WO2015129866A1 - Sealing member - Google Patents

Sealing member Download PDF

Info

Publication number
WO2015129866A1
WO2015129866A1 PCT/JP2015/055888 JP2015055888W WO2015129866A1 WO 2015129866 A1 WO2015129866 A1 WO 2015129866A1 JP 2015055888 W JP2015055888 W JP 2015055888W WO 2015129866 A1 WO2015129866 A1 WO 2015129866A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealing member
pressed
repulsive force
penetrating
sealing
Prior art date
Application number
PCT/JP2015/055888
Other languages
French (fr)
Japanese (ja)
Inventor
青山 高久
英樹 河野
継紅 劉
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN201580010017.8A priority Critical patent/CN106068413B/en
Priority to KR1020167024727A priority patent/KR101856892B1/en
Publication of WO2015129866A1 publication Critical patent/WO2015129866A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/193Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • H01M50/627Filling ports
    • H01M50/636Closing or sealing filling ports, e.g. using lids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/186Sealing members characterised by the disposition of the sealing members
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a sealing member.
  • a gasket used for sealing the periphery of an electrode of a lithium ion battery such as a gasket described in Patent Document 1 (Japanese Patent Laid-Open No. 2013-157155), has been proposed.
  • This gasket is made of resin and is configured to have a portion extending around a hole penetrating vertically.
  • the above-described gasket disclosed in Patent Document 1 is configured only to have a uniform thickness as a whole, and is more effective for leakage of fluid and entry of foreign matter from the outside.
  • the shape of a sealing member such as a gasket that can be suppressed is not described. In particular, no consideration has been given to a shape capable of maintaining a good sealing state even when a long time has passed in a state where the sealing member is used and pressed.
  • This invention is made
  • the subject of this invention is providing the sealing member which can acquire a favorable sealing effect even when it is a case where it uses for a long time. .
  • the sealing member according to the first aspect is an annular sealing member, and is used in a state where it is pressed from one side and the other side in the penetrating direction in the inner penetrating portion. In the pressed state, the sealing member has a portion where the compression ratio in the pressed direction is larger on the outside than on the inside.
  • the sealing member according to the second aspect is the sealing member according to the first aspect, and is configured such that the thickness in the pressed direction increases from the inside toward the outside.
  • the sealing member according to the third aspect is the sealing member according to the first aspect or the second aspect, and has a tensile elastic modulus of 0.8 GPa or less.
  • the sealing member according to the fourth aspect is a sealing member according to any one of the first to third aspects, and includes a perfluoropolymer.
  • the sealing member according to the fifth aspect is the sealing member according to the fourth aspect, and the PFA content is 50 wt% or more and 100 wt% or less.
  • the sealing member according to the sixth aspect is a sealing member according to any one of the first to fifth aspects, and is used for a battery gasket.
  • the sealing member according to the present invention has a portion having a larger compression ratio on the outer side than on the inner side, so that the sealing effect can be improved when used by pressing from the penetration direction. .
  • FIG. 10 is a top view of sealing member 10 as a candidate for simulation. It is a top view of the sealing member 110 as an example. It is a top view of the sealing member 210 as an example. It is side view sectional drawing of the sealing member 10 as the object of simulation. It is side surface sectional drawing of the sealing member 10X as the object of simulation.
  • FIG. 6 is a side sectional view of a sealing member 310 as an example.
  • FIG. 4 is a side sectional view of a sealing member 410 as an example.
  • FIG. 5 is a side sectional view of a sealing member 510 as an example. It is sectional drawing of the side view of the sealing member 610 as an example.
  • FIG. 10 is a side sectional view of a sealing member 710 as an example.
  • sealing member is not particularly limited, and examples thereof include a gasket and packing.
  • the sealing member used for a battery gasket is preferable.
  • Such a battery is a lithium ion battery.
  • As an electrolytic solution of this lithium ion battery one that is unlikely to occur until deterioration reaches 60 ° C. or higher is desirable.
  • the sealing member When used as a gasket for a battery, the sealing member is preferably used such that a battery electrode (for example, a positive electrode or a negative electrode) is located in a portion penetrating inside the sealing member.
  • a battery electrode for example, a positive electrode or a negative electrode
  • Shape of the sealing member is an annular shape, and is used in a state where it is pressed from one side and the other side in the penetrating direction at the inner penetrating portion.
  • the compression ratio in the pressed direction is not particularly limited as long as it has a portion where the outer side is larger than the inner side.
  • the inclined surface may be inclined at 10 degrees or more and 80 degrees or less with respect to a plane whose normal is the penetrating direction, You may incline at 20 degree or more and 70 degrees or less.
  • annular includes a cylindrical shape in which the inner cylindrical portion 11 is cut out and the outer periphery 12 is circular, as in the sealing member 10 shown in the plan view of FIG.
  • a square tube in which the inner rectangular portion 111 is hollowed out and the outer periphery 112 is square is included, and like the sealing member 210 shown in the plan view of FIG.
  • a shape in which the center with respect to the hollowed portion 211 and the center with respect to the outer periphery 212 are eccentric is also included.
  • the shape of the hollowed portion on the inner side in plan view of the sealing member is not particularly limited, and may be a hollowed shape of a cylindrical shape, or a polygonal column such as a quadrangular column or a pentagonal column. It may be a hollow shape.
  • the shape of the outer edge of the sealing member in plan view is not particularly limited, and may be an arc shape or a polygonal shape.
  • the annular sealing member may be configured such that the pressed portion to be pressed in the usage state increases in thickness in the direction in which it is pressed from the inside toward the outside in the non-pressed state.
  • the upper surface 13 is positioned upward toward the outer side.
  • the bottom surface 14 may be shaped so as to be positioned downward as it goes outward, or like the sealing member 10X shown in FIG. 5, the upper surface 13x is positioned upward as it goes outward, and the lower surface 14x extends to the same height position. The shape may be different.
  • the upper side and the lower side in the direction perpendicular to the penetrating direction from the viewpoint of easily obtaining a sealing effect by improving the balance of force when pressed from one side and the other side in the penetrating direction of the sealing member It is more preferable that the shape of
  • the upper and lower portions of the sealing member do not need to form a plane, and are, for example, cross-sectional views including a line extending in the penetrating direction including the center of the penetrating portion inside the sealing member.
  • the upper portion 313 may bulge upward and the lower portion 314 may bulge downward, or as the sealing member 410 illustrated in FIG. 7.
  • the upper portion 413 may be recessed downward and the lower portion 414 may be recessed upward.
  • the upper portion 513 and the lower portion 514 may both be inclined and may have shapes with different inclination angles.
  • the upper part 613 and the lower part 614 may be inclined as a whole with an uneven shape.
  • an upper inclined portion 713 a that is located around the inner penetrating portion and is inclined with respect to the penetrating direction so that the length in the penetrating direction becomes shorter toward the inner side
  • the lower portion It may have a shape having an inclined flat portion 714a and an upper flat portion 713b that is not inclined outside the upper inclined portion 713a and a lower flat portion 714b that is not inclined outside the lower inclined portion 714a.
  • the sealing member only needs to have a portion where the compression ratio in the pressed direction is larger on the outer side than on the inner side in the pressed state.
  • you may be comprised so that a part with a larger compression ratio may not arise inside than the outside.
  • the inner side and the outer side of the sealing member are based on the center of the thickness in the inner and outer directions in the cross section including the line extending in the penetrating direction including the center of the penetrating portion inside the sealing member.
  • the inner compression ratio is preferably smaller than the outer compression ratio, and the value obtained by subtracting the inner compression ratio from the outer compression ratio is preferably 2% or more and 60% or less. It is more preferably 3% or more and 50% or less, and further preferably 10% or more and 30% or less.
  • the overall compression ratio of the sealing member is preferably 10% or more in order to reduce the influence of dimensional tolerance. Furthermore, 20% or more is preferable in order to maintain a high repulsive force for a long period.
  • the compression ratio means a sealing member (or a state where no force is applied to the sealing member in a cross section including a line extending in the penetration direction including the center of the penetrating portion inside the sealing member (or The sealing member (or specifying the sealing member) in a state where the sealing member is pressed from one side and the other side in the penetrating direction and sealed with respect to the cross-sectional area of the specific part of the sealing member)
  • the ratio of the reduced portion of the cross-sectional area (1—the cross-sectional area of the sealing member in the pressed state / the cross-sectional area of the sealing member in a state where no force is applied).
  • This compression ratio is such that when the sealing member is pressed from one side and the other side in the penetrating direction and sealed (used state), the size of the sealing member simply decreases in the pressing direction. The value is obtained assuming that the dimensions do not change.
  • the inclination angle of the surface is relative to the horizontal plane. It is preferably inclined at 5 degrees or more, more preferably at least 10 degrees, and further preferably at least 20 degrees.
  • the material of the sealing member is not particularly limited, and the upper limit of the tensile elastic modulus of the sealing member is preferably 0.8 in order to obtain the sealing effect by the sealing member for a longer time. GPa, more preferably 0.7 GPa. Further, the lower limit of the tensile modulus of the sealing member is preferably 0.3 GPa. The basis for the desirable range of the tensile modulus will be described later.
  • the material for the sealing member is not particularly limited, and rubbery substances, resins other than fluororesins, fluororesins, and mixtures thereof can be used. These materials are preferably contained as a main component of the sealing member.
  • rubbery substances examples include nitrile rubber (NBR), hydrogenated nitrile rubber (HNBR), fluoro rubber (FKM), perfluoro fluoro rubber (FFKM) silicone rubber (VMQ), ethylene propylene rubber (EPDM), and chloroprene rubber.
  • NBR nitrile rubber
  • HNBR hydrogenated nitrile rubber
  • FKM fluoro rubber
  • FFKM perfluoro fluoro rubber
  • VMQ ethylene propylene rubber
  • EPDM ethylene propylene rubber
  • chloroprene rubber CR
  • acrylic rubber ACM
  • IIR butyl rubber
  • U urethane rubber
  • NR natural rubber
  • CSM chlorosulfonated polyethylene rubber
  • CO epichlorohydrin rubber
  • resins other than fluororesins include polyethylene (PE), polypropylene (PP), polycarbonate (PC), methacrylic resin, acrylonitrile / butadiene / styrene resin (ABS), polymethylpentene (PMP), and polystyrene (PA).
  • PE polyethylene
  • PP polypropylene
  • PC polycarbonate
  • methacrylic resin methacrylic resin
  • ABS acrylonitrile / butadiene / styrene resin
  • PMP polymethylpentene
  • PA polystyrene
  • At least one selected from the group consisting of polyethylene terephthalate (PET), melamine resin, phenolic resin, and unsaturated polyester resin can be used.
  • PET polyethylene terephthalate
  • melamine resin phenolic resin
  • unsaturated polyester resin unsaturated polyester resin
  • Fluororesin includes polytetrafluoroethylene (PTFE), tetrafluoroethylene (TFE) / hexafluoropropylene (HFP) copolymer (FEP), TFE / perfluoro (alkyl vinyl ether) (PAVE) copolymer (PFA) , Polyphenylene sulfide (PPS), ethylene (Et) / tetrafluoroethylene (TFE) copolymer, polychlorotrifluoroethylene (PCTFE), chlorotrifluoroethylene (CTFE) / TFE copolymer, Et / CTFE copolymer , Polyvinylidene fluoride (PVdF), TFE / vinylidene fluoride (VdF) copolymer, VdF / HFP copolymer, and polyvinyl fluoride (PVF) can be used. .
  • PTFE polytetrafluoroethylene
  • TFE tetraflu
  • TFE / HFP copolymer when describing as “TFE / HFP copolymer”, it is a copolymer including a polymerized unit based on TFE (TFE unit) and a polymerized unit based on HFP (HFP unit). Means.
  • a part of the sealing member to be compressed is a surface and is inclined with respect to the surface of the member to be compressed, the surface to be contacted before compression is not parallel.
  • transform flexibly and compress is preferable.
  • a perfluoropolymer which is a relatively flexible resin is preferable, and among them, PTFE, PFA, and FEP are preferable.
  • PAVE in PFA is preferably one having an alkyl group having 1 to 6 carbon atoms, more preferably perfluoromethyl vinyl ether (PMVE), perfluoro (ethyl vinyl ether) (PEVE) or perfluoropropyl vinyl ether (PPVE).
  • the PFA has a PAVE unit of more than 2% by mass and preferably 8% by mass or less, and more preferably 2.5 to 6% by mass.
  • the content of each monomer unit in these copolymers can be calculated by appropriately combining NMR, FT-IR, elemental analysis, and fluorescent X-ray analysis depending on the type of monomer (the same applies hereinafter). As long as the PFA has the above-mentioned composition, it may be obtained by polymerizing other monomers.
  • Examples of other monomers include HFP.
  • the content is preferably 1% by weight or less.
  • One or more of the other monomers can be used.
  • a TFE / PPVE copolymer is particularly preferable because of its excellent creep resistance.
  • the copolymer composition of PPVE is preferably 2.0% by weight to 5.0% by weight.
  • melt-flowable PTFE it is also possible to add melt-flowable PTFE, apparently lower the PPVE content, improve creep resistance, and reduce compression set.
  • the total PPVE content is preferably 1.0% by weight to 4.0% by weight. If the total PPVE content is less than 1% by weight, cracks are likely to occur, and if it exceeds 4% by weight, the effect of adding PTFE is reduced.
  • the sealing member when used as a gasket for a lithium ion battery, it is preferable that a material that hardly swells in a highly polar solvent and does not easily deteriorate due to contact is contained.
  • a highly polar solvent for example, LiCF 3 SO 3
  • LiClO 4 may be used in a nonaqueous solvent in which ethylene carbonate, propylene carbonate, 1,2-dimethoxyethane, dimethyl carbonate or diethyl carbonate is appropriately mixed. And non-aqueous electrolyte obtained by dissolving LiBF 4 and / or LiPF 6 .
  • ETFE or perfluoropolymer is preferable as a material that hardly swells in these polar solvents and hardly deteriorates due to contact, and among the perfluoropolymers, PTFE, PFA, and FEP are preferable.
  • PTFE perfluoropolymers
  • PFA perfluoropolymers
  • the sealing member contains PFA
  • the PFA content is preferably 50 wt% or more and 100 wt% or less, and the lower limit thereof is more preferably 70 wt% or more.
  • the above PTFE may be a TFE homopolymer or a modified PTFE.
  • modified PTFE is obtained by copolymerizing with TFE a small amount (1% by weight or less) of a comonomer (modifier) that does not impart melt processability to the resulting copolymer.
  • the modifier include perfluoroolefins such as HFP; chlorofluoroolefins such as CTFE; trifluoroethylene, perfluoroalkyl vinyl ethers, and the like.
  • TFE / VdF copolymer preferably has a TFE unit: VdF unit molar ratio of 45 to 85/55 to 15, more preferably 50 to 80/50 to 20.
  • the above-mentioned VdF / HFP copolymer preferably has a molar ratio of VdF units to HFP units of 45 to 85/55 to 15, more preferably 50 to 80/50 to 20, and still more preferably 60-80 / 40-20.
  • the VdF / HFP copolymer is a copolymer containing a polymer unit based on VdF and a polymer unit based on HFP, and may have a polymer unit based on another fluorine-containing monomer.
