WO2015131586A1 - 电源切换方法及装置、手持终端 - Google Patents

电源切换方法及装置、手持终端 Download PDF

Info

Publication number
WO2015131586A1
WO2015131586A1 PCT/CN2014/092717 CN2014092717W WO2015131586A1 WO 2015131586 A1 WO2015131586 A1 WO 2015131586A1 CN 2014092717 W CN2014092717 W CN 2014092717W WO 2015131586 A1 WO2015131586 A1 WO 2015131586A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
circuit
supply circuit
load
path
Prior art date
Application number
PCT/CN2014/092717
Other languages
English (en)
French (fr)
Inventor
易旭东
谭建
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2015131586A1 publication Critical patent/WO2015131586A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems

Definitions

  • the present invention relates to the field of power distribution, and in particular to a power switching method and device, and a handheld terminal.
  • the terminal devices in the prior art especially the handheld devices, all have built-in rechargeable batteries, and when the external power supply is abnormal or powered down, it is necessary to switch to the battery to supply power to the device, and in the process of switching, it should be realized.
  • the battery is seamlessly and smoothly powered, and the implementation of this function often requires a large number of detection devices and complex circuits, which is often impractical for cost-critical terminal equipment.
  • 1 is a schematic structural diagram of power supply of a terminal device in the related art, as shown in FIG. 1, the power supply loop is automatically selected by the conduction characteristic of the diode, and when the external power source is normal, the external power supply cannot be preferentially selected to be saved. Battery energy, while the battery can not get timely charging, which is not conducive to battery recycling.
  • the power supply circuit is automatically selected by the diode.
  • the external power supply cannot be selected to save the battery energy, and the battery cannot obtain the timely charging problem.
  • an effective solution has not been proposed.
  • the main purpose of the embodiments of the present invention is to provide a power switching method and device, and a handheld terminal, to solve the problem of automatically selecting a power supply circuit through a diode in the prior art.
  • the external power supply cannot be preferably selected to save battery energy.
  • the battery can not get the problem of timely charging.
  • a power switching device includes: a main power supply circuit, a backup power supply circuit, a bidirectional switch circuit, and a detection circuit; and the detection circuit is electrically connected to the main Between the power supply circuit and the bidirectional switch circuit; the bidirectional switch circuit is connected between the backup power supply circuit and the load; the detection circuit is configured to detect the working state of the main power supply circuit, When the working state is normal, a first control signal is generated; the bidirectional switch circuit receives the first control signal, and under the trigger of the first control signal, turns on the main power supply circuit and the standby a first path between the power supply circuits and closing a second path between the backup power supply circuit and the load; wherein the first path is for the main power supply circuit to the backup power
  • the power supply circuit performs a charging supply path, and the second path is configured to provide power to the load by the standby power supply circuit .
  • the detecting circuit is further configured to generate a second control signal when detecting the abnormality of the working state; the bidirectional switching circuit receiving the second control signal, and in the second control signal Upon triggering, the second path is turned on and the power supply path of the load is switched from the first path to the second path.
  • the method further includes: an adjustment circuit disposed between the bidirectional switch circuit and the backup power supply circuit, configured to adjust a switching speed of the power supply path of the load.
  • the adjustment circuit comprises: a tunable capacitor.
  • the bidirectional switching circuit comprises one of the following: a double triode, a double MOS half field effect transistor MOSFET.
  • a handheld terminal comprising: a power switching device, wherein the power switching device is the power switching device according to any one of the power switching devices of the present invention.
  • a power switching method for switching a main power supply path and a backup power supply circuit in a terminal, including: detecting an operating state of the main power supply circuit; When the working state is normal, the main power supply circuit is used to supply power to the load in the terminal, and the standby power supply circuit is charged.
  • the method further includes: switching the power supply circuit of the load to the standby power supply circuit when the working state is abnormal.
  • the method further comprises: adjusting a switching speed of the power supply circuit of the load.
  • adjusting the switching speed of the power supply circuit of the load comprises: adjusting the switching speed by a tunable capacitance disposed between the backup power supply circuit and the main power supply circuit.
  • the detection circuit is electrically connected between the main power source and the bidirectional switch circuit; the bidirectional switch circuit is connected between the standby power source and the load; and the detection circuit is configured to detect the working state of the main power supply circuit, in the working state Normally, generating a first control signal; the bidirectional switch circuit receiving the first control signal, and under the trigger of the first control signal, turning on the first path between the main power supply circuit and the standby power supply circuit, and turning off the standby a second path between the power supply circuit and the load; wherein the first path is used to provide a path for the main power supply circuit to charge the backup power supply circuit, and the second path is used to provide a path for the backup power supply circuit to supply power to the load .
  • the related art has automatically selected the power supply circuit through the diode.
