WO2015130190A1 - Устройство для обезвреживания органических отходов и сернистой нефти - Google Patents

Устройство для обезвреживания органических отходов и сернистой нефти Download PDF

Info

Publication number
WO2015130190A1
WO2015130190A1 PCT/RU2014/000193 RU2014000193W WO2015130190A1 WO 2015130190 A1 WO2015130190 A1 WO 2015130190A1 RU 2014000193 W RU2014000193 W RU 2014000193W WO 2015130190 A1 WO2015130190 A1 WO 2015130190A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
waste
reactor
fluidized bed
air
Prior art date
Application number
PCT/RU2014/000193
Other languages
English (en)
French (fr)
Inventor
Александр Дмитриевич СИМОНОВ
Николай Алексеевич ЯЗЫКОВ
Юрий Владимирович ДУБИНИН
Вадим Анатольевич ЯКОВЛЕВ
Валентин Николаевич ПАРМОН
Original Assignee
Общество с ограниченной ответственностью "Уникат"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Уникат" filed Critical Общество с ограниченной ответственностью "Уникат"
Publication of WO2015130190A1 publication Critical patent/WO2015130190A1/ru

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/01Fluidised bed combustion apparatus in a fluidised bed of catalytic particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/30Incineration of waste; Incinerator constructions; Details, accessories or control therefor having a fluidised bed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/008Incinerators or other apparatus for consuming industrial waste, e.g. chemicals for liquid waste

