WO2015130030A1 - 액상 천연가스 회수 시스템 및 이를 이용한 액상 천연가스 회수방법 - Google Patents
액상 천연가스 회수 시스템 및 이를 이용한 액상 천연가스 회수방법 Download PDFInfo
- Publication number
- WO2015130030A1 WO2015130030A1 PCT/KR2015/001210 KR2015001210W WO2015130030A1 WO 2015130030 A1 WO2015130030 A1 WO 2015130030A1 KR 2015001210 W KR2015001210 W KR 2015001210W WO 2015130030 A1 WO2015130030 A1 WO 2015130030A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat exchanger
- distillation column
- natural gas
- raw material
- gas
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L3/00—Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
- C10L3/06—Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
- C10L3/10—Working-up natural gas or synthetic natural gas
- C10L3/101—Removal of contaminants
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0204—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
- F25J3/0209—Natural gas or substitute natural gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0228—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
- F25J3/0233—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0228—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
- F25J3/0238—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 2 carbon atoms or more
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/02—Processes or apparatus using separation by rectification in a single pressure main column system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/70—Refluxing the column with a condensed part of the feed stream, i.e. fractionator top is stripped or self-rectified
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/02—Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
- F25J2205/04—Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2210/00—Processes characterised by the type or other details of the feed stream
- F25J2210/06—Splitting of the feed stream, e.g. for treating or cooling in different ways
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2240/00—Processes or apparatus involving steps for expanding of process streams
- F25J2240/02—Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/90—External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
Definitions
- the present invention relates to a liquid natural gas recovery system and a liquid natural gas recovery method using the same, in particular, a liquid natural gas recovery system for reducing energy consumption in the process of recovering the liquid natural gas from the natural gas extracted from the well (well) and the same It relates to a liquid natural gas recovery method used.
- Natural gas extracted from oil wells generally contains a major proportion of methane and relatively small amounts of hydrocarbons such as ethane, propane, butane, pentane and the like, and other gases such as hydrogen, nitrogen and carbon dioxide. Separation and recovery of such hydrocarbons can provide valuable products that can be used directly or as feedstock for other processes, and these hydrocarbons are generally recovered as Natural Gas Liquids (NGL).
- NNL Natural Gas Liquids
- the natural gas extracted from the oil well is subjected to pretreatment such as acidic gas removal and water removal, and then flows into the liquid natural gas recovery process, and ethane or propane contained in the natural gas raw material through the liquid natural gas recovery process.
- pretreatment such as acidic gas removal and water removal
- ethane or propane contained in the natural gas raw material through the liquid natural gas recovery process.
- hydrocarbons such as ethane, propane and butane included in the produced natural gas are expensive raw materials that are important for the petrochemical industry, it is important to separate these hydrocarbons from natural gas and produce them as products. It is very important to secure. Therefore, liquid natural gas recovery processes are applied in most natural gas production plants.
- the liquid natural gas recovery process typically includes a turboexpander process, an absorption tower process, and an external cooling process.
- a turboexpander process is most energy efficient and is used in most industries.
- Commercial processes are turboexpander-based processes.
- process improvement and operating conditions such as changing the fluid introduction part, adjusting the fluid flow composition, and changing the heat exchange structure are optimized to recover liquid natural gas with low energy consumption and high hydrocarbon recovery rate. It is necessary to research and develop the process.
- Patent Document 1 Publication No. 10-2011-0010776
- the present invention has been made to solve the above problems, and an object of the present invention is to provide a liquid natural gas recovery system that reduces energy consumption and improves hydrocarbons recovery.
- Another object of the present invention is to provide a liquid natural gas recovery method using a liquid natural gas recovery system for reducing energy consumption and improving hydrocarbons recovery.
- Liquid natural gas recovery system comprises a first heat exchanger in which the raw material is pre-cooled by injection; A second heat exchanger connected to the first heat exchanger to precool the raw material; A gas / liquid separator connected to the second heat exchanger to separate the raw material; A turboexpander connected to one side of the gas / liquid separator; A distillation column connected to the other side of the gas-liquid separator; And a third heat exchanger connected to an upper side of the distillation column.
- Liquid natural gas recovery system further comprises a first splitter provided between the first heat exchanger and the second heat exchanger, a portion of the raw material branched from the first splitter to the first It is characterized in that it has a path of the heat exchange repeat mode (I) to be transferred back to the heat exchanger and heat exchanged to pass through the third heat exchanger to the distillation column.
- a first splitter provided between the first heat exchanger and the second heat exchanger, a portion of the raw material branched from the first splitter to the first It is characterized in that it has a path of the heat exchange repeat mode (I) to be transferred back to the heat exchanger and heat exchanged to pass through the third heat exchanger to the distillation column.
- Liquid natural gas recovery system further comprises a second splitter provided between the gas-liquid separator and the turboexpander, and the portion of the fluid separated from the second splitter to the third heat exchanger It is characterized by having a path of the gas subcooled process (Gas Subcooled Process) mode (II) to pass through to the distillation column.
- Gas Subcooled Process Gas Subcooled Process
- Liquid natural gas recovery system is characterized in that it further comprises at least one reboiling stream including a reboiler (reboiler) between the bottom of the distillation column and the first heat exchanger.
- reboiler reboiler
- Liquid natural gas recovery system is characterized in that the other portion of the fluid separated in the second splitter is delivered to the turboexpander, characterized in that the low-temperature, low pressure state and injected into the distillation column.
- liquid natural gas recovery method (A) injecting the raw material into the first heat exchanger; (B) pre-cooling a portion of the raw material that has passed through the first heat exchanger through a second heat exchanger and transferring it to a gas-liquid separator; (C) processing the raw material injected into the gas-liquid separator along a plurality of mode paths and injecting the raw material into a distillation column; And (D) recovering natural gas liquids through the bottom of the distillation column.
- the step (A) is a part of the raw material branched through a first splitter provided between the first heat exchanger and the second heat exchanger to the first heat exchanger.
- the heat exchange repetition mode (I) is performed through a path transferred to the distillation column via a third heat exchanger connected to an upper side of the distillation column after the heat exchange again.
- Liquid natural gas recovery method is a third heat exchanger connected to the upper side of the distillation column a part of the fluid separated through the gas-liquid separator as the plurality of mode path in the step (C)
- a path of the gas subcooling process mode (II) which cools in and injects the upper portion of the distillation column
- the step (D) is the distillation column using at least one reboiling stream including a reboiler between the bottom of the distillation column and the first heat exchanger. It is characterized by performing by increasing the temperature of the bottom.
- Liquid natural gas recovery system is a variety of modes according to the raw material fluctuation, product component and recovery rate limit, etc., the path of the gas sub-cooled process mode (II) without the heat exchange repeat mode (I) or heat exchange There is an effect that can be performed by selecting both the path of the repetition mode (I) and the gas sub-cooled process mode (II).
- Liquid natural gas recovery method has the effect of increasing the efficiency of the liquid natural gas recovery and at the same time increase the energy efficiency.