  • the external power supply cannot be preferably selected to save the battery energy, and the battery cannot be charged in time.
  • the problem is that the power supply state of the device is automatically detected without an external control signal, and the smooth switching of the main power source and the battery is realized.
  • FIG. 1 is a schematic structural diagram of power supply of a terminal device in the related art
  • FIG. 2 is a schematic structural diagram of a power switching device according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a preferred structure of a power switching device according to an embodiment of the present invention.
  • FIG. 4 is a schematic flow chart of a power switching method according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a main power supply and a battery switching circuit according to a preferred embodiment of the present invention.
  • FIG. 6 is a schematic diagram 1 showing a preferred connection between a main power source and a battery switching circuit according to a preferred embodiment of the present invention
  • FIG. 7 is a schematic diagram 2 showing a preferred connection between a main power source and a battery switching circuit in accordance with a preferred embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a power switching device according to an embodiment of the present invention. As shown in FIG. 2, the device includes: a main power supply circuit 22, a backup power supply circuit 24, and a bidirectional Switch circuit 26, detection circuit 28;
  • the detection circuit 28 is electrically connected between the main power supply circuit 22 and the bidirectional switch circuit 26; the bidirectional switch circuit 26 is connected between the backup power supply circuit 24 and the load;
  • the detecting circuit 28 is configured to detect an operating state of the main power supply circuit 22, and when the working state is normal, generate a first control signal;
  • the bidirectional switch circuit 26 receives the first control signal and, under the trigger of the first control signal, turns on a first path between the main power supply circuit 22 and the backup power supply circuit 24, and Closing a second path between the backup power supply circuit 24 and the load; wherein the first path is used to provide a path for the main power supply circuit 22 to charge the backup power supply circuit 24, The second path is used to provide a path for the backup power supply circuit 24 to supply power to the load.
  • the detection circuit 28 is used to detect the working state of the main power supply circuit, and when the working state is normal, the first control signal is sent to the bidirectional switch circuit 26, and is turned on under the trigger of the first control signal. a first path between the main power supply circuit 22 and the backup power supply circuit 24, and closing a second path between the backup power supply circuit 24 and the load; wherein the first path is used for the main power supply circuit 22 to the backup power supply.
  • the power supply circuit 24 performs a charge supply path, and the second path serves to provide a path for the backup power supply circuit 24 to supply power to the load.
  • the utility model solves the problem that the power supply circuit is automatically selected by the diode in the related art.
  • the external power supply cannot be preferably selected to save the battery energy, and the battery can not get the timely charging problem, so that the automatic control signal is not needed. Detecting the power supply status of the device enables smooth switching between the main power supply and the battery.
  • the detecting circuit 28 functions in various forms.
  • the detecting circuit 28 is further configured to generate a second control signal to the bidirectional switch circuit 26 when an abnormal state of operation is detected. Under the triggering of the second control signal, the second path is turned on, and the power supply path of the load is switched from the first path to the second path.
  • FIG. 3 is a schematic diagram of a preferred structure of a power switching device according to an embodiment of the present invention.
  • the device includes, in addition to the circuit shown in FIG. 2, an adjustment circuit 32 disposed on the bidirectional switch circuit and standby. Between the power supply circuits, the switching speed of the power supply path for adjusting the load is set.
  • the adjustment circuit 32 has various forms, and the most preferred one is a tunable capacitor.
  • bidirectional switches in the embodiments of the present invention, such as a dual triode, a double MOS field effect transistor MOSFET.
  • a dual triode a double MOS field effect transistor MOSFET.
  • the above two transistors to be described are only preferred embodiments of the present invention, and are not intended to limit the present invention, as long as electronic components capable of realizing the function of the bidirectional switch are included therein.
  • the embodiment of the present invention further provides a handheld terminal, which includes the power switching device in the above embodiment, and any preferred mode of the power switching device.
  • FIG. 4 is a schematic flowchart of a power source switching method according to an embodiment of the present invention. As shown in FIG. 4, the method includes the following steps:
  • Step S402 detecting an operating state of the main power supply circuit
  • Step S404 When the working state is normal, the main power supply circuit is used to supply power to the load in the terminal, and the standby power supply circuit is charged.
  • the working state of the main power supply circuit is detected.
  • the main power supply circuit is used to supply power to the load in the terminal, and the standby power supply circuit is charged.
  • the utility model solves the problem that the power supply circuit is automatically selected by the diode in the related art.
  • the external power supply cannot be preferably selected to save the battery energy, and the battery can not get the timely charging problem, so that the automatic control signal is not needed. Detecting the power supply status of the device enables smooth switching between the main power supply and the battery.
