WO2015129832A1 - Radiosensitive resin composition, method for forming resist pattern, polymer, and compound - Google Patents

Radiosensitive resin composition, method for forming resist pattern, polymer, and compound Download PDF

Info

Publication number
WO2015129832A1
WO2015129832A1 PCT/JP2015/055718 JP2015055718W WO2015129832A1 WO 2015129832 A1 WO2015129832 A1 WO 2015129832A1 JP 2015055718 W JP2015055718 W JP 2015055718W WO 2015129832 A1 WO2015129832 A1 WO 2015129832A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polymer
structural unit
resin composition
carbon atoms
Prior art date
Application number
PCT/JP2015/055718
Other languages
French (fr)
Japanese (ja)
Inventor
準人 生井
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to JP2016505307A priority Critical patent/JP6493386B2/en
Publication of WO2015129832A1 publication Critical patent/WO2015129832A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/90Carboxylic acid amides having nitrogen atoms of carboxamide groups further acylated
    • C07C233/91Carboxylic acid amides having nitrogen atoms of carboxamide groups further acylated with carbon atoms of the carboxamide groups bound to acyclic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C311/00Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
    • C07C311/30Sulfonamides, the carbon skeleton of the acid part being further substituted by singly-bound nitrogen atoms, not being part of nitro or nitroso groups
    • C07C311/45Sulfonamides, the carbon skeleton of the acid part being further substituted by singly-bound nitrogen atoms, not being part of nitro or nitroso groups at least one of the singly-bound nitrogen atoms being part of any of the groups, X being a hetero atom, Y being any atom, e.g. N-acylaminosulfonamides
    • C07C311/46Y being a hydrogen or a carbon atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C311/00Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
    • C07C311/48Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups having nitrogen atoms of sulfonamide groups further bound to another hetero atom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • C08F220/283Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing one or more carboxylic moiety in the chain, e.g. acetoacetoxyethyl(meth)acrylate
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0046Photosensitive materials with perfluoro compounds, e.g. for dry lithography
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • G03F7/0397Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition the macromolecular compound having an alicyclic moiety in a side chain
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2041Exposure; Apparatus therefor in the presence of a fluid, e.g. immersion; using fluid cooling means
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/22Esters containing halogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/38Esters containing sulfur
    • C08F220/382Esters containing sulfur and containing oxygen, e.g. 2-sulfoethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/38Esters containing sulfur
    • C08F220/387Esters containing sulfur and containing nitrogen and oxygen