- FIG. 1 is a block diagram of a liquid natural gas recovery system according to a first embodiment of the present invention.
- FIG. 2 is a block diagram of a liquid natural gas recovery system according to a second embodiment of the present invention.
- FIG. 3 is a block diagram of a liquid natural gas recovery system according to a third embodiment of the present invention.
- FIG. 4 is a flowchart illustrating a liquid natural gas recovery method according to another embodiment of the present invention.
- Figure 5a is a graph of the heat flow detected in the liquid natural gas recovery system according to a comparative example of the present invention.
- Figure 5b is a graph of the heat flow detected in the liquid natural gas recovery system according to the first embodiment of the present invention.
- FIG. 1 is a configuration diagram of a liquid natural gas recovery system according to a first embodiment of the present invention
- Figure 2 is a configuration diagram of a liquid natural gas recovery system according to a second embodiment of the present invention
- Figure 3 is 3 is a block diagram of a liquid natural gas recovery system according to a third embodiment.
- the liquid natural gas recovery system includes a first heat exchanger 110, a second heat exchanger 120, a gas / liquid separator 130, and a turbo expander 140. ), A third heat exchanger 150, a distillation column 160, a reboiling stream 170, and a controller (not shown).
- the raw material is pre-cooled through the first heat exchanger 110 and the second heat exchanger 120, and the fluid separated through the gas / liquid separator 130. These are injected into the distillation column 160 through the path of various modes according to the process.
- the control unit uses the second splitter 135 to separate the fluids separated from the gas / liquid separator 130. They are delivered to the turbo expander 140 and treated in a low pressure, low temperature state is injected into the distillation column (160).
- the reason for lowering the pressure by using the turbo expander 140 is because the boiling point of hydrocarbons such as methane and ethane is low, so as to generate a low temperature to be separated from the distillation column (160).
- the methane generated in the upper portion of the distillation column 160 cools the flows of different modes through the third heat exchanger 150 and the first heat exchanger 110, and then, after the heat exchange is completed, the methane is low in the turboexpander 140. After conversion, it is discharged as sale gas.
- the liquid natural gas recovery system performs a mode of separating the liquid natural gas at the bottom of the distillation column 160, the flow of this mode is to be post-treated according to the conditions of the desired product Can be.
- the liquid natural gas recovery system is a heat exchange repetition mode (I) for improving the efficiency of the first heat exchanger 110 in which the raw material is injected, the first heat exchanger 110 A portion of the coarse raw material stream is diverted through the first splitter 115 and transferred back to the first heat exchanger 110 for heat exchange, followed by the distillation tower 160 via the third splitter 145 and the third heat exchanger 150. ) To the top.
- I heat exchange repetition mode
- the heat exchange repetition mode (I) since the flow mainly composed of methane generated in the upper part of the distillation column 160 is a low temperature flow, when the raw material is first cooled in the first heat exchanger 110, the heat exchange temperature difference becomes large. Since the utility of low-temperature energy is lowered, the raw material is repeatedly cooled in the first heat exchanger 110 to improve the thermal efficiency before cooling the raw material in the upper stream of the distillation column 160 containing methane as a main component.
- the liquid natural gas recovery system is a gas sub-cool process (Gas) as shown in FIG.
- Gas subcooling process mode Part of the liquid flow separated through the gas-liquid separator 130 through the subcooled process mode (II) is injected into the upper portion of the distillation column 160 through the third splitter 145 and the third heat exchanger 150. Gas subcooling process mode.
- the path of the gas subcooling process mode (II) cools a part of the liquid flow separated through the gas / liquid separator 130 through heat exchange with the low temperature fluid from the top of the distillation column in the third heat exchanger 150. After the cooling, the valve is injected into the upper end of the distillation column 160.
- the raw material may be repeatedly cooled in the first heat exchanger 210 before cooling the raw material to the upper stream of the distillation column 260 through the heat exchange repetition mode (III), thereby improving thermal efficiency.
- the liquid natural gas recovery system according to the first embodiment of the present invention is too low at the bottom of the distillation column 160, reboiling including a reboiler (not shown) at the bottom of the distillation column 160 With the stream 170, the temperature at the bottom of the distillation column 160 can be increased to increase the efficiency of the liquid natural gas recovery and at the same time increase the energy efficiency.
- the reboiling stream 170 is shown as one path in FIG. 1, the present invention is not limited thereto, and the bottom of the distillation column 360 may be used as in the liquid natural gas recovery system according to the third embodiment of the present invention illustrated in FIG. 3.
- a plurality of first reboiling streams 371 and second reboiling streams 372 may be provided.
- the liquid natural gas recovery system according to the first embodiment of the present invention configured as described above is divided into two flows in the first splitter 115 after the raw material is first pre-cooled through the first heat exchanger 110 in the introduction portion. A part of the divided flow is again passed through the first heat exchanger 110 to perform a path of the heat exchange repetition mode (I) for secondary precooling to a lower temperature.
- the secondary pre-cooling is a methane that generates methane at a very low temperature at the top of the distillation column because the raw material is supercooled through the path of the heat exchange repetition mode (I), converted to a sufficiently low temperature, and the pressure is lowered through the valve and injected into the top of the distillation column.
- the production efficiency can be improved.
- liquid natural gas recovery system selects the path of the gas subcool process mode (II) without the heat exchange repeat mode (I), or the heat exchange repeat mode (I) and the gas.
- the liquid natural gas recovery system selects the path of the gas subcool process mode (II) without the heat exchange repeat mode (I), or the heat exchange repeat mode (I) and the gas.
- the liquid natural gas recovery system includes a reboiling stream 170 including a reboiler at the bottom of the distillation column 160, thereby increasing the temperature at the bottom of the distillation column 160 and at the same time.
- a refrigerant in the heat exchanger 110 By acting as a refrigerant in the heat exchanger 110, there is a feature that can increase the efficiency of the liquid natural gas recovery and at the same time increase the energy efficiency.
- FIG. 4 is a flowchart illustrating a liquid natural gas recovery method according to another embodiment of the present invention.
- liquid natural gas recovery method for example, in the method for recovering natural gas using the liquid natural gas recovery system according to the first embodiment of the present invention shown in FIG. Describe.
- the raw material is first injected into the first heat exchanger 110 (S410).
- the control unit branches a portion of the raw material flow passed through the first heat exchanger 110 through the first splitter 115 and delivers the heat to the first heat exchanger 110 again. Then, the mixture is injected into the upper portion of the distillation column 160 through the third splitter 145 and the third heat exchanger 150.
- control unit pre-cools the other raw material stream passing through the first heat exchanger 110 through the second heat exchanger 120, and transfers it to the gas / liquid separator 130 (S420).
- the controller processes the raw material injected into the gas / liquid separator 130 along a plurality of mode paths and injects the distillation column 160 into operation S430.