Definitions

  • a device for the disposal of organic waste and sulfur dioxide A device for the disposal of organic waste and sulfur dioxide.
  • the invention relates to a device for the disposal of liquid organic waste and sulphurous oil by flameless combustion in a fluidized bed of a catalyst and can be used in the chemical, petrochemical, wood chemical, nuclear industry and thermal power industry.
  • the proposed installation can be used for burning organic waste containing compounds of one of such elements as sulfur, fluorine, chlorine, phosphorus.
  • a known reactor for heat treatment of dispersed materials in a fluidized bed of catalyst (Boreskov GK Heterogeneous catalysis. - M .: Nauka. - 1988. - S. 294).
  • the reactor contains a catalytic oxidation zone of the fuel and a heat treatment zone of the dispersed material.
  • the zones in the reactor are not separated by partitions.
  • the disadvantages of this reactor are the decrease in catalyst activity due to catalyst poisoning when fluorine, chlorophosphorus, and sulfur-containing compounds get into the catalyst bed.
  • a device for burning waste containing phosphorus in a fluidized bed of chemisorbent (US 4359005, F23G7 / 00, 6.11.82).
  • the device includes a reactor, an external fuel source and means for supplying fuel to the reactor, means for supplying air to the reactor for maintaining a fluidized bed and combustion, an external source of waste and means for supplying waste containing phosphorus to the reactor, an external source and means for introducing into the reactor lime, limestone and / or slaked lime, means for heating and maintaining an elevated temperature of the fluidized bed, mainly from
  • the fluidized bed inside the reactor consists of lime, phosphorus-containing waste and inert calcium phosphate.
  • a heat exchanger a controlled supply of fuel, waste and air, as well as water injection, can be used.
  • the disadvantages of the known device include the difficulty of controlling the fluidized bed due to the variable particle size, in addition, the complete combustion of fuel and waste due to the short contact time is not ensured.
  • the description provides additional means for cleaning the exhaust gas (filters, adsorbers, scrubbers).
  • the installation includes: a gasification furnace with a 1 fluidized bed consisting of at least alkali metal oxide (CaO), means for supplying air to the fluidized bed, means for supplying chlorine-containing waste, means for removing unburned waste particles from the 1st fluidized bed thus, the waste is gasified and the resulting HC1 turns into salt; and - a fluidized bed combustion furnace connected at the bottom to the named gasification furnace in such a way that gases from the gasification of waste are supplied to it and having a second fluidized bed for burning these gases; said salt is discharged from the gasification furnace to the gas pressure combustion furnace; the combustion furnace is equipped with a nozzle for loading alkali metal carbonate (CaCO3), which forms the 2nd fluidized bed, with means for supplying air to the 2nd fluidized bed,
  • CaO alkali metal oxide
  • the disadvantages of the known device the difficulty of controlling the fluidized bed of a gasification furnace due to the small particle size of the chemisorbent, as well as the generation of secondary contaminants, for example, nitrogen oxides in the exhaust gases due to the oxidation of atmospheric nitrogen.
  • a known installation for the disposal of organic waste by fluidized bed burning (RU 2198024, A62D3 / 00, B01J8 / 18, 02/10/2003), containing two interconnected reactors equipped means for supplying air, air distribution grilles and partially filled with a layer of solid particles located misaligned, while the output of the first reactor is connected to the inlet of the second reactor, as well as means for supplying organic waste and means for introducing chemisorbent into at least one of the reactors, and also means for collecting and recycling solid particles, characterized in that the first reactor for burning fuel as solid particles is filled with a catalyst and equipped with means for supplying fuel and air, as well as a catalyst dust supply system, the second reactor for the treatment of waste as solid particles is filled with an inert material and equipped with means for supplying the waste to be treated and chemisorbent, while the inlet of the second reactor is equipped with a cyclone and a hopper for collecting catalyst dust, and the hopper for collecting catalyst dust is connected with a dust feed system to
  • the disadvantages of the known installation are the high energy consumption for the blasting equipment to maintain the fluidized bed of the catalyst layer in the first reactor and the inert material layer in the second reactor, increased catalyst wear, the difficulty of maintaining the temperature necessary for neutralization in two reactors, a complex system for preliminary separation of organic waste into easy oxidizable and difficultly oxidizable waste components and their supply to separately boiling layers of inert material and catalyst, necessary the possibility of additional purification of flue gases after the second reactor with a layer of inert material from toxic impurities in a separate apparatus.
  • the diluent is oxidized in the lower part of the two-zone reactor in a fluidized bed of catalyst at a temperature of 700-750 ° C, and the oxidation of the mixture of extractant and propellant, as well as the capture of acid gases by an alkaline adsorbent, is carried out in the upper part of the two-zone reactor in fluidized bed of inert material at a temperature of 700-750 ° C; oxidation of the diluent in the fluidized bed of the catalyst and the oxidation of the mixture of extractant and propellant in the fluidized bed of an inert material are carried out alternately.
  • the exhaust gases are further purified from traces of carbon monoxide and hydrocarbons on a honeycomb catalyst at a temperature of 450-500 ° C.
  • the disadvantages of this method are the need for additional purification of flue gases from carbon monoxide in a separate apparatus on a honeycomb catalyst, poisoning and increased wear of the catalyst, a complex system for preliminary separation of organic waste and alternate introduction of easily oxidized and difficultly oxidized components of the waste into separately boiling layers of inert material and catalyst.
  • the problem solved by the invention is to reduce catalyst wear, simplify the technology of disposal of organic waste, including sulfur dioxide, in the absence of secondary pollutants.
  • the device consists of a catalytic reactor, a cooling system and purification of flue gases from dust, air supply systems, adsorbent supply, neutralized waste or sulfur dioxide feed.
  • the reactor circuit is shown in Fig.1.
  • the reactor 1 consists of a vertical casing with an extension in the upper part.
  • nozzles for supplying air 2 and 3 a nozzle for introducing waste 4, a nozzle for introducing sulfur dioxide 5, a nozzle for introducing adsorbent 6, a nozzle for removing flue gases 7, nozzles for entering 8 and leaving water 9 from the heat exchanger 10.