Definitions

  • the present invention relates to a radiation sensitive resin composition, a resist pattern forming method, a polymer and a compound.
  • a resist pattern forming method by photolithography For forming various electronic device structures such as semiconductor devices and liquid crystal devices, a resist pattern forming method by photolithography is used.
  • a radiation sensitive resin composition for forming a resist pattern on a substrate is used.
  • the radiation sensitive resin composition generates an acid in an exposed portion by irradiation with radiation such as deep ultraviolet rays such as ArF excimer laser light or an electron beam, and a developing solution for an exposed portion and an unexposed portion by the catalytic action of the acid. A difference in dissolution rate with respect to is formed, and a resist pattern is formed on the substrate.
  • Such a radiation-sensitive resin composition is excellent in resolution and not only in the rectangular shape of the cross-sectional shape of the resist pattern, but also in LWR (Line Width Roughness) performance, CDU (Critical Dimension Uniformity) performance, and the like.
  • LWR Line Width Roughness
  • CDU Critical Dimension Uniformity
  • MEEF Mem Error Enhancement Factor
  • the miniaturization of the resist pattern has progressed to a level of 45 nm or less, the required level of the performance is further increased, and the conventional radiation-sensitive resin composition satisfies these requirements. I can't make it happen.
  • the present invention has been made based on the above-described circumstances, and exhibits excellent MEEF performance, depth of focus, and exposure margin, and is excellent in LWR performance, CDU performance, resolution, and cross-sectional rectangularity. It aims at providing the radiation sensitive resin composition which can form a resist pattern.
  • structural unit (I) containing a group represented by the following formula (1) (hereinafter also referred to as “group (1)”). ) Containing a polymer (hereinafter also referred to as “[A] polymer”) and a radiation-sensitive acid generator (hereinafter also referred to as “[B] acid generator”). is there.
  • group (1) a group represented by the following formula (1)
  • [A] polymer a polymer
  • [B] acid generator a radiation-sensitive acid generator
  • R 1 is a substituted or unsubstituted divalent hydrocarbon group having 1 to 10 carbon atoms.
  • R 2 is a single bond or a substituted or unsubstituted 2 having 1 to 5 carbon atoms.
  • R 1 and at least one of one or more R 2 form a ring structure having 3 to 20 ring members composed of carbon atoms to which they are bonded together and to which they are bonded.
  • A is an integer of 1 to 3.
  • a is 2 or more, a plurality of R 2 may be the same or different, and A has two or more heteroatoms, (This is a monovalent group bonded to R 2 by a carbon atom. * Indicates a bonding site.)
  • Another invention made in order to solve the above-mentioned problems comprises a step of forming a resist film, a step of exposing the resist film, and a step of developing the exposed resist film, It is the resist pattern formation method formed with a conductive resin composition.
  • R 1 is a substituted or unsubstituted divalent hydrocarbon group having 1 to 10 carbon atoms.
  • R 2 is a single bond or a substituted or unsubstituted 2 having 1 to 5 carbon atoms.
  • R 1 and at least one of one or more R 2 form a ring structure having 3 to 20 ring members composed of carbon atoms to which they are bonded together and to which they are bonded.
  • A is an integer of 1 to 3.
  • R 10 is a hydrogen atom, a fluorine atom, a methyl group or A is a trifluoromethyl group, and A is a monovalent group having two or more heteroatoms and bonded to R 2 with a carbon atom.
  • R 1 is a substituted or unsubstituted divalent hydrocarbon group having 1 to 10 carbon atoms.
  • R 2 is a single bond or a substituted or unsubstituted 2 having 1 to 5 carbon atoms.
  • R 1 and at least one of one or more R 2 form a ring structure having 3 to 20 ring members composed of carbon atoms to which they are bonded together and to which they are bonded.
  • A is an integer of 1 to 3.
  • R 10 is a hydrogen atom, a fluorine atom, a methyl group or A is a trifluoromethyl group, and A is a monovalent group having two or more heteroatoms and bonded to R 2 with a carbon atom.
  • organic group means a group containing at least one carbon atom.
  • the “hydrocarbon group” includes a chain hydrocarbon group, an alicyclic hydrocarbon group, and an aromatic hydrocarbon group.
  • the “hydrocarbon group” may be a saturated hydrocarbon group or an unsaturated hydrocarbon group.
  • the “chain hydrocarbon group” refers to a hydrocarbon group that does not include a cyclic structure but includes only a chain structure, and includes both a linear hydrocarbon group and a branched hydrocarbon group.
  • alicyclic hydrocarbon group refers to a hydrocarbon group that includes only an alicyclic structure as a ring structure and does not include an aromatic ring structure, and includes a monocyclic alicyclic hydrocarbon group and a polycyclic alicyclic group. Includes both hydrocarbon groups.
  • “Aromatic hydrocarbon group” refers to a hydrocarbon group containing an aromatic ring structure as a ring structure. However, it is not necessary to be composed only of an aromatic ring structure, and a part thereof may include a chain structure or an alicyclic structure.
  • the “number of ring members” means the number of atoms constituting the ring of the alicyclic structure and the aliphatic heterocyclic structure, and in the case of the polycyclic alicyclic structure and the polycyclic aliphatic heterocyclic structure, The number of atoms that make up.
  • the radiation sensitive resin composition and resist pattern forming method of the present invention excellent MEEF performance, depth of focus and exposure margin are exhibited, and LWR performance, CDU performance, resolution, and cross-sectional rectangularity are obtained.
  • An excellent resist pattern can be formed.
  • the polymer of this invention is used suitably as a polymer component of the said radiation sensitive resin composition. Since the compound of the present invention has a structure represented by the above formula (i), it is suitably used as a monomer compound that incorporates the structural unit (I) into the polymer. Therefore, these can be suitably used for pattern formation in semiconductor device manufacturing or the like, where miniaturization is expected to progress further in the future.
  • the radiation-sensitive resin composition contains a [A] polymer and a [B] acid generator. Moreover, the said radiation sensitive resin composition is also called fluorine atom containing polymer (henceforth "[D] polymer") other than [C] acid diffusion control body and [D] [A] polymer as a suitable component. ) And [E] may contain a solvent, and may contain other optional components as long as the effects of the present invention are not impaired. Hereinafter, each component will be described.
  • the polymer is a polymer having the structural unit (I).
  • the radiation-sensitive resin composition exhibits excellent MEEF performance, depth of focus, and exposure margin due to the [A] polymer having the structural unit (I), LWR performance, CDU performance, and resolution.
  • it is possible to form a resist pattern having a rectangular cross-sectional shape (these performances are also referred to as “lithographic performances” hereinafter).
  • the reason why the polymer exhibits the above-described effect by having the above-described configuration is not necessarily clear, but can be inferred as follows, for example.
  • the structural unit (I) has a monovalent group having two or more heteroatoms, and a ketone structure is formed between the monovalent group and the polymer chain. Since it has the specific structure connected with the spacer which has, it has high polarity. Therefore, [A] polymer can adjust the solubility with respect to a developing solution more appropriately. Furthermore, the radiation sensitive resin composition can shorten the diffusion length of the acid generated from the [B] acid generator more appropriately. As a result, according to the radiation sensitive resin composition, the lithography performance of the resist pattern to be formed can be improved.
  • the polymer is a structural unit other than the structural unit (I) and includes an acid dissociable group (II); a lactone structure, a cyclic carbonate structure, and a sultone structure Or a structural unit (III) containing a combination thereof; a structural unit (IV) containing a polar group and a fluorine atom-containing structural unit (V), and other structural units other than the structural units (I) to (V) It may have a structural unit or the like.
  • the polymer preferably has a structural unit (II) and a structural unit (III) in addition to the structural unit (I).
  • the polymer may have one or more of each structural unit. Hereinafter, each structural unit will be described.
  • the structural unit (I) is a structural unit containing a group represented by the following formula (1).
  • R 1 is a substituted or unsubstituted divalent hydrocarbon group having 1 to 10 carbon atoms.
  • R 2 is a single bond or a substituted or unsubstituted divalent chain hydrocarbon group having 1 to 5 carbon atoms.
  • R 1 and at least one of one or a plurality of R 2 may be combined with each other to form a ring structure having 3 to 20 ring members that is configured together with the carbon atom to which they are bonded.
  • a is an integer of 1 to 3.
  • a is 2 or more, a plurality of R 2 may be the same or different.
  • A has two or more hetero atoms, a monovalent group having a carbon atom bonded to R 2. * Indicates a binding site.
  • Examples of the divalent hydrocarbon group represented by R 1 include a divalent chain hydrocarbon group having 1 to 10 carbon atoms, a divalent alicyclic hydrocarbon group having 3 to 10 carbon atoms, and a carbon number. Examples thereof include 6 to 10 divalent aromatic hydrocarbon groups.
  • Examples of the divalent chain hydrocarbon group having 1 to 10 carbon atoms include alkanediyl groups such as methanediyl group, ethanediyl group, propanediyl group, butanediyl group; Alkenediyl groups such as ethenediyl group, propenediyl group, butenediyl group; Examples include alkynediyl groups such as ethynediyl group, propynediyl group, and butynediyl group.
  • Examples of the divalent alicyclic hydrocarbon group having 3 to 10 carbon atoms include monocyclic cycloalkanediyl groups such as cyclopropanediyl group, cyclobutanediyl group, cyclopentanediyl group, and cyclohexanediyl group; A polycyclic cycloalkanediyl group such as a norbornanediyl group or an adamantanediyl group; Monocyclic cycloalkenediyl groups such as cyclopropenediyl group, cyclobutenediyl group, cyclopentenediyl group, cyclohexenediyl group; And polycyclic cycloalkenediyl groups such as norbornenediyl group.
  • monocyclic cycloalkanediyl groups such as cyclopropanediyl group, cyclobutanediyl group, cyclopen
  • divalent aromatic hydrocarbon group having 6 to 10 carbon atoms examples include arylene groups such as a phenylene group and a tolylene group.
  • Examples of the substituent that these groups may have include a hydroxy group, a halogen atom, and an organic group having 1 to 20 carbon atoms.
  • Examples of the organic group having 1 to 20 carbon atoms include alkyl groups such as a methyl group and an ethyl group, and alkanediyl groups bonded to the same carbon atom that R 1 has.
  • R 1 is preferably a substituted or unsubstituted methanediyl group and an unsubstituted ethanediyl group, more preferably an unsubstituted methanediyl group and a methanediyl group substituted with an alkanediyl group bonded to the same carbon atom of R 1 , An unsubstituted methanediyl group is more preferred.
  • Examples of the divalent chain hydrocarbon group represented by R 2 include the same groups as those exemplified as the divalent chain hydrocarbon group for R 1 .
  • Examples of the substituent that these groups may have include the same groups as the substituents exemplified in R 1 above.
  • R 2 is preferably a single bond, an unsubstituted alkanediyl group or an alkanediyl group substituted with an alkyl group, and a single bond, an unsubstituted methanediyl group, an unsubstituted ethanediyl group or a methanediyl group substituted with a methyl group Is more preferable.
  • A is preferably 1 or 2 from the viewpoint of easiness of synthesis or the like, and more preferably 1.
  • Examples of the ring structure having 3 to 20 ring members composed of R 1 and at least one of one or a plurality of R 2 and the carbon atom to which they are bonded include a cyclopropane structure, a cyclobutane structure, and a cyclopentane.
  • Examples thereof include alicyclic structures such as a structure, cyclohexane structure, norbornane structure, and adamantane structure; and aliphatic heterocyclic structures such as an oxacyclopentane structure, a thiacyclopentane structure, and an azacyclopentane structure.
  • an alicyclic structure is preferable and a cyclohexane structure is more preferable.
  • Examples of the monovalent group having two or more heteroatoms represented by A include a monovalent group having a chain structure and a monovalent cyclic group having a heterocyclic structure.
  • hetero atom examples include an oxygen atom, a sulfur atom, a nitrogen atom, a silicon atom, and a phosphorus atom.
  • an oxygen atom, a sulfur atom, and a nitrogen atom are preferable, and an oxygen atom is more preferable.
  • Examples of the chain structure include a chain structure having an ester group (—COO—); a chain structure having —SO 2 O—; a chain structure having a sulfone group (—SO 2 —); and a sulfoxide group (— Chain structure having SO—); chain structure having amide group (—CONH—); sulfonimide group (—N (SO 2 R) 2 ), carboximide group (—N (COR) 2 ), carvone Examples include a chain structure having an imide group such as an acid sulfonimide group (—N (COR) (SO 2 R)); a chain structure having a sulfonamide group (—NHSO 2 —); and combinations thereof.
  • heterocyclic structure examples include a lactone structure; a lactam structure, a sultone structure; a cyclic sulfone structure; a cyclic sulfoxide structure; a cyclic amine structure; a cyclic sulfonimide structure, a cyclic carboxylic acid imide structure, and a cyclic carboxylic acid sulfonimide structure.
  • the cyclic amine structure includes those in which a carbonyl group or a sulfonyl group is bonded to the nitrogen atom of the cyclic amine structure.
  • Examples of the monovalent cyclic group having a heterocyclic structure include a group consisting only of a heterocyclic structure, a group consisting of a heterocyclic structure and another structure, and the like.
  • Examples of the other group include a monovalent hydrocarbon group having 1 to 10 carbon atoms, —CO—, —COO—, a divalent hydrocarbon group having 1 to 10 carbon atoms, and a group composed of a combination thereof. Is mentioned.
  • Examples of the monovalent hydrocarbon group include a group in which one hydrogen atom is bonded to one of the bonds of the R 1 divalent hydrocarbon group exemplified above.
  • a chain hydrocarbon group and an aromatic hydrocarbon group are preferable, an alkyl group and an aryl group are more preferable, and a methyl group, a tert-butyl group, and a phenyl group are further preferable.
  • divalent hydrocarbon group examples include the same groups as those exemplified as the divalent hydrocarbon group for R 1 .
  • a chain hydrocarbon group is preferable, an alkanediyl group is more preferable, and a methyl group is more preferable.
  • the other group may be bonded to the carbon atom bonded to R 2.
  • the other group may be bonded to the heterocyclic structure at a portion other than the carbon atom bonded to R 2 .
  • the monovalent group having two or more heteroatoms represented by A is preferably a monovalent cyclic group having a heterocyclic structure.
  • a heterocyclic structure a lactone structure, a lactam structure, a sultone structure, a cyclic sulfone structure, a cyclic sulfoxide structure, a cyclic amine structure, a cyclic imide structure, a cyclic sulfonamide structure, and a combination thereof are preferable, and a lactone structure is more preferable.
  • the polymer has, as the structural unit (I), a structural unit represented by the following formula (2-1) (hereinafter also referred to as “structural unit (I-1)”), a structural unit represented by the following formula (2-2): And a combination thereof (hereinafter also referred to as “structural unit (I-2)”). That is, as the structural unit (I), for example, a structural unit represented by at least one of the following formulas (2-1) and (2-2) is preferable.
  • Z is a group represented by the above formula (1).
  • R 10 is a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
  • L is a single bond, —O—, —COO— or —CONH—.
  • R 10 is preferably a hydrogen atom and a methyl group, more preferably a methyl group, from the viewpoint of copolymerization of the monomer that gives the structural unit (I).
  • structural units (I) structural units represented by the following formulas (2-1-1) to (2-1-24) (hereinafter referred to as “structural units (I-1-1) to (I-1 -24) ”)) and the like.
  • R 10 has the same meaning as in the above formulas (2-1) and (2-2).
  • the lower limit of the content ratio of the structural unit (I) of the polymer is preferably 1 mol%, more preferably 3 mol%, more preferably 5 mol% with respect to all structural units constituting the [A] polymer. Is more preferable, and 10 mol% is particularly preferable. As an upper limit of the said content rate, 90 mol% is preferable, 70 mol% is more preferable, 50 mol% is further more preferable, 30 mol% is especially preferable.
  • Examples of the monomer that gives the structural unit (I) include a compound represented by the following formula (i) (hereinafter also referred to as “compound (i)”).
  • R 1 is a substituted or unsubstituted divalent hydrocarbon group having 1 to 10 carbon atoms.
  • R 2 is a single bond or a substituted or unsubstituted divalent chain hydrocarbon group having 1 to 5 carbon atoms.
  • R 1 and at least one of one or a plurality of R 2 may be combined with each other to form a ring structure having 3 to 20 ring members that is configured together with the carbon atom to which they are bonded.
  • a is an integer of 1 to 3.
  • R 10 is a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
  • A has two or more hetero atoms, a monovalent group having a carbon atom bonded to R 2.
  • R 10 when R 10 is a methyl group, R 1 is a methanediyl group, R 2 is a single bond, A is a 3-methyl- ⁇ -butyrolactone-3-yl group, and a is 1, It can be synthesized simply and with good yield.
  • a compound represented by the above formula (i′-b) is reacted with a compound represented by the above formula (i′-a) and iodomethane in a solvent such as acetone in the presence of a base such as potassium carbonate.
  • a base such as potassium carbonate.
  • the compound represented by the above formula (i′-c) can be obtained by reacting this compound (i′-b) with sulfuryl chloride in a solvent such as hexane.
  • the compound (i′-c) and methacrylic acid are reacted in a solvent such as N, N-dimethylformamide (DMF) in the presence of potassium carbonate and potassium iodide to thereby give the compound (i′-c).
  • DMF N, N-dimethylformamide
  • the structural unit (II) is a structural unit other than the structural unit (I) and includes an acid dissociable group.
  • the “acid-dissociable group” is a group that replaces a hydrogen atom of a polar group such as a carboxy group or a phenolic hydroxyl group, and is a group that dissociates by the action of an acid.
  • structural unit (II) examples include a structural unit represented by the following formula (3-1) (hereinafter also referred to as “structural unit (II-1)”) and a structure represented by the following formula (3-2).
  • a unit hereinafter also referred to as “structural unit (II-2)”).
  • R 12 represents a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
  • R 13 is a monovalent hydrocarbon group having 1 to 20 carbon atoms.
  • R 14 and R 15 are each independently a monovalent hydrocarbon group having 1 to 20 carbon atoms, or 3 to 3 carbon atoms composed of these groups together with the carbon atom to which they are bonded. 20 alicyclic structures are represented.
  • R 16 represents a hydrogen atom or a methyl group.
  • L 1 is a single bond, —CCOO— or —CONH—.
  • R 17 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms.
  • R 18 and R 19 are each independently a monovalent hydrocarbon group having 1 to 20 carbon atoms or a monovalent oxyhydrocarbon group having 1 to 20 carbon atoms.
  • R 12 is preferably a hydrogen atom and a methyl group, more preferably a methyl group, from the viewpoint of copolymerization of the monomer that gives the structural unit (II).
  • Examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms represented by R 13 , R 14 , R 15 , R 17 , R 18 and R 19 include monovalent chain carbonization having 1 to 20 carbon atoms. Examples thereof include a hydrogen group, a monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms, and a monovalent aromatic hydrocarbon group having 6 to 20 carbon atoms.
  • Examples of the monovalent chain hydrocarbon group having 1 to 20 carbon atoms represented by R 13 , R 14 , R 15 , R 17 , R 18 and R 19 include a methyl group, an ethyl group, and an n-propyl group.
  • Alkyl groups such as i-propyl group;
  • An alkenyl group such as an ethenyl group, a propenyl group, a butenyl group;
  • Examples thereof include alkynyl groups such as ethynyl group, propynyl group and butynyl group.
  • Examples of the monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms represented by R 13 , R 14 , R 15 , R 17 , R 18 and R 19 include monocyclic rings such as a cyclopentyl group and a cyclohexyl group.
  • a polycyclic cycloalkyl group such as a norbornyl group, an adamantyl group and a tricyclodecyl group; Examples thereof include polycyclic cycloalkenyl groups such as norbornenyl group and tricyclodecenyl group.
  • Examples of the monovalent aromatic hydrocarbon group having 6 to 20 carbon atoms represented by R 13 , R 14 , R 15 , R 17 , R 18, and R 19 include a phenyl group, a tolyl group, a xylyl group, and a naphthyl group.
  • Examples of the alicyclic structure having 3 to 20 carbon atoms composed of the above-described groups combined with the carbon atom to which they are bonded include, for example, a cyclopropane structure, a cyclobutane structure, a cyclopentane structure, a cyclohexane structure, a cycloheptane structure, a cyclo Monocyclic cycloalkane structures such as octane structures; Examples thereof include polycyclic cycloalkane structures such as a norbornane structure, an adamantane structure, a tricyclodecane structure, and a tetracyclododecane structure.
  • hydrocarbon group represented by R 13 , R 14 and R 15 a chain hydrocarbon group and an alicyclic hydrocarbon group are preferable.
  • Examples of the monovalent oxyhydrocarbon group having 1 to 20 carbon atoms represented by R 18 and R 19 include, for example, 1 carbon atom of R 13 , R 14 , R 15 , R 17 , R 18 and R 19.
  • Examples of the monovalent hydrocarbon group of ⁇ 20 include those containing an oxygen atom at the terminal on the bond side.
  • structural units (II-1) structural units represented by the following formulas (3-1-1) to (3-1-5) (hereinafter referred to as “structural units (II-1-1) to (II-1) ⁇ 5) ”) is preferred.
  • the structural unit (II-2) is preferably a structural unit represented by the following formula (3-2-1) (hereinafter also referred to as “structural unit (II-2-1)”).
  • R 12 to R 15 have the same meanings as the above formula (3-1).
  • R 13 ′ , R 14 ′ and R 15 ′ are each independently a monovalent chain hydrocarbon group having 1 to 10 carbon atoms.
  • np is each independently an integer of 1 to 4.
  • R 16 to R 19 have the same meaning as in the above formula (3-2).
  • Examples of the structural units (II-1-1) to (II-1-5) include structural units represented by the following formulas.
  • R 12 has the same meaning as in the above formula (3-1).
  • structural units derived from 2-alkyl-2-adamantyl (meth) acrylate structural units derived from 1-alkyl-1-cyclopentyl (meth) acrylate, 2- (1-adamantyl) -2-propyl Structural units derived from (meth) acrylate, structural units derived from 2-alkyl-2-tetracyclododecan-yl (meth) acrylate, structures derived from 2- (1-cyclohexyl) -2-propyl (meth) acrylate
  • Examples of the structural unit (II-2) include a structural unit represented by the following formula.
  • R 16 has the same meaning as in the above formula (3-2).
  • the structural unit (II-2) is preferably a structural unit derived from p- (1-cyclohexylethoxyethoxy) styrene.
  • the lower limit of the content ratio of the structural unit (II) is preferably 10 mol% with respect to the total structural units constituting the [A] polymer, Mole% is more preferable, and 30 mol% is more preferable.
  • As an upper limit of the said content rate 90 mol% is preferable, 80 mol% is more preferable, and 75 mol% is further more preferable.
  • the structural unit (III) is a structural unit containing a lactone structure, a cyclic carbonate structure, a sultone structure, or a combination thereof (excluding the structural unit (I)).
  • the polymer further has the structural unit (III), so that the solubility in the developer can be appropriately adjusted. As a result, the lithography performance of the radiation-sensitive resin composition is further improved. be able to. Moreover, the adhesiveness of the resist pattern formed from the said radiation sensitive resin composition and a board
  • Examples of the structural unit (III) include a structural unit represented by the following formula.
  • R L1 represents a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
  • the structural unit (III) is preferably a structural unit containing a lactone structure, more preferably a structural unit containing a norbornane lactone structure, a structural unit containing an oxynorbornane lactone structure, or a structural unit containing a ⁇ -butyrolactone structure.
  • the lower limit of the content ratio of the structural unit (III) is preferably 5 mol% with respect to all the structural units constituting the [A] polymer, Mole% is more preferable, and 25 mol% is more preferable.
  • As an upper limit of the said content rate 80 mol% is preferable, 70 mol% is more preferable, 60 mol% is further more preferable, 50 mol% is especially preferable.
  • the solubility in the developer can be adjusted more appropriately. As a result, the lithography of the radiation-sensitive resin composition can be performed. The performance can be further improved. Moreover, the adhesiveness of the resist pattern formed from the said radiation sensitive resin composition and a board
  • the structural unit (IV) is a structural unit containing a polar group.
  • the polymer can adjust the solubility in the developer more appropriately, and as a result, improves the lithography performance of the radiation-sensitive resin composition. be able to. Moreover, the adhesiveness of the resist pattern formed from the said radiation sensitive resin composition and a board
  • Examples of the polar group include a hydroxy group, an oxo group ( ⁇ O), a carboxy group, a nitro group, a cyano group, and a sulfonamide group. Among these, a hydroxy group and a keto group are preferable.
  • Examples of the structural unit containing the polar group include a structural unit represented by the following formula.
  • R L2 represents a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
  • the structural unit (V) is a structural unit containing a fluorine atom.
  • the polymer can further have a structural unit (V) in addition to the structural unit (I) to adjust the fluorine atom content, and as a result, the polymer is formed from the radiation-sensitive resin composition.
  • the dynamic contact angle on the resist film surface can be improved.
  • Examples of the structural unit (V) include the following structural unit (V-1) and structural unit (V-2).
  • the structural unit (V-1) is a structural unit represented by the following formula (4a).
  • RD is a hydrogen atom, a methyl group, or a trifluoromethyl group.
  • G is a single bond, an oxygen atom, a sulfur atom, —CO—O—, —SO 2 —O—NH—, —CO—NH— or —O—CO—NH—.
  • R E is a monovalent chain hydrocarbon group having 1 to 6 carbon atoms having at least one fluorine atom or a monovalent aliphatic cyclic hydrocarbon group having 4 to 20 carbon atoms having at least one fluorine atom. It is.
  • the chain hydrocarbon group having 1 to 6 carbon atoms having at least one fluorine atom represented by R E such as trifluoromethyl group, 2,2,2-trifluoroethyl group, perfluoroethyl group 2,2,3,3,3-pentafluoropropyl group, 1,1,1,3,3,3-hexafluoropropyl group, perfluoro n-propyl group, perfluoro i-propyl group, perfluoro n -Butyl group, perfluoro i-butyl group, perfluoro t-butyl group, 2,2,3,3,4,4,5,5-octafluoropentyl group, perfluorohexyl group and the like.
  • R E fluorine atom represented by R E
  • Examples of the aliphatic cyclic hydrocarbon group having 4 to 20 carbon atoms having at least one fluorine atom represented by R E for example mono-fluoro cyclopentyl group, difluorocyclopentyl groups, perfluorocyclopentyl group, monofluoromethyl cyclohexyl group, Examples thereof include a difluorocyclopentyl group, a perfluorocyclohexylmethyl group, a fluoronorbornyl group, a fluoroadamantyl group, a fluorobornyl group, a fluoroisobornyl group, a fluorotricyclodecyl group, and a fluorotetracyclodecyl group.
  • Examples of the monomer that gives the structural unit (V-1) include trifluoromethyl (meth) acrylate, 2,2,2-trifluoroethyl (meth) acrylate, 2,2,2-trimethyl ester, and the like. Fluoroethyloxycarbonylmethyl (meth) acrylic acid ester, perfluoroethyl (meth) acrylic acid ester, perfluoro n-propyl (meth) acrylic acid ester, perfluoro i-propyl (meth) acrylic acid ester, perfluoro n- Butyl (meth) acrylic acid ester, perfluoro i-butyl (meth) acrylic acid ester, perfluoro t-butyl (meth) acrylic acid ester, 2- (1,1,1,3,3,3-hexafluoropropyl ) (Meth) acrylic acid ester, 1- (2,2,3,3,4,4,5,5-octaf) (Olopentyl) (meth) acrylic acid ester,
  • the lower limit of the content ratio of the structural unit (V-1) is 5 mol% with respect to all the structural units constituting the [A] polymer. Is preferable, and 8 mol% is more preferable. As an upper limit of the said content rate, 80 mol% is preferable, 50 mol% is more preferable, 30 mol% is further more preferable, 20 mol% is especially preferable.
  • V-2 The structural unit (V-2) is a structural unit represented by the following formula (4b).
  • R ⁇ F> is a hydrogen atom, a methyl group, or a trifluoromethyl group.
  • R 20 is an (s + 1) -valent hydrocarbon group having 1 to 20 carbon atoms, and an oxygen atom, a sulfur atom, —NR′—, a carbonyl group, —CO—O—, or a terminal at the R 21 side of R 20 Also includes a structure in which —CO—NH— is bonded.
  • R ′ is a hydrogen atom or a monovalent organic group.
  • R 21 is a single bond, a divalent chain hydrocarbon group having 1 to 10 carbon atoms, or a divalent aliphatic cyclic hydrocarbon group having 4 to 20 carbon atoms.
  • X 2 is a C 1-20 divalent chain hydrocarbon group having at least one fluorine atom.
  • a 1 is an oxygen atom, —NR ′′ —, —CO—O— *, or —SO 2 —O— *.
  • R ′′ is a hydrogen atom or a monovalent organic group. * Indicates a binding site that binds to R 22.
  • R 22 is a hydrogen atom or a monovalent organic group.
  • s is an integer of 1 to 3. However, when s is 2 or 3, a plurality of R 21 , X 2 , A 1 and R 22 may be the same or different.
  • R 22 is a hydrogen atom, it is preferable in that the solubility of [A] polymer in an alkaline developer can be improved.
  • Examples of the monovalent organic group represented by R 22 include an acid-dissociable group, an alkali-dissociable group, or a hydrocarbon group having 1 to 30 carbon atoms which may have a substituent.
  • Examples of the structural unit (V-2) include structural units represented by the following formulas (4b-1) to (4b-3).
  • R 20 ′ is a divalent linear, branched or cyclic saturated or unsaturated hydrocarbon group having 1 to 20 carbon atoms.
  • R F , X 2 , R 22 and s are as defined in the above formula (4b). When s is 2 or 3, the plurality of X 2 and R 22 may be the same or different.
  • the lower limit of the content ratio of the structural unit (V-2) is 5 mol% with respect to all structural units constituting the [A] polymer. Is preferred.
  • As an upper limit of the said content rate 80 mol% is preferable, 60 mol% is more preferable, and 40 mol% is further more preferable.
  • the resist film surface formed from the radiation-sensitive resin composition has a reduced degree of dynamic contact angle in alkali development. Can be further improved.
  • the structural unit (VI) is a structural unit containing a group (z) having a hydroxy group at the terminal and a carbon atom adjacent to the hydroxy group having at least one fluorine atom or fluorinated alkyl group (provided that the structure Except unit (I) and structural unit (V)).
  • the polymer can adjust the solubility in the developer more appropriately, and as a result, the lithography performance of the radiation-sensitive resin composition is further improved. be able to. Moreover, the sensitivity of the radiation sensitive resin composition in the case of EUV exposure can be increased.
  • Examples of the group (z) include a group represented by the following formula (z-1).
  • R f1 and R f2 are each independently an alkyl group having 1 to 10 carbon atoms or a fluorinated alkyl group having 1 to 10 carbon atoms. However, at least one of R f1 and R f2 is a fluorinated alkyl group.
  • Examples of the fluorinated alkyl group having 1 to 10 carbon atoms represented by R f1 and R f2 include a fluoromethyl group, a difluoromethyl group, a trifluoromethyl group, a fluoroethyl group, a difluoroethyl group, a trifluoroethyl group, Examples include a pentafluoroethyl group, a hexafluoropropyl group, a heptafluoropropyl group, and a nonafluorobutyl group. Among these, a trifluoromethyl group and a pentafluoroethyl group are preferable, and a trifluoromethyl group is more preferable.
  • the group (z) is preferably a hydroxy-di (trifluoromethyl) methyl group, a hydroxy-di (pentafluoroethyl) methyl group or a hydroxy-methyl-trifluoromethylmethyl group, preferably a hydroxy-di (trifluoromethyl) group.
  • a methyl group is more preferred.
  • structural unit (VI) examples include structural units represented by the following formulas (5-1) to (5-9) (hereinafter also referred to as “structural units (VI-1) to (VI-9)”), etc. Is mentioned.
  • R L3 is independently a hydrogen atom or a methyl group.
  • the lower limit of the content ratio of the structural unit (VI) is preferably 20 mol% with respect to all the structural units constituting the polymer [A], 30 Mole% is more preferable.
  • As an upper limit of the said content rate 80 mol% is preferable, 70 mol% is more preferable, and 60 mol% is further more preferable.
  • the solubility in the developer can be further appropriately adjusted. As a result, the lithography of the radiation-sensitive resin composition can be performed. The performance can be further improved. Moreover, the sensitivity of the said radiation sensitive resin composition in the case of EUV exposure can be improved more.
  • the polymer may have other structural units other than the structural units (I) to (VI).
  • the other structural unit include a structural unit containing a non-dissociable alicyclic hydrocarbon group.
  • the upper limit of the content ratio of the above-mentioned other structural units is preferably 20 mol% with respect to all the structural units constituting the [A] polymer. Mole% is more preferable.
  • the lower limit of the content of the [A] polymer in the radiation-sensitive resin composition is preferably 70% by mass, more preferably 80% by mass, based on the total solid content in the radiation-sensitive resin composition. 85 mass% is more preferable.
  • the radiation sensitive resin composition may contain one or more [A] polymers.
  • the polymer can be synthesized, for example, by polymerizing monomers that give each structural unit in a suitable solvent using a radical polymerization initiator or the like.
  • radical polymerization initiator examples include azobisisobutyronitrile (AIBN), 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), 2,2′-azobis (2-cyclopropylpropylene). Pionitrile), 2,2′-azobis (2,4-dimethylvaleronitrile), azo radical initiators such as dimethyl 2,2′-azobisisobutyrate; benzoyl peroxide, t-butyl hydroperoxide, And peroxide radical initiators such as cumene hydroperoxide. Of these, AIBN and dimethyl 2,2'-azobisisobutyrate are preferred, and AIBN is more preferred. These radical initiators can be used alone or in combination of two or more.
  • Examples of the solvent used for the polymerization include alkanes such as n-pentane, n-hexane, n-heptane, n-octane, n-nonane and n-decane; Cycloalkanes such as cyclohexane, cycloheptane, cyclooctane, decalin, norbornane; Aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, cumene; Halogenated hydrocarbons such as chlorobutanes, bromohexanes, dichloroethanes, hexamethylene dibromide, chlorobenzene; Saturated carboxylic acid esters such as ethyl acetate, n-butyl acetate, i-butyl acetate and methyl propionate; Ketones such as acetone, methyl ethyl ketone
  • the lower limit of the reaction temperature in the polymerization is usually 40 ° C., and preferably 50 ° C.
  • the upper limit of the reaction temperature is usually 150 ° C, preferably 120 ° C.
  • the lower limit of the reaction time is usually 1 hour.
  • the upper limit of the reaction time is usually 48 hours, preferably 24 hours.
  • the lower limit of the weight average molecular weight (Mw) in terms of polystyrene by gel permeation chromatography (GPC) of the polymer is not particularly limited, but is preferably 1,000, more preferably 2,000, and further 3,000. Preferably, 5,000 is particularly preferable.
  • the upper limit of the Mw is not particularly limited, but is preferably 50,000, more preferably 30,000, still more preferably 20,000, and particularly preferably 15,000. [A] By making Mw of a polymer into the said range, the applicability
  • the lower limit of the ratio (Mw / Mn) of Mw to the number average molecular weight (Mn) in terms of polystyrene by GPC of the polymer is usually 1.
  • the upper limit of Mw / Mn is usually 5, preferably 3 and more preferably 2.
  • Mw and Mn of the polymer in this specification are values measured using gel permeation chromatography (GPC) under the following conditions.
  • GPC column 2 "G2000HXL” from Tosoh Corporation, 1 "G3000HXL", 1 "G4000HXL” Column temperature: 40 ° C
  • Elution solvent Tetrahydrofuran (Wako Pure Chemical Industries)
  • Flow rate 1.0 mL / min
  • Sample concentration 1.0% by mass
  • Sample injection volume 100 ⁇ L
  • Detector Differential refractometer Standard material: Monodisperse polystyrene
  • the acid generator is a substance that generates an acid upon exposure.
  • the acid-dissociable group of the [A] polymer or the like is dissociated by the generated acid to generate a carboxy group or the like, and the solubility of the [A] polymer in the developer changes.
  • a resist pattern can be formed from the object.
  • the contained form of the [B] acid generator in the radiation-sensitive resin composition may be a low molecular compound form (hereinafter also referred to as “[B] acid generator” as appropriate), as described later. It may be a form incorporated as a part or both of these forms.
  • Examples of the acid generator include onium salt compounds, N-sulfonyloxyimide compounds, halogen-containing compounds, diazoketone compounds, and the like.
  • onium salt compounds examples include sulfonium salts, tetrahydrothiophenium salts, iodonium salts, phosphonium salts, diazonium salts, pyridinium salts, and the like.
  • [B] acid generator examples include compounds described in paragraphs [0080] to [0113] of JP2009-134088A.
  • the acid generator is preferably a compound represented by the following formula (7).
  • the diffusion length of the acid generated by exposure in the resist film is appropriately shortened by the interaction with the structural unit (I) of the polymer [A]. As a result, the lithography performance of the radiation sensitive resin composition can be improved.
  • R 23 is a monovalent group containing an alicyclic structure having 6 or more ring members or a monovalent group containing an aliphatic heterocyclic structure having 6 or more ring members.
  • R 24 is a fluorinated alkanediyl group having 1 to 10 carbon atoms.
  • X + is a monovalent radiation-sensitive onium cation.
  • the “number of ring members” in R 23 refers to the number of atoms constituting the ring of an alicyclic structure and an aliphatic heterocyclic structure, and in the case of a polycyclic alicyclic structure and a polycyclic aliphatic heterocyclic structure, The number of atoms that make up the ring.
  • Examples of the monovalent group having an alicyclic structure having 6 or more ring members represented by R 23 include monocyclic groups such as a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a cyclononyl group, a cyclodecyl group, and a cyclododecyl group.
  • a cycloalkyl group A monocyclic cycloalkenyl group such as a cyclohexenyl group, a cycloheptenyl group, a cyclooctenyl group, a cyclodecenyl group; A polycyclic cycloalkyl group such as a norbornyl group, an adamantyl group, a tricyclodecyl group, a tetracyclododecyl group; Examples thereof include polycyclic cycloalkenyl groups such as norbornenyl group and tricyclodecenyl group.
  • Examples of the monovalent group containing an aliphatic heterocyclic structure having 6 or more ring members represented by R 23 include a group containing a lactone structure such as a norbornanelactone-yl group; A group containing a sultone structure such as a norbornane sultone-yl group; An oxygen atom-containing heterocyclic group such as an oxacycloheptyl group and an oxanorbornyl group; A nitrogen atom-containing heterocyclic group such as an azacycloheptyl group or a diazabicyclooctane-yl group; And sulfur atom-containing heterocyclic groups such as a thiacycloheptyl group and a thianorbornyl group.
  • the lower limit of the ring members of groups denoted by R 23, in view to be appropriate diffusion length of the above-mentioned acid is further preferred 8, 9, and still more preferably 10.
  • the upper limit of the number of ring members is preferably 15 and more preferably 13 from the viewpoint that the acid diffusion length becomes more appropriate.
  • R 23 is preferably a monovalent group containing an alicyclic structure having 9 or more ring members and a monovalent group containing an aliphatic heterocyclic structure having 9 or more ring members, an adamantyl group, a hydroxyadamantyl group A norbornanelactone-yl group and a 5-oxo-4-oxatricyclo [4.3.1.1 3,8 ] undecan-yl group are more preferred, and an adamantyl group is more preferred.
  • Examples of the fluorinated alkanediyl group having 1 to 10 carbon atoms represented by R 24 include one or more hydrogen atoms of an alkanediyl group having 1 to 10 carbon atoms such as a methanediyl group, an ethanediyl group, and a propanediyl group. And a group in which is substituted with a fluorine atom.
  • SO 3 - fluorinated alkane diyl group which has a fluorine atom to carbon atom is bonded to adjacent groups are preferred, SO 3 - 2 fluorine atoms to the carbon atom adjacent to the group is attached More preferred are fluorinated alkanediyl groups, 1,1-difluoromethanediyl group, 1,1-difluoroethanediyl group, 1,1,3,3,3-pentafluoro-1,2-propanediyl group, 1,1 1,2,2-tetrafluoroethanediyl group, 1,1,2,2-tetrafluorobutanediyl group and 1,1,2,2-tetrafluorohexanediyl group are more preferable.
  • the monovalent radiation-sensitive onium cation represented by X + is a cation that decomposes upon irradiation with radiation. In the exposed portion, sulfonic acid is generated from protons generated by the decomposition of the radiation-sensitive onium cation and sulfonate anions.
  • Examples of the monovalent radiation-sensitive onium cation represented by X + include elements such as S, I, O, N, P, Cl, Br, F, As, Se, Sn, Sb, Te, and Bi. Examples include radiation-sensitive onium cations.
  • Examples of the cation containing S (sulfur) as an element include a sulfonium cation and a tetrahydrothiophenium cation.
  • Examples of the cation containing I (iodine) as an element include an iodonium cation.
  • an iodonium cation examples include an iodonium cation.
  • a sulfonium cation represented by the following formula (X-1), a tetrahydrothiophenium cation represented by the following formula (X-2), and an iodonium cation represented by the following formula (X-3) are: preferable.
  • R a1 , R a2 and R a3 each independently represent a substituted or unsubstituted linear or branched alkyl group having 1 to 12 carbon atoms, a substituted or unsubstituted group.
  • aromatic hydrocarbon group having 6 to 12 carbon atoms represents or is a -OSO 2 -R P or -SO 2 -R Q, or two or more are combined with each other configured ring of these groups .
  • R P and R Q are each independently a substituted or unsubstituted linear or branched alkyl group having 1 to 12 carbon atoms, or a substituted or unsubstituted alicyclic hydrocarbon group having 5 to 25 carbon atoms.
  • R a1 ⁇ R a3 and R P and R Q are a plurality each of the plurality of R a1 ⁇ R a3 and R P and R Q may be the same as or different from each other.
  • R b1 represents a substituted or unsubstituted linear or branched alkyl group having 1 to 8 carbon atoms or a substituted or unsubstituted aromatic hydrocarbon group having 6 to 8 carbon atoms. It is. k4 is an integer of 0 to 7. If R b1 is plural, the plurality of R b1 may be the same or different, and plural R b1 may represent a constructed ring aligned with each other.
  • R b2 is a substituted or unsubstituted linear or branched alkyl group having 1 to 7 carbon atoms or a substituted or unsubstituted aromatic hydrocarbon group having 6 or 7 carbon atoms.
  • k5 is an integer of 0 to 6. If R b2 is plural, the plurality of R b2 may be the same or different, and plural R b2 may represent a keyed configured ring structure.
  • q is an integer of 0 to 3.
  • R c1 and R c2 each independently represent a substituted or unsubstituted linear or branched alkyl group having 1 to 12 carbon atoms, a substituted or unsubstituted carbon number of 6 aromatic hydrocarbon group having to 12 represent two or more are combined with each other configured ring of -OSO 2 -R R or -SO 2 -R or S or those groups.
  • R R and R S each independently represent a substituted or unsubstituted linear or branched alkyl group having 1 to 12 carbon atoms, or a substituted or unsubstituted alicyclic hydrocarbon group having 5 to 25 carbon atoms.
  • R c1, R c2, R when R and R S is plural respective plurality of R c1, R c2, R R and R S may have respectively the same or different.
  • Examples of the unsubstituted linear alkyl group represented by R a1 to R a3 , R b1 , R b2 , R c1 and R c2 include a methyl group, an ethyl group, an n-propyl group, and an n-butyl group. Etc.
  • Examples of the unsubstituted branched alkyl group represented by R a1 to R a3 , R b1 , R b2 , R c1 and R c2 include i-propyl group, i-butyl group, sec-butyl group, t -A butyl group etc. are mentioned.
  • Examples of the unsubstituted aromatic hydrocarbon group represented by R a1 to R a3 , R c1 and R c2 include aryl groups such as a phenyl group, a tolyl group, a xylyl group, a mesityl group, and a naphthyl group; a benzyl group, And aralkyl groups such as phenethyl group.
  • Examples of the unsubstituted aromatic hydrocarbon group represented by R b1 and R b2 include a phenyl group, a tolyl group, and a benzyl group.
  • Examples of the substituent that may be substituted for the hydrogen atom of the alkyl group and aromatic hydrocarbon group include a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, a hydroxy group, a carboxy group, and a cyano group. Nitro group, alkoxy group, alkoxycarbonyl group, alkoxycarbonyloxy group, acyl group, acyloxy group and the like. Among these, a halogen atom is preferable and a fluorine atom is more preferable.
  • R a1 to R a3 , R b1 , R b2 , R c1 and R c2 include an unsubstituted linear or branched alkyl group, a fluorinated alkyl group, and an unsubstituted monovalent aromatic hydrocarbon group.
  • —OSO 2 —R ′′ and —SO 2 —R ′′ are preferred, fluorinated alkyl groups and unsubstituted monovalent aromatic hydrocarbon groups are more preferred, and fluorinated alkyl groups are more preferred.
  • R ′′ is an unsubstituted monovalent alicyclic hydrocarbon group or an unsubstituted monovalent aromatic hydrocarbon group.
  • k1, k2 and k3 are preferably integers of 0 to 2, more preferably 0 and 1, and even more preferably 0.
  • k4 is preferably an integer of 0 to 2, more preferably 0 and 1, and even more preferably 1.
  • k5 is preferably an integer of 0 to 2, more preferably 0 and 1, and still more preferably 0.
  • k6 and k7 are preferably integers of 0 to 2, more preferably 0 and 1, and even more preferably 0.
  • X + is preferably a cation represented by the above formula (X-1), more preferably a triphenylsulfonium cation.
  • Examples of the acid generator represented by the above formula (7) include compounds represented by the following formulas (7-1) to (7-13) (hereinafter referred to as “compounds (7-1) to (7-13)”. ) ”)) And the like.
  • the acid generator is preferably an onium salt compound, more preferably a sulfonium salt or a tetrahydrothiophenium salt, and the compound (7-1), compound (7-2), compound (7-12). And compound (7-13) are more preferable.
  • the [B] acid generator is a [B] acid generator
  • the [A] polymer 0.1 mass part is preferable with respect to 100 mass parts, 0.5 mass part is more preferable, and 1 mass part is further more preferable.
  • As an upper limit of the said content 30 mass parts is preferable, 20 mass parts is more preferable, and 15 mass parts is further more preferable.
  • the radiation-sensitive resin composition may contain one or more [B] acid generators.
  • the said radiation sensitive resin composition may contain a [C] acid diffusion control body as needed.
  • the acid diffusion control body controls the diffusion phenomenon in the resist film of the acid generated from the [B] acid generator by exposure, has the effect of suppressing undesirable chemical reactions in the non-exposed areas, and the radiation sensitivity obtained
  • the storage stability of the photosensitive resin composition is further improved, the resolution of the resist is further improved, and the change in the line width of the resist pattern due to fluctuations in the holding time from exposure to development processing can be suppressed, thereby stabilizing the process.
  • a radiation-sensitive resin composition having excellent properties can be obtained.
  • the content of the acid diffusion controller in the radiation-sensitive resin composition is incorporated as a part of the polymer even in the form of a free compound (hereinafter referred to as “[C] acid diffusion controller” as appropriate). Or both of these forms.
  • a compound represented by the following formula (8) hereinafter also referred to as “nitrogen-containing compound (I)”
  • nitrogen-containing compound (I) a compound having two nitrogen atoms in the same molecule
  • nitrogen-containing compound (II) a compound having three nitrogen atoms
  • nitrogen-containing compound (III) compounds having three nitrogen atoms
  • amide group-containing compounds urea compounds, nitrogen-containing heterocyclic compounds, etc. It is done.
  • R 25 , R 26 and R 27 are each independently a hydrogen atom, an optionally substituted linear, branched or cyclic alkyl group, aryl group or aralkyl group. .
  • nitrogen-containing compound (I) examples include monoalkylamines such as n-hexylamine; dialkylamines such as di-n-butylamine; trialkylamines such as triethylamine; aromatic amines such as aniline. It is done.
  • nitrogen-containing compound (II) examples include ethylenediamine, N, N, N ′, N′-tetramethylethylenediamine, and the like.
  • nitrogen-containing compound (III) examples include polyamine compounds such as polyethyleneimine and polyallylamine; and polymers such as dimethylaminoethylacrylamide.
  • amide group-containing compound examples include formamide, N-methylformamide, N, N-dimethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, propionamide, benzamide, pyrrolidone, N-methylpyrrolidone and the like. It is done.
  • urea compound examples include urea, methylurea, 1,1-dimethylurea, 1,3-dimethylurea, 1,1,3,3-tetramethylurea, 1,3-diphenylurea, tributylthiourea and the like.
  • nitrogen-containing heterocyclic compound examples include pyridines such as pyridine and 2-methylpyridine; morpholines such as N-propylmorpholine and N- (undecylcarbonyloxyethyl) morpholine; pyrazine, pyrazole and the like.
  • a compound having an acid dissociable group can also be used as the nitrogen-containing organic compound.
  • the nitrogen-containing organic compound having such an acid dissociable group include Nt-butoxycarbonylpiperidine, Nt-butoxycarbonylimidazole, Nt-butoxycarbonylbenzimidazole, Nt-butoxycarbonyl-2 -Phenylbenzimidazole, N- (t-butoxycarbonyl) di-n-octylamine, N- (t-butoxycarbonyl) diethanolamine, N- (t-butoxycarbonyl) dicyclohexylamine, N- (t-butoxycarbonyl) diphenylamine Nt-butoxycarbonyl-4-hydroxypiperidine, Nt-amyloxycarbonyl-4-hydroxypiperidine and the like.
  • a photodegradable base that is exposed to light and generates a weak acid upon exposure can also be used.
  • the photodegradable base include an onium salt compound that loses acid diffusion controllability by being decomposed by exposure.
  • the onium salt compound include a sulfonium salt compound represented by the following formula (9-1), an iodonium salt compound represented by the following formula (9-2), and the like.
  • R 28 to R 32 are each independently a hydrogen atom, an alkyl group, an alkoxy group, a hydroxy group, or a halogen atom.
  • E ⁇ and Q ⁇ are each independently OH ⁇ , R ⁇ —COO ⁇ , R ⁇ —SO 3 — or an anion represented by the following formula (9-3).
  • R ( beta) is an alkyl group, an aryl group, or an aralkyl group.
  • R 33 represents a linear or branched alkyl group having 1 to 12 carbon atoms, in which part or all of the hydrogen atoms may be substituted with fluorine atoms, or 1 to 12 linear or branched alkoxyl groups.
  • u is an integer of 0-2.
  • Examples of the photodegradable base include compounds represented by the following formulas.
  • the photodegradable base is preferably a sulfonium salt, more preferably a triarylsulfonium salt, and triphenylsulfonium 2.4.6. More preferred are triisopropyl phenyl sulfonate and triphenyl sulfonium 10-camphor sulfonate.
  • the lower limit of the content of the [C] acid diffusion controller is 100 masses of the [A] polymer. 0.1 parts by mass is preferable with respect to parts, and 0.3 parts by mass is more preferable. As an upper limit of the said content, 20 mass parts is preferable, 15 mass parts is more preferable, and 10 mass parts is further more preferable. [C] By making content of an acid diffusion control agent into the said range, the lithography performance of the said radiation sensitive resin composition can be improved. [C] When the content of the acid diffusion controller exceeds the upper limit, the sensitivity of the radiation-sensitive resin composition may be lowered.
  • the radiation-sensitive resin composition may contain one or more [C] acid diffusion controllers.
  • the polymer is a polymer containing a fluorine atom (except for those corresponding to the [A] polymer).
  • the radiation-sensitive composition contains the [D] polymer
  • the distribution is near the resist film surface due to the oil-repellent characteristics of the [D] polymer in the film.
  • the acid generator, the acid diffusion controller, and the like from being eluted into the immersion medium during immersion exposure.
  • the water repellency characteristics of the [D] polymer due to the water repellency characteristics of the [D] polymer, the advancing contact angle between the resist film and the immersion medium can be controlled within a desired range, and the occurrence of bubble defects can be suppressed.
  • the receding contact angle between the resist film and the immersion medium is increased, and high-speed scanning exposure is possible without leaving water droplets.
  • the said radiation sensitive resin composition contains a [D] polymer
  • the resist film suitable for an immersion exposure method can be formed.
  • the polymer is not particularly limited as long as it is a polymer having a fluorine atom, but the fluorine atom content (% by mass) is higher than that of the [A] polymer in the radiation-sensitive resin composition. It is preferable.
  • the fluorine atom content is higher than that of the polymer, the degree of uneven distribution described above becomes higher, and characteristics such as water repellency and elution suppression of the resulting resist film are improved.
  • the lower limit of the fluorine atom content of the polymer is preferably 1% by mass, more preferably 2% by mass, further preferably 4% by mass, and particularly preferably 7% by mass. As an upper limit of the said content rate, 60 mass% is preferable, 40 mass% is more preferable, and 30 mass% is further more preferable. [D] If the fluorine atom content of the polymer is less than the lower limit, the hydrophobicity of the resist film surface may be lowered.
  • the fluorine atom content (% by mass) of the polymer can be calculated from the structure of the polymer obtained by 13 C-NMR spectrum measurement.
  • the polymer preferably has the fluorine atom-containing structural unit (V) in the above-mentioned [A] polymer.
  • the polymer may have one or more structural units (V).
  • the lower limit of the content ratio of the structural unit (V) in the [D] polymer is 5 for all structural units constituting the [D] polymer.
  • Mol% is preferable and 10 mol% is more preferable.
  • As an upper limit of the said content rate 90 mol% is preferable, 85 mol% is more preferable, and 80 mol% is further more preferable.
  • the polymer may further have a structural unit containing an acid dissociable group.
  • the shape of the resulting resist pattern becomes better.
  • the structural unit containing an acid dissociable group include the structural unit (II) in the above-described [A] polymer.
  • the lower limit of the content ratio of the structural unit containing the acid dissociable group is [D] with respect to all structural units constituting the polymer. 5 mol% is preferable, 10 mol% is more preferable, and 15 mol% is further more preferable. As an upper limit of the said content rate, 90 mol% is preferable, 70 mol% is more preferable, 60 mol% is further more preferable, 50 mol% is especially preferable.
  • the content ratio of the structural unit containing an acid dissociable group is less than the above lower limit, development defects in the resist pattern may not be sufficiently suppressed.
  • the content ratio of the structural unit containing an acid dissociable group exceeds the above upper limit, the hydrophobicity of the resulting resist film surface may be lowered.
  • the [D] polymer is, for example, a structural unit containing an alkali-soluble group; a structural unit containing a lactone structure, a cyclic carbonate structure, a sultone structure, or a combination thereof; a structure containing an alicyclic group You may have other structural units, such as a unit.
  • the alkali-soluble group include a carboxy group, a sulfonamido group, and a sulfo group.
  • the upper limit of the content ratio of the above other structural units is usually 30 mol%, preferably 20 mol%, based on all structural units constituting the [D] polymer. When the content rate of said other structural unit exceeds the said upper limit, the pattern formation property of the said radiation sensitive resin composition may fall.
  • the said radiation sensitive resin composition contains a [D] polymer
  • a [D] polymer as a minimum of content of the [D] polymer in the said radiation sensitive resin composition, with respect to 100 mass parts of a [A] polymer. 0.5 parts by mass is preferable, and 1 part by mass is more preferable. As an upper limit of the said content, 20 mass parts is preferable, 15 mass parts is more preferable, and 10 mass parts is further more preferable. [D] If the content of the polymer exceeds the above upper limit, the pattern-forming property of the radiation-sensitive resin composition may be lowered.
  • the radiation-sensitive resin composition usually contains an [E] solvent.
  • the solvent is particularly a solvent that can dissolve or disperse at least the [A] polymer, the [B] acid generator and the optionally contained [C] acid diffusion controller, [D] polymer, and the like. It is not limited.
  • the radiation-sensitive resin composition may contain one or more [E] solvents.
  • Examples of the solvent include alcohol solvents, ether solvents, ketone organic solvents, amide solvents, ester organic solvents, hydrocarbon solvents, and the like.
  • alcohol solvents examples include aliphatic monoalcohol solvents having 1 to 18 carbon atoms such as 4-methyl-2-pentanol and n-hexanol; An alicyclic monoalcohol solvent having 3 to 18 carbon atoms such as cyclohexanol; A polyhydric alcohol solvent having 2 to 18 carbon atoms such as 1,2-propylene glycol; Examples thereof include polyhydric alcohol partial ether solvents having 3 to 19 carbon atoms such as propylene glycol monomethyl ether.
  • ether solvents include dialkyl ether solvents such as diethyl ether, dipropyl ether, dibutyl ether, dipentyl ether, diisoamyl ether, dihexyl ether, and diheptyl ether; Cyclic ether solvents such as tetrahydrofuran and tetrahydropyran; And aromatic ring-containing ether solvents such as diphenyl ether and anisole.
  • dialkyl ether solvents such as diethyl ether, dipropyl ether, dibutyl ether, dipentyl ether, diisoamyl ether, dihexyl ether, and diheptyl ether
  • Cyclic ether solvents such as tetrahydrofuran and tetrahydropyran
  • aromatic ring-containing ether solvents such as diphenyl ether and anisole.
  • ketone solvent examples include acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl-n-butyl ketone, diethyl ketone, methyl-iso-butyl ketone, 2-heptanone, ethyl-n-butyl ketone, methyl-n-hexyl ketone, Linear ketone solvents such as di-iso-butyl ketone and trimethylnonanone; Cyclic ketone solvents such as cyclopentanone, cyclohexanone, cycloheptanone, cyclooctanone, methylcyclohexanone; Examples include 2,4-pentanedione, acetonylacetone, acetophenone, and the like.
  • amide solvent examples include cyclic amide solvents such as N, N′-dimethylimidazolidinone and N-methylpyrrolidone; Examples thereof include chain amide solvents such as N-methylformamide, N, N-dimethylformamide, N, N-diethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, and N-methylpropionamide.
  • cyclic amide solvents such as N, N′-dimethylimidazolidinone and N-methylpyrrolidone
  • chain amide solvents such as N-methylformamide, N, N-dimethylformamide, N, N-diethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, and N-methylpropionamide.
  • ester solvents include monocarboxylic acid ester solvents such as n-butyl acetate and ethyl lactate; Polyhydric alcohol carboxylate solvents such as propylene glycol acetate; Polyhydric alcohol partial ether carboxylate solvents such as propylene glycol monomethyl ether acetate; Polycarboxylic acid diester solvents such as diethyl oxalate; Examples thereof include carbonate solvents such as dimethyl carbonate and diethyl carbonate.
  • monocarboxylic acid ester solvents such as n-butyl acetate and ethyl lactate
  • Polyhydric alcohol carboxylate solvents such as propylene glycol acetate
  • Polyhydric alcohol partial ether carboxylate solvents such as propylene glycol monomethyl ether acetate
  • Polycarboxylic acid diester solvents such as diethyl oxalate
  • Examples thereof include carbonate solvents such as dimethyl carbonate and diethyl carbonate.
  • hydrocarbon solvent examples include aliphatic hydrocarbon solvents having 5 to 12 carbon atoms such as n-pentane and n-hexane; Examples thereof include aromatic hydrocarbon solvents having 6 to 16 carbon atoms such as toluene and xylene.
  • ester solvents, ketone solvents and alcohol solvents are preferable, polyhydric alcohol partial ether acetate solvents, lactone solvents, cyclic ketone solvents and polyhydric alcohol partial ether solvents are more preferable, and propylene glycol. More preferred are monomethyl ether acetate, propylene glycol monomethyl ether, ⁇ -butyrolactone and cyclohexanone.
  • the radiation-sensitive resin composition may contain other optional components in addition to the components [A] to [E].
  • the other optional components include uneven distribution accelerators, surfactants, alicyclic skeleton-containing compounds, and sensitizers. Each of these other optional components may be used alone or in combination of two or more.
  • the uneven distribution accelerator is used to more efficiently apply the water-repellent polymer additive to the resist film surface when the radiation-sensitive resin composition contains the water-repellent polymer additive as the [D] polymer. It has an effect of segregation.
  • the amount of the water-repellent polymer additive added can be reduced as compared with the conventional case. Therefore, it is possible to further suppress the elution of components from the resist film to the immersion liquid without impairing the resolution, LWR performance, and defect suppression, or to perform immersion exposure at a higher speed by high-speed scanning. As a result, it is possible to improve the hydrophobicity of the resist film surface that suppresses immersion-derived defects such as watermark defects.
  • Examples of such an uneven distribution promoter include low molecular compounds having a relative dielectric constant of 30 or more and 200 or less and a boiling point at 1 atm of 100 ° C. or more.
  • Specific examples of such compounds include lactone compounds, carbonate compounds, nitrile compounds, and polyhydric alcohols.
  • lactone compound examples include ⁇ -butyrolactone, valerolactone, mevalonic lactone, norbornane lactone, and the like.
  • Examples of the carbonate compound include propylene carbonate, ethylene carbonate, butylene carbonate, vinylene carbonate and the like.
  • nitrile compound examples include succinonitrile.
  • polyhydric alcohol examples include glycerin.
  • the lower limit of the content of the uneven distribution accelerator is 10 mass with respect to 100 parts by mass of the total amount of the polymer in the radiation-sensitive resin composition. Part is preferable, 15 parts by mass is more preferable, 20 parts by mass is further preferable, and 25 parts by mass is particularly preferable.
  • As an upper limit of the said content 500 mass parts is preferable, 300 mass parts is more preferable, 200 mass parts is further more preferable, 100 mass parts is especially preferable.
  • Surfactant Surfactants have the effect of improving coatability, striation, developability, and the like.
  • the surfactant include polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene n-octylphenyl ether, polyoxyethylene n-nonylphenyl ether, polyethylene glycol dilaurate, polyethylene glycol diacrylate.
  • Nonionic surfactants such as stearate; commercially available products include “KP341” from Shin-Etsu Chemical Co., Ltd., “Polyflow No. 75, No.
  • the radiation sensitive resin composition contains a surfactant
  • the upper limit of the content of the surfactant in the radiation sensitive resin composition is usually 2 parts by mass with respect to 100 parts by mass of the polymer [A]. It is.
  • the alicyclic skeleton-containing compound has an effect of improving dry etching resistance, pattern shape, adhesion to the substrate, and the like.
  • Examples of the alicyclic skeleton-containing compound include adamantane derivatives such as 1-adamantanecarboxylic acid, 2-adamantanone, and 1-adamantanecarboxylic acid t-butyl; Deoxycholic acid esters such as t-butyl deoxycholic acid, t-butoxycarbonylmethyl deoxycholic acid, 2-ethoxyethyl deoxycholic acid; Lithocholic acid esters such as tert-butyl lithocholic acid, tert-butoxycarbonylmethyl lithocholic acid, 2-ethoxyethyl lithocholic acid; 3- [2-hydroxy-2,2-bis (trifluoromethyl) ethyl] tetracyclo [4.4.0.1 2,5 .
  • adamantane derivatives such as 1-adamantanecarboxylic acid, 2-adamantanone, and 1-adamantanecarboxylic acid t-butyl
  • Deoxycholic acid esters such
  • the said radiation sensitive resin composition contains an alicyclic skeleton containing compound, as an upper limit of content of the alicyclic skeleton containing compound in the said radiation sensitive resin composition, it is [A] 100 mass parts of polymers. On the other hand, it is usually 5 parts by mass.
  • sensitizer exhibits the effect
  • the sensitizer examples include carbazoles, acetophenones, benzophenones, naphthalenes, phenols, biacetyl, eosin, rose bengal, pyrenes, anthracenes, phenothiazines, and the like. These sensitizers may be used alone or in combination of two or more.
  • the said radiation sensitive resin composition contains a sensitizer, as an upper limit of content of the sensitizer in the said radiation sensitive resin composition, it is 2 mass parts normally with respect to 100 mass parts of [A] polymers. It is.
  • the said radiation sensitive resin composition can be prepared by mixing a [A] polymer, a [B] acid generator, the arbitrary component contained as needed, and a [E] solvent in a predetermined ratio, for example.
  • the radiation-sensitive resin composition is preferably filtered after mixing with, for example, a filter having a pore size of about 0.2 ⁇ m.
  • a filter having a pore size of about 0.2 ⁇ m As a minimum of solid content concentration of the radiation sensitive resin composition, 0.1 mass% is preferred, 0.5 mass% is more preferred, 1 mass% is still more preferred, and 1.5 mass% is especially preferred.
  • the upper limit of the solid content concentration of the radiation-sensitive resin composition is preferably 50% by mass, more preferably 30% by mass, still more preferably 20% by mass, and particularly preferably 10% by mass.
  • the resist pattern forming method includes a step of forming a resist film (hereinafter also referred to as “resist film forming step”), a step of exposing the resist film (hereinafter also referred to as “exposure step”), and the exposed resist. Process of developing the film (hereinafter also referred to as “development process”) The resist film is formed from the radiation-sensitive resin composition.
  • the resist pattern forming method since the radiation sensitive resin composition described above is used, while exhibiting excellent MEEF performance, depth of focus, and exposure margin, LWR and CDU are small, resolution is high, It is possible to form a resist pattern that is excellent in rectangular shape in cross section.
  • each step of the resist pattern forming method will be described.
  • a resist film is formed from the radiation sensitive resin composition.
  • the substrate on which the resist film is formed include conventionally known ones such as a silicon wafer, silicon dioxide, and a wafer coated with aluminum.
  • an organic or inorganic antireflection film disclosed in Japanese Patent Publication No. 6-12452 and Japanese Patent Application Laid-Open No. 59-93448 may be formed on the substrate.
  • the coating method include spin coating (spin coating), cast coating, and roll coating.
  • pre-baking (PB) may be performed as needed to volatilize the solvent in the coating film. As a minimum of PB temperature, it is usually 60 ° C and 80 ° C is preferred.
  • PB temperature As an upper limit of PB temperature, it is 140 degreeC normally and 120 degreeC is preferable.
  • the lower limit of the PB time is usually 5 seconds, and preferably 10 seconds.
  • the upper limit of the PB time is usually 600 seconds, and preferably 300 seconds.
  • the lower limit of the average thickness of the resist film to be formed is preferably 10 nm.
  • the upper limit of the average thickness is preferably 1,000 nm, and more preferably 500 nm.
  • the resist film formed in the resist film forming step is exposed by irradiation with radiation through a photomask or the like (in some cases through an immersion medium such as water).
  • radiation include electromagnetic waves such as visible light, ultraviolet light, far ultraviolet light, extreme ultraviolet light (EUV), X-rays, and ⁇ rays, and charged particle beams such as electron beams and ⁇ rays, depending on the line width of the target pattern. Is mentioned.
  • ArF excimer laser light (wavelength 193 nm)
  • KrF excimer laser light (wavelength 248 nm)
  • EUV and electron beams are more preferable
  • ArF excimer laser light, EUV and electron beams are more preferable. Further preferred.
  • the immersion liquid to be used include water and a fluorine-based inert liquid.
  • the immersion liquid is preferably a liquid that is transparent to the exposure wavelength and has a refractive index temperature coefficient that is as small as possible so as to minimize distortion of the optical image projected onto the film.
  • excimer laser light wavelength 193 nm
  • water it is preferable to use water from the viewpoints of availability and easy handling in addition to the above-described viewpoints.
  • an additive that reduces the surface tension of water and increases the surface activity may be added in a small proportion. This additive is preferably one that does not dissolve the resist film on the wafer and can ignore the influence on the optical coating on the lower surface of the lens.
  • the water used is preferably distilled water.
  • PEB post-exposure baking
  • the acid-dissociable group of the [A] polymer and the like by the acid generated from the [B] acid generator by exposure is dissociated. Is preferably promoted.
  • This PEB causes a difference in solubility in the developer between the exposed area and the unexposed area.
  • As a minimum of PEB temperature it is 50 ° C usually and 80 ° C is preferred.
  • the upper limit of the PEB temperature is usually 180 ° C, preferably 130 ° C.
  • the lower limit of the PEB time is usually 5 seconds, and preferably 10 seconds.
  • the upper limit of the PEB time is usually 600 seconds, and preferably 300 seconds.
  • the resist film exposed in the exposure step is developed. Thereby, a predetermined resist pattern can be formed. After development, it is common to wash with water or a rinse solution such as alcohol and then dry.
  • alkali development for example, sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, aqueous ammonia, ethylamine, n-propylamine, diethylamine, di-n -Propylamine, triethylamine, methyldiethylamine, ethyldimethylamine, triethanolamine, tetramethylammonium hydroxide (TMAH), pyrrole, piperidine, choline, 1,8-diazabicyclo- [5.4.0] -7-undecene,
  • TMAH tetramethylammonium hydroxide
  • Examples thereof include an alkaline aqueous solution in which at least one alkaline compound such as 1,5-diazabicyclo- [4.3.0] -5-nonene is dissolved.
  • a TMAH aqueous solution is preferable, and a 2.38 mass% TMAH aqueous solution is more preferable.
  • organic solvents such as hydrocarbon solvents, ether solvents, ester solvents, ketone solvents, alcohol solvents and the like or solvents containing organic solvents can be mentioned.
  • organic solvent the 1 type (s) or 2 or more types of the solvent enumerated as the [B] solvent of the above-mentioned resin composition are mentioned, for example.
  • ester solvents and ketone solvents are preferable.
  • the ester solvent an acetate solvent is preferable, and n-butyl acetate is more preferable.
  • the ketone solvent is preferably a chain ketone, more preferably 2-heptanone.
  • 80 mass% is preferred, 90 mass% is more preferred, 95 mass% is still more preferred, and 99 mass% is especially preferred.
  • components other than the organic solvent in the developer include water and silicone oil.
  • a developing method for example, a method in which a substrate is immersed in a tank filled with a developer for a certain period of time (dip method), a method in which the developer is raised on the surface of the substrate by surface tension and is left stationary for a certain time (paddle method) ), A method of spraying the developer on the substrate surface (spray method), a method of continuously applying the developer while scanning the developer coating nozzle on the substrate rotating at a constant speed (dynamic dispensing method) Etc.
  • the polymer of the present invention has a structural unit represented by the above formula (I).
  • the said polymer can be used suitably as a polymer component of the said radiation sensitive resin composition mentioned above.
  • the polymer is described above as the [A] polymer in the radiation-sensitive resin composition.
  • the compound of the present invention is represented by the above formula (i). Since the compound has a structure represented by the above formula (i), it is suitably used as a monomer compound in which the structural unit (I) is incorporated into the polymer. The compound is described above as a monomer that gives the structural unit (I) in the [A] polymer of the radiation-sensitive resin composition.
  • the compounds (M-1), (M-5) to (M-7), (M-9), (M-12), and (M-13) represent the structural unit (II) and the compound ( M-2), (M-8), and (M-10) represent the structural unit (III), the compound (M-3) represents the structural unit (IV), and the compound (M-15) represents the structural unit (III). V), and the compound (M-4) gives other structural units.
  • Compound (M-14) incorporates a structural unit having the structure of [B] acid generator in [A] polymer.
  • the compound (M-16) is a monomer used in place of the structural unit (I) in the following synthesis examples.
  • the dripping start was set as the polymerization reaction start time, and the polymerization reaction was carried out for 6 hours.
  • the polymerization solution was cooled with water and cooled to 30 ° C. or lower.
  • the polymerization solution cooled in 400 g of methanol was added, and the precipitated white powder was separated by filtration.
  • the filtered white powder was washed twice with 80 g of methanol, filtered, and dried at 50 ° C. for 17 hours to synthesize a white powdery polymer (A-1) (15.2 g, yield 76). %).
  • Mw of the polymer (A-1) was 7,300, and Mw / Mn was 1.53.
  • the content ratio of each structural unit derived from (M-1), (M-2), (M-3) and (Z-1) was 34.3 mol%, respectively. 35.1 mol%, 14.6 mol% and 16.0 mol%.
  • the dripping start was set as the polymerization reaction start time, and the polymerization reaction was carried out for 6 hours.
  • the polymerization solution was cooled with water and cooled to 30 ° C. or lower.
  • the operation of adding 100 g of hexane and stirring to recover the acetonitrile layer was repeated three times.
  • the solvent By replacing the solvent with propylene glycol monomethyl ether acetate, a solution containing 60.1 g of the polymer (D-1) was obtained (yield 60%).
  • Mw of the polymer (D-1) was 15,000, and Mw / Mn was 1.90.
  • the content ratios of structural units derived from (M-15) and (M-12) were 70.3 mol% and 29.7 mol%, respectively.
  • B-1 Triphenylsulfonium 2- (adamantan-1-ylcarbonyloxy) -1,1,3,3,3-pentafluoropropane-1-sulfonate
  • B-2 Triphenylsulfonium norbornane sultone-2-yloxy Carbonyl difluoromethanesulfonate
  • B-3 Triphenylsulfonium 3- (piperidin-1-ylsulfonyl) -1,1,2,2,3,3-hexafluoropropane-1-sulfonate
  • B-4 Triphenylsulfonium adamantane 1-yloxycarbonyldifluoromethanesulfonate
  • C-1 Triphenylsulfonium 2.4.6. Triisopropylphenylsulfonate
  • C-2 Triphenylsulfonium 10-camphorsulfonate
  • C-3 N- (n-undecan-1-ylcarbonyloxyethyl) morpholine
  • C-4 Tri-n-pentylamine
  • [Example 50] [A] 100 parts by mass of (A-1) as a polymer, [B] 8.5 parts by mass of (B-1) as an acid generator, [C] (C-1) 2 as an acid diffusion controller 3 parts by weight, (D-1) 3 parts by weight as a [D] polymer, (E-1) 2,240 parts by weight and (E-2) 960 parts by weight as a solvent and [F]
  • a radiation-sensitive resin composition (J-1) was prepared by mixing 30 parts by mass of (F-1) as an uneven distribution accelerator and filtering the obtained mixed solution through a membrane filter having a pore size of 0.2 ⁇ m. .
  • Example 51 to 74 and Comparative Examples 1 to 5 Each radiation-sensitive resin composition was prepared in the same manner as in Example 50 except that the components having the types and contents shown in Table 2 were used.
  • Example 75 [A] 100 parts by mass of (A-1) as a polymer, [B] 20 parts by mass of (B-1) as an acid generator, [C] (C-1) 3.6 as an acid diffusion controller
  • the radiation sensitive resin is obtained by mixing 4 parts by mass and (E-1) 4,280 parts by mass and (E-2) 1,830 parts by mass as [E] solvent and filtering through a membrane filter having a pore size of 0.2 ⁇ m.
  • a composition (J-26) was prepared.
  • Example 76 to 102 and Comparative Examples 6 to 13 Each radiation-sensitive resin composition was prepared in the same manner as in Example 75 except that the components of the types and contents shown in Table 3 were used.
  • NSR-S610C ArF excimer laser immersion exposure apparatus
  • the exposure amount formed in a one-to-one line and space with a line width of 40 nm and a line width formed through a one-to-one line and space mask with a target dimension of 40 nm is an optimum exposure amount ( Eop).
  • Comparative Example 1 for Example 72, Comparative Example 3 for Example 72, Comparative Example 4 for Example 73, Comparative Example 5 for Example 74, Comparative Example 6 and Comparative Example 7 for Example 75, and Examples 76-96.
  • Comparative Example 6 for Example 97, Comparative Example 8 for Example 97, Comparative Example 9 for Example 98, Comparative Example 10 for Example 99, Comparative Example 11 for Example 100, Comparative Example 12 for Example 101 Example 102 is Comparative Example 13.
  • LWR performance The resist pattern formed by irradiating the exposure amount of Eop was observed from above the pattern using the scanning electron microscope. A total of 50 line widths were measured at arbitrary points, and a 3-sigma value was obtained from the distribution of the measured values, and this was defined as LWR performance. The LWR performance indicates that the smaller the value, the smaller the backlash of the line. When the LWR performance is 10% or more (LWR performance is 90% or less) when compared with the comparative example, the LWR performance is “good” and less than 10% (LWR performance is improved). When the value was over 90%), it was evaluated as “bad”.
  • the line width of the resist pattern formed by using the mask pattern having the line widths of 51 nm, 53 nm, 55 nm, 57 nm, and 59 nm is plotted on the vertical axis.
  • the slope of the straight line when the pattern size was plotted on the horizontal axis was calculated, and this was taken as the MEEF performance.
  • the MEEF performance indicates that the closer the value is to 1, the better the mask reproducibility.
  • the MEEF performance is 10% or more when the value is compared with that of the comparative example (MEEF performance value is 90% or less), the MEEF performance is less than 10% (MEEF performance is improved). When the value was over 90%), it was evaluated as “bad”.
  • CDU performance The resist pattern formed by irradiating the exposure amount of Eop was observed from above the pattern using the scanning electron microscope.
  • the line width is measured at 20 points in the range of 400 nm, the average value is obtained, the average value is measured at a total of 500 points, and the 3 sigma value is obtained from the distribution of the measured values, which is taken as the CDU performance. .
  • the CDU performance indicates that the smaller the value, the smaller the line width variation in a long cycle.
  • the CDU performance is improved by 10% or more (the CDU performance value is 90% or less) when the value is compared with that of the comparative example, the improvement is less than 10% (the CDU performance is improved). When the value was over 90%), it was evaluated as “bad”.
  • the radiation sensitive resin composition and resist pattern forming method of the present invention excellent MEEF performance, depth of focus and exposure margin are exhibited, and LWR performance, CDU performance, resolution, and cross-sectional rectangularity are obtained.
  • An excellent resist pattern can be formed.
  • the polymer of this invention is used suitably as a polymer component of the said radiation sensitive resin composition. Since the compound of the present invention has a structure represented by the above formula (i), it is suitably used as a monomer compound that incorporates the structural unit (I) into the polymer. Therefore, these can be suitably used for pattern formation in semiconductor device manufacturing or the like, where miniaturization is expected to progress further in the future.