- the controller cools a part of the liquid flow separated through the gas / liquid separator 130 through heat exchange with a low temperature fluid from the top of the distillation column in the third heat exchanger 150, and then cools by a valve to distill the column.
- the path of the gas subcool process mode (II) injected into the upper end of the 160, the other part of the liquid flow separated through the gas-liquid separator 130 is transferred to the turbo expander 140 and treated in a low pressure and low temperature state.
- the controller may select the plurality of mode paths described above according to conditions such as raw material fluctuation, product component and recovery rate limitation, and process the raw material injected into the gas / liquid separator 130 and inject it into the distillation column 160. have.
- control unit After the injection into the distillation column 160, the control unit recovers the liquid natural gas through the lower end of the distillation column 160 (S440).
- the temperature of the lower end of the distillation column 160 should be raised.
- the control unit of the distillation column 160 is shown in FIG.
- the temperature of the bottom of the distillation column 160 may be increased by using a reboiling stream including at least one reboiler provided at the bottom.
- the at least one reboiling stream may serve as a refrigerant in the first heat exchanger 110 to increase the efficiency of liquid natural gas recovery and increase energy efficiency.
- the liquid natural gas recovery method according to another embodiment of the present invention can increase the efficiency of the liquid natural gas recovery and at the same time increase the energy efficiency.
- Comparative Example recovers liquid natural gas with a gas subcooled process mode (II) without a heat exchange repeat mode (I) in the liquid natural gas recovery system according to the first embodiment of the present invention shown in FIG.
- liquid natural gas may be treated by treating the experimental raw materials described in Table 1 below, for example, under a pressure of 60 Bar, a temperature of 38 ° C., a flow rate of 1000 kmol ⁇ h ⁇ 1 , and a distillation column 160 at 30 stages. Recover.
- the embodiment is an example of recovering liquid natural gas by operating the liquid natural gas recovery system according to the first embodiment of the present invention shown in FIG. 1, for example, a pressure of 60 Bar, a temperature of 38 ° C., 1000 kmol ⁇ h ⁇ .
- a pressure of 60 Bar for example, a pressure of 60 Bar, a temperature of 38 ° C., 1000 kmol ⁇ h ⁇ .
- 30 stages of the distillation column 160 conditions by treating the experimental raw materials described in Table 1 below to recover the liquid natural gas.
- the Example is the same as or higher than the Comparative Example in terms of ethane recovery, and the Example is 17.5% in each of the first and second Experiment feeds (Lean feed) than the Comparative Example in terms of energy consumption. And 3.6%.
- propane recovery the Example tends to be slightly lower than the Comparative Example, but even if it is slightly lower than the Comparative Example, this is not a disadvantage because it maintains a sufficiently high recovery rate of 98% or more.
- the embodiment is more efficient in the case of the first rich feed having a higher ethane ratio than the second low feed lean feed (Lean feed). have.
- the heat flow rate graph detected in the comparative example causes a large initial heat flow variation.
- the thermal flow rate variation is substantially reduced, as in the "A" portion, to improve the thermal efficiency.
- the embodiment of the present invention mainly shows higher efficiency in the first rich feed
- the conditions of the first rich feed are operated as the configuration of the embodiment of the present invention, and then the raw material composition is If the efficiency decreases due to the change, it is possible to maintain the efficiency by changing the driving environment such as forming various modes of the path.
- the present invention is a variety of modes according to the raw material fluctuations, product components and recovery rate limit, such as selecting the path of the gas sub-cool process mode (II) without the heat exchange repeat mode (I) or the heat exchange repeat mode (I) and gas sub-cool process This is done by selecting all paths of mode (II).
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Separation By Low-Temperature Treatments (AREA)
Abstract
본 발명의 일실시예에 따른 액상 천연가스 회수 시스템은 원료가 주입되어 사전 냉각되는 제 1 열교환기; 상기 제 1 열교환기에 연결되어 상기 원료를 예냉하는 제 2 열교환기; 상기 제 2 열교환기에 연결되어 상기 원료를 분리하는 기·액 분리기; 상기 기·액 분리기의 일측에 연결된 터보 팽창기; 상기 기·액 분리기의 타측에 연결된 증류탑; 및 상기 증류탑의 상부 일측에 연결된 제 3 열교환기;를 포함한다.
Description
본 발명은 액상 천연가스 회수 시스템 및 이를 이용한 액상 천연가스 회수방법에 관한 것으로, 특히 유정(well)에서 추출된 천연가스로부터 액상 천연가스를 회수 과정에서 에너지 소모를 절감하는 액상 천연가스 회수 시스템 및 이를 이용한 액상 천연가스 회수방법에 관한 것이다.
유정에서 추출된 천연가스는 일반적으로 주요 비율의 메탄과 에탄, 프로판, 부탄, 펜탄 등과 같은 비교적 적은 양의 탄화수소, 및 수소, 질소, 이산화탄소 등의 다른 가스를 함유한다. 이러한 탄화수소의 분리 및 회수는 직접 또는 다른 프로세스를 위한 공급 원료로서 사용될 수 있는 가치 있는 생성물을 제공할 수 있고, 이들 탄화수소를 일반적으로 액상 천연가스(Natural Gas Liquids: NGL)로서 회수된다.
이를 위해, 유정에서 추출된 천연가스는 산성가스 제거와 수분 제거 등의 전처리 과정을 거친 후, 액상 천연가스 회수 공정에 유입되며, 액상 천연가스 회수 공정을 통해 천연가스 원료에 포함된 에탄 또는 프로판 등의 탄화수소를 제품으로 생산한다.
생산된 천연가스에 포함된 에탄, 프로판, 부탄 등의 탄화수소류는 석유화학 산업에서 중요하게 사용되는 고가의 원료이기 때문에, 이러한 탄화수소류를 천연가스에서 분리 및 정제하여 제품으로 생산하는 것은 천연가스 경제성 확보에 매우 중요하다. 따라서 대부분의 천연가스 생산 플랜트에서는 액상 천연가스 회수 공정이 적용된다.
액상 천연가스 회수 공정은 통상적으로 터보 팽창기를 이용한 공정, 흡수탑을 이용한 공정, 외부 냉각을 이용한 공정 등이 있으며, 일반적으로 터보팽창기를 사용한 공정이 에너지 효율이 가장 우수하여 현재 산업계에서 사용되는 대부분의 상용 공정은 터보팽창기 기반의 공정이다.
그러나, 여전히 종래에 개발된 공정보다 효율성을 향상시키기 위하여 유체 도입부 변경, 유체 흐름 구성 조절, 열 교환 구조 변경 등 공정 개선과 운전 조건을 최적화하여 에너지 소모량은 적고, 탄화수소류 회수율은 높은 액상 천연가스 회수 공정을 연구 개발할 필요가 있다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 특허문헌 1: 공개특허공보 제10-2011-0010776호
본 발명은 상기 문제점을 해소하기 위하여 안출된 것으로, 본 발명의 목적은 에너지 소모량을 줄이고 탄화수소류 회수율을 향상시킨 액상 천연가스 회수 시스템을 제공하는 데 있다.
