WO2015129701A1 - Drive source control device and drive source control method for vehicle - Google Patents

Drive source control device and drive source control method for vehicle Download PDF

Info

Publication number
WO2015129701A1
WO2015129701A1 PCT/JP2015/055268 JP2015055268W WO2015129701A1 WO 2015129701 A1 WO2015129701 A1 WO 2015129701A1 JP 2015055268 W JP2015055268 W JP 2015055268W WO 2015129701 A1 WO2015129701 A1 WO 2015129701A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
drive source
command
vehicle
engine
Prior art date
Application number
PCT/JP2015/055268
Other languages
French (fr)
Japanese (ja)
Inventor
博昭 片瀬
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Publication of WO2015129701A1 publication Critical patent/WO2015129701A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18027Drive off, accelerating from standstill
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0666Engine torque

Definitions

  • the present invention relates to a vehicle drive source control device and a drive source control method.
  • the throttle valve opening is made smaller than the basic throttle valve opening, so the overshoot of the engine rotation speed and the acceleration peak at the start of the vehicle are suppressed, so the entire acceleration waveform is similar. Will be reduced. For this reason, if the driver feels that there is a lack of acceleration and then depresses the accelerator pedal, the engine speed may be increased or the acceleration peak may not be suppressed as intended.
  • an object of the present invention is to provide a device that can suppress an unnecessary engine speed increase when the vehicle starts and can improve the controllability of acceleration in a low accelerator opening range.
  • a vehicle drive source control device is premised on a vehicle having a power train in which a drive source and an automatic transmission are connected via a torque converter having a lock-up clutch. Further, a torque down command means, an upper limit torque command value setting means, and a torque down control means are provided.
  • the torque down command means issues a torque down command for preventing the drive source torque from exceeding the upper limit torque command value required by the automatic transmission.
  • the upper limit torque command value setting means calculates the upper limit torque command value so that the drive source rotational speed that rises when the vehicle starts is within the target engine rotational speed.
  • the torque down control means receives the torque down command and performs torque down control so that the drive source torque does not exceed the upper limit torque command value.
  • FIG. 1 is a schematic configuration diagram of a vehicle having a power train according to a first embodiment of the present invention.
  • FIG. 2 is a characteristic diagram showing the relationship between the accelerator opening and the peak value of acceleration.
  • FIG. 3 is a timing chart showing changes in the throttle valve opening, engine torque, and engine speed when the vehicle starts.
  • FIG. 4 is a control block diagram for calculating the upper limit torque command value.
  • FIG. 5 is a flowchart for explaining the setting of the start flag.
  • FIG. 6 is a flowchart for explaining the setting of the torque-down command flag.
  • FIG. 7 is a flowchart for explaining calculation of the engine torque command value and the ignition timing command value.
  • FIG. 8 is a characteristic diagram of basic engine torque.
  • FIG. 9 is a flowchart for explaining calculation of an engine torque command value according to the second embodiment.
  • FIG. 10 is a timing chart showing changes in the accelerator opening, throttle valve opening, engine torque, and vehicle acceleration when the vehicle starts.
  • FIG. 1 is a schematic configuration diagram of a vehicle 1 having a power train 2 to which the first embodiment of the present invention is applied.
  • the power train 2 includes an engine 3, a torque converter 31 including a lock-up clutch 34, a CVT (belt type automatic transmission) 41, a final drive gear 51, a differential gear 52, and a drive shaft 53.
  • CVT belt type automatic transmission
  • the air introduced from the intake passage 4 is supplied to the combustion chamber 6 of the gasoline engine 3 as a drive source through the intake port 5 of each cylinder.
  • the amount of air supplied to the combustion chamber 6 is adjusted by the opening of an electronically controlled throttle valve 11 provided in the intake passage 4 (hereinafter referred to as “throttle valve opening”).
  • the throttle valve 11 has its throttle valve opening controlled by a throttle motor 12.
  • the actual throttle valve opening is detected by the throttle sensor 13 and input to the engine controller 21 described later.
  • the engine 3 includes a fuel injection valve 7 in each intake port 5.
  • the fuel injection valve 7 intermittently supplies fuel toward the air flowing through the intake port 5.
  • the engine 3 includes a spark plug 8 facing the combustion chamber 6.
  • the air flowing into the combustion chamber 6 is mixed with fuel and becomes an air-fuel mixture.
  • the engine controller 21 generates a spark in the spark plug 8 by interrupting the primary current of the ignition coil at a predetermined time before the compression top dead center, thereby igniting the air-fuel mixture in the combustion chamber 6.
  • the gas combusted by this ignition is discharged to an exhaust passage (not shown).
  • the engine controller 21 controls the engine 3 in addition to the ignition control described above.
  • the engine controller 21 receives an accelerator opening signal (depression amount of the accelerator pedal 22) from an accelerator opening sensor 23, a crank angle signal from a crank angle sensor (engine speed sensor) 24, and an intake from an air flow meter 25.
  • An air volume signal is input. From the signal of the crank angle sensor 24, the rotational speed of the engine 2 is calculated.
  • the engine controller 21 calculates the target intake air amount and the target fuel injection amount based on these signals, and applies the throttle motor 12 and the fuel injection valve 7 of each cylinder so as to obtain the target intake air amount and the target fuel injection amount. Issue a command.
  • the torque converter 31 and the CVT 41 are connected to the output shaft of the engine 3.
  • the torque converter 31 has a pump impeller 32 and a turbine runner 33.
  • the CVT 41 includes a forward / reverse switching mechanism 42, a primary pulley 43, a secondary pulley 44, and a steel belt 45 that is wound around the pulleys 43 and 44.
  • the rotational driving force of the engine 2 is finally transmitted to the vehicle drive wheels 54 via the torque converter 31, CVT 41, final drive gear 51, differential gear 52, and drive shaft 53.
  • the vehicle 1 includes a CVT controller 61 for controlling the CVT 41.
  • the CVT controller 61 receives the input rotation speed Nt from the input rotation speed sensor 61 and the output rotation speed No from the output rotation speed sensor 62. Since the input shaft of the CVT 41 is connected to the turbine runner 33, the input rotational speed is also the rotational speed of the turbine runner 33 (turbine rotational speed).
  • the CVT controller 61 calculates the vehicle speed VSP based on the output rotation speed No, the final drive gear 51, and the effective tire radius of the drive wheel 53.
  • the CVT controller 6 controls the transmission ratio of the CVT 41 in a stepless manner in accordance with the traveling conditions of the vehicle 1 determined from the vehicle speed VSP and the throttle valve opening TVO.
  • the CVT controller 61 and the engine controller 21 are connected by CAN (Controller / Area / Network).
  • the engine speed Ne, the throttle valve opening TVO, the engine torque command value Te, and the basic engine torque Te0 are input from the engine controller 21 to the CVT controller 61 via the CAN communication.
  • the torque converter 31 includes a mechanical lock-up clutch 34 that fastens and opens the pump impeller 32 and the turbine runner 33.
  • the CVT controller 61 predetermines a traveling region of the vehicle for fastening the lockup clutch 34 as a lockup region (vehicle speed and throttle opening are used as parameters).
  • the CVT controller 61 brings the engine 3 and the CVT 41 into a direct connection state by engaging a lock-up clutch when the vehicle traveling condition is in the lock-up region.
  • the CVT controller 61 releases the lockup clutch 34.
  • the engine 3 and the CVT 41 are in a directly connected state, loss due to differential rotation in the torque converter 31 is eliminated, and fuel consumption is improved accordingly.
  • the acceleration peak value Gp is proportional to the torque converter output torque Tt, and the torque converter output torque Tt is determined by the following equation.
  • Tt t ⁇ ⁇ ⁇ Ne 2 (1)
  • t torque ratio [unknown number]
  • Coefficient of torque capacity [10-6 ⁇ Nm / rpm2]
  • Ne Engine rotation speed [rpm]
  • the minimum unit (decomposition performance) that the driver can step on the accelerator pedal 22 is, for example, about 1 cm. In this case, even if it is known that how much mm the accelerator pedal 22 is depressed to obtain the desired acceleration, it is impossible for the driver to accurately decrement how many mm.
  • FIG. 3 is a timing chart showing how the throttle valve opening TVO, the engine torque, the target engine speed tNe, and the actual engine speed Ne change when the vehicle starts.
  • the torque down command flag shown at the bottom of FIG. 3 will be described later.
  • the throttle valve opening TVO is set to the initial opening state of zero, and the target engine speed tNe is set to the target engine speed NSET during idling.
  • the actual engine rotational speed Ne should normally coincide with the target rotational speed NSET during idling, but here it is assumed that the rotational speed is lower than the target rotational speed NSET during idling for some reason. Yes.
  • the throttle valve opening TVO When the accelerator pedal 22 is depressed by a certain amount at timing t1 and the throttle valve opening TVO changes from 0 to a predetermined value TVO1, the throttle valve opening TVO maintains a constant value (TVO1) from timing t2.
  • TVO1 a constant value
  • the target engine speed tNe of the engine In response to the change in the throttle valve opening TVO, the target engine speed tNe of the engine also becomes higher than the target engine speed NSET during idling at timing t1, and the predetermined value tNe1 is held from timing t2.
  • the basic engine torque Te0 changes substantially in accordance with the change in the throttle valve opening TVO as shown by the solid line in the second stage from the top of FIG.
  • the actual engine rotational speed Ne is slightly delayed by the basic engine torque Te0 from the timing t1 at which the throttle valve opening TVO increases as shown by the broken line in the third stage from the top of FIG. Rise. Then, at timing t3, it greatly overshoots across the target rotational speed tNe of the engine 3 and then decreases and converges to the target rotational speed tNe.
  • the CVT controller 61 puts the lockup clutch 34 in a non-engaged state in order to prevent engine stall. Then, when the driver's intention to start is detected, the lockup clutch 34 starts to be engaged when the speed ratio is small. Therefore, as shown in the third stage from the top of FIG. 3, the turbine rotational speed Nt rises before the timing t2 and gradually increases, and coincides with the engine rotational speed Ne at the timing t8 (the lock clutch 34). Is fully concluded).
  • the reason why the CVT controller 61 fastens the lockup clutch 34 at the time of starting the vehicle is that the fuel fastness is better when the lockup clutch 34 is fastened than when the lockup clutch 34 is kept open.
  • the command torque capacity of the lockup clutch 34 actually rises only from timing t4 that is delayed from timing t3. This is because there is a delay from when the CVT controller 61 issues an engagement command to the lockup clutch engagement means until the lockup clutch 34 actually responds (engagement delay of the lockup clutch 34).
  • the lock-up clutch engagement means includes a piston, hydraulic oil supply means, a control valve that can adjust the supply amount of hydraulic oil to the piston, and the like (not shown).
  • hydraulic oil having a constant pressure is supplied from the hydraulic oil supply means to the piston attached to the turbine runner 33.
  • the piston is extended by the supply of the hydraulic oil, and the extended piston is pressed against the converter cover.
  • the input shaft (converter cover) and the output shaft (turbine runner) are directly engaged (the lock-up clutch 34 is engaged).
  • the time until the lockup clutch 34 is engaged is determined by the opening of the control valve, and the lockup clutch 34 is quickly engaged as the opening of the control valve is increased. Since the lock-up clutch 34 is driven by the supply of hydraulic oil to the piston, even if the engagement command is issued at t3 when the engine rotation speed Ne crosses the target rotation speed tNe, there is a delay until the command torque capacity rises (from t3 to t4) This occurs.
  • the engine rotational speed Ne overshoots across the target rotational speed tNe and increases to a considerably high rotational speed during the engagement delay of the lockup clutch 34. . Then, as indicated by the one-dot chain line in the second stage from the top in FIG. 3, when the command torque capacity of the lockup clutch 34 finally increases suddenly from the timing t4, the one-dot chain line in the third stage from the top in FIG. As shown in FIG. 8, the engine rotational speed Ne drops rapidly from the timing t4 as the command torque capacity increases. If there is a sudden drop in the engine speed Ne from the timing t4, a shock is generated, which causes a problem that a natural driving feeling cannot be provided to the driver.
  • the CVT controller 61 performs control as indicated by a broken line in the second stage from the top of FIG. 3 in order to avoid such a sudden drop in the engine speed Ne from the timing t4. That is, even if the timing for increasing the command torque capacity is the same timing t4, the command torque capacity of the lockup clutch 34 is increased by making the gradient of the initial increase gentle. However, when the slope of the initial increase is moderated and the command torque capacity of the lockup clutch 34 is increased, the engine rotational speed Ne becomes higher than the target rotational speed tNe as indicated by the broken line in the third stage from the top of FIG. It will be quite expensive.
  • hydraulic oil is preferentially supplied to the frictional engagement elements for shifting, and the lockup clutch 34 is only turned in a slow order for fastening.
  • an increase in the command torque capacity of the lockup clutch is delayed due to a delay in the timing at which the constant pressure hydraulic oil is supplied to the piston constituting the lockup clutch fastening means.
  • the CVT controller 61 that performs the engagement control of the lockup clutch 34 when the vehicle starts and the engine controller 21 that performs the engine control perform coordinated control. That is, as shown in FIG. 1, the CVT controller 61 (torque down command means) outputs a torque down command to the engine controller 21 so that the engine torque does not exceed the upper limit torque command value Td requested by the CVT 41. Then, the engine controller 21 (torque down control means) that receives the torque down command performs the following torque down control. That is, when the basic engine torque Te0 (engine torque) exceeds the upper limit torque command value Td, the engine controller 21 reduces the engine torque to the upper limit torque command value Td by retarding the ignition timing.
  • the CVT controller 61 (upper limit torque command value setting means) sets the upper limit torque command value Td so that the maximum value of the engine speed that increases when the vehicle starts is close to the target speed.
  • a method for setting the upper limit torque command value Td will be described with reference to FIG. FIG. 4 is a control block diagram for setting the upper limit torque command value.
  • a target rotational speed calculation unit 71 to which the throttle valve opening TVO detected by the throttle sensor 13 is input calculates a target rotational speed tNe [rpm] of the engine 3 from the throttle valve opening TVO.
  • the target rotational speed tNe takes a positive value (the target rotational speed NSET during idling) when the throttle valve opening TVO is zero, and is a value that increases as the throttle valve opening TVO increases.
  • the multiplier 72 to which the target rotational speed tNe is input calculates the square of the target rotational speed tNe.
  • the divider 73 to which the engine rotation speed Ne [rpm] and the turbine rotation speed Nt [rpm] detected by the input rotation speed sensor 62 are input, is obtained by dividing the turbine rotation speed Nt by the engine rotation speed Ne.
  • the ratio e [nameless number] is calculated.
  • the torque capacity coefficient calculation unit 74 (torque capacity coefficient calculation means) to which the speed ratio e is input calculates a torque capacity coefficient ⁇ [10 ⁇ 6 Nm / rpm 2] by searching a predetermined table from the speed ratio e. Since the characteristic of the torque capacity coefficient ⁇ with respect to the speed ratio e is determined in advance according to the specification of the torque converter 31, the specification may be made into a table.
  • the multiplier 75 (torque converter transmission torque calculation means) to which the torque capacity coefficient ⁇ and the square of the target rotational speed tNe are input multiplies them, that is, the transmission torque Ttc of the torque converter 31 by the following equation. [Nm] is calculated.
  • Ttc ⁇ ⁇ Ne2 (2)
  • the transmission torque Ttc thus obtained is a torque converter transmission torque for realizing the target rotational speed tNe.
  • the command torque capacity calculation unit 76 calculates a command torque capacity Tlu [Nm] of the lockup clutch 34.
  • the calculation of the command torque capacity Tlu of the lockup clutch 34 may be performed as follows. That is, when the opening degree of the control valve constituting the lock-up clutch fastening means is constant, the piston position (piston extension amount) is determined in proportion to the time after the control valve is opened. The command torque capacity is determined accordingly. For this reason, a table of command torque capacity of the lock-up clutch using the time since opening the control valve as a parameter is obtained in advance. Then, the command torque capacity Tlu of the lockup clutch is calculated by searching the above table from the time after opening the control valve.
  • the adder 77 (adding means) adds the torque converter transmission torque Ttc for realizing the target rotational speed tNe and the command torque capacity Tlu [Nm] of the lockup clutch, and uses the obtained sum as an upper limit torque command. Set as the value Td [Nm].
  • the upper limit torque command value Td By setting the upper limit torque command value Td in this way, it is possible to avoid the engine rotational speed Ne from becoming less than the target rotational speed tNe while obtaining the acceleration feeling desired by the driver even when starting uphill. For example, even when the vehicle starts on an uphill, even when the target rotational speed tNe is the same, the vehicle acceleration decreases due to the slope of the uphill compared to when the vehicle starts on a flat road. For this reason, the degree of increase in the turbine rotational speed Nt is reduced, and the speed ratio e is reduced compared to when the vehicle starts on a flat road.
  • an upper limit torque command value uniformly set based on the throttle valve opening TVO is given so as to obtain an acceleration desired by the driver when the vehicle starts on a flat road.
  • the engine rotational speed Ne becomes less than the target rotational speed tNe when the vehicle starts on the uphill by the difference between the torque capacity coefficient ⁇ between the uphill and the flat road.
  • the speed ratio e becomes smaller than when starting a vehicle on a flat road, so the engine speed Ne is obtained while obtaining the acceleration feeling desired by the driver when starting uphill. Is less than the target rotational speed tNe.
  • the engine controller 21 to which the upper limit torque instruction value Td is sent from the CVT controller 61 performs torque down control. This will be described again with reference to FIG. In the second row from the top in FIG. 3, the change in the upper limit torque command value Td sent from the CVT controller 61 is shown in a two-dot chain line.
  • the transmission torque Ttc of the torque converter 31 actually changes in the section from the timing t3 to the timing t4.
  • Ttc changes with a constant value in a simplified manner.
  • the command torque capacity Tlu of the lockup clutch 34 increases linearly from timing t4
  • the upper limit torque command value Td which is a value obtained by adding the command torque capacity Tlu to the transmission torque Ttc of the torque converter 31, is the command torque
  • the capacitance Tlu increases with the same inclination as the inclination of increase (straight line).
  • the upper limit torque command value Td crosses the basic engine torque Te0 at timing t5.
  • the engine controller 21 performs the timing from the timing t3 when the upper limit torque command value Td falls below the basic engine torque Te0.
  • the engine torque is limited during the period up to t5. That is, in a section from timing t3 to timing t4, torque down control is performed in which the upper limit torque command value Td is used as the engine torque command value instead of the basic engine torque Te0.
  • the hatched area shown in the second row from the top of FIG. 3 surrounded by the solid basic engine torque Te0 and the two-dot chain upper limit torque command value Td is the torque cut of the engine in this embodiment. .
  • the CVT controller 61 ends the torque down command.
  • the engine controller 21 controls the engine using the basic engine torque Te0 as the engine torque command value (returns to normal control) from the timing of ending the torque down command.
  • the following effects are obtained. That is, in the section from the timing t3 to the timing t5, the increase in the engine rotational speed Ne is suppressed as shown by the two-dot chain line in the second stage from the top in FIG. In the meantime, the command torque capacity Tlu of the lockup clutch starts to increase rapidly from timing t4. In the present embodiment, even if the command torque capacity Tlu is increased steeply from the timing t4 as shown by the one-dot chain line in the second stage from the top in FIG. 3, the solid line in the third stage from the top in FIG. As can be seen, the increase (maximum value) of the engine rotational speed Ne can be suppressed and controlled near the target rotational speed tNe.
  • the lockup clutch 34 is engaged at the same timing t8 as in the case of the normal control, so that the fuel efficiency is not deteriorated.
  • the normal control when the command torque capacity Tlu is increased at a steep slope from the timing t4 as shown by the one-dot chain line in the second stage from the top in FIG. 3, a sudden drop in engine speed Ne or a shock occurs. It was.
  • the second stage from the top of FIG. 3 is intended to show how the torque down control is performed by the upper limit torque command value Td, so that the torque down control before timing t2 and after timing t5 is performed.
  • the movement of the upper limit torque command value Td is roughly described. That is, before the timing t2, the upper limit torque command value Td is in a state of the constant value Td0, and is decreased from the timing t2.
  • the upper limit torque command value Td increases with the same slope as immediately before the timing t5, and after the timing t6, the upper limit torque command value Td returns to the constant value Td0. Therefore, the movement of the upper limit torque command value Td described in the second stage from the top in FIG. 3 does not coincide with the movement of the upper limit torque command value Td calculated by the flowchart described later.
  • the flowchart of FIG. 5 is for setting a start flag, and is executed by the CVT controller 61 at regular intervals (for example, every 10 ms).
  • the CVT controller 61 determines whether or not a start operation has been performed this time, and whether or not a start operation has been performed last time. Whether or not the start operation has been performed may be performed based on changes in the accelerator opening APO and the throttle valve opening TVO sent from the engine controller 21. When the start operation is performed this time and the previous start operation is not performed, that is, when the start operation is performed for the first time this time, it is determined that the vehicle is starting.
  • the flowchart in FIG. 6 is for setting a torque down command flag, and the CVT controller 61 executes the routine at a fixed time (for example, every 10 ms) following the flowchart in FIG.
  • the CVT controller 61 uses the throttle valve opening TVO and the basic engine torque Te0 transmitted from the engine controller 21.
  • step S11 When the start flag is 1 in step S11, it is determined that the start is in progress, and the CVT controller 61 executes the processing after step S12.
  • step S12 the CVT controller 61 determines whether or not the torque down end flag (initially set to zero when the engine is started) is 1.
  • step S13 the CVT controller 61 determines whether the torque down command flag (initially set to zero when the engine is started) is 1.
  • the CVT controller 61 executes the process of step S14.
  • step S14 the CVT controller 61 calculates a target rotational speed tNe [rpm] corresponding to the throttle valve opening TVO.
  • the operation in step S14 is the same as that performed by the target rotation speed calculation unit 71 in FIG.
  • the throttle valve opening TVO is transmitted from the engine controller 21.
  • step S15 the CVT controller 61 starts the torque down command by setting a value lower by the rotational speed corresponding to the delay of the torque down command from the target rotational speed tNe (corresponding to the section from t2 to t3 in FIG. 3). It is calculated as a determination rotational speed sNe [rpm].
  • step S16 the CVT controller 61 compares the start determination rotational speed sNe with the actual engine rotational speed Ne. When the engine rotation speed Ne is less than the start determination rotation speed sNe, the CVT controller 61 determines that it is not the start timing of the torque down command and ends the current process as it is.
  • the reason for starting (outputting) the torque down command from a value (sNe) lower than the target rotational speed tNe by the rotational speed corresponding to the delay of the torque down command (corresponding to the period from t2 to t3). Is as follows. That is, when the driver depresses the accelerator pedal 22 by a certain amount for starting, the throttle valve opening increases at the timing t1 as shown in the uppermost stage of FIG. 3, and the predetermined value TVO1 is maintained from the timing t2.
  • the CVT controller 61 calculates the target rotational speed tNe using the throttle valve opening TVO sent from the engine controller 21.
  • the CVT controller 61 uses the predetermined value TVO1 to calculate tNe. There is a delay before is calculated. Further, the state of the torque down command flag (torque down command) is transmitted to the engine controller 21, and the torque down control is started at the timing when the torque down command flag is switched from zero to one. However, there is also a delay before the state of the torque down command flag is transmitted to the engine controller 21 and used in the flowchart of FIG. Thus, the torque down command is delayed by the amount of delay associated with the data reciprocating between the two controllers 21 and 61 and the input / output of data.
  • the CVT controller 61 switches the torque down command flag from zero to 1 at an early timing (t2) in anticipation of the delay of the torque down command by calculating a start determination rotational speed sNe that is lower than the target rotational speed tNe. (Torque down command is issued).
  • torque down command is issued.
  • the torque down command flag is transmitted to the engine controller 21, the torque down command flag is switched from zero to 1 at timing t3 as shown in the lowermost stage of FIG.
  • the reason why the start determination rotational speed sNe is introduced on the CVT controller 61 side is to enable the engine controller 21 to start the torque-down control at the timing of t3.
  • the gradient of increase in the engine rotation speed Ne when the vehicle starts (that is, the gradient of increase in the engine rotation speed Ne from the timing t1 to the timing t2 in the third stage in FIG. 3) is substantially constant. Assume that there is. Actually, it is conceivable that the gradient of increase in the engine rotation speed Ne at the start of the vehicle changes. In this case, if the gradient of the increase in Ne of the engine rotation speed is larger (standing) than the gradient shown in the third stage from the top of FIG. 3, tNe ⁇ sNe is set to the third stage from the top of FIG. What is necessary is just to set larger than the case shown.
  • step S18 the CVT controller 61 calculates the upper limit torque command value Td [Nm]. This content is described above with reference to FIG.
  • step S17 the CVT controller 61 proceeds from step S13 to step S19 in the subsequent calculation.
  • step S19 the CVT controller 61 calculates the upper limit torque command value Td in the same manner as in step S18.
  • step S20 the CVT controller 61 compares the upper limit torque command value Td with the basic engine torque Te0.
  • the basic engine torque Te0 is obtained from the engine controller 21 via CAN communication.
  • the CVT controller 61 transmits the torque-down command flag and the torque-down end flag set in this way as a torque-down command together with the upper limit torque command value Td calculated from FIG. 4 to the engine controller 21 via CAN communication (FIG. 1).
  • the engine controller 21 uses a torque down command flag, a torque down end flag, and an upper limit torque command value Td transmitted from the CVT controller 61 as a torque down command.
  • step S31 the engine controller 21 calculates a basic engine torque Te0 [Nm] by searching a map having the contents shown in FIG. 8 from Qa based on the engine speed Ne and the intake air amount detected by the air flow meter 25. .
  • the basic engine torque Te0 increases as the intake air amount Qa increases under the condition where the engine rotational speed Ne is constant, and increases as the engine rotational speed Ne increases under the condition where the intake air amount Qa is constant. Value.
  • step S32 the engine controller 21 calculates a basic ignition timing ADV0 [° BTDC] by searching a predetermined map from the engine speed Ne and the basic injection pulse width Tp [ms].
  • the basic ignition timing ADV0 is determined so that, for example, MBT can be obtained even if Ne and Tp are different.
  • the basic injection pulse width Tp is a value determined from the engine speed Ne and the intake air amount Qa.
  • Step S34 1
  • the engine controller 21 proceeds to step S34 to start the torque down control, and is constant after the torque down command flag becomes 1 (that is, after the torque down command is issued). Determine whether time has passed.
  • Steps S34, S43, and S44 are processes for dealing with a case where the engagement of the lockup clutch 34 is not started due to some trouble.
  • the processing after step S35 is executed before the fixed time elapses.
  • the upper limit torque command value Td coincides with the basic engine torque Te0 in the vicinity of the timing t5 in FIG. 3, so the end timing of the fixed time is set at a time slightly exceeding the timing t5. Keep it.
  • step S35 the process proceeds to step S35, and the torque down end flag is checked.
  • the torque down end flag is sent from the CVT controller 61.
  • the torque down end flag 0
  • the processing of step S36-38 (torque down control) is executed.
  • step S36 the engine controller 21 enters the upper limit torque command value Td into the engine torque command value Te.
  • the upper limit torque command value Td is sent from the CVT controller 61. It should be noted that the engine torque is not limited to the upper limit torque command value Td just because the upper limit torque command value Td is entered in the engine torque command value Te. In practice, the engine torque is reduced to the upper limit torque command value Td by retarding the ignition timing described later.
  • step S37 the engine controller 21 reads the engine torque command value Te into which the upper limit torque down command value Td has been entered.
  • step S38 the engine controller 21 calculates an ignition timing for reducing the engine torque to the engine torque command value Te, and sets the calculated ignition timing as an ignition timing command value ADV [° BTDC].
  • step S35 the engine controller 21 repeats the processing of steps S36-38 in order to continue the torque down control.
  • the engine controller 21 determines that the end timing of the torque down command has come (the torque down command has ended).
  • the engine controller 21 executes the processes of steps S39 and S40 to end the torque reduction control, and sets the basic engine torque Te0 to the engine torque command value Te and the basic ignition timing ADV0 to the ignition timing command value ADV.
  • step S34 determines that the engagement of the lock-up clutch 34 has not been started for some reason, and terminates the torque-down control.
  • the process of step S43 is executed.
  • step S43 the engine controller 21 sets a value obtained by adding the constant value ⁇ T to the previous engine torque command value Te as the current engine torque command value Te.
  • the constant value ⁇ T is a value that determines the speed at which the engine torque is returned from the upper limit torque command value Td to the basic engine torque Te0, and is set in advance.
  • step S44 the engine controller 21 compares the engine torque command value Te calculated in step S43 with the basic engine torque Te0. When the engine torque command value Te is less than the basic engine torque Te0, the engine controller 21 determines that it is not time to end the torque down control. At this time, the process of step S40 is executed to put the basic ignition timing ADV0 into the ignition timing command value ADV. As long as the engine torque command value Te is the basic engine torque Te0, the engine controller 21 repeats the process of step S40.
  • the engine controller 21 determines that the end timing of the torque reduction control has come. At this time, the engine controller 21 executes steps S39 and S40 in order to end the torque reduction control, and sets the basic engine torque Te0 to the engine torque command value Te and the basic ignition timing ADV0 to the ignition timing command value ADV.
  • the above steps S43 and S44 are based on the case where the lock-up clutch 34 has not been engaged. Therefore, even when a predetermined time has elapsed from the start of the torque-down control, the engine torque is basically set at a preset speed. The engine torque is returned to Te0.
  • step S45 the engine controller 21 outputs the engine torque command value Te and the ignition timing command value ADV.
  • the target intake air amount is calculated based on the engine torque command value Te.
  • the engine controller 21 generates a spark in the spark plug 8 by cutting off the primary side current of the ignition coil when the crank angle reaches the ignition timing command value ADV, and thereby the air-fuel mixture in the combustion chamber 6 is generated. Ignite.
  • the torque is reduced by retarding the ignition timing, but the torque reduction method is not limited to this.
  • the torque can be reduced by cutting the fuel injection, reducing the intake air amount by reducing the opening of the electronic control throttle, or the like.
  • the same purpose as the torque control described above can be achieved by increasing the power generation load of the alternator and reducing the input torque of the transmission. it can.
  • the present embodiment it is possible to facilitate the driver's accelerator pedal operation by suppressing acceleration particularly in the low accelerator opening range, and to easily realize an appropriate accelerator opening corresponding to the acceleration desired by the driver. It also has a different effect of being able to.
  • This effect will be described with reference to FIG.
  • FIG. 2 the characteristics of the acceleration peak value Gp with respect to the accelerator opening APO in the case of the present embodiment are shown by being overlapped with a solid line.
  • the acceleration peak value Gp rises steeply in the low accelerator opening region near zero, so that the decomposition performance of the acceleration peak value with respect to the accelerator opening APO deteriorates, and the driver As described above, it is difficult to obtain the desired acceleration.
  • the acceleration gradient of the acceleration peak value Gp is gentler in the low accelerator opening range near zero than in the case of normal control. Easy to operate. If the driver's accelerator pedal operation becomes easy, the accelerator pedal can be adjusted to the depression amount corresponding to the acceleration desired by the driver. The resolution performance of the acceleration peak value with respect to the accelerator opening APO is improved as compared with the case of normal control.
  • FIG. 10 shows how the accelerator opening APO, the throttle valve opening TVO, the engine torque, and the vehicle acceleration change when the vehicle starts.
  • the same parts as those in FIG. 3 are denoted by the same reference numerals. Note that the time scale on the horizontal axis is not the same as that in FIG. 3, but is larger than that in FIG.
  • the throttle valve opening TVO changes. That is, in the normal control and the present embodiment, as shown by the solid line in the second stage from the top in FIG. 10, the throttle valve opening TVO becomes larger than the timing t1 and settles to the predetermined value TVO1 at the timing t3.
  • the throttle valve opening TVO is predetermined at a timing t11 before the timing t3 when the throttle valve opening settles to the predetermined value TVO1, as indicated by a broken line in the second stage from the top in FIG. It is once limited to a predetermined value TVO2 smaller than the value TVO1.
  • the predetermined value TVO2 is maintained until the timing t12 when the acceleration after the timing t3 reaches a peak. After the acceleration reaches a peak at timing t12, the throttle valve opening TVO is gradually returned from the predetermined value TVO2 to the throttle valve opening TVO1 in the case of normal control.
  • such a response of the throttle valve opening TVO can suppress the acceleration peak value Gp as compared with the case of normal control, as indicated by a broken line at the bottom of FIG. is made of.
  • the increase in acceleration in the section from timing t11 to timing t12 is also suppressed to be smaller than in the case of normal control as shown by the broken line in the lowermost stage of FIG. For this reason, the driver feels that the acceleration feeling is insufficient in the first half of the acceleration, and depresses the accelerator pedal 22. As a result, the acceleration desired by the driver may increase as a result, and the engine rotation speed Ne may increase beyond the target rotation speed tNe.
  • the change in the throttle valve opening TVO is the same as in the normal control as shown by the solid line in the second stage from the top of FIG.
  • the change (increase speed) of the engine torque is the same as in the case of the normal control until the timing t3 when the torque down command is started (issued) as shown by the solid line in the third stage from the top in FIG. .
  • the acceleration peak value Gp can be obtained without suppressing the rise of acceleration in the first half of acceleration from timing t11 to timing t12 as in the case of minus correction. It can be suppressed.
  • the acceleration is larger than that in the case where the acceleration is negatively corrected as shown by the one-dot chain line in the lowermost stage of FIG. This is because the command torque capacity Tlu of the lock-up clutch 34 is rapidly increased after the torque-down command is started, and the torque-down command is terminated at t5 when the upper limit torque command value Td matches the basic engine torque Te0.
  • the engine torque is returned to the normal control at the timing t5 much earlier than t8, and from this the torque is output from the engine as much as possible from t5.
  • the torque is output from the engine as much as possible from t5.
  • the vehicle 1 has a power train 2 in which an engine 3 and a CVT 41 (automatic transmission) are connected via a torque converter 31 including a lock-up clutch 34.
  • the CVT controller 61 torque down command means
  • the CVT controller 61 upper limit torque command value setting means
  • the engine controller 21 receives the torque down command and performs torque down control so that the engine torque does not exceed the upper limit torque command value Td. According to the present embodiment, it is possible to suppress an unnecessary surging in which the engine rotational speed at the time of starting the vehicle overshoots across the target rotational speed tNe, and to improve the controllability of acceleration in the low accelerator opening range. Can do. As a result, it is possible to obtain a good driving feeling while improving fuel efficiency.
  • the present embodiment includes an engine controller 21 and a CVT controller 61 (automatic transmission controller). Further, the CVT controller 61 has a predetermined delay from when the torque down command is issued until the engine controller 21 follows the command.
  • the CVT controller 61 (automatic transmission controller) as a torque down command means includes a target rotation speed calculation unit 71 (target rotation speed calculation means) that calculates a target rotation speed tNe based on the accelerator opening degree TVO. ing. Then, the start determination rotation speed sNe obtained by subtracting the predetermined delay from the calculated target rotation speed tNe is compared with the actual engine rotation speed Ne, and the actual engine rotation speed Ne is determined based on the comparison result as the start determination rotation speed. When sNe is reached, a torque down command is issued. As a result, even if there is a predetermined delay from when the CVT controller 61 issues a torque down command to when the engine controller 21 follows the command, a good acceleration response is obtained while suppressing the engine speed Ne from rising. be able to.
  • target rotation speed calculation unit 71 target rotation speed calculation means
  • the vehicle 1 includes a lockup clutch fastening means for fastening the lockup clutch 34 when the vehicle starts. Further, there is a predetermined delay (t3-t5 in FIG. 3) from the timing when the driver's intention to start is detected until the command torque capacity of the lockup clutch 34 rises.
  • the CVT controller 61 (automatic transmission control controller) as the upper limit torque command value setting means includes a torque capacity coefficient calculation unit 74, a multiplier 75, a command torque capacity calculation unit 76, and an adder 77. Composed.
  • the torque capacity coefficient calculation unit 74 calculates the torque capacity coefficient ⁇ of the torque converter 31 from the speed ratio e obtained by dividing the input rotation speed Nt of the CVT 41 (automatic transmission) by the engine rotation speed Ne.
  • the multiplier 75 calculates a torque converter transmission torque Ttc for realizing the target rotational speed tNe based on the calculated torque capacity coefficient ⁇ and the target rotational speed tNe.
  • the command torque capacity calculation unit 76 calculates the command torque capacity Tlu of the lockup clutch 34.
  • the adder 77 sets the sum of the calculated torque converter transmission torque Ttc and the calculated command torque capacity Tlu of the lockup clutch 34 as the upper limit torque command value Td. Accordingly, an appropriate torque upper limit value Td for controlling the engine rotation speed to the target rotation speed tNe can be set even if the vehicle weight or the road surface gradient is different.
  • the CVT controller 61 increases the upper limit torque command value Td in accordance with the increase in the command torque capacity Tlu of the lockup clutch, and the upper limit torque command value Td becomes the basic engine torque Te0.
  • the torque down command is terminated at a timing that coincides with.
  • the engine torque can be restored to the basic engine torque Te0 while increasing the command torque capacity Tlu of the lockup clutch, so that rapid changes in acceleration and engine speed after the acceleration peak can be prevented. it can.
  • This embodiment is different from the first embodiment described above in part of the calculation method of the engine torque command value Te.
  • the flowchart in FIG. 9 is for calculating the engine torque command value Te in the present embodiment, and is executed by the engine controller 21 at regular intervals (for example, every 10 ms).
  • the engine controller 21 uses a torque down command flag, a torque down end flag, and an upper limit torque command value Td transmitted as a torque down command from the CVT controller 61.
  • step S90 the engine controller 21 calculates a basic engine torque Te0.
  • the calculation method is the same as step S31 in FIG.
  • step S91 the engine controller 21 determines whether the torque down command flag is 1 as in step S33 of FIG.
  • the engine controller 21 puts the basic engine torque Te0 into the engine torque command value Te in step S100.
  • step S102 If the predetermined time has elapsed, the engine controller 21 executes a process of step S102 described later. On the other hand, if the predetermined time has not elapsed, the engine controller 21 executes the process of step S93.
  • the processing content of step S91 and step S92 is the same as that of step S33 and step S34 of FIG.
  • step S93 the engine controller 21 determines whether the torque down end flag is 1 as in step S35 of FIG. If the torque down end flag is 1, the engine controller 21 executes the process of step S100. On the other hand, when the torque down end flag is not 1, the engine controller 21 executes the process of step S94.
  • step S94 the engine controller 21 calculates a transmission strength upper limit torque Tk.
  • the transmission strength upper limit torque Tk is an upper limit value of engine torque that the CVT 41 can withstand by design. Specifically, the calculation is performed by searching a predetermined map (not shown) from the input rotation speed of the CVT 41 and the gear ratio.
  • step S95 the engine controller 21 determines whether or not the upper limit torque command value Td is smaller than the transmission strength upper limit torque Tk. If the upper limit torque command value Td is greater than or equal to the transmission strength upper limit torque Tk, the engine controller 21 enters the transmission strength upper limit torque Tk into the engine torque command value Te in step S101. On the other hand, when the upper limit torque command value Td is smaller than the transmission strength upper limit torque Tk, the engine controller 21 executes the process of step S96.
  • step S96 the engine controller 21 calculates the expected acceleration lower limit torque Tg.
  • the expected acceleration lower limit torque Tg is a torque necessary for realizing the minimum acceleration that can be expected from the vehicle speed VSP and the accelerator opening APO.
  • the expected acceleration lower limit torque Tg is calculated by searching a predetermined map from the vehicle speed VSP and the accelerator opening APO.
  • step S97 the engine controller 21 determines whether or not the upper limit torque command value Td is larger than the expected acceleration lower limit torque Tg. If the upper limit torque command value Td is less than or equal to the expected acceleration lower limit torque Tg, the engine controller 21 puts the expected acceleration lower limit torque Tg into the engine torque command value Te in step S102. On the other hand, when the upper limit torque command value Td is larger than the expected acceleration lower limit torque Tg, the engine controller 21 enters the upper limit torque command value Td into the engine torque command value Te in step S98.
  • step S99 the engine controller 21 outputs an engine torque command value Te.
  • the target intake air amount and the ignition timing are calculated based on the engine torque command value Te.
  • step S92 when a predetermined time has elapsed since the torque-down command flag became 1 in step S92, the engine controller 21 executes the processes of steps S103 to S105.
  • the processing of steps S103-S105 corresponds to the processing of steps S43-S44-S39 in FIG.
  • the CVT controller 61 compares the upper limit torque command value Td with the transmission strength upper limit torque Tk, and sets the smaller one as the upper limit torque command value Td. . Thereby, durability of CVT41 is securable.
  • the expected acceleration lower limit torque (which is necessary for realizing the upper limit torque command value Td and the lower limit acceleration expected from the vehicle speed and the accelerator opening degree).
  • the expected acceleration lower limit torque Tg) is compared with the magnitude of the upper limit torque command value Td.
  • the drive source is the gasoline engine 3 .
  • the present invention is not limited to this.
  • the drive source may be a diesel engine or a motor / generator, or a combination of an engine and a motor / generator.
  • the drive source is a diesel engine
  • the same purpose as the torque down control described above can be achieved by executing a fuel injection cut or a reduction in the intake air amount in accordance with a torque down command.
  • the drive source is a motor / generator
  • the same purpose as the torque down control described above can be achieved by increasing the power generation load of the motor / generator according to the torque down command.

