WO2015131563A1 - Procédé de commande de démarrage instantané d'un convertisseur de fréquence - Google Patents
Procédé de commande de démarrage instantané d'un convertisseur de fréquence Download PDFInfo
- Publication number
- WO2015131563A1 WO2015131563A1 PCT/CN2014/092080 CN2014092080W WO2015131563A1 WO 2015131563 A1 WO2015131563 A1 WO 2015131563A1 CN 2014092080 W CN2014092080 W CN 2014092080W WO 2015131563 A1 WO2015131563 A1 WO 2015131563A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- frequency
- voltage
- square wave
- inverter
- frequency converter
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 57
- 238000005070 sampling Methods 0.000 claims abstract description 37
- 238000012545 processing Methods 0.000 claims abstract description 20
- 238000007493 shaping process Methods 0.000 claims abstract description 12
- 230000000630 rising effect Effects 0.000 claims description 22
- 230000003321 amplification Effects 0.000 claims description 19
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 19
- 230000005284 excitation Effects 0.000 claims description 13
- 230000008569 process Effects 0.000 claims description 13
- 230000003137 locomotive effect Effects 0.000 claims 2
- 238000004364 calculation method Methods 0.000 abstract description 5
- 230000011664 signaling Effects 0.000 abstract 1
- 238000001514 detection method Methods 0.000 description 5
- 230000001133 acceleration Effects 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000002620 method output Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000012850 discrimination method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P27/00—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
- H02P27/04—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
- H02P27/047—V/F converter, wherein the voltage is controlled proportionally with the frequency
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P1/00—Arrangements for starting electric motors or dynamo-electric converters
- H02P1/02—Details of starting control
- H02P1/029—Restarting, e.g. after power failure
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/36—Means for starting or stopping converters
Definitions
- the above-mentioned inverter flying start control method outputs the line voltage of the inverter and performs corresponding processing to output to the digital signal processor. Then, the sampling software hysteresis method is used to shape the positive voltage to obtain a square wave voltage signal. Then calculate the frequency of the square wave voltage signal, and control the starting mode of the frequency converter according to the frequency of the square wave voltage signal. Specifically, when the frequency of the square wave voltage signal is greater than or 1 Hz, the inverter is in a rotating state. Therefore, the inverter is controlled to start at the current frequency to avoid damage to the inverter and the load caused by the inverter rotating or inconsistent with the current rotation frequency. . Moreover, the calculation method of the above-mentioned inverter flying start control method is simple and quick, and the flying start control of the frequency converter can be completed without a complicated algorithm.
- 1 is a flow chart of a method for starting and controlling a frequency converter
- the step of sampling the inverter line voltage includes sampling two voltages on the inverter line voltage.
- Diode group D5 includes two diodes connected in series, the anodes of the two series connected diodes are grounded, and the negative pole is connected to a 3.3V power supply.
- the common connection point of the two diodes connected in series is connected to the other output of the circuit for sampling the inverter line voltage.
- Diode group D5 is connected to the branch where amplifier U2 is located.
- the inverter flying start control method further comprises comparing the maximum value of the sampling line voltage with a small amplification factor to the threshold value A after amplifying the two voltages by using two kinds of amplification operational amplifiers;
- the sampling line voltage with a large amplification factor is output to the pull-up circuit
- the sampling line voltage having a small amplification factor is output to the pull-up circuit.
- U phase voltage is connected by voltage dividing resistor R1
- U phase and V phase voltage are amplified by amplifier U1 and amplifier U2
- R6 10 * R4
- two different amplification circuits are introduced to improve the sampling accuracy of the output line voltage.
- the output of amplifier U1 is processed by a voltage dividing resistor R11 and a voltage dividing resistor R12 and a 3.3V pull-up circuit to process the voltage into a positive voltage suitable for DSP processing. After being passed through two clamp diodes D4, it is directly sent to the DSP.
- the AD port UVad1 the same amplifier U2 output through the voltage divider resistor R13 and voltage divider resistor R14 and 3.3V pull-up circuit, the voltage is processed into a positive voltage for DSP processing. After being passed through two clamp diodes D5, it is directly sent to the DSP.
- UVad1 is the AD voltage with low amplification factor after low-pass filtering and zero-bias processing
- UVad2 is amplified after low-pass filtering and zero-bias processing.
- the threshold A is typically 40V.
- step S120 a positive voltage output to the digital signal processor is shaped by a software hysteresis method to obtain a square wave voltage signal.
- the positive voltage of the digital signal processor is shaped to a low level.
- the processed waveform is shown in Figure 3, where B is typically 5V.