본 발명의 다른 목적은 에너지 소모량을 줄이고 탄화수소류 회수율을 향상시키기 위한 액상 천연가스 회수 시스템을 이용한 액상 천연가스 회수방법을 제공하는 데 있다.
본 발명의 일실시예에 따른 액상 천연가스 회수 시스템은 원료가 주입되어 사전 냉각되는 제 1 열교환기; 상기 제 1 열교환기에 연결되어 상기 원료를 예냉하는 제 2 열교환기; 상기 제 2 열교환기에 연결되어 상기 원료를 분리하는 기·액 분리기; 상기 기·액 분리기의 일측에 연결된 터보 팽창기; 상기 기·액 분리기의 타측에 연결된 증류탑; 및 상기 증류탑의 상부 일측에 연결된 제 3 열교환기;를 포함한다.
본 발명의 일실시예에 따른 액상 천연가스 회수 시스템은 상기 제 1 열교환기와 제 2 열교환기 사이에 구비된 제 1 스플리터를 더 포함하고, 상기 제 1 스플리터에서 분기된 상기 원료의 일부를 상기 제 1 열교환기로 다시 전달하여 열교환하여 상기 제 3 열교환기를 거쳐 상기 증류탑으로 전달하는 열교환 반복모드(Ⅰ)의 경로를 갖는 것을 특징으로 한다.
본 발명의 일실시예에 따른 액상 천연가스 회수 시스템은 상기 기·액 분리기와 터보 팽창기 사이에 구비된 제 2 스플리터를 더 포함하고, 상기 제 2 스플리터에서 분리된 유체의 일부를 상기 제 3 열교환기를 거쳐 상기 증류탑으로 전달하는 가스 서브쿨 프로세스(Gas Subcooled Process) 모드(Ⅱ)의 경로를 갖는 것을 특징으로 한다.
본 발명의 일실시예에 따른 액상 천연가스 회수 시스템은 상기 증류탑의 하단과 상기 제 1 열교환기 사이에 재비기(reboiler)를 포함한 적어도 하나의 리보일링 스트림을 더 포함하는 것을 특징으로 한다.
본 발명의 일실시예에 따른 액상 천연가스 회수 시스템은 상기 제 2 스플리터에서 분리된 유체의 다른 일부를 상기 터보 팽창기로 전달하여 저온, 저압 상태로 처리하고 상기 증류탑에 주입하는 것을 특징으로 한다.
또는, 본 발명의 다른 실시예에 따른 액상 천연가스 회수방법은 (A) 원료를 제 1 열교환기에 주입하는 단계; (B) 상기 제 1 열교환기를 거친 상기 원료의 일부를 제 2 열교환기를 통해 사전 냉각하고, 기·액 분리기로 전달하는 단계; (C) 상기 기·액 분리기에 주입된 원료를 다수의 모드 경로를 따라 처리하여 증류탑에 주입하는 단계; 및 (D) 상기 증류탑의 하단을 통해 액상 천연가스(Natural Gas Liquids)을 회수하는 단계;를 포함한다.
본 발명의 다른 실시예에 따른 액상 천연가스 회수방법에서 상기 (A) 단계는 상기 제 1 열교환기와 제 2 열교환기 사이에 구비된 제 1 스플리터를 통해 분기된 상기 원료의 일부를 상기 제 1 열교환기로 다시 전달하여 열교환한 후에 상기 증류탑의 상부 일측에 연결된 제 3 열교환기를 거쳐 상기 증류탑으로 전달하는 경로를 통해 열교환 반복모드(Ⅰ)를 수행하는 것을 특징으로 한다.
본 발명의 다른 실시예에 따른 액상 천연가스 회수방법은 상기 (C) 단계에서 상기 다수의 모드 경로로서 상기 기·액 분리기를 통해 분리된 유체의 일부를 상기 증류탑의 상부 일측에 연결된 제 3 열교환기에서 냉각하여 상기 증류탑의 상단으로 주입하는 가스 서브쿨 프로세스 모드(Ⅱ)의 경로; 상기 기·액 분리기를 통해 분리된 유체의 다른 일부를 터보 팽창기로 전달하여 저압, 저온 상태로 처리하고, 상기 증류탑에 주입하는 저압, 저온 변환 모드의 경로; 및 상기 기·액 분리기를 통해 분리된 유체의 나머지를 상기 증류탑의 하단에 주입하는 모드의 경로;를 포함하는 것을 특징으로 한다.
본 발명의 다른 실시예에 따른 액상 천연가스 회수방법에서 상기 (D) 단계는 증류탑의 하단과 상기 제 1 열교환기 사이에 재비기(reboiler)를 포함한 적어도 하나의 리보일링 스트림을 이용하여 상기 증류탑 하단의 온도를 상승시켜 수행하는 것을 특징으로 한다.
본 발명의 특징 및 이점들은 첨부도면에 의거한 다음의 상세한 설명으로 더욱 명백해질 것이다.
이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이고, 사전적인 의미로 해석되어서는 아니 되며, 발명자가 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합되는 의미와 개념으로 해석되어야만 한다.
본 발명의 실시예에 따른 액상 천연가스 회수 시스템은 원료변동, 제품 성분 및 회수율 제한 등에 따른 다양한 모드로서, 열교환 반복모드(Ⅰ)가 없이 가스 서브쿨 프로세스 모드(Ⅱ)의 경로를 선택하거나 또는 열교환 반복모드(Ⅰ)와 가스 서브쿨 프로세스 모드(Ⅱ)의 경로를 모두 선택하여 수행할 수 있는 효과가 있다.
본 발명의 실시예에 따른 액상 천연가스 회수방법은 액상 천연가스 회수의 효율성을 높임과 동시에 에너지 효율성을 증가시킬 수 있는 효과가 있다.
도 1은 본 발명의 제 1 실시예에 따른 액상 천연가스 회수 시스템의 구성도.
도 2는 본 발명의 제 2 실시예에 따른 액상 천연가스 회수 시스템의 구성도.
도 3은 본 발명의 제 3 실시예에 따른 액상 천연가스 회수 시스템의 구성도.
도 4는 본 발명의 다른 실시예에 따른 액상 천연가스 회수방법을 설명하기 위한 순서도.
도 5a는 본 발명의 비교예에 따른 액상 천연가스 회수 시스템에서 검출된 열류량 그래프.
도 5b는 본 발명의 제 1 실시예에 따른 액상 천연가스 회수 시스템에서 검출된 열류량 그래프.