  • the power supply circuit of the load is switched to the standby power supply circuit, thereby achieving smooth switching between the main power source and the backup power source.
  • the switching speed of the power supply circuit of the load in the process of switching the power supply circuit of the load to the standby power supply circuit, the switching speed of the power supply circuit of the load can be adjusted.
  • the capacitance is set to adjust the switching speed, and the limitation is limited.
  • the excessively large instantaneous discharge current of the power supply protects the circuit.
  • the preferred embodiment of the present invention is implemented by: adjusting the switching speed between the standby power supply circuit and the main power supply circuit. Make adjustments.
  • a preferred embodiment of the present invention provides a battery switching circuit suitable for a terminal and a handheld device; the preferred embodiment of the present invention aims to realize power supply to the load by the main power source and charging of the backup power battery by simply disposing the device. At the same time, when the main power supply is powered off, it can smoothly switch to the backup power battery.
  • the switching circuit includes: a main power supply 502, a detection circuit 504, a backup power supply 506, a bidirectional switch circuit 508, and an isolation circuit 510. .
  • the main power supply circuit includes a diode that supplies power to the load through the diode's one-way conduction characteristic;
  • the main power detection circuit including the resistor and the dual triode, controls the turn-on and turn-off of the dual triode by detecting the state of the main power source.
  • the charging and discharging of the backup power supply are switched by the bidirectional switching circuit (including the P-channel MOS transistor and the resistor and the capacitor), and the bidirectional switching circuit is controlled by the main power detecting circuit.
  • the main power When the main power is normal, the standby power supply passes through the PMOSFET.
  • the body diode is in a state of charge, and when the main power source is abnormal, the backup power supply powers the load through the PMOSFET.
  • the detection circuit When there is a main power supply (adapter), the detection circuit automatically detects and selects the direction of the bidirectional switch so that the main power supply supplies power to the load while charging the battery.
  • the main power (adapter) power supply When the main power (adapter) power supply is abnormal or suddenly powers down, the detection circuit automatically detects and selects the direction of the bidirectional switch, and the load is automatically switched to be powered by the battery.
  • the main power detection circuit can be a dual triode or a dual MOSFET.
  • FIG. 6 is a schematic diagram of a preferred connection between a main power supply and a battery switching circuit in accordance with a preferred embodiment of the present invention.
  • the circuit principle of a preferred embodiment of the present invention will be described with reference to FIG.
  • Step 1 When there is main power (adapter), the adapter (ADAPTER) outputs POWER_IN through diode VD2 to supply power to the rear stage load;
  • the second step ADAPTER divides the voltage of R3 and R5, so that the lower triode of VT1 is turned on and the upper triode is turned off. There is no voltage between G and S of VT2, VT2 is cut off, and battery BAT+ cannot supply power to the rear stage load;
  • the third step ADAPTER charges the battery BAT+ through the body diodes of the diodes VD2 and VT2;
  • Step 4 When the main power (adapter) voltage is too low or suddenly power down, the lower triode of VT1 is turned off, BAT+ turns on the upper triode of VT1 through R1 and R2, and there is negative pressure between G and S of VT2. C2 adjusts the turn-on speed of VT2, and BAT+ supplies POWER_IN to the downstream load through VT2.
  • FIG. 7 is a schematic diagram of a preferred connection between a main power supply and a battery switching circuit according to a preferred embodiment of the present invention. As shown in FIG. 7, the VT1 dual triode in the first embodiment is changed to a dual MOSFET. Since the dual triode and the dual MOSFET operate similarly, I will not repeat them here.
  • the simple discrete device is used to realize the power supply of the main power source to the load and the charging of the standby power battery, and at the same time, when the main power source is powered off, the battery can be smoothly switched to the standby power battery to solve the problem.
  • the power supply circuit is automatically selected by the diode.
  • the external power supply cannot be preferably selected to save the battery energy, and the battery cannot obtain the problem of timely charging.
  • the preferred embodiment of the present invention includes the following effects: 1. Smooth switching of the main power source and the battery is realized, the device is small, the cost is low, and the implementation is easy; 2. When the main power source is normal, the main power source can be preferentially selected. Power supply to save battery energy, and by changing the parameters, you can set the voltage value when the main power supply is switched to the battery, that is, the battery power is automatically switched only when the main power supply voltage is below the set threshold; 3. The battery can be online. Charge and discharge; 4, set the switching speed to set the switching speed, while limiting the battery's excessive instantaneous discharge current; 5, no need for external control signals, automatically detect the power supply status of the device.
  • the technical solution provided by the embodiment of the present invention can be applied to a power switching process.
  • the power supply circuit can be automatically selected by the diode in the related art.
  • the external power source is normal, the external power supply cannot be selected to save the battery energy, and the battery cannot be charged in time. Therefore, the power supply state of the device is automatically detected without an external control signal, and smooth switching between the main power source and the battery is realized.

