余部分具有不同 的密度。在一个实施例中,偏心控制块134的密度可小于球体结构132其他部分的密度,例如其可为空心结构,此时,流体止回构件130的平均密度要保证大于进水腔122中水的密度。在一个实施例中,偏心控制块134的密度可大于球体结构132其他部分的密度,同样要保证流体止回构件130的平均密度大于进水腔122中水的密度。在本发明实施例中,具有“偏心”结构的流体止回构件130可使得其向下回落时,每次都能够准确回落至进水口处,从而起到水止回(即防止水逆流)的作用。流体止回构件130的偏心量与其自身密度和下方水流的推力、上方水和气的压力以及所期望的回落时间等因素相关。
通常过滤器在使用一段时间后,其滤网120上会沉积/吸附很多污垢,影响其过滤通量。为了便于对滤网120进行较为彻底的清洗,可对滤网120进行气洗。在一个实施例中,可在底部端接构件112的内部设置进气通道116,用于使气体输送装置通过进气通道116向滤水腔124中泵送气流,从而对滤网120进行气洗。气体输送装置优选为气泵,这是由于相比如离心泵等其他气体输送装置,气泵产生的气泡量更大,气泡个体更细腻,与滤网120接触面积更大,并且气泡可以连续爆破,爆破冲击力更大,磨损率低,更有利于冲洗滤网(特别是前置过滤器的滤网)。为了使气流更加均匀地对大部分滤网进行气洗,在一个进一步的实施例中,可在底部端接构件112与滤水腔124底部连接处设置气流分配器160,以使进气通道116通过气流分配器160与滤水腔124连通。在一个实施例中,气流分配器160可包括环形腔162,在环形腔162的顶壁上设有多个将气流喷入滤水腔124的气孔。进气通道116与环形腔162连通设置。在气体输送装置与进气通道116之间的管路上可设置单向阀,配置成气体和液体只能从气体输送装置向过滤器进气通道116流动,而不能从过滤器进气通道116向气体输送装置流动,以防止滤水腔124中的水经气流分配器160的气孔流至气体输送装置处。
在一个实施例中,弧面形状154可由气流分配器160的部分表面形成。如图3所示,气流分配器160的内侧表面(即朝向图3中虚线一侧的表面)分别形成两级环形台阶150和部分进水通道114。弧面形状154在两级环形台阶150的底层环形台阶面152与进水通道114之间,在弧面形状154的底部形成进水口156。气流分配器160的外侧上表面形成滤水腔124的底面,与滤网120、壳体110共同限定了滤水腔124的腔体结构。气流分配器160 的部分外侧表面形成环形腔162的部分表面,与底部端接构件112的部分上表面围成环形腔162。具体地,底层环形台阶面152沿径向外侧延伸出一延伸部,该延伸部的上表面和下表面分别作为滤水腔124的底面和环形腔162的上表面。在该延伸部上设置有多个气孔164,以使环形腔162内的气体通过气孔164喷入滤水腔124中。由于滤水腔124内的气流可从滤网120的径向外侧进入进水腔122中,而进水腔122内的气流可对流体止回构件130施加水平方向的分力和竖直方向的分力(向下的压力),此时,相对较重(特别是具有“偏心”结构)的流体止回构件130更加不易被气流吹动(水平方向的晃动或滚动),且在气流向下压力的作用下,其能够始终堵住进水口156,防止气流反向通过排水泵进入洗涤筒内。
在一些实施例中,进水腔122的顶部还可设有与其密封配合的顶部端接构件140。顶部端接构件140上设有与进水腔122连通的浓排口142。在某些情况下,例如将本发明中的过滤器应用于具有循环水过滤系统的洗衣机中,当浓排口142与洗衣机排水管道之间的管路连通时,进水腔中未经过滤的水可从浓排口142中排出过滤器,并经洗衣机排水管道排到洗衣机外部。
在一些实施例中,在顶部端接构件140上还可均匀分布有多个径向凸起144,滤水腔124中过滤后的水流和用于对过滤器进行气洗的气流可从相邻径向凸起144之间的凹口中向上流出。在这里,相邻径向凸起144之间的凹口相当于滤水腔124的出水口。在一些实施例中,本发明中的过滤器可应用于水过滤系统中的前置过滤器,设置在另一过滤器(如超滤膜组件)的上游,从本发明过滤器相邻径向凸起144之间的凹口中向上流出的水流入下游过滤器的进水腔中进行再次过滤(本领域技术人员可以理解,这里的“上游”和“下游”是根据流体在管道及相应部件中流动的方向而言的)。
由以上对本发明过滤器的结构描述可知,本发明的过滤器特别适合应用在具有循环水过滤系统的洗衣机中,特别是作为具有至少两个过滤器的循环水过滤系统的前置过滤器。根据需要,例如在洗衣机的洗涤程序或漂洗程序中,可将洗衣机洗涤筒中的水泵送出,输送到循环水过滤系统中进行过滤,然后循环回洗涤筒中重用。
在本发明的具有循环水过滤系统的洗衣机中,前置过滤器的工作过程可包括洗涤水排污过程、漂洗水过滤过程、气洗前置过滤器过程以及气洗下游过滤器过程。其具体工作过程分别如下:
洗涤水排污过程:在该过程中,前置过滤器的浓排口142与洗衣机的排水管道之间的管路导通。洗涤筒中的洗涤水通过洗衣机的排水泵进入进水通道114并到达流体止回构件130的下方,由于作用于流体止回构件底端的水压所提供的向上的推力大于流体止回构件130的重力与其受到的进水腔122内的水和气体的向下压力之和,流体止回构件130被推开、上浮,进水口156被打开,洗涤水进入进水腔122中,并通过浓排口142经洗衣机排水管道排出(本领域技术人员可以理解,当洗涤水进入进水腔122中时,不可避免的会有少量的水经滤网120过滤进入滤水腔124中)。这样在洗涤水排放过程中,其排水管路部分可由前置过滤器的进水腔122形成,减少了洗衣机内部管路的设置。
当待排出的洗涤水的水量很小,不能充分利用排水泵提供的推力或排水泵停止工作时,水压提供的推力变小而使得作用于流体止回构件130底端的水压所提供的向上的推力小于流体止回构件130的重力与其受到的进水腔122内的水和气体的向下压力之和,流体止回构件130向下回落并封堵住进水口156,阻断进水通道114与进水腔122之间的流路。
此外,进入进水腔122中的大部分水仅沿着滤网120内表面流动并从进水腔122的浓排口142流出,在此过程中,前置过滤器进水腔122中附着在滤网120上的污物会随着水一起排出到洗衣机外,从而可起到对前置过滤器清洁的作用。在一些实施例中,若排水泵泵入前置过滤器中的水为干净的水或过滤器清洗液,该工作过程也可称为清洗前置过滤器过程。
漂洗水过滤过程:在此工作过程中,前置过滤器的浓排口142与洗衣机的排水管道之间的管路关闭。洗涤筒中的漂洗水通过洗衣机的排水泵进入进水通道114并到达流体止回构件130的下方,由于作用于流体止回构件130底端的水压所提供的向上的推力大于流体止回构件130的重力与其受到的进水腔内122的水和气体的向下压力之和,流体止回构件130上升,进水口156被打开,漂洗水进入进水腔122后,经滤网120过滤后进入滤水腔124中,并经顶部端接构件140的相邻径向凸起144之间的凹口中向上流出并流入下游过滤器的进水腔中。经下游过滤器过滤后的漂洗水重新回到洗衣机的洗涤筒中对其中的衣物进行漂洗。当漂洗水过滤过程结束时,排水泵停止工作,流体止回构件130向下回落并封堵住进水口156,阻断进水通道114与进水腔122之间的流路。
气洗前置过滤器过程:在该工作过程中,前置过滤器的浓排口142与洗衣机的排水管道之间的管路导通。作用于流体止回构件130底端的水压所提供的向上的推力为零,其受到的向下的合力较大,流体止回构件130封堵住进水口156。气体由气体输送装置提供,经进气通道116进入气流分配器160的环形腔162,通过气孔164将气流喷入滤水腔124中。气流径向鼓动滤网120,使得滤网120上的泥土、线屑等污物剥落,由浓排口142经洗衣机排水管道排走。而由于气流分配器160的作用使得气流可从滤网120径向外侧进入进水腔122中,这样由于进水腔122内存在一定的气压,可使流体止回构件130向下的合力变大,始终堵住进水口156,防止气流反向通过排水泵进入洗涤筒内。
气洗下游过滤器过程:气洗前置过滤器的同时,滤水腔124内的气体可经前置过滤器的顶部端接构件140的相邻径向凸起144之间的凹口中向上流出并流入下游过滤器的进水腔中,从而对下游过滤器进行气洗。此时,流体止回构件130的状态与气洗前置过滤器过程中相同。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (11)