  • gas distribution grid 1 Inside the reactor vessel between the nozzles filing air 2 and the inlet of the adsorbent 6 is located gas distribution grid 1 1. Above the grate are the organizing nozzle 12. Above the nozzle is a heat exchanger 10. On the cover of the reactor vessel there is a nozzle for loading the catalyst and inert material 13.
  • a mixture of IK-12-73 catalyst and inert material (quartz or river sand) is loaded into the reactor 1 onto the gas distribution grid 1 1 through the nozzle 13. Air is supplied through the nozzle 11 through the nozzle 2 to fluidize the bed and oxidize the waste or sulfur dioxide.
  • the layer is heated to a temperature of 300-400 ° C due to air heating by an external heat source.
  • sulfur dioxide oil is fed into the bed through pipe 5 or organic waste is fed through pipe 4, and alkaline adsorbent (calcium carbonate) is supplied through pipe 6.
  • the temperature in the layer is brought to a temperature of 700-750 ° C due to the oxidation of waste. After reaching a temperature of 700 ° C, the external heat source is turned off.
  • the temperature in the layer is maintained at 700-750 ° C due to removal of excess heat of oxidation of waste by heat exchanger 10.
  • Cold water 8 is supplied to heat exchanger 10 from consumers.
  • Hot water 9 is directed to consumer use (heat supply and hot water supply). Flue gases through the pipe 7 are sent to clean from dust in a cyclone and filter and then discharged into the atmosphere.
  • the fluidized bed is organized by a low-volume nozzle 12, which breaks the large gas bubbles formed in the layer and provides good mass transfer between the gas and the particles of the catalyst and alkaline adsorbent.
  • Acid gases released during incineration of waste (SOx, HC1, P 2 0 5 ) bind to alkaline CaO adsorbent particles in calcium sulfates, chlorides or phosphates and are trapped in the cyclone and on the filter. CaO particles are formed during the decomposition of CaCO3 in the lower zone of the fluidized bed. Acid gases adsorbed on the surface of the catalyst are removed due to redox reactions of the components of organic fuels and atmospheric oxygen in the lower zone of the apparatus, and CaO is also bound further. The organic components of the waste or sulfur dioxide are oxidized on the surface of the catalyst to products of deep oxidation (C0 2 and H 2 0).
  • the degree of abrasion of the catalyst is reduced to 0.02-0.04 wt.% Day. This can significantly reduce the pollution of solid waste neutralization products with catalyst dust containing chromium compounds.
  • Example 1 prototype
  • a reactor consisting of a vessel with a diameter of 80 mm in the lower part and 100 mm in the upper part, 2.5 l of a catalyst for deep oxidation of organic substances, for example, IK-12-73, with a diameter of granules of 2-3 mm and 2.5 l of inert material ( silica sand) with a particle size of 0.5-0.8 mm.
  • inert material silica sand
  • air is supplied through the pipe for fluidization and oxidation of the fuel in an amount of 10 m / h. Due to the difference in the particle size of the catalyst and the inert material, the fluidized bed is divided into two zones — the boiling zone of the catalyst (lower zone) and the boiling zone of the inert material (upper zone).
  • An external electric heater is used to heat the catalyst layer to 300-400 ° C. Then the pump through the nozzle serves in the lower part of the layer of kerosene in the amount of 0.16 kg / h When the temperature in the layer reaches 700 ° C, tributyl phosphate is fed to the upper part of the layer in an amount of 0.22 kg / h. At the same time, an alkaline adsorbent (calcite with a particle size of 50-100 ⁇ m) in the amount of 0.12 kg / h is introduced into the lower part of the reactor, and the electric heater is turned off. In the upper part of the layer is a coil-type heat exchanger (10) cooled by cold water.
  • the temperature in the layer is controlled by the amount of water supplied for cooling to the heat exchanger, and maintained at a level of 700 - 750 ° C.
  • the coefficient of excess air a 2.0.
  • the degree of abrasion of the catalyst IR-12-73 is 0.4 may. % per day.
  • Example 2 Similar to example 1.
  • a reactor consisting of a vessel with a diameter of 80 mm in the lower part and 100 mm in the upper part, 5 l of a catalyst for deep oxidation of organic substances IK-12-73 with a diameter of granules of 2-3 mm, i.e. the catalyst boils in the lower and upper zones of the reactor.
  • the coefficient of excess air a 2.0.
  • the content of toxic substances in the exhaust gases ⁇ - 30 mg / m, NO x - 5 mg / m, SO x - 0 mg / m.
  • the degree of abrasion of the catalyst IR-12-73 is 0.4 may. % per day.
  • the pump through the pipe (4) serves in the layer of sulfur dioxide in the amount of 0.76 kg / h
  • the electric heater is turned off.
  • a coil-type heat exchanger 10 cooled by cold water.
  • the temperature in the layer is controlled by the amount of water supplied for cooling to the heat exchanger, and maintained at a level of 700 - 750 ° C.
  • the fluidized bed is organized by organizing grids in the lower part (9) and in the heat exchange zone (8).
  • the material of the gratings is stainless steel.
  • an alkaline adsorbent (calcite with a particle size of 50-100 ⁇ m) is fed into the reactor through a pipe (5) at a weight ratio of calcite / S of at least 3.44.
  • the coefficient of excess air a 1.05-1.20.
  • the content of toxic substances in the exhaust gases ⁇ - 30 mg / m, NO x - 5 mg / m, SO x - 0 mg / m.
  • the degree of abrasion of the catalyst IR-12-73 is 0.04 May. % per day.
  • Example 4 Similar to example 3.
  • a reactor consisting of a vessel with a diameter of 80 mm in the lower part and 100 mm in the upper one, 5 l of a mixture of the catalyst for deep oxidation of organic substances IK-12-73 with a diameter of granules of 2-3 mm and granules of river sand with a diameter of 1-2 mm are loaded.
  • the ratio of sand to catalyst in the mixture is 90% and 10%, respectively.
  • the coefficient of excess air a 1.05-1.20.
  • the content of toxic substances in the exhaust gases ⁇ - 30 mg / m, NO x - 5 mg / m, SO x - 0 mg / m.
  • the degree of abrasion of the catalyst IR-12-73 is 0.02 May. % per day.
  • the content of toxic substances in the exhaust gases ⁇ - 200-400 mg / m, NO x - 4 mg / m, SO x - 0 mg / m.
  • the degree of abrasion of the catalyst IR-12-73 is 0.02 May. % per day.
  • Example 6 Similar to example 5.
  • the coefficient of excess air a 1.05-1.20.
  • the content of toxic substances in the exhaust gases ⁇ - 30 mg / m, ⁇ - 4 mg / m 3 , SO x - 0 mg / m 3 .
  • the degree of abrasion of the catalyst IR-12-73 is 0.02 May. % per day.
  • Example 7 Similar to example 6.
  • the content of toxic substances in the exhaust gases ⁇ - 30 mg / m 3 , NO x - 4 mg / m 3 , SO x - 0 mg / m 3 .
  • the degree of abrasion of the catalyst IR-12-73 is 0.02 May% per day.
  • the proposed device can reduce catalyst wear, simplify the technology of disposal of organic waste, including sulfur dioxide, in the absence of secondary pollutants.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Catalysts (AREA)