Landscapes

  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Stand-By Power Supply Arrangements (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种电源切换方法及装置、手持终端。该装置包括:检测电路(28)电连接于主电源和双向开关电路(26)之间;双向开关电路连接于备用电源与负载之间;检测电路设置为检测主电源供电电路的工作状态,在工作状态正常时,产生第一控制信号;双向开关电路接收第一控制信号,导通主电源供电电路(22)与备用电源供电电路(24)之间的第一通路,并关闭备用电源供电电路与负载之间的第二通路。

Description

电源切换方法及装置、手持终端 技术领域
本发明涉及分电力领域,具体而言,涉及一种电源切换方法及装置、手持终端。
背景技术
现有技术中的终端设备,特别是手持设备通过都是带有内置可充电电池,在外部电源出现异常或者掉电时,需要切换到由电池给设备供电,而在切换的过程中,应该实现电池的无缝平滑供电,而实现这一功能往往需要大量的检测器件和复杂电路,这对于成本要求很高的终端设备往往不切实际。图1是现有相关技术中终端设备的供电的结构示意图,如图1所示,通过二极管的导通特性自动的选择供电回路,那么在外部电源正常时,就不能优先选择外部电源供电以保存电池能量,同时电池也不能够得到及时的充电,这一点也不利于电池的循环利用。
针对现有技术中通过二极管自动选择供电回路,在外部电源正常时,不能优选选择外部电源供电以保存电池能量,同时电池也不能够得到及时的充电的问题,目前尚未提出有效的解决方案。
发明内容
本发明实施例的主要目的在于提供一种电源切换方法及装置、手持终端,以解决现有技术中通过二极管自动选择供电回路,在外部电源正常时,不能优选选择外部电源供电以保存电池能量,同时电池也不能够得到及时的充电的问题。
为了实现上述目的,根据本发明的一个实施例,提供了一种电源切换装置,包括:主电源供电电路、备用电源供电电路、双向开关电路、检测电路;所述检测电路电连接于所述主电源供电电路和所述双向开关电路之间;所述双向开关电路连接于所述备用电源供电电路与负载之间;所述检测电路,设置为检测所述主电源供电电路的工作状态,在所述工作状态正常时,产生第一控制信号;所述双向开关电路,接收所述第一控制信号,并在所述第一控制信号的触发下,导通所述主电源供电电路与所述备用电源供电电路之间的第一通路,并关闭所述备用电源供电电路与所述负载之间的第二通路;其中,所述第一通路用于为所述主电源供电电路对所述备用电源供电电路进行充电提供通路,所述第二通路用于为所述备用电源供电电路对所述负载进行供电提供通路。
优选地,所述检测电路,还设置为在检测到所述工作状态异常时,产生第二控制信号;所述双向开关电路,接收所述第二控制信号,并在所述第二控制信号的触发下,导通所述第二通路,并将所述负载的供电通路由所述第一通路切换至所述第二通路。
优选地,还包括:调节电路,设置于所述双向开关电路和所述备用电源供电电路之间,设置为调节所述负载的供电通路的切换速度。
优选地,所述调节电路包括:可调电容。
优选地,所述双向开关电路,包括以下之一:双三极管、双金氧半场效应晶体管MOSFET。
根据本发明另一个实施例,提供了一种手持终端,包括:电源切换装置,所述电源切换装置为本发明电源切换装置中任一项所述的电源切换装置。
根据本发明的另一个实施例,提供了一种电源切换方法,用于对终端中的主电源供电通路和备用电源供电电路进行切换,包括:检测所述主电源供电电路的工作状态;在所述工作状态正常时,采用所述主电源供电电路为所述终端中的负载进行供电,并对所述备用电源供电电路进行充电。
优选地,还包括:在所述工作状态异常时,将所述负载的供电电路切换至所述备用电源供电电路。
优选地,将所述负载的供电电路切换至所述备用电源供电电路的过程中,所述方法还包括:对所述负载的供电电路的切换速度进行调节。
优选地,对所述负载的供电电路的切换速度进行调节包括:通过设置在所述备用电源供电电路和所述主电源供电电路之间的可调电容对所述切换速度进行调节。