- Step S130 calculating a frequency of the square wave voltage signal, and determining whether a frequency of the square wave voltage signal is less than 1 Hz.
- the step of calculating the frequency of the square wave voltage signal includes:
- the reciprocal of the time between the rising edges of the high-level square wave voltage signal is counted as the frequency of the square wave voltage signal.
- the frequency calculation method of each square wave voltage signal after shaping is: time between rising edges of high level.
- the phase discrimination method is when one of the square waves is on a rising edge and the other is a high level.
- the UV line voltage is shaped to the rising edge of the rear wave voltage
- the motor rotation direction is considered to be counterclockwise, and the motor rotation direction is clockwise.
- the UW line voltage is shaping the rising edge voltage of the rear wave voltage
- the square wave voltage after the UV line voltage shaping is high level
- the motor rotation direction is considered to be counterclockwise, and the motor rotation direction is clockwise.
- the calculated frequency is considered to be a valid value when the following three conditions are met, otherwise recalculation is required.
- the steps of determining whether the frequency of the square wave voltage signal is valid include:
- the UW phase has two rising edges, and the frequency of each of the UV phase and the UW phase is less than 400 Hz.
- the frequency is calculated by selecting the two closest frequencies and averaging the two as the effective frequency.
- the phase detection is the UW square wave level after shaping after the second rising edge of the UV square wave after shaping. If the UW is low after shaping, the motor rotation direction is counterclockwise, and the motor rotation direction is clockwise. In the same way, the judgment of the first action of the rising edge of the UW phase can be obtained.
- the frequency calculated above is less than 1 Hz or the square wave level change is not detected for a certain period of time according to the above method, it is considered that no valid voltage signal is detected.
- a rotation frequency of frequency W is applied.
- the output voltage is obtained by PI regulation, and the given current is the rated current of the motor.
- the inverter stops outputting. Steps 110-130 are repeated; if the valid signal has not been detected, the excitation process is re-executed.
- the steps of energizing the frequency converter further include:
- step 110-step is repeated. 130; If the valid signal has not been detected, the motor is considered to be at zero speed and is started directly.
- Step S140 if yes, it is considered that the inverter processes the zero speed state and directly starts; if otherwise, the inverter is started according to the current frequency of the inverter.
- the inverter When the searched frequency is considered to be non-zero value; after the inverter starts from the search to the current frequency, the inverter starts at this frequency, and the output voltage accelerates to the voltage corresponding to the VF curve according to a certain slope; further, during the transition process
- the acceleration slope is closely related to the detected current. When the detected current is less than 1/3 of the rated motor current, the acceleration slope is twice the normal value, and the other values are normal acceleration. After this treatment, it is possible to ensure that the motor completes the transition process in a faster time and ensures the normal output of the motor current.
- the typical current waveform is shown in Figure 5 and Figure 6. It can be seen that the current waveform is smooth, and the motor running frequency before parking can be quickly searched.
- the waveform of Figure 5 requires an excitation waveform, and Figure 6 shows the waveform of the excitation.
- Figure 7 shows the direct start current waveform without the start of the coaster. As can be seen from Figure 7, the inverter current gradually increases until overcurrent protection.