Abstract

 A drive source control device for a vehicle controls a vehicular drive source having a powertrain in which a drive source and an automatic transmission are coupled via a torque converter provided with a lock-up clutch, wherein the drive source control device is provided with: a torque down command means for issuing a torque down command to the drive source to ensure that the drive source torque does not exceed an upper limit torque command value required by the automatic transmission; an upper limit torque command value setting means for calculating the upper limit torque command value so that the drive source speed, which rises when the vehicle starts moving, recedes to a drive source target speed; and a torque down control means for receiving the torque down command and performing torque down control so that the drive source torque does not exceed the upper limit torque command value.

Description

車両の駆動源制御装置及び駆動源制御方法Vehicle drive source control apparatus and drive source control method
 この発明は車両の駆動源制御装置及び駆動源制御方法に関する。 The present invention relates to a vehicle drive source control device and a drive source control method.
 自動変速機にトルクコンバータを付属させていると、車両発進時にドライバがアクセルペダルを踏み込んだとき、車両発進時からの加速度は、発進当初に急激に上昇してピークを採り、その後に急激に低下する加速度波形になる傾向にある。このため、エンジン回転速度は車両発進時に急激に上昇しエンジンの目標回転速度を横切ってオーバーシュートする。これら加速度波形及びエンジン回転速度のオーバーシュート特性のため、ドライバ(運転者)は発進当初に加速感がありすぎると感じてしまう。これに対処するため、電子制御のスロットル弁を備えるエンジンを対象として、車両の発進時に低アクセル開度域でスロットル弁開度を基本のスロットル弁開度より小さくなる側に補正するものがある(JP2006-125213A参照)。ここで、上記基本のスロットル弁開度はアクセル開度(アクセルペダルの踏込量)に応じて設定しているものである。 When a torque converter is attached to the automatic transmission, when the driver depresses the accelerator pedal at the start of the vehicle, the acceleration from the start of the vehicle rises sharply at the beginning of the start, takes a peak, and then decreases sharply Tend to become an acceleration waveform. For this reason, the engine speed rapidly increases when the vehicle starts and overshoots across the target engine speed. Due to the overshoot characteristics of the acceleration waveform and the engine rotational speed, the driver (driver) feels that there is too much acceleration at the beginning of the start. In order to cope with this, there is an engine that corrects the throttle valve opening to be smaller than the basic throttle valve opening in the low accelerator opening region when the vehicle starts, targeting an engine having an electronically controlled throttle valve ( JP 2006-125213A). Here, the basic throttle valve opening is set according to the accelerator opening (the amount of depression of the accelerator pedal).
 ところで、上記文献の技術では、スロットル弁開度を基本のスロットル弁開度よりも小さくすることで車両発進時のエンジン回転速度のオーバーシュートと加速度のピークを抑制するので、加速度波形の全体が相似的に縮小することとなる。このため、ドライバが加速感不足を感じ、却ってアクセルペダルを踏み増ししたのでは、結果的にエンジン回転速度の吹け上がりを招いたり、加速度のピークを狙い通りに抑制できなかったりする場合がある。 By the way, in the technique of the above-mentioned document, since the throttle valve opening is made smaller than the basic throttle valve opening, the overshoot of the engine rotation speed and the acceleration peak at the start of the vehicle are suppressed, so the entire acceleration waveform is similar. Will be reduced. For this reason, if the driver feels that there is a lack of acceleration and then depresses the accelerator pedal, the engine speed may be increased or the acceleration peak may not be suppressed as intended.
 そこで本発明は、車両発進時のエンジン回転速度の無用な吹け上がりを抑え、かつ低アクセル開度域での加速度のコントロール性を向上し得る装置を提供することを目的とする。 Therefore, an object of the present invention is to provide a device that can suppress an unnecessary engine speed increase when the vehicle starts and can improve the controllability of acceleration in a low accelerator opening range.
 本発明のある態様によれば、車両の駆動源制御装置は、ロックアップクラッチを備えるトルクコンバータを介して駆動源と自動変速機とを連結したパワートレインを有する車両を前提としている。そして、トルクダウン指令手段と、上限トルク指令値設定手段と、トルクダウン制御手段とを備えている。上記のトルクダウン指令手段では、前記自動変速機が要求する上限トルク指令値を駆動源トルクが超えないようにするトルクダウン指令を出す。上記の上限トルク指令値設定手段では、前記上限トルク指令値を、車両の発進時に立ち上がる駆動源回転速度がエンジンの目標回転速度に収まるように算出する。上記のトルクダウン制御手段ではトルクダウン指令を受けて前記上限トルク指令値を駆動源トルクが超えないようにトルクダウン制御を行う。 According to an aspect of the present invention, a vehicle drive source control device is premised on a vehicle having a power train in which a drive source and an automatic transmission are connected via a torque converter having a lock-up clutch. Further, a torque down command means, an upper limit torque command value setting means, and a torque down control means are provided. The torque down command means issues a torque down command for preventing the drive source torque from exceeding the upper limit torque command value required by the automatic transmission. The upper limit torque command value setting means calculates the upper limit torque command value so that the drive source rotational speed that rises when the vehicle starts is within the target engine rotational speed. The torque down control means receives the torque down command and performs torque down control so that the drive source torque does not exceed the upper limit torque command value.
 上記態様によれば、車両発進時のエンジン回転速度がエンジンの目標回転速度を横切ってオーバーシュートする無用な吹け上がりを抑えることができるとともに、低アクセル開度域での加速度のコントロール性を向上することができる。 According to the above aspect, it is possible to suppress an unnecessary blow-up in which the engine rotational speed at the time of starting the vehicle overshoots across the target rotational speed of the engine, and improves the controllability of acceleration in the low accelerator opening range. be able to.
図1は、本発明の第1実施形態のパワートレインを有する車両の概略構成図である。FIG. 1 is a schematic configuration diagram of a vehicle having a power train according to a first embodiment of the present invention. 図2は、アクセル開度と加速度のピーク値の関係を示す特性図である。FIG. 2 is a characteristic diagram showing the relationship between the accelerator opening and the peak value of acceleration. 図3は、車両発進時のスロットル弁開度、エンジントルク、エンジン回転速度の各変化を示すタイミングチャートである。FIG. 3 is a timing chart showing changes in the throttle valve opening, engine torque, and engine speed when the vehicle starts. 図4は、上限トルク指令値を算出するための制御ブロック図である。FIG. 4 is a control block diagram for calculating the upper limit torque command value. 図5は、発進時フラグの設定を説明するためのフローチャートである。FIG. 5 is a flowchart for explaining the setting of the start flag. 図6は、トルクダウン指令フラグの設定を説明するためのフローチャートである。FIG. 6 is a flowchart for explaining the setting of the torque-down command flag. 図7は、エンジントルク指令値及び点火時期指令値の算出を説明するためのフローチャートである。FIG. 7 is a flowchart for explaining calculation of the engine torque command value and the ignition timing command value. 図8は、基本エンジントルクの特性図である。FIG. 8 is a characteristic diagram of basic engine torque. 図9は、第2実施形態のエンジントルク指令値の算出を説明するためのフローチャートである。FIG. 9 is a flowchart for explaining calculation of an engine torque command value according to the second embodiment. 図10は、車両発進時のアクセル開度、スロットル弁開度、エンジントルク、車両加速度の各変化を示すタイミングチャートである。FIG. 10 is a timing chart showing changes in the accelerator opening, throttle valve opening, engine torque, and vehicle acceleration when the vehicle starts.
 以下、添付図面を参照しながら本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
 (第1実施形態)
 図1は、本発明の第1実施形態を適用する、パワートレイン2を有する車両1の概略構成図である。パワートレイン2は、エンジン3、ロックアップクラッチ34を備えるトルクコンバータ31、CVT(ベルト式自動変速機)41、ファイナルドライブギア51、ディファレンシャルギア52、ドライブシャフト53を含んで構成されている。
(First embodiment)
FIG. 1 is a schematic configuration diagram of a vehicle 1 having a power train 2 to which the first embodiment of the present invention is applied. The power train 2 includes an engine 3, a torque converter 31 including a lock-up clutch 34, a CVT (belt type automatic transmission) 41, a final drive gear 51, a differential gear 52, and a drive shaft 53.
 図1において、駆動源としてのガソリンエンジン3の燃焼室6には、吸気通路4から導入された空気が各気筒の吸気ポート5を経て供給される。燃焼室6に供給される空気の量は、吸気通路4に備えられる電子制御のスロットル弁11の開度(以下、「スロットル弁開度」という。)によって調整される。このスロットル弁11は、スロットルモータ12によってそのスロットル弁開度が制御される。実際のスロットル弁開度は、スロットルセンサ13により検出され、後述するエンジンコントローラ21に入力される。 In FIG. 1, the air introduced from the intake passage 4 is supplied to the combustion chamber 6 of the gasoline engine 3 as a drive source through the intake port 5 of each cylinder. The amount of air supplied to the combustion chamber 6 is adjusted by the opening of an electronically controlled throttle valve 11 provided in the intake passage 4 (hereinafter referred to as “throttle valve opening”). The throttle valve 11 has its throttle valve opening controlled by a throttle motor 12. The actual throttle valve opening is detected by the throttle sensor 13 and input to the engine controller 21 described later.
 エンジン3は、各吸気ポート5に燃料噴射弁7を備える。燃料噴射弁7は、吸気ポート5を流れる空気に向けて燃料を間欠的に供給するものである。また、エンジン3は燃焼室6に臨む点火プラグ8を備える。燃焼室6に流入する空気は燃料と混合されて混合気となる。エンジンコントローラ21は、圧縮上死点前の所定の時期に点火コイルの一次側電流を遮断することにより点火プラグ8に火花を発生させ、これによって燃焼室6内の混合気に点火する。この点火によって燃焼したガスは図示しない排気通路へと排出される。 The engine 3 includes a fuel injection valve 7 in each intake port 5. The fuel injection valve 7 intermittently supplies fuel toward the air flowing through the intake port 5. The engine 3 includes a spark plug 8 facing the combustion chamber 6. The air flowing into the combustion chamber 6 is mixed with fuel and becomes an air-fuel mixture. The engine controller 21 generates a spark in the spark plug 8 by interrupting the primary current of the ignition coil at a predetermined time before the compression top dead center, thereby igniting the air-fuel mixture in the combustion chamber 6. The gas combusted by this ignition is discharged to an exhaust passage (not shown).
 エンジンコントローラ21は、上述した点火制御の他にも、エンジン3の制御を行なう。エンジンコントローラ21には、アクセル開度センサ23からのアクセル開度(アクセルペダル22の踏込量)の信号、クランク角センサ(エンジン回転速度センサ)24からのクランク角の信号、エアフローメータ25からの吸入空気量の信号が入力されている。クランク角センサ24の信号からはエンジン2の回転速度が算出される。エンジンコントローラ21では、これらの信号に基づいて目標吸入空気量及び目標燃料噴射量を算出し、目標吸入空気量及び目標燃料噴射量が得られるようにスロットルモータ12及び各気筒の燃料噴射弁7に指令を出す。 The engine controller 21 controls the engine 3 in addition to the ignition control described above. The engine controller 21 receives an accelerator opening signal (depression amount of the accelerator pedal 22) from an accelerator opening sensor 23, a crank angle signal from a crank angle sensor (engine speed sensor) 24, and an intake from an air flow meter 25. An air volume signal is input. From the signal of the crank angle sensor 24, the rotational speed of the engine 2 is calculated. The engine controller 21 calculates the target intake air amount and the target fuel injection amount based on these signals, and applies the throttle motor 12 and the fuel injection valve 7 of each cylinder so as to obtain the target intake air amount and the target fuel injection amount. Issue a command.
 エンジン3の出力軸にはトルクコンバータ31、CVT41が接続されている。トルクコンバータ31はポンプインペラ32、タービンランナ33を有する。CVT41は、前後進切替機構42、プライマリプーリ43、セカンダリプーリ44、及びプーリ43,44に掛け回されるスチールベルト45を有する。エンジン2の回転駆動力はトルクコンバータ31、CVT41、ファイナルドライブギア51、ディファレンシャルギア52、及びドライブシャフト53を介して最終的に車両駆動輪54に伝達される。 The torque converter 31 and the CVT 41 are connected to the output shaft of the engine 3. The torque converter 31 has a pump impeller 32 and a turbine runner 33. The CVT 41 includes a forward / reverse switching mechanism 42, a primary pulley 43, a secondary pulley 44, and a steel belt 45 that is wound around the pulleys 43 and 44. The rotational driving force of the engine 2 is finally transmitted to the vehicle drive wheels 54 via the torque converter 31, CVT 41, final drive gear 51, differential gear 52, and drive shaft 53.
 車両1は、CVT41を制御するためのCVTコントローラ61を備える。CVTコントローラ61には、入力回転速度センサ61からの入力回転速度Nt、出力回転速度センサ62からの出力回転速度Noが入力される。CVT41の入力軸はタービンランナ33と連結されているため、入力回転速度はタービンランナ33の回転速度(タービン回転速度)でもある。CVTコントローラ61は、出力回転速度Noと、ファイナルドライブギア51と、駆動輪53の有効タイヤ半径とに基づいて車速VSPを算出する。そしてCVTコントローラ6は車速VSPとスロットル弁開度TVOとから定まる車両1の走行条件に応じて、CVT41の変速比を無段階に制御する。 The vehicle 1 includes a CVT controller 61 for controlling the CVT 41. The CVT controller 61 receives the input rotation speed Nt from the input rotation speed sensor 61 and the output rotation speed No from the output rotation speed sensor 62. Since the input shaft of the CVT 41 is connected to the turbine runner 33, the input rotational speed is also the rotational speed of the turbine runner 33 (turbine rotational speed). The CVT controller 61 calculates the vehicle speed VSP based on the output rotation speed No, the final drive gear 51, and the effective tire radius of the drive wheel 53. The CVT controller 6 controls the transmission ratio of the CVT 41 in a stepless manner in accordance with the traveling conditions of the vehicle 1 determined from the vehicle speed VSP and the throttle valve opening TVO.
 CVTコントローラ61と上記のエンジンコントローラ21との間はCAN(Controller  Area  Network)で接続されている。このCAN通信を介してエンジンコントローラ21からエンジン回転速度Ne、スロットル弁開度TVO、エンジントルク指令値Te、及び基本エンジントルクTe0がCVTコントローラ61に入力される。 The CVT controller 61 and the engine controller 21 are connected by CAN (Controller / Area / Network). The engine speed Ne, the throttle valve opening TVO, the engine torque command value Te, and the basic engine torque Te0 are input from the engine controller 21 to the CVT controller 61 via the CAN communication.
 また、トルクコンバータ31は、ポンプインペラ32とタービンランナ33とを締結・開放する機械式のロックアップクラッチ34を備える。CVTコントローラ61は、ロックアップクラッチ34を締結する車両の走行域をロックアップ領域(車速とスロットル開度とをパラメータとしている)として予め定めている。CVTコントローラ61は車両の走行条件がロックアップ領域となったとき、ロックアップクラッチを締結することによってエンジン3とCVT41とを直結状態とする。一方、車両の走行条件がロックアップ領域でないときにはCVTコントローラ61はロックアップクラッチ34を開放する。エンジン3とCVT41とを直結状態としたときには、トルクコンバータ31での差動回転によるロスがなくなり、その分燃費が良くなる。 The torque converter 31 includes a mechanical lock-up clutch 34 that fastens and opens the pump impeller 32 and the turbine runner 33. The CVT controller 61 predetermines a traveling region of the vehicle for fastening the lockup clutch 34 as a lockup region (vehicle speed and throttle opening are used as parameters). The CVT controller 61 brings the engine 3 and the CVT 41 into a direct connection state by engaging a lock-up clutch when the vehicle traveling condition is in the lock-up region. On the other hand, when the running condition of the vehicle is not in the lockup region, the CVT controller 61 releases the lockup clutch 34. When the engine 3 and the CVT 41 are in a directly connected state, loss due to differential rotation in the torque converter 31 is eliminated, and fuel consumption is improved accordingly.
 さて、パワートレイン2にトルクコンバータ31が含まれていると、車両1の発進時にドライバがアクセルペダル22を踏み込んだとき、加速度は発進当初に急激に上昇してピークを採り、その後に急激に低下する傾向がある。このため、エンジン回転速度は車両発進時に急激に上昇しエンジンの目標回転速度を横切ってオーバーシュートする。これら加速度及びエンジン回転速度の特性によって、ドライバは発進当初に加速感がありすぎると感じてしまう。 Now, when the torque train 31 is included in the powertrain 2, when the driver depresses the accelerator pedal 22 when the vehicle 1 starts, the acceleration suddenly increases at the beginning of the vehicle, takes a peak, and then decreases rapidly. Tend to. For this reason, the engine speed rapidly increases when the vehicle starts and overshoots across the target engine speed. Due to these characteristics of acceleration and engine speed, the driver feels that there is too much acceleration at the beginning of the start.
 さらに説明すると、後述するトルクダウン制御を実行しない制御状態(以下、「通常制御」という)の場合のアクセル開度APOと加速度のピーク値Gpの関係を図2に破線で示す。加速度ピーク値Gpはトルクコンバータ出力トルクTtに比例し、トルクコンバータ出力トルクTtは次式により定まる。 More specifically, the relationship between the accelerator opening APO and the acceleration peak value Gp in a control state (hereinafter referred to as “normal control”) in which torque down control described later is not executed is shown by a broken line in FIG. The acceleration peak value Gp is proportional to the torque converter output torque Tt, and the torque converter output torque Tt is determined by the following equation.
  Tt=t・τ・Ne2                   …(1)
   ただし、t:トルク比[無名数]、
       τ:トルク容量係数[10-6・Nm/rpm2]、
       Ne:エンジン回転速度[rpm]、
 通常制御では図2に破線で示すように、ゼロ近辺の低アクセル開度域で加速度ピーク値Gpの立ち上がりが急な勾配となる。この結果、低アクセル開度域では、ドライバが望みの加速度を得ようとしてアクセル開度を加減しても、ドライバが望む加速度を得ることが困難になる。これは、低アクセル開度域でアクセル開度に対する加速度ピーク値の分解性能が悪化するためである。例えば、ドライバがアクセルペダル22を踏み増せる最低の単位(分解性能)は例えば1cm程度である。この場合に、アクセルペダル22を何mm踏み増せば、ドライバが望む加速度が得られるとわかっていても、何mmをドライバが正確に踏み増すことは不可能であるからである。
Tt = t · τ · Ne 2 (1)
Where t: torque ratio [unknown number],
τ: Coefficient of torque capacity [10-6 · Nm / rpm2],
Ne: Engine rotation speed [rpm],
In normal control, as shown by a broken line in FIG. 2, the acceleration peak value Gp rises steeply in a low accelerator opening range near zero. As a result, in the low accelerator opening range, it becomes difficult for the driver to obtain the desired acceleration even if the driver adjusts the accelerator opening in order to obtain the desired acceleration. This is because the decomposition performance of the acceleration peak value with respect to the accelerator opening deteriorates in the low accelerator opening range. For example, the minimum unit (decomposition performance) that the driver can step on the accelerator pedal 22 is, for example, about 1 cm. In this case, even if it is known that how much mm the accelerator pedal 22 is depressed to obtain the desired acceleration, it is impossible for the driver to accurately decrement how many mm.
 これをさらに図3を参照して説明する。図3は車両発進時にスロットル弁開度TVO、エンジントルク、エンジンの目標回転速度tNe、実際のエンジン回転速度Neがどのように変化するのかを示すタイミングチャートである。図3最下段に示すトルクダウン指令フラグについては後述する。 This will be further described with reference to FIG. FIG. 3 is a timing chart showing how the throttle valve opening TVO, the engine torque, the target engine speed tNe, and the actual engine speed Ne change when the vehicle starts. The torque down command flag shown at the bottom of FIG. 3 will be described later.
 タイミングt1より前の車両停止時には、スロットル弁開度TVOはゼロの初期開度の状態に、エンジンの目標回転速度tNeはアイドル時の目標回転速度NSETに設定されている。一方、実際のエンジン回転速度Neは、本来ならアイドル時の目標回転速度NSETと一致しているはずであるが、ここでは何らかの理由によりアイドル時の目標回転速度NSETより低い回転速度の状態にあるとしている。 When the vehicle stops before the timing t1, the throttle valve opening TVO is set to the initial opening state of zero, and the target engine speed tNe is set to the target engine speed NSET during idling. On the other hand, the actual engine rotational speed Ne should normally coincide with the target rotational speed NSET during idling, but here it is assumed that the rotational speed is lower than the target rotational speed NSET during idling for some reason. Yes.
 タイミングt1でアクセルペダル22が一定量だけ踏み込まれてスロットル弁開度TVOが0から所定値TVO1へとステップ変化したとき、スロットル弁開度TVOはタイミングt2より一定値(TVO1)を維持する。このスロットル弁開度TVOの変化を受けて、エンジンの目標回転速度tNeもタイミングt1でアイドル時の目標回転速度NSETより高くなり、タイミングt2より所定値tNe1を保持する。また、スロットル弁開度TVOの変化を受けて、基本エンジントルクTe0は図3の上から第2段目に実線で示したようにほぼスロットル弁開度TVOの変化に応じて変化する。通常制御の場合には、この基本エンジントルクTe0によって、実際のエンジン回転速度Neは図3の上から第3段目に破線で示したようにスロットル弁開度TVOが増大するタイミングt1より少し遅れて上昇する。そして、タイミングt3でエンジン3の目標回転速度tNeを横切って大きくオーバーシュートしたあと低下して目標回転速度tNeへと収束してゆく。 When the accelerator pedal 22 is depressed by a certain amount at timing t1 and the throttle valve opening TVO changes from 0 to a predetermined value TVO1, the throttle valve opening TVO maintains a constant value (TVO1) from timing t2. In response to the change in the throttle valve opening TVO, the target engine speed tNe of the engine also becomes higher than the target engine speed NSET during idling at timing t1, and the predetermined value tNe1 is held from timing t2. Further, in response to the change in the throttle valve opening TVO, the basic engine torque Te0 changes substantially in accordance with the change in the throttle valve opening TVO as shown by the solid line in the second stage from the top of FIG. In the case of normal control, the actual engine rotational speed Ne is slightly delayed by the basic engine torque Te0 from the timing t1 at which the throttle valve opening TVO increases as shown by the broken line in the third stage from the top of FIG. Rise. Then, at timing t3, it greatly overshoots across the target rotational speed tNe of the engine 3 and then decreases and converges to the target rotational speed tNe.