  • VdF / HFP / TFE copolymer is also a preferred form.
  • the VdF / HFP / TFE copolymer preferably has a VdF / HFP / TFE molar ratio of 40 to 80/10 to 35/10 to 25.
  • the melt flow rate (MFR) is preferably 40 g / 10 min or less, and preferably 10 g / 10 min or less, from the viewpoint that it is difficult to flow and the repulsive force is easily secured. More preferably, it is 3 g / 10 min or less.
  • MFR refers to the melt flow rate of the polymer at 372 ° C.
  • a melt index tester manufactured by Toyo Seiki Seisakusho
  • about 6 g of resin is maintained at 372 ° C.
  • the temperature reaches an equilibrium state, and then the resin is extruded through an orifice with a diameter of 2.1 mm and a length of 8 mm under a 5 kg piston load for a unit time (usually 10 to 60 seconds) ) Is measured three times for the same sample, and the average value is the value converted into the amount of extrusion per 10 minutes (unit: g / 10 minutes).
  • FEP fluororesins mentioned above, from the viewpoint of excellent melt processability, FEP, PFA, Et / TFE copolymer, PCTFE, CTFE / TFE copolymer, Et / CTFE copolymer, PVdF, TFE / VdF It is preferably at least one selected from the group consisting of a copolymer, a VdF / HFP copolymer, and PVF.
  • the sealing member of the present invention has a portion in which the compression ratio in the pressed direction is larger on the outside than on the inside, so that the sealing member is used. Even after a long time (for example, 200,000 hours) has passed, the repulsive force of the sealing member tends to remain, and the sealing effect can be maintained satisfactorily.
  • the sealing member 10 shown in FIG. 4 is an example in which the width in the penetration direction increases toward the outside, and both the upper surface 13 side and the lower surface 14 side are inclined at an inclination angle ⁇ with respect to the horizontal plane. is there.
  • the sealing member 10X shown in FIG. 5 has a shape in which the width in the penetrating direction increases toward the outside.
  • the upper surface 13x is inclined at an inclination angle ⁇ with respect to the horizontal plane, and the lower surface 14x is horizontal. This is an example of spreading upward.
  • the sealing member 10Y shown in FIG. 11 and the sealing member 10Z shown in FIG. 12 were used as comparative objects that are not the sealing member according to the present invention.
  • the sealing member 10Y shown in FIG. 11 has a shape in which the upper surface 13y is positioned downward and the lower surface 14y is positioned upward and the width in the penetrating direction decreases toward the outer side. Both are inclined at an inclination angle ⁇ with respect to the horizontal plane.
  • the sealing member 10Z shown in FIG. 12 has a lower surface 14z that spreads out on a horizontal plane, and the upper surface 13z has a shape in which the width in the penetrating direction decreases toward the outer side as it is located on the lower side, and the upper surface 13z. Is inclined at an inclination angle ⁇ with respect to the horizontal plane.
  • sealing members 10, 10X, 10Y, and 10Z used in the simulation are all annular, the inner penetrating portion is cylindrical, the inner diameter A is 6 mm, and the outer peripheral surface is also cylindrical. The same outer diameter B of 18 mm was used. Further, these sealing members 10, 10X, 10Y, and 10Z have a width C in the penetrating direction at the center position of the horizontal width (the intermediate position between the inner circumference and the outer circumference in the radial direction) of 5 mm. Made common.
  • the simulation is performed under the condition that the sealing member is pressed by a rigid body from both one side and the other side in the penetration direction by a member having a horizontally extending surface in an environment of 60 ° C. and held as it is. , Using ANSYS V14.5. The pressing is performed until the width C in the penetration direction at the center position of the horizontal width of the sealing member (the intermediate position between the inner circumference and the outer circumference in the radial direction) becomes 3 mm, and this 3 mm is maintained. did.
  • the materials of the sealing members 10, 10 X, 10 Y, and 10 Z used for the simulation are all “copolymers of tetrafluoroethylene and perfluoroalkyl vinyl ether”, and specifically, NEOFRON (registered trademark) PFA
  • the physical property values of AP-230 were used.
  • the MFR according to ASTM2.0D3307 is 2.0g / 10min
  • the melting point is 306 °C according to ASTM D4591
  • the specific gravity according to ASTM D3307 is 2.14.
  • the tensile strength according to ASTM D 3307 is 34.0 MPa
  • the elongation according to ASTM D 3307 is 320%.
  • the tensile modulus is 430 MPa.
  • the physical property value at 60 ° C used for the simulation is a value measured by changing only the measurement atmosphere temperature of ASTM D 307 3307 to 60 ° C, the tensile strength is 23.5 MPa, the elongation is 330%, the tensile modulus is 186.1 MPa, The yield stress was assumed to be 3.42 MPa. The Poisson's ratio was assumed to be 0.46.
  • the condition of the material used over time was determined using the creep characteristics of the PFA AP-230 used.
  • the creep characteristics were assumed to be expressed by a modified time hardening type creep model as shown in the following equation.
  • An AP230 11.3mm ⁇ ⁇ 10L test piece was cut from a compression-molded block, and the creep characteristics under load of 6.9MPa, 14MPa, 20MPa, 30MPa and 40MPa were measured at 60 °C.
  • C 1 , C 2 , C 3 , and C 4 were obtained by fitting the measured data to the following formula 1.
  • the coefficient of friction between the sealing member and the rigid body used for pressing from one side and the other side in the penetration direction was set to 0.1.
  • the diagram which shows the relationship between the nominal stress and the nominal strain shown in FIG. 13 was obtained by conducting a tensile test on the material used.
  • strain was obtained by calculating based on the diagram of FIG. And from these diagrams, simulation conditions for aged behavior analysis were obtained.
  • the outer periphery is An example in which the constraint condition was set so as not to spread outward and an example in which the spread at the outer periphery was free without using such a constraint member 20 were studied.
  • FIG. 15 shows a simulation result regarding the magnitude of the repulsive force after 200,000 hours of the sealing member when the inclination angles ⁇ and ⁇ are changed.
  • any sealing member 10, 10X, 10Y, 10Z more repulsive force remains after 200,000 hours when the restraining member 20 is used, and the sealing effect Is found to be good. Further, for the sealing members 10Y and 10Z whose thickness in the penetrating direction decreases toward the outside, the repulsive force remaining after 200,000 hours is not improved even if the inclination angle ⁇ increases. As for the sealing member 10X in which only the upper surface side is inclined, the repulsive force becomes slightly better as the inclination angle ⁇ increases, and the repulsive force becomes maximum within the range of the inclination angle of 15 degrees or more and 22 degrees or less.
  • the sealing member a member having a shape in which the thickness in the penetrating direction is increased toward the outer side and both the upper surface 13 and the lower surface 14 are inclined as in the case of the sealing member 10. It can be seen that it is desirable to be used in the presence of.
  • FIG. 16 shows a simulation result showing a change in the repulsive force according to the elapsed time from the start of use of the sealing member.
  • a flat plate-shaped plate having no inclination an example of “no inclination” was also used for comparison.
  • a simulation was performed on a material obtained by doubling the stress during the tensile test and the repulsion force of the creep.
  • the simulation was performed on the assumption that the amount of creep when the load twice the actual measurement was applied was the same.
  • simulation data was created on the assumption that twice as much stress as actually measured was generated for a certain amount of deformation.
  • FIG. 17 shows the simulation results of the temporal change of the repulsive force when the stress and creep repulsive force of the material used for the sealing member are 1 and 2 times.
  • the model with a repulsive force of 2 times is preferable at the beginning, but the difference between the repulsive force with the repulsive force of 1 time and that of the rebound force disappears in about 1 hour, and then it is rather 1 time. It was found that the repulsive force of the thing is largely maintained.
  • As a physical property value of the material of the sealing member there is a tensile elastic modulus as a physical property value highly dependent on the repulsive force.
  • the tensile elastic modulus at room temperature is 0.86 GPa in the model where the repulsive force is twice, and those having a tensile elastic modulus of 0.86 GPa are not preferable because the repulsive force is too large. Therefore, the tensile elastic modulus of the material is preferably smaller than 0.8 GPa and more preferably 0.7 GPa or less.
  • the conditions of each sealing member were as described above except for the conditions relating to the coefficient of friction with the member to be pressed.
  • the simulation result is shown in FIG. As this result shows, it became clear that the coefficient of friction with the pressing member in contact with the sealing member affects the magnitude of the repulsive force from the sealing member.
  • FIG. 19 The results of the simulation are shown in FIG. 19 for the state immediately after pressing, in FIG. 20 for the state after 10,000 hours have been pressed, and in FIG. 21 for the state after 100,000 hours have been pressed and 20
  • FIG. 19 to 22 show a part of the side cross section of the sealing member, the left side of the figure is the radially inner side, and the right side of the figure is the radially outer side.
  • FIGS. 19 to 22 different repulsive force regions are indicated by different hatchings.
  • the surface pressure value of the portion where the repulsive force is the maximum immediately after pressing is 37.7 MPa
  • the surface pressure value of the portion where the repulsive force is maximum after 10,000 hours with the pressure being pressed is 37.7 MPa
  • the surface pressure value of the portion where the repulsive force is maximum is 15.0 MPa when 100,000 hours have passed while pressing, and the repulsive force is maximum when 200,000 hours have passed with pressing.
  • the surface pressure of a certain part was 14.7 MPa.
  • the sealing member indicated by the alternate long and short dash line in which the upper surface and the lower surface are not inclined is pressed and deformed from the vertical direction (indicated by the alternate long and two short dashes line) ) Is maintained, it can be seen that the repulsive force outside the sealing member when 200,000 hours have elapsed has decreased.
  • the outer diameter of the portion around the radially outer side is longer by being expanded outward in the pressed state. It is considered that the repulsive force in the penetrating direction is likely to be weakened.
  • FIG. 23 shows an example of the state before pressing
  • FIG. 24 shows an example of the pressing usage state when the gasket 51 is used as a sealing member around the electrode of the battery.
  • a through portion penetrating in the vertical direction is provided in the upper cover 63 of the battery and the insulating cover 62 covering a part of the upper cover 63.
  • a caulking pin 61 that is used as an electrode or the like by caulking is provided in the penetrating portion.
  • the caulking pin 61 is made of metal and has a pin upper portion 61a and a pin lower portion 61b which are connected to each other and integrated.
  • the pin upper portion 61a of the caulking pin 61 has a cylindrical shape with an outer diameter smaller than the inner diameter of the penetrating portion, as shown in FIG. It has a shape extending in the vertical direction to the height above the upper lid 63 via the inside.
  • the pin lower portion 61b of the caulking pin 61 has a cylindrical shape with an outer diameter larger than the inner diameter of the penetrating portion, and further from the lower end of the pin upper portion 61a below the upper lid 63, as shown in FIG. It has a shape that extends downward.
  • the pin lower portion 61b of the caulking pin 61 is covered from the periphery in the radial direction by a restraining member 64 made of a highly rigid member.
  • the restraining member 64 is positioned by being fixed by another member (not shown) so as not to move relative to the upper lid 63, for example.
  • the gasket 51 is provided so as to be interposed between the upper lid 63, the insulating cover 62, the restraining member 64, and the caulking pin 61, and has an upper cylindrical portion 51a, a disc portion 51b, and a lower cylindrical portion 51c. ing.
  • the upper cylindrical portion 51a has an outer diameter that is slightly smaller than the inner diameter of the through portion inside the upper lid 63 and the insulating cover 62, and an inner diameter that is slightly larger than the outer diameter of the pin upper portion 61a of the caulking pin 61. It has a shape extending in the vertical direction from a height below 63 to a height above the upper lid 63 through the inside of the penetrating portion.
  • the upper cylindrical portion 51 a is interposed between the upper lid 63 and the insulating cover 62 and the pin upper portion 61 a of the caulking pin 61 to insulate them from each other.
  • the lower cylindrical portion 51 c has an inner diameter that is slightly larger than the outer diameter of the pin lower portion 61 b of the caulking pin 61 and an outer diameter that is slightly smaller than the inner diameter of the restraining member 64.
  • the restraint member 64 has a shape extending upward from the height position where the inner periphery of the restraining member 64 faces toward the lower surface of the upper lid 63.
  • the lower cylindrical portion 51 c is interposed between the pin lower portion 61 b of the caulking pin 61 and the restraining member 64 to insulate them from each other.
  • the disc portion 51b is a member that expands so as to connect the lower end outer peripheral portion of the upper cylindrical portion 51a and the lower cylindrical portion 51c upper end inner peripheral portion in the radial direction.
  • the radially outer end portion of the disc portion 51b has an outer upper flat surface portion that makes surface contact with the lower surface of the upper lid 63 and an outer lower flat portion that makes surface contact with the upper surface portion of the pin lower portion 61b of the caulking pin 61.
  • the radially inner portion of the outer upper flat portion and the outer lower flat portion has a configuration in which the upper surface and the lower surface are inclined so that the thickness in the vertical direction becomes thinner toward the radially inner side. Yes.
  • the thickness in the vertical direction is continuously reduced from the radially outer side toward the radially inner side until reaching the outer periphery of the lower end of the upper cylindrical portion 51a.
  • a portion where the thickness in the vertical direction is constant immediately before reaching the outer periphery of the lower end of the upper cylindrical portion 51a may be provided.
  • the ratio of the length in the radial direction between the portion where the outer upper plane portion and the outer lower plane portion are provided and the portion inside the portion is not particularly limited. However, for example, in the state before being caulked as shown in FIG. 23, the range of 1: 9 to 5: 5 is preferable.
  • the upper end of the pin upper portion 61a of the caulking pin 61 is moved downward with the gasket 51 being restrained from moving in the radial direction by the restraining member 64.
  • the pin upper portion 61a of the caulking pin 61 is crushed and deformed so as to cover the upper end of the upper cylindrical portion 51a of the gasket 51 from above as in the deformed pin upper portion 61a ′ shown in FIG.
  • the disc portion 51b of the gasket 51 is pressed from above and below by the lower surface portion of the upper lid 63 and the upper surface portion of the pin lower portion 61b of the caulking pin 61, and is deformed so that the thickness in the vertical direction is reduced.
  • the gasket 51 is fixed in a state in which it is pressed in the up-down direction while being constrained in the radial direction, and is in use.
  • the upper cylindrical portion 51a of the gasket 51 is also deformed so as to have a shorter vertical length.
  • the portion provided with the outer upper flat portion and the outer lower flat portion in the radial direction of the disc portion 51b of the gasket 51, and the inner portion of the portion is not particularly limited, but is preferably 7: 3 to 9.5: 1, for example.
  • the sealing member according to the present invention is particularly useful when used, for example, as a gasket or the like because a good sealing effect can be obtained even when used for a long time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Gasket Seals (AREA)