본 발명의 목적, 특정한 장점들 및 신규한 특징들은 첨부된 도면들과 연관되는 이하의 상세한 설명과 바람직한 실시예로부터 더욱 명백해질 것이다. 본 명세서에서 각 도면의 구성요소들에 참조번호를 부가함에 있어서, 동일한 구성 요소들에 한해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 번호를 가지도록 하고 있음에 유의하여야 한다. 또한, 제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 또한, 본 발명을 설명함에 있어서, 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명은 생략한다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 도 1은 본 발명의 제 1 실시예에 따른 액상 천연가스 회수 시스템의 구성도이고, 도 2는 본 발명의 제 2 실시예에 따른 액상 천연가스 회수 시스템의 구성도이며, 도 3은 본 발명의 제 3 실시예에 따른 액상 천연가스 회수 시스템의 구성도이다.
본 발명의 제 1 실시예에 따른 액상 천연가스 회수 시스템은 도 1에 도시된 바와 같이 제 1 열교환기(110), 제 2 열교환기(120), 기·액 분리기(130), 터보 팽창기(140), 제 3 열교환기(150), 증류탑(160), 리보일링 스트림(170) 및 제어부(도시하지 않음)를 포함한다.
본 발명의 제 1 실시예에 따른 액상 천연가스 회수 시스템은 원료를 제 1 열교환기(110)와 제 2 열교환기(120)를 통해 사전 냉각하고, 기·액 분리기(130)를 통해 분리된 유체들을 공정에 따라 다양한 모드의 경로를 거쳐 증류탑(160)에 주입한다.
예를 들어, 기·액 분리기(130)를 통해 분리된 유체들을 저압, 저온 상태로 변환하기 위한 모드로서, 제어부는 제 2 스플리터(135)를 이용하여 기·액 분리기(130)에서 분리된 유체들을 터보 팽창기(140)로 전달하고 저압, 저온 상태로 처리하여 증류탑(160)에 주입한다.
이때, 터보 팽창기(140)를 이용하여 압력을 낮추는 이유는 메탄 및 에탄 등의 탄화수소들의 끓는점이 낮으므로, 이를 증류탑(160)에서 분리할 수 있도록 저온을 생성하기 위함이다.
이렇게 증류탑(160) 상부에서 생성된 메탄은 제 3 열교환기(150)와 제 1 열교환기(110)를 통해 다른 모드의 흐름들을 냉각시키며, 열 교환이 끝난 후 터보 팽창기(140)에서 저압 상태로 변환된 후 판매 가스(Sale gas)로써 배출된다.
또는, 본 발명의 제 1 실시예에 따른 액상 천연가스 회수 시스템은 증류탑(160) 하단에서 액상 천연가스를 분리하는 모드를 수행하며, 이 모드의 흐름은 원하는 제품의 조건에 따라 후처리가 수행될 수 있다.
또한, 본 발명의 제 1 실시예에 따른 액상 천연가스 회수 시스템은 원료가 주입되는 제 1 열교환기(110)의 효율성을 향상시키기 위한 열교환 반복모드(Ⅰ)로서, 제 1 열교환기(110)를 거친 원료 흐름의 일부를 제 1 스플리터(115)를 통해 분기하여 제 1 열교환기(110)로 다시 전달하여 열교환하고, 이어서 제 3 스플리터(145)와 제 3 열교환기(150)를 거쳐 증류탑(160) 상부에 주입한다.
이러한 열교환 반복모드(Ⅰ)는 증류탑(160) 상부에서 생성된 메탄을 주성분으로 하는 흐름이 저온의 흐름이기 때문에, 원료를 제 1 열교환기(110)에서 1차 냉각시킬 경우 열 교환 온도차가 크게 되어 저온 에너지의 활용성이 낮아지므로, 이를 개선하기 위해서 메탄을 주성분으로 하는 증류탑(160) 상부 흐름으로 원료를 냉각시키기 이전에 원료를 제 1 열교환기(110)에서 반복 냉각시켜 열효율을 향상시키는 것이다.
이때, 원료가 변동되거나 또는 열교환 반복모드(Ⅰ)의 경로가 고장이 난 경우에, 본 발명의 제 1 실시예에 따른 액상 천연가스 회수 시스템은 도 1에 도시된 바와 같이 가스 서브쿨 프로세스(Gas Subcooled Process) 모드(Ⅱ)의 경로를 통해 기·액 분리기(130)를 거쳐 분리된 액체 흐름의 일부를 제 3 스플리터(145)와 제 3 열교환기(150)를 거쳐 증류탑(160) 상부에 주입하는 가스 서브쿨 프로세스 모드를 수행할 수 있다.
이러한 가스 서브쿨 프로세스 모드(Ⅱ)의 경로는 기·액 분리기(130)를 거쳐 분리된 액체 흐름의 일부를 제 3 열교환기(150)에서 증류탑 상부에서 나오는 저온의 유체와의 열 교환을 통해 냉각된 후, 밸브에 의해 냉각하여 증류탑(160)의 상단으로 주입한다.
물론, 가스 서브쿨 프로세스 모드(Ⅱ)의 경로는 선택적인 경로로서 가스 서브쿨 프로세스 모드(Ⅱ)의 경로를 선택하지 않으면, 도 2에 도시된 바와 같이 본 발명의 제 2 실시예에 따른 액상 천연가스 회수 시스템에서처럼 열교환 반복모드(Ⅲ)의 경로를 통해 증류탑(260) 상부 흐름으로 원료를 냉각시키기 이전에 원료를 제 1 열교환기(210)에서 반복 냉각시켜 열효율을 향상시킬 수 있다.
그리고, 본 발명의 제 1 실시예에 따른 액상 천연가스 회수 시스템은 증류탑(160) 하단에서의 온도가 너무 낮으므로, 증류탑(160) 하단에 재비기(reboiler: 도시하지 않음)를 포함한 리보일링 스트림(170)을 구비하여, 증류탑(160) 하단의 온도를 높여 액상 천연가스 회수의 효율성을 높임과 동시에 에너지 효율성을 증가시킬 수 있다.
이때, 리보일링 스트림(170)이 도 1에서는 하나의 경로로 도시하지만, 이에 한정되지 않고, 도 3에 도시된 본 발명의 제 3 실시예에 따른 액상 천연가스 회수 시스템에서처럼 증류탑(360) 하단에 구비된 제 1 리보일링 스트림(371)과 제 2 리보일링 스트림(372)처럼 다수 구비될 수도 있다.
이와 같이 구성된 본 발명의 제 1 실시예에 따른 액상 천연가스 회수 시스템은 원료가 도입부분의 제 1 열교환기(110)를 거쳐 일차적으로 예냉된 후 제 1 스플리터(115)에서 두 흐름으로 분할되고, 분할된 흐름 중 일부를 제 1 열교환기(110)에서 다시 거쳐 더 낮은 온도로 이차 예냉하는 열교환 반복모드(Ⅰ)의 경로를 수행한다.
이러한 이차 예냉하는 열교환 반복모드(Ⅰ)의 경로를 통해 원료를 과냉시켜 충분히 낮은 온도로 변환하여 밸브를 통해 압력이 낮아진 후 증류탑의 상단으로 주입하므로, 증류탑 상부에서 매우 낮은 온도에서 메탄을 생성하는 메탄 생성효율을 향상시킬 수 있다.