 一方、車両1の停止時には、CVTコントローラ61はエンジンストールを防止するためロックアップクラッチ34を非締結状態にする。そして、ドライバの発進の意図が検知されたときに、速度比の小さいうちからロックアップクラッチ34の締結を開始する。このため、タービン回転速度Ntが図3の上から第3段目に示したようにタイミングt2の手前で立ち上がって徐々に上昇してゆき、タイミングt8でエンジン回転速度Neと一致する(ロッククラッチ34が完全締結される)。ロックアップクラッチ締結時のエンジン回転速度Neは、目標回転速度tNe(=tNe1)より少し低下した位置で落ち着いている。CVTコントローラ61が車両発進時にロックアップクラッチ34を早期に締結させる理由は、ロックアップクラッチ34を早期に締結させた方が、ロックアップクラッチ34を開放状態に保つ場合より燃費がよくなるためである。 On the other hand, when the vehicle 1 is stopped, the CVT controller 61 puts the lockup clutch 34 in a non-engaged state in order to prevent engine stall. Then, when the driver's intention to start is detected, the lockup clutch 34 starts to be engaged when the speed ratio is small. Therefore, as shown in the third stage from the top of FIG. 3, the turbine rotational speed Nt rises before the timing t2 and gradually increases, and coincides with the engine rotational speed Ne at the timing t8 (the lock clutch 34). Is fully concluded). The engine rotation speed Ne when the lockup clutch is engaged is settled at a position slightly lower than the target rotation speed tNe (= tNe1). The reason why the CVT controller 61 fastens the lockup clutch 34 at the time of starting the vehicle is that the fuel fastness is better when the lockup clutch 34 is fastened than when the lockup clutch 34 is kept open.
 さて、実際のエンジン回転速度はt3のタイミングで目標回転速度tNeを横切ってオーバーシュートするのであるから、理想的にはタイミングt3からロックアップクラッチ34の指令トルク容量を急激に増大させるべきである。この場合(理想の場合)を図3の上から第2段目に二点鎖線で重ねて示している。これは、タイミングt3よりロックアップクラッチ34の指令トルク容量を増大させることで、トルク増大作用を持つトルクコンバータ31の伝達トルクがロックアップクラッチ34の伝達トルクの増加分だけ減少し、その結果、トルクコンバータ31及びロックアップクラッチ34の伝達トルクの合計値が、トルクコンバータ31のみで伝達した場合の伝達トルクよりも減少して加速度のピーク値が抑えられ、かつタイミングt3からのエンジン回転速度Neのオーバーシュートも抑制することができるためである。さらに、タイミングt3よりロックアップクラッチ34の指令トルク容量を増大させることで、ロックアップクラッチ34の締結完了がタイミングt8よりタイミングt7へと早まる。 Now, since the actual engine speed overshoots across the target speed tNe at the timing of t3, ideally, the command torque capacity of the lockup clutch 34 should be suddenly increased from the timing t3. This case (ideal case) is shown in the second row from the top in FIG. This is because, by increasing the command torque capacity of the lockup clutch 34 from the timing t3, the transmission torque of the torque converter 31 having a torque increasing action decreases by the increase of the transmission torque of the lockup clutch 34, and as a result, the torque The total value of the transmission torque of converter 31 and lockup clutch 34 is smaller than the transmission torque when only torque converter 31 is transmitted, the peak value of acceleration is suppressed, and engine speed Ne is exceeded from timing t3. This is because the chute can be suppressed. Further, by increasing the command torque capacity of the lockup clutch 34 from the timing t3, the completion of the engagement of the lockup clutch 34 is advanced from the timing t8 to the timing t7.
 しかしながら、実際にはタイミングt3よりも遅れたタイミングt4からしかロックアップクラッチ34の指令トルク容量が立ち上がらない。これは、CVTコントローラ61がロックアップクラッチ締結手段に締結指令を出してからロックアップクラッチ34が実際に応答するまでに遅れ(ロックアップクラッチ34の締結遅れ)があるためである。すなわち、ロックアップクラッチ締結手段は、ピストン、作動油供給手段、ピストンへの作動油の供給量を調整し得る制御バルブなどを含んで構成されている(図示しない)。CVTコントローラ61からの締結指令を受けて制御バルブが開かれると、タービンランナ33に取り付けてあるピストンに作動油供給手段から一定圧の作動油が供給される。この作動油の供給でピストンが伸び出し、伸び出したピストンがコンバータカバーに押しつけられる。これによって、入力軸(コンバータカバー)と出力軸(タービンランナ)が直に締結される(ロックアップクラッチ34が締結される)。この場合、制御バルブの開度によってロックアップクラッチ34が締結されるまでの時間が定まり、制御バルブの開度を大きくするほどロックアップクラッチ34が素早く締結される。ロックアップクラッチ34はピストンへの作動油の供給によって駆動されるため、エンジン回転速度Neが目標回転速度tNeを横切るt3で締結指令を出しても指令トルク容量が立ち上がるまでに遅れ(t3からt4までの区間)が生じるのである。 However, the command torque capacity of the lockup clutch 34 actually rises only from timing t4 that is delayed from timing t3. This is because there is a delay from when the CVT controller 61 issues an engagement command to the lockup clutch engagement means until the lockup clutch 34 actually responds (engagement delay of the lockup clutch 34). That is, the lock-up clutch engagement means includes a piston, hydraulic oil supply means, a control valve that can adjust the supply amount of hydraulic oil to the piston, and the like (not shown). When the control valve is opened in response to a fastening command from the CVT controller 61, hydraulic oil having a constant pressure is supplied from the hydraulic oil supply means to the piston attached to the turbine runner 33. The piston is extended by the supply of the hydraulic oil, and the extended piston is pressed against the converter cover. As a result, the input shaft (converter cover) and the output shaft (turbine runner) are directly engaged (the lock-up clutch 34 is engaged). In this case, the time until the lockup clutch 34 is engaged is determined by the opening of the control valve, and the lockup clutch 34 is quickly engaged as the opening of the control valve is increased. Since the lock-up clutch 34 is driven by the supply of hydraulic oil to the piston, even if the engagement command is issued at t3 when the engine rotation speed Ne crosses the target rotation speed tNe, there is a delay until the command torque capacity rises (from t3 to t4) This occurs.
 このようにロックアップクラッチ34の締結遅れがあると、ロックアップクラッチ34の締結遅れの間にエンジン回転速度Neが目標回転速度tNeを横切ってオーバーシュートして相当高い回転速度にまで上昇してしまう。そして、図3の上から第2段目に一点鎖線で示したように、ロックアップクラッチ34の指令トルク容量がやっとタイミングt4から急激に増大すると、図3の上から第3段目に一点鎖線で示したようにエンジン回転速度Neが指令トルク容量の増大に合わせてタイミングt4より急激に落ち込む。タイミングt4からエンジン回転速度Neの急激な落ち込みがあるとショックが発生し、ドライバに自然な運転感覚を提供することができないという問題が生じる。 Thus, if there is a delay in engagement of the lockup clutch 34, the engine rotational speed Ne overshoots across the target rotational speed tNe and increases to a considerably high rotational speed during the engagement delay of the lockup clutch 34. . Then, as indicated by the one-dot chain line in the second stage from the top in FIG. 3, when the command torque capacity of the lockup clutch 34 finally increases suddenly from the timing t4, the one-dot chain line in the third stage from the top in FIG. As shown in FIG. 8, the engine rotational speed Ne drops rapidly from the timing t4 as the command torque capacity increases. If there is a sudden drop in the engine speed Ne from the timing t4, a shock is generated, which causes a problem that a natural driving feeling cannot be provided to the driver.
 通常制御の場合、このようなタイミングt4からのエンジン回転速度Neの急激な落ち込みを避けるため、CVTコントローラ61は図3の上から第2段目に破線で示したように制御している。すなわち、指令トルク容量を増大させるタイミングは同じタイミングt4であっても、増大当初の勾配を緩やかにしてロックアップクラッチ34の指令トルク容量を増大させている。しかしながら、増大当初の勾配を緩やかにしてロックアップクラッチ34の指令トルク容量を増大させると、エンジン回転速度Neが図3の上から第3段目に破線で示したように目標回転速度tNeよりも相当高くなってしまう。 In the case of normal control, the CVT controller 61 performs control as indicated by a broken line in the second stage from the top of FIG. 3 in order to avoid such a sudden drop in the engine speed Ne from the timing t4. That is, even if the timing for increasing the command torque capacity is the same timing t4, the command torque capacity of the lockup clutch 34 is increased by making the gradient of the initial increase gentle. However, when the slope of the initial increase is moderated and the command torque capacity of the lockup clutch 34 is increased, the engine rotational speed Ne becomes higher than the target rotational speed tNe as indicated by the broken line in the third stage from the top of FIG. It will be quite expensive.
 なお、上記のようにタイミングt3でドライバの発進の意図が検知されてからロックアップクラッチ34の指令トルク容量がタイミングt4で増大するまでに応答遅れがあるのは次の理由にもよる。すなわち、CVT41に作動油を供給するための油ポンプとして、コスト削減のため吐出量のそれほど多くない油ポンプを使用している場合がある。この場合にはロックアップクラッチ締結手段を構成している上記ピストンに供給する作動油の圧力が上昇するのが遅れることによって、ロックアップクラッチ34の指令トルク容量の増大が遅れる。あるいはCVT41に作動油を供給するための油ポンプとして、吐出量が多めの油ポンプを使用するものもあるが、このものでは作動油を使用する優先順序が決まっている。たとえば変速用の摩擦締結要素には優先的に作動油が供給されることになっており、ロックアップクラッチ34の締結用には遅い順序でしか回ってこない。この場合にはロックアップクラッチ締結手段を構成している上記ピストンに一定圧の作動油を供給するタイミングが遅れることによって、ロックアップクラッチの指令トルク容量の増大が遅れる。 It should be noted that there is a response delay until the command torque capacity of the lockup clutch 34 increases at timing t4 after the driver's intention to start is detected at timing t3 as described above. That is, as an oil pump for supplying hydraulic oil to the CVT 41, an oil pump that does not have a large discharge amount may be used for cost reduction. In this case, an increase in the command torque capacity of the lockup clutch 34 is delayed due to a delay in the pressure of the hydraulic oil supplied to the piston constituting the lockup clutch fastening means. Alternatively, as an oil pump for supplying hydraulic oil to the CVT 41, there is an oil pump that uses an oil pump with a large discharge amount, but in this case, a priority order in which the hydraulic oil is used is determined. For example, hydraulic oil is preferentially supplied to the frictional engagement elements for shifting, and the lockup clutch 34 is only turned in a slow order for fastening. In this case, an increase in the command torque capacity of the lockup clutch is delayed due to a delay in the timing at which the constant pressure hydraulic oil is supplied to the piston constituting the lockup clutch fastening means.
 そこで本発明の第1実施形態では、車両発進時のロックアップクラッチ34の締結制御を行うCVTコントローラ61と、エンジン制御を行うエンジンコントローラ21とが協調制御する。すなわち、図1に示したようにCVTコントローラ61(トルクダウン指令手段)が、CVT41が要求する上限トルク指令値Tdをエンジントルクが超えないようにするトルクダウン指令を、エンジンコントローラ21へ出力する。そして、トルクダウン指令を受けるエンジンコントローラ21(トルクダウン制御手段)は、次のようなトルクダウン制御を行う。すなわち、エンジンコントローラ21は、基本エンジントルクTe0(エンジントルク)が上限トルク指令値Tdを超えているときには、点火時期をリタードさせることによりエンジントルクを上限トルク指令値Tdにまで低下させる。 Therefore, in the first embodiment of the present invention, the CVT controller 61 that performs the engagement control of the lockup clutch 34 when the vehicle starts and the engine controller 21 that performs the engine control perform coordinated control. That is, as shown in FIG. 1, the CVT controller 61 (torque down command means) outputs a torque down command to the engine controller 21 so that the engine torque does not exceed the upper limit torque command value Td requested by the CVT 41. Then, the engine controller 21 (torque down control means) that receives the torque down command performs the following torque down control. That is, when the basic engine torque Te0 (engine torque) exceeds the upper limit torque command value Td, the engine controller 21 reduces the engine torque to the upper limit torque command value Td by retarding the ignition timing.
 また、CVTコントローラ61(上限トルク指令値設定手段)は、上記の上限トルク指令値Tdを、車両の発進時に上昇するエンジン回転速度の最大値が目標回転速度の近くに収まるように設定する。この上限トルク指令値Tdの設定方法を、図4を参照して説明する。図4は上限トルク指令値を設定するための制御ブロック図である。スロットルセンサ13により検出されるスロットル弁開度TVOが入力される目標回転速度算出部71は、スロットル弁開度TVOからエンジン3の目標回転速度tNe[rpm]を算出する。目標回転速度tNeはスロットル弁開度TVOがゼロのとき正の値(アイドル時の目標回転速度NSET)を採り、スロットル弁開度TVOが大きくなるほど高くなる値である。 Also, the CVT controller 61 (upper limit torque command value setting means) sets the upper limit torque command value Td so that the maximum value of the engine speed that increases when the vehicle starts is close to the target speed. A method for setting the upper limit torque command value Td will be described with reference to FIG. FIG. 4 is a control block diagram for setting the upper limit torque command value. A target rotational speed calculation unit 71 to which the throttle valve opening TVO detected by the throttle sensor 13 is input calculates a target rotational speed tNe [rpm] of the engine 3 from the throttle valve opening TVO. The target rotational speed tNe takes a positive value (the target rotational speed NSET during idling) when the throttle valve opening TVO is zero, and is a value that increases as the throttle valve opening TVO increases.
 目標回転速度tNeが入力される乗算器72は、目標回転速度tNeの2乗を計算する。 The multiplier 72 to which the target rotational speed tNe is input calculates the square of the target rotational speed tNe.
 エンジン回転速度Ne[rpm]と、入力回転速度センサ62により検出されるタービン回転速度Nt[rpm]とが入力される除算器73は、タービン回転速度Ntをエンジン回転速度Neで除算することによって速度比e[無名数]を算出する。この速度比eが入力されるトルク容量係数算出部74(トルク容量係数算出手段)は、速度比eから所定のテーブルを検索することによりトルク容量係数τ[10-6Nm/rpm2]を算出する。速度比eに対するトルク容量係数τの特性は、トルクコンバータ31の仕様により予め定まっているので、その仕様をテーブルにしておけばよい。 The divider 73 to which the engine rotation speed Ne [rpm] and the turbine rotation speed Nt [rpm] detected by the input rotation speed sensor 62 are input, is obtained by dividing the turbine rotation speed Nt by the engine rotation speed Ne. The ratio e [nameless number] is calculated. The torque capacity coefficient calculation unit 74 (torque capacity coefficient calculation means) to which the speed ratio e is input calculates a torque capacity coefficient τ [10 −6 Nm / rpm 2] by searching a predetermined table from the speed ratio e. Since the characteristic of the torque capacity coefficient τ with respect to the speed ratio e is determined in advance according to the specification of the torque converter 31, the specification may be made into a table.
 このトルク容量係数τと上記目標回転速度tNeの二乗とが入力される乗算器75(トルクコンバータ伝達分トルク算出手段)は、これらを乗算することにより、つまり次式によりトルクコンバータ31の伝達トルクTtc[Nm]を算出する。 The multiplier 75 (torque converter transmission torque calculation means) to which the torque capacity coefficient τ and the square of the target rotational speed tNe are input multiplies them, that is, the transmission torque Ttc of the torque converter 31 by the following equation. [Nm] is calculated.
  Ttc=τ・Ne2                                        …(2)
 このようにして求めた伝達トルクTtcは目標回転速度tNeを実現するためのトルクコンバータ伝達分トルクである。
Ttc = τ · Ne2 (2)
The transmission torque Ttc thus obtained is a torque converter transmission torque for realizing the target rotational speed tNe.
 指令トルク容量算出部76(指令トルク容量算出手段)は、ロックアップクラッチ34の指令トルク容量Tlu[Nm]を算出する。ここで、ロックアップクラッチ34の指令トルク容量Tluの算出は次のようにすればよい。すなわち、ロックアップクラッチ締結手段を構成している制御バルブの開度を一定とした場合、制御バルブを開いてからの時間に比例してピストン位置(ピストンの伸び出し量)が定まり、ピストン位置に応じて指令トルク容量が定まる。このため、制御バルブを開いてからの時間をパラメータとするロックアップクラッチの指令トルク容量のテーブルを予め求めておく。そして、制御バルブを開いてからの時間から上記のテーブルを検索することによりロックアップクラッチの指令トルク容量Tluを算出する。 The command torque capacity calculation unit 76 (command torque capacity calculation means) calculates a command torque capacity Tlu [Nm] of the lockup clutch 34. Here, the calculation of the command torque capacity Tlu of the lockup clutch 34 may be performed as follows. That is, when the opening degree of the control valve constituting the lock-up clutch fastening means is constant, the piston position (piston extension amount) is determined in proportion to the time after the control valve is opened. The command torque capacity is determined accordingly. For this reason, a table of command torque capacity of the lock-up clutch using the time since opening the control valve as a parameter is obtained in advance. Then, the command torque capacity Tlu of the lockup clutch is calculated by searching the above table from the time after opening the control valve.
 加算器77(加算手段)は、目標回転速度tNeを実現するためのトルクコンバータ伝達分トルクTtcとロックアップクラッチの指令トルク容量Tlu[Nm]とを合算し、得られた合算値を上限トルク指令値Td[Nm]として設定する。 The adder 77 (adding means) adds the torque converter transmission torque Ttc for realizing the target rotational speed tNe and the command torque capacity Tlu [Nm] of the lockup clutch, and uses the obtained sum as an upper limit torque command. Set as the value Td [Nm].
 このように上限トルク指令値Tdを設定することによって、上り坂での発進時にもドライバが望む加速感を得つつ、エンジン回転速度Neが目標回転速度tNe未満になってしまうことを回避できる。例えば、上り坂での車両発進時には同じ目標回転速度tNeであっても、上り坂の勾配により車両加速度が平坦路での車両発進時より減少する。このため、タービン回転速度Ntの上昇の程度が小さくなり、速度比eが平坦路での車両発進時より小さくなる。このときに、平坦路での車両発進時にドライバが望む加速度が得られるようにスロットル弁開度TVOに基づいて一律に設定した上限トルク指令値を与えたとする。この場合には、上り坂と平坦路のトルク容量係数τの違いの分だけ、上り坂での車両発進時にエンジン回転速度Neが目標回転速度tNe未満になってしまうという問題が発生する。一方、本実施形態によれば、上り坂になると、速度比eが平坦路での車両発進時より小さくなるので、上り坂での発進時にもドライバが望む加速感を得つつ、エンジン回転速度Neを目標回転速度tNe未満になってしまうことを回避できる。 By setting the upper limit torque command value Td in this way, it is possible to avoid the engine rotational speed Ne from becoming less than the target rotational speed tNe while obtaining the acceleration feeling desired by the driver even when starting uphill. For example, even when the vehicle starts on an uphill, even when the target rotational speed tNe is the same, the vehicle acceleration decreases due to the slope of the uphill compared to when the vehicle starts on a flat road. For this reason, the degree of increase in the turbine rotational speed Nt is reduced, and the speed ratio e is reduced compared to when the vehicle starts on a flat road. At this time, it is assumed that an upper limit torque command value uniformly set based on the throttle valve opening TVO is given so as to obtain an acceleration desired by the driver when the vehicle starts on a flat road. In this case, there arises a problem that the engine rotational speed Ne becomes less than the target rotational speed tNe when the vehicle starts on the uphill by the difference between the torque capacity coefficient τ between the uphill and the flat road. On the other hand, according to the present embodiment, when going uphill, the speed ratio e becomes smaller than when starting a vehicle on a flat road, so the engine speed Ne is obtained while obtaining the acceleration feeling desired by the driver when starting uphill. Is less than the target rotational speed tNe.
 上記の上限トルク指示値TdがCVTコントローラ61より送られてくるエンジンコントローラ21は、トルクダウン制御を行う。これを再び図3を参照して説明する。図3の上から第2段目に、CVTコントローラ61より送られてきた上限トルク指令値Tdの変化が二点鎖線で重ねて示されている。 The engine controller 21 to which the upper limit torque instruction value Td is sent from the CVT controller 61 performs torque down control. This will be described again with reference to FIG. In the second row from the top in FIG. 3, the change in the upper limit torque command value Td sent from the CVT controller 61 is shown in a two-dot chain line.