通过本发明实施例,采用检测电路电连接于主电源和双向开关电路之间;双向开关电路连接于备电源与负载之间;检测电路,设置为检测主电源供电电路的工作状态,在工作状态正常时,产生第一控制信号;双向开关电路,接收第一控制信号,并在第一控制信号的触发下,导通主电源供电电路与备用电源供电电路之间的第一通路,并关闭备用电源供电电路与负载之间的第二通路;其中,第一通路用于为主用供电电路对备用电源供电电路进行充电提供通路,第二通路用于为备用电源供电电路对负载进行供电提供通路。解决了相关技术中通过二极管自动选择供电回路,在外部电源正常时,不能优选选择外部电源供电以保存电池能量,同时电池也不能够得到及时的充电 的问题,从而在无需外部控制信号下,自动检测设备的供电状态,实现了主电源和电池的平滑切换。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是现有相关技术中终端设备的供电的结构示意图;
图2是根据本发明实施例的电源切换装置的结构示意图;
图3是根据本发明实施例的电源切换装置的优选结构示意图;
图4是根据本发明实施例的电源切换方法的流程示意图;
图5是本发明优选实施例的主电源与电池切换电路的结构示意图;
图6是根据本发明优选实施例的主电源与电池切换电路优选连接示意图一;
图7是根据本发明优选实施例的主电源与电池切换电路优选连接示意图二。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行,并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
本实施例提供了一种电源切换装置,图2是根据本发明实施例的电源切换装置的结构示意图,如图2所示,该装置包括:主电源供电电路22、备用电源供电电路24、双向开关电路26、检测电路28;
所述检测电路28电连接于所述主电源供电电路22和所述双向开关电路26之间;所述双向开关电路26连接于所述备电源供电电路24与负载之间;
所述检测电路28,设置为检测所述主电源供电电路22的工作状态,在所述工作状态正常时,产生第一控制信号;
所述双向开关电路26,接收所述第一控制信号,并在所述第一控制信号的触发下,导通所述主电源供电电路22与备用电源供电电路24之间的第一通路,并关闭所述备用电源供电电路24与所述负载之间的第二通路;其中,所述第一通路用于为所述主电源供电电路22对所述备用电源供电电路24进行充电提供通路,所述第二通路用于为所述备用电源供电电路24对所述负载进行供电提供通路。
通过上述本发明实施例,采用检测电路28检测主电源供电电路的工作状态,在所述工作状态正常时,发送第一控制信号给双向开关电路26,在第一控制信号的触发下,导通主电源供电电路22与备用电源供电电路24之间的第一通路,并关闭备用电源供电电路24与负载之间的第二通路;其中,第一通路用于为主电源供电电路22对备用电源供电电路24进行充电提供通路,第二通路用于为备用电源供电电路24对负载进行供电提供通路。解决了相关技术中通过二极管自动选择供电回路,在外部电源正常时,不能优选选择外部电源供电以保存电池能量,同时电池也不能够得到及时的充电的问题,从而在无需外部控制信号下,自动检测设备的供电状态,实现了主电源和电池的平滑切换。
本发明实施例中检测电路28作用有多种,在本发明的另一个优选实施例中检测电路28在还设置为在检测到工作状态异常时,产生第二控制信号给双向开关电路26,在第二控制信号的触发下,导通第二通路,并将负载的供电通路由第一通路切换至第二通路。
图3是根据本发明实施例的电源切换装置的优选结构示意图,如图3所示,该装置除了包括图2所示的电路之外,还包括:调节电路32,设置于双向开关电路和备用电源供电电路之间,设置为调节负载的供电通路的切换速度。
在本发明实施例中,调节电路32的形式有多种,其中最优选的为可调电容。
此外,针对本发明实施例中的双向开关有多种,例如双三极管、双金氧半场效应晶体管MOSFET。需要说明的上述两种晶体管只是本发明的优选实施例,并不对本发明造成限制,只要能实现双向开关的作用的电子元器件都是包括其中的。
本发明实施例还提供了一种手持终端,该手持包括上述实施例中的电源切换装置,以及该电源切换装置的任一种优选的方式。
本发明实施例还提供了一种电源切换的方法,图4是根据本发明实施例的电源切换方法的流程示意图,如图4所示,该方法包括如下步骤:
步骤S402:检测主电源供电电路的工作状态;
步骤S404:在工作状态正常时,采用主电源供电电路为终端中的负载进行供电,并对备用电源供电电路进行充电。
通过本发明实施例的上述实施方式,采用检测主电源供电电路的工作状态,在工作状态正常时,采用主电源供电电路为终端中的负载进行供电,并对备用电源供电电路进行充电。解决了相关技术中通过二极管自动选择供电回路,在外部电源正常时,不能优选选择外部电源供电以保存电池能量,同时电池也不能够得到及时的充电的问题,从而在无需外部控制信号下,自动检测设备的供电状态,实现了主电源和电池的平滑切换。