Abstract

 The present invention is a radiosensitive resin composition containing: a polymer having a structural unit that contains the group represented by formula (1); and a radiosensitive acid generator. In formula (1), R1 is a substituted or unsubstituted divalent C1-10 hydrocarbon group. R2 is a single-bond or substituted or unsubstituted divalent chain C1-5 hydrocarbon group. R1 and one or more of R2 may be combined and, together with the carbon atoms bound thereto, form a 3-20 membered ring structure. a is an integer of 1-3. A is a monovalent group having two or more heteroatoms, and is bonded to R2 via a carbon atoms. The asterisk mark shows the binding site. A in formula (1) below is preferably a monovalent cyclic group having a heterocyclic structure.

Description

感放射線性樹脂組成物、レジストパターン形成方法、重合体及び化合物Radiation sensitive resin composition, resist pattern forming method, polymer and compound
 本発明は、感放射線性樹脂組成物、レジストパターン形成方法、重合体及び化合物に関する。 The present invention relates to a radiation sensitive resin composition, a resist pattern forming method, a polymer and a compound.
 半導体デバイス、液晶デバイス等の各種電子デバイス構造の形成には、フォトリソグラフィーによるレジストパターン形成方法が用いられている。このレジストパターン形成方法には、例えば基板上にレジストパターンを形成させる感放射線性樹脂組成物等が用いられる。上記感放射線性樹脂組成物は、ArFエキシマレーザー光等の遠紫外線、電子線などの放射線の照射により露光部に酸を生成させ、この酸の触媒作用により露光部と未露光部との現像液に対する溶解速度に差を生じさせ、基板上にレジストパターンを形成させるものである。 For forming various electronic device structures such as semiconductor devices and liquid crystal devices, a resist pattern forming method by photolithography is used. In this resist pattern forming method, for example, a radiation sensitive resin composition for forming a resist pattern on a substrate is used. The radiation sensitive resin composition generates an acid in an exposed portion by irradiation with radiation such as deep ultraviolet rays such as ArF excimer laser light or an electron beam, and a developing solution for an exposed portion and an unexposed portion by the catalytic action of the acid. A difference in dissolution rate with respect to is formed, and a resist pattern is formed on the substrate.
 かかる感放射線性樹脂組成物には、解像性に優れ、また、レジストパターンの断面形状の矩形性に優れるだけでなく、LWR(Line Width Roughness)性能、CDU(Critical Dimension Uniformity)性能等に優れると共に、焦点深度、露光余裕度、MEEF(Mask Error Enhancement Factor)性能等にも優れ、高精度なパターンを高い歩留まりで得られることが求められる。この要求に対しては、感放射線性樹脂組成物に含有される重合体の構造が種々検討されており、ブチロラクトン構造、ノルボルナンラクトン構造等のラクトン構造を有することで、レジストパターンの基板への密着性を高めると共に、これらの性能を向上できることが知られている(特開平11-212265号公報、特開2003-5375号公報及び特開2008-83370号公報参照)。 Such a radiation-sensitive resin composition is excellent in resolution and not only in the rectangular shape of the cross-sectional shape of the resist pattern, but also in LWR (Line Width Roughness) performance, CDU (Critical Dimension Uniformity) performance, and the like. In addition, it is required to obtain a high-accuracy pattern with a high yield with excellent depth of focus, exposure margin, MEEF (Mask Error Enhancement Factor) performance, and the like. In response to this requirement, various structures of the polymer contained in the radiation-sensitive resin composition have been studied. By having a lactone structure such as a butyrolactone structure or a norbornane lactone structure, the resist pattern can be adhered to the substrate. It is known that these properties can be improved and these performances can be improved (see JP-A-11-212265, JP-A-2003-5375, and JP-A-2008-83370).
 しかし、レジストパターンの微細化が線幅45nm以下のレベルまで進展している現在にあっては、上記性能の要求レベルはさらに高まり、上記従来の感放射線性樹脂組成物では、これらの要求を満足させることはできていない。 However, at present, when the miniaturization of the resist pattern has progressed to a level of 45 nm or less, the required level of the performance is further increased, and the conventional radiation-sensitive resin composition satisfies these requirements. I can't make it happen.
特開平11-212265号公報JP-A-11-212265 特開2003-5375号公報JP 2003-5375 A 特開2008-83370号公報JP 2008-83370 A
 本発明は上述のような事情に基づいてなされたものであり、優れたMEEF性能、焦点深度及び露光余裕度を発揮して、LWR性能、CDU性能、解像性及び断面形状の矩形性に優れるレジストパターンを形成できる感放射線性樹脂組成物の提供を目的とする。 The present invention has been made based on the above-described circumstances, and exhibits excellent MEEF performance, depth of focus, and exposure margin, and is excellent in LWR performance, CDU performance, resolution, and cross-sectional rectangularity. It aims at providing the radiation sensitive resin composition which can form a resist pattern.
 上記課題を解決するためになされた発明は、下記式(1)で表される基(以下、「基(1)」ともいう)を含む構造単位(以下、「構造単位(I)」ともいう)を有する重合体(以下、「[A]重合体」ともいう)、及び感放射線性酸発生体(以下、「[B]酸発生体」ともいう)を含有する感放射線性樹脂組成物である。
Figure JPOXMLDOC01-appb-C000005
(式(1)中、Rは、置換又は非置換の炭素数1~10の2価の炭化水素基である。Rは、単結合又は置換若しくは非置換の炭素数1~5の2価の鎖状炭化水素基である。Rと1又は複数のRのうちの少なくともいずれかとは、互いに合わせられこれらが結合する炭素原子と共に構成される環員数3~20の環構造を形成していてもよい。aは、1~3の整数である。aが2以上の場合、複数のRは同一でも異なっていてもよい。Aは、2つ以上のヘテロ原子を有し、Rに炭素原子で結合する1価の基である。*は、結合部位を示す。)
The invention made to solve the above problems is also referred to as a structural unit (hereinafter referred to as “structural unit (I)”) containing a group represented by the following formula (1) (hereinafter also referred to as “group (1)”). ) Containing a polymer (hereinafter also referred to as “[A] polymer”) and a radiation-sensitive acid generator (hereinafter also referred to as “[B] acid generator”). is there.
Figure JPOXMLDOC01-appb-C000005
(In formula (1), R 1 is a substituted or unsubstituted divalent hydrocarbon group having 1 to 10 carbon atoms. R 2 is a single bond or a substituted or unsubstituted 2 having 1 to 5 carbon atoms. R 1 and at least one of one or more R 2 form a ring structure having 3 to 20 ring members composed of carbon atoms to which they are bonded together and to which they are bonded. A is an integer of 1 to 3. When a is 2 or more, a plurality of R 2 may be the same or different, and A has two or more heteroatoms, (This is a monovalent group bonded to R 2 by a carbon atom. * Indicates a bonding site.)
 上記課題を解決するためになされた別の発明は、レジスト膜を形成する工程、上記レジスト膜を露光する工程、及び上記露光されたレジスト膜を現像する工程を備え、上記レジスト膜を当該感放射線性樹脂組成物により形成するレジストパターン形成方法である。 Another invention made in order to solve the above-mentioned problems comprises a step of forming a resist film, a step of exposing the resist film, and a step of developing the exposed resist film, It is the resist pattern formation method formed with a conductive resin composition.
 上記課題を解決するためになされたさらに別の発明は、下記式(I)で表される構造単位を有する重合体である。
Figure JPOXMLDOC01-appb-C000006
(式(I)中、Rは、置換又は非置換の炭素数1~10の2価の炭化水素基である。Rは、単結合又は置換若しくは非置換の炭素数1~5の2価の鎖状炭化水素基である。Rと1又は複数のRのうちの少なくともいずれかとは、互いに合わせられこれらが結合する炭素原子と共に構成される環員数3~20の環構造を形成していてもよい。aは、1~3の整数である。aが2以上の場合、複数のRは同一でも異なっていてもよい。R10は、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。Aは、2つ以上のヘテロ原子を有し、Rに炭素原子で結合する1価の基である。)
Yet another invention made to solve the above problems is a polymer having a structural unit represented by the following formula (I).
Figure JPOXMLDOC01-appb-C000006
(In the formula (I), R 1 is a substituted or unsubstituted divalent hydrocarbon group having 1 to 10 carbon atoms. R 2 is a single bond or a substituted or unsubstituted 2 having 1 to 5 carbon atoms. R 1 and at least one of one or more R 2 form a ring structure having 3 to 20 ring members composed of carbon atoms to which they are bonded together and to which they are bonded. A is an integer of 1 to 3. When a is 2 or more, a plurality of R 2 may be the same or different, and R 10 is a hydrogen atom, a fluorine atom, a methyl group or A is a trifluoromethyl group, and A is a monovalent group having two or more heteroatoms and bonded to R 2 with a carbon atom.
 上記課題を解決するためになされたさらに別の発明は、下記式(i)で表される化合物である。
Figure JPOXMLDOC01-appb-C000007
(式(i)中、Rは、置換又は非置換の炭素数1~10の2価の炭化水素基である。Rは、単結合又は置換若しくは非置換の炭素数1~5の2価の鎖状炭化水素基である。Rと1又は複数のRのうちの少なくともいずれかとは、互いに合わせられこれらが結合する炭素原子と共に構成される環員数3~20の環構造を形成していてもよい。aは、1~3の整数である。aが2以上の場合、複数のRは同一でも異なっていてもよい。R10は、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。Aは、2つ以上のヘテロ原子を有し、Rに炭素原子で結合する1価の基である。)
Yet another invention made to solve the above problems is a compound represented by the following formula (i).
Figure JPOXMLDOC01-appb-C000007
(In the formula (i), R 1 is a substituted or unsubstituted divalent hydrocarbon group having 1 to 10 carbon atoms. R 2 is a single bond or a substituted or unsubstituted 2 having 1 to 5 carbon atoms. R 1 and at least one of one or more R 2 form a ring structure having 3 to 20 ring members composed of carbon atoms to which they are bonded together and to which they are bonded. A is an integer of 1 to 3. When a is 2 or more, a plurality of R 2 may be the same or different, and R 10 is a hydrogen atom, a fluorine atom, a methyl group or A is a trifluoromethyl group, and A is a monovalent group having two or more heteroatoms and bonded to R 2 with a carbon atom.
 ここで、「有機基」とは、少なくとも1個の炭素原子を含む基をいう。 Here, “organic group” means a group containing at least one carbon atom.
 また、「炭化水素基」とは、鎖状炭化水素基、脂環式炭化水素基及び芳香族炭化水素基が含まれる。この「炭化水素基」は、飽和炭化水素基でも不飽和炭化水素基でもよい。「鎖状炭化水素基」とは、環状構造を含まず、鎖状構造のみで構成された炭化水素基をいい、直鎖状炭化水素基及び分岐状炭化水素基の両方を含む。「脂環式炭化水素基」とは、環構造としては脂環構造のみを含み、芳香環構造を含まない炭化水素基をいい、単環の脂環式炭化水素基及び多環の脂環式炭化水素基の両方を含む。但し、脂環構造のみで構成されている必要はなく、その一部に鎖状構造を含んでいてもよい。「芳香族炭化水素基」とは、環構造として芳香環構造を含む炭化水素基をいう。但し、芳香環構造のみで構成されている必要はなく、その一部に鎖状構造や脂環構造を含んでいてもよい。 The “hydrocarbon group” includes a chain hydrocarbon group, an alicyclic hydrocarbon group, and an aromatic hydrocarbon group. The “hydrocarbon group” may be a saturated hydrocarbon group or an unsaturated hydrocarbon group. The “chain hydrocarbon group” refers to a hydrocarbon group that does not include a cyclic structure but includes only a chain structure, and includes both a linear hydrocarbon group and a branched hydrocarbon group. The term “alicyclic hydrocarbon group” refers to a hydrocarbon group that includes only an alicyclic structure as a ring structure and does not include an aromatic ring structure, and includes a monocyclic alicyclic hydrocarbon group and a polycyclic alicyclic group. Includes both hydrocarbon groups. However, it is not necessary to be composed only of the alicyclic structure, and a part thereof may include a chain structure. “Aromatic hydrocarbon group” refers to a hydrocarbon group containing an aromatic ring structure as a ring structure. However, it is not necessary to be composed only of an aromatic ring structure, and a part thereof may include a chain structure or an alicyclic structure.
 また、「環員数」とは、脂環構造及び脂肪族複素環構造の環を構成する原子数をいい、多環の脂環構造及び多環の脂肪族複素環構造の場合はこの多環を構成する原子数をいう。 In addition, the “number of ring members” means the number of atoms constituting the ring of the alicyclic structure and the aliphatic heterocyclic structure, and in the case of the polycyclic alicyclic structure and the polycyclic aliphatic heterocyclic structure, The number of atoms that make up.
 本発明の感放射線性樹脂組成物及びレジストパターン形成方法によれば、優れたMEEF性能、焦点深度及び露光余裕度を発揮して、LWR性能、CDU性能、解像性及び断面形状の矩形性に優れるレジストパターンを形成することができる。本発明の重合体は、当該感放射線性樹脂組成物の重合体成分として好適に用いられる。本発明の化合物は、上記式(i)で表される構造を有するので、当該重合体中に構造単位(I)を組み込む単量体化合物として好適に用いられる。従って、これらは、今後ますます微細化が進行すると予想される半導体デバイス製造等におけるパターン形成に好適に用いることができる。 According to the radiation sensitive resin composition and resist pattern forming method of the present invention, excellent MEEF performance, depth of focus and exposure margin are exhibited, and LWR performance, CDU performance, resolution, and cross-sectional rectangularity are obtained. An excellent resist pattern can be formed. The polymer of this invention is used suitably as a polymer component of the said radiation sensitive resin composition. Since the compound of the present invention has a structure represented by the above formula (i), it is suitably used as a monomer compound that incorporates the structural unit (I) into the polymer. Therefore, these can be suitably used for pattern formation in semiconductor device manufacturing or the like, where miniaturization is expected to progress further in the future.
<感放射線性樹脂組成物>
 当該感放射線性樹脂組成物は、[A]重合体及び[B]酸発生体を含有する。また、当該感放射線性樹脂組成物は、好適成分として、[C]酸拡散制御体、[D][A]重合体以外のフッ素原子含有重合体(以下、「[D]重合体」ともいう)及び[E]溶媒を含有していてもよく、本発明の効果を損なわない範囲において、その他の任意成分を含有していてもよい。以下、各成分について説明する。
<Radiation sensitive resin composition>
The radiation-sensitive resin composition contains a [A] polymer and a [B] acid generator. Moreover, the said radiation sensitive resin composition is also called fluorine atom containing polymer (henceforth "[D] polymer") other than [C] acid diffusion control body and [D] [A] polymer as a suitable component. ) And [E] may contain a solvent, and may contain other optional components as long as the effects of the present invention are not impaired. Hereinafter, each component will be described.
<[A]重合体>
 [A]重合体は、構造単位(I)を有する重合体である。当該感放射線性樹脂組成物は、[A]重合体が構造単位(I)を有することで、優れたMEEF性能、焦点深度及び露光余裕度を発揮して、LWR性能、CDU性能、解像性及び断面形状の矩形性に優れるレジストパターンを形成することができる(これらの性能を、以下、「リソグラフィー性能」ともいう)。[A]重合体が上記構成を有することで上記効果を奏する理由については必ずしも明確ではないが、例えば以下のように推察することができる。構造単位(I)は、上記式(1)で示されるように、2つ以上のヘテロ原子を有する1価の基を有し、かつこの1価の基と重合鎖との間がケトン構造を有するスペーサーで連結されている特定構造を有するので、高い極性を有している。そのため、[A]重合体は、現像液に対する溶解性をより適度に調整することができる。さらに、当該感放射線性樹脂組成物は、[B]酸発生体から生じる酸の拡散長をより適度に短くすることできる。これらの結果、当該感放射線性樹脂組成物によれば、形成されるレジストパターンのリソグラフィー性能を向上させることができる。
<[A] polymer>
[A] The polymer is a polymer having the structural unit (I). The radiation-sensitive resin composition exhibits excellent MEEF performance, depth of focus, and exposure margin due to the [A] polymer having the structural unit (I), LWR performance, CDU performance, and resolution. In addition, it is possible to form a resist pattern having a rectangular cross-sectional shape (these performances are also referred to as “lithographic performances” hereinafter). [A] The reason why the polymer exhibits the above-described effect by having the above-described configuration is not necessarily clear, but can be inferred as follows, for example. As shown in the above formula (1), the structural unit (I) has a monovalent group having two or more heteroatoms, and a ketone structure is formed between the monovalent group and the polymer chain. Since it has the specific structure connected with the spacer which has, it has high polarity. Therefore, [A] polymer can adjust the solubility with respect to a developing solution more appropriately. Furthermore, the radiation sensitive resin composition can shorten the diffusion length of the acid generated from the [B] acid generator more appropriately. As a result, according to the radiation sensitive resin composition, the lithography performance of the resist pattern to be formed can be improved.
 [A]重合体は、構造単位(I)以外にも、構造単位(I)以外の構造単位であって、酸解離性基を含む構造単位(II);ラクトン構造、環状カーボネート構造、スルトン構造又はこれらの組み合わせを含む構造単位(III);極性基を含む構造単位(IV)及びフッ素原子含有構造単位(V)を有してもよく、構造単位(I)~(V)以外のその他の構造単位等を有していてもよい。 [A] In addition to the structural unit (I), the polymer is a structural unit other than the structural unit (I) and includes an acid dissociable group (II); a lactone structure, a cyclic carbonate structure, and a sultone structure Or a structural unit (III) containing a combination thereof; a structural unit (IV) containing a polar group and a fluorine atom-containing structural unit (V), and other structural units other than the structural units (I) to (V) It may have a structural unit or the like.
 [A]重合体は、構造単位(I)以外に、構造単位(II)及び構造単位(III)を有することが好ましい。[A]重合体は、各構造単位を1種又は2種以上有していてもよい。以下、各構造単位について説明する。 [A] The polymer preferably has a structural unit (II) and a structural unit (III) in addition to the structural unit (I). [A] The polymer may have one or more of each structural unit. Hereinafter, each structural unit will be described.
[構造単位(I)]
 構造単位(I)は、下記式(1)で表される基を含む構造単位である。
[Structural unit (I)]
The structural unit (I) is a structural unit containing a group represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 上記式(1)中、Rは、置換又は非置換の炭素数1~10の2価の炭化水素基である。Rは、単結合又は置換若しくは非置換の炭素数1~5の2価の鎖状炭化水素基である。Rと1又は複数のRのうちの少なくともいずれかとは、互いに合わせられこれらが結合する炭素原子と共に構成される環員数3~20の環構造を形成していてもよい。aは、1~3の整数である。aが2以上の場合、複数のRは同一でも異なっていてもよい。Aは、2つ以上のヘテロ原子を有し、Rに炭素原子で結合する1価の基である。*は、結合部位を示す。 In the above formula (1), R 1 is a substituted or unsubstituted divalent hydrocarbon group having 1 to 10 carbon atoms. R 2 is a single bond or a substituted or unsubstituted divalent chain hydrocarbon group having 1 to 5 carbon atoms. R 1 and at least one of one or a plurality of R 2 may be combined with each other to form a ring structure having 3 to 20 ring members that is configured together with the carbon atom to which they are bonded. a is an integer of 1 to 3. When a is 2 or more, a plurality of R 2 may be the same or different. A has two or more hetero atoms, a monovalent group having a carbon atom bonded to R 2. * Indicates a binding site.
 上記Rで表される2価の炭化水素基としては、例えば炭素数1~10の2価の鎖状炭化水素基、炭素数3~10の2価の脂環式炭化水素基、炭素数6~10の2価の芳香族炭化水素基等が挙げられる。 Examples of the divalent hydrocarbon group represented by R 1 include a divalent chain hydrocarbon group having 1 to 10 carbon atoms, a divalent alicyclic hydrocarbon group having 3 to 10 carbon atoms, and a carbon number. Examples thereof include 6 to 10 divalent aromatic hydrocarbon groups.
 上記炭素数1~10の2価の鎖状炭化水素基としては、例えばメタンジイル基、エタンジイル基、プロパンジイル基、ブタンジイル基等のアルカンジイル基;
 エテンジイル基、プロペンジイル基、ブテンジイル基等のアルケンジイル基;
 エチンジイル基、プロピンジイル基、ブチンジイル基等のアルキンジイル基などが挙げられる。
Examples of the divalent chain hydrocarbon group having 1 to 10 carbon atoms include alkanediyl groups such as methanediyl group, ethanediyl group, propanediyl group, butanediyl group;
Alkenediyl groups such as ethenediyl group, propenediyl group, butenediyl group;
Examples include alkynediyl groups such as ethynediyl group, propynediyl group, and butynediyl group.
 上記炭素数3~10の2価の脂環式炭化水素基としては、例えば
 シクロプロパンジイル基、シクロブタンジイル基、シクロペンタンジイル基、シクロヘキサンジイル基等の単環のシクロアルカンジイル基;
 ノルボルナンジイル基、アダマンタンジイル基等の多環のシクロアルカンジイル基;
 シクロプロペンジイル基、シクロブテンジイル基、シクロペンテンジイル基、シクロヘキセンジイル基等の単環のシクロアルケンジイル基;
 ノルボルネンジイル基等の多環のシクロアルケンジイル基などが挙げられる。
Examples of the divalent alicyclic hydrocarbon group having 3 to 10 carbon atoms include monocyclic cycloalkanediyl groups such as cyclopropanediyl group, cyclobutanediyl group, cyclopentanediyl group, and cyclohexanediyl group;
A polycyclic cycloalkanediyl group such as a norbornanediyl group or an adamantanediyl group;
Monocyclic cycloalkenediyl groups such as cyclopropenediyl group, cyclobutenediyl group, cyclopentenediyl group, cyclohexenediyl group;
And polycyclic cycloalkenediyl groups such as norbornenediyl group.
 上記炭素数6~10の2価の芳香族炭化水素基としては、例えば
 フェニレン基、トリレン基等のアリーレン基などが挙げられる。
Examples of the divalent aromatic hydrocarbon group having 6 to 10 carbon atoms include arylene groups such as a phenylene group and a tolylene group.
 これらの基が有していてもよい置換基としては、ヒドロキシ基、ハロゲン原子、炭素数1~20の有機基等が挙げられる。炭素数1~20の有機基としては、メチル基、エチル基等のアルキル基、Rが有する同一の炭素原子に結合するアルカンジイル基等が挙げられる。 Examples of the substituent that these groups may have include a hydroxy group, a halogen atom, and an organic group having 1 to 20 carbon atoms. Examples of the organic group having 1 to 20 carbon atoms include alkyl groups such as a methyl group and an ethyl group, and alkanediyl groups bonded to the same carbon atom that R 1 has.
 Rとしては、置換又は非置換のメタンジイル基及び非置換のエタンジイル基が好ましく、非置換のメタンジイル基及びRの同一の炭素原子に結合するアルカンジイル基で置換されたメタンジイル基がより好ましく、非置換のメタンジイル基がさらに好ましい。 R 1 is preferably a substituted or unsubstituted methanediyl group and an unsubstituted ethanediyl group, more preferably an unsubstituted methanediyl group and a methanediyl group substituted with an alkanediyl group bonded to the same carbon atom of R 1 , An unsubstituted methanediyl group is more preferred.
 上記Rで表される2価の鎖状炭化水素基としては、例えば上記Rの2価の鎖状炭化水素基として例示した基と同様の基等が挙げられる。これらの基が有していてもよい置換基としては、上記Rにおいて例示した置換基と同様の基等が挙げられる。 Examples of the divalent chain hydrocarbon group represented by R 2 include the same groups as those exemplified as the divalent chain hydrocarbon group for R 1 . Examples of the substituent that these groups may have include the same groups as the substituents exemplified in R 1 above.
 Rとしては、単結合、非置換のアルカンジイル基及びアルキル基で置換されたアルカンジイル基が好ましく、単結合、非置換のメタンジイル基、非置換のエタンジイル基及びメチル基で置換されたメタンジイル基がより好ましい。 R 2 is preferably a single bond, an unsubstituted alkanediyl group or an alkanediyl group substituted with an alkyl group, and a single bond, an unsubstituted methanediyl group, an unsubstituted ethanediyl group or a methanediyl group substituted with a methyl group Is more preferable.
 aとしては、合成容易性等の観点から1及び2が好ましく、1がより好ましい。 A is preferably 1 or 2 from the viewpoint of easiness of synthesis or the like, and more preferably 1.
 Rと1又は複数のRのうちの少なくともいずれかとが互いに合わせられこれらが結合する炭素原子と共に構成される環員数3~20の環構造としては、例えばシクロプロパン構造、シクロブタン構造、シクロペンタン構造、シクロヘキサン構造、ノルボルナン構造、アダマンタン構造等の脂環構造;オキサシクロペンタン構造、チアシクロペンタン構造、アザシクロペンタン構造等の脂肪族複素環構造などが挙げられる。これらの中で、脂環構造が好ましく、シクロヘキサン構造がより好ましい。 Examples of the ring structure having 3 to 20 ring members composed of R 1 and at least one of one or a plurality of R 2 and the carbon atom to which they are bonded include a cyclopropane structure, a cyclobutane structure, and a cyclopentane. Examples thereof include alicyclic structures such as a structure, cyclohexane structure, norbornane structure, and adamantane structure; and aliphatic heterocyclic structures such as an oxacyclopentane structure, a thiacyclopentane structure, and an azacyclopentane structure. Among these, an alicyclic structure is preferable and a cyclohexane structure is more preferable.
 上記Aで表される2つ以上のヘテロ原子を有する1価の基としては、例えば鎖状構造を有する1価の基、複素環構造を有する1価の環状基等が挙げられる。 Examples of the monovalent group having two or more heteroatoms represented by A include a monovalent group having a chain structure and a monovalent cyclic group having a heterocyclic structure.
 上記ヘテロ原子としては、例えば酸素原子、硫黄原子、窒素原子、ケイ素原子、リン原子等が挙げられる。これらの中で、酸素原子、硫黄原子及び窒素原子が好ましく、酸素原子がより好ましい。 Examples of the hetero atom include an oxygen atom, a sulfur atom, a nitrogen atom, a silicon atom, and a phosphorus atom. In these, an oxygen atom, a sulfur atom, and a nitrogen atom are preferable, and an oxygen atom is more preferable.
 上記鎖状構造としては、例えばエステル基(-COO-)を有する鎖状構造;-SOO-を有する鎖状構造;スルホン基(-SO-)を有する鎖状構造;スルホキシド基(-SO-)を有する鎖状構造;アミド基(-CONH-)を有する鎖状構造;スルホンイミド基(-N(SOR))、カルボン酸イミド基(-N(COR))、カルボン酸スルホンイミド基(-N(COR)(SOR))等のイミド基を有する鎖状構造;スルホンアミド基(-NHSO-)を有する鎖状構造;これらの組み合わせなどが挙げられる。 Examples of the chain structure include a chain structure having an ester group (—COO—); a chain structure having —SO 2 O—; a chain structure having a sulfone group (—SO 2 —); and a sulfoxide group (— Chain structure having SO—); chain structure having amide group (—CONH—); sulfonimide group (—N (SO 2 R) 2 ), carboximide group (—N (COR) 2 ), carvone Examples include a chain structure having an imide group such as an acid sulfonimide group (—N (COR) (SO 2 R)); a chain structure having a sulfonamide group (—NHSO 2 —); and combinations thereof.
 上記複素環構造としては、例えばラクトン構造;ラクタム構造、スルトン構造;環状スルホン構造;環状スルホキシド構造;環状アミン構造;環状スルホンイミド構造、環状カルボン酸イミド構造、環状カルボン酸スルホンイミド構造等の環状イミド構造;環状スルホンアミド構造;これらの組み合わせなどが挙げられる。上記環状アミン構造には、環状アミン構造の窒素原子に、カルボニル基又はスルホニル基が結合されたものも含む。 Examples of the heterocyclic structure include a lactone structure; a lactam structure, a sultone structure; a cyclic sulfone structure; a cyclic sulfoxide structure; a cyclic amine structure; a cyclic sulfonimide structure, a cyclic carboxylic acid imide structure, and a cyclic carboxylic acid sulfonimide structure. Structure; cyclic sulfonamide structure; and combinations thereof. The cyclic amine structure includes those in which a carbonyl group or a sulfonyl group is bonded to the nitrogen atom of the cyclic amine structure.
 上記複素環構造を有する1価の環状基としては、例えば複素環構造のみからなる基、複素環構造と他の構造とからなる基等が挙げられる。 Examples of the monovalent cyclic group having a heterocyclic structure include a group consisting only of a heterocyclic structure, a group consisting of a heterocyclic structure and another structure, and the like.
 上記他の基としては、例えば、炭素数1~10の1価の炭化水素基、-CO-、-COO-、炭素数1~10の2価の炭化水素基、これらの組み合わせからなる基等が挙げられる。 Examples of the other group include a monovalent hydrocarbon group having 1 to 10 carbon atoms, —CO—, —COO—, a divalent hydrocarbon group having 1 to 10 carbon atoms, and a group composed of a combination thereof. Is mentioned.
 上記1価の炭化水素基としては、例えば上記Rの2価の炭化水素基として例示したものの一方の結合手に1個の水素原子が結合した基等が挙げられる。これらの中で、鎖状炭化水素基及び芳香族炭化水素基が好ましく、アルキル基及びアリール基がより好ましく、メチル基、tert-ブチル基及びフェニル基がさらに好ましい。 Examples of the monovalent hydrocarbon group include a group in which one hydrogen atom is bonded to one of the bonds of the R 1 divalent hydrocarbon group exemplified above. Among these, a chain hydrocarbon group and an aromatic hydrocarbon group are preferable, an alkyl group and an aryl group are more preferable, and a methyl group, a tert-butyl group, and a phenyl group are further preferable.
 上記2価の炭化水素基としては、例えば上記Rの2価の炭化水素基として例示した基と同様の基等が挙げられる。これらの中で、鎖状炭化水素基が好ましく、アルカンジイル基がより好ましく、メチル基がさらに好ましい。 Examples of the divalent hydrocarbon group include the same groups as those exemplified as the divalent hydrocarbon group for R 1 . Among these, a chain hydrocarbon group is preferable, an alkanediyl group is more preferable, and a methyl group is more preferable.
 上記他の基は、Rに結合する炭素原子と結合していてもよい。また、上記他の基は、Rに結合する炭素原子以外の部分で複素環構造と結合していてもよい。 The other group may be bonded to the carbon atom bonded to R 2. The other group may be bonded to the heterocyclic structure at a portion other than the carbon atom bonded to R 2 .
 上記Aで表される2つ以上のヘテロ原子を有する1価の基としては、複素環構造を有する1価の環状基が好ましい。
 上記複素環構造としては、ラクトン構造、ラクタム構造、スルトン構造、環状スルホン構造、環状スルホキシド構造、環状アミン構造、環状イミド構造、環状スルホンアミド構造及びこれらの組み合わせが好ましく、ラクトン構造がより好ましい。
The monovalent group having two or more heteroatoms represented by A is preferably a monovalent cyclic group having a heterocyclic structure.
As the heterocyclic structure, a lactone structure, a lactam structure, a sultone structure, a cyclic sulfone structure, a cyclic sulfoxide structure, a cyclic amine structure, a cyclic imide structure, a cyclic sulfonamide structure, and a combination thereof are preferable, and a lactone structure is more preferable.
 [A]重合体は、構造単位(I)として、下記式(2-1)で表される構造単位(以下、「構造単位(I-1)」ともいう)、下記式(2-2)で表される構造単位(以下、「構造単位(I-2)」ともいう)又はこれらの組み合わせを有することが好ましい。すなわち、上記構造単位(I)としては、例えば下記式(2-1)及び(2-2)の少なくともいずれかで表される構造単位が好ましい。 [A] The polymer has, as the structural unit (I), a structural unit represented by the following formula (2-1) (hereinafter also referred to as “structural unit (I-1)”), a structural unit represented by the following formula (2-2): And a combination thereof (hereinafter also referred to as “structural unit (I-2)”). That is, as the structural unit (I), for example, a structural unit represented by at least one of the following formulas (2-1) and (2-2) is preferable.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 上記式(2-1)及び(2-2)中、Zは、上記式(1)で表される基である。R10は、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。 In the above formulas (2-1) and (2-2), Z is a group represented by the above formula (1). R 10 is a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
 上記式(2-2)中、Lは、単結合、-O-、-COO-又は-CONH-である。 In the above formula (2-2), L is a single bond, —O—, —COO— or —CONH—.
 上記R10としては、構造単位(I)を与える単量体の共重合性の観点から、水素原子及びメチル基が好ましく、メチル基がより好ましい。 R 10 is preferably a hydrogen atom and a methyl group, more preferably a methyl group, from the viewpoint of copolymerization of the monomer that gives the structural unit (I).
 上記構造単位(I)としては、下記式(2-1-1)~(2-1-24)で表される構造単位(以下、「構造単位(I-1-1)~(I-1-24)」ともいう)等が挙げられる。 As the structural unit (I), structural units represented by the following formulas (2-1-1) to (2-1-24) (hereinafter referred to as “structural units (I-1-1) to (I-1 -24) ")) and the like.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 上記式(2-1-1)~(2-1-24)中、R10は、上記式(2-1)及び(2-2)と同義である。 In the above formulas (2-1-1) to (2-1-24), R 10 has the same meaning as in the above formulas (2-1) and (2-2).
 これらの中で、構造単位(I-1-1)~(I-1-21)が好ましい。 Of these, the structural units (I-1-1) to (I-1-21) are preferable.
 [A]重合体の構造単位(I)の含有割合の下限としては、[A]重合体を構成する全構造単位に対して、1モル%が好ましく、3モル%がより好ましく、5モル%がさらに好ましく、10モル%が特に好ましい。上記含有割合の上限としては、90モル%が好ましく、70モル%がより好ましく、50モル%がさらに好ましく、30モル%が特に好ましい。 [A] The lower limit of the content ratio of the structural unit (I) of the polymer is preferably 1 mol%, more preferably 3 mol%, more preferably 5 mol% with respect to all structural units constituting the [A] polymer. Is more preferable, and 10 mol% is particularly preferable. As an upper limit of the said content rate, 90 mol% is preferable, 70 mol% is more preferable, 50 mol% is further more preferable, 30 mol% is especially preferable.
 [A]重合体における構造単位(I)の含有割合を上記範囲とすることで、当該感放射線性樹脂組成物のリソグラフィー性能を向上させることができる。 [A] By making the content rate of the structural unit (I) in a polymer into the said range, the lithography performance of the said radiation sensitive resin composition can be improved.
 構造単位(I)を与える単量体としては、例えば下記式(i)で表される化合物(以下、「化合物(i)」ともいう)等が挙げられる。 Examples of the monomer that gives the structural unit (I) include a compound represented by the following formula (i) (hereinafter also referred to as “compound (i)”).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 上記式(i)中、Rは、置換又は非置換の炭素数1~10の2価の炭化水素基である。Rは、単結合又は置換若しくは非置換の炭素数1~5の2価の鎖状炭化水素基である。Rと1又は複数のRのうちの少なくともいずれかとは、互いに合わせられこれらが結合する炭素原子と共に構成される環員数3~20の環構造を形成していてもよい。aは、1~3の整数である。aが2以上の場合、複数のRは同一でも異なっていてもよい。R10は、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。Aは、2つ以上のヘテロ原子を有し、Rに炭素原子で結合する1価の基である。 In the above formula (i), R 1 is a substituted or unsubstituted divalent hydrocarbon group having 1 to 10 carbon atoms. R 2 is a single bond or a substituted or unsubstituted divalent chain hydrocarbon group having 1 to 5 carbon atoms. R 1 and at least one of one or a plurality of R 2 may be combined with each other to form a ring structure having 3 to 20 ring members that is configured together with the carbon atom to which they are bonded. a is an integer of 1 to 3. When a is 2 or more, a plurality of R 2 may be the same or different. R 10 is a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group. A has two or more hetero atoms, a monovalent group having a carbon atom bonded to R 2.
 上記化合物(i)は、例えばR10がメチル基、Rがメタンジイル基、Rが単結合、Aが3-メチル-γ-ブチロラクトン-3-イル基、aが1の場合、下記スキームに従い、簡便かつ収率よく合成することができる。 For example, when R 10 is a methyl group, R 1 is a methanediyl group, R 2 is a single bond, A is a 3-methyl-γ-butyrolactone-3-yl group, and a is 1, It can be synthesized simply and with good yield.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 上記式(i’-a)で表される化合物とヨードメタンとを、炭酸カリウム等の塩基存在下、アセトン等の溶媒中で反応させることにより上記式(i’-b)で表される化合物を得ることができる。次に、この化合物(i’-b)と塩化スルフリルをヘキサン等の溶媒中で反応させることにより、上記式(i’-c)で表される化合物を得ることができる。さらに、この化合物(i’-c)とメタクリル酸とを、炭酸カリウム及びヨウ化カリウムの存在下、N,N-ジメチルホルムアミド(DMF)等の溶媒中で反応させることにより、上記化合物(i’)が生成する。得られる生成物は、溶媒洗浄、カラムクロマトグラフィ、再結晶、蒸留等により精製することにより単離することができる。 A compound represented by the above formula (i′-b) is reacted with a compound represented by the above formula (i′-a) and iodomethane in a solvent such as acetone in the presence of a base such as potassium carbonate. Obtainable. Next, the compound represented by the above formula (i′-c) can be obtained by reacting this compound (i′-b) with sulfuryl chloride in a solvent such as hexane. Further, the compound (i′-c) and methacrylic acid are reacted in a solvent such as N, N-dimethylformamide (DMF) in the presence of potassium carbonate and potassium iodide to thereby give the compound (i′-c). ) Is generated. The resulting product can be isolated by purification by solvent washing, column chromatography, recrystallization, distillation and the like.
[構造単位(II)]
 構造単位(II)は、構造単位(I)以外の構造単位であって、酸解離性基を含む構造単位である。「酸解離性基」とは、カルボキシ基、フェノール性水酸基等の極性基の水素原子を置換する基であって、酸の作用により解離する基をいう。[A]重合体が構造単位(II)を有することで、感放射線性樹脂組成物の感度が向上し、結果として、リソグラフィー性能を向上させることができる。
[Structural unit (II)]
The structural unit (II) is a structural unit other than the structural unit (I) and includes an acid dissociable group. The “acid-dissociable group” is a group that replaces a hydrogen atom of a polar group such as a carboxy group or a phenolic hydroxyl group, and is a group that dissociates by the action of an acid. [A] When the polymer has the structural unit (II), the sensitivity of the radiation-sensitive resin composition is improved, and as a result, the lithography performance can be improved.
 構造単位(II)としては、例えば下記式(3-1)で表される構造単位(以下、「構造単位(II-1)」ともいう)、下記式(3-2)で表される構造単位(以下、「構造単位(II-2)」ともいう)等が挙げられる。 Examples of the structural unit (II) include a structural unit represented by the following formula (3-1) (hereinafter also referred to as “structural unit (II-1)”) and a structure represented by the following formula (3-2). A unit (hereinafter also referred to as “structural unit (II-2)”).
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 上記式(3-1)中、R12は、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。R13は、炭素数1~20の1価の炭化水素基である。R14及びR15は、それぞれ独立して、炭素数1~20の1価の炭化水素基であるか、又はこれらの基が互いに合わせられこれらが結合する炭素原子と共に構成される炭素数3~20の脂環構造を表す。 In the above formula (3-1), R 12 represents a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group. R 13 is a monovalent hydrocarbon group having 1 to 20 carbon atoms. R 14 and R 15 are each independently a monovalent hydrocarbon group having 1 to 20 carbon atoms, or 3 to 3 carbon atoms composed of these groups together with the carbon atom to which they are bonded. 20 alicyclic structures are represented.
 上記式(3-2)中、R16は、水素原子又はメチル基である。Lは、単結合、-CCOO-又は-CONH-である。R17は、水素原子又は炭素数1~20の1価の炭化水素基である。R18及びR19は、それぞれ独立して、炭素数1~20の1価の炭化水素基又は炭素数1~20の1価のオキシ炭化水素基である。 In the above formula (3-2), R 16 represents a hydrogen atom or a methyl group. L 1 is a single bond, —CCOO— or —CONH—. R 17 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms. R 18 and R 19 are each independently a monovalent hydrocarbon group having 1 to 20 carbon atoms or a monovalent oxyhydrocarbon group having 1 to 20 carbon atoms.
 上記R12としては、構造単位(II)を与える単量体の共重合性の観点から、水素原子及びメチル基が好ましく、メチル基がより好ましい。 R 12 is preferably a hydrogen atom and a methyl group, more preferably a methyl group, from the viewpoint of copolymerization of the monomer that gives the structural unit (II).
 上記R13、R14、R15、R17、R18及びR19で表される炭素数1~20の1価の炭化水素基としては、例えば炭素数1~20の1価の鎖状炭化水素基、炭素数3~20の1価の脂環式炭化水素基、炭素数6~20の1価の芳香族炭化水素基等が挙げられる。 Examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms represented by R 13 , R 14 , R 15 , R 17 , R 18 and R 19 include monovalent chain carbonization having 1 to 20 carbon atoms. Examples thereof include a hydrogen group, a monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms, and a monovalent aromatic hydrocarbon group having 6 to 20 carbon atoms.
 上記R13、R14、R15、R17、R18及びR19で表される炭素数1~20の1価の鎖状炭化水素基としては、例えば
 メチル基、エチル基、n-プロピル基、i-プロピル基等のアルキル基;
 エテニル基、プロペニル基、ブテニル基等のアルケニル基;
 エチニル基、プロピニル基、ブチニル基等のアルキニル基などが挙げられる。
Examples of the monovalent chain hydrocarbon group having 1 to 20 carbon atoms represented by R 13 , R 14 , R 15 , R 17 , R 18 and R 19 include a methyl group, an ethyl group, and an n-propyl group. Alkyl groups such as i-propyl group;
An alkenyl group such as an ethenyl group, a propenyl group, a butenyl group;
Examples thereof include alkynyl groups such as ethynyl group, propynyl group and butynyl group.
 上記R13、R14、R15、R17、R18及びR19で表される炭素数3~20の1価の脂環式炭化水素基としては、例えば
 シクロペンチル基、シクロヘキシル基等の単環のシクロアルキル基;
 シクロペンテニル基、シクロヘキセニル基等の単環のシクロアルケニル基;
 ノルボルニル基、アダマンチル基、トリシクロデシル基等の多環のシクロアルキル基;
 ノルボルネニル基、トリシクロデセニル基等の多環のシクロアルケニル基などが挙げられる。
Examples of the monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms represented by R 13 , R 14 , R 15 , R 17 , R 18 and R 19 include monocyclic rings such as a cyclopentyl group and a cyclohexyl group. A cycloalkyl group of
A monocyclic cycloalkenyl group such as a cyclopentenyl group and a cyclohexenyl group;
A polycyclic cycloalkyl group such as a norbornyl group, an adamantyl group and a tricyclodecyl group;
Examples thereof include polycyclic cycloalkenyl groups such as norbornenyl group and tricyclodecenyl group.
 上記R13、R14、R15、R17、R18及びR19で表される炭素数6~20の1価の芳香族炭化水素基としては、例えば
 フェニル基、トリル基、キシリル基、ナフチル基、アントリル基等のアリール基;
 ベンジル基、フェネチル基、ナフチルメチル基、アントリルメチル基等のアラルキル基などが挙げられる。
Examples of the monovalent aromatic hydrocarbon group having 6 to 20 carbon atoms represented by R 13 , R 14 , R 15 , R 17 , R 18, and R 19 include a phenyl group, a tolyl group, a xylyl group, and a naphthyl group. Group, an aryl group such as an anthryl group;
Examples thereof include aralkyl groups such as benzyl group, phenethyl group, naphthylmethyl group and anthrylmethyl group.
 上記これらの基が互いに合わせられこれらが結合する炭素原子と共に構成される炭素数3~20の脂環構造としては、例えば
 シクロプロパン構造、シクロブタン構造、シクロペンタン構造、シクロヘキサン構造、シクロヘプタン構造、シクロオクタン構造等の単環のシクロアルカン構造;
 ノルボルナン構造、アダマンタン構造、トリシクロデカン構造、テトラシクロドデカン構造等の多環のシクロアルカン構造などが挙げられる。
Examples of the alicyclic structure having 3 to 20 carbon atoms composed of the above-described groups combined with the carbon atom to which they are bonded include, for example, a cyclopropane structure, a cyclobutane structure, a cyclopentane structure, a cyclohexane structure, a cycloheptane structure, a cyclo Monocyclic cycloalkane structures such as octane structures;
Examples thereof include polycyclic cycloalkane structures such as a norbornane structure, an adamantane structure, a tricyclodecane structure, and a tetracyclododecane structure.
 R13、R14及びR15で表される炭化水素基としては、鎖状炭化水素基及び脂環式炭化水素基が好ましい。 As the hydrocarbon group represented by R 13 , R 14 and R 15 , a chain hydrocarbon group and an alicyclic hydrocarbon group are preferable.
 上記R18及びR19で表される炭素数1~20の1価のオキシ炭化水素基としては、例えば、上記R13、R14、R15、R17、R18及びR19の炭素数1~20の1価の炭化水素基として例示したものの結合手側の末端に酸素原子を含むもの等が挙げられる。 Examples of the monovalent oxyhydrocarbon group having 1 to 20 carbon atoms represented by R 18 and R 19 include, for example, 1 carbon atom of R 13 , R 14 , R 15 , R 17 , R 18 and R 19. Examples of the monovalent hydrocarbon group of ˜20 include those containing an oxygen atom at the terminal on the bond side.
 構造単位(II-1)としては下記式(3-1-1)~(3-1-5)で表される構造単位(以下、「構造単位(II-1-1)~(II-1-5)」ともいう)が好ましい。 As the structural unit (II-1), structural units represented by the following formulas (3-1-1) to (3-1-5) (hereinafter referred to as “structural units (II-1-1) to (II-1) −5) ”) is preferred.
 構造単位(II-2)としては下記式(3-2-1)で表される構造単位(以下、「構造単位(II-2-1)」ともいう)が好ましい。 The structural unit (II-2) is preferably a structural unit represented by the following formula (3-2-1) (hereinafter also referred to as “structural unit (II-2-1)”).
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 上記式(3-1-1)~(3-1-5)中、R12~R15は、上記式(3-1)と同義である。R13’、R14’及びR15’は、それぞれ独立して、炭素数1~10の1価の鎖状炭化水素基である。npは、それぞれ独立して、1~4の整数である。 In the above formulas (3-1-1) to (3-1-5), R 12 to R 15 have the same meanings as the above formula (3-1). R 13 ′ , R 14 ′ and R 15 ′ are each independently a monovalent chain hydrocarbon group having 1 to 10 carbon atoms. np is each independently an integer of 1 to 4.
 上記式(3-2-1)中、R16~R19は、上記式(3-2)と同義である。 In the above formula (3-2-1), R 16 to R 19 have the same meaning as in the above formula (3-2).
 構造単位(II-1-1)~(II-1-5)としては、例えば下記式で表される構造単位等が挙げられる。 Examples of the structural units (II-1-1) to (II-1-5) include structural units represented by the following formulas.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 上記式中、R12は、上記式(3-1)と同義である。 In the above formula, R 12 has the same meaning as in the above formula (3-1).