 CVTコントローラ61からのトルクダウン指令をうけてエンジンコントローラ21が車両発進時にトルクダウン制御を開始するのは、基本的に実際のエンジン回転速度Neが目標回転速度tNeを横切るタイミングt3である。タイミングt3からタイミングt4までの区間ではロックアップクラッチ34の指令トルク容量Tluが増大しない(つまりTlu=0)ので、トルクコンバータ31の伝達トルクTtcのみが算出される。すなわち、図4において車両発進当初にはタービン回転速度Nt=0なので速度比eがゼロとなり、速度比eがゼロのときのトルク容量係数τとそのときのエンジン回転速度Neの2乗の積で定まる値でトルクコンバータ31の伝達トルクTtcが算出される。タイミングt3からタイミングt4までの区間においてもエンジン回転速度Neが変化するので、実際にはタイミングt3からタイミングt4までの区間でトルクコンバータ31の伝達トルクTtcが変化するのであるが、図3の上から第2段目では簡略化して一定値でTtcが推移するとしている。タイミングt4からはロックアップクラッチ34の指令トルク容量Tluが直線的に増大するため、この指令トルク容量Tluがトルクコンバータ31の伝達トルクTtcに合算された値である上限トルク指令値Tdは、指令トルク容量Tluの増大の傾き(直線の傾き)と同じ傾きで増大する。そして、上限トルク指令値Tdが増大すると、タイミングt5で上限トルク指令値Tdが基本エンジントルクTe0を横切る。 The engine controller 21 starts the torque-down control upon receiving the torque-down command from the CVT controller 61 at the timing t3 when the actual engine speed Ne basically crosses the target speed tNe. Since the command torque capacity Tlu of the lockup clutch 34 does not increase in the section from the timing t3 to the timing t4 (that is, Tlu = 0), only the transmission torque Ttc of the torque converter 31 is calculated. That is, in FIG. 4, since the turbine rotational speed Nt = 0 at the beginning of vehicle start, the speed ratio e becomes zero, and the product of the torque capacity coefficient τ when the speed ratio e is zero and the square of the engine rotational speed Ne at that time. The transmission torque Ttc of the torque converter 31 is calculated with a fixed value. Since the engine speed Ne changes in the section from the timing t3 to the timing t4, the transmission torque Ttc of the torque converter 31 actually changes in the section from the timing t3 to the timing t4. In the second stage, Ttc changes with a constant value in a simplified manner. Since the command torque capacity Tlu of the lockup clutch 34 increases linearly from timing t4, the upper limit torque command value Td, which is a value obtained by adding the command torque capacity Tlu to the transmission torque Ttc of the torque converter 31, is the command torque The capacitance Tlu increases with the same inclination as the inclination of increase (straight line). When the upper limit torque command value Td increases, the upper limit torque command value Td crosses the basic engine torque Te0 at timing t5.
 このように上限トルク指令値Tdがタイミングt3からタイミングt5までの区間で基本エンジントルクTe0を下回って変化するとき、エンジンコントローラ21は、上限トルク指令値Tdが基本エンジントルクTe0を下回るタイミングt3からタイミングt5までの区間でエンジントルクを制限する。つまり、タイミングt3よりタイミングt4までの区間では、基本エンジントルクTe0に代えて上限トルク指令値Tdをエンジントルク指令値とするトルクダウン制御を行う。この結果、実線の基本エンジントルクTe0と二点鎖線の上限トルク指令値Tdとで囲まれた、図3の上から第2段目に示すハッチング領域が本実施形態におけるエンジンのトルクカット分となる。そして、タイミングt5からはエンジントルクを制限する必要がなくなるので、CVTコントローラ61は、トルクダウン指令を終了する。これを受けてエンジンコントローラ21は、トルクダウン指令を終了するタイミングから、基本エンジントルクTe0をエンジントルク指令値としてエンジンを制御する(通常制御に復帰させる)。 As described above, when the upper limit torque command value Td changes below the basic engine torque Te0 in the section from the timing t3 to the timing t5, the engine controller 21 performs the timing from the timing t3 when the upper limit torque command value Td falls below the basic engine torque Te0. The engine torque is limited during the period up to t5. That is, in a section from timing t3 to timing t4, torque down control is performed in which the upper limit torque command value Td is used as the engine torque command value instead of the basic engine torque Te0. As a result, the hatched area shown in the second row from the top of FIG. 3 surrounded by the solid basic engine torque Te0 and the two-dot chain upper limit torque command value Td is the torque cut of the engine in this embodiment. . Then, since it is no longer necessary to limit the engine torque from timing t5, the CVT controller 61 ends the torque down command. In response to this, the engine controller 21 controls the engine using the basic engine torque Te0 as the engine torque command value (returns to normal control) from the timing of ending the torque down command.
 これによって、本実施形態によれば次の効果を得る。すなわち、タイミングt3からタイミングt5までの区間における、エンジンコントローラ21によるトルクダウン制御によって、図3の上から第2段目に二点鎖線で示したようにエンジン回転速度Neの上昇が抑制されている間にタイミングt4からロックアップクラッチの指令トルク容量Tluが急激に増大し始める。本実施形態では、図3の上から第2段目に一点鎖線で示したようにタイミングt4から指令トルク容量Tluを急勾配で増大させたとしても、図3の上から第3段目に実線で示したようにエンジン回転速度Neの上昇(最大値)を抑制して目標回転速度tNeの付近に制御することができる。かつ、指令トルク容量Tluをタイミングt4から急勾配で増大させることで、ロックアップクラッチ34が通常制御の場合と同じタイミングt8で締結されることから、燃費が悪くなることもない。一方、通常制御では図3の上から第2段目に一点鎖線で示したようにタイミングt4から指令トルク容量Tluを急勾配で増大させたときに急激なエンジン回転速度Neの落ち込みやショックを生じていた。 Thereby, according to the present embodiment, the following effects are obtained. That is, in the section from the timing t3 to the timing t5, the increase in the engine rotational speed Ne is suppressed as shown by the two-dot chain line in the second stage from the top in FIG. In the meantime, the command torque capacity Tlu of the lockup clutch starts to increase rapidly from timing t4. In the present embodiment, even if the command torque capacity Tlu is increased steeply from the timing t4 as shown by the one-dot chain line in the second stage from the top in FIG. 3, the solid line in the third stage from the top in FIG. As can be seen, the increase (maximum value) of the engine rotational speed Ne can be suppressed and controlled near the target rotational speed tNe. Further, by increasing the command torque capacity Tlu with a steep slope from the timing t4, the lockup clutch 34 is engaged at the same timing t8 as in the case of the normal control, so that the fuel efficiency is not deteriorated. On the other hand, in the normal control, when the command torque capacity Tlu is increased at a steep slope from the timing t4 as shown by the one-dot chain line in the second stage from the top in FIG. 3, a sudden drop in engine speed Ne or a shock occurs. It was.
 なお、図3の上から第2段目は上限トルク指令値Tdによってトルクダウン制御がどのように行われるのかを示すのが目的であるため、タイミングt2以前及びタイミングt5以降のトルクダウン制御が行われない区間では上限トルク指令値Tdの動きを大雑把に記載している。すなわち、タイミングt2より以前は、上限トルク指令値Tdが一定値Td0の状態にあり、タイミングt2から低下するものとしている。また、トルクダウン制御が終了するタイミングt5の直後は、上限トルク指令値Tdがタイミングt5の直前と同じ傾きで増大し、タイミングt6以降で上限トルク指令値Tdが一定値Td0に戻っている。従って、図3の上から第2段目に記載した上限トルク指令値Tdの動きは、後述するフローチャートにより算出される上限トルク指令値Tdの動きと一致するものでない。 Note that the second stage from the top of FIG. 3 is intended to show how the torque down control is performed by the upper limit torque command value Td, so that the torque down control before timing t2 and after timing t5 is performed. In the not-shown section, the movement of the upper limit torque command value Td is roughly described. That is, before the timing t2, the upper limit torque command value Td is in a state of the constant value Td0, and is decreased from the timing t2. Immediately after the timing t5 when the torque-down control ends, the upper limit torque command value Td increases with the same slope as immediately before the timing t5, and after the timing t6, the upper limit torque command value Td returns to the constant value Td0. Therefore, the movement of the upper limit torque command value Td described in the second stage from the top in FIG. 3 does not coincide with the movement of the upper limit torque command value Td calculated by the flowchart described later.
 CVTコントローラ61及びエンジンコントローラ21で実行される上記の制御を、図5,図6,図7のフローチャートを参照して説明する。 The above-described control executed by the CVT controller 61 and the engine controller 21 will be described with reference to the flowcharts of FIGS.
 図5のフローチャートは発進時フラグを設定するためのもので、CVTコントローラ61が一定時間毎(例えば10ms毎)に実行する。ステップS1、S2でCVTコントローラ61は今回に発進操作が行われたか否か、前回に発進操作が行われたか否かを判定する。発進操作が行われたか否かはエンジンコントローラ21より送られてくるアクセル開度APOやスロットル弁開度TVOの変化に基づいて行えばよい。今回に発進操作が行われ前回に発進操作が行われなかった、つまり今回初めて発進操作が行われたときには発進時であると判断する。この場合には、CVTコントローラ61はステップS3で発進時フラグ(エンジン始動時にゼロに初期設定)=1とする。この発進時フラグ=1の状態はその後も保持させておく。一方、今回に発進操作が行われていないときや、今回、前回ともに発進操作が行われているときにはそのまま今回の処理を終了する。 The flowchart of FIG. 5 is for setting a start flag, and is executed by the CVT controller 61 at regular intervals (for example, every 10 ms). In steps S1 and S2, the CVT controller 61 determines whether or not a start operation has been performed this time, and whether or not a start operation has been performed last time. Whether or not the start operation has been performed may be performed based on changes in the accelerator opening APO and the throttle valve opening TVO sent from the engine controller 21. When the start operation is performed this time and the previous start operation is not performed, that is, when the start operation is performed for the first time this time, it is determined that the vehicle is starting. In this case, the CVT controller 61 sets a start flag (initially set to zero when the engine is started) = 1 in step S3. The state of the start flag = 1 is maintained after that. On the other hand, when the start operation is not performed at this time, or when the start operation is performed together with the previous time, the current process is terminated.
 図6のフローチャートはトルクダウン指令フラグを設定するためのもので、CVTコントローラ61が図6のフローチャートに続けて一定時間毎(例えば10ms毎)に実行する。CVTコントローラ61はトルクダウン指令フラグを設定するに際しては、エンジンコントローラ21から送信されるスロットル弁開度TVO、基本エンジントルクTe0を用いることとなる。 The flowchart in FIG. 6 is for setting a torque down command flag, and the CVT controller 61 executes the routine at a fixed time (for example, every 10 ms) following the flowchart in FIG. When setting the torque down command flag, the CVT controller 61 uses the throttle valve opening TVO and the basic engine torque Te0 transmitted from the engine controller 21.
 ステップS11でCVTコントローラ61は発進時フラグ(図5のフローチャートにより設定済み)が1か否かを判定する。発進時フラグ=0であるときにはそのまま今回の処理を終了する。 In step S11, the CVT controller 61 determines whether or not the start flag (set according to the flowchart of FIG. 5) is 1. When the start flag = 0, the current process is terminated as it is.
 ステップS11で発進時フラグ=1であるときには、発進時であるとしてCVTコントローラ61はステップS12以降の処理を実行する。ステップS12でCVTコントローラ61はトルクダウン終了フラグ(エンジン始動時にゼロに初期設定)が1か否かを判定する。ここではトルクダウン終了フラグ=0であるとしてCVTコントローラ61はステップS13の処理を実行する。ステップS13でCVTコントローラ61はトルクダウン指令フラグ(エンジン始動時にゼロに初期設定)が1か否かを判定する。ここではトルクダウン指令フラグ=0であるとしてCVTコントローラ61はステップS14の処理を実行する。 When the start flag is 1 in step S11, it is determined that the start is in progress, and the CVT controller 61 executes the processing after step S12. In step S12, the CVT controller 61 determines whether or not the torque down end flag (initially set to zero when the engine is started) is 1. Here, the CVT controller 61 executes the process of step S13 on the assumption that the torque down end flag = 0. In step S13, the CVT controller 61 determines whether the torque down command flag (initially set to zero when the engine is started) is 1. Here, assuming that the torque down command flag = 0, the CVT controller 61 executes the process of step S14.
 ステップS14でCVTコントローラ61は、スロットル弁開度TVOに応じた目標回転数速度tNe[rpm]を算出する。このステップS14の操作は、図4の目標回転速度算出部71で行われるところと同じである。ここで、スロットル弁開度TVOはエンジンコントローラ21から送信されている。 In step S14, the CVT controller 61 calculates a target rotational speed tNe [rpm] corresponding to the throttle valve opening TVO. The operation in step S14 is the same as that performed by the target rotation speed calculation unit 71 in FIG. Here, the throttle valve opening TVO is transmitted from the engine controller 21.
 ステップS15でCVTコントローラ61は、この目標回転速度tNeからトルクダウン指令の遅れ分(図3ではt2からt3までの区間に対応する。)に対応する回転速度分だけ低い値をトルクダウン指令の開始判定回転速度sNe[rpm]として算出する。ステップS16でCVTコントローラ61は、開始判定回転速度sNeと実際のエンジン回転速度Neを比較する。エンジン回転速度Neが開始判定回転速度sNe未満であるときには、CVTコントローラ61はトルクダウン指令の開始タイミングになっていないと判断しそのまま今回の処理を終了する。 In step S15, the CVT controller 61 starts the torque down command by setting a value lower by the rotational speed corresponding to the delay of the torque down command from the target rotational speed tNe (corresponding to the section from t2 to t3 in FIG. 3). It is calculated as a determination rotational speed sNe [rpm]. In step S16, the CVT controller 61 compares the start determination rotational speed sNe with the actual engine rotational speed Ne. When the engine rotation speed Ne is less than the start determination rotation speed sNe, the CVT controller 61 determines that it is not the start timing of the torque down command and ends the current process as it is.
 一方、ステップS16でエンジン回転速度Neが開始判定回転速度sNe以上となったときには、CVTコントローラ61はトルクダウン指令の開始タイミングになった判断する。この場合には、CVTコントローラ61はトルクダウン指令を開始する(出す)ためステップS17でトルクダウン指令フラグ(エンジン始動時にゼロに初期設定)=1とする。 On the other hand, when the engine rotation speed Ne becomes equal to or higher than the start determination rotation speed sNe in step S16, the CVT controller 61 determines that it is the start timing of the torque down command. In this case, the CVT controller 61 sets a torque down command flag (initially set to zero when the engine is started) = 1 in step S17 in order to start (output) a torque down command.
 ここで、目標回転速度tNeよりもトルクダウン指令の遅れ分(t2からt3までの期間に対応する。)に対応する回転速度分だけ低い値(sNe)からトルクダウン指令を開始する(出す)理由は次の通りである。すなわち、発進のためドライバがアクセルペダル22を一定量踏み込むことによってスロットル弁開度が図3の最上段に示したようにタイミングt1で大きくなってタイミングt2から所定値TVO1を維持する。CVTコントローラ61はエンジンコントローラ21から送られるスロットル弁開度TVOを用いて目標回転速度tNeを算出するが、スロットル開度TVOがTVO1になったタイミングから、CVTコントローラ61で所定値TVO1に基づいてtNeが算出されるまでに遅れがある。また、トルクダウン指令フラグの状態(トルクダウン指令)がエンジンコントローラ21に伝えられ、トルクダウン指令フラグがゼロから1に切換わったタイミングでトルクダウン制御が開始される。しかしながら、トルクダウン指令フラグの状態がエンジンコントローラ21に伝えられ後述する図7のフローチャートで用いられるまでにも遅れがある。このように2つのコントローラ21,61の間でデータが往復すること及びデータの入出力などに伴う遅れ分だけトルクダウン指令が遅れてしまう。そこで、CVTコントローラ61では、目標回転速度tNeよりも低い開始判定回転速度sNeを算出させることで、トルクダウン指令の遅れ分を見越した早いタイミング(t2)でトルクダウン指令フラグをゼロから1に切換える(トルクダウン指令を出す)のである。そして、トルクダウン指令フラグがエンジンコントローラ21に伝えられたときには、図3の最下段に示したように、トルクダウン指令フラグはタイミングt3でゼロから1に切換わることとなる。このように、CVTコントローラ61の側に開始判定回転速度sNeを導入したのは、エンジンコントローラ21がt3のタイミングでトルクダウン制御を開始できるようにするためである。 Here, the reason for starting (outputting) the torque down command from a value (sNe) lower than the target rotational speed tNe by the rotational speed corresponding to the delay of the torque down command (corresponding to the period from t2 to t3). Is as follows. That is, when the driver depresses the accelerator pedal 22 by a certain amount for starting, the throttle valve opening increases at the timing t1 as shown in the uppermost stage of FIG. 3, and the predetermined value TVO1 is maintained from the timing t2. The CVT controller 61 calculates the target rotational speed tNe using the throttle valve opening TVO sent from the engine controller 21. From the timing when the throttle opening TVO becomes TVO1, the CVT controller 61 uses the predetermined value TVO1 to calculate tNe. There is a delay before is calculated. Further, the state of the torque down command flag (torque down command) is transmitted to the engine controller 21, and the torque down control is started at the timing when the torque down command flag is switched from zero to one. However, there is also a delay before the state of the torque down command flag is transmitted to the engine controller 21 and used in the flowchart of FIG. Thus, the torque down command is delayed by the amount of delay associated with the data reciprocating between the two controllers 21 and 61 and the input / output of data. Therefore, the CVT controller 61 switches the torque down command flag from zero to 1 at an early timing (t2) in anticipation of the delay of the torque down command by calculating a start determination rotational speed sNe that is lower than the target rotational speed tNe. (Torque down command is issued). When the torque down command flag is transmitted to the engine controller 21, the torque down command flag is switched from zero to 1 at timing t3 as shown in the lowermost stage of FIG. Thus, the reason why the start determination rotational speed sNe is introduced on the CVT controller 61 side is to enable the engine controller 21 to start the torque-down control at the timing of t3.
 なお、本実施形態では車両発進時のエンジン回転速度Neの上昇の傾き(つまり、図3第3段目のタイミングt1からタイミングt2の間のエンジン回転速度Neの上昇の傾き)は、ほぼ一定であると仮定している。実際には車両発進時のエンジン回転速度Neの上昇の傾きが変化することが考えられる。この場合に、仮にエンジン回転速度のNeの上昇の傾きが図3の上から第3段目に示す傾きより大きい(立っている)ときには、tNe-sNeを図3の上から第3段目に示した場合より大きく設定すればよい。 In the present embodiment, the gradient of increase in the engine rotation speed Ne when the vehicle starts (that is, the gradient of increase in the engine rotation speed Ne from the timing t1 to the timing t2 in the third stage in FIG. 3) is substantially constant. Assume that there is. Actually, it is conceivable that the gradient of increase in the engine rotation speed Ne at the start of the vehicle changes. In this case, if the gradient of the increase in Ne of the engine rotation speed is larger (standing) than the gradient shown in the third stage from the top of FIG. 3, tNe−sNe is set to the third stage from the top of FIG. What is necessary is just to set larger than the case shown.
 ステップS18でCVTコントローラ61は、上限トルク指令値Td[Nm]を算出する。この内容は図4で前述した。 In step S18, the CVT controller 61 calculates the upper limit torque command value Td [Nm]. This content is described above with reference to FIG.
 ステップS17でトルクダウン指令フラグ=1としたことより、次回以降の演算でCVTコントローラ61はステップS13からステップS19へ進む。CVTコントローラ61はステップS19でステップS18と同様にして上限トルク指令値Tdを算出し、ステップS20でこの上限トルク指令値Tdと基本エンジントルクTe0を比較する。ここで、基本エンジントルクTe0はエンジンコントローラ21からCAN通信を介して得ている。上限トルク指令値Tdが基本エンジントルクTe0未満であるときには、CVTコントローラ61はステップS21でトルクダウン指令フラグ=1とする(トルクダウン指令を出す)。次回からも上限トルク指令値Tdが基本エンジントルクTe0未満である限りCVTコントローラ61はステップS21の操作を繰り返す(トルクダウン指令を出し続ける)。 Since the torque down command flag is set to 1 in step S17, the CVT controller 61 proceeds from step S13 to step S19 in the subsequent calculation. In step S19, the CVT controller 61 calculates the upper limit torque command value Td in the same manner as in step S18. In step S20, the CVT controller 61 compares the upper limit torque command value Td with the basic engine torque Te0. Here, the basic engine torque Te0 is obtained from the engine controller 21 via CAN communication. When the upper limit torque command value Td is less than the basic engine torque Te0, the CVT controller 61 sets a torque down command flag = 1 (outputs a torque down command) in step S21. From the next time, as long as the upper limit torque command value Td is less than the basic engine torque Te0, the CVT controller 61 repeats the operation of step S21 (continues to issue a torque down command).
 やがてステップS20で上限トルク指令値Tdが基本エンジントルクTe0以上となったときには、CVTコントローラ61はトルクダウン指令を終了(あるいは解除)させるタイミングになったと判断する。このときにはCVTコントローラ61はトルクダウン指令を終了させるためステップS22,S23,S24の処理を実行し、トルクダウン終了フラグ=1、トルクダウン指令フラグ=0、発進時フラグ=0とする。ステップS22でトルクダウン終了フラグ=1とされることより、CVTコントローラ61は次回以降の演算でステップS12からステップS13に進むことはない。 Eventually, when the upper limit torque command value Td becomes equal to or greater than the basic engine torque Te0 in step S20, the CVT controller 61 determines that it is time to end (or cancel) the torque down command. At this time, the CVT controller 61 executes steps S22, S23, and S24 in order to end the torque down command, and sets the torque down end flag = 1, the torque down command flag = 0, and the start flag = 0. Since the torque down end flag is set to 1 in step S22, the CVT controller 61 does not proceed from step S12 to step S13 in the subsequent calculation.
 このようにして設定したトルクダウン指令フラグ及びトルクダウン終了フラグをトルクダウン指令として、図4により算出する上限トルク指令値Tdと共に、CVTコントローラ61がCAN通信を介してエンジンコントローラ21に送信する(図1参照)。 The CVT controller 61 transmits the torque-down command flag and the torque-down end flag set in this way as a torque-down command together with the upper limit torque command value Td calculated from FIG. 4 to the engine controller 21 via CAN communication (FIG. 1).
 図7のフローチャートはエンジントルク指令値Te及び点火時期指令値ADVを算出するためもので、エンジンコントローラ21が一定時間毎(例えば10ms毎)に実行する。エンジンコントローラ21は、Te及びADVを算出するに際し、CVTコントローラ61からトルクダウン指令として送信されるトルクダウン指令フラグ、トルクダウン終了フラグ及び上限トルク指令値Tdを用いることとなる。 7 is for calculating the engine torque command value Te and the ignition timing command value ADV, and is executed by the engine controller 21 at regular intervals (for example, every 10 ms). When calculating Te and ADV, the engine controller 21 uses a torque down command flag, a torque down end flag, and an upper limit torque command value Td transmitted from the CVT controller 61 as a torque down command.