  1. 一种过滤器,包括壳体和设置在所述壳体内的滤网,所述滤网将所述壳体的内部腔室分隔成进水腔和滤水腔,所述过滤器还包括:
    流体止回构件,设置在所述进水腔的进水口上,用于打开或关闭所述进水口。
  2. 根据权利要求1所述的过滤器,其中
    所述流体止回构件被配置成:
    作用于流体止回构件底端的水压所提供的向上的推力大于流体止回构件的重力与其受到的进水腔内的水和气体的向下压力之和时在所述进水腔内上升,以打开所述进水口;
    作用于流体止回构件底端的水压所提供的向上的推力小于流体止回构件的重力与其受到的进水腔内的水和气体的向下压力之和时在所述进水腔内回落,以关闭所述进水口。
  3. 根据权利要求2所述的过滤器,其中
    所述流体止回构件的密度大于所述进水腔中的水的密度。
  4. 根据权利要求1所述的过滤器,其中
    所述流体止回构件的重心偏离其几何中心。
  5. 根据权利要求1所述的过滤器,其中
    所述流体止回构件具有球形表面。
  6. 根据权利要求1所述的过滤器,还包括:
    底部端接构件,设置在所述壳体的底部,其内具有通向所述进水腔的进水通道。
  7. 根据权利要求6所述的过滤器,其中
    在所述底部端接构件与所述进水腔的连接处设有依次缩小的两级环形台阶,所述两级环形台阶的底端形成所述进水腔的进水口;
    所述两级环形台阶的底层环形台阶面与所述进水口之间具有与所述流体止回构件的表面轮廓相匹配的弧面形状。
  8. 根据权利要求6所述的过滤器,还包括:
    进气通道,设置在所述底部端接构件内部,用于使气体输送装置通过所述进气通道向所述滤水腔中泵送气流,以对所述滤网进行气洗。
  9. 根据权利要求8所述的过滤器,还包括:
    气流分配器,设置在所述底部端接构件与所述滤水腔底部连接处,所述进气通道通过所述气流分配器与所述滤水腔连通。
  10. 根据权利要求1所述的过滤器,其中
    所述进水腔的顶部设有与其密封配合的顶部端接构件,所述顶部端接构件上设有与所述进水腔连通的浓排口;
    所述顶部端接构件上还均匀分布有多个径向凸起,所述滤水腔中的水流和气流从相邻径向凸起之间的凹口中流出。
  11. 一种具有循环水过滤系统的洗衣机,所述循环水过滤系统中设置有如权利要求1-10中任一项所述的过滤器。
PCT/CN2014/094266 2014-03-06 2014-12-18 过滤器以及具有循环水过滤系统的洗衣机 WO2015131619A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410082851.5 2014-03-06
CN201410082851.5A CN104894815B (zh) 2014-03-06 2014-03-06 过滤器以及具有循环水过滤系统的洗衣机