또한, 본 발명의 제 1 실시예에 따른 액상 천연가스 회수 시스템은 예를 들어 열교환 반복모드(Ⅰ)가 없이 가스 서브쿨 프로세스 모드(Ⅱ)의 경로를 선택하거나 또는 열교환 반복모드(Ⅰ)와 가스 서브쿨 프로세스 모드(Ⅱ)의 경로를 모두 선택 수행하여, 원료변동, 제품 성분 및 회수율 제한 등에 따라 다양한 모드를 선택하여 수행할 수 있다.
그리고, 본 발명의 제 1 실시예에 따른 액상 천연가스 회수 시스템은 증류탑(160) 하단에서 재비기를 포함한 리보일링 스트림(170)을 구비하여, 증류탑(160) 하단의 온도를 상승시키는 동시에 제 1 열교환기(110)에서의 냉매 역할을 수행하여 액상 천연가스 회수의 효율성을 높임과 동시에 에너지 효율성을 증가시킬 수 있는 특징이 있다.
이하, 본 발명의 다른 실시예에 따른 액상 천연가스 회수방법에 대해 도 4를 참조하여 설명한다. 도 4는 본 발명의 다른 실시예에 따른 액상 천연가스 회수방법을 설명하기 위한 순서도이다.
여기서, 본 발명의 다른 실시예에 따른 액상 천연가스 회수방법에 관한 설명은 예컨대, 도 1에 도시된 본 발명의 제 1 실시예에 따른 액상 천연가스 회수 시스템을 이용하여 천연가스를 회수하는 방법에 대해 기술한다.
본 발명의 다른 실시예에 따른 액상 천연가스 회수방법은 먼저 원료를 제 1 열교환기(110)에 주입한다(S410).
구체적으로, 제어부는 열교환 반복모드(Ⅰ)로서, 제 1 열교환기(110)를 거친 원료 흐름의 일부를 제 1 스플리터(115)를 통해 분기하여 제 1 열교환기(110)로 다시 전달하여 열교환하고, 이어서 제 3 스플리터(145)와 제 3 열교환기(150)를 거쳐 증류탑(160) 상부에 주입한다.
이와 동시에 제어부는 제 1 열교환기(110)를 거친 다른 원료 흐름을 제 2 열교환기(120)를 통해 사전 냉각하고, 기·액 분리기(130)로 전달한다(S420).
이후, 제어부는 기·액 분리기(130)에 주입된 원료를 다수의 모드 경로를 따라 처리하여 증류탑(160)에 주입한다(S430).
즉, 제어부는 기·액 분리기(130)를 통해 분리된 액체 흐름의 일부를 제 3 열교환기(150)에서 증류탑 상부에서 나오는 저온의 유체와 열 교환을 통해 냉각한 후, 밸브에 의해 냉각하여 증류탑(160)의 상단으로 주입하는 가스 서브쿨 프로세스 모드(Ⅱ)의 경로, 기·액 분리기(130)를 통해 분리된 액체 흐름의 다른 일부를 터보 팽창기(140)로 전달하고 저압, 저온 상태로 처리하여 증류탑(160)에 주입하는 저압, 저온 변환 모드의 경로, 및 기·액 분리기(130)를 통해 분리된 액체 흐름의 나머지를 증류탑(160)의 하단에 주입하는 모드의 경로를 선택하여 수행할 수 있다.
이때 제어부는 예를 들어 원료변동, 제품 성분 및 회수율 제한 등과 같은 조건에 따라 상술한 다수의 모드 경로를 선택하여 기·액 분리기(130)에 주입된 원료를 처리하여 증류탑(160)에 주입할 수 있다.
증류탑(160)에 주입한 후, 제어부는 증류탑(160)의 하단을 통해 액상 천연가스를 회수한다(S440).
여기서, 증류탑(160)의 하단을 통해 액상 천연가스를 효율적으로 회수하기 위해서는 증류탑(160) 하단의 온도를 상승시켜야 하고, 이를 위해 제어부는 도 1 또는 도 3에 도시된 바와 같이 증류탑(160)의 하단에 구비된 적어도 하나의 재비기(reboiler)를 포함한 리보일링 스트림을 이용하여 증류탑(160) 하단의 온도를 상승시킬 수 있다.
이때, 적어도 하나의 리보일링 스트림은 제 1 열교환기(110)에서 냉매 역할을 수행하여 액상 천연가스 회수의 효율성을 높임과 동시에 에너지 효율성을 증가시킬 수 있다.
이에 따라, 본 발명의 다른 실시예에 따른 액상 천연가스 회수방법은 액상 천연가스 회수의 효율성을 높임과 동시에 에너지 효율성을 증가시킬 수 있다.
이하, 본 발명의 제 1 실시예에 따른 액상 천연가스 회수 시스템의 효율에 대해 비교예와 실시예를 통해 설명한다.
비교예
비교예는 도 1에 도시된 본 발명의 제 1 실시예에 따른 액상 천연가스 회수 시스템에서 열교환 반복모드(Ⅰ)의 경로가 없이 가스 서브쿨 프로세스 모드(Ⅱ)의 경로를 갖고 액상 천연가스를 회수하는 예로서, 예컨대 60 Bar의 압력, 38 ℃의 온도, 1000 kmol·h-1 의 흐름속도, 30단의 증류탑(160) 조건에서 아래 [표 1]에 기재된 실험원료들을 각각 처리하여 액상 천연가스를 회수한다.
실시예
실시예는 도 1에 도시된 본 발명의 제 1 실시예에 따른 액상 천연가스 회수 시스템을 동작시켜 액상 천연가스를 회수하는 예로서, 예컨대 60 Bar의 압력, 38 ℃의 온도, 1000 kmol·h-1 의 흐름속도, 30단의 증류탑(160) 조건에서 아래 [표 1]에 기재된 실험원료들을 각각 처리하여 액상 천연가스를 회수한다.
표 1
성분(Component) | 제1실험원료(Rich feed) | 제2실험원료(Lean feed) |
메탄(Methane) | 0.6900 | 0.9300 |
에탄(Ethane) | 0.1500 | 0.0300 |
프로판(Propane) | 0.0750 | 0.0150 |
이소부탄(i-Butane) | 0.0450 | 0.0090 |
이소펜탄(i-Pentane) | 0.0150 | 0.0030 |
엔헥산(n-hexane) | 0.0150 | 0.0030 |
질소(Nitrogen) | 0.0100 | 0.0100 |
비교예와 실시예의 검출결과, 아래의 [표 2]와 [표 3]에 기재된 바와 같은 에탄 회수율과 에너지 소모량이 검출된다.