Abstract

Изобретение относится к устройствам для обезвреживания жидких органических отходов и сернистой нефти беспламенным сжиганием в кипящем слое катализатора и может быть использовано в химической, нефтехимической, лесохимической, атомной промышленности и теплоэнергетике. Описано устройство для сжигания органических отходов и сернистой нефти путем окисления кислородом воздуха с улавливанием кислых газов щелочным адсорбентом, состоящее из реактора с вертикальным корпусом с патрубками подачи воздуха, отходов и щелочного адсорбента в нижней части, патрубками отвода дымовых газов и загрузки катализатора в верхней части, внутри корпуса между патрубками подачи воздуха и патрубками подачи отходов и адсорбента размещена газораспределительная решетка, на которой находится слой дисперсного катализатора глубокого окисления или смесь катализатора и инертного материала, выше которой в псевдоожиженном слое последовательно размещены организующая насадка и теплообменник, верхняя часть корпуса реактора имеет расширение, которое содержит патрубок или патрубки для подачи дополнительного воздуха. Технический результат - уменьшение износа катализатора, упрощение технологию обезвреживания органических отходов, в том числе сернистой нефти, при отсутствии вторичных загрязнителей

Description

Устройство для обезвреживания органических отходов и сернистой нефти.
Изобретение относится к устройствам для обезвреживания жидких органических отходов и сернистой нефти беспламенным сжиганием в кипящем слое катализатора и может быть использовано в химической, нефтехимической, лесохимической, атомной промышленности и теплоэнергетике. В частности, предлагаемая установка может быть использована для сжигания органических отходов, содержащих соединения одного из таких элементов, как сера, фтор, хлор, фосфор.
Известен реактор для термообработки дисперсных материалов в кипящем слое катализатора (Боресков Г.К. Гетерогенный катализ. - М.: Наука. - 1988. - С. 294). Реактор содержит зону каталитического окисления топлива и зону термообработки дисперсного материала. Зоны в реакторе не разделены перегородками. Недостатками данного реактора являются снижение активности катализатора вследствие отравления катализатора при попадании в слой катализатора фтор-, хлор- фосфор-, и серосодержащих соединений.
Известно устройство для сжигания отходов, содержащих фосфор, в кипящем слое хемосорбента (US 4359005, F23G7/00, 6.11.82). Устройство включает реактор, внешний источник топлива и средства для подачи топлива в реактор, средства для подачи воздуха в реактор для поддержания кипящего слоя и горения, внешний источник отходов и средства для подачи отходов, содержащих фосфор, в реактор, внешний источник и средства введения в реактор извести, известняка и/или гашеной извести, средства для нагрева и поддержания повышенной температуры кипящего слоя, преимущественно, от
750 до 950°С, а также пространства над кипящим слоем от 600 до 900°С, а также циклон, установленный на выходе из реактора для улавливания твердых частиц. При работе установки кипящий слой внутри реактора состоит из извести, фосфорсодержащих отходов и инертного фосфата кальция. Для регулирования температуры внутри реактора могут использоваться теплообменнник, контролируемая подача топлива, отходов и воздуха, а также впрыск воды. К недостаткам известного устройства можно отнести сложность управления кипящим слоем из-за переменного размера частиц, кроме того, не обеспечивается полное сгорание топлива и отходов из-за небольшого времени контакта. В описании приводятся дополнительные средства для очистки отходящего газа (фильтры, адсорберы, скрубберы).
Известна установка с кипящим слоем для сжигания отходов, содержащих соединения хлора (US 5379705, F23G5/00, 10.01.95), с подачей хемосорбента для связывания образующегося НС1. Установка включает: печь газификации с 1-м кипящим слоем, состоящим по крайней мере из оксида щелочного металла (СаО), средства для подачи воздуха в кипящий слой, средства для подачи хлорсодержащих отходов, средства для вывода несгоревших частиц отходов из 1-го кипящего слоя, таким образом, отходы газифицируются и образующийся НС1 превращается в соль; и - печь сжигания с кипящим слоем, соединенная в нижней части с названной печью газификации таким образом, что в нее поступают газы, образующиеся при газификации отходов, и имеющая 2-й кипящий слой для сжигания этих газов; названная соль выводится из печи газификации в печь сжигания под давлением газа; печь сжигания снабжена патрубком для загрузки карбоната щелочного металла (СаСОз), образующего 2- й кипящий слой, средствами подачи воздуха во 2-й кипящий слой, а также средствами для вывода образующегося в результате сжигания оксида щелочного металла (СаО) и подачи его в 1-й кипящий слой печи газификации. Кроме того, печь сжигания может быть снабжена теплообменником, погруженным во 2-й кипящий слой. В верхней части печь сжигания снабжена средством для выхода отходящих газов.