 ステップS31でエンジンコントローラ21は、エンジン回転速度Neと、エアフローメータ25により検出される吸入空気量からQaから図8を内容とするマップを検索することにより、基本エンジントルクTe0[Nm]を算出する。図8に示したように基本エンジントルクTe0はエンジン回転速度Neが一定の条件で吸入空気量Qaが大きくなるほど大きくなり、また吸入空気量Qaが一定の条件でエンジン回転速度Neが高くなるほど大きくなる値である。 In step S31, the engine controller 21 calculates a basic engine torque Te0 [Nm] by searching a map having the contents shown in FIG. 8 from Qa based on the engine speed Ne and the intake air amount detected by the air flow meter 25. . As shown in FIG. 8, the basic engine torque Te0 increases as the intake air amount Qa increases under the condition where the engine rotational speed Ne is constant, and increases as the engine rotational speed Ne increases under the condition where the intake air amount Qa is constant. Value.
 ステップS32でエンジンコントローラ21は、エンジン回転速度Neと基本噴射パルス幅Tp[ms]から所定のマップを検索することにより基本点火時期ADV0[°BTDC]を算出する。基本点火時期ADV0は、NeとTpが相違しても、例えばMBTが得られるように定められている。上記の基本噴射パルス幅Tpはエンジン回転速度Neと吸入空気量Qaから定まる値である。基本パルス幅Tpだけ燃料噴射弁7を開いたとき、所定量の燃料量が吸気ポート5に供給されるが、このときの燃料量と吸気ポートを流れる吸入空気量とで理論空燃比の混合気が得られることになる。 In step S32, the engine controller 21 calculates a basic ignition timing ADV0 [° BTDC] by searching a predetermined map from the engine speed Ne and the basic injection pulse width Tp [ms]. The basic ignition timing ADV0 is determined so that, for example, MBT can be obtained even if Ne and Tp are different. The basic injection pulse width Tp is a value determined from the engine speed Ne and the intake air amount Qa. When the fuel injection valve 7 is opened by the basic pulse width Tp, a predetermined amount of fuel is supplied to the intake port 5, and the stoichiometric air-fuel mixture is determined by the amount of fuel at this time and the amount of intake air flowing through the intake port. Will be obtained.
 ステップS33でエンジンコントローラ21はトルクダウン指令フラグが1か否かを判定する。このトルクダウン指令フラグはCVTコントローラ61から送られている。上記のようにエンジンコントローラ21でこのトルクダウン指令フラグがゼロから1に切換わるタイミングは、CVTコントローラ61がトルクダウン指令フラグをゼロから1に切換えたタイミングより遅れている。トルクダウン指令フラグ=0であるときにはまだトルクダウン指令が出ていないと判断する。この場合にはエンジンコントローラ21はステップS41,S42の処理を実行して、基本エンジントルクTe0をエンジントルク指令値Teに、基本点火時期ADV0[°BTDC]を点火時期指令値に入れる。 In step S33, the engine controller 21 determines whether the torque down command flag is 1 or not. This torque down command flag is sent from the CVT controller 61. As described above, the timing at which the engine controller 21 switches the torque down command flag from zero to 1 is delayed from the timing at which the CVT controller 61 switches the torque down command flag from zero to one. When the torque down command flag = 0, it is determined that the torque down command has not been issued yet. In this case, the engine controller 21 executes the processing of steps S41 and S42 to put the basic engine torque Te0 into the engine torque command value Te and the basic ignition timing ADV0 [° BTDC] into the ignition timing command value.
 一方、トルクダウン指令フラグ=1の場合には、エンジンコントローラ21はトルクダウン制御を開始するためステップS34に進み、トルクダウン指令フラグが1となってから(つまりトルクダウン指令が出てから)一定時間が経過しているか否かを判定する。ここで、ステップS34,S43,S44は、何らかの不具合でロックアップクラッチ34の締結が開始されなかった場合に対処する処理である。ロックアップクラッチ34の締結が開始される限り、一定時間が経過する前にステップS35以降の処理を実行することとなる。ロックアップクラッチ34の締結が開始される限り、図3のタイミングt5付近で上限トルク指令値Tdが基本エンジントルクTe0と一致するので、一定時間の終了タイミングとしてはタイミングt5を少し超えた当たりに設定しておく。 On the other hand, when the torque down command flag = 1, the engine controller 21 proceeds to step S34 to start the torque down control, and is constant after the torque down command flag becomes 1 (that is, after the torque down command is issued). Determine whether time has passed. Here, Steps S34, S43, and S44 are processes for dealing with a case where the engagement of the lockup clutch 34 is not started due to some trouble. As long as the engagement of the lock-up clutch 34 is started, the processing after step S35 is executed before the fixed time elapses. As long as the engagement of the lockup clutch 34 is started, the upper limit torque command value Td coincides with the basic engine torque Te0 in the vicinity of the timing t5 in FIG. 3, so the end timing of the fixed time is set at a time slightly exceeding the timing t5. Keep it.
 ここでは、何らかの不具合がない、つまり一定時間が経過してないとしてステップS35に進み、トルクダウン終了フラグをみる。トルクダウン終了フラグはCVTコントローラ61から送られている。トルクダウン終了フラグ=0であるときにはトルクダウン指令の終了タイミングになっていない(トルクダウン指令が終了していない)と判断する。このときにはステップS36-38の処理(トルクダウン制御)を実行する。 Here, it is assumed that there is no problem, that is, a certain time has not elapsed, the process proceeds to step S35, and the torque down end flag is checked. The torque down end flag is sent from the CVT controller 61. When the torque down end flag = 0, it is determined that the end timing of the torque down command has not come (the torque down command has not ended). At this time, the processing of step S36-38 (torque down control) is executed.
 詳細には、まずステップS36でエンジンコントローラ21は上限トルク指令値Tdをエンジントルク指令値Teに入れる。上限トルク指令値TdはCVTコントローラ61から送られている。なお、上限トルク指令値Tdをエンジントルク指令値Teに入れたからといってエンジントルクが上限トルク指令値Tdに制限されるのではない。実際には後述する点火時期のリタード(遅角)によってエンジントルクを上限トルク指令値Tdへと低下させることとなる。 Specifically, first, in step S36, the engine controller 21 enters the upper limit torque command value Td into the engine torque command value Te. The upper limit torque command value Td is sent from the CVT controller 61. It should be noted that the engine torque is not limited to the upper limit torque command value Td just because the upper limit torque command value Td is entered in the engine torque command value Te. In practice, the engine torque is reduced to the upper limit torque command value Td by retarding the ignition timing described later.
 ステップS37でエンジンコントローラ21は、上限トルクダウン指令値Tdが入れられたエンジントルク指令値Teを読み込む。ステップS38でエンジンコントローラ21は、エンジントルクをエンジントルク指令値Teまで低減するための点火時期を算出し、算出した点火時期を点火時期指令値ADV[°BTDC]として設定する。 In step S37, the engine controller 21 reads the engine torque command value Te into which the upper limit torque down command value Td has been entered. In step S38, the engine controller 21 calculates an ignition timing for reducing the engine torque to the engine torque command value Te, and sets the calculated ignition timing as an ignition timing command value ADV [° BTDC].
 次回以降は、ステップS35でトルクダウン終了フラグ=0である限り、トルクダウン制御を継続するためエンジンコントローラ21はステップS36-38の処理を繰り返し実行する。そして、暫く後にステップS35でトルクダウン終了フラグ=1となったときに、エンジンコントローラ21はトルクダウン指令の終了タイミングになった(トルクダウン指令が終了した)と判断する。このときエンジンコントローラ21はトルクダウン制御を終了するためステップS39,S40の処理を実行して、基本エンジントルクTe0をエンジントルク指令値Teに、基本点火時期ADV0を点火時期指令値ADVに入れる。 From the next time onward, as long as the torque down end flag = 0 in step S35, the engine controller 21 repeats the processing of steps S36-38 in order to continue the torque down control. After a while, when the torque down end flag is set to 1 in step S35, the engine controller 21 determines that the end timing of the torque down command has come (the torque down command has ended). At this time, the engine controller 21 executes the processes of steps S39 and S40 to end the torque reduction control, and sets the basic engine torque Te0 to the engine torque command value Te and the basic ignition timing ADV0 to the ignition timing command value ADV.
 一方、ステップS34でトルクダウン指令フラグが1となってから一定時間が経過したときには、エンジンコントローラ21は何らかの不都合でロックアップクラッチ34の締結が開始されなかったと判断し、トルクダウン制御を終了させるためステップS43の処理を実行する。ステップS43でエンジンコントローラ21は、前回のエンジントルク指令値Teに一定値ΔTを加算した値を今回のエンジントルク指令値Teとする。一定値ΔTは、エンジントルクを上限トルク指令値Tdから基本エンジントルクTe0へと復帰させるときの速度を定める値であって、予め設定しておく。 On the other hand, when a certain time has elapsed since the torque-down command flag becomes 1 in step S34, the engine controller 21 determines that the engagement of the lock-up clutch 34 has not been started for some reason, and terminates the torque-down control. The process of step S43 is executed. In step S43, the engine controller 21 sets a value obtained by adding the constant value ΔT to the previous engine torque command value Te as the current engine torque command value Te. The constant value ΔT is a value that determines the speed at which the engine torque is returned from the upper limit torque command value Td to the basic engine torque Te0, and is set in advance.
 ステップS44でエンジンコントローラ21は、ステップS43で算出したエンジントルク指令値Teと基本エンジントルクTe0を比較する。エンジントルク指令値Teが基本エンジントルクTe0未満であるときは、エンジンコントローラ21はトルクダウン制御の終了タイミングになっていないと判断する。このときにはステップS40の処理を実行して基本点火時期ADV0を点火時期指令値ADVに入れる。エンジントルク指令値Teが基本エンジントルクTe0である限り、エンジンコントローラ21はステップS40の処理を繰り返す。 In step S44, the engine controller 21 compares the engine torque command value Te calculated in step S43 with the basic engine torque Te0. When the engine torque command value Te is less than the basic engine torque Te0, the engine controller 21 determines that it is not time to end the torque down control. At this time, the process of step S40 is executed to put the basic ignition timing ADV0 into the ignition timing command value ADV. As long as the engine torque command value Te is the basic engine torque Te0, the engine controller 21 repeats the process of step S40.
 やがてエンジントルク指令値Teが基本エンジントルクTe0以上となったときに、エンジンコントローラ21はトルクダウン制御の終了タイミングになったと判断する。このときエンジンコントローラ21は、トルクダウン制御を終了させるためステップS39、S40の処理を実行して基本エンジントルクTe0をエンジントルク指令値Teに、基本点火時期ADV0を点火時期指令値ADVに入れる。 Eventually, when the engine torque command value Te becomes equal to or higher than the basic engine torque Te0, the engine controller 21 determines that the end timing of the torque reduction control has come. At this time, the engine controller 21 executes steps S39 and S40 in order to end the torque reduction control, and sets the basic engine torque Te0 to the engine torque command value Te and the basic ignition timing ADV0 to the ignition timing command value ADV.
 このように上記のステップS43,S44は、ロックアップクラッチ34の締結が開始しなかった場合のため、トルクダウン制御の開始から一定時間が経過したときにも、予め設定した速度でエンジントルクを基本エンジントルクTe0へと復帰させるものである。 As described above, the above steps S43 and S44 are based on the case where the lock-up clutch 34 has not been engaged. Therefore, even when a predetermined time has elapsed from the start of the torque-down control, the engine torque is basically set at a preset speed. The engine torque is returned to Te0.
 ステップS45でエンジンコントローラ21は、エンジントルク指令値Teと点火時期指令値ADVを出力する。エンジンコントローラ21が有する図示しない別のフローチャートでは、このエンジントルク指令値Teに基づいて目標吸入空気量を算出する。また、エンジンコントローラ21では、クランク角が点火時期指令値ADVとなったときに点火コイルの一次側電流を遮断することにより点火プラグ8に火花を発生させ、これによって燃焼室6内の混合気に点火する。 In step S45, the engine controller 21 outputs the engine torque command value Te and the ignition timing command value ADV. In another flowchart (not shown) of the engine controller 21, the target intake air amount is calculated based on the engine torque command value Te. Further, the engine controller 21 generates a spark in the spark plug 8 by cutting off the primary side current of the ignition coil when the crank angle reaches the ignition timing command value ADV, and thereby the air-fuel mixture in the combustion chamber 6 is generated. Ignite.
 なお、上述した図7のフローチャートでは、点火時期を遅角することによってトルクを低下させているが、トルク低減方法はこれに限られるわけではない。例えば、燃料噴射カット、電子制御スロットルの開度を絞ることによる吸入空気量低減等によってもトルク低減を実現できる。また、エンジンのクランクプーリからベルトを介して駆動力を取り出すオルタネータを備える場合には、オルタネータの発電負荷を増大させてトランスミッションの入力トルクを低減させれば、上述したトルク制御と同様の目的を達成できる。 In the flowchart of FIG. 7 described above, the torque is reduced by retarding the ignition timing, but the torque reduction method is not limited to this. For example, the torque can be reduced by cutting the fuel injection, reducing the intake air amount by reducing the opening of the electronic control throttle, or the like. In addition, when an alternator that extracts driving force from the crank pulley of the engine via a belt is provided, the same purpose as the torque control described above can be achieved by increasing the power generation load of the alternator and reducing the input torque of the transmission. it can.
 次に、本実施形態では、特に低アクセル開度域での加速度を抑制することによりドライバのアクセルペダル操作を容易にし、ドライバが望む加速度に対応した適切なアクセル開度を実現しやすくすることができる、という異なる効果をも有している。この効果について図2を参照して説明する。図2では、本実施形態の場合のアクセル開度APOに対する加速度のピーク値Gpの特性を実線で重ねて示している。通常制御では図2に破線で示したようにゼロ近辺の低アクセル開度域で加速度ピーク値Gpの立ち上がりが急勾配となるため、アクセル開度APOに対する加速度ピーク値の分解性能が悪化し、ドライバが望む加速度を得ることが困難になることを前述した。これに対して本実施形態では、図2に実線で示したようにゼロ近辺の低アクセル開度域で加速度ピーク値Gpの立ち上がりの勾配が通常制御の場合より緩やかになるので、ドライバによるアクセルペダル操作が容易になる。ドライバのアクセルペダル操作が容易になれば、アクセルペダルをドライバが望む加速度に対応した踏込量に合わせることができる。アクセル開度APOに対する加速度ピーク値の分解性能が通常制御の場合より改善されるのである。 Next, in the present embodiment, it is possible to facilitate the driver's accelerator pedal operation by suppressing acceleration particularly in the low accelerator opening range, and to easily realize an appropriate accelerator opening corresponding to the acceleration desired by the driver. It also has a different effect of being able to. This effect will be described with reference to FIG. In FIG. 2, the characteristics of the acceleration peak value Gp with respect to the accelerator opening APO in the case of the present embodiment are shown by being overlapped with a solid line. In normal control, as shown by the broken line in FIG. 2, the acceleration peak value Gp rises steeply in the low accelerator opening region near zero, so that the decomposition performance of the acceleration peak value with respect to the accelerator opening APO deteriorates, and the driver As described above, it is difficult to obtain the desired acceleration. On the other hand, in the present embodiment, as shown by the solid line in FIG. 2, the acceleration gradient of the acceleration peak value Gp is gentler in the low accelerator opening range near zero than in the case of normal control. Easy to operate. If the driver's accelerator pedal operation becomes easy, the accelerator pedal can be adjusted to the depression amount corresponding to the acceleration desired by the driver. The resolution performance of the acceleration peak value with respect to the accelerator opening APO is improved as compared with the case of normal control.
 さらに説明する。図2に実線で示したようなアクセル開度APOに対する加速度ピーク値の特性を得るには、他にも低アクセル開度域でスロットル弁開度をアクセル開度APOに対して小さくなるようにマイナス補正する方法が考えられる(特開2006-125213号公報参照)。上記スロットル弁開度をマイナス補正する手法(以下、単に「マイナス補正する場合」という。)と本実施形態とを図10を参照して比較する。ここで、図10は車両発進時にアクセル開度APO、スロットル弁開度TVO、エンジントルク、車両の加速度がどのように変化するのかを示している。図3と同一部分には同一の符号を付している。なお、横軸のタイムスケールは図3と同じではなく図3よりも拡大している。 Further explanation. In order to obtain the acceleration peak value characteristic with respect to the accelerator opening APO as shown by the solid line in FIG. 2, the throttle valve opening is reduced to be smaller than the accelerator opening APO in the low accelerator opening range. A correction method is conceivable (see Japanese Patent Application Laid-Open No. 2006-125213). The method for negatively correcting the throttle valve opening (hereinafter simply referred to as “in the case of negative correction”) and this embodiment will be compared with reference to FIG. Here, FIG. 10 shows how the accelerator opening APO, the throttle valve opening TVO, the engine torque, and the vehicle acceleration change when the vehicle starts. The same parts as those in FIG. 3 are denoted by the same reference numerals. Note that the time scale on the horizontal axis is not the same as that in FIG. 3, but is larger than that in FIG.
 いま、タイミングt1でアクセルペダルが一定量踏み込まれアクセル開度APOがタイミングt3で所定値APO1となる変化をした、つまりアクセル開度APOがほぼステップ状に変化したとき、このアクセル開度APOの変化に対応してスロットル弁開度TVOが変化する。すなわち、通常制御及び本実施形態では、図10の上から第2段目に実線で示したようにスロットル弁開度TVOがタイミングt1より大きくなってタイミングt3で所定値TVO1に落ち着く。 Now, when the accelerator pedal is depressed by a certain amount at the timing t1 and the accelerator opening APO changes to the predetermined value APO1 at the timing t3, that is, when the accelerator opening APO changes almost stepwise, the change in the accelerator opening APO is changed. In response to this, the throttle valve opening TVO changes. That is, in the normal control and the present embodiment, as shown by the solid line in the second stage from the top in FIG. 10, the throttle valve opening TVO becomes larger than the timing t1 and settles to the predetermined value TVO1 at the timing t3.
 一方、マイナス補正する場合には、図10の上から第2段目に破線で示したようにスロットル弁開度が所定値TVO1に落ち着くタイミングt3より前のタイミングt11でスロットル弁開度TVOが所定値TVO1よりも小さな所定値TVO2に一旦制限される。そして、この所定値TVO2はタイミングt3の後の加速度がピークを迎えるタイミングt12まで維持される。タイミングt12で加速度がピークを迎えた後には、スロットル弁開度TVOが所定値TVO2から徐々に通常制御の場合のスロットル弁開度TVO1にゆっくりと戻される。マイナス補正する場合には、このようなスロットル弁開度TVOの応答とすることで、図10の最下段に破線で示したように、加速度のピーク値Gpを通常制御の場合よりも抑えることができている。 On the other hand, in the case of negative correction, the throttle valve opening TVO is predetermined at a timing t11 before the timing t3 when the throttle valve opening settles to the predetermined value TVO1, as indicated by a broken line in the second stage from the top in FIG. It is once limited to a predetermined value TVO2 smaller than the value TVO1. The predetermined value TVO2 is maintained until the timing t12 when the acceleration after the timing t3 reaches a peak. After the acceleration reaches a peak at timing t12, the throttle valve opening TVO is gradually returned from the predetermined value TVO2 to the throttle valve opening TVO1 in the case of normal control. In the case of negative correction, such a response of the throttle valve opening TVO can suppress the acceleration peak value Gp as compared with the case of normal control, as indicated by a broken line at the bottom of FIG. is made of.
 しかしながら、マイナス補正する場合にはタイミングt11からタイミングt12までの区間の加速度の増大についても、図10の最下段に破線で示したように通常制御の場合より小さくなるように抑えられてしまう。このため、ドライバが加速前半での加速感不足を感じてアクセルペダル22を踏み増しすることとなる。これによって、結果的にドライバが望む加速度より大きくなったり、またエンジン回転速度Neも目標回転速度tNeを超えて大きくなってしまったりする場合がある。 However, in the case of minus correction, the increase in acceleration in the section from timing t11 to timing t12 is also suppressed to be smaller than in the case of normal control as shown by the broken line in the lowermost stage of FIG. For this reason, the driver feels that the acceleration feeling is insufficient in the first half of the acceleration, and depresses the accelerator pedal 22. As a result, the acceleration desired by the driver may increase as a result, and the engine rotation speed Ne may increase beyond the target rotation speed tNe.
 一方、本実施形態では、スロットル弁開度TVOの変化は図10の上から第2段目に実線で示すように通常制御の場合と同じである。このため、エンジントルクの変化(上昇速度)は、図10の上から第3段目に実線で示したようにトルクダウン指令が開始される(出される)タイミングt3まで通常制御の場合と変わらない。これによって、図10の最下段に一点鎖線で示したように、タイミングt11からタイミングt12までの加速前半における加速度の立ち上がりを、マイナス補正する場合のように抑制することなく、加速度のピーク値Gpを抑えることができている。言い換えると、タイミングt3までは、なんらスロットル弁開度TVO及び点火時期を通常制御の場合から変更することはない。これによって、加速度の初期立ち上がりを鈍らせることなくエンジン回転速度Neの吹け上がり(最大値)を抑えて目標回転速度tNeの付近へと制御することが可能となるのである。 On the other hand, in the present embodiment, the change in the throttle valve opening TVO is the same as in the normal control as shown by the solid line in the second stage from the top of FIG. For this reason, the change (increase speed) of the engine torque is the same as in the case of the normal control until the timing t3 when the torque down command is started (issued) as shown by the solid line in the third stage from the top in FIG. . As a result, as shown by the one-dot chain line at the bottom of FIG. 10, the acceleration peak value Gp can be obtained without suppressing the rise of acceleration in the first half of acceleration from timing t11 to timing t12 as in the case of minus correction. It can be suppressed. In other words, until the timing t3, the throttle valve opening TVO and the ignition timing are not changed from the case of the normal control. As a result, it is possible to control the engine rotational speed Ne to near the target rotational speed tNe while suppressing the rising (maximum value) of the engine rotational speed Ne without slowing the initial rise of the acceleration.