 これらの中で、2-アルキル-2-アダマンチル(メタ)アクリレートに由来する構造単位、1-アルキル-1-シクロペンチル(メタ)アクリレートに由来する構造単位、2-(1-アダマンチル)-2-プロピル(メタ)アクリレートに由来する構造単位、2-アルキル-2-テトラシクロドデカン-イル(メタ)アクリレートに由来する構造単位、2-(1-シクロヘキシル)-2-プロピル(メタ)アクリレートに由来する構造単位、t-デカン-イル(メタ)アクリレートに由来する構造単位及び1-アルキル-1-シクロオクチル(メタ)アクリレートに由来する構造単位が好ましい。 Among these, structural units derived from 2-alkyl-2-adamantyl (meth) acrylate, structural units derived from 1-alkyl-1-cyclopentyl (meth) acrylate, 2- (1-adamantyl) -2-propyl Structural units derived from (meth) acrylate, structural units derived from 2-alkyl-2-tetracyclododecan-yl (meth) acrylate, structures derived from 2- (1-cyclohexyl) -2-propyl (meth) acrylate Preference is given to units, structural units derived from t-decane-yl (meth) acrylate and structural units derived from 1-alkyl-1-cyclooctyl (meth) acrylate.
 上記構造単位(II-2)としては、例えば、下記式で表される構造単位等が挙げられる。 Examples of the structural unit (II-2) include a structural unit represented by the following formula.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 上記式中、R16は、上記式(3-2)と同義である。 In the above formula, R 16 has the same meaning as in the above formula (3-2).
 構造単位(II-2)としては、p-(1-シクロヘキシルエトキシエトキシ)スチレンに由来する構造単位が好ましい。 The structural unit (II-2) is preferably a structural unit derived from p- (1-cyclohexylethoxyethoxy) styrene.
 [A]重合体が構造単位(II)を有する場合、構造単位(II)の含有割合の下限としては、[A]重合体を構成する全構造単位に対して、10モル%が好ましく、20モル%がより好ましく、30モル%がさらに好ましい。上記含有割合の上限としては、90モル%が好ましく、80モル%がより好ましく、75モル%がさらに好ましい。構造単位(II)の含有割合を上記範囲とすることで、当該感放射線性樹脂組成物の感度をより高めることができ、結果として、リソグラフィー性能をより向上させることができる。 [A] When the polymer has the structural unit (II), the lower limit of the content ratio of the structural unit (II) is preferably 10 mol% with respect to the total structural units constituting the [A] polymer, Mole% is more preferable, and 30 mol% is more preferable. As an upper limit of the said content rate, 90 mol% is preferable, 80 mol% is more preferable, and 75 mol% is further more preferable. By making the content rate of structural unit (II) into the said range, the sensitivity of the said radiation sensitive resin composition can be raised more, and, as a result, lithography performance can be improved more.
[構造単位(III)]
 構造単位(III)は、ラクトン構造、環状カーボネート構造、スルトン構造又はこれらの組み合わせを含む構造単位である(但し、構造単位(I)を除く)。[A]重合体は、構造単位(III)をさらに有することで、現像液への溶解性を適度に調整することができ、その結果、当該感放射線性樹脂組成物のリソグラフィー性能をより向上させることができる。また、当該感放射線性樹脂組成物から形成されるレジストパターンと基板との密着性を向上させることができる。
[Structural unit (III)]
The structural unit (III) is a structural unit containing a lactone structure, a cyclic carbonate structure, a sultone structure, or a combination thereof (excluding the structural unit (I)). [A] The polymer further has the structural unit (III), so that the solubility in the developer can be appropriately adjusted. As a result, the lithography performance of the radiation-sensitive resin composition is further improved. be able to. Moreover, the adhesiveness of the resist pattern formed from the said radiation sensitive resin composition and a board | substrate can be improved.
 構造単位(III)としては、例えば下記式で表される構造単位等が挙げられる。 Examples of the structural unit (III) include a structural unit represented by the following formula.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 上記式中、RL1は、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。 In the above formula, R L1 represents a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
 構造単位(III)としては、これらの中で、ラクトン構造を含む構造単位が好ましく、ノルボルナンラクトン構造を含む構造単位、オキシノルボルナンラクトン構造を含む構造単位及びγ-ブチロラクトン構造を含む構造単位がより好ましく、ノルボルナンラクトン-イル(メタ)アクリレートに由来する構造単位、シアノ置換ノルボルナンラクトン-イル(メタ)アクリレートに由来する構造単位、オキシノルボルナンラクトン-イル(メタ)アクリレートに由来する構造単位及びγ-ブチロラクトン-3-イル(メタ)アクリレートに由来する構造単位がさらに好ましい。 Among these, the structural unit (III) is preferably a structural unit containing a lactone structure, more preferably a structural unit containing a norbornane lactone structure, a structural unit containing an oxynorbornane lactone structure, or a structural unit containing a γ-butyrolactone structure. , A structural unit derived from norbornanelactone-yl (meth) acrylate, a structural unit derived from cyano-substituted norbornanelactone-yl (meth) acrylate, a structural unit derived from oxynorbornanelactone-yl (meth) acrylate, and γ-butyrolactone- More preferred are structural units derived from 3-yl (meth) acrylate.
 [A]重合体が構造単位(III)を有する場合、構造単位(III)の含有割合の下限としては、[A]重合体を構成する全構造単位に対して、5モル%が好ましく、20モル%がよりに好ましく、25モル%がさらに好ましい。上記含有割合の上限としては、80モル%が好ましく、70モル%がより好ましく、60モル%がさらに好ましく、50モル%が特に好ましい。[A]重合体における構造単位(III)の含有割合を上記範囲とすることで、現像液への溶解性をより適度に調整することができ、その結果、当該感放射線性樹脂組成物のリソグラフィー性能をより向上させることができる。また、当該感放射線性樹脂組成物から形成されるレジストパターンと基板との密着性をより向上させることができる。 [A] When the polymer has the structural unit (III), the lower limit of the content ratio of the structural unit (III) is preferably 5 mol% with respect to all the structural units constituting the [A] polymer, Mole% is more preferable, and 25 mol% is more preferable. As an upper limit of the said content rate, 80 mol% is preferable, 70 mol% is more preferable, 60 mol% is further more preferable, 50 mol% is especially preferable. [A] By setting the content ratio of the structural unit (III) in the polymer within the above range, the solubility in the developer can be adjusted more appropriately. As a result, the lithography of the radiation-sensitive resin composition can be performed. The performance can be further improved. Moreover, the adhesiveness of the resist pattern formed from the said radiation sensitive resin composition and a board | substrate can be improved more.
[構造単位(IV)]
 構造単位(IV)は、極性基を含む構造単位である。[A]重合体は、構造単位(IV)をさらに有することで、現像液への溶解性をより適度に調整することができ、その結果、当該感放射線性樹脂組成物のリソグラフィー性能を向上させることができる。また、当該感放射線性樹脂組成物から形成されるレジストパターンと基板との密着性を向上させることができる。
[Structural unit (IV)]
The structural unit (IV) is a structural unit containing a polar group. [A] By further having the structural unit (IV), the polymer can adjust the solubility in the developer more appropriately, and as a result, improves the lithography performance of the radiation-sensitive resin composition. be able to. Moreover, the adhesiveness of the resist pattern formed from the said radiation sensitive resin composition and a board | substrate can be improved.
 上記極性基としては、例えばヒドロキシ基、オキソ基(=O)、カルボキシ基、ニトロ基、シアノ基、スルホンアミド基等が挙げられる。これらの中で、ヒドロキシ基及びケト基が好ましい。 Examples of the polar group include a hydroxy group, an oxo group (═O), a carboxy group, a nitro group, a cyano group, and a sulfonamide group. Among these, a hydroxy group and a keto group are preferable.
 上記極性基を含む構造単位としては、例えば、下記式で表される構造単位等が挙げられる。 Examples of the structural unit containing the polar group include a structural unit represented by the following formula.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 上記式中、RL2は、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。 In the above formula, R L2 represents a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
 [A]重合体が構造単位(IV)を有する場合、構造単位(IV)の含有割合の下限としては、[A]重合体を構成する全構造単位に対して、5モル%が好ましく、10モル%がより好ましい。上記含有割合の上限としては、50モル%が好ましく、30モル%がより好ましく、25モル%がさらに好ましく、20モル%が特に好ましい。 [A] When a polymer has a structural unit (IV), as a minimum of the content rate of a structural unit (IV), 5 mol% is preferable with respect to all the structural units which comprise a [A] polymer, 10 Mole% is more preferable. As an upper limit of the said content rate, 50 mol% is preferable, 30 mol% is more preferable, 25 mol% is further more preferable, and 20 mol% is especially preferable.
 [A]重合体における構造単位(IV)の含有割合を上記範囲とすることで、現像液への溶解性をより適度に調整することができ、その結果、当該感放射線性樹脂組成物のリソグラフィー性能をより向上させることができる。また、当該感放射線性樹脂組成物から形成されるレジストパターンと基板との密着性をより向上させることができる。 [A] By setting the content ratio of the structural unit (IV) in the polymer within the above range, the solubility in the developer can be adjusted more appropriately. As a result, the lithography of the radiation-sensitive resin composition can be performed. The performance can be further improved. Moreover, the adhesiveness of the resist pattern formed from the said radiation sensitive resin composition and a board | substrate can be improved more.
[構造単位(V)]
 構造単位(V)は、フッ素原子を含む構造単位である。[A]重合体は、構造単位(I)に加え、構造単位(V)をさらに有することで、フッ素原子含有率を調整することができ、その結果、当該感放射線性樹脂組成物から形成されるレジスト膜表面の動的接触角を向上させることができる。
[Structural unit (V)]
The structural unit (V) is a structural unit containing a fluorine atom. [A] The polymer can further have a structural unit (V) in addition to the structural unit (I) to adjust the fluorine atom content, and as a result, the polymer is formed from the radiation-sensitive resin composition. The dynamic contact angle on the resist film surface can be improved.
 構造単位(V)としては、例えば下記構造単位(V-1)、構造単位(V-2)等が挙げられる。 Examples of the structural unit (V) include the following structural unit (V-1) and structural unit (V-2).
[構造単位(V-1)]
 構造単位(V-1)は、下記式(4a)で表される構造単位である。
[Structural unit (V-1)]
The structural unit (V-1) is a structural unit represented by the following formula (4a).
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 上記式(4a)中、Rは、水素原子、メチル基又はトリフルオロメチル基である。Gは、単結合、酸素原子、硫黄原子、-CO-O-、-SO-O-NH-、-CO-NH-又は-O-CO-NH-である。Rは、少なくとも1個のフッ素原子を有する炭素数1~6の1価の鎖状炭化水素基又は少なくとも1個のフッ素原子を有する炭素数4~20の1価の脂肪族環状炭化水素基である。 In said formula (4a), RD is a hydrogen atom, a methyl group, or a trifluoromethyl group. G is a single bond, an oxygen atom, a sulfur atom, —CO—O—, —SO 2 —O—NH—, —CO—NH— or —O—CO—NH—. R E is a monovalent chain hydrocarbon group having 1 to 6 carbon atoms having at least one fluorine atom or a monovalent aliphatic cyclic hydrocarbon group having 4 to 20 carbon atoms having at least one fluorine atom. It is.
 上記Rで表される少なくとも1個のフッ素原子を有する炭素数1~6の鎖状炭化水素基としては、例えばトリフルオロメチル基、2,2,2-トリフルオロエチル基、パーフルオロエチル基、2,2,3,3,3-ペンタフルオロプロピル基、1,1,1,3,3,3-ヘキサフルオロプロピル基、パーフルオロn-プロピル基、パーフルオロi-プロピル基、パーフルオロn-ブチル基、パーフルオロi-ブチル基、パーフルオロt-ブチル基、2,2,3,3,4,4,5,5-オクタフルオロペンチル基、パーフルオロヘキシル基等が挙げられる。 The chain hydrocarbon group having 1 to 6 carbon atoms having at least one fluorine atom represented by R E, such as trifluoromethyl group, 2,2,2-trifluoroethyl group, perfluoroethyl group 2,2,3,3,3-pentafluoropropyl group, 1,1,1,3,3,3-hexafluoropropyl group, perfluoro n-propyl group, perfluoro i-propyl group, perfluoro n -Butyl group, perfluoro i-butyl group, perfluoro t-butyl group, 2,2,3,3,4,4,5,5-octafluoropentyl group, perfluorohexyl group and the like.
 上記Rで表される少なくとも1個のフッ素原子を有する炭素数4~20の脂肪族環状炭化水素基としては、例えばモノフルオロシクロペンチル基、ジフルオロシクロペンチル基、パーフルオロシクロペンチル基、モノフルオロシクロヘキシル基、ジフルオロシクロペンチル基、パーフルオロシクロヘキシルメチル基、フルオロノルボルニル基、フルオロアダマンチル基、フルオロボルニル基、フルオロイソボルニル基、フルオロトリシクロデシル基、フルオロテトラシクロデシル基等が挙げられる。 Examples of the aliphatic cyclic hydrocarbon group having 4 to 20 carbon atoms having at least one fluorine atom represented by R E, for example mono-fluoro cyclopentyl group, difluorocyclopentyl groups, perfluorocyclopentyl group, monofluoromethyl cyclohexyl group, Examples thereof include a difluorocyclopentyl group, a perfluorocyclohexylmethyl group, a fluoronorbornyl group, a fluoroadamantyl group, a fluorobornyl group, a fluoroisobornyl group, a fluorotricyclodecyl group, and a fluorotetracyclodecyl group.
 上記構造単位(V-1)を与える単量体としては、例えばトリフルオロメチル(メタ)アクリル酸エステル、2,2,2-トリフルオロエチル(メタ)アクリル酸エステル、2,2,2-トリフルオロエチルオキシカルボニルメチル(メタ)アクリル酸エステル、パーフルオロエチル(メタ)アクリル酸エステル、パーフルオロn-プロピル(メタ)アクリル酸エステル、パーフルオロi-プロピル(メタ)アクリル酸エステル、パーフルオロn-ブチル(メタ)アクリル酸エステル、パーフルオロi-ブチル(メタ)アクリル酸エステル、パーフルオロt-ブチル(メタ)アクリル酸エステル、2-(1,1,1,3,3,3-ヘキサフルオロプロピル)(メタ)アクリル酸エステル、1-(2,2,3,3,4,4,5,5-オクタフルオロペンチル)(メタ)アクリル酸エステル、パーフルオロシクロヘキシルメチル(メタ)アクリル酸エステル、1-(2,2,3,3,3-ペンタフルオロプロピル)(メタ)アクリル酸エステル、モノフルオロシクロペンチル(メタ)アクリル酸エステル、ジフルオロシクロペンチル(メタ)アクリル酸エステル、パーフルオロシクロペンチル(メタ)アクリル酸エステル、モノフルオロシクロヘキシル(メタ)アクリル酸エステル、ジフルオロシクロペンチル(メタ)アクリル酸エステル、パーフルオロシクロヘキシルメチル(メタ)アクリル酸エステル、フルオロノルボルニル(メタ)アクリル酸エステル、フルオロアダマンチル(メタ)アクリル酸エステル、フルオロボルニル(メタ)アクリル酸エステル、フルオロイソボルニル(メタ)アクリル酸エステル、フルオロトリシクロデシル(メタ)アクリル酸エステル、フルオロテトラシクロデシル(メタ)アクリル酸エステル等が挙げられる。 Examples of the monomer that gives the structural unit (V-1) include trifluoromethyl (meth) acrylate, 2,2,2-trifluoroethyl (meth) acrylate, 2,2,2-trimethyl ester, and the like. Fluoroethyloxycarbonylmethyl (meth) acrylic acid ester, perfluoroethyl (meth) acrylic acid ester, perfluoro n-propyl (meth) acrylic acid ester, perfluoro i-propyl (meth) acrylic acid ester, perfluoro n- Butyl (meth) acrylic acid ester, perfluoro i-butyl (meth) acrylic acid ester, perfluoro t-butyl (meth) acrylic acid ester, 2- (1,1,1,3,3,3-hexafluoropropyl ) (Meth) acrylic acid ester, 1- (2,2,3,3,4,4,5,5-octaf) (Olopentyl) (meth) acrylic acid ester, perfluorocyclohexylmethyl (meth) acrylic acid ester, 1- (2,2,3,3,3-pentafluoropropyl) (meth) acrylic acid ester, monofluorocyclopentyl (meth) Acrylic acid ester, difluorocyclopentyl (meth) acrylic acid ester, perfluorocyclopentyl (meth) acrylic acid ester, monofluorocyclohexyl (meth) acrylic acid ester, difluorocyclopentyl (meth) acrylic acid ester, perfluorocyclohexylmethyl (meth) acrylic Acid ester, fluoronorbornyl (meth) acrylic acid ester, fluoroadamantyl (meth) acrylic acid ester, fluorobornyl (meth) acrylic acid ester, fluoroisobornyl (Meth) acrylic acid esters, fluoro tricyclodecyl (meth) acrylate, fluoro tetracyclododecene decyl (meth) acrylic acid ester.
 [A]重合体が構造単位(V-1)を有する場合、構造単位(V-1)の含有割合の下限としては、[A]重合体を構成する全構造単位に対して、5モル%が好ましく、8モル%がより好ましい。上記含有割合の上限としては、80モル%が好ましく、50モル%がより好ましく、30モル%がさらに好ましく、20モル%が特に好ましい。 [A] When the polymer has the structural unit (V-1), the lower limit of the content ratio of the structural unit (V-1) is 5 mol% with respect to all the structural units constituting the [A] polymer. Is preferable, and 8 mol% is more preferable. As an upper limit of the said content rate, 80 mol% is preferable, 50 mol% is more preferable, 30 mol% is further more preferable, 20 mol% is especially preferable.
 [A]重合体における構造単位(V-1)の含有割合を上記範囲とすることで、液浸露光時においてレジスト膜表面のより高い動的接触角を発現させることができる。 [A] By setting the content ratio of the structural unit (V-1) in the polymer within the above range, a higher dynamic contact angle on the resist film surface can be expressed during immersion exposure.
[構造単位(V-2)]
 構造単位(V-2)は、下記式(4b)で表される構造単位である。
[Structural unit (V-2)]
The structural unit (V-2) is a structural unit represented by the following formula (4b).
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 上記式(4b)中、Rは、水素原子、メチル基又はトリフルオロメチル基である。R20は、炭素数1~20の(s+1)価の炭化水素基であり、R20のR21側の末端に酸素原子、硫黄原子、-NR’-、カルボニル基、-CO-O-又は-CO-NH-が結合された構造のものも含む。R’は、水素原子又は1価の有機基である。R21は、単結合、炭素数1~10の2価の鎖状炭化水素基又は炭素数4~20の2価の脂肪族環状炭化水素基である。Xは、少なくとも1個のフッ素原子を有する炭素数1~20の2価の鎖状炭化水素基である。Aは、酸素原子、-NR”-、-CO-O-*又は-SO-O-*である。R”は、水素原子又は1価の有機基である。*は、R22に結合する結合部位を示す。R22は、水素原子又は1価の有機基である。sは、1~3の整数である。但し、sが2又は3の場合、複数のR21、X、A及びR22はそれぞれ同一でも異なっていてもよい。 In said formula (4b), R <F> is a hydrogen atom, a methyl group, or a trifluoromethyl group. R 20 is an (s + 1) -valent hydrocarbon group having 1 to 20 carbon atoms, and an oxygen atom, a sulfur atom, —NR′—, a carbonyl group, —CO—O—, or a terminal at the R 21 side of R 20 Also includes a structure in which —CO—NH— is bonded. R ′ is a hydrogen atom or a monovalent organic group. R 21 is a single bond, a divalent chain hydrocarbon group having 1 to 10 carbon atoms, or a divalent aliphatic cyclic hydrocarbon group having 4 to 20 carbon atoms. X 2 is a C 1-20 divalent chain hydrocarbon group having at least one fluorine atom. A 1 is an oxygen atom, —NR ″ —, —CO—O— *, or —SO 2 —O— *. R ″ is a hydrogen atom or a monovalent organic group. * Indicates a binding site that binds to R 22. R 22 is a hydrogen atom or a monovalent organic group. s is an integer of 1 to 3. However, when s is 2 or 3, a plurality of R 21 , X 2 , A 1 and R 22 may be the same or different.
 上記R22が水素原子である場合には、[A]重合体のアルカリ現像液に対する溶解性を向上させることができる点で好ましい。 When R 22 is a hydrogen atom, it is preferable in that the solubility of [A] polymer in an alkaline developer can be improved.
 上記R22で表される1価の有機基としては、例えば酸解離性基、アルカリ解離性基又は置換基を有していてもよい炭素数1~30の炭化水素基等が挙げられる。 Examples of the monovalent organic group represented by R 22 include an acid-dissociable group, an alkali-dissociable group, or a hydrocarbon group having 1 to 30 carbon atoms which may have a substituent.
 上記構造単位(V-2)としては、例えば下記式(4b-1)~(4b-3)で表される構造単位等が挙げられる。 Examples of the structural unit (V-2) include structural units represented by the following formulas (4b-1) to (4b-3).
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 上記式(4b-1)~(4b-3)中、R20’は、炭素数1~20の2価の直鎖状、分岐状若しくは環状の飽和若しくは不飽和の炭化水素基である。R、X、R22及びsは、上記式(4b)と同義である。sが2又は3である場合、複数のX及びR22はそれぞれ同一でも異なっていてもよい。 In the above formulas (4b-1) to (4b-3), R 20 ′ is a divalent linear, branched or cyclic saturated or unsaturated hydrocarbon group having 1 to 20 carbon atoms. R F , X 2 , R 22 and s are as defined in the above formula (4b). When s is 2 or 3, the plurality of X 2 and R 22 may be the same or different.
 [A]重合体が構造単位(V-2)を有する場合、構造単位(V-2)の含有割合の下限としては、[A]重合体を構成する全構造単位に対して、5モル%が好ましい。上記含有割合の上限としては、80モル%が好ましく、60モル%がより好ましく、40モル%がさらに好ましい。[A]重合体における構造単位(V-2)の含有割合を上記範囲とすることで、当該感放射線性樹脂組成物から形成されたレジスト膜表面は、アルカリ現像において動的接触角の低下度をより向上させることができる。 [A] When the polymer has a structural unit (V-2), the lower limit of the content ratio of the structural unit (V-2) is 5 mol% with respect to all structural units constituting the [A] polymer. Is preferred. As an upper limit of the said content rate, 80 mol% is preferable, 60 mol% is more preferable, and 40 mol% is further more preferable. [A] By setting the content of the structural unit (V-2) in the polymer within the above range, the resist film surface formed from the radiation-sensitive resin composition has a reduced degree of dynamic contact angle in alkali development. Can be further improved.
[構造単位(VI)]
 構造単位(VI)は、末端にヒドロキシ基を有しこのヒドロキシ基に隣接する炭素原子が少なくとも1個のフッ素原子又はフッ素化アルキル基を有する基(z)を含む構造単位である(但し、構造単位(I)及び構造単位(V)を除く)。[A]重合体は、構造単位(VI)を有することで、現像液への溶解性をより適度に調整することができ、その結果、当該感放射線性樹脂組成物のリソグラフィー性能をより向上させることができる。また、EUV露光の場合の当該感放射線性樹脂組成物の感度を高めることができる。
[Structural unit (VI)]
The structural unit (VI) is a structural unit containing a group (z) having a hydroxy group at the terminal and a carbon atom adjacent to the hydroxy group having at least one fluorine atom or fluorinated alkyl group (provided that the structure Except unit (I) and structural unit (V)). [A] By having the structural unit (VI), the polymer can adjust the solubility in the developer more appropriately, and as a result, the lithography performance of the radiation-sensitive resin composition is further improved. be able to. Moreover, the sensitivity of the radiation sensitive resin composition in the case of EUV exposure can be increased.
 上記基(z)としては、例えば下記式(z-1)で表される基等が挙げられる。 Examples of the group (z) include a group represented by the following formula (z-1).
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 上記式(z-1)中、Rf1及びRf2は、それぞれ独立して、炭素数1~10のアルキル基又は炭素数1~10のフッ素化アルキル基である。但し、Rf1及びRf2の少なくとも一方はフッ素化アルキル基である。 In the above formula (z-1), R f1 and R f2 are each independently an alkyl group having 1 to 10 carbon atoms or a fluorinated alkyl group having 1 to 10 carbon atoms. However, at least one of R f1 and R f2 is a fluorinated alkyl group.
 上記Rf1及びRf2で表される炭素数1~10のフッ素化アルキル基としては、例えばフルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、フルオロエチル基、ジフルオロエチル基、トリフルオロエチル基、ペンタフルオロエチル基、ヘキサフルオロプロピル基、ヘプタフルオロプロピル基、ノナフルオロブチル基等が挙げられる。これらの中で、トリフルオロメチル基及びペンタフルオロエチル基が好ましく、トリフルオロメチル基がより好ましい。 Examples of the fluorinated alkyl group having 1 to 10 carbon atoms represented by R f1 and R f2 include a fluoromethyl group, a difluoromethyl group, a trifluoromethyl group, a fluoroethyl group, a difluoroethyl group, a trifluoroethyl group, Examples include a pentafluoroethyl group, a hexafluoropropyl group, a heptafluoropropyl group, and a nonafluorobutyl group. Among these, a trifluoromethyl group and a pentafluoroethyl group are preferable, and a trifluoromethyl group is more preferable.
 上記基(z)としては、ヒドロキシ-ジ(トリフルオロメチル)メチル基、ヒドロキシ-ジ(ペンタフルオロエチル)メチル基及びヒドロキシ-メチル-トリフルオロメチルメチル基が好ましく、ヒドロキシ-ジ(トリフルオロメチル)メチル基がより好ましい。 The group (z) is preferably a hydroxy-di (trifluoromethyl) methyl group, a hydroxy-di (pentafluoroethyl) methyl group or a hydroxy-methyl-trifluoromethylmethyl group, preferably a hydroxy-di (trifluoromethyl) group. A methyl group is more preferred.
 構造単位(VI)としては、例えば下記式(5-1)~(5-9)で表される構造単位(以下、「構造単位(VI-1)~(VI-9)」ともいう)等が挙げられる。 Examples of the structural unit (VI) include structural units represented by the following formulas (5-1) to (5-9) (hereinafter also referred to as “structural units (VI-1) to (VI-9)”), etc. Is mentioned.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 上記式(5-1)~(5-9)中、RL3は、それぞれ独立して、水素原子又はメチル基である。 In the above formulas (5-1) to (5-9), R L3 is independently a hydrogen atom or a methyl group.
 [A]重合体が構造単位(VI)を有する場合、構造単位(VI)の含有割合の下限としては、[A]重合体を構成する全構造単位に対して、20モル%が好ましく、30モル%がより好ましい。上記含有割合の上限としては、80モル%が好ましく、70モル%がより好ましく、60モル%がさらに好ましい。[A]重合体における構造単位(VI)の含有割合を上記範囲とすることで、現像液への溶解性をさらに適度に調整することができ、その結果、当該感放射線性樹脂組成物のリソグラフィー性能をさらに向上させることができる。また、EUV露光の場合の当該感放射線性樹脂組成物の感度をより高めることができる。 [A] When the polymer has a structural unit (VI), the lower limit of the content ratio of the structural unit (VI) is preferably 20 mol% with respect to all the structural units constituting the polymer [A], 30 Mole% is more preferable. As an upper limit of the said content rate, 80 mol% is preferable, 70 mol% is more preferable, and 60 mol% is further more preferable. [A] By setting the content ratio of the structural unit (VI) in the polymer within the above range, the solubility in the developer can be further appropriately adjusted. As a result, the lithography of the radiation-sensitive resin composition can be performed. The performance can be further improved. Moreover, the sensitivity of the said radiation sensitive resin composition in the case of EUV exposure can be improved more.
[その他の構造単位]
 [A]重合体は、上記構造単位(I)~(VI)以外のその他の構造単位を有していてもよい。上記その他の構造単位としては、例えば非解離性の脂環式炭化水素基を含む構造単位等が挙げられる。[A]重合体が上記その他の構造単位を有する場合、上記その他の構造単位の含有割合の上限としては、[A]重合体を構成する全構造単位に対して、20モル%が好ましく、10モル%がより好ましい。
[Other structural units]
[A] The polymer may have other structural units other than the structural units (I) to (VI). Examples of the other structural unit include a structural unit containing a non-dissociable alicyclic hydrocarbon group. [A] When the polymer has the above-mentioned other structural units, the upper limit of the content ratio of the above-mentioned other structural units is preferably 20 mol% with respect to all the structural units constituting the [A] polymer. Mole% is more preferable.
 当該感放射線性樹脂組成物における[A]重合体の含有量の下限としては、当該感放射線性樹脂組成物中の全固形分に対して、70質量%が好ましく、80質量%がより好ましく、85質量%がさらに好ましい。 The lower limit of the content of the [A] polymer in the radiation-sensitive resin composition is preferably 70% by mass, more preferably 80% by mass, based on the total solid content in the radiation-sensitive resin composition. 85 mass% is more preferable.
 当該感放射線性樹脂組成物は、[A]重合体を1種又は2種以上含有していてもよい。 The radiation sensitive resin composition may contain one or more [A] polymers.
<[A]重合体の合成方法>
 [A]重合体は、例えば各構造単位を与える単量体を、ラジカル重合開始剤等を用い、適当な溶媒中で重合することにより合成できる。
<[A] Polymer Synthesis Method>
[A] The polymer can be synthesized, for example, by polymerizing monomers that give each structural unit in a suitable solvent using a radical polymerization initiator or the like.
 上記ラジカル重合開始剤としては、アゾビスイソブチロニトリル(AIBN)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2-シクロプロピルプロピオニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、ジメチル2,2’-アゾビスイソブチレート等のアゾ系ラジカル開始剤;ベンゾイルパーオキサイド、t-ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド等の過酸化物系ラジカル開始剤等が挙げられる。これらの中で、AIBN及びジメチル2,2’-アゾビスイソブチレートが好ましく、AIBNがより好ましい。これらのラジカル開始剤は、1種単独で又は2種以上を混合して用いることができる。 Examples of the radical polymerization initiator include azobisisobutyronitrile (AIBN), 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), 2,2′-azobis (2-cyclopropylpropylene). Pionitrile), 2,2′-azobis (2,4-dimethylvaleronitrile), azo radical initiators such as dimethyl 2,2′-azobisisobutyrate; benzoyl peroxide, t-butyl hydroperoxide, And peroxide radical initiators such as cumene hydroperoxide. Of these, AIBN and dimethyl 2,2'-azobisisobutyrate are preferred, and AIBN is more preferred. These radical initiators can be used alone or in combination of two or more.
 上記重合に使用される溶媒としては、例えば
 n-ペンタン、n-ヘキサン、n-ヘプタン、n-オクタン、n-ノナン、n-デカン等のアルカン類;
 シクロヘキサン、シクロヘプタン、シクロオクタン、デカリン、ノルボルナン等のシクロアルカン類;
 ベンゼン、トルエン、キシレン、エチルベンゼン、クメン等の芳香族炭化水素類;
 クロロブタン類、ブロモヘキサン類、ジクロロエタン類、ヘキサメチレンジブロミド、クロロベンゼン等のハロゲン化炭化水素類;
 酢酸エチル、酢酸n-ブチル、酢酸i-ブチル、プロピオン酸メチル等の飽和カルボン酸エステル類;
 アセトン、メチルエチルケトン、4-メチル-2-ペンタノン、2-ヘプタノン等のケトン類;
 テトラヒドロフラン、ジメトキシエタン類、ジエトキシエタン類等のエーテル類;
 メタノール、エタノール、1-プロパノール、2-プロパノール、4-メチル-2-ペンタノール等のアルコール類などが挙げられる。これらの溶媒は、1種単独で又は2種以上を併用してもよい。
Examples of the solvent used for the polymerization include alkanes such as n-pentane, n-hexane, n-heptane, n-octane, n-nonane and n-decane;
Cycloalkanes such as cyclohexane, cycloheptane, cyclooctane, decalin, norbornane;
Aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, cumene;
Halogenated hydrocarbons such as chlorobutanes, bromohexanes, dichloroethanes, hexamethylene dibromide, chlorobenzene;
Saturated carboxylic acid esters such as ethyl acetate, n-butyl acetate, i-butyl acetate and methyl propionate;
Ketones such as acetone, methyl ethyl ketone, 4-methyl-2-pentanone, 2-heptanone;
Ethers such as tetrahydrofuran, dimethoxyethanes, diethoxyethanes;
Examples thereof include alcohols such as methanol, ethanol, 1-propanol, 2-propanol and 4-methyl-2-pentanol. These solvents may be used alone or in combination of two or more.
 上記重合における反応温度の下限としては、通常40℃であり、50℃が好ましい。上記反応温度の上限としては、通常150℃であり、120℃が好ましい。反応時間の下限としては、通常1時間である。反応時間の上限としては、通常48時間であり、24時間が好ましい。 The lower limit of the reaction temperature in the polymerization is usually 40 ° C., and preferably 50 ° C. The upper limit of the reaction temperature is usually 150 ° C, preferably 120 ° C. The lower limit of the reaction time is usually 1 hour. The upper limit of the reaction time is usually 48 hours, preferably 24 hours.
 [A]重合体のゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算重量平均分子量(Mw)の下限は、特に限定されないが、1,000が好ましく、2,000がより好ましく、3,000がさらに好ましく、5,000が特に好ましい。上記Mwの上限は、特に限定されないが、50,000が好ましく、30,000がより好ましく、20,000がさらに好ましく、15,000が特に好ましい。[A]重合体のMwを上記範囲とすることで、当該感放射線性樹脂組成物の塗布性及び現像欠陥抑制性が向上する。[A]重合体のMwが上記下限未満だと、十分な耐熱性を有するレジスト膜が得られない場合がある。[A]重合体のMwが上記上限を超えると、レジスト膜の現像性が低下する場合がある。 [A] The lower limit of the weight average molecular weight (Mw) in terms of polystyrene by gel permeation chromatography (GPC) of the polymer is not particularly limited, but is preferably 1,000, more preferably 2,000, and further 3,000. Preferably, 5,000 is particularly preferable. The upper limit of the Mw is not particularly limited, but is preferably 50,000, more preferably 30,000, still more preferably 20,000, and particularly preferably 15,000. [A] By making Mw of a polymer into the said range, the applicability | paintability and development defect inhibitory property of the said radiation sensitive resin composition improve. [A] If the Mw of the polymer is less than the lower limit, a resist film having sufficient heat resistance may not be obtained. [A] If the Mw of the polymer exceeds the above upper limit, the developability of the resist film may deteriorate.
 [A]重合体のGPCによるポリスチレン換算数平均分子量(Mn)に対するMwの比(Mw/Mn)の下限は、通常1である。上記Mw/Mnの上限は、通常5であり、3が好ましく、2がより好ましい。 [A] The lower limit of the ratio (Mw / Mn) of Mw to the number average molecular weight (Mn) in terms of polystyrene by GPC of the polymer is usually 1. The upper limit of Mw / Mn is usually 5, preferably 3 and more preferably 2.
 本明細書における重合体のMw及びMnは、以下の条件によるゲルパーミエーションクロマトグラフィー(GPC)を用いて測定される値である。
 GPCカラム:東ソー社の「G2000HXL」2本、「G3000HXL」1本、「G4000HXL」1本
 カラム温度:40℃
 溶出溶媒:テトラヒドロフラン(和光純薬工業社)
 流速:1.0mL/分
 試料濃度:1.0質量%
 試料注入量:100μL
 検出器:示差屈折計
 標準物質:単分散ポリスチレン
Mw and Mn of the polymer in this specification are values measured using gel permeation chromatography (GPC) under the following conditions.
GPC column: 2 "G2000HXL" from Tosoh Corporation, 1 "G3000HXL", 1 "G4000HXL" Column temperature: 40 ° C
Elution solvent: Tetrahydrofuran (Wako Pure Chemical Industries)
Flow rate: 1.0 mL / min Sample concentration: 1.0% by mass
Sample injection volume: 100 μL
Detector: Differential refractometer Standard material: Monodisperse polystyrene
<[B]酸発生体>
 [B]酸発生体は、露光により酸を発生する物質である。この発生した酸により[A]重合体等が有する酸解離性基が解離してカルボキシ基等が生じ、[A]重合体の現像液への溶解性が変化するため、当該感放射線性樹脂組成物からレジストパターンを形成することができる。当該感放射線性樹脂組成物における[B]酸発生体の含有形態としては、後述するような低分子化合物の形態(以下、適宜「[B]酸発生剤」ともいう)でも、重合体の一部として組み込まれた形態でも、これらの両方の形態でもよい。
<[B] Acid generator>
[B] The acid generator is a substance that generates an acid upon exposure. The acid-dissociable group of the [A] polymer or the like is dissociated by the generated acid to generate a carboxy group or the like, and the solubility of the [A] polymer in the developer changes. A resist pattern can be formed from the object. The contained form of the [B] acid generator in the radiation-sensitive resin composition may be a low molecular compound form (hereinafter also referred to as “[B] acid generator” as appropriate), as described later. It may be a form incorporated as a part or both of these forms.
 [B]酸発生剤としては、例えばオニウム塩化合物、N-スルホニルオキシイミド化合物、ハロゲン含有化合物、ジアゾケトン化合物等が挙げられる。 [B] Examples of the acid generator include onium salt compounds, N-sulfonyloxyimide compounds, halogen-containing compounds, diazoketone compounds, and the like.
 オニウム塩化合物としては、例えばスルホニウム塩、テトラヒドロチオフェニウム塩、ヨードニウム塩、ホスホニウム塩、ジアゾニウム塩、ピリジニウム塩等が挙げられる。 Examples of the onium salt compounds include sulfonium salts, tetrahydrothiophenium salts, iodonium salts, phosphonium salts, diazonium salts, pyridinium salts, and the like.
 [B]酸発生剤の具体例としては、例えば特開2009-134088号公報の段落[0080]~[0113]に記載されている化合物等が挙げられる。 Specific examples of the [B] acid generator include compounds described in paragraphs [0080] to [0113] of JP2009-134088A.
 [B]酸発生剤としては、下記式(7)で表される化合物が好ましい。[B]酸発生剤が下記構造を有することで、[A]重合体の構造単位(I)との相互作用等により、露光により発生する酸のレジスト膜中の拡散長がより適度に短くなると考えられ、その結果、当該感放射線性樹脂組成物のリソグラフィー性能を向上させることができる。 [B] The acid generator is preferably a compound represented by the following formula (7). [B] When the acid generator has the following structure, the diffusion length of the acid generated by exposure in the resist film is appropriately shortened by the interaction with the structural unit (I) of the polymer [A]. As a result, the lithography performance of the radiation sensitive resin composition can be improved.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 上記式(7)中、R23は、環員数6以上の脂環構造を含む1価の基又は環員数6以上の脂肪族複素環構造を含む1価の基である。R24は、炭素数1~10のフッ素化アルカンジイル基である。Xは、1価の感放射線性オニウムカチオンである。 In the above formula (7), R 23 is a monovalent group containing an alicyclic structure having 6 or more ring members or a monovalent group containing an aliphatic heterocyclic structure having 6 or more ring members. R 24 is a fluorinated alkanediyl group having 1 to 10 carbon atoms. X + is a monovalent radiation-sensitive onium cation.
 R23における「環員数」とは、脂環構造及び脂肪族複素環構造の環を構成する原子数をいい、多環の脂環構造及び多環の脂肪族複素環構造の場合は、この多環を構成する原子数をいう。 The “number of ring members” in R 23 refers to the number of atoms constituting the ring of an alicyclic structure and an aliphatic heterocyclic structure, and in the case of a polycyclic alicyclic structure and a polycyclic aliphatic heterocyclic structure, The number of atoms that make up the ring.
 上記R23で表される環員数6以上の脂環構造を含む1価の基としては、例えば
 シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、シクロドデシル基等の単環のシクロアルキル基;
 シクロヘキセニル基、シクロヘプテニル基、シクロオクテニル基、シクロデセニル基等の単環のシクロアルケニル基;
 ノルボルニル基、アダマンチル基、トリシクロデシル基、テトラシクロドデシル基等の多環のシクロアルキル基;
 ノルボルネニル基、トリシクロデセニル基等の多環のシクロアルケニル基などが挙げられる。
Examples of the monovalent group having an alicyclic structure having 6 or more ring members represented by R 23 include monocyclic groups such as a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a cyclononyl group, a cyclodecyl group, and a cyclododecyl group. A cycloalkyl group;
A monocyclic cycloalkenyl group such as a cyclohexenyl group, a cycloheptenyl group, a cyclooctenyl group, a cyclodecenyl group;
A polycyclic cycloalkyl group such as a norbornyl group, an adamantyl group, a tricyclodecyl group, a tetracyclododecyl group;
Examples thereof include polycyclic cycloalkenyl groups such as norbornenyl group and tricyclodecenyl group.
 上記R23で表される環員数6以上の脂肪族複素環構造を含む1価の基としては、例えば
 ノルボルナンラクトン-イル基等のラクトン構造を含む基;
 ノルボルナンスルトン-イル基等のスルトン構造を含む基;
 オキサシクロヘプチル基、オキサノルボルニル基等の酸素原子含有複素環基;
 アザシクロヘプチル基、ジアザビシクロオクタン-イル基等の窒素原子含有複素環基;
 チアシクロヘプチル基、チアノルボルニル基等のイオウ原子含有複素環基などが挙げられる。
Examples of the monovalent group containing an aliphatic heterocyclic structure having 6 or more ring members represented by R 23 include a group containing a lactone structure such as a norbornanelactone-yl group;
A group containing a sultone structure such as a norbornane sultone-yl group;
An oxygen atom-containing heterocyclic group such as an oxacycloheptyl group and an oxanorbornyl group;
A nitrogen atom-containing heterocyclic group such as an azacycloheptyl group or a diazabicyclooctane-yl group;
And sulfur atom-containing heterocyclic groups such as a thiacycloheptyl group and a thianorbornyl group.
 R23で表される基の環員数の下限としては、上述の酸の拡散長がさらに適度になる観点から、8が好ましく、9がより好ましく、10がさらに好ましい。環員数の上限としては、上述の酸の拡散長がさらに適度になる観点から、15が好ましく、13がより好ましい。 The lower limit of the ring members of groups denoted by R 23, in view to be appropriate diffusion length of the above-mentioned acid is further preferred 8, 9, and still more preferably 10. The upper limit of the number of ring members is preferably 15 and more preferably 13 from the viewpoint that the acid diffusion length becomes more appropriate.
 R23としては、これらの中で、環員数9以上の脂環構造を含む1価の基及び環員数9以上の脂肪族複素環構造を含む1価の基が好ましく、アダマンチル基、ヒドロキシアダマンチル基、ノルボルナンラクトン-イル基及び5-オキソ-4-オキサトリシクロ[4.3.1.13,8]ウンデカン-イル基がより好ましく、アダマンチル基がさらに好ましい。 Among them, R 23 is preferably a monovalent group containing an alicyclic structure having 9 or more ring members and a monovalent group containing an aliphatic heterocyclic structure having 9 or more ring members, an adamantyl group, a hydroxyadamantyl group A norbornanelactone-yl group and a 5-oxo-4-oxatricyclo [4.3.1.1 3,8 ] undecan-yl group are more preferred, and an adamantyl group is more preferred.
 上記R24で表される炭素数1~10のフッ素化アルカンジイル基としては、例えばメタンジイル基、エタンジイル基、プロパンジイル基等の炭素数1~10のアルカンジイル基が有する水素原子の1個以上をフッ素原子で置換した基等が挙げられる。これらの中で、SO 基に隣接する炭素原子にフッ素原子が結合しているフッ素化アルカンジイル基が好ましく、SO 基に隣接する炭素原子に2個のフッ素原子が結合しているフッ素化アルカンジイル基がより好ましく、1,1-ジフルオロメタンジイル基、1,1-ジフルオロエタンジイル基、1,1,3,3,3-ペンタフルオロ-1,2-プロパンジイル基、1,1,2,2-テトラフルオロエタンジイル基、1,1,2,2-テトラフルオロブタンジイル基及び1,1,2,2-テトラフルオロヘキサンジイル基がさらに好ましい。 Examples of the fluorinated alkanediyl group having 1 to 10 carbon atoms represented by R 24 include one or more hydrogen atoms of an alkanediyl group having 1 to 10 carbon atoms such as a methanediyl group, an ethanediyl group, and a propanediyl group. And a group in which is substituted with a fluorine atom. Among these, SO 3 - fluorinated alkane diyl group which has a fluorine atom to carbon atom is bonded to adjacent groups are preferred, SO 3 - 2 fluorine atoms to the carbon atom adjacent to the group is attached More preferred are fluorinated alkanediyl groups, 1,1-difluoromethanediyl group, 1,1-difluoroethanediyl group, 1,1,3,3,3-pentafluoro-1,2-propanediyl group, 1,1 1,2,2-tetrafluoroethanediyl group, 1,1,2,2-tetrafluorobutanediyl group and 1,1,2,2-tetrafluorohexanediyl group are more preferable.
 上記Xで表される1価の感放射線性オニウムカチオンは、放射線の照射により分解するカチオンである。露光部では、この感放射線性オニウムカチオンの分解により生成するプロトンと、スルホネートアニオンとからスルホン酸を生じる。上記Xで表される1価の感放射線性オニウムカチオンとしては、例えばS、I、O、N、P、Cl、Br、F、As、Se、Sn、Sb、Te、Bi等の元素を含む感放射線性オニウムカチオンが挙げられる。元素としてS(イオウ)を含むカチオンとしては、例えばスルホニウムカチオン、テトラヒドロチオフェニウムカチオン等が挙げられ、元素としてI(ヨウ素)を含むカチオンとしては、例えば、ヨードニウムカチオン等が挙げられる。これらの中で、下記式(X-1)で表されるスルホニウムカチオン、下記式(X-2)で表されるテトラヒドロチオフェニウムカチオン及び下記式(X-3)で表されるヨードニウムカチオンが好ましい。 The monovalent radiation-sensitive onium cation represented by X + is a cation that decomposes upon irradiation with radiation. In the exposed portion, sulfonic acid is generated from protons generated by the decomposition of the radiation-sensitive onium cation and sulfonate anions. Examples of the monovalent radiation-sensitive onium cation represented by X + include elements such as S, I, O, N, P, Cl, Br, F, As, Se, Sn, Sb, Te, and Bi. Examples include radiation-sensitive onium cations. Examples of the cation containing S (sulfur) as an element include a sulfonium cation and a tetrahydrothiophenium cation. Examples of the cation containing I (iodine) as an element include an iodonium cation. Among these, a sulfonium cation represented by the following formula (X-1), a tetrahydrothiophenium cation represented by the following formula (X-2), and an iodonium cation represented by the following formula (X-3) are: preferable.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 上記式(X-1)中、Ra1、Ra2及びRa3は、それぞれ独立して、置換若しくは非置換の炭素数1~12の直鎖状若しくは分岐状のアルキル基、置換若しくは非置換の炭素数6~12の芳香族炭化水素基、-OSO-R若しくは-SO-Rであるか、又はこれらの基のうちの2つ以上が互いに合わせられ構成される環構造を表す。R及びRは、それぞれ独立して、置換若しくは非置換の炭素数1~12の直鎖状若しくは分岐状のアルキル基、置換若しくは非置換の炭素数5~25の脂環式炭化水素基又は置換若しくは非置換の炭素数6~12の芳香族炭化水素基である。k1、k2及びk3は、それぞれ独立して0~5の整数である。Ra1~Ra3並びにR及びRがそれぞれ複数の場合、複数のRa1~Ra3並びにR及びRはそれぞれ同一でも異なっていてもよい。 In the above formula (X-1), R a1 , R a2 and R a3 each independently represent a substituted or unsubstituted linear or branched alkyl group having 1 to 12 carbon atoms, a substituted or unsubstituted group. aromatic hydrocarbon group having 6 to 12 carbon atoms, represents or is a -OSO 2 -R P or -SO 2 -R Q, or two or more are combined with each other configured ring of these groups . R P and R Q are each independently a substituted or unsubstituted linear or branched alkyl group having 1 to 12 carbon atoms, or a substituted or unsubstituted alicyclic hydrocarbon group having 5 to 25 carbon atoms. Or a substituted or unsubstituted aromatic hydrocarbon group having 6 to 12 carbon atoms. k1, k2 and k3 are each independently an integer of 0 to 5. When R a1 ~ R a3 and R P and R Q are a plurality each of the plurality of R a1 ~ R a3 and R P and R Q may be the same as or different from each other.
 上記式(X-2)中、Rb1は、置換若しくは非置換の炭素数1~8の直鎖状若しくは分岐状のアルキル基又は置換若しくは非置換の炭素数6~8の芳香族炭化水素基である。k4は0~7の整数である。Rb1が複数の場合、複数のRb1は同一でも異なっていてもよく、また、複数のRb1は、互いに合わせられ構成される環構造を表してもよい。Rb2は、置換若しくは非置換の炭素数1~7の直鎖状若しくは分岐状のアルキル基又は置換若しくは非置換の炭素数6若しくは7の芳香族炭化水素基である。k5は、0~6の整数である。Rb2が複数の場合、複数のRb2は同一でも異なっていてもよく、また、複数のRb2は互いに合わせられ構成される環構造を表してもよい。qは、0~3の整数である。 In the above formula (X-2), R b1 represents a substituted or unsubstituted linear or branched alkyl group having 1 to 8 carbon atoms or a substituted or unsubstituted aromatic hydrocarbon group having 6 to 8 carbon atoms. It is. k4 is an integer of 0 to 7. If R b1 is plural, the plurality of R b1 may be the same or different, and plural R b1 may represent a constructed ring aligned with each other. R b2 is a substituted or unsubstituted linear or branched alkyl group having 1 to 7 carbon atoms or a substituted or unsubstituted aromatic hydrocarbon group having 6 or 7 carbon atoms. k5 is an integer of 0 to 6. If R b2 is plural, the plurality of R b2 may be the same or different, and plural R b2 may represent a keyed configured ring structure. q is an integer of 0 to 3.