Abstract

 Provided is a sealing member capable of achieving a satisfactory sealing effect even when used over a long period of time. An annular sealing member, wherein the sealing member is used while being pressed from both one side and the other side in a pass-through direction in an inner passing-through portion, and the sealing member has a portion in which, when the sealing member is pressed, the compression ratio in the direction of pressing is greater on the outer side than on the inner side.

Description

封止部材Sealing member
 本発明は、封止部材に関する。 The present invention relates to a sealing member.
 従来より、互いに接続される部材同士の隙間を塞ぐとともに、内部からの流体の漏れ出しや外部からの異物の進入を抑制するための封止部材がある。 Conventionally, there is a sealing member for closing a gap between members connected to each other and suppressing leakage of fluid from the inside and entry of foreign matter from the outside.
 例えば、特許文献1(特開2013-157155号公報)に記載のガスケットのように、リチウムイオン電池の電極周辺を封止するために用いるものが提案されている。このガスケットは、樹脂製であり、上下に貫通した孔の周囲に広がる部分を有するように構成されている。 For example, a gasket used for sealing the periphery of an electrode of a lithium ion battery, such as a gasket described in Patent Document 1 (Japanese Patent Laid-Open No. 2013-157155), has been proposed. This gasket is made of resin and is configured to have a portion extending around a hole penetrating vertically.
 しかし、上述のような特許文献1に示されたガスケットでは、全体的に厚みが一様となるように構成されているに過ぎず、流体の漏れ出しや外部からの異物の進入をより効果的に抑制できるガスケット等の封止部材の形状については記載されていない。特に、封止部材が用いられて押圧された状態で長い時間が経過した場合であっても、良好な封止状態を維持することが可能な形状については、なんら検討されていない。 However, the above-described gasket disclosed in Patent Document 1 is configured only to have a uniform thickness as a whole, and is more effective for leakage of fluid and entry of foreign matter from the outside. The shape of a sealing member such as a gasket that can be suppressed is not described. In particular, no consideration has been given to a shape capable of maintaining a good sealing state even when a long time has passed in a state where the sealing member is used and pressed.
 本発明は上述した点に鑑みてなされたものであり、本発明の課題は、長時間使用した場合であっても良好な封止効果を得ることが可能な封止部材を提供することにある。 This invention is made | formed in view of the point mentioned above, The subject of this invention is providing the sealing member which can acquire a favorable sealing effect even when it is a case where it uses for a long time. .
 第1観点に係る封止部材は、環状の封止部材であって、内側の貫通している部分における貫通方向の一方側と他方側から押圧された状態で用いられる。この封止部材は、押圧された状態において、押圧されている方向における圧縮割合が内側よりも外側の方が大きい部分を有している。 The sealing member according to the first aspect is an annular sealing member, and is used in a state where it is pressed from one side and the other side in the penetrating direction in the inner penetrating portion. In the pressed state, the sealing member has a portion where the compression ratio in the pressed direction is larger on the outside than on the inside.
 第2観点に係る封止部材は、第1観点に係る封止部材であって、内側から外側に向かうにつれて押圧される方向における厚みが増すように構成されている。 The sealing member according to the second aspect is the sealing member according to the first aspect, and is configured such that the thickness in the pressed direction increases from the inside toward the outside.
 第3観点に係る封止部材は、第1観点または第2観点に係る封止部材であって、引張弾性率が、0.8GPa以下である。 The sealing member according to the third aspect is the sealing member according to the first aspect or the second aspect, and has a tensile elastic modulus of 0.8 GPa or less.
 第4観点に係る封止部材は、第1観点から第3観点のいずれかに係る封止部材であって、パーフルオロポリマーを含んで構成されている。 The sealing member according to the fourth aspect is a sealing member according to any one of the first to third aspects, and includes a perfluoropolymer.
 第5観点に係る封止部材は、第4観点に係る封止部材であって、PFAの含有量が50wt%以上100wt%以下である。 The sealing member according to the fifth aspect is the sealing member according to the fourth aspect, and the PFA content is 50 wt% or more and 100 wt% or less.
 第6観点に係る封止部材は、第1観点から第5観点のいずれかに係る封止部材であって、電池用ガスケットに用いられる。 The sealing member according to the sixth aspect is a sealing member according to any one of the first to fifth aspects, and is used for a battery gasket.
 本発明に係る封止部材は、内側よりも外側の圧縮割合が大きな部分を有していることで、貫通方向から押圧して用いられた場合に、封止効果を向上させることが可能になる。 The sealing member according to the present invention has a portion having a larger compression ratio on the outer side than on the inner side, so that the sealing effect can be improved when used by pressing from the penetration direction. .
シミュレーションの対象としての封止部材10の平面図である。It is a top view of sealing member 10 as a candidate for simulation. 一例としての封止部材110の平面図である。It is a top view of the sealing member 110 as an example. 一例としての封止部材210の平面図である。It is a top view of the sealing member 210 as an example. シミュレーションの対象としての封止部材10の側面視断面図である。It is side view sectional drawing of the sealing member 10 as the object of simulation. シミュレーションの対象としての封止部材10Xの側面視断面図である。It is side surface sectional drawing of the sealing member 10X as the object of simulation. 一例としての封止部材310の側面視断面図である。FIG. 6 is a side sectional view of a sealing member 310 as an example. 一例としての封止部材410の側面視断面図である。FIG. 4 is a side sectional view of a sealing member 410 as an example. 一例としての封止部材510の側面視断面図である。FIG. 5 is a side sectional view of a sealing member 510 as an example. 一例としての封止部材610の側面視断面図である。It is sectional drawing of the side view of the sealing member 610 as an example. 一例としての封止部材710の側面視断面図である。FIG. 10 is a side sectional view of a sealing member 710 as an example. シミュレーションの比較対象としての封止部材10Yの側面視断面図である。It is sectional drawing of the side view of the sealing member 10Y as a comparison object of simulation. シミュレーションの比較対象としての封止部材10Zの側面視断面図である。It is a side view sectional view of sealing member 10Z as a comparison object of simulation. 公称応力と公称ひずみの関係を示す線図である。It is a diagram which shows the relationship between a nominal stress and a nominal strain. 真応力と真ひずみの関係を示す線図である。It is a diagram which shows the relationship between a true stress and a true strain. 傾斜角度αやβを変化させた場合における封止部材の20万時間後の反発力の大きさに関するシミュレーション結果を示すグラフである。It is a graph which shows the simulation result regarding the magnitude | size of the repulsion force after 200,000 hours of the sealing member at the time of changing inclination-angle (alpha) and (beta). 封止部材の使用開始からの経過時間に応じた反発力の変化を示すシミュレーション結果を示すグラフである。It is a graph which shows the simulation result which shows the change of the repulsive force according to the elapsed time from the use start of a sealing member. 反発力が倍になる素材の場合の経時変化のシミュレーション結果を示すグラフである。It is a graph which shows the simulation result of a time-dependent change in the case of the material in which repulsive force becomes double. 摩擦係数に対する20万時間後の反発力の関係に関するシミュレーション結果を示すグラフである。It is a graph which shows the simulation result regarding the relationship of the repulsive force after 200,000 hours with respect to a friction coefficient. 径方向の位置に応じた反発力の当初の状態を示す図である。It is a figure which shows the initial state of the repulsive force according to the position of radial direction. 径方向の位置に応じた反発力の1万時間経過した状態を示す図である。It is a figure which shows the state which 10,000 hours passed of the repulsive force according to the position of radial direction. 径方向の位置に応じた反発力の10万時間経過した状態を示す図である。It is a figure which shows the state which 100,000 hours passed of the repulsive force according to the position of radial direction. 径方向の位置に応じた反発力の20万時間経過した状態を示す図である。It is a figure which shows the state which 200,000 hours passed of the repulsive force according to the position of radial direction. 電池の電極周辺に用いられるガスケットの押圧前の状態を示す側面図である。It is a side view which shows the state before the press of the gasket used around the electrode of a battery. 電池の電極周辺に用いられるガスケットが押圧された使用状態を示す側面図である。It is a side view which shows the use condition in which the gasket used around the electrode of a battery was pressed.
 以下、本発明の実施形態に係る封止部材について、説明する。 Hereinafter, the sealing member according to the embodiment of the present invention will be described.
 (1)封止部材の用途
 封止部材の用途は、特に限定されないが、例えば、ガスケット、パッキン等が挙げられる。
(1) Use of sealing member The use of the sealing member is not particularly limited, and examples thereof include a gasket and packing.
 なかでも、電池用ガスケットに用いられる封止部材が好ましい。 Especially, the sealing member used for a battery gasket is preferable.
 このような電池としては、例えば、リチウムイオン電池が挙げられる。このリチウムイオン電池の電解液としては、劣化が60℃以上になるまで生じにくいものが望ましい。 An example of such a battery is a lithium ion battery. As an electrolytic solution of this lithium ion battery, one that is unlikely to occur until deterioration reaches 60 ° C. or higher is desirable.
 電池用ガスケットとして用いられる場合には、封止部材は、封止部材の内側の貫通している部分に電池の電極(例えば、正極もしくは負極)が位置するようにして用いられることが好ましい。 When used as a gasket for a battery, the sealing member is preferably used such that a battery electrode (for example, a positive electrode or a negative electrode) is located in a portion penetrating inside the sealing member.
 (2)封止部材の形状
 封止部材の形状は、環状であって、内側の貫通している部分における貫通方向の一方側と他方側から押圧された状態で用いられ、押圧された状態において、押圧されている方向における圧縮割合が内側よりも外側の方が大きい部分を有しているものであれば特に限定されない。
(2) Shape of the sealing member The shape of the sealing member is an annular shape, and is used in a state where it is pressed from one side and the other side in the penetrating direction at the inner penetrating portion. The compression ratio in the pressed direction is not particularly limited as long as it has a portion where the outer side is larger than the inner side.
 特に限定されないが、例えば、上下に傾斜面を有している場合には、当該傾斜面が貫通方向を法線とする平面に対して10度以上80度以下に傾斜していてもよいし、20度以上70度以下に傾斜していてもよい。 Although not particularly limited, for example, in the case of having inclined surfaces up and down, the inclined surface may be inclined at 10 degrees or more and 80 degrees or less with respect to a plane whose normal is the penetrating direction, You may incline at 20 degree or more and 70 degrees or less.
 なお、以下では、環状の封止部材の形状について、内側の貫通部分が上下方向に貫通していると仮定して、上面、下面等を説明する。 In the following, regarding the shape of the annular sealing member, the upper surface, the lower surface, and the like will be described on the assumption that the inner penetrating portion penetrates in the vertical direction.
 ここで、「環状」という場合には、図1の平面図に示す封止部材10のように、内側の円筒部分11がくり抜かれ外周12が円形である円柱形状も含まれるし、図2の平面図の封止部材110に示すように、内側の方形部分111がくり抜かれ外周112が方形である四角筒も含まれるし、図3の平面図に示す封止部材210のように、内側のくり抜かれた部分211に対する中心と外周212に対する中心とが偏心している形状も含まれる。また、封止部材の平面視における内側のくり抜かれた部分の形状も、特に限定されず、円柱形状がくり抜かれた形状であってもよいし、四角柱や五角柱等の多角形の柱がくり抜かれた形状であってもよい。同様に、封止部材の平面視における外縁の形状も、特に限定されず、円弧形状であってもよいし、多角形形状であってもよい。 Here, the term “annular” includes a cylindrical shape in which the inner cylindrical portion 11 is cut out and the outer periphery 12 is circular, as in the sealing member 10 shown in the plan view of FIG. As shown in the plan view of the sealing member 110, a square tube in which the inner rectangular portion 111 is hollowed out and the outer periphery 112 is square is included, and like the sealing member 210 shown in the plan view of FIG. A shape in which the center with respect to the hollowed portion 211 and the center with respect to the outer periphery 212 are eccentric is also included. In addition, the shape of the hollowed portion on the inner side in plan view of the sealing member is not particularly limited, and may be a hollowed shape of a cylindrical shape, or a polygonal column such as a quadrangular column or a pentagonal column. It may be a hollow shape. Similarly, the shape of the outer edge of the sealing member in plan view is not particularly limited, and may be an arc shape or a polygonal shape.
 環状の封止部材は、使用状態において押圧されることとなる被押圧部分が、押圧されていない状態において内側から外側に向かうにつれて押圧される方向における厚みが増すように構成されていてもよい。具体的には、封止部材の内側の貫通部分の中心を含んで貫通方向に伸びる線が含まれる断面図である図4に示す封止部材10のように、上面13は外側ほど上方に位置し下面14は外側ほど下方に位置するような形状であってもよいし、図5に示す封止部材10Xのように、上面13xは外側ほど上方に位置し下面14xは同じ高さ位置に広がった形状であってもよい。ここで、封止部材の貫通方向における一方側と他方側から押圧される際に力のバランスを良好にして封止効果を得やすい観点から、貫通方向に垂直な方向視における上方側と下方側の形状が対象的であることがより好ましい。 The annular sealing member may be configured such that the pressed portion to be pressed in the usage state increases in thickness in the direction in which it is pressed from the inside toward the outside in the non-pressed state. Specifically, like the sealing member 10 shown in FIG. 4 which is a cross-sectional view including a line extending in the penetrating direction including the center of the penetrating portion on the inner side of the sealing member, the upper surface 13 is positioned upward toward the outer side. The bottom surface 14 may be shaped so as to be positioned downward as it goes outward, or like the sealing member 10X shown in FIG. 5, the upper surface 13x is positioned upward as it goes outward, and the lower surface 14x extends to the same height position. The shape may be different. Here, the upper side and the lower side in the direction perpendicular to the penetrating direction from the viewpoint of easily obtaining a sealing effect by improving the balance of force when pressed from one side and the other side in the penetrating direction of the sealing member It is more preferable that the shape of