Недостатки известного устройства: сложность управления кипящим слоем печи газификации из-за малого размера частиц хемосорбента, а также генерация вторичных загрязнений, например, оксидов азота в отходящих газах из-за окисления атмосферного азота.
Известна установка для обезвреживания органических отходов сжиганием в кипящем слое (RU 2198024, A62D3/00, B01J8/18, 10.02.2003), содержащая два соединенных между собой реактора, оборудованных средствами для подачи воздуха, воздухораспределительными решетками и частично заполненные слоем твердых частиц, расположенные несоосно, при этом выход первого реактора соединен со входом второго реактора, а также средства для подачи органических отходов и средства для введения хемосорбента, по крайней мере, в один из реакторов, а также средства для улавливания и рециркуляции твердых частиц, отличающаяся тем, что первый реактор сжигания топлива в качестве твердых частиц заполнен катализатором и оборудован средствами подачи топлива и воздуха, а также системой подачи пыли катализатора, второй реактор обезвреживания отходов в качестве твердых частиц заполнен инертным материалом и оборудован средствами подачи обезвреживаемых отходов и хемосорбента, при этом вход второго реактора снабжен циклоном и бункером для сбора пыли катализатора, причем бункер для сбора пыли катализатора соединен с системой подачи пыли в первый реактор.
Недостатками известной установки являются большой расход энергии на дутьевое оборудование для поддержания в псевдоожиженном состоянии слоя катализатора в первом реакторе и слоя инертного материала во втором реакторе, повышенный износ катализатора, сложность поддержания необходимой для обезвреживания температуры в двух реакторах, сложная система предварительного разделения органических отходов на легко окисляемые и трудно окисляемые компоненты отходов и подача их в отдельно кипящие слои инертного материала и катализатора, необходимость дополнительной очистки дымовых газов после второго реактора со слоем инертного материала от токсичных примесей в отдельном аппарате.
Наиболее близким по технической сущности и достигаемому результату является установка обезвреживания органических отходов путем окисления кислородом воздуха в аппарате кипящего слоя с последующим улавливанием кислых газов щелочным адсорбентом (RU 2209646, A62D3/00, B01J8/18 29.03.2003). Органические отходы, содержащие экстракционные смеси, предварительно разделяют на экстрагент и разбавитель введением легкопиролизуемого вытеснителя. Разбавитель окисляют в нижней части двухзонного реактора в кипящем слое катализатора при температуре 700-750°С, а окисление смеси экстрагента и вытеснителя, а также улавливание кислых газов щелочным адсорбентом проводят в верхней части двухзонного реактора в кипящем слое инертного материала при температуре 700-750°С; окисление разбавителя в кипящем слое катализатора и окисление смеси экстрагента и вытеснителя в кипящем слое инертного материала проводят попеременно. Отходящие газы дополнительно очищают от следов монооксида углерода и углеводородов на сотовом катализаторе при температуре 450-500°С. Недостатками известного способа являются необходимость дополнительной очистки дымовых газов от монооксида углерода в отдельном аппарате на сотовом катализаторе, отравление и повышенный износ катализатора, сложная система предварительного разделения органических отходов и попеременный ввод легко окисляемых и трудноокисляемых компонентов отходов в отдельно кипящие слои инертного материала и катализатора.
Задача, решаемая изобретением, состоит в снижении износа катализатора, упрощении технологии обезвреживания органических отходов, в том числе сернистой нефти, при отсутствии вторичных загрязнителей. Задача решается сжиганием органических отходов и сернистой нефти путем окисления кислородом воздуха в аппарате кипящего слоя с погруженным в слой теплообменником с последующим улавливанием кислых газов щелочным адсорбентом при температуре 700-750°С в организованном кипящем слое смеси катализатора глубокого окисления веществ и инертного материала при соотношение воздуха к окисляющимся органическим составляющим в нижней части слоя а = 0,95-1,05, а в верхней части а = 1,05-1,2 за счет введения дополнительного количества воздуха.