 上記式(X-3)中、Rc1及びRc2は、それぞれ独立して、置換若しくは非置換の炭素数1~12の直鎖状若しくは分岐状のアルキル基、置換若しくは非置換の炭素数6~12の芳香族炭化水素基、-OSO-R若しくは-SO-Rであるか又はこれらの基のうちの2つ以上が互いに合わせられ構成される環構造を表す。R及びRは、それぞれ独立して、置換若しくは非置換の炭素数1~12の直鎖状若しくは分岐状のアルキル基、置換若しくは非置換の炭素数5~25の脂環式炭化水素基又は置換若しくは非置換の炭素数6~12の芳香族炭化水素基である。k6及びk7は、それぞれ独立して0~5の整数である。Rc1、Rc2、R及びRがそれぞれ複数の場合、複数のRc1、Rc2、R及びRはそれぞれ同一でも異なっていてもよい。 In the above formula (X-3), R c1 and R c2 each independently represent a substituted or unsubstituted linear or branched alkyl group having 1 to 12 carbon atoms, a substituted or unsubstituted carbon number of 6 aromatic hydrocarbon group having to 12 represent two or more are combined with each other configured ring of -OSO 2 -R R or -SO 2 -R or S or those groups. R R and R S each independently represent a substituted or unsubstituted linear or branched alkyl group having 1 to 12 carbon atoms, or a substituted or unsubstituted alicyclic hydrocarbon group having 5 to 25 carbon atoms. Or a substituted or unsubstituted aromatic hydrocarbon group having 6 to 12 carbon atoms. k6 and k7 are each independently an integer of 0 to 5. R c1, R c2, R when R and R S is plural respective plurality of R c1, R c2, R R and R S may have respectively the same or different.
 上記Ra1~Ra3、Rb1、Rb2、Rc1及びRc2で表される非置換の直鎖状のアルキル基としては、例えばメチル基、エチル基、n-プロピル基、n-ブチル基等が挙げられる。 Examples of the unsubstituted linear alkyl group represented by R a1 to R a3 , R b1 , R b2 , R c1 and R c2 include a methyl group, an ethyl group, an n-propyl group, and an n-butyl group. Etc.
 上記Ra1~Ra3、Rb1、Rb2、Rc1及びRc2で表される非置換の分岐状のアルキル基としては、例えばi-プロピル基、i-ブチル基、sec-ブチル基、t-ブチル基等が挙げられる。 Examples of the unsubstituted branched alkyl group represented by R a1 to R a3 , R b1 , R b2 , R c1 and R c2 include i-propyl group, i-butyl group, sec-butyl group, t -A butyl group etc. are mentioned.
 上記Ra1~Ra3、Rc1及びRc2で表される非置換の芳香族炭化水素基としては、例えばフェニル基、トリル基、キシリル基、メシチル基、ナフチル基等のアリール基;ベンジル基、フェネチル基等のアラルキル基などが挙げられる。 Examples of the unsubstituted aromatic hydrocarbon group represented by R a1 to R a3 , R c1 and R c2 include aryl groups such as a phenyl group, a tolyl group, a xylyl group, a mesityl group, and a naphthyl group; a benzyl group, And aralkyl groups such as phenethyl group.
 上記Rb1及びRb2で表される非置換の芳香族炭化水素基としては、例えばフェニル基、トリル基、ベンジル基等が挙げられる。 Examples of the unsubstituted aromatic hydrocarbon group represented by R b1 and R b2 include a phenyl group, a tolyl group, and a benzyl group.
 上記アルキル基及び芳香族炭化水素基が有する水素原子を置換していてもよい置換基としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、ヒドロキシ基、カルボキシ基、シアノ基、ニトロ基、アルコキシ基、アルコキシカルボニル基、アルコキシカルボニルオキシ基、アシル基、アシロキシ基等が挙げられる。これらの中で、ハロゲン原子が好ましく、フッ素原子がより好ましい。 Examples of the substituent that may be substituted for the hydrogen atom of the alkyl group and aromatic hydrocarbon group include a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, a hydroxy group, a carboxy group, and a cyano group. Nitro group, alkoxy group, alkoxycarbonyl group, alkoxycarbonyloxy group, acyl group, acyloxy group and the like. Among these, a halogen atom is preferable and a fluorine atom is more preferable.
 上記Ra1~Ra3、Rb1、Rb2、Rc1及びRc2としては、非置換の直鎖状又は分岐状のアルキル基、フッ素化アルキル基、非置換の1価の芳香族炭化水素基、-OSO-R”及び-SO-R”が好ましく、フッ素化アルキル基及び非置換の1価の芳香族炭化水素基がより好ましく、フッ素化アルキル基がさらに好ましい。R”は、非置換の1価の脂環式炭化水素基又は非置換の1価の芳香族炭化水素基である。 R a1 to R a3 , R b1 , R b2 , R c1 and R c2 include an unsubstituted linear or branched alkyl group, a fluorinated alkyl group, and an unsubstituted monovalent aromatic hydrocarbon group. , —OSO 2 —R ″ and —SO 2 —R ″ are preferred, fluorinated alkyl groups and unsubstituted monovalent aromatic hydrocarbon groups are more preferred, and fluorinated alkyl groups are more preferred. R ″ is an unsubstituted monovalent alicyclic hydrocarbon group or an unsubstituted monovalent aromatic hydrocarbon group.
 上記式(X-1)におけるk1、k2及びk3としては、0~2の整数が好ましく、0及び1がより好ましく、0がさらに好ましい。 In the above formula (X-1), k1, k2 and k3 are preferably integers of 0 to 2, more preferably 0 and 1, and even more preferably 0.
 上記式(X-2)におけるk4としては、0~2の整数が好ましく、0及び1がより好ましく、1がさらに好ましい。k5としては、0~2の整数が好ましく、0及び1がより好ましく、0がさらに好ましい。 In the above formula (X-2), k4 is preferably an integer of 0 to 2, more preferably 0 and 1, and even more preferably 1. k5 is preferably an integer of 0 to 2, more preferably 0 and 1, and still more preferably 0.
 上記式(X-3)におけるk6及びk7としては、0~2の整数が好ましく、0及び1がより好ましく、0がさらに好ましい。 In the above formula (X-3), k6 and k7 are preferably integers of 0 to 2, more preferably 0 and 1, and even more preferably 0.
 上記Xとしては、上記式(X-1)で表されるカチオンが好ましく、トリフェニルスルホニウムカチオンがより好ましい。 X + is preferably a cation represented by the above formula (X-1), more preferably a triphenylsulfonium cation.
 上記式(7)で表される酸発生剤としては、例えば、下記式(7-1)~(7-13)で表される化合物(以下、「化合物(7-1)~(7-13)」ともいう)等が挙げられる。 Examples of the acid generator represented by the above formula (7) include compounds represented by the following formulas (7-1) to (7-13) (hereinafter referred to as “compounds (7-1) to (7-13)”. ) ")) And the like.
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 上記式(7-1)~(7-13)中、Xは、上記式(7)と同義である。 In the above formulas (7-1) to (7-13), X + has the same meaning as in the above formula (7).
 [B]酸発生剤としては、これらの中でも、オニウム塩化合物が好ましく、スルホニウム塩及びテトラヒドロチオフェニウム塩がより好ましく、化合物(7-1)、化合物(7-2)、化合物(7-12)及び化合物(7-13)がさらに好ましい。 [B] Of these, the acid generator is preferably an onium salt compound, more preferably a sulfonium salt or a tetrahydrothiophenium salt, and the compound (7-1), compound (7-2), compound (7-12). And compound (7-13) are more preferable.
 [B]酸発生体の含有量の下限としては、[B]酸発生体が[B]酸発生剤の場合、当該感放射線性樹脂組成物の感度を確保する観点から、[A]重合体100質量部に対して、0.1質量部が好ましく、0.5質量部がより好ましく、1質量部がさらに好ましい。上記含有量の上限としては、30質量部が好ましく、20質量部がより好ましく、15質量部がさらに好ましい。[B]酸発生剤の含有量を上記範囲とすることで、当該感放射線性樹脂組成物の感度が向上する。当該感放射線性樹脂組成物は、[B]酸発生体を1種又は2種以上を含有していてもよい。 [B] As the lower limit of the content of the acid generator, when the [B] acid generator is a [B] acid generator, from the viewpoint of securing the sensitivity of the radiation-sensitive resin composition, the [A] polymer 0.1 mass part is preferable with respect to 100 mass parts, 0.5 mass part is more preferable, and 1 mass part is further more preferable. As an upper limit of the said content, 30 mass parts is preferable, 20 mass parts is more preferable, and 15 mass parts is further more preferable. [B] By making content of an acid generator into the said range, the sensitivity of the said radiation sensitive resin composition improves. The radiation-sensitive resin composition may contain one or more [B] acid generators.
<[C]酸拡散制御体>
 当該感放射線性樹脂組成物は、必要に応じて、[C]酸拡散制御体を含有してもよい。[C]酸拡散制御体は、露光により[B]酸発生体から生じる酸のレジスト膜中における拡散現象を制御し、非露光領域における好ましくない化学反応を抑制する効果を奏し、得られる感放射線性樹脂組成物の貯蔵安定性がさらに向上し、またレジストとしての解像度がさらに向上すると共に、露光から現像処理までの引き置き時間の変動によるレジストパターンの線幅変化を抑えることができ、プロセス安定性に優れた感放射線性樹脂組成物が得られる。[C]酸拡散制御体の当該感放射線性樹脂組成物における含有形態としては、遊離の化合物(以下、適宜「[C]酸拡散制御剤」という)の形態でも、重合体の一部として組み込まれた形態でも、これらの両方の形態でもよい。
<[C] Acid diffusion controller>
The said radiation sensitive resin composition may contain a [C] acid diffusion control body as needed. [C] The acid diffusion control body controls the diffusion phenomenon in the resist film of the acid generated from the [B] acid generator by exposure, has the effect of suppressing undesirable chemical reactions in the non-exposed areas, and the radiation sensitivity obtained The storage stability of the photosensitive resin composition is further improved, the resolution of the resist is further improved, and the change in the line width of the resist pattern due to fluctuations in the holding time from exposure to development processing can be suppressed, thereby stabilizing the process. A radiation-sensitive resin composition having excellent properties can be obtained. [C] The content of the acid diffusion controller in the radiation-sensitive resin composition is incorporated as a part of the polymer even in the form of a free compound (hereinafter referred to as “[C] acid diffusion controller” as appropriate). Or both of these forms.
 [C]酸拡散制御剤としては、例えば下記式(8)で表される化合物(以下、「含窒素化合物(I)」ともいう)、同一分子内に窒素原子を2個有する化合物(以下、「含窒素化合物(II)」ともいう)、窒素原子を3個有する化合物(以下、「含窒素化合物(III)」ともいう)、アミド基含有化合物、ウレア化合物、含窒素複素環化合物等が挙げられる。 [C] As the acid diffusion controller, for example, a compound represented by the following formula (8) (hereinafter also referred to as “nitrogen-containing compound (I)”), a compound having two nitrogen atoms in the same molecule (hereinafter referred to as “nitrogen-containing compound (I)”) "Nitrogen-containing compound (II)"), compounds having three nitrogen atoms (hereinafter also referred to as "nitrogen-containing compound (III)"), amide group-containing compounds, urea compounds, nitrogen-containing heterocyclic compounds, etc. It is done.
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
 上記式(8)中、R25、R26及びR27は、それぞれ独立して、水素原子、置換されていてもよい直鎖状、分岐状若しくは環状のアルキル基、アリール基又はアラルキル基である。 In the above formula (8), R 25 , R 26 and R 27 are each independently a hydrogen atom, an optionally substituted linear, branched or cyclic alkyl group, aryl group or aralkyl group. .
 含窒素化合物(I)としては、例えばn-ヘキシルアミン等のモノアルキルアミン類;ジ-n-ブチルアミン等のジアルキルアミン類;トリエチルアミン等のトリアルキルアミン類;アニリン等の芳香族アミン類などが挙げられる。 Examples of the nitrogen-containing compound (I) include monoalkylamines such as n-hexylamine; dialkylamines such as di-n-butylamine; trialkylamines such as triethylamine; aromatic amines such as aniline. It is done.
 含窒素化合物(II)としては、例えばエチレンジアミン、N,N,N’,N’-テトラメチルエチレンジアミン等が挙げられる。 Examples of the nitrogen-containing compound (II) include ethylenediamine, N, N, N ′, N′-tetramethylethylenediamine, and the like.
 含窒素化合物(III)としては、例えばポリエチレンイミン、ポリアリルアミン等のポリアミン化合物;ジメチルアミノエチルアクリルアミド等の重合体などが挙げられる。 Examples of the nitrogen-containing compound (III) include polyamine compounds such as polyethyleneimine and polyallylamine; and polymers such as dimethylaminoethylacrylamide.
 アミド基含有化合物としては、例えばホルムアミド、N-メチルホルムアミド、N,N-ジメチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、プロピオンアミド、ベンズアミド、ピロリドン、N-メチルピロリドン等が挙げられる。 Examples of the amide group-containing compound include formamide, N-methylformamide, N, N-dimethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, propionamide, benzamide, pyrrolidone, N-methylpyrrolidone and the like. It is done.
 ウレア化合物としては、例えば尿素、メチルウレア、1,1-ジメチルウレア、1,3-ジメチルウレア、1,1,3,3-テトラメチルウレア、1,3-ジフェニルウレア、トリブチルチオウレア等が挙げられる。 Examples of the urea compound include urea, methylurea, 1,1-dimethylurea, 1,3-dimethylurea, 1,1,3,3-tetramethylurea, 1,3-diphenylurea, tributylthiourea and the like.
 含窒素複素環化合物としては、例えばピリジン、2-メチルピリジン等のピリジン類;N-プロピルモルホリン、N-(ウンデシルカルボニルオキシエチル)モルホリン等のモルホリン類;ピラジン、ピラゾール等が挙げられる。 Examples of the nitrogen-containing heterocyclic compound include pyridines such as pyridine and 2-methylpyridine; morpholines such as N-propylmorpholine and N- (undecylcarbonyloxyethyl) morpholine; pyrazine, pyrazole and the like.
 また上記含窒素有機化合物として、酸解離性基を有する化合物を用いることもできる。このような酸解離性基を有する含窒素有機化合物としては、例えばN-t-ブトキシカルボニルピペリジン、N-t-ブトキシカルボニルイミダゾール、N-t-ブトキシカルボニルベンズイミダゾール、N-t-ブトキシカルボニル-2-フェニルベンズイミダゾール、N-(t-ブトキシカルボニル)ジ-n-オクチルアミン、N-(t-ブトキシカルボニル)ジエタノールアミン、N-(t-ブトキシカルボニル)ジシクロヘキシルアミン、N-(t-ブトキシカルボニル)ジフェニルアミン、N-t-ブトキシカルボニル-4-ヒドロキシピペリジン、N-t-アミルオキシカルボニル-4-ヒドロキシピペリジン等が挙げられる。 In addition, as the nitrogen-containing organic compound, a compound having an acid dissociable group can also be used. Examples of the nitrogen-containing organic compound having such an acid dissociable group include Nt-butoxycarbonylpiperidine, Nt-butoxycarbonylimidazole, Nt-butoxycarbonylbenzimidazole, Nt-butoxycarbonyl-2 -Phenylbenzimidazole, N- (t-butoxycarbonyl) di-n-octylamine, N- (t-butoxycarbonyl) diethanolamine, N- (t-butoxycarbonyl) dicyclohexylamine, N- (t-butoxycarbonyl) diphenylamine Nt-butoxycarbonyl-4-hydroxypiperidine, Nt-amyloxycarbonyl-4-hydroxypiperidine and the like.
 また、[C]酸拡散制御剤として、露光により感光し弱酸を発生する光崩壊性塩基を用いることもできる。光崩壊性塩基としては、例えば露光により分解して酸拡散制御性を失うオニウム塩化合物等が挙げられる。オニウム塩化合物としては、例えば下記式(9-1)で表されるスルホニウム塩化合物、下記式(9-2)で表されるヨードニウム塩化合物等が挙げられる。 Further, as the [C] acid diffusion control agent, a photodegradable base that is exposed to light and generates a weak acid upon exposure can also be used. Examples of the photodegradable base include an onium salt compound that loses acid diffusion controllability by being decomposed by exposure. Examples of the onium salt compound include a sulfonium salt compound represented by the following formula (9-1), an iodonium salt compound represented by the following formula (9-2), and the like.
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
 上記式(9-1)及び式(9-2)中、R28~R32は、それぞれ独立して、水素原子、アルキル基、アルコキシ基、ヒドロキシ基又はハロゲン原子である。E及びQは、それぞれ独立して、OH、Rβ-COO、Rβ-SO 又は下記式(9-3)で表されるアニオンである。但し、Rβは、アルキル基、アリール基又はアラルキル基である。 In the above formulas (9-1) and (9-2), R 28 to R 32 are each independently a hydrogen atom, an alkyl group, an alkoxy group, a hydroxy group, or a halogen atom. E and Q are each independently OH , R β —COO , R β —SO 3 or an anion represented by the following formula (9-3). However, R ( beta) is an alkyl group, an aryl group, or an aralkyl group.
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
 上記式(9-3)中、R33は、水素原子の一部又は全部がフッ素原子で置換されていてもよい炭素数1~12の直鎖状若しくは分岐状のアルキル基又は炭素数1~12の直鎖状若しくは分岐状のアルコキシル基である。uは、0~2の整数である。 In the above formula (9-3), R 33 represents a linear or branched alkyl group having 1 to 12 carbon atoms, in which part or all of the hydrogen atoms may be substituted with fluorine atoms, or 1 to 12 linear or branched alkoxyl groups. u is an integer of 0-2.
 上記光崩壊性塩基としては、例えば下記式で表される化合物等が挙げられる。 Examples of the photodegradable base include compounds represented by the following formulas.
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
 上記光崩壊性塩基としては、これらの中で、スルホニウム塩が好ましく、トリアリールスルホニウム塩がより好ましく、トリフェニルスルホニウム2.4.6.トリイソプロピルフェニルスルホネート及びトリフェニルスルホニウム10-カンファースルホネートがさらに好ましい。 Among these, the photodegradable base is preferably a sulfonium salt, more preferably a triarylsulfonium salt, and triphenylsulfonium 2.4.6. More preferred are triisopropyl phenyl sulfonate and triphenyl sulfonium 10-camphor sulfonate.
 当該感放射線性樹脂組成物が[C]酸拡散制御体として[C]酸拡散制御剤を含有する場合、[C]酸拡散制御体の含有量の下限としては、[A]重合体100質量部に対して、0.1質量部が好ましく、0.3質量部がより好ましい。上記含有量の上限としては、20質量部が好ましく、15質量部がより好ましく、10質量部がさらに好ましい。[C]酸拡散制御剤の含有量を上記範囲とすることで、当該感放射線性樹脂組成物のリソグラフィー性能を向上させることができる。[C]酸拡散制御剤の含有量が上記上限を超えると、当該感放射線性樹脂組成物の感度が低下する場合がある。当該感放射線性樹脂組成物は、[C]酸拡散制御体を1種又は2種以上含有していてもよい。 When the radiation sensitive resin composition contains a [C] acid diffusion controller as the [C] acid diffusion controller, the lower limit of the content of the [C] acid diffusion controller is 100 masses of the [A] polymer. 0.1 parts by mass is preferable with respect to parts, and 0.3 parts by mass is more preferable. As an upper limit of the said content, 20 mass parts is preferable, 15 mass parts is more preferable, and 10 mass parts is further more preferable. [C] By making content of an acid diffusion control agent into the said range, the lithography performance of the said radiation sensitive resin composition can be improved. [C] When the content of the acid diffusion controller exceeds the upper limit, the sensitivity of the radiation-sensitive resin composition may be lowered. The radiation-sensitive resin composition may contain one or more [C] acid diffusion controllers.
<[D]重合体>
 [D]重合体は、フッ素原子を含む重合体である([A]重合体に該当するものを除く)。当該感放射線性組成物が、[D]重合体を含有することで、レジスト膜を形成した際に、膜中の[D]重合体の撥油性的特徴により、その分布がレジスト膜表面近傍で偏在化する傾向があり、液浸露光時における酸発生剤や酸拡散制御剤等が液浸媒体に溶出することを抑制することができる。また、この[D]重合体の撥水性的特徴により、レジスト膜と液浸媒体との前進接触角が所望の範囲に制御でき、バブル欠陥の発生を抑制できる。さらに、レジスト膜と液浸媒体との後退接触角が高くなり、水滴が残らずに高速でのスキャン露光が可能となる。このように当該感放射線性樹脂組成物が[D]重合体を含有することにより、液浸露光法に好適なレジスト膜を形成することができる。
<[D] Polymer>
[D] The polymer is a polymer containing a fluorine atom (except for those corresponding to the [A] polymer). When the radiation-sensitive composition contains the [D] polymer, when the resist film is formed, the distribution is near the resist film surface due to the oil-repellent characteristics of the [D] polymer in the film. There is a tendency to be unevenly distributed, and it is possible to prevent the acid generator, the acid diffusion controller, and the like from being eluted into the immersion medium during immersion exposure. Further, due to the water repellency characteristics of the [D] polymer, the advancing contact angle between the resist film and the immersion medium can be controlled within a desired range, and the occurrence of bubble defects can be suppressed. Furthermore, the receding contact angle between the resist film and the immersion medium is increased, and high-speed scanning exposure is possible without leaving water droplets. Thus, when the said radiation sensitive resin composition contains a [D] polymer, the resist film suitable for an immersion exposure method can be formed.
 [D]重合体としては、フッ素原子を有する重合体である限り、特に限定されないが、当該感放射線性樹脂組成物中の[A]重合体よりも、フッ素原子含有率(質量%)が高いことが好ましい。[A]重合体よりもフッ素原子含有率が高いことで、上述の偏在化の度合いがより高くなり、得られるレジスト膜の撥水性及び溶出抑制性等の特性が向上する。 [D] The polymer is not particularly limited as long as it is a polymer having a fluorine atom, but the fluorine atom content (% by mass) is higher than that of the [A] polymer in the radiation-sensitive resin composition. It is preferable. [A] When the fluorine atom content is higher than that of the polymer, the degree of uneven distribution described above becomes higher, and characteristics such as water repellency and elution suppression of the resulting resist film are improved.
 [D]重合体のフッ素原子含有率の下限としては、1質量%が好ましく、2質量%がより好ましく、4質量%がさらに好ましく、7質量%が特に好ましい。上記含有率の上限としては、60質量%が好ましく、40質量%がより好ましく、30質量%がさらに好ましい。[D]重合体のフッ素原子含有率が上記下限未満だと、レジスト膜表面の疎水性が低下する場合がある。なお重合体のフッ素原子含有率(質量%)は、13C-NMRスペクトル測定により重合体の構造を求め、その構造から算出することができる。 [D] The lower limit of the fluorine atom content of the polymer is preferably 1% by mass, more preferably 2% by mass, further preferably 4% by mass, and particularly preferably 7% by mass. As an upper limit of the said content rate, 60 mass% is preferable, 40 mass% is more preferable, and 30 mass% is further more preferable. [D] If the fluorine atom content of the polymer is less than the lower limit, the hydrophobicity of the resist film surface may be lowered. The fluorine atom content (% by mass) of the polymer can be calculated from the structure of the polymer obtained by 13 C-NMR spectrum measurement.
 [D]重合体は、上述した[A]重合体におけるフッ素原子含有構造単位(V)を有することが好ましい。[D]重合体は、構造単位(V)を1種又は2種以上有していてもよい。 [D] The polymer preferably has the fluorine atom-containing structural unit (V) in the above-mentioned [A] polymer. [D] The polymer may have one or more structural units (V).
 [D]重合体が構造単位(V)を有する場合、[D]重合体における構造単位(V)の含有割合の下限としては、[D]重合体を構成する全構造単位に対して、5モル%が好ましく、10モル%がより好ましい。上記含有割合の上限としては、90モル%が好ましく、85モル%がより好ましく、80モル%がさらに好ましい。このような含有割合にすることによって、当該感放射線性樹脂組成物から形成されたレジスト膜表面は、アルカリ現像において動的接触角の低下度を向上させることができる。 [D] When the polymer has a structural unit (V), the lower limit of the content ratio of the structural unit (V) in the [D] polymer is 5 for all structural units constituting the [D] polymer. Mol% is preferable and 10 mol% is more preferable. As an upper limit of the said content rate, 90 mol% is preferable, 85 mol% is more preferable, and 80 mol% is further more preferable. By setting it as such a content rate, the resist film surface formed from the said radiation sensitive resin composition can improve the fall degree of a dynamic contact angle in alkali image development.
 [D]重合体は、さらに酸解離性基を含む構造単位を有してもよい。[D]重合体が酸解離性基を含む構造単位を有することで、得られるレジストパターンの形状がより良好になる。この酸解離性基を含む構造単位としては、上述した[A]重合体における構造単位(II)等が挙げられる。 [D] The polymer may further have a structural unit containing an acid dissociable group. [D] When the polymer has a structural unit containing an acid dissociable group, the shape of the resulting resist pattern becomes better. Examples of the structural unit containing an acid dissociable group include the structural unit (II) in the above-described [A] polymer.
 [D]重合体が上記酸解離性基を含む構造単位を有する場合、上記酸解離性基を含む構造単位の含有割合の下限としては、[D]重合体を構成する全構造単位に対し、5モル%が好ましく、10モル%がより好ましく、15モル%がさらに好ましい。上記含有割合の上限としては、90モル%が好ましく、70モル%がより好ましく、60モル%がさらに好ましく、50モル%が特に好ましい。酸解離性基を含む構造単位の含有割合が上記下限未満だと、レジストパターンにおける現像欠陥の発生を十分に抑制できない場合がある。酸解離性基を含む構造単位の含有割合が上記上限を超えると、得られるレジスト膜表面の疎水性が低下する場合がある。 [D] When the polymer has a structural unit containing the acid dissociable group, the lower limit of the content ratio of the structural unit containing the acid dissociable group is [D] with respect to all structural units constituting the polymer. 5 mol% is preferable, 10 mol% is more preferable, and 15 mol% is further more preferable. As an upper limit of the said content rate, 90 mol% is preferable, 70 mol% is more preferable, 60 mol% is further more preferable, 50 mol% is especially preferable. When the content ratio of the structural unit containing an acid dissociable group is less than the above lower limit, development defects in the resist pattern may not be sufficiently suppressed. When the content ratio of the structural unit containing an acid dissociable group exceeds the above upper limit, the hydrophobicity of the resulting resist film surface may be lowered.
[他の構造単位]
 また、[D]重合体は、上記構造単位以外にも、例えばアルカリ可溶性基を含む構造単位;ラクトン構造、環状カーボネート構造、スルトン構造又はこれらの組み合わせを含む構造単位;脂環式基を含む構造単位等の他の構造単位を有していてもよい。上記アルカリ可溶性基としては、例えばカルボキシ基、スルホンアミド基、スルホ基等が挙げられる。
[Other structural units]
In addition to the above structural unit, the [D] polymer is, for example, a structural unit containing an alkali-soluble group; a structural unit containing a lactone structure, a cyclic carbonate structure, a sultone structure, or a combination thereof; a structure containing an alicyclic group You may have other structural units, such as a unit. Examples of the alkali-soluble group include a carboxy group, a sulfonamido group, and a sulfo group.
 上記他の構造単位の含有割合の上限としては、[D]重合体を構成する全構造単位に対して、通常30モル%であり、20モル%が好ましい。上記他の構造単位の含有割合が上記上限を超えると、当該感放射線性樹脂組成物のパターン形成性が低下する場合がある。 The upper limit of the content ratio of the above other structural units is usually 30 mol%, preferably 20 mol%, based on all structural units constituting the [D] polymer. When the content rate of said other structural unit exceeds the said upper limit, the pattern formation property of the said radiation sensitive resin composition may fall.
 当該感放射線性樹脂組成物が[D]重合体を含有する場合、当該感放射線性樹脂組成物における[D]重合体の含有量の下限としては、[A]重合体の100質量部に対して、0.5質量部が好ましく、1質量部がより好ましい。上記含有量の上限としては、20質量部が好ましく、15質量部がより好ましく、10質量部がさらに好ましい。[D]重合体の含有量が上記上限を超えると、当該感放射線性樹脂組成物のパターン形成性が低下する場合がある。 When the said radiation sensitive resin composition contains a [D] polymer, as a minimum of content of the [D] polymer in the said radiation sensitive resin composition, with respect to 100 mass parts of a [A] polymer. 0.5 parts by mass is preferable, and 1 part by mass is more preferable. As an upper limit of the said content, 20 mass parts is preferable, 15 mass parts is more preferable, and 10 mass parts is further more preferable. [D] If the content of the polymer exceeds the above upper limit, the pattern-forming property of the radiation-sensitive resin composition may be lowered.
<[E]溶媒>
 当該感放射線性樹脂組成物は、通常[E]溶媒を含有する。[E]溶媒は、少なくとも[A]重合体、[B]酸発生体及び所望により含有される[C]酸拡散制御体、[D]重合体等を溶解又は分散可能な溶媒であれば特に限定されない。当該感放射線性樹脂組成物は、[E]溶媒を1種又は2種以上含有していてもよい。
<[E] solvent>
The radiation-sensitive resin composition usually contains an [E] solvent. [E] The solvent is particularly a solvent that can dissolve or disperse at least the [A] polymer, the [B] acid generator and the optionally contained [C] acid diffusion controller, [D] polymer, and the like. It is not limited. The radiation-sensitive resin composition may contain one or more [E] solvents.
 [E]溶媒としては、例えばアルコール系溶媒、エーテル系溶媒、ケトン系有機溶媒、アミド系溶媒、エステル系有機溶媒、炭化水素系溶媒等が挙げられる。 [E] Examples of the solvent include alcohol solvents, ether solvents, ketone organic solvents, amide solvents, ester organic solvents, hydrocarbon solvents, and the like.
 アルコール系溶媒としては、例えば
 4-メチル-2-ペンタノール、n-ヘキサノール等の炭素数1~18の脂肪族モノアルコール系溶媒;
 シクロヘキサノール等の炭素数3~18の脂環式モノアルコール系溶媒;
 1,2-プロピレングリコール等の炭素数2~18の多価アルコール系溶媒;
 プロピレングリコールモノメチルエーテル等の炭素数3~19の多価アルコール部分エーテル系溶媒などが挙げられる。
Examples of alcohol solvents include aliphatic monoalcohol solvents having 1 to 18 carbon atoms such as 4-methyl-2-pentanol and n-hexanol;
An alicyclic monoalcohol solvent having 3 to 18 carbon atoms such as cyclohexanol;
A polyhydric alcohol solvent having 2 to 18 carbon atoms such as 1,2-propylene glycol;
Examples thereof include polyhydric alcohol partial ether solvents having 3 to 19 carbon atoms such as propylene glycol monomethyl ether.
  エーテル系溶媒としては、例えば
 ジエチルエーテル、ジプロピルエーテル、ジブチルエーテル、ジペンチルエーテル、ジイソアミルエーテル、ジヘキシルエーテル、ジヘプチルエーテル等のジアルキルエーテル系溶媒;
 テトラヒドロフラン、テトラヒドロピラン等の環状エーテル系溶媒;
 ジフェニルエーテル、アニソール等の芳香環含有エーテル系溶媒などが挙げられる。
Examples of ether solvents include dialkyl ether solvents such as diethyl ether, dipropyl ether, dibutyl ether, dipentyl ether, diisoamyl ether, dihexyl ether, and diheptyl ether;
Cyclic ether solvents such as tetrahydrofuran and tetrahydropyran;
And aromatic ring-containing ether solvents such as diphenyl ether and anisole.
 ケトン系溶媒としては、例えば
 アセトン、メチルエチルケトン、メチル-n-プロピルケトン、メチル-n-ブチルケトン、ジエチルケトン、メチル-iso-ブチルケトン、2-ヘプタノン、エチル-n-ブチルケトン、メチル-n-ヘキシルケトン、ジ-iso-ブチルケトン、トリメチルノナノン等の鎖状ケトン系溶媒;
 シクロペンタノン、シクロヘキサノン、シクロヘプタノン、シクロオクタノン、メチルシクロヘキサノン等の環状ケトン系溶媒;
 2,4-ペンタンジオン、アセトニルアセトン、アセトフェノン等が挙げられる。
Examples of the ketone solvent include acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl-n-butyl ketone, diethyl ketone, methyl-iso-butyl ketone, 2-heptanone, ethyl-n-butyl ketone, methyl-n-hexyl ketone, Linear ketone solvents such as di-iso-butyl ketone and trimethylnonanone;
Cyclic ketone solvents such as cyclopentanone, cyclohexanone, cycloheptanone, cyclooctanone, methylcyclohexanone;
Examples include 2,4-pentanedione, acetonylacetone, acetophenone, and the like.
 アミド系溶媒としては、例えばN,N’-ジメチルイミダゾリジノン、N-メチルピロリドン等の環状アミド系溶媒;
 N-メチルホルムアミド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルプロピオンアミド等の鎖状アミド系溶媒などが挙げられる。
Examples of the amide solvent include cyclic amide solvents such as N, N′-dimethylimidazolidinone and N-methylpyrrolidone;
Examples thereof include chain amide solvents such as N-methylformamide, N, N-dimethylformamide, N, N-diethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, and N-methylpropionamide.
 エステル系溶媒としては、例えば
 酢酸n-ブチル、乳酸エチル等のモノカルボン酸エステル系溶媒;
 プロピレングリコールアセテート等の多価アルコールカルボキシレート系溶媒;
 プロピレングリコールモノメチルエーテルアセテート等の多価アルコール部分エーテルカルボキシレート系溶媒;
 シュウ酸ジエチル等の多価カルボン酸ジエステル系溶媒;
 ジメチルカーボネート、ジエチルカーボネート等のカーボネート系溶媒が挙げられる。
Examples of ester solvents include monocarboxylic acid ester solvents such as n-butyl acetate and ethyl lactate;
Polyhydric alcohol carboxylate solvents such as propylene glycol acetate;
Polyhydric alcohol partial ether carboxylate solvents such as propylene glycol monomethyl ether acetate;
Polycarboxylic acid diester solvents such as diethyl oxalate;
Examples thereof include carbonate solvents such as dimethyl carbonate and diethyl carbonate.
 炭化水素系溶媒としては、例えば
 n-ペンタン、n-ヘキサン等の炭素数5~12の脂肪族炭化水素系溶媒;
 トルエン、キシレン等の炭素数6~16の芳香族炭化水素系溶媒などが挙げられる。
Examples of the hydrocarbon solvent include aliphatic hydrocarbon solvents having 5 to 12 carbon atoms such as n-pentane and n-hexane;
Examples thereof include aromatic hydrocarbon solvents having 6 to 16 carbon atoms such as toluene and xylene.
 これらの中で、エステル系溶媒、ケトン系溶媒及びアルコール系溶媒が好ましく、多価アルコール部分エーテルアセテート系溶媒、ラクトン系溶媒、環状ケトン系溶媒及び多価アルコール部分エーテル系溶媒がより好ましく、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、γ-ブチロラクトン及びシクロヘキサノンがさらに好ましい。 Among these, ester solvents, ketone solvents and alcohol solvents are preferable, polyhydric alcohol partial ether acetate solvents, lactone solvents, cyclic ketone solvents and polyhydric alcohol partial ether solvents are more preferable, and propylene glycol. More preferred are monomethyl ether acetate, propylene glycol monomethyl ether, γ-butyrolactone and cyclohexanone.
<その他の任意成分>
 当該感放射線性樹脂組成物は、上記[A]~[E]成分以外にも、その他の任意成分を含有していてもよい。上記その他の任意成分としては、例えば偏在化促進剤、界面活性剤、脂環式骨格含有化合物、増感剤等が挙げられる。これらのその他の任意成分は、それぞれ1種又は2種以上を併用してもよい。
<Other optional components>
The radiation-sensitive resin composition may contain other optional components in addition to the components [A] to [E]. Examples of the other optional components include uneven distribution accelerators, surfactants, alicyclic skeleton-containing compounds, and sensitizers. Each of these other optional components may be used alone or in combination of two or more.
[偏在化促進剤]
 偏在化促進剤は、当該感放射線性樹脂組成物が[D]重合体として撥水性重合体添加剤を含有する場合等に、この撥水性重合体添加剤を、より効率的にレジスト膜表面に偏析させる効果を有するものである。当該感放射線性樹脂組成物にこの偏在化促進剤を含有させることで、上記撥水性重合体添加剤の添加量を従来よりも少なくすることができる。従って、解像性、LWR性能及び欠陥抑制性を損なうことなく、レジスト膜から液浸液への成分の溶出をさらに抑制したり、高速スキャンにより液浸露光をより高速に行うことが可能になり、結果としてウォーターマーク欠陥等の液浸由来欠陥を抑制するレジスト膜表面の疎水性を向上させることができる。このような偏在化促進剤として用いることができるものとしては、比誘電率が30以上200以下で、1気圧における沸点が100℃以上の低分子化合物を挙げることができる。このような化合物としては、具体的には、ラクトン化合物、カーボネート化合物、ニトリル化合物、多価アルコール等が挙げられる。
[Uneven distribution promoter]
The uneven distribution accelerator is used to more efficiently apply the water-repellent polymer additive to the resist film surface when the radiation-sensitive resin composition contains the water-repellent polymer additive as the [D] polymer. It has an effect of segregation. By adding this uneven distribution accelerator to the radiation sensitive resin composition, the amount of the water-repellent polymer additive added can be reduced as compared with the conventional case. Therefore, it is possible to further suppress the elution of components from the resist film to the immersion liquid without impairing the resolution, LWR performance, and defect suppression, or to perform immersion exposure at a higher speed by high-speed scanning. As a result, it is possible to improve the hydrophobicity of the resist film surface that suppresses immersion-derived defects such as watermark defects. Examples of such an uneven distribution promoter include low molecular compounds having a relative dielectric constant of 30 or more and 200 or less and a boiling point at 1 atm of 100 ° C. or more. Specific examples of such compounds include lactone compounds, carbonate compounds, nitrile compounds, and polyhydric alcohols.
 上記ラクトン化合物としては、例えばγ-ブチロラクトン、バレロラクトン、メバロニックラクトン、ノルボルナンラクトン等が挙げられる。 Examples of the lactone compound include γ-butyrolactone, valerolactone, mevalonic lactone, norbornane lactone, and the like.
 上記カーボネート化合物としては、例えばプロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ビニレンカーボネート等が挙げられる。 Examples of the carbonate compound include propylene carbonate, ethylene carbonate, butylene carbonate, vinylene carbonate and the like.
 上記ニトリル化合物としては、例えばスクシノニトリル等が挙げられる。 Examples of the nitrile compound include succinonitrile.
 上記多価アルコールとしては、例えばグリセリン等が挙げられる。 Examples of the polyhydric alcohol include glycerin.
 当該感放射線性樹脂組成物が偏在化促進剤を含有する場合、偏在化促進剤の含有量の下限としては、当該感放射線性樹脂組成物における重合体の総量100質量部に対して、10質量部が好ましく、15質量部がより好ましく、20質量部がさらに好ましく、25質量部が特に好ましい。上記含有量の上限としては、500質量部が好ましく、300質量部がより好ましく、200質量部がさらに好ましく、100質量部が特に好ましい。 When the radiation-sensitive resin composition contains an uneven distribution accelerator, the lower limit of the content of the uneven distribution accelerator is 10 mass with respect to 100 parts by mass of the total amount of the polymer in the radiation-sensitive resin composition. Part is preferable, 15 parts by mass is more preferable, 20 parts by mass is further preferable, and 25 parts by mass is particularly preferable. As an upper limit of the said content, 500 mass parts is preferable, 300 mass parts is more preferable, 200 mass parts is further more preferable, 100 mass parts is especially preferable.
(界面活性剤)
 界面活性剤は、塗布性、ストリエーション、現像性等を改良する効果を奏する。界面活性剤としては、例えばポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンn-オクチルフェニルエーテル、ポリオキシエチレンn-ノニルフェニルエーテル、ポリエチレングリコールジラウレート、ポリエチレングリコールジステアレート等のノニオン系界面活性剤;市販品としては、信越化学工業社の「KP341」、共栄社化学社の「ポリフローNo.75、同No.95」、トーケムプロダクツ社の「エフトップEF301、同EF303、同EF352」、DIC社の「メガファックF171、同F173」、住友スリーエム社の「フロラードFC430、同FC431」、旭硝子工業社の「アサヒガードAG710、サーフロンS-382、同SC-101、同SC-102、同SC-103、同SC-104、同SC-105、同SC-106」等が挙げられる。当該感放射線性樹脂組成物が界面活性剤の含有する場合、当該感放射線性樹脂組成物における界面活性剤の含有量の上限としては、[A]重合体100質量部に対して通常2質量部である。
(Surfactant)
Surfactants have the effect of improving coatability, striation, developability, and the like. Examples of the surfactant include polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene n-octylphenyl ether, polyoxyethylene n-nonylphenyl ether, polyethylene glycol dilaurate, polyethylene glycol diacrylate. Nonionic surfactants such as stearate; commercially available products include “KP341” from Shin-Etsu Chemical Co., Ltd., “Polyflow No. 75, No. 95” from Kyoeisha Chemical Co., Ltd., “F-Top EF301, EF303, EF352 ", DIC's" MegaFuck F171, F173 ", Sumitomo 3M's" Florard FC430, FC431 ", Asahi Glass Industry's" Asahi Guard AG710, Surflon S- " 82, SC-101, SC-102, the SC-103, the SC-104, the SC-105, the SC-106 ", and the like. When the radiation sensitive resin composition contains a surfactant, the upper limit of the content of the surfactant in the radiation sensitive resin composition is usually 2 parts by mass with respect to 100 parts by mass of the polymer [A]. It is.
(脂環式骨格含有化合物)
 脂環式骨格含有化合物は、ドライエッチング耐性、パターン形状、基板との接着性等を改善する効果を奏する。
(Alicyclic skeleton-containing compound)
The alicyclic skeleton-containing compound has an effect of improving dry etching resistance, pattern shape, adhesion to the substrate, and the like.
 脂環式骨格含有化合物としては、例えば
 1-アダマンタンカルボン酸、2-アダマンタノン、1-アダマンタンカルボン酸t-ブチル等のアダマンタン誘導体類;
 デオキシコール酸t-ブチル、デオキシコール酸t-ブトキシカルボニルメチル、デオキシコール酸2-エトキシエチル等のデオキシコール酸エステル類;
 リトコール酸t-ブチル、リトコール酸t-ブトキシカルボニルメチル、リトコール酸2-エトキシエチル等のリトコール酸エステル類;
 3-〔2-ヒドロキシ-2,2-ビス(トリフルオロメチル)エチル〕テトラシクロ[4.4.0.12,5.17,10]ドデカン、2-ヒドロキシ-9-メトキシカルボニル-5-オキソ-4-オキサ-トリシクロ[4.2.1.03,7]ノナン等が挙げられる。当該感放射線性樹脂組成物が脂環式骨格含有化合物を含有する場合、当該感放射線性樹脂組成物における脂環式骨格含有化合物の含有量の上限としては、[A]重合体100質量部に対して通常5質量部である。
Examples of the alicyclic skeleton-containing compound include adamantane derivatives such as 1-adamantanecarboxylic acid, 2-adamantanone, and 1-adamantanecarboxylic acid t-butyl;
Deoxycholic acid esters such as t-butyl deoxycholic acid, t-butoxycarbonylmethyl deoxycholic acid, 2-ethoxyethyl deoxycholic acid;
Lithocholic acid esters such as tert-butyl lithocholic acid, tert-butoxycarbonylmethyl lithocholic acid, 2-ethoxyethyl lithocholic acid;
3- [2-hydroxy-2,2-bis (trifluoromethyl) ethyl] tetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodecane, 2-hydroxy-9-methoxycarbonyl-5-oxo-4-oxa-tricyclo [4.2.1.0 3,7 ] nonane, and the like. When the said radiation sensitive resin composition contains an alicyclic skeleton containing compound, as an upper limit of content of the alicyclic skeleton containing compound in the said radiation sensitive resin composition, it is [A] 100 mass parts of polymers. On the other hand, it is usually 5 parts by mass.
(増感剤)
 増感剤は、[B]酸発生剤等からの酸の生成量を増加する作用を示すものであり、当該感放射線性樹脂組成物の「みかけの感度」を向上させる効果を奏する。
(Sensitizer)
A sensitizer exhibits the effect | action which increases the production amount of the acid from [B] acid generator etc., and there exists an effect which improves the "apparent sensitivity" of the said radiation sensitive resin composition.
 増感剤としては、例えばカルバゾール類、アセトフェノン類、ベンゾフェノン類、ナフタレン類、フェノール類、ビアセチル、エオシン、ローズベンガル、ピレン類、アントラセン類、フェノチアジン類等が挙げられる。これらの増感剤は、単独で使用してもよく2種以上を併用してもよい。当該感放射線性樹脂組成物が増感剤を含有する場合、当該感放射線性樹脂組成物における増感剤の含有量の上限としては、[A]重合体100質量部に対して通常2質量部である。 Examples of the sensitizer include carbazoles, acetophenones, benzophenones, naphthalenes, phenols, biacetyl, eosin, rose bengal, pyrenes, anthracenes, phenothiazines, and the like. These sensitizers may be used alone or in combination of two or more. When the said radiation sensitive resin composition contains a sensitizer, as an upper limit of content of the sensitizer in the said radiation sensitive resin composition, it is 2 mass parts normally with respect to 100 mass parts of [A] polymers. It is.
<感放射線性樹脂組成物の調製方法>
 当該感放射線性樹脂組成物は、例えば[A]重合体、[B]酸発生体、必要に応じて含有される任意成分及び[E]溶媒を所定の割合で混合することにより調製できる。当該感放射線性樹脂組成物は、混合後に、例えば孔径0.2μm程度のフィルター等でろ過することが好ましい。当該感放射線性樹脂組成物の固形分濃度の下限としては、0.1質量%が好ましく、0.5質量%がより好ましく、1質量%がさらに好ましく、1.5質量%が特に好ましい。当該感放射線性樹脂組成物の固形分濃度の上限としては、50質量%が好ましく、30質量%がより好ましく、20質量%がさらに好ましく、10質量%が特に好ましい。
<Method for preparing radiation-sensitive resin composition>
The said radiation sensitive resin composition can be prepared by mixing a [A] polymer, a [B] acid generator, the arbitrary component contained as needed, and a [E] solvent in a predetermined ratio, for example. The radiation-sensitive resin composition is preferably filtered after mixing with, for example, a filter having a pore size of about 0.2 μm. As a minimum of solid content concentration of the radiation sensitive resin composition, 0.1 mass% is preferred, 0.5 mass% is more preferred, 1 mass% is still more preferred, and 1.5 mass% is especially preferred. The upper limit of the solid content concentration of the radiation-sensitive resin composition is preferably 50% by mass, more preferably 30% by mass, still more preferably 20% by mass, and particularly preferably 10% by mass.
<レジストパターン形成方法>
 当該レジストパターン形成方法は、レジスト膜を形成する工程(以下、「レジスト膜形成工程」ともいう)、上記レジスト膜を露光する工程(以下、「露光工程」ともいう)、及び上記露光されたレジスト膜を現像する工程(以下、「現像工程」ともいう)
を備え、上記レジスト膜を当該感放射線性樹脂組成物により形成する。
<Resist pattern formation method>
The resist pattern forming method includes a step of forming a resist film (hereinafter also referred to as “resist film forming step”), a step of exposing the resist film (hereinafter also referred to as “exposure step”), and the exposed resist. Process of developing the film (hereinafter also referred to as “development process”)
The resist film is formed from the radiation-sensitive resin composition.
 当該レジストパターン形成方法によれば、上述の当該感放射線性樹脂組成物を用いているので、優れたMEEF性能、焦点深度及び露光余裕度を発揮しつつ、LWR及びCDUが小さく、解像度が高く、断面形状の矩形性に優れるレジストパターンを形成することができる。以下、レジストパターン形成方法の各工程について説明する。 According to the resist pattern forming method, since the radiation sensitive resin composition described above is used, while exhibiting excellent MEEF performance, depth of focus, and exposure margin, LWR and CDU are small, resolution is high, It is possible to form a resist pattern that is excellent in rectangular shape in cross section. Hereinafter, each step of the resist pattern forming method will be described.
[レジスト膜形成工程]
 本工程では、当該感放射線性樹脂組成物によりレジスト膜を形成する。このレジスト膜を形成する基板としては、例えばシリコンウェハ、二酸化シリコン、アルミニウムで被覆されたウェハ等の従来公知のものなどが挙げられる。また、例えば特公平6-12452号公報や特開昭59-93448号公報等に開示されている有機系又は無機系の反射防止膜を基板上に形成してもよい。塗布方法としては、例えば回転塗布(スピンコーティング)、流延塗布、ロール塗布等が挙げられる。塗布した後に、必要に応じて、塗膜中の溶媒を揮発させるため、プレベーク(PB)を行ってもよい。PB温度の下限としては、通常60℃であり、80℃が好ましい。PB温度の上限としては、通常140℃であり、120℃が好ましい。PB時間の下限としては、通常5秒であり、10秒が好ましい。PB時間の上限としては、通常600秒であり、300秒が好ましい。形成されるレジスト膜の平均厚さの下限としては、10nmが好ましい。上記平均厚さの上限としては、1,000nmが好ましく、500nmがより好ましい。
[Resist film forming step]
In this step, a resist film is formed from the radiation sensitive resin composition. Examples of the substrate on which the resist film is formed include conventionally known ones such as a silicon wafer, silicon dioxide, and a wafer coated with aluminum. Further, for example, an organic or inorganic antireflection film disclosed in Japanese Patent Publication No. 6-12452 and Japanese Patent Application Laid-Open No. 59-93448 may be formed on the substrate. Examples of the coating method include spin coating (spin coating), cast coating, and roll coating. After application, pre-baking (PB) may be performed as needed to volatilize the solvent in the coating film. As a minimum of PB temperature, it is usually 60 ° C and 80 ° C is preferred. As an upper limit of PB temperature, it is 140 degreeC normally and 120 degreeC is preferable. The lower limit of the PB time is usually 5 seconds, and preferably 10 seconds. The upper limit of the PB time is usually 600 seconds, and preferably 300 seconds. The lower limit of the average thickness of the resist film to be formed is preferably 10 nm. The upper limit of the average thickness is preferably 1,000 nm, and more preferably 500 nm.