 また、封止部材の上方と下方とは、平面を構成している必要はなく、例えば、封止部材の内側の貫通部分の中心を含んで貫通方向に伸びる線が含まれる断面図である図6に示す封止部材310のように、上方部分313が上方に向けて膨出し下方部分314が下方に向けて膨出した形状であってもよいし、図7に示す封止部材410のように、上方部分413が下方に向けて凹み下方部分414が上方に向けて凹んだ形状であってもよい。また、図8に示す封止部材510のように、上方部分513と下方部分514が両方とも傾斜しており、各傾斜角度が異なった形状であってもよい。さらに、図9に示す封止部材610のように、上方部分613や下方部分614が凹凸形状を伴いつつ全体として傾斜した形状であってもよい。また、図10に示す封止部材710のように、内側の貫通部分の周囲に位置しており貫通方向の長さが内側ほど短くなるように貫通方向に対して傾斜した上方傾斜部分713aや下方傾斜部分714aを有し、上方傾斜部分713aの外側において傾斜していない上方平面部分713bと下方傾斜部分714aの外側において傾斜していない下方平面部分714bとを有した形状であってもよい。 Further, the upper and lower portions of the sealing member do not need to form a plane, and are, for example, cross-sectional views including a line extending in the penetrating direction including the center of the penetrating portion inside the sealing member. 6, the upper portion 313 may bulge upward and the lower portion 314 may bulge downward, or as the sealing member 410 illustrated in FIG. 7. Alternatively, the upper portion 413 may be recessed downward and the lower portion 414 may be recessed upward. Further, like the sealing member 510 shown in FIG. 8, the upper portion 513 and the lower portion 514 may both be inclined and may have shapes with different inclination angles. Furthermore, like the sealing member 610 shown in FIG. 9, the upper part 613 and the lower part 614 may be inclined as a whole with an uneven shape. Further, like the sealing member 710 shown in FIG. 10, an upper inclined portion 713 a that is located around the inner penetrating portion and is inclined with respect to the penetrating direction so that the length in the penetrating direction becomes shorter toward the inner side, and the lower portion It may have a shape having an inclined flat portion 714a and an upper flat portion 713b that is not inclined outside the upper inclined portion 713a and a lower flat portion 714b that is not inclined outside the lower inclined portion 714a.
 封止部材は、押圧された状態において、押圧されている方向における圧縮割合が内側よりも外側の方が大きい部分を有していればよい。ここで、封止部材のうち押圧された使用状態における被押圧部分について、外側よりも内側の方が圧縮割合が大きい部分が生じないように構成されていてもよい。 The sealing member only needs to have a portion where the compression ratio in the pressed direction is larger on the outer side than on the inner side in the pressed state. Here, about the to-be-pressed part in the use condition pressed among the sealing members, you may be comprised so that a part with a larger compression ratio may not arise inside than the outside.
 また、封止部材の圧縮割合については、封止部材の内側の貫通部分の中心を含んで貫通方向に伸びる線が含まれる断面において内外方向の厚みの中心を基準に封止部材を内側と外側とに分けた場合に、内側の圧縮割合が外側の圧縮割合よりも小さいことがよく、内側の圧縮割合を外側の圧縮割合から差し引いて得られる値が2%以上60%以下であることが好ましく、3%以上50%以下であることがより好ましく、10%以上30%以下であることがさらに好ましい。 Further, regarding the compression ratio of the sealing member, the inner side and the outer side of the sealing member are based on the center of the thickness in the inner and outer directions in the cross section including the line extending in the penetrating direction including the center of the penetrating portion inside the sealing member. The inner compression ratio is preferably smaller than the outer compression ratio, and the value obtained by subtracting the inner compression ratio from the outer compression ratio is preferably 2% or more and 60% or less. It is more preferably 3% or more and 50% or less, and further preferably 10% or more and 30% or less.
 内側と外側に分割した圧縮割合ではなく封止部材の全体の圧縮割合は、寸法公差の影響を低減させるために10%以上が好ましい。さらに長期に高い反発力を維持させるためには、20%以上が好ましい。 The overall compression ratio of the sealing member, not the compression ratio divided into the inside and the outside, is preferably 10% or more in order to reduce the influence of dimensional tolerance. Furthermore, 20% or more is preferable in order to maintain a high repulsive force for a long period.
 ここで、圧縮割合とは、封止部材の内側の貫通部分の中心を含んで貫通方向に伸びる線が含まれる断面において、封止部材になんら力が作用していない状態における封止部材(または封止部材の特定の部位)の断面積に対する、封止部材が貫通方向の一方側と他方側から押圧されて封止している状態(使用状態)における封止部材(または封止部材の特定の部位)の断面積の減少部分の割合(1―押圧状態の封止部材の断面積/なんら力が作用していない状態における封止部材の断面積)をいう。この圧縮割合は、封止部材が貫通方向の一方側と他方側から押圧されて封止している状態(使用状態)において、封止部材は単純に押圧方向の寸法が短くなり内外方向には寸法が変化しないものと仮定して得られる値とする。 Here, the compression ratio means a sealing member (or a state where no force is applied to the sealing member in a cross section including a line extending in the penetration direction including the center of the penetrating portion inside the sealing member (or The sealing member (or specifying the sealing member) in a state where the sealing member is pressed from one side and the other side in the penetrating direction and sealed with respect to the cross-sectional area of the specific part of the sealing member) The ratio of the reduced portion of the cross-sectional area (1—the cross-sectional area of the sealing member in the pressed state / the cross-sectional area of the sealing member in a state where no force is applied). This compression ratio is such that when the sealing member is pressed from one side and the other side in the penetrating direction and sealed (used state), the size of the sealing member simply decreases in the pressing direction. The value is obtained assuming that the dimensions do not change.
 また、封止部材の内側の貫通部分の中心を含んで貫通方向に伸びる線が含まれる断面において、上方部分が傾斜した面で構成されている場合に、当該面の傾斜角度が水平面に対して5度以上傾斜していることが好ましく、10度以上傾斜していることがより好ましく、20度以上傾斜していることがさらに好ましい。 Further, in a cross section including a line extending in the penetrating direction including the center of the penetrating portion inside the sealing member, when the upper portion is configured by an inclined surface, the inclination angle of the surface is relative to the horizontal plane. It is preferably inclined at 5 degrees or more, more preferably at least 10 degrees, and further preferably at least 20 degrees.
 (3)封止部材の素材
 封止部材の素材としては、特に限定されず、封止部材による封止効果をより長時間得るためには、封止部材の引張弾性率の上限が好ましくは0.8GPaであり、より好ましくは0.7GPaである。また、封止部材の引張弾性率の下限は、好ましくは0.3GPaである。当該引張弾性率の望ましい範囲の根拠は、後述する。
(3) Material of sealing member The material of the sealing member is not particularly limited, and the upper limit of the tensile elastic modulus of the sealing member is preferably 0.8 in order to obtain the sealing effect by the sealing member for a longer time. GPa, more preferably 0.7 GPa. Further, the lower limit of the tensile modulus of the sealing member is preferably 0.3 GPa. The basis for the desirable range of the tensile modulus will be described later.
 また、封止部材の素材としては、特に限定されず、ゴム状物質、フッ素樹脂以外の樹脂、フッ素樹脂、およびこれらの混合物等を用いることができる。これらの素材は、封止部材の主成分として含まれていることが好ましい。 The material for the sealing member is not particularly limited, and rubbery substances, resins other than fluororesins, fluororesins, and mixtures thereof can be used. These materials are preferably contained as a main component of the sealing member.
 ゴム状物質としては、例えば、ニトリルゴム(NBR)、水素化ニトリルゴム(HNBR)、フッ素ゴム(FKM)、パーフルオロフッ素ゴム(FFKM)シリコーンゴム(VMQ)、エチレンプロピレンゴム(EPDM)、クロロプレンゴム(CR)、アクリルゴム(ACM)、ブチルゴム(IIR)、ウレタンゴム(U)、天然ゴム(NR)、クロロスルフォン化ポリエチレンゴム(CSM)、および、エピクロルヒドリンゴム(CO,ECO)からなる群より選択される少なくとも1種を用いることができる。 Examples of rubbery substances include nitrile rubber (NBR), hydrogenated nitrile rubber (HNBR), fluoro rubber (FKM), perfluoro fluoro rubber (FFKM) silicone rubber (VMQ), ethylene propylene rubber (EPDM), and chloroprene rubber. (CR), acrylic rubber (ACM), butyl rubber (IIR), urethane rubber (U), natural rubber (NR), chlorosulfonated polyethylene rubber (CSM), and epichlorohydrin rubber (CO, ECO) At least one of the above can be used.
 フッ素樹脂以外の樹脂としては、例えば、ポリエチレン(PE)、ポリプロピレン(PP)、ポリカーボネート(PC)、メタクリル樹脂、アクリルニトリル・ブタジエン・スチレン樹脂(ABS)、ポリメチルペンテン(PMP)、ポリスチレン(PA)、ポリエチレンテレフタレート(PET)、メラミン樹脂、フェノール樹脂、および、不飽和ポリエステル樹脂からなる群より選択される少なくとも1種を用いることができる。フッ素樹脂以外の樹脂のメルトフローレートは、例えば、PPの場合は、ASTM D 1238に従って、温度230℃、荷重2.16kgとして測定される値であり、5以上60以下が好ましい。 Examples of resins other than fluororesins include polyethylene (PE), polypropylene (PP), polycarbonate (PC), methacrylic resin, acrylonitrile / butadiene / styrene resin (ABS), polymethylpentene (PMP), and polystyrene (PA). At least one selected from the group consisting of polyethylene terephthalate (PET), melamine resin, phenolic resin, and unsaturated polyester resin can be used. For example, in the case of PP, the melt flow rate of a resin other than a fluororesin is a value measured at a temperature of 230 ° C. and a load of 2.16 kg according to ASTM D 1238, and is preferably 5 or more and 60 or less.
 フッ素樹脂としては、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン(TFE)/ヘキサフルオロプロピレン(HFP)共重合体(FEP)、TFE/パーフルオロ(アルキルビニルエーテル)(PAVE)共重合体(PFA)、ポリフェニレンサルファイド(PPS)、エチレン(Et)/テトラフルオロエチレン(TFE)共重合体、ポリクロロトリフルオロエチレン(PCTFE)、クロロトリフルオロエチレン(CTFE)/TFE共重合体、Et/CTFE共重合体、ポリフッ化ビニリデン(PVdF)、TFE/フッ化ビニリデン(VdF)共重合体、VdF/HFP共重合体、及び、ポリフッ化ビニル(PVF)からなる群より選択される少なくとも1種を用いることができる。 Fluororesin includes polytetrafluoroethylene (PTFE), tetrafluoroethylene (TFE) / hexafluoropropylene (HFP) copolymer (FEP), TFE / perfluoro (alkyl vinyl ether) (PAVE) copolymer (PFA) , Polyphenylene sulfide (PPS), ethylene (Et) / tetrafluoroethylene (TFE) copolymer, polychlorotrifluoroethylene (PCTFE), chlorotrifluoroethylene (CTFE) / TFE copolymer, Et / CTFE copolymer , Polyvinylidene fluoride (PVdF), TFE / vinylidene fluoride (VdF) copolymer, VdF / HFP copolymer, and polyvinyl fluoride (PVF) can be used. .
 ここで、例えば「TFE/HFP共重合体」のように記載する場合には、TFEに基づく重合単位(TFE単位)と、HFPに基づく重合単位(HFP単位)とを含む共重合体であることを意味する。 Here, for example, when describing as “TFE / HFP copolymer”, it is a copolymer including a polymerized unit based on TFE (TFE unit) and a polymerized unit based on HFP (HFP unit). Means.
 ここで、圧縮される封止部材の一部が面であって、圧縮する側の部材の面に対して傾斜している場合には、圧縮前は接触する面が平行ではない。このため、封止部材としては、柔軟に変形して圧縮する側の部材の面と平行になるよう変形するものが好ましい。このような観点から、封止部材の素材としては、比較的柔軟な樹脂であるパーフルオロポリマーが好ましく、なかでも、PTFE、PFA、FEPが好ましい。PFAにおけるPAVEとしては、炭素数1~6のアルキル基を有するものが好ましく、パーフルオロメチルビニルエーテル(PMVE)、パーフルオロ(エチルビニルエーテル)(PEVE)またはパーフルオロプロピルビニルエーテル(PPVE)がより好ましい。上記PFAは、PAVE単位が2質量%を超え、8質量%以下であることが好ましく、2.5~6質量%であることがより好ましい。これらの共重合体の各単量体単位の含有量は、NMR、FT-IR、元素分析、蛍光X線分析を単量体の種類によって適宜組み合わせることで算出できる(以下同様)。上記PFAは、上述の組成を有するものであれば、さらに、その他の単量体を重合させたものであってよい。その他の単量体として、例えば、HFPが挙げられる。含有量としては、1重量%以下が好ましい。上記その他の単量体は、1種又は2種以上を用いることができる。また、PFAのなかでも、耐クリープ性がすぐれることから、TFE/PPVE共重合体が特に好ましい。PPVEの共重合組成としては、2.0重量%から5.0重量%が好ましい。ここで、溶融流動可能なPTFEを添加し、見かけ上PPVEの含有量を下げて、耐クリープ性を向上させ、圧縮永久ひずみを低下させることも可能である。その場合、トータルのPPVE含有量は、1.0重量%から、4.0重量%が好ましい。トータルのPPVE含有量が1重量%より低くなると、クラックが発生しやすくなり、4重量%を超えると、PTFEを添加した効果が少なくなる。 Here, when a part of the sealing member to be compressed is a surface and is inclined with respect to the surface of the member to be compressed, the surface to be contacted before compression is not parallel. For this reason, as a sealing member, what deform | transforms so that it may become parallel to the surface of the member of the side to deform | transform flexibly and compress is preferable. From such a viewpoint, as a material for the sealing member, a perfluoropolymer which is a relatively flexible resin is preferable, and among them, PTFE, PFA, and FEP are preferable. PAVE in PFA is preferably one having an alkyl group having 1 to 6 carbon atoms, more preferably perfluoromethyl vinyl ether (PMVE), perfluoro (ethyl vinyl ether) (PEVE) or perfluoropropyl vinyl ether (PPVE). The PFA has a PAVE unit of more than 2% by mass and preferably 8% by mass or less, and more preferably 2.5 to 6% by mass. The content of each monomer unit in these copolymers can be calculated by appropriately combining NMR, FT-IR, elemental analysis, and fluorescent X-ray analysis depending on the type of monomer (the same applies hereinafter). As long as the PFA has the above-mentioned composition, it may be obtained by polymerizing other monomers. Examples of other monomers include HFP. The content is preferably 1% by weight or less. One or more of the other monomers can be used. Among PFA, a TFE / PPVE copolymer is particularly preferable because of its excellent creep resistance. The copolymer composition of PPVE is preferably 2.0% by weight to 5.0% by weight. Here, it is also possible to add melt-flowable PTFE, apparently lower the PPVE content, improve creep resistance, and reduce compression set. In that case, the total PPVE content is preferably 1.0% by weight to 4.0% by weight. If the total PPVE content is less than 1% by weight, cracks are likely to occur, and if it exceeds 4% by weight, the effect of adding PTFE is reduced.