Publications (1)

Publication Number Publication Date
WO2015131619A1 true WO2015131619A1 (zh) 2015-09-11

Family

ID=54027748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/094266 WO2015131619A1 (zh) 2014-03-06 2014-12-18 过滤器以及具有循环水过滤系统的洗衣机

Country Status (2)

Country Link
CN (1) CN104894815B (zh)
WO (1) WO2015131619A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109603260A (zh) * 2018-12-29 2019-04-12 河北银隆新能源有限公司 过滤装置
CN113167008A (zh) * 2018-10-31 2021-07-23 Ufi创新中心有限责任公司 带过滤器组的洗衣机
CN113832650A (zh) * 2020-06-08 2021-12-24 云米互联科技(广东)有限公司 排水控制方法及系统、存储介质、洗涤装置
CN114950038A (zh) * 2022-07-28 2022-08-30 齐鲁工业大学 自动装卸车用管道过滤装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6994624B2 (ja) * 2017-04-24 2022-01-14 パナソニックIpマネジメント株式会社 洗濯機
CN107252603B (zh) * 2017-06-15 2020-06-12 宁波亚洲浆纸业有限公司 一种过滤器及其清洁方法、过滤系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2134807A (en) * 1983-02-08 1984-08-22 Howard William Morgan Liquid filter
US5215655A (en) * 1991-10-28 1993-06-01 Tokheim Corporation Dispenser interlock fuel filter system disabled in response to filter removal
CN1091673A (zh) * 1993-02-16 1994-09-07 阿姆威公司 滤水器套筒
CN1085272C (zh) * 1997-08-16 2002-05-22 三星电子株式会社 洗衣机用过滤器
WO2012061880A1 (en) * 2010-11-11 2012-05-18 Electrolux Home Products Pty Limited Self cleaning filter arrangement