本发明实施中的另一种应用场景中,在工作状态异常时,将负载的供电电路切换至备用电源供电电路,进而实现了主电源和备用供电电源之间的平滑切换。
在本发明实施例中,在将负载的供电电路切换至备用电源供电电路的过程中,可以对负载的供电电路的切换速度进行调节,通过上述方式,设置电容大小来调节切换速度,同时限制了电源过大的瞬时放电电流实现了对电路的保护。需要说明的是,本发明实施例中对切换速度实现调节方式有多种,本发明优选实施例通过以下方式实现:设置在备用电源供电电路和主电源供电电路之间的可调电容对切换速度进行调节。
下面结合本发明优选实施例对本发明进行举例说明。
本发明优选实施例提供了一种适用于终端和手持设备的电池切换电路;本发明优选实施例的目的在于,通过简单分立器件,来实现主电源对负载的供电以及对备电源电池的充电,同时在主电源掉电时,能够平滑的切换到备电源电池供电。
图5是本发明优选实施例的主电源与电池切换电路的结构示意图;如图5所示,该切换电路包括:主电源502、检测电路504、备电源506、双向开关电路508以及隔离电路510。
主电源供电电路包括一个二极管,通过二极管的单向导通特性,给负载进行供电;
主电源检测电路,包括电阻和双三极管,通过检测主电源的状态控制双三极管的导通和截止。
备电源的充电和放电都是通过双向开关电路(包括P沟道MOS管和电阻、电容)进行切换的,而双向开关电路是由主电源检测电路控制,当主电源正常时,备电源通过PMOSFET的体二极管处于充电状态,当主电源异常时,备电源通过PMOSFET对负载进行供电。
当存在主电源(适配器)时,检测电路自动检测并选择双向开关的方向,使得主电源给负载供电,同时给电池进行充电。当主电源(适配器)供电异常或者突然掉电时,检测电路自动检测并选择双向开关的方向,负载自动切换到由电池供电。该主电源检测电路可以是双三极管、双MOSFET。
下面结合实施例一和实施例二对本发明优选实施例进行详细的说明。
实施例一
下面我们以双三极管为例介绍介绍本发明优选实施例。图6是根据本发明优选实施例的主电源与电池切换电路优选连接示意图一,结合图6对本发明优选实施例的电路原理进行说明。
第一步:当存在主电源(适配器)时,适配器(ADAPTER)通过二极管VD2输出POWER_IN给后级负载供电;
第二步:ADAPTER通过R3和R5分压,使得VT1的下三极管导通、上三极管截止,VT2的G、S之间没有电压,VT2截止,电池BAT+不能对后级负载供电;
第三步:ADAPTER通过二极管VD2和VT2的体二极管给电池BAT+充电;
第四步:当主电源(适配器)电压过低或者突然掉电时,VT1的下三极管截止,BAT+通过R1和R2使得VT1的上三极管导通,VT2的G、S之间存在负压,通过调节C2来调节VT2的开通速度,BAT+通过VT2输出POWER_IN给后级负载供电。
实施例二
图7是根据本发明优选实施例的主电源与电池切换电路优选连接示意图二,如图7所示,将实例一中的VT1双三极管改为双MOSFET,由于双三极管与双MOSFET工作原理类似,在此不再赘述。
通过本发明优选实施例,采用简单分立器件,实现了主电源对负载的供电以及对备电源电池的充电,同时在主电源掉电时,能够平滑的切换到备电源电池供电,解决 了相关技术中通过二极管自动选择供电回路,在外部电源正常时,不能优选选择外部电源供电以保存电池能量,同时电池也不能够得到及时的充电的问题。
与现有相关技术相比较,本发明优选实施例的包括以下效果:1、实现主电源和电池的平滑切换,器件少,成本低,易于实现;2、主电源正常时,能够优先选择主电源供电以保存电池能量,同时通过改变参数,可以设置主电源切换到电池时的电压值,即只有在主电源电压在设定的阀值以下时,才自动切换到电池供电;3、电池能够在线进行充电和放电;4、通过设置电容大小来设置切换速度,同时限制电池过大的瞬时放电电流;5、无需外部控制信号,自动检测设备的供电状态。
以上仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
本发明实施例提供的技术方案,可以应用于电源切换过程中。基于本发明实施例提供的技术方案,可以解决相关技术中通过二极管自动选择供电回路,在外部电源正常时,不能优选选择外部电源供电以保存电池能量,同时电池也不能够得到及时的充电的问题,从而在无需外部控制信号下,自动检测设备的供电状态,实现了主电源和电池的平滑切换。