 また、封止部材をリチウムイオン電池用のガスケットとして用いる場合には、極性の強い溶剤に膨潤しにくく、接触による劣化を起こしにくい素材が含有されていることが好ましい。具体的には、極性の強い溶剤としては、例えば、エチレンカーボネート、プロピレンカーボネート、1,2-ジメトキシエタン、ジメチルカーボネートまたはジエチルカーボネートを適宜混合した非水溶媒に対して、LiCF3SO3、LiClO4、LiBF4および/またはLiPF6を溶解して得られる非水系電解液等が挙げられる。このため、これらの極性の強い溶剤に膨潤しにくく、接触による劣化を起こしにくい素材としては、ETFE、もしくはパーフルオロポリマーが好ましく、パーフルオロポリマーのなかでもPTFE、PFA、FEPが好ましい。これらのなかでも、水蒸気透過性が低いためにLiPF6等の電解質の水分による分解を抑制することができるとともに、十分な硬度を有しており、溶剤膨潤性がゴムよりも小さく、幅広い化学物質に対する耐薬品性があり酸化劣化しにくく長期間使用が可能となるという観点から、特に、PFAが好ましい。なお、封止部材がPFAを含む場合には、PFAの含有量が50wt%以上100wt%以下であることが好ましく、その下限が70wt%以上であることがより好ましい。 Further, when the sealing member is used as a gasket for a lithium ion battery, it is preferable that a material that hardly swells in a highly polar solvent and does not easily deteriorate due to contact is contained. Specifically, as a highly polar solvent, for example, LiCF 3 SO 3 , LiClO 4 may be used in a nonaqueous solvent in which ethylene carbonate, propylene carbonate, 1,2-dimethoxyethane, dimethyl carbonate or diethyl carbonate is appropriately mixed. And non-aqueous electrolyte obtained by dissolving LiBF 4 and / or LiPF 6 . Therefore, ETFE or perfluoropolymer is preferable as a material that hardly swells in these polar solvents and hardly deteriorates due to contact, and among the perfluoropolymers, PTFE, PFA, and FEP are preferable. Among these, since water vapor permeability is low, decomposition of electrolyte such as LiPF 6 due to moisture can be suppressed, and it has sufficient hardness, solvent swellability is smaller than rubber, and a wide range of chemical substances In particular, PFA is preferable from the viewpoint of being resistant to chemicals and being resistant to oxidative degradation and enabling long-term use. When the sealing member contains PFA, the PFA content is preferably 50 wt% or more and 100 wt% or less, and the lower limit thereof is more preferably 70 wt% or more.
 上述のPTFEは、TFE単独重合体であってもよいし、変性PTFEであってもよい。ここで、「変性PTFE」とは、得られる共重合体に溶融加工性を付与しない程度の少量(1重量%以下)の共単量体(変性剤)をTFEと共重合してなるものを意味する。変性剤としては、例えば、HFP等のパーフルオロオレフィン;CTFE等のクロロフルオロオレフィン;トリフルオロエチレン、パーフルオロアルキルビニルエーテル等が挙げられる。 The above PTFE may be a TFE homopolymer or a modified PTFE. Here, “modified PTFE” is obtained by copolymerizing with TFE a small amount (1% by weight or less) of a comonomer (modifier) that does not impart melt processability to the resulting copolymer. means. Examples of the modifier include perfluoroolefins such as HFP; chlorofluoroolefins such as CTFE; trifluoroethylene, perfluoroalkyl vinyl ethers, and the like.
 上述のTFE/VdF共重合体としては、TFE単位:VdF単位のモル比が45~85/55~15であるものが好ましく、より好ましくは、50~80/50~20である。 The above-mentioned TFE / VdF copolymer preferably has a TFE unit: VdF unit molar ratio of 45 to 85/55 to 15, more preferably 50 to 80/50 to 20.
 上述のVdF/HFP共重合体としては、VdF単位とHFP単位とのモル比が45~85/55~15であるものが好ましく、より好ましくは50~80/50~20であり、さらに好ましくは60~80/40~20である。VdF/HFP共重合体は、VdFに基づく重合単位と、HFPに基づく重合単位とを含む共重合体であり、他の含フッ素単量体に基づく重合単位を有していてもよい。例えば、VdF/HFP/TFE共重合体であることも好ましい形態の一つである。VdF/HFP/TFE共重合体としては、VdF/HFP/TFEのモル比が40~80/10~35/10~25のものが好ましい。 The above-mentioned VdF / HFP copolymer preferably has a molar ratio of VdF units to HFP units of 45 to 85/55 to 15, more preferably 50 to 80/50 to 20, and still more preferably 60-80 / 40-20. The VdF / HFP copolymer is a copolymer containing a polymer unit based on VdF and a polymer unit based on HFP, and may have a polymer unit based on another fluorine-containing monomer. For example, VdF / HFP / TFE copolymer is also a preferred form. The VdF / HFP / TFE copolymer preferably has a VdF / HFP / TFE molar ratio of 40 to 80/10 to 35/10 to 25.
 封止部材がパーフルオロポリマーを含む場合には、流れにくく反発力が確保しやすい観点から、そのメルトフローレート(MFR)が40g/10分以下であることが好ましく、10g/10分以下であることがより好ましく、3g/10分以下であることがさらに好ましい。ここで、MFRとは、重合体の372℃におけるメルトフローレートをいい、ASTM D 1238-98に準拠し、メルトインデックステスター(東洋精機製作所社製)を用い、約6gの樹脂を372℃に保たれたシリンダーに投入し、5分間放置して温度が平衡状態に達した後、5kgのピストン荷重下で直径2.1mm、長さ8mmのオリフィスを通して樹脂を押し出して、単位時間(通常10~60秒)に採取される樹脂の質量(g)を同一試料について3回ずつ測定し、その平均値を10分間当たりの押出量に換算した値(単位:g/10分)とする。 When the sealing member contains a perfluoropolymer, the melt flow rate (MFR) is preferably 40 g / 10 min or less, and preferably 10 g / 10 min or less, from the viewpoint that it is difficult to flow and the repulsive force is easily secured. More preferably, it is 3 g / 10 min or less. Here, MFR refers to the melt flow rate of the polymer at 372 ° C. In accordance with ASTM D 1238-98, a melt index tester (manufactured by Toyo Seiki Seisakusho) is used, and about 6 g of resin is maintained at 372 ° C. After putting it in a cylinder and letting it stand for 5 minutes, the temperature reaches an equilibrium state, and then the resin is extruded through an orifice with a diameter of 2.1 mm and a length of 8 mm under a 5 kg piston load for a unit time (usually 10 to 60 seconds) ) Is measured three times for the same sample, and the average value is the value converted into the amount of extrusion per 10 minutes (unit: g / 10 minutes).
 なお、上述のフッ素樹脂のうち、溶融加工性に優れる観点からは、FEP、PFA、Et/TFE共重合体、PCTFE、CTFE/TFE共重合体、Et/CTFE共重合体、PVdF、TFE/VdF共重合体、VdF/HFP共重合体、および、PVFからなる群より選択される少なくとも1種であることが好ましい。このような溶融加工性フッ素樹脂を用いることで、成形を容易に行うことができる。 Of the fluororesins mentioned above, from the viewpoint of excellent melt processability, FEP, PFA, Et / TFE copolymer, PCTFE, CTFE / TFE copolymer, Et / CTFE copolymer, PVdF, TFE / VdF It is preferably at least one selected from the group consisting of a copolymer, a VdF / HFP copolymer, and PVF. By using such a melt processable fluororesin, molding can be easily performed.
 (4)シミュレーション
 本発明の封止部材は、押圧された状態において、押圧されている方向における圧縮割合が内側よりも外側の方が大きい部分を有していることにより、封止部材が使用された状態で長時間(例えば、20万時間)経過した後であっても、封止部材の反発力が残りやすく、封止効果を良好に維持することができる。
(4) Simulation In the pressed state, the sealing member of the present invention has a portion in which the compression ratio in the pressed direction is larger on the outside than on the inside, so that the sealing member is used. Even after a long time (for example, 200,000 hours) has passed, the repulsive force of the sealing member tends to remain, and the sealing effect can be maintained satisfactorily.
 ここで、本発明に係る封止部材の例として、上述の図4に示す封止部材10および図5に示す封止部材10Xを例に挙げ、形状の優位性を確認するシミュレーションを行った。 Here, as an example of the sealing member according to the present invention, the sealing member 10 shown in FIG. 4 and the sealing member 10X shown in FIG.
 図4に示す封止部材10は、外側に向かうほど貫通方向の幅が増大する形状であって、上面13側も下面14側もいずれも水平面に対して傾斜角度αで傾斜している例である。 The sealing member 10 shown in FIG. 4 is an example in which the width in the penetration direction increases toward the outside, and both the upper surface 13 side and the lower surface 14 side are inclined at an inclination angle α with respect to the horizontal plane. is there.
 また、図5に示す封止部材10Xは、外側に向かうほど貫通方向の幅が増大する形状であって、上面13xについては水平面に対して傾斜角度αで傾斜しており、下面14xについては水平面上に広がっているという例である。 Further, the sealing member 10X shown in FIG. 5 has a shape in which the width in the penetrating direction increases toward the outside. The upper surface 13x is inclined at an inclination angle α with respect to the horizontal plane, and the lower surface 14x is horizontal. This is an example of spreading upward.
 また、シミュレーションでは、本発明に係る封止部材ではない比較対象として、図11に示す封止部材10Yと図12に示す封止部材10Zを用いた。図11に示す封止部材10Yは、上面13yは外側ほど下方に位置し下面14yは外側ほど上方に位置して外側に向かうほど貫通方向の幅が縮小する形状であって、上面13yおよび下面14y共に水平面に対して傾斜角度βで傾斜している。図12に示す封止部材10Zは、下面14zについては水平面上に広がっており、上面13zは外側ほど下方に位置することで外側に向かうほど貫通方向の幅が縮小する形状であって、上面13zは水平面に対して傾斜角度βで傾斜している。 Moreover, in the simulation, the sealing member 10Y shown in FIG. 11 and the sealing member 10Z shown in FIG. 12 were used as comparative objects that are not the sealing member according to the present invention. The sealing member 10Y shown in FIG. 11 has a shape in which the upper surface 13y is positioned downward and the lower surface 14y is positioned upward and the width in the penetrating direction decreases toward the outer side. Both are inclined at an inclination angle β with respect to the horizontal plane. The sealing member 10Z shown in FIG. 12 has a lower surface 14z that spreads out on a horizontal plane, and the upper surface 13z has a shape in which the width in the penetrating direction decreases toward the outer side as it is located on the lower side, and the upper surface 13z. Is inclined at an inclination angle β with respect to the horizontal plane.
 また、シミュレーションに用いた封止部材10、10X、10Y、10Zは、いずれも環状であって、内側の貫通部分が円筒形状であって内径Aが6mmで共通し、外周面も円筒形状であって外径Bが18mmで共通しているものを用いた。また、これらの封止部材10、10X、10Y、10Zは、水平方向の幅の中心位置(径方向における内周と外周の中間位置)での貫通方向の幅Cがいずれも5mmとなるようにして共通化させた。 In addition, the sealing members 10, 10X, 10Y, and 10Z used in the simulation are all annular, the inner penetrating portion is cylindrical, the inner diameter A is 6 mm, and the outer peripheral surface is also cylindrical. The same outer diameter B of 18 mm was used. Further, these sealing members 10, 10X, 10Y, and 10Z have a width C in the penetrating direction at the center position of the horizontal width (the intermediate position between the inner circumference and the outer circumference in the radial direction) of 5 mm. Made common.
 なお、シミュレーションは、60℃の環境下において、水平方向に広がった面を有する部材によって貫通方向の一方側と他方側の両方から剛体によって封止部材が押圧され、そのまま保持されることを条件とし、ANSYS V14.5を用いて行った。なお、押圧は、封止部材の水平方向の幅の中心位置(径方向における内周と外周の中間位置)での貫通方向の幅Cが3mmとなるまで行い、この3mmが維持されるものとした。 The simulation is performed under the condition that the sealing member is pressed by a rigid body from both one side and the other side in the penetration direction by a member having a horizontally extending surface in an environment of 60 ° C. and held as it is. , Using ANSYS V14.5. The pressing is performed until the width C in the penetration direction at the center position of the horizontal width of the sealing member (the intermediate position between the inner circumference and the outer circumference in the radial direction) becomes 3 mm, and this 3 mm is maintained. did.
 ここで、シミュレーションに用いた封止部材10、10X、10Y、10Zの素材は、いずれも「テトラフルオロエチレンとパーフルオロアルキルビニルエーテルの共重合体」とし、具体的には、ネオフロン(登録商標)PFA AP-230の物性値を用いた。ここで、PFA AP-230の材質としての物性値としては、ASTM D 3307準拠によるMFRが2.0g/10分であり、ASTM D 4591準拠による融点306℃であり、ASTM D 3307準拠による比重が2.14であり、ASTM D 3307準拠による引張り強度が34.0MPaであり、ASTM D 3307準拠による伸びが320%である。引張弾性率は、430MPaである。シミュレーションに用いた60℃での物性値は、ASTM D 3307の測定雰囲気温度のみを60℃に変更して測定した値で、引張り強度が23.5MPa、伸びが330%、引張弾性率が186.1MPa、降伏応力が3.42MPaであるとした。ポアソン比は0.46であるとした。 Here, the materials of the sealing members 10, 10 X, 10 Y, and 10 Z used for the simulation are all “copolymers of tetrafluoroethylene and perfluoroalkyl vinyl ether”, and specifically, NEOFRON (registered trademark) PFA The physical property values of AP-230 were used. Here, as physical properties of PFA AP-230, the MFR according to ASTM2.0D3307 is 2.0g / 10min, the melting point is 306 ℃ according to ASTM D4591, and the specific gravity according to ASTM D3307 is 2.14. The tensile strength according to ASTM D 3307 is 34.0 MPa, and the elongation according to ASTM D 3307 is 320%. The tensile modulus is 430 MPa. The physical property value at 60 ° C used for the simulation is a value measured by changing only the measurement atmosphere temperature of ASTM D 307 3307 to 60 ° C, the tensile strength is 23.5 MPa, the elongation is 330%, the tensile modulus is 186.1 MPa, The yield stress was assumed to be 3.42 MPa. The Poisson's ratio was assumed to be 0.46.
 ここで、用いた素材の経時変化の条件は、用いた素材であるPFA AP-230のクリープ特性を用いて定めた。なお、クリープ特性は、次の式に示すように、修正時間硬化型のクリープモデルで表現すると仮定した。AP230の11.3mmφ×10Lのテストピースを圧縮成型したブロックから切削により作成し、60℃において6.9MPa,14MPa,20MPa,30MPa,40MPaの荷重におけるクリープ特性を実測した。その実測値を用いて、下記数1に実測データをフィッティングすることによりC1、C2、C3、C4をもとめた。 Here, the condition of the material used over time was determined using the creep characteristics of the PFA AP-230 used. The creep characteristics were assumed to be expressed by a modified time hardening type creep model as shown in the following equation. An AP230 11.3mmφ × 10L test piece was cut from a compression-molded block, and the creep characteristics under load of 6.9MPa, 14MPa, 20MPa, 30MPa and 40MPa were measured at 60 ℃. Using the measured values, C 1 , C 2 , C 3 , and C 4 were obtained by fitting the measured data to the following formula 1.
Figure JPOXMLDOC01-appb-M000001
   