Устройство состоит из каталитического реактора, системы охлаждения и очистки дымовых газов от пыли, систем подачи воздуха, подачи адсорбента, подачи обезвреживаемых отходов или сернистой нефти.
Схема реактора изображена на Фиг.1.
Реактор 1 состоит из вертикального корпуса с расширением в верхней части. В корпусе предусмотрены патрубки для подачи воздуха 2 и 3, патрубок ввода отходов 4, патрубок ввода сернистой нефти 5, патрубок ввода адсорбента 6, патрубок отвода дымовых газов 7, патрубки для входа 8 и выхода воды 9 из теплообменника 10. Внутри корпуса реактора между патрубками подачи воздуха 2 и патрубками ввода адсорбента 6 расположена газораспределительная решетка 1 1. Над решеткой располагаются организующая насадка 12. Над насадкой расположен теплообменник 10. На крышке корпуса реактора предусмотрен патрубок для загрузки катализатора и инертного материала 13.
В реактор 1 на газораспределительную решетку 1 1 загружается смесь катализатора ИК- 12-73 и инертного материала (кварцевый или речной песок) через патрубок 13. Под газораспределительную решетку 11 подается воздух через патрубок 2 для псевдоожижения слоя и окисления отходов или сернистой нефти. Слой разогревается до температуры 300-400°С за счет подогрева воздуха внешним теплоисточником. Затем через патрубок 5 в слой подается сернистая нефть или через патрубок 4 подаются органические отходы, а через патрубок 6 щелочной адсорбент (карбонат кальция). Температура в слое доводится до температуры 700-750°С за счет окисления отходов. После достижения температуры 700°С внешний теплоисточник отключается. Температура в слое поддерживается 700-750°С за счет съема избытка теплоты окисления отходов теплообменником 10. В теплообменник 10 подается холодная вода 8 от потребителей. Горячая вода 9 направляется на использование потребителям (теплоснабжение и горячее водоснабжение). Дымовые газы через патрубок 7 направляются на очистку от пыли в циклон и фильтр и далее сбрасываются в атмосферу. Псевдоожиженный слой организован малообъемной насадкой 12, которая разбивает крупные газовые пузыри, образующиеся в слое, и обеспечивает хороший массообмен между газом и частицами катализатора и щелочного адсорбента. Выделяющиеся при сжигании отходов кислые газы (SOx, НС1, Р205) связываются с частицами щелочного адсорбента СаО в сульфаты, хлориды или фосфаты кальция и улавливаются в циклоне и на фильтре. Частицы СаО образуются при разложении СаСОз в нижней зоне псевдоожиженного слоя. Адсорбирующиеся на поверхности катализатора кислые газы удаляются за счет окислительно-восстановительных реакций компонентов органических топлив и кислорода воздуха в нижней зоне аппарата и далее также связываются СаО. Органические компоненты отходов или сернистой нефти окисляются на поверхности катализатора до продуктов глубокого окисления (С02 и Н20). В нижней зоне при стехиометрических соотношениях отходов к кислороду воздуха а = 0,95-1,05 возможно образование промежуточных продуктов окисления (СО, СН4 и др.), которые затем доокисляются в верхней части слоя при а = 1,05-1,2 за счет подвода дополнительного воздуха через патрубки 3. Степень истирания катализатора ИК- 12-73 (смешанный хромит меди и магния нанесенный на оксид алюминия) существенно ниже, чем степень истирания кварцевого или речного песка - 0,4- 0,5 мас.% в сутки и 0,8-1,0 мас.% в сутки, соответственно. При использовании смеси песка и катализатора в соотношении 80-90% песка и 10-20% катализатора степень истирания катализатора уменьшается до 0,02-0,04 мас.% сутки. Это позволяет существенно уменьшить загрязнение твердых продуктов обезвреживания отходов катализаторной пылью, содержащей соединения хрома.
Сущность изобретения иллюстрируется следующими примерами и иллюстрацией. Пример 1 (прототип).
В реактор, состоящий из корпуса диаметром 80 мм в нижней части и 100 мм в верхней, загружают 2.5 л катализатора глубокого окисления органических веществ, например, ИК-12-73, с диаметром гранул 2-3 мм и 2,5 л инертного материала (кварцевый песок) с размером частиц 0.5-0.8 мм. Под газораспределительную решетку подают воздух через патрубок для псевдоожижения и окисления топлива в количестве 10 м /ч. За счет различия в размере частиц катализатора и инертного материала псевдоожиженный слой разделяется на две зоны - зона кипения катализатора (нижняя зона) и зона кипения инертного материала (верхняя зона). Внешним электроподогревателем нагревают слой катализатора до 300-400°С. Затем насосом через патрубок подают в нижнюю часть слоя керосин в количестве 0.16 кг/ч. При достижении температуры в слое 700°С в верхнюю часть слоя подают трибутилфосфат в количестве 0.22 кг/ч. Одновременно в нижнюю часть реактора вводят щелочной адсорбент (кальцит с размером частиц 50-100 мкм) в количестве 0.12 кг/ч, а электроподогреватель отключают. В верхней части слоя расположен теплообменник (10) змеевикового типа, охлаждаемый холодной водой.