 また、タイミングt12からの加速後半においても、マイナス補正する場合には図10の上から第3段目に破線で示したようにエンジントルク上昇の勾配がタイミングt8まで小さく抑えられてしまう。これに対して、本実施形態では、タイミングt12からの加速後半においても図10の最下段に一点鎖線で示したように加速度がマイナス補正する場合より大きい。これは、トルクダウン指令の開始後にロックアップクラッチ34の指令トルク容量Tluを急上昇させて上限トルク指令値Tdが基本エンジントルクTe0に一致するt5でトルクダウン指令を終了させているためである。すなわち、本実施形態では、t8よりもずっと早期のt5のタイミングで通常制御の場合のエンジントルクに戻るのであり、これによってt5からはエンジンより出せるだけトルクを出させるのである。これによって、t12からの加速後半でのトルク不足が生じないようにすることが可能となり、効率よく車両を走らせることができるのである。 In addition, even in the latter half of the acceleration from the timing t12, when minus correction is performed, the gradient of the engine torque increase is suppressed to the timing t8 as shown by the broken line in the third stage from the top of FIG. On the other hand, in the present embodiment, even in the latter half of the acceleration from the timing t12, the acceleration is larger than that in the case where the acceleration is negatively corrected as shown by the one-dot chain line in the lowermost stage of FIG. This is because the command torque capacity Tlu of the lock-up clutch 34 is rapidly increased after the torque-down command is started, and the torque-down command is terminated at t5 when the upper limit torque command value Td matches the basic engine torque Te0. In other words, in this embodiment, the engine torque is returned to the normal control at the timing t5 much earlier than t8, and from this the torque is output from the engine as much as possible from t5. As a result, it becomes possible to prevent a shortage of torque in the latter half of acceleration from t12, and the vehicle can be run efficiently.
 ここで、本実施形態の作用効果をまとめて説明する。 Here, the operational effects of this embodiment will be described together.
 本実施形態では、ロックアップクラッチ34を備えるトルクコンバータ31を介してエンジン3とCVT41(自動変速機)とを連結したパワートレイン2を有する車両1を前提としている。そして、CVTコントローラ61(トルクダウン指令手段)はCVT41が要求する上限トルク指令値Tdをエンジントルクが超えないようにするトルクダウン指令をエンジン側に出す。また、CVTコントローラ61(上限トルク指令値設定手段)が上限トルク指令値Tdを、車両の発進時に立ち上がるエンジン回転速度の最大値がエンジンの目標回転速度tNeに収まるように算出する。また、エンジンコントローラ21(トルクダウン制御手段)がトルクダウン指令を受けて上限トルク指令値Tdをエンジントルクが超えないようにトルクダウン制御を行う。本実施形態によれば、車両発進時のエンジン回転速度が目標回転速度tNeを横切ってオーバーシュートする無用な吹け上がりを抑えることができると共に、低アクセル開度域の加速度のコントロール性を向上することができる。これによって、燃費を向上しつつ良好な運転感覚を得ることができる。 In the present embodiment, it is assumed that the vehicle 1 has a power train 2 in which an engine 3 and a CVT 41 (automatic transmission) are connected via a torque converter 31 including a lock-up clutch 34. Then, the CVT controller 61 (torque down command means) issues a torque down command to the engine side so that the engine torque does not exceed the upper limit torque command value Td requested by the CVT 41. In addition, the CVT controller 61 (upper limit torque command value setting means) calculates the upper limit torque command value Td so that the maximum value of the engine speed that rises when the vehicle starts is within the target engine speed tNe. The engine controller 21 (torque down control means) receives the torque down command and performs torque down control so that the engine torque does not exceed the upper limit torque command value Td. According to the present embodiment, it is possible to suppress an unnecessary surging in which the engine rotational speed at the time of starting the vehicle overshoots across the target rotational speed tNe, and to improve the controllability of acceleration in the low accelerator opening range. Can do. As a result, it is possible to obtain a good driving feeling while improving fuel efficiency.
 CVTコントローラ61(自動変速機コントローラ)がトルクダウン指令を出してからエンジンコントローラ21がその指令に従うまでに所定の遅れを伴うことがある。この場合に、実際のエンジン回転速度が目標回転速度tNeに到達したタイミングでトルクダウン指令を出すとすれば、上記の遅れ分だけトルクダウン指令を出すタイミングが遅れる。そして、その遅れ分だけ車両発進時のエンジン回転速度の上昇と加速度のピークを適切に抑制することができなくなる。一方、本実施形態では、エンジンコントローラ21と、CVTコントローラ61(自動変速機コントローラ)とを備えている。また、CVTコントローラ61はトルクダウン指令を出してからエンジンコントローラ21がその指令に従うまでに所定の遅れを伴うものである。この場合に、トルクダウン指令手段としてのCVTコントローラ61(自動変速機コントローラ)は、アクセル開度TVOに基づいて目標回転速度tNeを算出する目標回転速度算出部71(目標回転速度算出手段)を備えている。そして、前記算出された目標回転速度tNeから前記所定の遅れ分を差し引いた開始判定回転速度sNeと実際のエンジン回転速度Neを比較し、この比較結果より実際のエンジン回転速度Neが開始判定回転速度sNeに到達したときに、トルクダウン指令を出す。これによって、CVTコントローラ61がトルクダウン指令を出してからエンジンコントローラ21がその指令に従うまでに所定の遅れを伴うことがあっても、エンジン回転速度Neの吹け上がりを抑えつつ良好な加速レスポンスを得ることができる。 There may be a predetermined delay from when the CVT controller 61 (automatic transmission controller) issues a torque down command to when the engine controller 21 follows the command. In this case, if the torque down command is issued when the actual engine rotational speed reaches the target rotational speed tNe, the timing for issuing the torque down command is delayed by the above delay. As a result, the increase in the engine speed and the acceleration peak at the start of the vehicle cannot be appropriately suppressed by the delay. On the other hand, the present embodiment includes an engine controller 21 and a CVT controller 61 (automatic transmission controller). Further, the CVT controller 61 has a predetermined delay from when the torque down command is issued until the engine controller 21 follows the command. In this case, the CVT controller 61 (automatic transmission controller) as a torque down command means includes a target rotation speed calculation unit 71 (target rotation speed calculation means) that calculates a target rotation speed tNe based on the accelerator opening degree TVO. ing. Then, the start determination rotation speed sNe obtained by subtracting the predetermined delay from the calculated target rotation speed tNe is compared with the actual engine rotation speed Ne, and the actual engine rotation speed Ne is determined based on the comparison result as the start determination rotation speed. When sNe is reached, a torque down command is issued. As a result, even if there is a predetermined delay from when the CVT controller 61 issues a torque down command to when the engine controller 21 follows the command, a good acceleration response is obtained while suppressing the engine speed Ne from rising. be able to.
 本実施形態では、車両1は車両発進時にロックアップクラッチ34を締結するロックアップクラッチ締結手段を備えている。また、ドライバの発進意図が検知されたタイミングからロックアップクラッチ34の指令トルク容量が立ち上がるまでには所定の遅れ(図3でt3-t5の区間)がある。そして、上限トルク指令値設定手段としてのCVTコントローラ61(自動変速機制御コントローラ)は、トルク容量係数算出部74と、乗算器75と、指令トルク容量算出部76と、加算器77とを含んで構成される。上記のトルク容量係数算出部74は、CVT41(自動変速機)の入力回転速度Ntをエンジン回転速度Neで除して得られる速度比eからトルクコンバータ31のトルク容量係数τを算出する。上記の乗算器75は、前記算出されるトルク容量係数τと前記目標回転速度tNeに基づいてこの目標回転速度tNeを実現するためのトルクコンバータ伝達分トルクTtcを算出する。上記の指令トルク容量算出部76は、ロックアップクラッチ34の指令トルク容量Tluを算出する。上記の加算器77は、前記算出されるトルクコンバータ伝達分トルクTtcと前記算出されるロックアップクラッチ34の指令トルク容量Tluとの合算値を上限トルク指令値Tdとする。これによって、車両重量や路面勾配が異なってもエンジン回転速度を目標回転速度tNeに制御するための適切なトルク上限値Tdを設定することができる。 In the present embodiment, the vehicle 1 includes a lockup clutch fastening means for fastening the lockup clutch 34 when the vehicle starts. Further, there is a predetermined delay (t3-t5 in FIG. 3) from the timing when the driver's intention to start is detected until the command torque capacity of the lockup clutch 34 rises. The CVT controller 61 (automatic transmission control controller) as the upper limit torque command value setting means includes a torque capacity coefficient calculation unit 74, a multiplier 75, a command torque capacity calculation unit 76, and an adder 77. Composed. The torque capacity coefficient calculation unit 74 calculates the torque capacity coefficient τ of the torque converter 31 from the speed ratio e obtained by dividing the input rotation speed Nt of the CVT 41 (automatic transmission) by the engine rotation speed Ne. The multiplier 75 calculates a torque converter transmission torque Ttc for realizing the target rotational speed tNe based on the calculated torque capacity coefficient τ and the target rotational speed tNe. The command torque capacity calculation unit 76 calculates the command torque capacity Tlu of the lockup clutch 34. The adder 77 sets the sum of the calculated torque converter transmission torque Ttc and the calculated command torque capacity Tlu of the lockup clutch 34 as the upper limit torque command value Td. Accordingly, an appropriate torque upper limit value Td for controlling the engine rotation speed to the target rotation speed tNe can be set even if the vehicle weight or the road surface gradient is different.
 本実施形態では、CVTコントローラ61は前記トルクダウン指令を出した後に、上限トルク指令値Tdをロックアップクラッチの指令トルク容量Tluの上昇に合わせて上昇させ、上限トルク指令値Tdが基本エンジントルクTe0と一致するタイミングで前記トルクダウン指令を終了する。これによって、ロックアップクラッチの指令トルク容量Tluを上昇させながらエンジントルクを基本エンジントルクTe0へと復元することができることから、加速度のピーク後の加速度及びエンジン回転速度の急激な変化を防止することができる。 In the present embodiment, after issuing the torque down command, the CVT controller 61 increases the upper limit torque command value Td in accordance with the increase in the command torque capacity Tlu of the lockup clutch, and the upper limit torque command value Td becomes the basic engine torque Te0. The torque down command is terminated at a timing that coincides with. As a result, the engine torque can be restored to the basic engine torque Te0 while increasing the command torque capacity Tlu of the lockup clutch, so that rapid changes in acceleration and engine speed after the acceleration peak can be prevented. it can.
 (第2実施形態)
 本実施形態は、エンジントルク指令値Teの算出方法の一部が上述した第1実施形態と異なる。図9のフローチャートは本実施形態においてエンジントルク指令値Teを算出するためものであり、エンジンコントローラ21が一定時間毎(例えば10ms毎)に実行する。エンジンコントローラ21は、エンジントルク指令値Teを算出するに際し、CVTコントローラ61からトルクダウン指令として送信されるトルクダウン指令フラグ、トルクダウン終了フラグ及び上限トルク指令値Tdを用いることとなる。
(Second Embodiment)
This embodiment is different from the first embodiment described above in part of the calculation method of the engine torque command value Te. The flowchart in FIG. 9 is for calculating the engine torque command value Te in the present embodiment, and is executed by the engine controller 21 at regular intervals (for example, every 10 ms). When calculating the engine torque command value Te, the engine controller 21 uses a torque down command flag, a torque down end flag, and an upper limit torque command value Td transmitted as a torque down command from the CVT controller 61.
 以下、図7のフローチャートとの相違点を中心に説明する。 Hereinafter, the difference from the flowchart in FIG. 7 will be mainly described.
 ステップS90でエンジンコントローラ21は、基本エンジントルクTe0を算出する。算出方法は図7のステップS31と同様である。 In step S90, the engine controller 21 calculates a basic engine torque Te0. The calculation method is the same as step S31 in FIG.
 ステップS91でエンジンコントローラ21は、図7のステップS33と同様にトルクダウン指令フラグが1か否かを判定する。トルクダウン指令フラグ=0であるときには、エンジンコントローラ21はステップS100にて、基本エンジントルクTe0をエンジントルク指令値Teに入れる。一方、トルクダウン指令フラグ=1の場合には、エンジンコントローラ21はステップS92において、トルクダウン指令フラグが1となってから(つまりトルクダウン指令が出てから)一定時間が経過しているか否かを判定する。 In step S91, the engine controller 21 determines whether the torque down command flag is 1 as in step S33 of FIG. When the torque down command flag = 0, the engine controller 21 puts the basic engine torque Te0 into the engine torque command value Te in step S100. On the other hand, if the torque down command flag = 1, the engine controller 21 determines in step S92 whether or not a certain time has elapsed since the torque down command flag becomes 1 (that is, after the torque down command is issued). Determine.
 一定時間が経過している場合には、エンジンコントローラ21は後述するステップS102の処理を実行する。一方、一定時間が経過していない場合には、エンジンコントローラ21はステップS93の処理を実行する。なお、ステップS91及びステップS92の処理内容は図7のステップS33及びステップS34と同様である。 If the predetermined time has elapsed, the engine controller 21 executes a process of step S102 described later. On the other hand, if the predetermined time has not elapsed, the engine controller 21 executes the process of step S93. In addition, the processing content of step S91 and step S92 is the same as that of step S33 and step S34 of FIG.
 ステップS93でエンジンコントローラ21は、図7のステップS35と同様にトルクダウン終了フラグが1か否かを判定する。トルクダウン終了フラグが1の場合には、エンジンコントローラ21はステップS100の処理を実行する。一方、トルクダウン終了フラグが1ではない場合には、エンジンコントローラ21はステップS94の処理を実行する。 In step S93, the engine controller 21 determines whether the torque down end flag is 1 as in step S35 of FIG. If the torque down end flag is 1, the engine controller 21 executes the process of step S100. On the other hand, when the torque down end flag is not 1, the engine controller 21 executes the process of step S94.
 ステップS94でエンジンコントローラ21は、変速機強度上限トルクTkを算出する。変速機強度上限トルクTkとは、設計上、CVT41が耐え得るエンジントルクの上限値である。具体的には、CVT41の入力回転速度と変速比とから図示しない所定のマップを検索することにより算出する。 In step S94, the engine controller 21 calculates a transmission strength upper limit torque Tk. The transmission strength upper limit torque Tk is an upper limit value of engine torque that the CVT 41 can withstand by design. Specifically, the calculation is performed by searching a predetermined map (not shown) from the input rotation speed of the CVT 41 and the gear ratio.
 ステップS95でエンジンコントローラ21は、上限トルク指令値Tdが変速機強度上限トルクTkより小さいか否かを判定する。上限トルク指令値Tdが変速機強度上限トルクTk以上の場合には、エンジンコントローラ21はステップS101において変速機強度上限トルクTkをエンジントルク指令値Teに入れる。一方、上限トルク指令値Tdが変速機強度上限トルクTkより小さい場合には、エンジンコントローラ21はステップS96の処理を実行する。 In step S95, the engine controller 21 determines whether or not the upper limit torque command value Td is smaller than the transmission strength upper limit torque Tk. If the upper limit torque command value Td is greater than or equal to the transmission strength upper limit torque Tk, the engine controller 21 enters the transmission strength upper limit torque Tk into the engine torque command value Te in step S101. On the other hand, when the upper limit torque command value Td is smaller than the transmission strength upper limit torque Tk, the engine controller 21 executes the process of step S96.
 ステップS96でエンジンコントローラ21は、期待加速度下限トルクTgを算出する。期待加速度下限トルクTgとは、車速VSPとアクセル開度APOとから期待し得る最低限の加速度を実現する為に必要なトルクである。期待加速度下限トルクTgは車速VSPとアクセル開度APOとから所定のマップを検索することにより算出する。 In step S96, the engine controller 21 calculates the expected acceleration lower limit torque Tg. The expected acceleration lower limit torque Tg is a torque necessary for realizing the minimum acceleration that can be expected from the vehicle speed VSP and the accelerator opening APO. The expected acceleration lower limit torque Tg is calculated by searching a predetermined map from the vehicle speed VSP and the accelerator opening APO.
 ステップS97でエンジンコントローラ21は、上限トルク指令値Tdが期待加速度下限トルクTgより大きいか否かを判定する。上限トルク指令値Tdが期待加速度下限トルクTg以下の場合には、エンジンコントローラ21はステップS102において期待加速度下限トルクTgをエンジントルク指令値Teに入れる。一方、上限トルク指令値Tdが期待加速度下限トルクTgより大きい場合には、エンジンコントローラ21はステップS98において、上限トルク指令値Tdをエンジントルク指令値Teに入れる。 In step S97, the engine controller 21 determines whether or not the upper limit torque command value Td is larger than the expected acceleration lower limit torque Tg. If the upper limit torque command value Td is less than or equal to the expected acceleration lower limit torque Tg, the engine controller 21 puts the expected acceleration lower limit torque Tg into the engine torque command value Te in step S102. On the other hand, when the upper limit torque command value Td is larger than the expected acceleration lower limit torque Tg, the engine controller 21 enters the upper limit torque command value Td into the engine torque command value Te in step S98.
 ステップS99でエンジンコントローラ21は、エンジントルク指令値Teを出力する。エンジンコントローラ21が有する図示しない別のフローチャートでは、このエンジントルク指令値Teに基づいて目標吸入空気量及び点火時期を算出する。 In step S99, the engine controller 21 outputs an engine torque command value Te. In another flowchart (not shown) of the engine controller 21, the target intake air amount and the ignition timing are calculated based on the engine torque command value Te.
 一方、ステップS92でトルクダウン指令フラグが1となってから一定時間が経過したときには、エンジンコントローラ21はステップS103-S105の処理を実行する。ステップS103-S105の処理は、図7のステップS43-S44-S39の処理に相当する。 On the other hand, when a predetermined time has elapsed since the torque-down command flag became 1 in step S92, the engine controller 21 executes the processes of steps S103 to S105. The processing of steps S103-S105 corresponds to the processing of steps S43-S44-S39 in FIG.
 次に、本実施形態の作用効果について説明する。 Next, the function and effect of this embodiment will be described.
 本実施形態では、第1実施形態と同様の効果に加えてさらに、次の効果が得られる。 In this embodiment, in addition to the same effects as those of the first embodiment, the following effects can be obtained.
 本実施形態では、CVTコントローラ61は前記トルクダウン指令を出した後に、上限トルク指令値Tdと、変速機強度上限トルクTkと、の大小を比較して小さい方を上限トルク指令値Tdとして設定する。これにより、CVT41の耐久性を確保することができる。 In the present embodiment, after issuing the torque down command, the CVT controller 61 compares the upper limit torque command value Td with the transmission strength upper limit torque Tk, and sets the smaller one as the upper limit torque command value Td. . Thereby, durability of CVT41 is securable.
 本実施形態では、CVTコントローラ61は前記トルクダウン指令を出した後に、上限トルク指令値Tdと、車両速度及びアクセル開度から期待される下限の加速度を実現する為に必要な期待加速度下限トルク(期待加速度下限トルクTg)と、の大小を比較して小さい方を前記上限トルク指令値Tdとして設定する。これにより、運転者のアクセルペダル操作に応じた加速度が得られるので、運転者に違和感を与えることを防止できる。 In the present embodiment, after the CVT controller 61 issues the torque down command, the expected acceleration lower limit torque (which is necessary for realizing the upper limit torque command value Td and the lower limit acceleration expected from the vehicle speed and the accelerator opening degree). The expected acceleration lower limit torque Tg) is compared with the magnitude of the upper limit torque command value Td. Thereby, since the acceleration according to the driver's accelerator pedal operation is obtained, it is possible to prevent the driver from feeling uncomfortable.
 なお、上記各実施形態では、駆動源がガソリンエンジン3の場合について説明したが、これに限られるわけではない。例えば、駆動源はディーゼルエンジンまたはモータ/ジェネレータであってもよいし、エンジンとモータ/ジェネレータとの併用であってもよい。例えば、駆動源がディーゼルエンジンの場合には、トルクダウン指令に応じて燃料噴射カットまたは吸入空気量の低減を実行することで上述したトルクダウン制御と同様の目的を果たすことができる。また、駆動源がモータ/ジェネレータの場合には、トルクダウン指令に応じてモータ/ジェネレータの発電負荷を増大させることで、上述したトルクダウン制御と同様の目的を果たすことができる。 In the above embodiments, the case where the drive source is the gasoline engine 3 has been described. However, the present invention is not limited to this. For example, the drive source may be a diesel engine or a motor / generator, or a combination of an engine and a motor / generator. For example, when the drive source is a diesel engine, the same purpose as the torque down control described above can be achieved by executing a fuel injection cut or a reduction in the intake air amount in accordance with a torque down command. When the drive source is a motor / generator, the same purpose as the torque down control described above can be achieved by increasing the power generation load of the motor / generator according to the torque down command.
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。 The embodiment of the present invention has been described above. However, the above embodiment only shows a part of application examples of the present invention, and the technical scope of the present invention is limited to the specific configuration of the above embodiment. Absent.
 本願は2014年2月26日に日本国特許庁に出願された特願2014-35780に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。 This application claims priority based on Japanese Patent Application No. 2014-35780 filed with the Japan Patent Office on February 26, 2014, the entire contents of which are incorporated herein by reference.