 また、封止部材と、貫通方向の一方側と他方側からの押圧に用いられる剛体との間の摩擦係数は0.1とした。
Figure JPOXMLDOC01-appb-M000001

The coefficient of friction between the sealing member and the rigid body used for pressing from one side and the other side in the penetration direction was set to 0.1.
 なお、用いた素材について引っ張り試験を行うことで、図13に示す公称応力と公称ひずみの関係を示す線図を得た。また、図13の線図に基づいて計算を行うことで図14に示す真応力と真ひずみの関係を示す線図を得た。そして、これらの線図から、経年挙動解析のシミュレーション条件を得た。 In addition, the diagram which shows the relationship between the nominal stress and the nominal strain shown in FIG. 13 was obtained by conducting a tensile test on the material used. Moreover, the diagram which shows the relationship between the true stress shown in FIG. 14 and a true distortion | strain was obtained by calculating based on the diagram of FIG. And from these diagrams, simulation conditions for aged behavior analysis were obtained.
 なお、シミュレーションでは、封止部材10、10X、10Y、10Zの各外周の外側に図1に示す剛体として仮定される拘束部材20を配備して貫通方向から押圧された場合であっても外周が外側に広がっていかないように拘束条件を定めた例と、このような拘束部材20を用いることなく外周における広がりをフリーとした例と、について検討した。 In the simulation, even when the restraining member 20 assumed as a rigid body shown in FIG. 1 is provided outside the outer periphery of each of the sealing members 10, 10X, 10Y, and 10Z and pressed from the penetration direction, the outer periphery is An example in which the constraint condition was set so as not to spread outward and an example in which the spread at the outer periphery was free without using such a constraint member 20 were studied.
 図15に、傾斜角度αやβを変化させた場合における封止部材の20万時間後の反発力の大きさに関するシミュレーション結果を示す。 FIG. 15 shows a simulation result regarding the magnitude of the repulsive force after 200,000 hours of the sealing member when the inclination angles α and β are changed.
 図15に示すように、いずれの封止部材10、10X、10Y、10Zについても、拘束部材20を用いた場合の方が20万時間後でもより多くの反発力が残っており、封止効果が良好であることが分かる。また、外側に向かうほど貫通方向の厚みが縮小する封止部材10Y、10Zについては傾斜角度βが増大したとしても20万時間後に残る反発力は良好にはならない。上面側のみが傾斜している封止部材10Xについては傾斜角度αが増大するにつれて反発力がわずかに良好となり、傾斜角度が15度以上22度以下の範囲で反発力が極大となる。外側に向かうほど貫通方向の厚みが増大する形状である封止部材10については、傾斜角度αが増大するほど20万時間後に残る反発力も良好になることを確認することができ、封止部材10Xと比較して効果が顕著であった。拘束部材20がある場合でもない場合でもαが大きくなることにより反発力は良好になる。 As shown in FIG. 15, in any sealing member 10, 10X, 10Y, 10Z, more repulsive force remains after 200,000 hours when the restraining member 20 is used, and the sealing effect Is found to be good. Further, for the sealing members 10Y and 10Z whose thickness in the penetrating direction decreases toward the outside, the repulsive force remaining after 200,000 hours is not improved even if the inclination angle β increases. As for the sealing member 10X in which only the upper surface side is inclined, the repulsive force becomes slightly better as the inclination angle α increases, and the repulsive force becomes maximum within the range of the inclination angle of 15 degrees or more and 22 degrees or less. For the sealing member 10 having a shape in which the thickness in the penetration direction increases toward the outside, it can be confirmed that the repulsive force remaining after 200,000 hours becomes better as the inclination angle α increases, and the sealing member 10X The effect was remarkable compared with. Whether or not the restraining member 20 is present, the repulsive force is improved by increasing α.
 以上より、封止部材としては、封止部材10のように、外側に向かうほど貫通方向の厚みが増しており、上面13および下面14の両方が傾斜している形状のものを、拘束部材20が存在する状態で使用されることが望ましいことが分かる。 As described above, as the sealing member, a member having a shape in which the thickness in the penetrating direction is increased toward the outer side and both the upper surface 13 and the lower surface 14 are inclined as in the case of the sealing member 10. It can be seen that it is desirable to be used in the presence of.
 また、図16に、封止部材の使用開始からの経過時間に応じた反発力の変化を示すシミュレーション結果を示す。なお、ここでは、平板形状である傾斜の無いもの(「傾斜なし」の例)も比較のために用いた。 FIG. 16 shows a simulation result showing a change in the repulsive force according to the elapsed time from the start of use of the sealing member. Here, a flat plate-shaped plate having no inclination (an example of “no inclination”) was also used for comparison.
 この図16の結果によると、いずれの封止部材10、10X、10Y、10Zについても、やはり、拘束部材20を用いた場合の方が時間経過に伴う反発力の低下が穏やかであり、拘束部材20が存在している方が封止効果が良好であることが分かる。 According to the results shown in FIG. 16, for any of the sealing members 10, 10X, 10Y, and 10Z, the reduction in the repulsive force with the passage of time is gentler when the restraining member 20 is used. It can be seen that the sealing effect is better when 20 is present.
 また、封止部材の素材として、上述した素材の物性のうち、引っ張り試験時の応力およびクリープの反発力を倍にしたものについてもシミュレーションを行った。ここで、シミュレーションは、実測の倍の荷重をかけた場合のクリープ量が同じになったものとして処理を行った。また、ある変形量に対し実測の倍の応力が発生する、としてシミュレーション用のデータを作成した。 Further, among the above-described physical properties of the sealing member, a simulation was performed on a material obtained by doubling the stress during the tensile test and the repulsion force of the creep. Here, the simulation was performed on the assumption that the amount of creep when the load twice the actual measurement was applied was the same. In addition, simulation data was created on the assumption that twice as much stress as actually measured was generated for a certain amount of deformation.
 図17に、封止部材に用いられる素材の引っ張り試験時の応力およびクリープの反発力が1倍のものと2倍のものについて、反発力の経時変化のシミュレーション結果を示す。 FIG. 17 shows the simulation results of the temporal change of the repulsive force when the stress and creep repulsive force of the material used for the sealing member are 1 and 2 times.
 この図17の結果によると、当初は反発力が2倍であるモデルの方が望ましいが、1時間程度で反発力が1倍のものと2倍のものの差が無くなり、その後はむしろ1倍のものの方が反発力が大きく維持されることが分かった。封止部材の素材の物性値において、反発力に依存性が高い物性値として引張弾性率がある。室温における引張弾性率は、反発力が2倍であるモデルは0.86GPa なので 0.86GPa の引張弾性率を持つものは反発力が大きすぎ、好ましくない。よって、素材の引張弾性率は、0.8GPa よりも小さいことが好ましく、0.7GPa以下がさらに好ましい。 According to the result of FIG. 17, the model with a repulsive force of 2 times is preferable at the beginning, but the difference between the repulsive force with the repulsive force of 1 time and that of the rebound force disappears in about 1 hour, and then it is rather 1 time. It was found that the repulsive force of the thing is largely maintained. As a physical property value of the material of the sealing member, there is a tensile elastic modulus as a physical property value highly dependent on the repulsive force. The tensile elastic modulus at room temperature is 0.86 GPa in the model where the repulsive force is twice, and those having a tensile elastic modulus of 0.86 GPa are not preferable because the repulsive force is too large. Therefore, the tensile elastic modulus of the material is preferably smaller than 0.8 GPa and more preferably 0.7 GPa or less.
 また、封止部材と接触する押圧する部分との摩擦係数を変えた場合の20万時間後の反発力を、封止部材10(傾斜角度α=10度)、10X(傾斜角度α=20度)、10Y(傾斜角度β=10度)、10Z(傾斜角度β=20度)についてそれぞれ求めるシミュレーションを行った。ここで、各封止部材の条件は、押圧する部材との摩擦係数に関する条件以外は上述した通りとした。このシミュレーション結果を図18に示す。この結果が示すように、封止部材と接触する押圧する部材との摩擦係数は、封止部材からの反発力の大きさに影響を及ぼすことが明らかとなった。この結果によると、上記摩擦係数が大きくなればなるほど、得られる反発力が大きくなることが明らかになった。この効果は、封止部材の形状によらず、封止部材10、10X、10Y、10Zのいずれでも同じであった。また、摩擦係数の増加による反発力の増大比率は、経過時間の短い長いに係らず、ほぼ同じ比率であった。例えば、摩擦係数を1.0から2.0に変化させると、反発力が約25%増大した。 Further, the repulsive force after 200,000 hours when the coefficient of friction with the pressed portion in contact with the sealing member is changed is expressed by the sealing member 10 (inclination angle α = 10 degrees), 10X (inclination angle α = 20 degrees). ) A simulation was performed for 10Y (inclination angle β = 10 degrees) and 10Z (inclination angle β = 20 degrees). Here, the conditions of each sealing member were as described above except for the conditions relating to the coefficient of friction with the member to be pressed. The simulation result is shown in FIG. As this result shows, it became clear that the coefficient of friction with the pressing member in contact with the sealing member affects the magnitude of the repulsive force from the sealing member. According to this result, it became clear that the repulsive force obtained becomes large, so that the said friction coefficient becomes large. This effect was the same in any of the sealing members 10, 10X, 10Y, and 10Z regardless of the shape of the sealing member. Moreover, the increase ratio of the repulsive force due to the increase of the friction coefficient was almost the same ratio regardless of the short and long elapsed time. For example, when the friction coefficient was changed from 1.0 to 2.0, the repulsive force increased by about 25%.
 また、上記封止部材のうち上面および下面に傾斜の無い円筒形状のものを、貫通方向の一方側と他方側から押圧して5mmの厚みを3mmとして維持した場合であって、内側及び外側の拘束が無いという条件において、径方向の位置に応じた反発力の経時変化を求めるシミュレーションを行った。 Further, among the above sealing members, when the cylindrical shape having no inclination on the upper surface and the lower surface is pressed from one side and the other side in the penetrating direction and the thickness of 5 mm is maintained as 3 mm, Under the condition that there is no constraint, a simulation was performed to obtain the change over time of the repulsive force according to the radial position.
 当該シミュレーションの結果を、押圧直後の状態について図19に、押圧したままで1万時間経過した状態について図20に、押圧したままで10万時間経過した状態について図21に、押圧したままで20万時間経過した状態について図22にそれぞれ示す。なお、図19~図22においては、封止部材の側断面の一部を示しており、図の左側が径方向内側であり、図の右側が径方向外側を示している。また、図19~図22においては、異なる反発力の領域を異なるハッチングによって示している。 The results of the simulation are shown in FIG. 19 for the state immediately after pressing, in FIG. 20 for the state after 10,000 hours have been pressed, and in FIG. 21 for the state after 100,000 hours have been pressed and 20 Each state after 10,000 hours is shown in FIG. 19 to 22 show a part of the side cross section of the sealing member, the left side of the figure is the radially inner side, and the right side of the figure is the radially outer side. In FIGS. 19 to 22, different repulsive force regions are indicated by different hatchings.
 ここで、押圧直後の状態では反発力が最大である部分の面圧の値が37.7MPaであり、押圧したままで1万時間経過した状態では反発力が最大である部分の面圧の値が16.4MPaであり、押圧したままで10万時間経過した状態では反発力が最大である部分の面圧の値が15.0MPaであり、押圧したままで20万時間経過した状態では反発力が最大である部分の面圧の値が14.7MPaであった。 Here, the surface pressure value of the portion where the repulsive force is the maximum immediately after pressing is 37.7 MPa, and the surface pressure value of the portion where the repulsive force is maximum after 10,000 hours with the pressure being pressed is 37.7 MPa. The surface pressure value of the portion where the repulsive force is maximum is 15.0 MPa when 100,000 hours have passed while pressing, and the repulsive force is maximum when 200,000 hours have passed with pressing. The surface pressure of a certain part was 14.7 MPa.