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2134807A (en) * 1983-02-08 1984-08-22 Howard William Morgan Liquid filter
US5215655A (en) * 1991-10-28 1993-06-01 Tokheim Corporation Dispenser interlock fuel filter system disabled in response to filter removal
CN1091673A (zh) * 1993-02-16 1994-09-07 阿姆威公司 滤水器套筒
CN1085272C (zh) * 1997-08-16 2002-05-22 三星电子株式会社 洗衣机用过滤器
WO2012061880A1 (en) * 2010-11-11 2012-05-18 Electrolux Home Products Pty Limited Self cleaning filter arrangement

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113167008A (zh) * 2018-10-31 2021-07-23 Ufi创新中心有限责任公司 带过滤器组的洗衣机
CN109603260A (zh) * 2018-12-29 2019-04-12 河北银隆新能源有限公司 过滤装置
CN113832650A (zh) * 2020-06-08 2021-12-24 云米互联科技(广东)有限公司 排水控制方法及系统、存储介质、洗涤装置
CN113832650B (zh) * 2020-06-08 2023-09-05 云米互联科技(广东)有限公司 排水控制方法及系统、存储介质、洗涤装置
CN114950038A (zh) * 2022-07-28 2022-08-30 齐鲁工业大学 自动装卸车用管道过滤装置
CN114950038B (zh) * 2022-07-28 2022-10-25 齐鲁工业大学 自动装卸车用管道过滤装置

Also Published As

Publication number Publication date
CN104894815B (zh) 2017-01-25
CN104894815A (zh) 2015-09-09

Similar Documents

Publication Publication Date Title
WO2015131619A1 (zh) 过滤器以及具有循环水过滤系统的洗衣机
JP2017502736A (ja) 節水洗濯機および制御方法
JP3211096U (ja) 排気洗浄タワー
CN106149280B (zh) 一种洗衣机控制方法及洗衣机
CN105463794A (zh) 一种洗衣机自清洁循环过滤系统及自清洁方法
CN204000331U (zh) 洗衣机
CN104911860A (zh) 洗衣机
CN105350266A (zh) 洗衣机及对其前置过滤器进行反向冲洗的方法
CN111437647A (zh) 内进流非金属滚筒格栅除污机及其使用方法
CN105506930B (zh) 用于洗衣机的过滤组件及洗衣机
CN204138953U (zh) 用于洗衣机的过滤组件及洗衣机
CN105986433B (zh) 洗衣机
CN212236286U (zh) 内进流非金属滚筒格栅除污机
CN104805650A (zh) 洗衣机
CN105727605A (zh) 一种改良型不间断动态流沙过滤装置及系统
CN105350267A (zh) 洗衣机及其控制方法
KR101971778B1 (ko) 공기정화용 사이클론 및 이를 포함하는 필터링모듈
CN205549709U (zh) 一种改良型不间断动态流沙过滤装置及系统
CN105002707A (zh) 洗衣机
CN204211979U (zh) 用于净水洗衣机的过滤组件及净水洗衣机
CN212067959U (zh) 一种节能型纺织空调水过滤器
CN215195656U (zh) 一种用于压力管道排气阀的反冲洗过滤装置
CN215026821U (zh) 一种湿式除尘机的排水装置
CN211284580U (zh) 一种电镀水洗装置
KR102625168B1 (ko) 원뿔대 형태의 여과망 탑재로 압력손실 없이 필터 세척과 유량조절이 가능한 밀폐형 여과 볼밸브

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14884683

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14884683

Country of ref document: EP

Kind code of ref document: A1