Claims (10)

  1.  ロックアップクラッチを備えるトルクコンバータを介して駆動源と自動変速機とを連結したパワートレインを有する車両の前記駆動源を制御する車両の駆動源制御装置において、
     自動変速機が要求する上限トルク指令値を、車両の発進に伴い上昇する駆動源回転速度が前記駆動源の目標回転速度以下になるように設定する上限トルク指令値設定手段と、
     駆動源トルクが前記上限トルク指令値を超えないようにするためのトルクダウン指令を出すトルクダウン指令手段と、
     前記トルクダウン指令を受けて、駆動源トルクが前記上限トルク指令値を超えないように前記駆動源のトルクダウン制御を行うトルクダウン制御手段と、
    を備える車両の駆動源制御装置。
    In a vehicle drive source control device for controlling the drive source of a vehicle having a power train in which a drive source and an automatic transmission are connected via a torque converter having a lock-up clutch,
    Upper limit torque command value setting means for setting the upper limit torque command value required by the automatic transmission so that the drive source rotational speed that rises as the vehicle starts is less than or equal to the target rotational speed of the drive source;
    Torque down command means for issuing a torque down command for preventing the drive source torque from exceeding the upper limit torque command value;
    Torque down control means for receiving the torque down command and performing torque down control of the drive source so that the drive source torque does not exceed the upper limit torque command value;
    A vehicle drive source control device.
  2.  請求項1に記載の車両の駆動源制御装置において、
     前記駆動源を制御する駆動源コントローラと、
     前記自動変速機を制御する自動変速機コントローラと、
    をさらに備え、
     前記自動変速機コントローラが前記トルクダウン指令を出してから前記駆動源コントローラが前記トルクダウン制御を開始するまでに所定の遅れを伴うものであり、
     前記トルクダウン指令手段としての自動変速機コントローラは、アクセル開度に基づいて前記目標回転速度を算出する目標回転速度算出手段を備え、
     前記算出された目標回転速度から前記所定の遅れ分を差し引いた値である開始判定回転速度と実際の駆動源回転速度を比較し、この比較結果より実際の駆動源回転速度が開始判定回転速度に到達したときに、前記トルクダウン指令を出す車両の駆動源制御装置。
    In the vehicle drive source control device according to claim 1,
    A drive source controller for controlling the drive source;
    An automatic transmission controller for controlling the automatic transmission;
    Further comprising
    There is a predetermined delay from when the automatic transmission controller issues the torque down command until the drive source controller starts the torque down control,
    The automatic transmission controller as the torque down command means includes target rotation speed calculation means for calculating the target rotation speed based on the accelerator opening,
    The start determination rotation speed, which is a value obtained by subtracting the predetermined delay from the calculated target rotation speed, is compared with the actual drive source rotation speed. From the comparison result, the actual drive source rotation speed becomes the start determination rotation speed. A vehicle drive source control device that issues the torque down command when it reaches the vehicle.
  3.  請求項2に記載の車両の駆動源制御装置において、
     前記車両発進時に前記ロックアップクラッチを締結するロックアップクラッチ締結手段をさらに備え、
     ドライバの発進意図を検知したタイミングからロックアップクラッチの指令トルク容量が立ち上がるまでに所定の遅れを有し、
     前記上限トルク指令値設定手段としての自動変速機コントローラは、
     前記自動変速機の入力回転速度を駆動源回転速度で除して得られる速度比からトルクコンバータのトルク容量係数を算出するトルク容量係数算出手段と、
     前記算出されるトルク容量係数と前記目標回転速度に基づいてこの目標回転速度を実現するためのトルクコンバータ伝達分トルクを算出するトルクコンバータ伝達分トルク算出手段と、
     前記指令トルク容量を算出する指令トルク容量算出手段と、
     前記算出されるトルクコンバータ伝達分トルクと前記算出される指令トルク容量との合算値を上限トルク指令値とする加算手段と
     で構成される車両の駆動源制御装置。
    The vehicle drive source control device according to claim 2,
    Lockup clutch fastening means for fastening the lockup clutch when the vehicle starts,
    There is a predetermined delay from the timing when the driver's intention to start is detected until the command torque capacity of the lockup clutch rises,
    The automatic transmission controller as the upper limit torque command value setting means,
    Torque capacity coefficient calculating means for calculating a torque capacity coefficient of the torque converter from a speed ratio obtained by dividing the input rotational speed of the automatic transmission by the drive source rotational speed;
    Torque converter transmission torque calculation means for calculating torque converter transmission torque for realizing the target rotation speed based on the calculated torque capacity coefficient and the target rotation speed;
    Command torque capacity calculating means for calculating the command torque capacity;
    A drive source control device for a vehicle, comprising: an adding means having an upper limit torque command value as a total value of the calculated torque converter transmission torque and the calculated command torque capacity.
  4.  請求項1から3のいずれかに記載の車両の駆動源制御装置において、
     前記トルクダウン指令を出した後に、前記上限トルク指令値を前記指令トルク容量の上昇に合わせて上昇させ、前記上限トルク指令値が基本駆動源トルクと一致するタイミングで前記トルクダウン指令を終了する車両の駆動源制御装置。
    In the vehicle drive source control device according to any one of claims 1 to 3,
    After issuing the torque down command, the vehicle increases the upper limit torque command value in accordance with the increase in the command torque capacity, and ends the torque down command at a timing when the upper limit torque command value matches the basic drive source torque. Drive source control device.
  5.  請求項1から4のいずれかに記載の車両の駆動源制御装置において、
     前記トルクダウン指令を出した後に、前記上限トルク指令値と、前記自動変速機の設計上の強度から定まる変速機強度上限トルクと、の大小を比較して小さい方を前記上限トルク指令値として設定する車両の駆動源制御装置。
    In the vehicle drive source control device according to any one of claims 1 to 4,
    After issuing the torque down command, the upper limit torque command value is compared with the transmission strength upper limit torque determined from the design strength of the automatic transmission, and the smaller one is set as the upper limit torque command value. A vehicle drive source control device.
  6.  請求項1から5のいずれかに記載の車両の駆動源制御装置において、
     前記トルクダウン指令を出した後、前記上限トルク指令値と、車両速度及びアクセル開度から期待される下限の加速度を実現する為に必要な期待加速度下限トルクと、の大小を比較して小さい方を前記上限トルク指令値として設定する車両の駆動源制御装置。
    In the vehicle drive source control device according to any one of claims 1 to 5,
    After issuing the torque down command, the smaller one of the upper limit torque command value and the expected acceleration lower limit torque required to realize the lower limit acceleration expected from the vehicle speed and the accelerator opening. A drive source control apparatus for a vehicle that sets the upper limit torque command value.
  7.  請求項1から6のいずれかに記載の車両の駆動源制御装置において、
     前記駆動源は、内燃エンジンまたは電動モータの少なくとも一方を含む車両の駆動源制御装置。
    In the vehicle drive source control device according to any one of claims 1 to 6,
    The drive source is a vehicle drive source control device including at least one of an internal combustion engine and an electric motor.
  8.  請求項7に記載の車両の駆動源制御装置において、
     前記駆動源は内燃エンジンであり、
     前記トルクダウン指令を出した後、前記駆動源コントローラが前記内燃エンジンの点火時期リタード、燃料噴射カット、または吸入空気量の制限を行うことにより前記内燃エンジンのトルクを低減させる車両の駆動源制御装置。
    In the vehicle drive source control device according to claim 7,
    The drive source is an internal combustion engine;
    After the torque down command is issued, the drive source controller reduces the torque of the internal combustion engine by reducing the ignition timing retard, fuel injection cut, or intake air amount of the internal combustion engine. .
  9.  請求項7に記載の車両の駆動源制御装置において、
     前記駆動源は内燃エンジンであり、
     前記トルクダウン指令を出した後、前記駆動源コントローラは前記内燃エンジンから駆動力を取り出しているオルタネータの発電負荷または車両駆動用のモータ/ジェネレータの発電負荷を増大させることにより前記自動変速機の入力トルクを低減させる車両の駆動源制御装置。
    In the vehicle drive source control device according to claim 7,
    The drive source is an internal combustion engine;
    After issuing the torque down command, the drive source controller increases the power generation load of the alternator taking out the driving force from the internal combustion engine or the power generation load of the motor / generator for driving the vehicle to increase the input of the automatic transmission. A drive source control device for a vehicle that reduces torque.
  10.  ロックアップクラッチを備えるトルクコンバータを介して駆動源と自動変速機とを連結したパワートレインを有する車両の駆動源を制御する車両の駆動源制御方法において、
     前記車両の発進に伴い上昇する駆動源回転速度が前記駆動源の目標回転速度に収まるように、前記自動変速機が要求する上限トルク指令値を設定し、
     駆動源トルクが前記上限トルク指令値を超えないようにトルクダウン指令を出し、
     前記トルクダウン指令を受けて前記駆動源トルクが前記上限トルク指令値を超えないようにトルクダウン制御を行う車両の駆動源制御方法。
    In a vehicle drive source control method for controlling a drive source of a vehicle having a power train in which a drive source and an automatic transmission are connected via a torque converter having a lock-up clutch,
    An upper limit torque command value required by the automatic transmission is set so that the drive source rotational speed that rises as the vehicle starts is within the target rotational speed of the drive source,
    A torque down command is issued so that the drive source torque does not exceed the upper limit torque command value,
    A vehicle drive source control method for performing torque down control so that the drive source torque does not exceed the upper limit torque command value in response to the torque down command.
PCT/JP2015/055268 2014-02-26 2015-02-24 Drive source control device and drive source control method for vehicle WO2015129701A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014035780 2014-02-26
JP2014-035780 2014-02-26