 これによると、図19~図22に示すように、上面や下面に傾斜が設けられていない封止部材(一点鎖線で示す)を上下方向から押圧して変形させた状態(二点鎖線で示す)を維持する場合において、20万時間経過した時の封止部材の外側の反発力が低下していることが分かる。なお、外側に向かうほど貫通方向の厚みが増大する形状ではなく、傾斜が設けられていない形状では、押圧された状態において外側に押し拡げられることで径方向外側周辺の部分の外径がより長くなるように変形する(長外径化する)ため貫通方向における反発力が弱まりやすいものと考えられる。これに対して、封止部材を径方向外側が拘束されるようにして用いられる場合には、このような押圧時における長外径化の変形が生じにくいため、反発力の低減化を抑制することができるものと考えられる。 According to this, as shown in FIGS. 19 to 22, the sealing member (indicated by the alternate long and short dash line) in which the upper surface and the lower surface are not inclined is pressed and deformed from the vertical direction (indicated by the alternate long and two short dashes line) ) Is maintained, it can be seen that the repulsive force outside the sealing member when 200,000 hours have elapsed has decreased. In addition, in the shape in which the thickness in the penetrating direction does not increase toward the outside, and the shape is not provided with an inclination, the outer diameter of the portion around the radially outer side is longer by being expanded outward in the pressed state. It is considered that the repulsive force in the penetrating direction is likely to be weakened. On the other hand, when the sealing member is used in such a manner that the outer side in the radial direction is constrained, it is difficult for such a deformation to increase the outer diameter during pressing, so that the reduction of the repulsive force is suppressed. Can be considered.
 (5)使用例
 ガスケット51が電池の電極周辺の封止部材として用いられる場合について、押圧される前の状態の例を図23に、押圧された使用状態の例を図24に、それぞれ示す。
(5) Usage example FIG. 23 shows an example of the state before pressing, and FIG. 24 shows an example of the pressing usage state when the gasket 51 is used as a sealing member around the electrode of the battery.
 この電池の上蓋63および上蓋63の一部を覆う絶縁カバー62には、上下方向に貫通した貫通部分が設けられている。この貫通部分には、カシメることによって電極等として用いられるカシメピン61が設けられている。このカシメピン61は、金属によって構成されており、互いに繋がって一体化しているピン上部61aとピン下部61bを有している。 A through portion penetrating in the vertical direction is provided in the upper cover 63 of the battery and the insulating cover 62 covering a part of the upper cover 63. A caulking pin 61 that is used as an electrode or the like by caulking is provided in the penetrating portion. The caulking pin 61 is made of metal and has a pin upper portion 61a and a pin lower portion 61b which are connected to each other and integrated.
 カシメピン61のピン上部61aは、カシメられる前の状態では、図23に示すように、上記貫通部分の内径よりも小さな外径の円柱形状が、上蓋63よりも下方の高さから上記貫通部分の内側を介して上蓋63よりも上方の高さまで上下方向に渡って伸びた形状を有している。 As shown in FIG. 23, the pin upper portion 61a of the caulking pin 61 has a cylindrical shape with an outer diameter smaller than the inner diameter of the penetrating portion, as shown in FIG. It has a shape extending in the vertical direction to the height above the upper lid 63 via the inside.
 カシメピン61のピン下部61bは、カシメられる前の状態では、図23に示すように、上記貫通部分の内径よりも大きな外径の円柱形状が、上蓋63の下方において、ピン上部61aの下端からさらに下方に向けて伸びた形状を有している。このカシメピン61のピン下部61bは、剛性の高い部材によって構成される拘束部材64によって径方向周囲から覆われている。なお、この拘束部材64は、図示しない他の部材によって例えば上蓋63に対して相対的に移動することが無いように固定されることで、位置決めされている。 As shown in FIG. 23, the pin lower portion 61b of the caulking pin 61 has a cylindrical shape with an outer diameter larger than the inner diameter of the penetrating portion, and further from the lower end of the pin upper portion 61a below the upper lid 63, as shown in FIG. It has a shape that extends downward. The pin lower portion 61b of the caulking pin 61 is covered from the periphery in the radial direction by a restraining member 64 made of a highly rigid member. The restraining member 64 is positioned by being fixed by another member (not shown) so as not to move relative to the upper lid 63, for example.
 ガスケット51は、上蓋63と絶縁カバー62と拘束部材64と、カシメピン61との間に介在するように設けられており、上方円筒部分51aと、円板部分51bと、下方円筒部分51cを有している。 The gasket 51 is provided so as to be interposed between the upper lid 63, the insulating cover 62, the restraining member 64, and the caulking pin 61, and has an upper cylindrical portion 51a, a disc portion 51b, and a lower cylindrical portion 51c. ing.
 上方円筒部分51aは、上蓋63と絶縁カバー62の内側の貫通部分の内径よりも僅かに小さい外径と、カシメピン61のピン上部61aの外径よりも僅かに大きい内径を有しており、上蓋63よりも下方の高さから上記貫通部分の内側を介して上蓋63よりも上方の高さまで上下方向に渡って伸びた形状を有している。上方円筒部分51aは、上蓋63および絶縁カバー62と、カシメピン61のピン上部61aと、の間に介在することで、両者を絶縁している。 The upper cylindrical portion 51a has an outer diameter that is slightly smaller than the inner diameter of the through portion inside the upper lid 63 and the insulating cover 62, and an inner diameter that is slightly larger than the outer diameter of the pin upper portion 61a of the caulking pin 61. It has a shape extending in the vertical direction from a height below 63 to a height above the upper lid 63 through the inside of the penetrating portion. The upper cylindrical portion 51 a is interposed between the upper lid 63 and the insulating cover 62 and the pin upper portion 61 a of the caulking pin 61 to insulate them from each other.
 下方円筒部分51cは、カシメピン61のピン下部61bの外径よりも僅かに大きな内径と、拘束部材64の内径よりも僅かに小さな外径を有しており、カシメピン61のピン下部61bの外周と拘束部材64の内周が対面している高さ位置から上蓋63の下面に向けて上方に伸びた形状を有している。下方円筒部分51cは、カシメピン61のピン下部61bと、拘束部材64と、の間に介在することで、両者を絶縁している。 The lower cylindrical portion 51 c has an inner diameter that is slightly larger than the outer diameter of the pin lower portion 61 b of the caulking pin 61 and an outer diameter that is slightly smaller than the inner diameter of the restraining member 64. The restraint member 64 has a shape extending upward from the height position where the inner periphery of the restraining member 64 faces toward the lower surface of the upper lid 63. The lower cylindrical portion 51 c is interposed between the pin lower portion 61 b of the caulking pin 61 and the restraining member 64 to insulate them from each other.
 円板部分51bは、上方円筒部分51aの下端外周部分と、下方円筒部分51c上端内周部分と、を径方向において繋ぐように広がった部材であり、例えば、上述した封止部材10のような形状を構成している。円板部分51bの径方向外側端部は、上蓋63の下面と面接触する外側上平面部分と、カシメピン61のピン下部61bの上面部分と面接触する外側下平面部分と、を有している。円板部分51bのうち、外側上平面部分および外側下平面部分よりも径方向内側の部分は、径方向内側に向かうにつれて上下方向の厚みが薄くなるように上面および下面が傾斜した構成となっている。なお、特に限定されないが、当該使用例では、径方向外側から上方円筒部分51aの下端外周に到達するまで、径方向内側に向かうにつれて上下方向の厚みが連続的に薄くなるように構成されているが、例えば、上方円筒部分51aの下端外周に到達する直前部分において上下方向の厚みが一定となっている部分が設けられていてもよい。また、円板部分51bの径方向において、外側上平面部分および外側下平面部分が設けられている部分と、当該部分よりも内側の部分と、の径方向の長さの割合は、特に限定されないが、例えば、図23に示すようにカシメられる前の状態では、1:9~5:5の範囲であることが好ましい。 The disc portion 51b is a member that expands so as to connect the lower end outer peripheral portion of the upper cylindrical portion 51a and the lower cylindrical portion 51c upper end inner peripheral portion in the radial direction. For example, like the sealing member 10 described above Make up shape. The radially outer end portion of the disc portion 51b has an outer upper flat surface portion that makes surface contact with the lower surface of the upper lid 63 and an outer lower flat portion that makes surface contact with the upper surface portion of the pin lower portion 61b of the caulking pin 61. . Of the disc portion 51b, the radially inner portion of the outer upper flat portion and the outer lower flat portion has a configuration in which the upper surface and the lower surface are inclined so that the thickness in the vertical direction becomes thinner toward the radially inner side. Yes. Although not particularly limited, in this usage example, the thickness in the vertical direction is continuously reduced from the radially outer side toward the radially inner side until reaching the outer periphery of the lower end of the upper cylindrical portion 51a. However, for example, a portion where the thickness in the vertical direction is constant immediately before reaching the outer periphery of the lower end of the upper cylindrical portion 51a may be provided. Further, in the radial direction of the disc portion 51b, the ratio of the length in the radial direction between the portion where the outer upper plane portion and the outer lower plane portion are provided and the portion inside the portion is not particularly limited. However, for example, in the state before being caulked as shown in FIG. 23, the range of 1: 9 to 5: 5 is preferable.
 上述のように、図23に示すカシメられる前の状態のカシメピン61を、ガスケット51が拘束部材64によって径方向への移動が拘束されている状態で、カシメピン61のピン上部61aの上端を下方に向けて押しつぶすようにすることで、カシメピン61のピン上部61aが押しつぶされ、図24に示す変形ピン上部61a’のようにガスケット51の上方円筒部分51aの上端を上方から覆うように変形する。また、この時、ガスケット51の円板部分51bは、上蓋63の下面部分とカシメピン61のピン下部61bの上面部分によって上下方向から押圧され、上下方向の厚みが小さくなるように変形する。このようにして、ガスケット51は、径方向において拘束されつつ上下方向から押圧された状態で固定され、使用状態となる。なお、ここでは、ガスケット51の上方円筒部分51aについても、上下方向の長さが短くなるように変形している。 23, the upper end of the pin upper portion 61a of the caulking pin 61 is moved downward with the gasket 51 being restrained from moving in the radial direction by the restraining member 64. By crushing the pin, the pin upper portion 61a of the caulking pin 61 is crushed and deformed so as to cover the upper end of the upper cylindrical portion 51a of the gasket 51 from above as in the deformed pin upper portion 61a ′ shown in FIG. At this time, the disc portion 51b of the gasket 51 is pressed from above and below by the lower surface portion of the upper lid 63 and the upper surface portion of the pin lower portion 61b of the caulking pin 61, and is deformed so that the thickness in the vertical direction is reduced. In this way, the gasket 51 is fixed in a state in which it is pressed in the up-down direction while being constrained in the radial direction, and is in use. Here, the upper cylindrical portion 51a of the gasket 51 is also deformed so as to have a shorter vertical length.
 なお、図24に示すようにカシメられた後の状態において、ガスケット51の円板部分51bの径方向における外側上平面部分および外側下平面部分が設けられている部分と当該部分よりも内側の部分との径方向の長さの割合は、特に限定されないが、例えば、7:3~9.5:1であることが好ましい。 In addition, in the state after crimping as shown in FIG. 24, the portion provided with the outer upper flat portion and the outer lower flat portion in the radial direction of the disc portion 51b of the gasket 51, and the inner portion of the portion. The ratio of the length in the radial direction is not particularly limited, but is preferably 7: 3 to 9.5: 1, for example.
 本発明に係る封止部材は、長時間使用した場合であっても良好な封止効果を得ることが可能であることから、例えば、ガスケット等として用いた場合に特に有用である。 The sealing member according to the present invention is particularly useful when used, for example, as a gasket or the like because a good sealing effect can be obtained even when used for a long time.
10、10X、110、210、310、410、510、610、710 封止部材
11 円筒部分
111 方形部分
211 くり抜かれた部分
12、112、212 外周
13、13x、13y、13z 上面
313、413、513、613 上方部分
713a 上方傾斜部分
713b 上方平面部分
14、14x、14y、14z 下面
714a 下方傾斜部分
714b 下方平面部分
314、414、514、614 下方部分
20 拘束部材
51 ガスケット
51a 上方円筒部分
51b 円板部分
51c 下方円筒部分
61 カシメピン
61a ピン上部
61a’ 変形ピン上部
61b ピン下部
62 絶縁カバー
63 上蓋
64 拘束部材
10, 10X, 110, 210, 310, 410, 510, 610, 710 Sealing member 11 Cylindrical part 111 Square part 211 Perforated part 12, 112, 212 Outer periphery 13, 13x, 13y, 13z Upper surface 313, 413, 513 , 613 Upper part 713a Upper inclined part 713b Upper flat part 14, 14x, 14y, 14z Lower surface 714a Lower inclined part 714b Lower flat part 314, 414, 514, 614 Lower part 20 Restraining member 51 Gasket 51a Upper cylindrical part 51b Disc part 51c Lower cylindrical part 61 Caulking pin 61a Pin upper part 61a 'Deformation pin upper part 61b Pin lower part 62 Insulation cover 63 Upper lid 64 Constraining member
特開2013-157155号公報JP 2013-157155 A