- the above-mentioned inverter flying start control method outputs the line voltage of the inverter and performs corresponding processing to output to the digital signal processor. Then, the sampling software hysteresis method is used to shape the positive voltage to obtain a square wave voltage signal. Then calculate the frequency of the square wave voltage signal, and control the starting mode of the frequency converter according to the frequency of the square wave voltage signal. Specifically, when the frequency of the square wave voltage signal is greater than or 1 Hz, the inverter is in a rotating state. Therefore, the inverter is controlled to start at the current frequency to avoid damage to the inverter and the load caused by the inverter rotating or inconsistent with the current rotation frequency. . Moreover, the calculation method of the above-mentioned inverter flying start control method is simple and quick, and the flying start control of the frequency converter can be completed without a complicated algorithm.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Ac Motors In General (AREA)
Abstract
La présente invention concerne un procédé de commande du démarrage instantané d'un convertisseur de fréquence, qui comprend les étapes consistant à : échantillonner une tension de ligne d'un convertisseur de fréquence et la transformer en une tension positive, puis la délivrer à un processeur (110) de signal numérique; mettre en forme la tension positive à l'aide d'un procédé d'hystérésis par logiciel afin d'obtenir un signal (120) de tension d'onde carrée; et calculer la fréquence du signal de tension d'onde carrée et commander un mode de démarrage du convertisseur de fréquence selon la fréquence du signal de tension d'onde carrée. Lorsque la fréquence du signal de tension d'onde carrée est supérieure ou égale à 1 Hz, le convertisseur de fréquence est dans un état rotatif. Ainsi, le convertisseur de fréquence est commandé pour démarrer à la fréquence du courant, ce qui permet d'empêcher le convertisseur de fréquence de tourner en sens inverse et d'empêcher des dommages au convertisseur de fréquence et une charge due au fait que la fréquence du convertisseur de fréquence est incompatible avec la fréquence de rotation du courant. Le procédé de calcul pour le procédé de commande de démarrage instantané d'un convertisseur de fréquence est simple, pratique et rapide.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410079831.2 | 2014-03-05 | ||
CN201410079831.2A CN103916000B (zh) | 2014-03-05 | 2014-03-05 | 变频器飞车启动控制方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015131563A1 true WO2015131563A1 (fr) | 2015-09-11 |
Family
ID=51041459
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2014/092080 WO2015131563A1 (fr) | 2014-03-05 | 2014-11-24 | Procédé de commande de démarrage instantané d'un convertisseur de fréquence |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN103916000B (fr) |
WO (1) | WO2015131563A1 (fr) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108562803A (zh) * | 2018-06-27 | 2018-09-21 | 优利德科技(中国)股份有限公司 | 一种检测三相电源相序的万用表及方法 |
CN112737462A (zh) * | 2020-12-30 | 2021-04-30 | 杭州士兰微电子股份有限公司 | 永磁同步电机初始状态的辨识方法及装置 |
CN113188754A (zh) * | 2021-04-30 | 2021-07-30 | 沈阳航空航天大学 | 一种水平轴风力机气动性能实验中叶轮飞车控制方法 |
CN117856683A (zh) * | 2024-03-04 | 2024-04-09 | 致瞻科技(上海)有限公司 | 一种异步电机飞车启动控制方法 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103916000B (zh) * | 2014-03-05 | 2017-01-04 | 深圳市海浦蒙特科技有限公司 | 变频器飞车启动控制方法 |
CN104868771A (zh) * | 2015-04-03 | 2015-08-26 | 浙江新富凌电气股份有限公司 | 一种分子泵变频器控制系统 |
CN106200458A (zh) * | 2016-06-29 | 2016-12-07 | 韩伟 | 一种简单易用的电机飞车启动实现方法和系统 |
CN109660179B (zh) * | 2018-12-29 | 2021-04-06 | 西安西驰电气股份有限公司 | 一种变频器检速启动方法 |
CN115441802B (zh) * | 2022-09-06 | 2023-12-01 | 江苏新安电器股份有限公司 | 一种电机顺逆风检测启动的软件方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN85107282A (zh) * | 1985-09-30 | 1987-04-15 | 株式会社日立制作所 | 控制感应电动机的方法和装置 |
US5905348A (en) * | 1995-06-06 | 1999-05-18 | Sl Montevideo Technology, Inc. | Powering and control of a brushless DC motor |
US5973465A (en) * | 1998-04-28 | 1999-10-26 | Toshiba International Corporation | Automotive restart control for submersible pump |
CN101331677A (zh) * | 2005-12-16 | 2008-12-24 | 丰田自动车株式会社 | 电机驱动系统中的升压变压器的控制装置和相应的控制方法 |