표 2
제1실험원료(Rich feed) | |||
회수율 (%) | 총 소비전력(kW) | ||
에탄(C2) | 프로판(C3) | ||
비교예 | 92.04 | 99.8 | 1300 |
실시예 | 92.09 | 99.11 | 1072(-17.5%) |
표 3
제2실험원료(Lean feed) | |||
회수율 (%) | 총 소비전력(kW) | ||
에탄(C2) | 프로판(C3) | ||
비교예 | 90.95 | 98.81 | 828 |
실시예 | 90.97 | 98.64 | 798(-3.6%) |
비교예와 실시예의 검출결과, 에탄 회수율 측면에서 실시예가 비교예와 같거나 높고, 에너지 소모량 측면에서 실시예가 비교예보다 제 1 실험원료(Rich feed)와 제 2 실험원료(Lean feed) 각각 17.5%와 3.6%로 절감한 것을 확인할 수 있다. 프로판 회수율의 경우, 비교예에 비해 실시예가 약간 저하되는 경향이 있지만, 비교예에 비해 조금 낮아지더라도 98% 이상으로 충분히 높은 회수율을 유지하기 때문에 이는 단점으로 볼 수 없다.
특히, 원료의 조성에 따른 검출결과에서, 에탄의 비율이 낮은 제 2 실험원료(Lean feed) 보다는 에탄의 비율이 상대적으로 높은 제 1 실험원료(Rich feed)의 경우에 실시예가 보다 효율적임을 알 수 있다. 이는 비교예에 비해 실시예에서 구비한 열교환 반복모드(Ⅰ)의 경로를 통한 에너지 효율 증대 효과가 원료의 조성 변화에 대한 수율을 향상시키는 것을 나타낸다.
또한, 비교예와 실시예 각각에 대해 제 1 열교환기(110)에서 열류량을 검출하면, 도 5a와 도 5b에 도시된 바와 같이 비교예에서 검출된 열류량 그래프는 초기의 열류량 편차가 크게 발생하는 반면에, 실시예에서 검출된 열류량 그래프는 "A" 부분처럼 초기의 열류량 편차를 상당부분 줄여 열효율을 향상시키는 것을 알 수 있다.
한편, 액상 천연가스 회수 과정은 경우에 따라 에탄을 회수하지 않고 프로판만 회수하는 경우가 있어, 실시예의 구성을 이용하여 (ㄱ) 에탄과 프로판 모두 회수하는 경우 및 (ㄴ) 에탄을 회수하지 않고 프로판만 회수하는 경우로 구분하고, 에탄 회수의 경우 에탄 회수 90% 이상, 프로판 회수의 경우 95% 이상 회수로 제한하여 회수율을 검출하면, 아래의 [표 4]에 기재된 바와 같이 실시예에서 프로판 회수에 대한 공정 운전 가능 여부를 확인할 수 있다.
표 4
제1실험원료(Rich feed) | |||
회수율 (%) | 총 소비전력(kW) | ||
에탄(C2) | 프로판(C3) | ||
(ㄱ) | 90.97 | 98.64 | 798 |
(ㄴ) | 54.81 | 95.12 | 613 |
[표 4]에 기재된 실험 결과에서처럼, 에탄을 회수하지 않고 프로판만 회수하는 경우는 공정의 운전성에서 문제가 없었고, 에탄과 프로판 모두 회수하는 경우에 비해 완화된 분리 조건으로 인하여 에너지 요구량이 감소하는 것을 알 수 있다.
또한, 본 발명의 실시예가 주로 제 1 실험원료(Rich feed) 쪽에서 더 높은 효율성을 보이기 때문에, 제 1 실험원료(Rich feed)의 조건에서는 본 발명의 실시예의 구성 그대로 운영을 하고, 이후 원료 조성이 변화하여 효율성이 감소할 경우에는 다양한 모드의 경로를 형성하는 등의 운전 환경을 변화시켜 효율성을 유지시킬 수도 있다.
본 발명의 기술사상은 상기 바람직한 실시예에 따라 구체적으로 기술되었으나, 전술한 실시예들은 그 설명을 위한 것이며, 그 제한을 위한 것이 아님을 주의하여야 한다.
또한, 본 발명의 기술분야의 통상의 전문가라면 본 발명의 기술사상의 범위 내에서 다양한 실시가 가능함을 이해할 수 있을 것이다.
본 발명은 원료변동, 제품 성분 및 회수율 제한 등에 따른 다양한 모드로서, 열교환 반복모드(Ⅰ)가 없이 가스 서브쿨 프로세스 모드(Ⅱ)의 경로를 선택하거나 또는 열교환 반복모드(Ⅰ)와 가스 서브쿨 프로세스 모드(Ⅱ)의 경로를 모두 선택하여 수행한다.
Claims (9)
- 원료가 주입되어 사전 냉각되는 제 1 열교환기;상기 제 1 열교환기에 연결되어 상기 원료를 예냉하는 제 2 열교환기;상기 제 2 열교환기에 연결되어 상기 원료를 분리하는 기·액 분리기;상기 기·액 분리기의 일측에 연결된 터보 팽창기;상기 기·액 분리기의 타측에 연결된 증류탑; 및상기 증류탑의 상부 일측에 연결된 제 3 열교환기;를 포함하는 액상 천연가스 회수 시스템.
- 제 1 항에 있어서,상기 제 1 열교환기와 제 2 열교환기 사이에 구비된 제 1 스플리터를 더 포함하고,상기 제 1 스플리터에서 분기된 상기 원료의 일부를 상기 제 1 열교환기로 다시 전달하여 열교환하여 상기 제 3 열교환기를 거쳐 상기 증류탑으로 전달하는 열교환 반복모드(Ⅰ)의 경로를 갖는 것을 특징으로 하는 액상 천연가스 회수 시스템.
- 제 1 항에 있어서,상기 기·액 분리기와 터보 팽창기 사이에 구비된 제 2 스플리터를 더 포함하고,상기 제 2 스플리터에서 분리된 유체의 일부를 상기 제 3 열교환기를 거쳐 상기 증류탑으로 전달하는 가스 서브쿨 프로세스(Gas Subcooled Process) 모드(Ⅱ)의 경로를 갖는 것을 특징으로 하는 액상 천연가스 회수 시스템.
- 제 1 항에 있어서,상기 증류탑의 하단과 상기 제 1 열교환기 사이에 재비기(reboiler)를 포함한 적어도 하나의 리보일링 스트림을 더 포함하는 것을 특징으로 하는 액상 천연가스 회수 시스템.
- 제 3 항에 있어서,상기 제 2 스플리터에서 분리된 유체의 다른 일부를 상기 터보 팽창기로 전달하여 저온, 저압 상태로 처리하고 상기 증류탑에 주입하는 것을 특징으로 하는 액상 천연가스 회수 시스템.
- (A) 원료를 제 1 열교환기에 주입하는 단계;(B) 상기 제 1 열교환기를 거친 상기 원료의 일부를 제 2 열교환기를 통해 사전 냉각하고, 기·액 분리기로 전달하는 단계;(C) 상기 기·액 분리기에 주입된 원료를 다수의 모드 경로를 따라 처리하여 증류탑에 주입하는 단계; 및(D) 상기 증류탑의 하단을 통해 액상 천연가스(Natural Gas Liquids)를 회수하는 단계;를 포함하는 액상 천연가스 회수방법.