Температуру в слое регулируют количеством воды, подаваемой на охлаждение в теплообменник, и поддерживают на уровне 700 - 750°С. Коэффициент избытка воздуха а = 2.0. Содержание токсичных веществ в отходящих газах: СО - 800- 1000 мг/м3, ΝΟχ - 5 мг/м3, SOx - 0 мг/м3. Степень истирания катализатора ИК- 12-73 составляет 0,4 мае. % в сутки.
Пример 2. Аналогичен примеру 1.
В реактор, состоящий из корпуса диаметром 80 мм в нижней части и 100 мм в верхней, загружают 5 л катализатора глубокого окисления органических веществ ИК- 12-73 с диаметром гранул 2-3 мм, т.е. в нижней и верхней зоне реактора кипит катализатор. Коэффициент избытка воздуха а = 2.0. Содержание токсичных веществ в отходящих газах: СО - 30 мг/м , NOx - 5 мг/м , SOx - 0 мг/м . Степень истирания катализатора ИК- 12-73 составляет 0,4 мае. % в сутки.
Пример 3. По изобретению.
В реактор, состоящий из корпуса диаметром 80 мм в нижней части и 100 мм в верхней загружают 5 л смеси катализатора глубокого окисления органических веществ с диаметром гранул 2-3 мм и гранулы речного песка с диаметром 1-2 мм. Соотношение песка и катализатора в смеси 80% и 20%, соответственно. Под газораспределительную решетку (7) подают воздух через патрубок (3) для псевдоожижения и окисления топлива в количестве 10 м 1ч. Внешним электроподогревателем нагревают слой катализатора до 300-400°С. Затем насосом через патрубок (4) подают в слой сернистую нефть в количестве 0.76 кг/ч. При достижении температуры в слое 700°С электроподогреватель отключают. В верхней части слоя расположен теплообменник (10) змеевикового типа, охлаждаемый холодной водой. Температуру в слое регулируют количеством воды, подаваемой на охлаждение в теплообменник, и поддерживают на уровне 700 - 750°С. Псевдоожиженный слой организован организующими решетками в нижней части (9) и в зоне теплообмена (8). Материал решеток - нержавеющая сталь. Для связывания кислых продуктов (оксидов серы) в реактор через патрубок (5) подают щелочной адсорбент (кальцит с размером частиц 50-100 мкм) при весовом соотношении кальцит/S не менее 3.44. Коэффициент избытка воздуха а = 1.05-1.20. Содержание токсичных веществ в отходящих газах: СО - 30 мг/м , NOx - 5 мг/м , SOx - 0 мг/м . Степень истирания катализатора ИК- 12-73 составляет 0,04 мае. % в сутки. Пример 4. Аналогичен примеру 3.
В реактор, состоящий из корпуса диаметром 80 мм в нижней части и 100 мм в верхней, загружают 5 л смеси катализатора глубокого окисления органических веществ ИК- 12-73 с диаметром гранул 2-3 мм и гранулы речного песка с диаметром 1-2 мм. Соотношение песка и катализатора в смеси 90% и 10%, соответственно. Коэффициент избытка воздуха а = 1.05-1.20. Содержание токсичных веществ в отходящих газах: СО - 30 мг/м , NOx - 5 мг/м , SOx - 0 мг/м . Степень истирания катализатора ИК- 12-73 составляет 0,02 мае. % в сутки.
Пример 5. Аналогичен примеру 4.
Сжигание сырой нефти проводят при коэффициенте избытка воздуха а = 1.0-1.05. Содержание токсичных веществ в отходящих газах: СО - 200-400 мг/м , NOx - 4 мг/м , SOx - 0 мг/м . Степень истирания катализатора ИК- 12-73 составляет 0,02 мае. % в сутки.
Пример 6. Аналогичен примеру 5.
Сжигание сырой нефти проводят в нижней части реактора при коэффициенте избытка воздуха а = 1.0-1.05. В верхней части реактора за счет подвода дополнительного воздуха поддерживают коэффициент избытка воздуха а = 1.05-1.20. Содержание токсичных веществ в отходящих газах: СО - 30 мг/м , ΝΟχ - 4 мг/м3, SOx - 0 мг/м3. Степень истирания катализатора ИК-12-73 составляет 0,02 мае. % в сутки.
Пример 7. Аналогичен примеру 6.
В нижнюю часть слоя подают смесь керосина и трибутилфосфата в количестве 0.16 кг/ч и 0.22 кг/ч, соответственно. Содержание токсичных веществ в отходящих газах: СО - 30 мг/м3, NOx - 4 мг/м3, SOx - 0 мг/м3. Степень истирания катализатора ИК-12-73 составляет 0,02 мае % в сутки.
Как видно из приведенных примеров, предлагаемое устройство позволяет снизить износ катализатора, упростить технологию обезвреживания органических отходов, в том числе сернистой нефти, при отсутствии вторичных загрязнителей.