Claims (10)

  1. 一种电源切换装置,包括:主电源供电电路、备用电源供电电路、双向开关电路、检测电路;
    所述检测电路电连接于所述主电源供电电路和所述双向开关电路之间;所述双向开关电路连接于所述备用电源供电电路与负载之间;
    所述检测电路,设置为检测所述主电源供电电路的工作状态,在所述工作状态正常时,产生第一控制信号;
    所述双向开关电路,接收所述第一控制信号,并在所述第一控制信号的触发下,导通所述主电源供电电路与所述备用电源供电电路之间的第一通路,并关闭所述备用电源供电电路与所述负载之间的第二通路;其中,所述第一通路用于为所述主电源供电电路对所述备用电源供电电路进行充电提供通路,所述第二通路用于为所述备用电源供电电路对所述负载进行供电提供通路。
  2. 根据权利要求1所述的装置,其中,
    所述检测电路,还设置为在检测到所述工作状态异常时,产生第二控制信号;
    所述双向开关电路,接收所述第二控制信号,并在所述第二控制信号的触发下,导通所述第二通路,并将所述负载的供电通路由所述第一通路切换至所述第二通路。
  3. 根据权利要求2所述的装置,其中,还包括:
    调节电路,设置于所述双向开关电路和所述备用电源供电电路之间,设置为调节所述负载的供电通路的切换速度。
  4. 根据权利要求3所述的装置,其中,所述调节电路,包括:可调电容。
  5. 根据权利要求1至4中任一项所述的装置,其中,所述双向开关电路,包括以下之一:
    双三极管、双金氧半场效应晶体管MOSFET。
  6. 一种手持终端,包括:电源切换装置,所述电源切换装置为权利要求1至5中任一项所述的电源切换装置。
  7. 一种电源切换方法,用于对终端中的主电源供电通路和备用电源供电电路进行切换,所述方法包括:
    检测所述主电源供电电路的工作状态;
    在所述工作状态正常时,采用所述主电源供电电路为所述终端中的负载进行供电,并对所述备用电源供电电路进行充电。
  8. 根据权利要求7所述的方法,其中,还包括:
    在所述工作状态异常时,将所述负载的供电电路切换至所述备用电源供电电路。
  9. 根据权利要求8所述的方法,其中,将所述负载的供电电路切换至所述备用电源供电电路的过程中,所述方法还包括:
    对所述负载的供电电路的切换速度进行调节。
  10. 根据权利要求8所述的方法,其中,对所述负载的供电电路的切换速度进行调节包括:
    通过设置在所述备用电源供电电路和所述主电源供电电路之间的可调电容对所述切换速度进行调节。
PCT/CN2014/092717 2014-09-29 2014-12-01 电源切换方法及装置、手持终端 WO2015131586A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410515762.5A CN105529816A (zh) 2014-09-29 2014-09-29 电源切换方法及装置、手持终端
CN201410515762.5 2014-09-29

Publications (1)

Publication Number Publication Date
WO2015131586A1 true WO2015131586A1 (zh) 2015-09-11

Family

ID=54054465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/092717 WO2015131586A1 (zh) 2014-09-29 2014-12-01 电源切换方法及装置、手持终端

Country Status (2)

Country Link
CN (1) CN105529816A (zh)
WO (1) WO2015131586A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109716610A (zh) * 2016-09-13 2019-05-03 赛峰集团 用于向飞行器中的电负载供电的方法和系统