- 제 6 항에 있어서,상기 (A) 단계는상기 제 1 열교환기와 제 2 열교환기 사이에 구비된 제 1 스플리터를 통해 분기된 상기 원료의 일부를 상기 제 1 열교환기로 다시 전달하여 열교환한 후에 상기 증류탑의 상부 일측에 연결된 제 3 열교환기를 거쳐 상기 증류탑으로 전달하는 경로를 통해 열교환 반복모드(Ⅰ)를 수행하는 것을 특징으로 하는 액상 천연가스 회수방법.
- 제 6 항에 있어서,상기 (C) 단계에서 상기 다수의 모드 경로는상기 기·액 분리기를 통해 분리된 유체의 일부를 상기 증류탑의 상부 일측에 연결된 제 3 열교환기에서 냉각하여 상기 증류탑의 상단으로 주입하는 가스 서브쿨 프로세스 모드(Ⅱ)의 경로;상기 기·액 분리기를 통해 분리된 유체의 다른 일부를 터보 팽창기로 전달하여 저압, 저온 상태로 처리하고, 상기 증류탑에 주입하는 저압, 저온 변환 모드의 경로; 및상기 기·액 분리기를 통해 분리된 유체의 나머지를 상기 증류탑의 하단에 주입하는 모드의 경로;를 포함하는 것을 특징으로 하는 액상 천연가스 회수방법.
- 제 6 항에 있어서,상기 (D) 단계는 증류탑의 하단과 상기 제 1 열교환기 사이에 재비기(reboiler)를 포함한 적어도 하나의 리보일링 스트림을 이용하여 상기 증류탑 하단의 온도를 상승시켜 수행하는 것을 특징으로 하는 액상 천연가스 회수방법.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2014-0024215 | 2014-02-28 | ||
KR20140024215 | 2014-02-28 | ||
KR10-2014-0114128 | 2014-08-29 | ||
KR1020140114128A KR101600188B1 (ko) | 2014-02-28 | 2014-08-29 | 액상 천연가스 회수 시스템 및 이를 이용한 액상 천연가스 회수방법 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015130030A1 true WO2015130030A1 (ko) | 2015-09-03 |
Family
ID=54009304
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2015/001210 WO2015130030A1 (ko) | 2014-02-28 | 2015-02-06 | 액상 천연가스 회수 시스템 및 이를 이용한 액상 천연가스 회수방법 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2015130030A1 (ko) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2637611B2 (ja) * | 1990-07-04 | 1997-08-06 | 三菱重工業株式会社 | Nglまたはlpgの回収方法 |
KR20070114192A (ko) * | 2005-02-24 | 2007-11-29 | 트위스터 비.브이. | 천연 가스 스트림을 냉각시킨 후에 냉각된 스트림을 여러분획물로 분리하는 방법 및 시스템 |
KR20080015819A (ko) * | 2005-05-19 | 2008-02-20 | 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드 | 통합형 ngl 회수 및 액화 천연 가스 생산 |
JP2010032087A (ja) * | 2008-07-28 | 2010-02-12 | Ihi Corp | 液化天然ガスの分離装置及び分離方法 |
KR20110010776A (ko) * | 2008-05-16 | 2011-02-07 | 루머스 테크놀로지 인코포레이티드 | 등압 개방 냉동 ngl 회수 |
-
2015
- 2015-02-06 WO PCT/KR2015/001210 patent/WO2015130030A1/ko active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2637611B2 (ja) * | 1990-07-04 | 1997-08-06 | 三菱重工業株式会社 | Nglまたはlpgの回収方法 |
KR20070114192A (ko) * | 2005-02-24 | 2007-11-29 | 트위스터 비.브이. | 천연 가스 스트림을 냉각시킨 후에 냉각된 스트림을 여러분획물로 분리하는 방법 및 시스템 |
KR20080015819A (ko) * | 2005-05-19 | 2008-02-20 | 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드 | 통합형 ngl 회수 및 액화 천연 가스 생산 |
KR20110010776A (ko) * | 2008-05-16 | 2011-02-07 | 루머스 테크놀로지 인코포레이티드 | 등압 개방 냉동 ngl 회수 |
JP2010032087A (ja) * | 2008-07-28 | 2010-02-12 | Ihi Corp | 液化天然ガスの分離装置及び分離方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4602477A (en) | Membrane-aided distillation for carbon dioxide and hydrocarbon separation | |
US8752401B2 (en) | Method for producing a flow which is rich in methane and a cut which is rich in C2+ hydrocarbons from a flow of feed natural gas and an associated installation | |
US11629108B2 (en) | Method for recovering a stream of C2+ hydrocarbons in a residual refinery gas and associated installation | |
EP0117052B1 (en) | Distillative separation employing bottom additives | |
GB1475475A (en) | Process for removing condensable fractions from hydrocarbon- containing gases | |
BRPI1002205B1 (pt) | Remoção de nitrogênio com recuperação de líquidos de gás natural de refrigeração aberta isobárica | |
US4444576A (en) | Energy-saving distillative separation using low-temperature heat input | |
GB975628A (en) | Process for the recovery of hydrogen from industrial gases | |
EA016149B1 (ru) | Способ и устройство для выделения и разделения на фракции сырьевого потока смешанных углеводородов | |
KR950025402A (ko) | 이중 탈메탄화기 분류 시스템에서의 에틸렌 회수를 위한 예비 냉각 방법 | |
WO2015130030A1 (ko) | 액상 천연가스 회수 시스템 및 이를 이용한 액상 천연가스 회수방법 | |
EP3666856B1 (en) | Ethylene manufacturing method and ethylene manufacturing device | |
US11154812B2 (en) | Method for purifying a natural gas stream | |
CN106316750B (zh) | 一种费托合成尾气的回收装置 | |
KR101600188B1 (ko) | 액상 천연가스 회수 시스템 및 이를 이용한 액상 천연가스 회수방법 | |
CN111393252A (zh) | 一种轻烃分离装置及方法 | |
WO1994026681A1 (en) | Single column distillative separation employing bottom additives | |
US3292382A (en) | Low temperature separation of h2s from hydrocarbon gas | |
US20140012058A1 (en) | Distillation column pressure control | |
KR20030094247A (ko) | 개량된 열통합 정류시스템 | |
CN1016269B (zh) | 高纯度氢气的低温回收 | |
CN106574818A (zh) | 从烃流中回收甲烷的方法和系统 | |
CN111056904A (zh) | 一种回收炼厂焦化装置干气中各种有效组分的方法 | |
WO2019230995A1 (ko) | 가스 혼합물로부터 이산화탄소의 포획 및 분리를 위한 분리막 기반 공정 | |
CN110981684B (zh) | 一种回收炼厂加氢装置尾气中各种有效组分的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15756065 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15756065 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017539449 Country of ref document: JP Kind code of ref document: A |