[露光工程]
 本工程では、レジスト膜形成工程で形成されたレジスト膜に、フォトマスクを介するなどして(場合によっては、水等の液浸媒体を介して)放射線を照射し、露光する。放射線としては、目的とするパターンの線幅に応じて、例えば可視光線、紫外線、遠紫外線、極端紫外線(EUV)、X線、γ線等の電磁波;電子線、α線等の荷電粒子線などが挙げられる。これらの中でも、遠紫外線、EUV及び電子線が好ましく、ArFエキシマレーザー光(波長193nm)、KrFエキシマレーザー光(波長248nm)、EUV、電子線がより好ましく、ArFエキシマレーザー光、EUV及び電子線がさらに好ましい。
[Exposure process]
In this step, the resist film formed in the resist film forming step is exposed by irradiation with radiation through a photomask or the like (in some cases through an immersion medium such as water). Examples of radiation include electromagnetic waves such as visible light, ultraviolet light, far ultraviolet light, extreme ultraviolet light (EUV), X-rays, and γ rays, and charged particle beams such as electron beams and α rays, depending on the line width of the target pattern. Is mentioned. Among these, far ultraviolet rays, EUV and electron beams are preferable, ArF excimer laser light (wavelength 193 nm), KrF excimer laser light (wavelength 248 nm), EUV and electron beams are more preferable, and ArF excimer laser light, EUV and electron beams are more preferable. Further preferred.
 露光を液浸露光により行う場合、用いる液浸液としては、例えば水、フッ素系不活性液体等が挙げられる。液浸液は、露光波長に対して透明であり、かつ膜上に投影される光学像の歪みを最小限に留めるよう屈折率の温度係数ができる限り小さい液体が好ましいが、特に露光光源がArFエキシマレーザー光(波長193nm)である場合、上述の観点に加えて、入手の容易さ、取り扱いのし易さといった点から水を用いるのが好ましい。水を用いる場合、水の表面張力を減少させるとともに、界面活性力を増大させる添加剤をわずかな割合で添加しても良い。この添加剤は、ウェハ上のレジスト膜を溶解させず、かつレンズの下面の光学コートに対する影響が無視できるものが好ましい。使用する水としては蒸留水が好ましい。 When exposure is performed by immersion exposure, examples of the immersion liquid to be used include water and a fluorine-based inert liquid. The immersion liquid is preferably a liquid that is transparent to the exposure wavelength and has a refractive index temperature coefficient that is as small as possible so as to minimize distortion of the optical image projected onto the film. In the case of excimer laser light (wavelength 193 nm), it is preferable to use water from the viewpoints of availability and easy handling in addition to the above-described viewpoints. When water is used, an additive that reduces the surface tension of water and increases the surface activity may be added in a small proportion. This additive is preferably one that does not dissolve the resist film on the wafer and can ignore the influence on the optical coating on the lower surface of the lens. The water used is preferably distilled water.
 上記露光の後、ポストエクスポージャーベーク(PEB)を行い、レジスト膜の露光された部分において、露光により[B]酸発生体から発生した酸による[A]重合体等が有する酸解離性基の解離を促進させることが好ましい。このPEBによって、露光部と未露光部とで現像液に対する溶解性に差が生じる。PEB温度の下限としては、通常50℃であり、80℃が好ましい。PEB温度の上限としては、通常180℃であり、130℃が好ましい。PEB時間の下限としては、通常5秒であり、10秒が好ましい。PEB時間の上限としては、通常600秒であり、300秒が好ましい。 After the exposure, post-exposure baking (PEB) is performed, and in the exposed part of the resist film, the acid-dissociable group of the [A] polymer and the like by the acid generated from the [B] acid generator by exposure is dissociated. Is preferably promoted. This PEB causes a difference in solubility in the developer between the exposed area and the unexposed area. As a minimum of PEB temperature, it is 50 ° C usually and 80 ° C is preferred. The upper limit of the PEB temperature is usually 180 ° C, preferably 130 ° C. The lower limit of the PEB time is usually 5 seconds, and preferably 10 seconds. The upper limit of the PEB time is usually 600 seconds, and preferably 300 seconds.
[現像工程]
 本工程では、上記露光工程で露光されたレジスト膜を現像する。これにより、所定のレジストパターンを形成することができる。現像後は、水又はアルコール等のリンス液で洗浄し、乾燥することが一般的である。
[Development process]
In this step, the resist film exposed in the exposure step is developed. Thereby, a predetermined resist pattern can be formed. After development, it is common to wash with water or a rinse solution such as alcohol and then dry.
 上記現像に用いる現像液としては、アルカリ現像の場合、例えば水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、けい酸ナトリウム、メタけい酸ナトリウム、アンモニア水、エチルアミン、n-プロピルアミン、ジエチルアミン、ジ-n-プロピルアミン、トリエチルアミン、メチルジエチルアミン、エチルジメチルアミン、トリエタノールアミン、テトラメチルアンモニウムヒドロキシド(TMAH)、ピロール、ピペリジン、コリン、1,8-ジアザビシクロ-[5.4.0]-7-ウンデセン、1,5-ジアザビシクロ-[4.3.0]-5-ノネン等のアルカリ性化合物の少なくとも1種を溶解したアルカリ水溶液などが挙げられる。これらの中でも、TMAH水溶液が好ましく、2.38質量%TMAH水溶液がより好ましい。 As the developer used for the above development, in the case of alkali development, for example, sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, aqueous ammonia, ethylamine, n-propylamine, diethylamine, di-n -Propylamine, triethylamine, methyldiethylamine, ethyldimethylamine, triethanolamine, tetramethylammonium hydroxide (TMAH), pyrrole, piperidine, choline, 1,8-diazabicyclo- [5.4.0] -7-undecene, Examples thereof include an alkaline aqueous solution in which at least one alkaline compound such as 1,5-diazabicyclo- [4.3.0] -5-nonene is dissolved. Among these, a TMAH aqueous solution is preferable, and a 2.38 mass% TMAH aqueous solution is more preferable.
 また、有機溶媒現像の場合、炭化水素系溶媒、エーテル系溶媒、エステル系溶媒、ケトン系溶媒、アルコール系溶媒等の有機溶媒又は有機溶媒を含有する溶媒が挙げられる。上記有機溶媒としては、例えば上述の樹脂組成物の[B]溶媒として列挙した溶媒の1種又は2種以上等が挙げられる。これらの中でも、エステル系溶媒及びケトン系溶媒が好ましい。エステル系溶媒としては、酢酸エステル系溶媒が好ましく、酢酸n-ブチルがより好ましい。ケトン系溶媒としては、鎖状ケトンが好ましく、2-ヘプタノンがより好ましい。現像液中の有機溶媒の含有量の下限としては、80質量%が好ましく、90質量%がより好ましく、95質量%がさらに好ましく、99質量%が特に好ましい。現像液中の有機溶媒以外の成分としては、例えば水、シリコンオイル等が挙げられる。 In the case of organic solvent development, organic solvents such as hydrocarbon solvents, ether solvents, ester solvents, ketone solvents, alcohol solvents and the like or solvents containing organic solvents can be mentioned. As said organic solvent, the 1 type (s) or 2 or more types of the solvent enumerated as the [B] solvent of the above-mentioned resin composition are mentioned, for example. Among these, ester solvents and ketone solvents are preferable. As the ester solvent, an acetate solvent is preferable, and n-butyl acetate is more preferable. The ketone solvent is preferably a chain ketone, more preferably 2-heptanone. As a minimum of content of the organic solvent in a developing solution, 80 mass% is preferred, 90 mass% is more preferred, 95 mass% is still more preferred, and 99 mass% is especially preferred. Examples of components other than the organic solvent in the developer include water and silicone oil.
 現像方法としては、例えば現像液が満たされた槽中に基板を一定時間浸漬する方法(ディップ法)、基板表面に現像液を表面張力によって盛り上げて一定時間静止することで現像する方法(パドル法)、基板表面に現像液を噴霧する方法(スプレー法)、一定速度で回転している基板上に一定速度で現像液塗出ノズルをスキャンしながら現像液を塗出しつづける方法(ダイナミックディスペンス法)等が挙げられる。 As a developing method, for example, a method in which a substrate is immersed in a tank filled with a developer for a certain period of time (dip method), a method in which the developer is raised on the surface of the substrate by surface tension and is left stationary for a certain time (paddle method) ), A method of spraying the developer on the substrate surface (spray method), a method of continuously applying the developer while scanning the developer coating nozzle on the substrate rotating at a constant speed (dynamic dispensing method) Etc.
<重合体>
 本発明の重合体は、上記式(I)で表される構造単位を有する。当該重合体は、上述の当該感放射線性樹脂組成物の重合体成分として好適に用いることができる。当該重合体については、当該感放射線性樹脂組成物における[A]重合体として上述している。
<Polymer>
The polymer of the present invention has a structural unit represented by the above formula (I). The said polymer can be used suitably as a polymer component of the said radiation sensitive resin composition mentioned above. The polymer is described above as the [A] polymer in the radiation-sensitive resin composition.
<化合物>
 本発明の化合物は、上記式(i)で表される。当該化合物は、上記式(i)で表される構造を有するので、当該重合体中に構造単位(I)を組み込む単量体化合物として好適に用いられる。当該化合物については、当該感放射線性樹脂組成物の[A]重合体における構造単位(I)を与える単量体として上述している。
<Compound>
The compound of the present invention is represented by the above formula (i). Since the compound has a structure represented by the above formula (i), it is suitably used as a monomer compound in which the structural unit (I) is incorporated into the polymer. The compound is described above as a monomer that gives the structural unit (I) in the [A] polymer of the radiation-sensitive resin composition.
 以下、実施例に基づき本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。実施例における各物性測定は、下記方法により行った。 Hereinafter, the present invention will be described more specifically based on examples, but the present invention is not limited to these examples. Each physical property measurement in the examples was performed by the following methods.
[重量平均分子量(Mw)及び数平均分子量(Mn)]
 GPCカラム(東ソー社の「G2000HXL」2本、「G3000HXL」1本、「G4000HXL」1本)を用い、流量:1.0mL/分、溶出溶媒:テトラヒドロフラン(和光純薬工業社)、試料濃度:1.0質量%、試料注入量:100μL、カラム温度:40℃、検出器:示差屈折計の分析条件で、単分散ポリスチレンを標準とするゲルパーミエーションクロマトグラフィ(GPC)により測定した。また、分散度(Mw/Mn)は、Mw及びMnの測定結果より算出した。
[Weight average molecular weight (Mw) and number average molecular weight (Mn)]
Using GPC columns (two "G2000HXL", one "G3000HXL", one "G4000HXL" from Tosoh Corporation), flow rate: 1.0 mL / min, elution solvent: tetrahydrofuran (Wako Pure Chemical Industries, Ltd.), sample concentration: Measurement was performed by gel permeation chromatography (GPC) using monodisperse polystyrene as a standard under the analysis conditions of 1.0% by mass, sample injection amount: 100 μL, column temperature: 40 ° C., detector: differential refractometer. The degree of dispersion (Mw / Mn) was calculated from the measurement results of Mw and Mn.
13C-NMR分析]
 核磁気共鳴装置(日本電子社の「JNM-ECX400」)を用い、測定溶媒として重クロロホルムを使用して、各重合体における各構造単位の含有割合(モル%)を求める分析を行った。
[ 13 C-NMR analysis]
Using a nuclear magnetic resonance apparatus (“JNM-ECX400” manufactured by JEOL Ltd.), deuterated chloroform was used as a measurement solvent, and analysis was performed to determine the content ratio (mol%) of each structural unit in each polymer.
[実施例1](化合物(Z-1)の合成)
 2,000mLのナスフラスコにα-アセチル-γ-ブチロラクトン94.0g(734mmol)、炭酸カリウム112g(807mmol)、ヨードメタン125g(881mmol)及び溶媒としてのアセトン600gを加え、55℃で6時間撹拌した。次いで、濾過によって無機塩を除去した後に濃縮し、カラムクロマトグラフィで精製することにより下記式(z-1)で表されるメチル置換体100g(収率96%)を得た。
[Example 1] (Synthesis of Compound (Z-1))
To a 2,000 mL eggplant flask, 94.0 g (734 mmol) of α-acetyl-γ-butyrolactone, 112 g (807 mmol) of potassium carbonate, 125 g (881 mmol) of iodomethane and 600 g of acetone as a solvent were added and stirred at 55 ° C. for 6 hours. Next, the inorganic salt was removed by filtration, followed by concentration and purification by column chromatography to obtain 100 g (yield 96%) of a methyl-substituted product represented by the following formula (z-1).
次に、300mLの丸底フラスコに上記得られた(z-1)を50g(352mmol)とヘキサン100mLを加え、窒素雰囲気下で水浴にて撹拌した。そこへ、塩化スルフリル49.9g(370mmol)をゆっくりと滴下した。滴下終了後、室温で3時間撹拌した。溶媒を留去することで、下記式(z-2)で表される粗体62.0g(収率100%)を得た。本品はこれ以上の精製を行わずに次の反応に用いた。  Next, 50 g (352 mmol) of (z-1) obtained above and 100 mL of hexane were added to a 300 mL round bottom flask, and the mixture was stirred in a water bath under a nitrogen atmosphere. Thereto, 49.9 g (370 mmol) of sulfuryl chloride was slowly added dropwise. After completion of dropping, the mixture was stirred at room temperature for 3 hours. The solvent was distilled off to obtain 62.0 g (yield 100%) of a crude product represented by the following formula (z-2). This product was used in the next reaction without further purification. *
 1,000mLの丸底フラスコにメタクリル酸36.4g(422mmol)、DMF300mL、炭酸カリウム72.9g(528mmol)及びヨウ化カリウム23.4g(141mmol)を加え、室温で30分撹拌した。そこへ、上記得られた(z-2)62.0(351mmol)を100mLのDMFに溶解させた溶液をゆっくりと滴下した。滴下終了後、45℃にて4時間撹拌した。反応終了後、酢酸エチルを加え、ろ過により塩を除去した。得られた溶液を水洗した後、溶媒を留去した。カラムクロマトグラフィで精製することにより、下記式(Z-1)で表される化合物59.6g(収率75%)を得た。 Into a 1,000 mL round bottom flask, 36.4 g (422 mmol) of methacrylic acid, 300 mL of DMF, 72.9 g (528 mmol) of potassium carbonate and 23.4 g (141 mmol) of potassium iodide were added and stirred at room temperature for 30 minutes. A solution obtained by dissolving (z-2) 62.0 (351 mmol) obtained above in 100 mL of DMF was slowly added dropwise thereto. After completion of dropping, the mixture was stirred at 45 ° C. for 4 hours. After completion of the reaction, ethyl acetate was added and the salt was removed by filtration. The obtained solution was washed with water, and then the solvent was distilled off. By purification by column chromatography, 59.6 g (yield 75%) of a compound represented by the following formula (Z-1) was obtained.
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
[実施例2~21](化合物(Z-2)~(Z-21)の合成)
 前駆体を適宜選択し、実施例1と同様の操作を行うことによって、下記式(Z-2)~(Z-21)で表される化合物を合成した。
[Examples 2 to 21] (Synthesis of compounds (Z-2) to (Z-21))
A precursor represented by the following formulas (Z-2) to (Z-21) was synthesized by appropriately selecting a precursor and performing the same operation as in Example 1.
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
<重合体の合成>[[A]重合体及び[D]重合体の合成]
 [A]重合体及び[D]重合体の合成に用いた単量体を以下に示す。
<Synthesis of Polymer> [Synthesis of [A] Polymer and [D] Polymer]
The monomers used for the synthesis of [A] polymer and [D] polymer are shown below.
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
 なお、上記化合物(M-1)、(M-5)~(M-7)、(M-9)、(M-12)、(M-13)は構造単位(II)を、上記化合物(M-2)、(M-8)、(M-10)は構造単位(III)を、上記化合物(M-3)は構造単位(IV)を、上記化合物(M-15)は構造単位(V)を、上記化合物(M-4)はその他の構造単位をそれぞれ与える。化合物(M-14)により、[A]重合体中に[B]酸発生剤の構造を有する構造単位が組み込まれる。上記化合物(M-16)は下記の合成例において構造単位(I)の代わりに用いる単量体である。 The compounds (M-1), (M-5) to (M-7), (M-9), (M-12), and (M-13) represent the structural unit (II) and the compound ( M-2), (M-8), and (M-10) represent the structural unit (III), the compound (M-3) represents the structural unit (IV), and the compound (M-15) represents the structural unit (III). V), and the compound (M-4) gives other structural units. Compound (M-14) incorporates a structural unit having the structure of [B] acid generator in [A] polymer. The compound (M-16) is a monomer used in place of the structural unit (I) in the following synthesis examples.
[実施例22](重合体(A-1)の合成)
 化合物(M-1)7.78g(35モル%)、化合物(M-2)5.65g(35モル%)、化合物(M-3)3.36g(15モル%)及び化合物(Z-1)3.22g(15モル%)を2-ブタノン40gに溶解し、ラジカル重合開始剤としてAIBN0.78g(全単量体に対して5モル%)を添加して単量体溶液を調製した。次いで20gの2-ブタノンを入れた100mLの三口フラスコを30分窒素パージした後、攪拌しながら80℃に加熱し、上記調製した単量体溶液を滴下漏斗にて3時間かけて滴下した。滴下開始を重合反応の開始時間とし、重合反応を6時間実施した。重合反応終了後、重合溶液を水冷して30℃以下に冷却した。400gのメタノール中に冷却した重合溶液を投入し、析出した白色粉末をろ別した。ろ別した白色粉末を80gのメタノールで2回洗浄した後、ろ別し、50℃で17時間乾燥させて白色粉末状の重合体(A-1)を合成した(15.2g、収率76%)。重合体(A-1)のMwは7,300であり、Mw/Mnは1.53であった。また、13C-NMR分析の結果、(M-1)、(M-2)、(M-3)及び(Z-1)に由来する各構造単位の含有割合は、それぞれ34.3モル%、35.1モル%、14.6モル%及び16.0モル%であった。
[Example 22] (Synthesis of polymer (A-1))
Compound (M-1) 7.78 g (35 mol%), Compound (M-2) 5.65 g (35 mol%), Compound (M-3) 3.36 g (15 mol%) and Compound (Z-1 ) 3.22 g (15 mol%) was dissolved in 40 g of 2-butanone, and 0.78 g of AIBN (5 mol% based on the total monomers) was added as a radical polymerization initiator to prepare a monomer solution. Next, a 100 mL three-necked flask containing 20 g of 2-butanone was purged with nitrogen for 30 minutes and then heated to 80 ° C. with stirring, and the prepared monomer solution was added dropwise over 3 hours using a dropping funnel. The dripping start was set as the polymerization reaction start time, and the polymerization reaction was carried out for 6 hours. After completion of the polymerization reaction, the polymerization solution was cooled with water and cooled to 30 ° C. or lower. The polymerization solution cooled in 400 g of methanol was added, and the precipitated white powder was separated by filtration. The filtered white powder was washed twice with 80 g of methanol, filtered, and dried at 50 ° C. for 17 hours to synthesize a white powdery polymer (A-1) (15.2 g, yield 76). %). Mw of the polymer (A-1) was 7,300, and Mw / Mn was 1.53. As a result of 13 C-NMR analysis, the content ratio of each structural unit derived from (M-1), (M-2), (M-3) and (Z-1) was 34.3 mol%, respectively. 35.1 mol%, 14.6 mol% and 16.0 mol%.
[実施例23~46、48及び49並びに合成例1~5、7及び8](重合体(A-2)~(A-25)、(A-27)及び(A-28)並びに重合体(a-1)~(a-5)、(a-7)及び(a-8)の合成)
 下記表1に示す種類及び使用量の単量体を用いた以外は、実施例22と同様に操作して、各重合体を合成した。表1中の「-」は、該当する単量体を用いなかったことを示す。
[Examples 23 to 46, 48 and 49 and Synthesis Examples 1 to 5, 7 and 8] (Polymers (A-2) to (A-25), (A-27) and (A-28) and polymers) (Synthesis of (a-1) to (a-5), (a-7) and (a-8))
Each polymer was synthesized in the same manner as in Example 22 except that the types and amounts of monomers shown in Table 1 were used. “-” In Table 1 indicates that the corresponding monomer was not used.
[実施例47](重合体(A-26)の合成)
 化合物(M-4)40.15g(50モル%)、化合物(M-5)43.04g(35モル%)、化合物(Z-1)16.8g(15モル%)、ラジカル重合開始剤としてAIBN3.82g(全単量体に対して5モル%)及びt-ドデシルメルカプタン1gをプロピレングリコールモノメチルエーテル100gに溶解した後、窒素雰囲気下、反応温度を70℃に保持して、16時間共重合させた。重合反応終了後、重合溶液を1,000gのn-ヘキサン中に滴下して、重合体を凝固精製した。次いで上記重合体に、再度プロピレングリコールモノメチルエーテル150gを加えた後、更に、メタノール150g、トリエチルアミン34g及び水6gを加えて、沸点にて還流させながら、8時間加水分解反応を行った。加水分解反応終了後、溶媒及びトリエチルアミンを減圧留去し、得られた重合体をアセトン150gに溶解した後、2,000gの水中に滴下して凝固させ、生成した白色粉末をろ過し、50℃で17時間乾燥させて白色粉末状の重合体(A-26)を得た(65.7g、収率77%)。重合体(A-26)のMwは7,500であり、Mw/Mnは1.90であった。13C-NMR分析の結果、p-ヒドロキシスチレン、(M-5)及び(Z-1)に由来する各構造単位の含有割合は、それぞれ50.3モル%、34.6モル%及び15.1モル%であった。
[Example 47] (Synthesis of polymer (A-26))
Compound (M-4) 40.15 g (50 mol%), compound (M-5) 43.04 g (35 mol%), compound (Z-1) 16.8 g (15 mol%), radical polymerization initiator AIBN 3.82 g (5 mol% based on the total monomers) and t-dodecyl mercaptan 1 g were dissolved in 100 g of propylene glycol monomethyl ether, and the reaction temperature was maintained at 70 ° C. in a nitrogen atmosphere for 16 hours. I let you. After the completion of the polymerization reaction, the polymerization solution was dropped into 1,000 g of n-hexane to coagulate and purify the polymer. Next, 150 g of propylene glycol monomethyl ether was added to the polymer again, and then 150 g of methanol, 34 g of triethylamine and 6 g of water were further added, and a hydrolysis reaction was performed for 8 hours while refluxing at the boiling point. After completion of the hydrolysis reaction, the solvent and triethylamine were distilled off under reduced pressure, and the resulting polymer was dissolved in 150 g of acetone, then dropped into 2,000 g of water to solidify, and the resulting white powder was filtered, And dried for 17 hours to obtain a white powdery polymer (A-26) (65.7 g, yield 77%). Mw of the polymer (A-26) was 7,500, and Mw / Mn was 1.90. As a result of 13 C-NMR analysis, the content ratio of each structural unit derived from p-hydroxystyrene, (M-5) and (Z-1) was 50.3 mol%, 34.6 mol% and 15. It was 1 mol%.
[合成例6](重合体(a-6)の合成) 下記表1に示す種類及び使用量の単量体を用いた以外は、実施例47と同様に操作して、重合体(a-6)を合成した。 [Synthesis Example 6] (Synthesis of Polymer (a-6)) A polymer (a-) was prepared in the same manner as in Example 47 except that the types and amounts of monomers shown in Table 1 were used. 6) was synthesized.
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000037
[合成例9](重合体(D-1)の合成)
 化合物(M-15)82.2g(70モル%)及び化合物(M-12)17.8g(30モル%)を2-ブタノン200gに溶解し、ラジカル重合開始剤としてAIBN0.46g(全単量体に対して1モル%)を添加して単量体溶液を調製した。次いで100gの2-ブタノンを入れた500mLの三口フラスコを30分窒素パージした後、攪拌しながら80℃に加熱し、上記調製した単量体溶液を滴下漏斗にて3時間かけて滴下した。滴下開始を重合反応の開始時間とし、重合反応を6時間実施した。重合反応終了後、重合溶液を水冷して30℃以下に冷却した。アセトニトリル400gに溶媒を置換した後、ヘキサン100gを加えて撹拌しアセトニトリル層を回収する作業を3回繰り返した。溶媒をプロピレングリコールモノメチルエーテルアセテートに置換することで、重合体(D-1)を60.1g含む溶液を得た(収率60%)。重合体(D-1)のMwは15,000であり、Mw/Mnは1.90であった。13C-NMR分析の結果、(M-15)、(M-12)に由来する各構造単位の含有割合は、それぞれ70.3モル%及び29.7モル%であった。
[Synthesis Example 9] (Synthesis of polymer (D-1))
82.2 g (70 mol%) of the compound (M-15) and 17.8 g (30 mol%) of the compound (M-12) were dissolved in 200 g of 2-butanone, and 0.46 g (total single amount) of AIBN was used as a radical polymerization initiator. The monomer solution was prepared by adding 1 mol% to the body. Next, a 500 mL three-necked flask containing 100 g of 2-butanone was purged with nitrogen for 30 minutes, and then heated to 80 ° C. with stirring, and the monomer solution prepared above was added dropwise over 3 hours using a dropping funnel. The dripping start was set as the polymerization reaction start time, and the polymerization reaction was carried out for 6 hours. After completion of the polymerization reaction, the polymerization solution was cooled with water and cooled to 30 ° C. or lower. After replacing the solvent with 400 g of acetonitrile, the operation of adding 100 g of hexane and stirring to recover the acetonitrile layer was repeated three times. By replacing the solvent with propylene glycol monomethyl ether acetate, a solution containing 60.1 g of the polymer (D-1) was obtained (yield 60%). Mw of the polymer (D-1) was 15,000, and Mw / Mn was 1.90. As a result of 13 C-NMR analysis, the content ratios of structural units derived from (M-15) and (M-12) were 70.3 mol% and 29.7 mol%, respectively.
<感放射線性樹脂組成物の調製>
 各感放射線性樹脂組成物の調製に用いた各成分を以下に示す。
<Preparation of radiation-sensitive resin composition>
Each component used for preparation of each radiation sensitive resin composition is shown below.
[[B]酸発生剤]
 各構造式を以下に示す。
 B-1:トリフェニルスルホニウム2-(アダマンタン-1-イルカルボニルオキシ)-1,1,3,3,3-ペンタフルオロプロパン-1-スルホネート
 B-2:トリフェニルスルホニウムノルボルナンスルトン-2-イルオキシカルボニルジフルオロメタンスルホネート
 B-3:トリフェニルスルホニウム3-(ピペリジン-1-イルスルホニル)-1,1,2,2,3,3-ヘキサフルオロプロパン-1-スルホネート
 B-4:トリフェニルスルホニウムアダマンタン-1-イルオキシカルボニルジフルオロメタンスルホネート
[[B] acid generator]
Each structural formula is shown below.
B-1: Triphenylsulfonium 2- (adamantan-1-ylcarbonyloxy) -1,1,3,3,3-pentafluoropropane-1-sulfonate B-2: Triphenylsulfonium norbornane sultone-2-yloxy Carbonyl difluoromethanesulfonate B-3: Triphenylsulfonium 3- (piperidin-1-ylsulfonyl) -1,1,2,2,3,3-hexafluoropropane-1-sulfonate B-4: Triphenylsulfonium adamantane 1-yloxycarbonyldifluoromethanesulfonate
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
[[C]酸拡散制御剤]
 各構造式を以下に示す。
 C-1:トリフェニルスルホニウム2.4.6.トリイソプロピルフェニルスルホネート
 C-2:トリフェニルスルホニウム10-カンファースルホネート
 C-3:N-(n-ウンデカン-1-イルカルボニルオキシエチル)モルホリン
 C-4:トリn-ペンチルアミン
[[C] acid diffusion controller]
Each structural formula is shown below.
C-1: Triphenylsulfonium 2.4.6. Triisopropylphenylsulfonate C-2: Triphenylsulfonium 10-camphorsulfonate C-3: N- (n-undecan-1-ylcarbonyloxyethyl) morpholine C-4: Tri-n-pentylamine
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
[[E]溶媒] E-1:酢酸プロピレングリコールモノメチルエーテル
 E-2:シクロヘキサノン
[[E] solvent] E-1: Propylene glycol monomethyl ether acetate E-2: Cyclohexanone
[[F]偏在化促進剤]
 F-1:γ-ブチロラクトン
[[F] uneven distribution promoter]
F-1: γ-butyrolactone
[実施例50]
 [A]重合体としての(A-1)100質量部、[B]酸発生剤としての(B-1)8.5質量部、[C]酸拡散制御剤としての(C-1)2.3質量部、[D]重合体としての(D-1)3質量部、[E]溶媒としての(E-1)2,240質量部及び(E-2)960質量部並びに[F]偏在化促進剤としての(F-1)30質量部を混合し、得られた混合液を孔径0.2μmのメンブランフィルターでろ過することにより感放射線性樹脂組成物(J-1)を調製した。
[Example 50]
[A] 100 parts by mass of (A-1) as a polymer, [B] 8.5 parts by mass of (B-1) as an acid generator, [C] (C-1) 2 as an acid diffusion controller 3 parts by weight, (D-1) 3 parts by weight as a [D] polymer, (E-1) 2,240 parts by weight and (E-2) 960 parts by weight as a solvent and [F] A radiation-sensitive resin composition (J-1) was prepared by mixing 30 parts by mass of (F-1) as an uneven distribution accelerator and filtering the obtained mixed solution through a membrane filter having a pore size of 0.2 μm. .
[実施例51~74及び比較例1~5]
 下記表2に示す種類及び含有量の各成分を用いた以外は、実施例50と同様に操作して、各感放射線性樹脂組成物を調製した。
[Examples 51 to 74 and Comparative Examples 1 to 5]
Each radiation-sensitive resin composition was prepared in the same manner as in Example 50 except that the components having the types and contents shown in Table 2 were used.
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000040
[実施例75]
 [A]重合体としての(A-1)100質量部、[B]酸発生剤としての(B-1)20質量部、[C]酸拡散制御剤としての(C-1)3.6質量部並びに[E]溶媒としての(E-1)4,280質量部及び(E-2)1,830質量部を混合し、孔径0.2μmのメンブランフィルターでろ過することにより感放射線性樹脂組成物(J-26)を調製した。
[Example 75]
[A] 100 parts by mass of (A-1) as a polymer, [B] 20 parts by mass of (B-1) as an acid generator, [C] (C-1) 3.6 as an acid diffusion controller The radiation sensitive resin is obtained by mixing 4 parts by mass and (E-1) 4,280 parts by mass and (E-2) 1,830 parts by mass as [E] solvent and filtering through a membrane filter having a pore size of 0.2 μm. A composition (J-26) was prepared.
[実施例76~102及び比較例6~13]
 下記表3に示す種類及び含有量の各成分を用いた以外は、実施例75と同様に操作して、各感放射線性樹脂組成物を調製した。
[Examples 76 to 102 and Comparative Examples 6 to 13]
Each radiation-sensitive resin composition was prepared in the same manner as in Example 75 except that the components of the types and contents shown in Table 3 were used.
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000041
<レジストパターンの形成>
[レジストパターンの形成(1)]
 12インチのシリコンウエハー表面に、スピンコーター(東京エレクトロン社の「CLEAN TRACK ACT12」)を使用して、下層反射防止膜形成用組成物(ブルワーサイエンス社の「ARC66」)を塗布した後、205℃で60秒間加熱することにより平均厚さ105nmの下層反射防止膜を形成した。この下層反射防止膜上に、上記スピンコーターを使用して表2に記載した各感放射線性樹脂組成物を塗布し、90℃で60秒間PBを行った。その後、23℃で30秒間冷却し、平均厚さ90nmのレジスト膜を形成した。次に、このレジスト膜を、ArFエキシマレーザー液浸露光装置(NIKON社の「NSR-S610C」)を用い、NA=1.3、ダイポール(シグマ0.977/0.782)の光学条件にて、40nmラインアンドスペース(1L1S)マスクパターンを介して露光した。露光後、90℃で60秒間PEBを行った。その後、アルカリ現像液としての2.38質量%のTMAH水溶液を用いてアルカリ現像し、水で洗浄し、乾燥してポジ型のレジストパターンを形成した。このレジストパターン形成の際、ターゲット寸法が40nmの1対1ラインアンドスペースのマスクを介して形成した線幅が、線幅40nmの1対1ラインアンドスペースに形成される露光量を最適露光量(Eop)とした。
<Formation of resist pattern>
[Formation of resist pattern (1)]
A 12-inch silicon wafer surface was coated with a composition for forming a lower antireflection film (“ARC66” from Brewer Science Co., Ltd.) using a spin coater (“CLEAN TRACK ACT12” from Tokyo Electron), and then 205 ° C. Was heated for 60 seconds to form a lower antireflection film having an average thickness of 105 nm. On this lower antireflection film, each of the radiation sensitive resin compositions described in Table 2 was applied using the above spin coater, and PB was performed at 90 ° C. for 60 seconds. Then, it cooled at 23 degreeC for 30 second, and formed the resist film with an average thickness of 90 nm. Next, this resist film was subjected to an optical condition of NA = 1.3 and dipole (Sigma 0.977 / 0.782) using an ArF excimer laser immersion exposure apparatus (“NSR-S610C” manufactured by NIKON). , Exposed through a 40 nm line and space (1L1S) mask pattern. After the exposure, PEB was performed at 90 ° C. for 60 seconds. Thereafter, the resist was alkali-developed using a 2.38 mass% TMAH aqueous solution as an alkali developer, washed with water, and dried to form a positive resist pattern. When forming the resist pattern, the exposure amount formed in a one-to-one line and space with a line width of 40 nm and a line width formed through a one-to-one line and space mask with a target dimension of 40 nm is an optimum exposure amount ( Eop).
[レジストパターンの形成(2)]
 上記[レジストパターンの形成(1)]においてTMAH水溶液の代わりに酢酸n-ブチルを用いて有機溶媒現像し、かつ水での洗浄を行わなかった以外は、上記[レジストパターンの形成(1)]と同様に操作して、ネガ型のレジストパターンを形成した。
[Formation of resist pattern (2)]
The above [Resist pattern formation (1)] except that in [Resist pattern formation (1)], the organic solvent was developed using n-butyl acetate instead of the TMAH aqueous solution, and washing with water was not performed. In the same manner as described above, a negative resist pattern was formed.
[レジストパターンの形成(3)]
 8インチのシリコンウエハー表面にスピンコーター(東京エレクトロン社の「CLEAN TRACK ACT8」)を使用して、表3に記載した各感放射線性樹脂組成物を塗布し、90℃で60秒間PBを行った。その後、23℃で30秒間冷却し、平均厚さ50nmのレジスト膜を形成した。次に、このレジスト膜に、簡易型の電子線描画装置(日立製作所社の「HL800D」、出力:50KeV、電流密度:5.0A/cm)を用いて電子線を照射した。照射後、120℃で60秒間PEBを行った。その後、アルカリ現像液として2.38質量%のTMAH水溶液を用いて23℃で30秒間現像し、水で洗浄し、乾燥してポジ型のレジストパターンを形成した。
[Formation of resist pattern (3)]
Using a spin coater (“CLEAN TRACK ACT8” manufactured by Tokyo Electron Ltd.) on the surface of an 8-inch silicon wafer, each radiation sensitive resin composition described in Table 3 was applied, and PB was performed at 90 ° C. for 60 seconds. . Then, it cooled at 23 degreeC for 30 second, and formed the resist film with an average thickness of 50 nm. Next, the resist film was irradiated with an electron beam by using a simple electron beam drawing apparatus (“HL800D” manufactured by Hitachi, Ltd., output: 50 KeV, current density: 5.0 A / cm 2 ). After irradiation, PEB was performed at 120 ° C. for 60 seconds. Thereafter, development was performed at 23 ° C. for 30 seconds using a 2.38 mass% TMAH aqueous solution as an alkali developer, washed with water, and dried to form a positive resist pattern.
[レジストパターンの形成(4)]
 上記TMAH水溶液の代わりに酢酸n-ブチルを用いて有機溶媒現像し、かつ水での洗浄を行わなかった以外は、上記レジストパターンの形成(3)と同様に操作して、ネガ型のレジストパターンを形成した。
[Formation of resist pattern (4)]
A negative resist pattern was prepared in the same manner as in the resist pattern formation (3) except that n-butyl acetate was used instead of the TMAH aqueous solution and the organic solvent was developed and no washing with water was performed. Formed.
<評価>
 上記感放射線性樹脂組成物を用いて形成したレジストパターンについて、下記方法により測定を行うことにより、感放射線性樹脂組成物についてのLWR性能、MEEF性能、CDU性能、解像性、断面形状の矩形性、焦点深度及び露光余裕度を評価した。評価結果を、表4及び表5に示す。なお、レジストパターンの測長には走査型電子顕微鏡(日立ハイテクノロジーズ社の「CG-4100」)を用いた。また、LWR性能、MEEF性能、CDU性能、解像性、焦点深度及び露光余裕度における判定基準となる比較例は、実施例50については、比較例1及び比較例2、実施例51~71については比較例1、実施例72については比較例3、実施例73については比較例4、実施例74については比較例5、実施例75については比較例6及び比較例7、実施例76~96については比較例6、実施例97については比較例8、実施例98については比較例9、実施例99については比較例10、実施例100については比較例11、実施例101については比較例12、実施例102については比較例13である。
<Evaluation>
About the resist pattern formed using the said radiation sensitive resin composition, it measures by the following method, LWR performance about a radiation sensitive resin composition, MEEF performance, CDU performance, resolution, rectangle of a cross-sectional shape , Depth of focus and exposure margin were evaluated. The evaluation results are shown in Tables 4 and 5. A scanning electron microscope (Hitachi High-Technologies “CG-4100”) was used for measuring the resist pattern. In addition, comparative examples serving as determination criteria in LWR performance, MEEF performance, CDU performance, resolution, depth of focus, and exposure margin are as follows. For Example 50, Comparative Example 1 and Comparative Example 2, and Examples 51 to 71 are used. Is Comparative Example 1 for Example 72, Comparative Example 3 for Example 72, Comparative Example 4 for Example 73, Comparative Example 5 for Example 74, Comparative Example 6 and Comparative Example 7 for Example 75, and Examples 76-96. Comparative Example 6 for Example 97, Comparative Example 8 for Example 97, Comparative Example 9 for Example 98, Comparative Example 10 for Example 99, Comparative Example 11 for Example 100, Comparative Example 12 for Example 101 Example 102 is Comparative Example 13.
[LWR性能]
 上記Eopの露光量を照射して形成したレジストパターンを、上記走査型電子顕微鏡を用いてパターン上部から観察した。線幅を任意のポイントで計50点測定し、その測定値の分布から3シグマ値を求め、これをLWR性能とした。LWR性能は、その値が小さいほどラインのガタつきが小さく良いことを示す。LWR性能は、その値を比較例のものと比べたとき、10%以上の向上(LWR性能の値が90%以下)があった場合は「良好」と、10%未満の向上(LWR性能の値が90%超)の場合は「不良」と評価した。
[LWR performance]
The resist pattern formed by irradiating the exposure amount of Eop was observed from above the pattern using the scanning electron microscope. A total of 50 line widths were measured at arbitrary points, and a 3-sigma value was obtained from the distribution of the measured values, and this was defined as LWR performance. The LWR performance indicates that the smaller the value, the smaller the backlash of the line. When the LWR performance is 10% or more (LWR performance is 90% or less) when compared with the comparative example, the LWR performance is “good” and less than 10% (LWR performance is improved). When the value was over 90%), it was evaluated as “bad”.
[MEEF性能]
 上記Eopの露光量を照射して解像されるレジストパターンにおいて、線幅が51nm、53nm、55nm、57nm、59nmとなるマスクパターンを用いて形成されたレジストパターンの線幅を縦軸に、マスクパターンのサイズを横軸にプロットしたときの直線の傾きを算出し、これをMEEF性能とした。MEEF性能は、その値が1に近いほどマスク再現性が良好であることを示す。MEEF性能は、その値を比較例のものと比べたとき、10%以上の向上(MEEF性能の値が90%以下)があった場合は「良好」と、10%未満の向上(MEEF性能の値が90%超)の場合は「不良」と評価した。
[MEEF performance]
In the resist pattern that is resolved by irradiating with the exposure amount of Eop, the line width of the resist pattern formed by using the mask pattern having the line widths of 51 nm, 53 nm, 55 nm, 57 nm, and 59 nm is plotted on the vertical axis. The slope of the straight line when the pattern size was plotted on the horizontal axis was calculated, and this was taken as the MEEF performance. The MEEF performance indicates that the closer the value is to 1, the better the mask reproducibility. When the MEEF performance is 10% or more when the value is compared with that of the comparative example (MEEF performance value is 90% or less), the MEEF performance is less than 10% (MEEF performance is improved). When the value was over 90%), it was evaluated as “bad”.
[CDU性能]
 上記Eopの露光量を照射して形成したレジストパターンを、上記走査型電子顕微鏡を用いてパターン上部から観察した。400nmの範囲で線幅を20点測定してその平均値を求め、その平均値を任意のポイントで計500点測定し、その測定値の分布から3シグマ値を求め、これをCDU性能とした。CDU性能は、その値が小さいほど長周期での線幅のバラつきが小さく良いことを示す。CDU性能は、その値を比較例のものと比べたとき、10%以上の向上(CDU性能の値が90%以下)があった場合は「良好」と、10%未満の向上(CDU性能の値が90%超)の場合は「不良」と評価した。
[CDU performance]
The resist pattern formed by irradiating the exposure amount of Eop was observed from above the pattern using the scanning electron microscope. The line width is measured at 20 points in the range of 400 nm, the average value is obtained, the average value is measured at a total of 500 points, and the 3 sigma value is obtained from the distribution of the measured values, which is taken as the CDU performance. . The CDU performance indicates that the smaller the value, the smaller the line width variation in a long cycle. When the CDU performance is improved by 10% or more (the CDU performance value is 90% or less) when the value is compared with that of the comparative example, the improvement is less than 10% (the CDU performance is improved). When the value was over 90%), it was evaluated as “bad”.
[解像性]
 上記Eopの露光量を照射して解像される最小のレジストパターンの寸法を測定し、この測定値を解像性とした。解像性は、その値が小さいほどより微細なパターンを形成でき良いことを示す。解像性は、その値を比較例のものと比べたとき、10%以上の向上(解像性の値が90%以下)があった場合は「良好」と、10%未満の向上(解像性の値が90%超)の場合は「不良」と評価した。
[Resolution]
The dimension of the minimum resist pattern resolved by irradiating the exposure amount of Eop was measured, and this measured value was defined as the resolution. The resolution indicates that the smaller the value, the better the pattern can be formed. When the resolution is 10% or more when the value is compared with that of the comparative example (resolution value is 90% or less), “good” and less than 10% (solution) In the case of an image quality value of more than 90%, it was evaluated as “bad”.
[断面形状の矩形性]
 上記Eopの露光量を照射して解像されるレジストパターンの断面形状を観察し、レジストパターンの高さ方向での中間での線幅Lb及びレジストパターンの上部での線幅Laを測定した。断面形状の矩形性は、その値が1に近いほど、レジストパターンがより矩形であり良いことを示す。断面形状の矩形性は、0.9≦(La/Lb)≦1.1である場合は「良好」と、(La/Lb)<0.9又は1.1<(La/Lb)である場合は「不良」と評価した。
[Rectangularity of the cross-sectional shape]
The cross-sectional shape of the resist pattern resolved by irradiating the exposure amount of Eop was observed, and the line width Lb in the middle in the height direction of the resist pattern and the line width La in the upper part of the resist pattern were measured. The rectangularity of the cross-sectional shape indicates that the closer the value is to 1, the more the resist pattern may be rectangular. The rectangularity of the cross-sectional shape is “good” when 0.9 ≦ (La / Lb) ≦ 1.1, and (La / Lb) <0.9 or 1.1 <(La / Lb). The case was evaluated as “bad”.
[焦点深度]
 上記Eopの露光量を照射して解像されるレジストパターンにおいて、深さ方向にフォーカスを変化させた際の寸法を観測し、ブリッジや残渣が無いままパターン寸法が基準の90%~110%に入る深さ方向の余裕度を測定し、この測定値を焦点深度とした。焦点深度は、その値が大きいほど、焦点の位置が変動した際に得られるパターンの寸法の変動が小さく、デバイス作製時の歩留まりを高くすることができる。焦点深度は、その値を比較例のものと比べたとき10%以上の向上(焦点深度が110%以上)があった場合は「良好」と、10%未満の向上(焦点深度が110%未満)の場合は「不良」と評価した。
[Depth of focus]
In the resist pattern resolved by irradiating the exposure amount of Eop, the dimension when the focus is changed in the depth direction is observed, and the pattern dimension is 90% to 110% of the reference without any bridge or residue. The depth of entry in the depth direction was measured, and this measured value was defined as the depth of focus. The larger the value of the focal depth, the smaller the variation in the dimension of the pattern obtained when the focal position varies, and the higher the yield during device fabrication. Depth of focus is 10% or better when the value is compared with that of the comparative example (depth of focus is 110% or more), and better than 10% (depth of focus is less than 110%). ) Was evaluated as “bad”.
[露光余裕度]
 上記Eopを含む露光量の範囲において、露光量を1mJ/cmごとに変えて、それぞれレジストパターンを形成し、上記走査型電子顕微鏡を用いて、それぞれの線幅を測定した。得られた線幅と露光量の関係から、線幅が44nmとなる露光量E(44)及び線幅が36nmとなる露光量E(36)を求め、露光余裕度=(E(36)-E(44))×100/(最適露光量)の式から露光余裕度(%)を算出した。露光余裕度は、その値が大きいほど、露光量が変動した際に得られるパターンの寸法の変動が小さく、デバイス作製時の歩留まりを高くすることができる。露光余裕度は、その値を比較例のものと比べたとき、10%以上の向上(露光余裕度の値が110%以上)があった場合は「良好」と、10%未満の向上(露光余裕度の値が110%未満)の場合は「不良」と評価した。
[Exposure margin]
In the range of the exposure amount including the Eop, the exposure amount was changed every 1 mJ / cm 2 to form resist patterns, respectively, and the respective line widths were measured using the scanning electron microscope. From the relationship between the obtained line width and exposure amount, an exposure amount E (44) at which the line width becomes 44 nm and an exposure amount E (36) at which the line width becomes 36 nm are obtained, and the exposure margin = (E (36) − The exposure margin (%) was calculated from the equation of E (44)) × 100 / (optimum exposure amount). The larger the value of the exposure margin, the smaller the variation in the dimension of the pattern obtained when the exposure amount fluctuates, and the higher the yield during device fabrication. When the exposure margin is 10% or more when the value is compared with that of the comparative example (exposure margin is 110% or more), it is “good” and less than 10% (exposure). When the margin value was less than 110%, it was evaluated as “bad”.
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000043
 本発明の感放射線性樹脂組成物及びレジストパターン形成方法によれば、優れたMEEF性能、焦点深度及び露光余裕度を発揮して、LWR性能、CDU性能、解像性及び断面形状の矩形性に優れるレジストパターンを形成することができる。本発明の重合体は、当該感放射線性樹脂組成物の重合体成分として好適に用いられる。本発明の化合物は、上記式(i)で表される構造を有するので、当該重合体中に構造単位(I)を組み込む単量体化合物として好適に用いられる。従って、これらは、今後ますます微細化が進行すると予想される半導体デバイス製造等におけるパターン形成に好適に用いることができる。 According to the radiation sensitive resin composition and resist pattern forming method of the present invention, excellent MEEF performance, depth of focus and exposure margin are exhibited, and LWR performance, CDU performance, resolution, and cross-sectional rectangularity are obtained. An excellent resist pattern can be formed. The polymer of this invention is used suitably as a polymer component of the said radiation sensitive resin composition. Since the compound of the present invention has a structure represented by the above formula (i), it is suitably used as a monomer compound that incorporates the structural unit (I) into the polymer. Therefore, these can be suitably used for pattern formation in semiconductor device manufacturing or the like, where miniaturization is expected to progress further in the future.