Claims (6)

  1.  環状の封止部材であって、
     内側の貫通している部分における貫通方向の一方側と他方側から押圧された状態で用いられ、
     前記押圧された状態において、前記押圧されている方向における圧縮割合が内側よりも外側の方が大きい部分を有している、
    封止部材。
    An annular sealing member,
    Used in a state where it is pressed from one side and the other side in the penetrating direction in the inner penetrating part,
    In the pressed state, the compression ratio in the pressed direction has a portion where the outside is larger than the inside,
    Sealing member.
  2.  内側から外側に向かうにつれて前記押圧される方向における厚みが増すように構成された、
    請求項1に記載の封止部材。
    The thickness in the pressed direction increases from the inside toward the outside.
    The sealing member according to claim 1.
  3.  引張弾性率が0.8GPa以下である、
    請求項1または2に記載の封止部材。
    The tensile modulus is 0.8 GPa or less,
    The sealing member according to claim 1 or 2.
  4.  パーフルオロポリマーを含んで構成されている、
    請求項1から3のいずれか1項に記載の封止部材。
    Composed of perfluoropolymer,
    The sealing member according to any one of claims 1 to 3.
  5.  PFAの含有量が50wt%以上100wt%以下である、
    請求項4に記載の封止部材。
    The content of PFA is 50 wt% or more and 100 wt% or less,
    The sealing member according to claim 4.
  6.  電池用ガスケットに用いられる、
    請求項1から5のいずれか1項に記載の封止部材。
    Used for battery gaskets,
    The sealing member according to any one of claims 1 to 5.
PCT/JP2015/055888 2014-02-28 2015-02-27 Sealing member WO2015129866A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580010017.8A CN106068413B (en) 2014-02-28 2015-02-27 Seal member
KR1020167024727A KR101856892B1 (en) 2014-02-28 2015-02-27 Sealing member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014039478 2014-02-28
JP2014-039478 2014-02-28

Publications (1)

Publication Number Publication Date
WO2015129866A1 true WO2015129866A1 (en) 2015-09-03

Family

ID=54009179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/055888 WO2015129866A1 (en) 2014-02-28 2015-02-27 Sealing member

Country Status (4)

Country Link
JP (1) JP6011657B2 (en)
KR (1) KR101856892B1 (en)
CN (1) CN106068413B (en)
WO (1) WO2015129866A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020204163A1 (en) * 2019-04-05 2020-10-08 ダイキン工業株式会社 Member to be compressed for electrochemical devices
WO2022168654A1 (en) * 2021-02-05 2022-08-11 ダイキン工業株式会社 Sealing member and battery

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI656241B (en) 2014-11-10 2019-04-11 瑞士商億諾斯技術公司 Pad, device including the same, and related method
KR102090573B1 (en) * 2016-01-19 2020-03-18 다이킨 고교 가부시키가이샤 Winding structure of resin piping, manufacturing method of winding structure, laying method of resin piping, and resin piping
CN110107689A (en) * 2019-04-28 2019-08-09 厦门奥泉橡胶有限公司 The sealing ring of side sealing
JP7248915B2 (en) * 2020-09-11 2023-03-30 ダイキン工業株式会社 Sealing member and cylindrical lithium ion battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07228744A (en) * 1994-02-19 1995-08-29 Nippon Pillar Packing Co Ltd Fluororesin composition for sliding member
JPH1116548A (en) * 1997-06-26 1999-01-22 Yodogawa Kasei Kk Manufacture of packing for secondary battery
JPH11201288A (en) * 1998-01-14 1999-07-27 Purovakku:Kk Gasket
JP2009212051A (en) * 2008-03-06 2009-09-17 Fdk Energy Co Ltd Bobbin type lithium bettry

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02138574A (en) * 1988-11-18 1990-05-28 Hitachi Ltd Gasket
JP2002056827A (en) * 2000-08-09 2002-02-22 Seiko Instruments Inc Nonaqueous electrolyte secondary battery
CN2509384Y (en) * 2001-10-24 2002-09-04 荣泰橡胶工业有限公司 Sealing apparatus for pipeline or cable line positioning base
JP6005363B2 (en) 2012-01-27 2016-10-12 三洋電機株式会社 Method for producing lithium ion secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07228744A (en) * 1994-02-19 1995-08-29 Nippon Pillar Packing Co Ltd Fluororesin composition for sliding member
JPH1116548A (en) * 1997-06-26 1999-01-22 Yodogawa Kasei Kk Manufacture of packing for secondary battery
JPH11201288A (en) * 1998-01-14 1999-07-27 Purovakku:Kk Gasket
JP2009212051A (en) * 2008-03-06 2009-09-17 Fdk Energy Co Ltd Bobbin type lithium bettry

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020204163A1 (en) * 2019-04-05 2020-10-08 ダイキン工業株式会社 Member to be compressed for electrochemical devices
JPWO2020204163A1 (en) * 2019-04-05 2020-10-08
JP7299525B2 (en) 2019-04-05 2023-06-28 ダイキン工業株式会社 Compressed member for electrochemical device
WO2022168654A1 (en) * 2021-02-05 2022-08-11 ダイキン工業株式会社 Sealing member and battery
JP7121325B1 (en) 2021-02-05 2022-08-18 ダイキン工業株式会社 Sealing material and battery
JP2022120805A (en) * 2021-02-05 2022-08-18 ダイキン工業株式会社 Sealing member and battery

Also Published As

Publication number Publication date
CN106068413A (en) 2016-11-02
KR101856892B1 (en) 2018-05-10
KR20160119202A (en) 2016-10-12
JP2015178899A (en) 2015-10-08
JP6011657B2 (en) 2016-10-19
CN106068413B (en) 2018-08-07

Similar Documents

Publication Publication Date Title
JP6011657B2 (en) Sealing member
KR101644255B1 (en) Sealing material
KR100918351B1 (en) Sealing material for semiconductor manufacturing apparatus
JP4754621B2 (en) Composite sealing material
WO2018181373A1 (en) Rubber composition to be used for sealing member for high-pressure gases, sealing member for high-pressure gases, device for high-pressure gases, and high-pressure gas sealing method
JP6082715B2 (en) Rubber gasket for fuel cell
EP2824144A3 (en) Fluorine rubber composition capable of forming crack-resistant sealing material and crack-resistant sealing material obtained from the composition
JP2010255782A (en) Plug for seismic isolator and manufacturing method thereof
JP2008235081A (en) Packing for secondary battery
JP4725115B2 (en) Manufacturing method of lip seal made of polytetrafluoroethylene resin
US11034124B2 (en) Insulated conduit including a fluoropolymer composition for use as a thermal insulation layer
US20220069394A1 (en) Sealing structure for battery
JP2012112448A (en) Seal ring for automobile, and seal ring and sliding component for industrial gas compressor
JP7339498B2 (en) Battery sealing structure
EP3208508B1 (en) Flexible pipe
US20150115548A1 (en) Composite gasket
JP2023511718A (en) Seal sets for sealing pumps and stator components of such pumps
WO2015141442A1 (en) Seal member and method for producing same
KR101924432B1 (en) High power battery
JP6573772B2 (en) Sealing device
KR102723877B1 (en) Sealing structure of the battery
JP2012154388A (en) Seal material
JP2016079200A (en) Fluororubber composition and seal structure provided with sealing material using the fluororubber composition
CN116171357A (en) Sealing member and cylindrical lithium ion battery
JP2001099324A (en) Gasket made of fluororesin

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15755534

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167024727

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15755534

Country of ref document: EP

Kind code of ref document: A1