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106648005A (zh) * 2016-11-29 2017-05-10 郑州云海信息技术有限公司 一种电源交替备用管理方法及系统
CN108683248B (zh) * 2018-05-28 2022-02-22 深圳市元征科技股份有限公司 供电电源切换电路及切换方法、供电设备
CN109245287A (zh) * 2018-10-29 2019-01-18 宁波耀泰电器有限公司 一种双电源供电自动切换电路
CN110571917A (zh) * 2019-09-30 2019-12-13 华勤通讯技术有限公司 一种切换控制电路与电子设备
CN110994774B (zh) * 2019-11-11 2022-03-08 广州亚美智造科技有限公司 电源切换电路
CN112383105A (zh) * 2020-11-06 2021-02-19 广东天波信息技术股份有限公司 智能设备的电池充放电切换电路及智能设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201570897U (zh) * 2009-12-16 2010-09-01 威胜集团有限公司 用于电子式电能表的双电源切换电路
CN202260606U (zh) * 2011-03-26 2012-05-30 佛山市宝星科技发展有限公司 一种不间断电源
CN102810905A (zh) * 2011-05-31 2012-12-05 Ls产电株式会社 能源管理装置和包括其的能源管理系统以及能源管理方法
CN202798123U (zh) * 2012-08-30 2013-03-13 湖南丰日电源电气股份有限公司 一种交直流不间断电源装置
CN202957657U (zh) * 2012-12-26 2013-05-29 深圳市伊爱高新技术开发有限公司 车载gps终端备用电池切换保护电路
TW201347357A (zh) * 2012-05-07 2013-11-16 Asustek Comp Inc 電子裝置的電源供應系統及其電源供應方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040145348A1 (en) * 2000-09-21 2004-07-29 Constantin Bucur Power management topologies
CN100471005C (zh) * 2003-09-29 2009-03-18 华为技术有限公司 备用电源的切换方法和装置
KR100630933B1 (ko) * 2005-04-15 2006-10-02 삼성전자주식회사 외부전원의 공급 여부에 따라 디스플레이부로의 전원 공급경로가 변하는 전자장치
CN202009263U (zh) * 2010-10-14 2011-10-12 黄冬来 一种三路电源自动切换模块
CN202134955U (zh) * 2011-08-02 2012-02-01 长沙威胜信息技术有限公司 远程抄表终端供电电路
CN102831920B (zh) * 2012-07-22 2014-11-12 北京忆恒创源科技有限公司 供电电路与供电方法
CN103001315B (zh) * 2012-12-26 2016-12-28 上海斐讯数据通信技术有限公司 一种电源切换电路
JP6135333B2 (ja) * 2013-06-28 2017-05-31 ソニー株式会社 電源切替回路、電子機器および電源切替回路の制御方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201570897U (zh) * 2009-12-16 2010-09-01 威胜集团有限公司 用于电子式电能表的双电源切换电路
CN202260606U (zh) * 2011-03-26 2012-05-30 佛山市宝星科技发展有限公司 一种不间断电源
CN102810905A (zh) * 2011-05-31 2012-12-05 Ls产电株式会社 能源管理装置和包括其的能源管理系统以及能源管理方法
TW201347357A (zh) * 2012-05-07 2013-11-16 Asustek Comp Inc 電子裝置的電源供應系統及其電源供應方法
CN202798123U (zh) * 2012-08-30 2013-03-13 湖南丰日电源电气股份有限公司 一种交直流不间断电源装置
CN202957657U (zh) * 2012-12-26 2013-05-29 深圳市伊爱高新技术开发有限公司 车载gps终端备用电池切换保护电路

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109716610A (zh) * 2016-09-13 2019-05-03 赛峰集团 用于向飞行器中的电负载供电的方法和系统
CN109716610B (zh) * 2016-09-13 2023-10-27 赛峰集团 用于向飞行器中的电负载供电的方法和系统

Also Published As

Publication number Publication date
CN105529816A (zh) 2016-04-27

Similar Documents

Publication Publication Date Title
WO2015131586A1 (zh) 电源切换方法及装置、手持终端
JP6797291B2 (ja) 充電回路、端末、及び充電システム
US11108246B2 (en) Charging system and charging circuit thereof
US20180115176A1 (en) Battery power supply circuit
US10734826B2 (en) Power supply including bi-directional DC converter and control method thereof
PH12016501485A1 (en) Electronic device and power adapter
US8653795B2 (en) Charger circuit
JP2008178196A5 (zh)
US8907635B2 (en) Charging circuit and charging method employing the same
WO2015003541A1 (zh) 一种外部电源和电池供电的电源切换电路及切换方法
EP3806274A3 (en) Charging integrated circuit and operating method
WO2015135254A1 (zh) 一种电源控制装置及方法
TWM519348U (zh) 電源供應系統
US20140347004A1 (en) Charging control circuit and electronic device with the same
TW201624869A (zh) 電池電源裝置
KR101282355B1 (ko) 배터리 전류 제어 장치 및 방법
WO2019054851A3 (ko) 배터리 상태를 기반으로 충전을 제어하는 방법 및 장치
US8638067B2 (en) Cold end switch battery management control method
US9954431B2 (en) Starting circuit of power management chip, and power management chip
CN109393573B (zh) 电子烟控制系统
KR102524898B1 (ko) 충방전 제어 회로 및 배터리 장치
JP2011229279A5 (zh)
WO2017043297A1 (ja) 制御装置
US9705322B2 (en) DC power supply control system and circuit
US10305302B2 (en) Apparatus for controlling power mode of battery pack

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14884677

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14884677

Country of ref document: EP

Kind code of ref document: A1