Claims (10)

  1.  下記式(1)で表される基を含む構造単位を有する重合体、及び
     感放射線性酸発生体
    を含有する感放射線性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、Rは、置換又は非置換の炭素数1~10の2価の炭化水素基である。Rは、単結合又は置換若しくは非置換の炭素数1~5の2価の鎖状炭化水素基である。Rと1又は複数のRのうちの少なくともいずれかとは、互いに合わせられこれらが結合する炭素原子と共に構成される環員数3~20の環構造を形成していてもよい。aは、1~3の整数である。aが2以上の場合、複数のRは同一でも異なっていてもよい。Aは、2つ以上のヘテロ原子を有し、Rに炭素原子で結合する1価の基である。*は、結合部位を示す。)
    The radiation sensitive resin composition containing the polymer which has a structural unit containing group represented by following formula (1), and a radiation sensitive acid generator.
    Figure JPOXMLDOC01-appb-C000001
    (In formula (1), R 1 is a substituted or unsubstituted divalent hydrocarbon group having 1 to 10 carbon atoms. R 2 is a single bond or a substituted or unsubstituted 2 having 1 to 5 carbon atoms. R 1 and at least one of one or more R 2 form a ring structure having 3 to 20 ring members composed of carbon atoms to which they are bonded together and to which they are bonded. A is an integer of 1 to 3. When a is 2 or more, a plurality of R 2 may be the same or different, and A has two or more heteroatoms, (This is a monovalent group bonded to R 2 by a carbon atom. * Indicates a bonding site.)
  2.  上記式(1)におけるAが、複素環構造を有する1価の環状基である請求項1に記載の感放射線性樹脂組成物。 The radiation-sensitive resin composition according to claim 1, wherein A in the formula (1) is a monovalent cyclic group having a heterocyclic structure.
  3.  上記複素環構造が、ラクトン構造、ラクタム構造、スルトン構造、環状スルホン構造、環状スルホキシド構造、環状アミン構造、環状イミド構造、環状スルホンアミド構造又はこれらの組み合わせである請求項2に記載の感放射線性樹脂組成物。 The radiation sensitivity according to claim 2, wherein the heterocyclic structure is a lactone structure, a lactam structure, a sultone structure, a cyclic sulfone structure, a cyclic sulfoxide structure, a cyclic amine structure, a cyclic imide structure, a cyclic sulfonamide structure, or a combination thereof. Resin composition.
  4.  上記重合体が、上記構造単位として、下記式(2-1)で表される構造単位、下記式(2-2)で表される構造単位又はこれらの組み合わせを有する請求項1に記載の感放射線性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000002
    (式(2-1)及び(2-2)中、Zは、上記式(1)で表される基である。R10は、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。
     式(2-2)中、Lは、単結合、-O-、-COO-又は-CONH-である。)
    The sensitivity according to claim 1, wherein the polymer has a structural unit represented by the following formula (2-1), a structural unit represented by the following formula (2-2), or a combination thereof as the structural unit. Radiation resin composition.
    Figure JPOXMLDOC01-appb-C000002
    (In the formulas (2-1) and (2-2), Z is a group represented by the above formula (1), and R 10 is a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group. .
    In the formula (2-2), L is a single bond, —O—, —COO— or —CONH—. )
  5.  上記式(1)におけるaが1である請求項1に記載の感放射線性樹脂組成物。 The radiation sensitive resin composition according to claim 1, wherein a in the above formula (1) is 1.
  6.  上記式(1)におけるRが単結合である請求項1に記載の感放射線性樹脂組成物。 The radiation sensitive resin composition according to claim 1, wherein R 2 in the formula (1) is a single bond.
  7.  上記式(1)におけるRが置換又は非置換のメタンジイル基である請求項1に記載の感放射線性樹脂組成物。 The radiation sensitive resin composition according to claim 1, wherein R 1 in the formula (1) is a substituted or unsubstituted methanediyl group.
  8.  レジスト膜を形成する工程、
     上記レジスト膜を露光する工程、及び
     上記露光されたレジスト膜を現像する工程
    を備え、
     上記レジスト膜を請求項1に記載の感放射線性樹脂組成物により形成するレジストパターン形成方法。
    Forming a resist film;
    A step of exposing the resist film, and a step of developing the exposed resist film,
    A method for forming a resist pattern, wherein the resist film is formed from the radiation-sensitive resin composition according to claim 1.
  9.  下記式(I)で表される構造単位を有する重合体。
    Figure JPOXMLDOC01-appb-C000003
    (式(I)中、Rは、置換又は非置換の炭素数1~10の2価の炭化水素基である。Rは、単結合又は置換若しくは非置換の炭素数1~5の2価の鎖状炭化水素基である。Rと1又は複数のRのうちの少なくともいずれかとは、互いに合わせられこれらが結合する炭素原子と共に構成される環員数3~20の環構造を形成していてもよい。aは、1~3の整数である。aが2以上の場合、複数のRは同一でも異なっていてもよい。R10は、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。Aは、2つ以上のヘテロ原子を有し、Rに炭素原子で結合する1価の基である。)
    A polymer having a structural unit represented by the following formula (I).
    Figure JPOXMLDOC01-appb-C000003
    (In the formula (I), R 1 is a substituted or unsubstituted divalent hydrocarbon group having 1 to 10 carbon atoms. R 2 is a single bond or a substituted or unsubstituted 2 having 1 to 5 carbon atoms. R 1 and at least one of one or more R 2 form a ring structure having 3 to 20 ring members composed of carbon atoms to which they are bonded together and to which they are bonded. A is an integer of 1 to 3. When a is 2 or more, a plurality of R 2 may be the same or different, and R 10 is a hydrogen atom, a fluorine atom, a methyl group or A is a trifluoromethyl group, and A is a monovalent group having two or more heteroatoms and bonded to R 2 with a carbon atom.
  10.  下記式(i)で表される化合物。
    Figure JPOXMLDOC01-appb-C000004
    (式(i)中、Rは、置換又は非置換の炭素数1~10の2価の炭化水素基である。Rは、単結合又は置換若しくは非置換の炭素数1~5の2価の鎖状炭化水素基である。Rと1又は複数のRのうちの少なくともいずれかとは、互いに合わせられこれらが結合する炭素原子と共に構成される環員数3~20の環構造を形成していてもよい。aは、1~3の整数である。aが2以上の場合、複数のRは同一でも異なっていてもよい。R10は、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。Aは、2つ以上のヘテロ原子を有し、Rに炭素原子で結合する1価の基である。)
     