Claims

Формула изобретения.
Устройство для сжигания органических отходов и сернистой нефти путем окисления кислородом воздуха с улавливанием кислых газов щелочным адсорбентом, состоящее из реактора с вертикальным корпусом с патрубками подачи воздуха, отходов и щелочного адсорбента в нижней части, патрубками отвода дымовых газов и загрузки катализатора в верхней части, внутри корпуса между патрубками подачи воздуха и патрубками подачи отходов и адсорбента размещена газораспределительная решетка, на которой находится слой дисперсного катализатора глубокого окисления или смесь катализатора и инертного материала в соотношении 10-20 % и 80-90 %., выше которой в псевдоожиженном слое последовательно размещены организующая насадка и теплообменник, отличающееся тем, что верхняя часть корпуса реактора имеет расширение, которое содержит патрубок или патрубки для подачи дополнительного воздуха.
PCT/RU2014/000193 2014-02-27 2014-03-26 Устройство для обезвреживания органических отходов и сернистой нефти WO2015130190A1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2014107370 2014-02-27
RU2014107370 2014-02-27

Publications (1)

Publication Number Publication Date
WO2015130190A1 true WO2015130190A1 (ru) 2015-09-03

Family

ID=54009405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2014/000193 WO2015130190A1 (ru) 2014-02-27 2014-03-26 Устройство для обезвреживания органических отходов и сернистой нефти

Country Status (1)

Country Link
WO (1) WO2015130190A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11173482B2 (en) 2019-05-28 2021-11-16 Saudi Arabian Oil Company Combustion of spent adsorbents containing HPNA compounds in FCC catalyst regenerator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5379705A (en) * 1992-11-11 1995-01-10 Kawasaki Jukogyo Kabushiki Kaisha Fluidized-bed incinerator
RU2209646C1 (ru) * 2002-03-29 2003-08-10 Институт катализа им. Г.К. Борескова СО РАН Способ обезвреживания органических отходов
RU2456248C1 (ru) * 2010-12-23 2012-07-20 Учреждение Российской академии наук Институт катализа им. Г.К. Борескова Сибирского отделения РАН Каталитический реактор для переработки осадков сточных вод и способ их переработки (варианты)
RU136131U1 (ru) * 2013-05-07 2013-12-27 Закрытое акционерное общество "КОТЭС" Схема растопки пылеугольного котла посредством водоугольного топлива

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5379705A (en) * 1992-11-11 1995-01-10 Kawasaki Jukogyo Kabushiki Kaisha Fluidized-bed incinerator
RU2209646C1 (ru) * 2002-03-29 2003-08-10 Институт катализа им. Г.К. Борескова СО РАН Способ обезвреживания органических отходов
RU2456248C1 (ru) * 2010-12-23 2012-07-20 Учреждение Российской академии наук Институт катализа им. Г.К. Борескова Сибирского отделения РАН Каталитический реактор для переработки осадков сточных вод и способ их переработки (варианты)
RU136131U1 (ru) * 2013-05-07 2013-12-27 Закрытое акционерное общество "КОТЭС" Схема растопки пылеугольного котла посредством водоугольного топлива

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11173482B2 (en) 2019-05-28 2021-11-16 Saudi Arabian Oil Company Combustion of spent adsorbents containing HPNA compounds in FCC catalyst regenerator

Similar Documents

Publication Publication Date Title
US8999278B2 (en) Method and apparatus for on-site production of lime and sorbents for use in removal of gaseous pollutants
CA2927588C (en) Method and apparatus for removing contaminants from exhaust gases
CN101384335B (zh) 再生器烟气中CO和NOx的还原
US7704921B2 (en) Production of activated char using hot gas
US5335609A (en) Thermal and chemical remediation of mixed waste
US9440188B2 (en) Method for removing contaminants from exhaust gases
US9895659B2 (en) Methods for removing contaminants from exhaust gases
CA2728257C (en) Reduction of co and nox in full burn regenerator flue gas
JP4781734B2 (ja) 流体有機化合物の処理方法
Moško et al. Fluidized bed incineration of sewage sludge in O2/N2 and O2/CO2 atmospheres
KR101365116B1 (ko) 액체금속을 이용한 가스 정제 장치
Celenza Industrial waste treatment processes engineering: Specialized treatment systems, volume III
WO2011112855A1 (en) Sorbent activation process and method for using same
SK182789A3 (en) Apparatus for catalytic combustion of organic compounds
RU2536510C2 (ru) Каталитический реактор для переработки осадков сточных вод и способ их переработки (варианты)
WO2015130190A1 (ru) Устройство для обезвреживания органических отходов и сернистой нефти
RU2527238C1 (ru) Способ обезвреживания органических отходов и нефти
RU155103U1 (ru) Устройство для обезвреживания органических отходов и сернистой нефти
WO2016130039A1 (ru) Устройство для обезвреживания органических отходов и сернистой нефти
CA2600875C (en) Production of activated char using hot gas
RU2198024C1 (ru) Установка для обезвреживания органических отходов
RU2160300C2 (ru) Способ переработки твердых органических отходов, установка и деструктор для его осуществления
RU2297273C2 (ru) Устройство очистки отходящих газов, содержащих органические вещества (варианты)
WO2016163911A1 (ru) Способ обезвреживания органических отходов и сернистой нефти
ISMAGILOV et al. OXIDATION IN A CATALYTIC FLUIDIZED BED

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14884223

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14884223

Country of ref document: EP

Kind code of ref document: A1