US20090091133A1 (en) * | 2007-10-04 | 2009-04-09 | Hamilton Sundstrand Corporation | Method to re-engage start of dynamoelectric machine |
CN103916000A (zh) * | 2014-03-05 | 2014-07-09 | 深圳市海浦蒙特科技有限公司 | 变频器飞车启动控制方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100411296C (zh) * | 2005-06-30 | 2008-08-13 | 东方日立(成都)电控设备有限公司 | 变频调速系统瞬间掉电再起动方法及装置 |
EP2017951B1 (fr) * | 2007-06-18 | 2019-02-13 | Vacon Oy | Commande de redémarrage pour entraînement de moteur CA |
CN103580453B (zh) * | 2013-11-15 | 2016-08-17 | 深圳市易驱电气有限公司 | 一种具有转速追踪功能的变频器及应用其的转速追踪方法 |
-
2014
- 2014-03-05 CN CN201410079831.2A patent/CN103916000B/zh active Active
- 2014-11-24 WO PCT/CN2014/092080 patent/WO2015131563A1/fr active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN85107282A (zh) * | 1985-09-30 | 1987-04-15 | 株式会社日立制作所 | 控制感应电动机的方法和装置 |
US5905348A (en) * | 1995-06-06 | 1999-05-18 | Sl Montevideo Technology, Inc. | Powering and control of a brushless DC motor |
US5973465A (en) * | 1998-04-28 | 1999-10-26 | Toshiba International Corporation | Automotive restart control for submersible pump |
CN101331677A (zh) * | 2005-12-16 | 2008-12-24 | 丰田自动车株式会社 | 电机驱动系统中的升压变压器的控制装置和相应的控制方法 |
US20090091133A1 (en) * | 2007-10-04 | 2009-04-09 | Hamilton Sundstrand Corporation | Method to re-engage start of dynamoelectric machine |
CN103916000A (zh) * | 2014-03-05 | 2014-07-09 | 深圳市海浦蒙特科技有限公司 | 变频器飞车启动控制方法 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108562803A (zh) * | 2018-06-27 | 2018-09-21 | 优利德科技(中国)股份有限公司 | 一种检测三相电源相序的万用表及方法 |
CN112737462A (zh) * | 2020-12-30 | 2021-04-30 | 杭州士兰微电子股份有限公司 | 永磁同步电机初始状态的辨识方法及装置 |
CN112737462B (zh) * | 2020-12-30 | 2023-03-24 | 杭州士兰微电子股份有限公司 | 永磁同步电机初始状态的辨识方法及装置 |
CN113188754A (zh) * | 2021-04-30 | 2021-07-30 | 沈阳航空航天大学 | 一种水平轴风力机气动性能实验中叶轮飞车控制方法 |
CN113188754B (zh) * | 2021-04-30 | 2022-06-10 | 沈阳航空航天大学 | 一种水平轴风力机气动性能实验中叶轮飞车控制方法 |
CN117856683A (zh) * | 2024-03-04 | 2024-04-09 | 致瞻科技(上海)有限公司 | 一种异步电机飞车启动控制方法 |
CN117856683B (zh) * | 2024-03-04 | 2024-05-03 | 致瞻科技(上海)有限公司 | 一种异步电机飞车启动控制方法 |
Also Published As
Publication number | Publication date |
---|---|
CN103916000B (zh) | 2017-01-04 |
CN103916000A (zh) | 2014-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015131563A1 (fr) | Procédé de commande de démarrage instantané d'un convertisseur de fréquence | |
Li et al. | High-stability position-sensorless control method for brushless DC motors at low speed | |
Gong et al. | SM load torque observer-based FCS-MPDSC with single prediction horizon for high dynamics of surface-mounted PMSM | |
Matsui | Sensorless operation of brushless DC motor drives | |
WO2017061817A1 (fr) | Appareil d'entraînement de moteur et appareil ménager l'intégrant | |
US11165381B2 (en) | Speed contant control and power constant control of a permanent magnet synchronous motor | |
KR101191424B1 (ko) | 인버터 회로의 과전류 검출 장치 | |
CN102223059B (zh) | 一种电压源逆变器制动电路的控制方法及装置 | |
Jin et al. | A fast commutation error correction method for sensorless BLDC motor considering rapidly varying rotor speed | |
CN101741302A (zh) | 一种用于永磁无刷直流电机的转子位置检测方法 | |
WO2020105838A1 (fr) | Dispositif de commande d'onduleur | |
CN109347064B (zh) | 一种三相电流采样和过电流保护电路 | |
CN103001569B (zh) | 高压变频电机空转转速跟踪方法 | |
CN104079216B (zh) | 三相有传感器bldc电机驱动系统及其驱动方法 | |
CN112202369B (zh) | 单直流母线电流采样大惯量永磁同步电机带速重投方法 | |
WO2020242163A1 (fr) | Dispositif de détection de phase de tension de grille | |
WO2016187883A1 (fr) | Dispositif et procédé d'attaque de moteur, et moteur | |
CN207067370U (zh) | 磁传感器集成电路、电机组件及应用设备 | |
CN214380712U (zh) | 一种直流有刷电机驱动电路 | |
WO2020087753A1 (fr) | Procédé, appareil et système de commande d'entraînement d'un moteur électrique | |
US11637517B2 (en) | Method and device for estimating individual phase resistance of an electric motor | |
CN110635733B (zh) | 永磁同步电机高动态响应转矩电流控制方法 | |
CN114640291A (zh) | 一种异步电机短时停机转速跟踪启动方法 | |
US11146195B2 (en) | Fail-safe function for a permanent magnet synchronous motor | |
JP2004048840A (ja) | 電動機の制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14885045 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2016/15325 Country of ref document: TR |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14885045 Country of ref document: EP Kind code of ref document: A1 |