    A compound represented by the following formula (i).
    Figure JPOXMLDOC01-appb-C000004
    (In the formula (i), R 1 is a substituted or unsubstituted divalent hydrocarbon group having 1 to 10 carbon atoms. R 2 is a single bond or a substituted or unsubstituted 2 having 1 to 5 carbon atoms. R 1 and at least one of one or more R 2 form a ring structure having 3 to 20 ring members composed of carbon atoms to which they are bonded together and to which they are bonded. A is an integer of 1 to 3. When a is 2 or more, a plurality of R 2 may be the same or different, and R 10 is a hydrogen atom, a fluorine atom, a methyl group or A is a trifluoromethyl group, and A is a monovalent group having two or more heteroatoms and bonded to R 2 with a carbon atom.
PCT/JP2015/055718 2014-02-26 2015-02-26 Radiosensitive resin composition, method for forming resist pattern, polymer, and compound WO2015129832A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016505307A JP6493386B2 (en) 2014-02-26 2015-02-26 Radiation sensitive resin composition, resist pattern forming method, polymer and compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014036085 2014-02-26
JP2014-036085 2014-02-26

Publications (1)

Publication Number Publication Date
WO2015129832A1 true WO2015129832A1 (en) 2015-09-03

Family

ID=54009146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/055718 WO2015129832A1 (en) 2014-02-26 2015-02-26 Radiosensitive resin composition, method for forming resist pattern, polymer, and compound

Country Status (2)

Country Link
JP (1) JP6493386B2 (en)
WO (1) WO2015129832A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021131655A1 (en) * 2019-12-27 2021-07-01 富士フイルム株式会社 Actinic-ray-sensitive or radiation-sensitive resin composition, actinic-ray-sensitive or radiation-sensitive film, pattern formation method, and electronic device manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001235861A (en) * 2000-02-21 2001-08-31 Hitachi Ltd Pattern forming method and method for producing semiconductor device using same
JP2011059674A (en) * 2009-08-10 2011-03-24 Sumitomo Chemical Co Ltd Resist composition
JP2012215722A (en) * 2011-03-31 2012-11-08 Jsr Corp Composition for forming overlay film for liquid immersion
JP2014085642A (en) * 2012-10-26 2014-05-12 Tokyo Ohka Kogyo Co Ltd Resist composition, resist pattern formation method, polymeric compound, compound
JP2014136708A (en) * 2013-01-15 2014-07-28 Shin Etsu Chem Co Ltd Monomer, polymeric compound, resist material and pattern forming method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006310500A (en) * 2005-04-27 2006-11-09 Konica Minolta Holdings Inc Wiring board, piezoelectric ceramic element and their manufacturing methods

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001235861A (en) * 2000-02-21 2001-08-31 Hitachi Ltd Pattern forming method and method for producing semiconductor device using same
JP2011059674A (en) * 2009-08-10 2011-03-24 Sumitomo Chemical Co Ltd Resist composition
JP2012215722A (en) * 2011-03-31 2012-11-08 Jsr Corp Composition for forming overlay film for liquid immersion
JP2014085642A (en) * 2012-10-26 2014-05-12 Tokyo Ohka Kogyo Co Ltd Resist composition, resist pattern formation method, polymeric compound, compound
JP2014136708A (en) * 2013-01-15 2014-07-28 Shin Etsu Chem Co Ltd Monomer, polymeric compound, resist material and pattern forming method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021131655A1 (en) * 2019-12-27 2021-07-01 富士フイルム株式会社 Actinic-ray-sensitive or radiation-sensitive resin composition, actinic-ray-sensitive or radiation-sensitive film, pattern formation method, and electronic device manufacturing method
JP7379536B2 (en) 2019-12-27 2023-11-14 富士フイルム株式会社 Actinic ray-sensitive or radiation-sensitive resin composition, actinic ray-sensitive or radiation-sensitive film, pattern forming method, and electronic device manufacturing method

Also Published As

Publication number Publication date
JPWO2015129832A1 (en) 2017-03-30
JP6493386B2 (en) 2019-04-03

Similar Documents

Publication Publication Date Title
JP6237182B2 (en) Resin composition, resist pattern forming method, polymer and compound
JP6303943B2 (en) Radiation-sensitive resin composition and resist pattern forming method
JP6264144B2 (en) Polymer, radiation-sensitive resin composition, and resist pattern forming method
JP2017122780A (en) Radiation-sensitive resin composition, resist pattern forming method, polymer and compound
JP2017156649A (en) Radiation-sensitive resin composition, resist pattern forming method, polymer and compound
JP6519672B2 (en) Resin composition and method for forming resist pattern
JP2017181697A (en) Radiation-sensitive resin composition and method for forming resist pattern
JP6331359B2 (en) Radiation sensitive resin composition, resist pattern forming method, polymer and compound
JP6668825B2 (en) Radiation-sensitive resin composition and method for forming resist pattern
JP6606926B2 (en) Radiation-sensitive resin composition, resist pattern forming method and compound
JP2017156650A (en) Radiation-sensitive resin composition, resist pattern forming method, radiation-sensitive acid generator and compound
JP2016071207A (en) Radiation-sensitive resin composition, method for forming resist pattern, polymer, and compound
JP6668831B2 (en) Radiation-sensitive resin composition, resist pattern forming method, radiation-sensitive acid generator and compound
JP6593138B2 (en) Radiation sensitive resin composition, resist pattern forming method and radiation sensitive acid generator
JP6183268B2 (en) Radiation-sensitive resin composition and resist pattern forming method
JP2018097125A (en) Radiation-sensitive resin composition and method for forming resist pattern
JP6493386B2 (en) Radiation sensitive resin composition, resist pattern forming method, polymer and compound
JP2018049177A (en) Radiation-sensitive resin composition, method for forming resist pattern, radiation-sensitive acid generator, compound and production method of compound
JP2017044874A (en) Radiation-sensitive resin composition and method for forming resist pattern
JP2017003927A (en) Radiation-sensitive resin composition and method for forming resist pattern
JP6417830B2 (en) Radiation sensitive resin composition, resist pattern forming method, and polymer
JP6398267B2 (en) Radiation-sensitive resin composition and resist pattern forming method
JP6492821B2 (en) Radiation sensitive resin composition, resist pattern forming method, polymer and compound
JP6380617B2 (en) Resin composition, resist pattern forming method, polymer and compound
JP6241267B2 (en) Radiation-sensitive resin composition and resist pattern forming method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15755802

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016505307

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15755802

Country of ref document: EP

Kind code of ref document: A1