Publications (1)

Publication Number Publication Date
WO2015129701A1 true WO2015129701A1 (en) 2015-09-03

Family

ID=54009018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/055268 WO2015129701A1 (en) 2014-02-26 2015-02-24 Drive source control device and drive source control method for vehicle

Country Status (1)

Country Link
WO (1) WO2015129701A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111465758A (en) * 2017-11-22 2020-07-28 日产自动车株式会社 Method for controlling internal combustion engine and control device for internal combustion engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005176481A (en) * 2003-12-10 2005-06-30 Jatco Ltd Parallel hybrid vehicle
JP2006170150A (en) * 2004-12-17 2006-06-29 Jatco Ltd Control device for automatic transmission
JP2013050056A (en) * 2011-08-30 2013-03-14 Fuji Heavy Ind Ltd Engine torque control device
JP2013083233A (en) * 2011-10-12 2013-05-09 Mitsubishi Motors Corp Engine start control device
JP2013083234A (en) * 2011-10-12 2013-05-09 Mitsubishi Motors Corp Torque base control device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005176481A (en) * 2003-12-10 2005-06-30 Jatco Ltd Parallel hybrid vehicle
JP2006170150A (en) * 2004-12-17 2006-06-29 Jatco Ltd Control device for automatic transmission
JP2013050056A (en) * 2011-08-30 2013-03-14 Fuji Heavy Ind Ltd Engine torque control device
JP2013083233A (en) * 2011-10-12 2013-05-09 Mitsubishi Motors Corp Engine start control device
JP2013083234A (en) * 2011-10-12 2013-05-09 Mitsubishi Motors Corp Torque base control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111465758A (en) * 2017-11-22 2020-07-28 日产自动车株式会社 Method for controlling internal combustion engine and control device for internal combustion engine

Similar Documents

Publication Publication Date Title
US8157035B2 (en) Hybrid vehicle auto start systems and methods
US9140201B2 (en) Vehicle engine start control device
US8078372B2 (en) Output control device for internal combustion engine
US8721498B2 (en) Method for crankshaft torque modification during transmission shifts using multiple torque actuators and control system for same
US10196065B2 (en) Vehicle control system
JP5176913B2 (en) Vehicle control device
KR20080003743A (en) Device and method for preventing over-rotation of internal combustion engine
JP6167888B2 (en) Engine control device
US20050049111A1 (en) Fuel cut control system for internal combustion engine
JP6462428B2 (en) Power unit controller
JP6007528B2 (en) Vehicle drive device
JP5739842B2 (en) Vehicle drive device
WO2015129701A1 (en) Drive source control device and drive source control method for vehicle
JP2012167587A (en) Vehicle control device
JP2005240576A (en) Controller of vehicle
JP6031842B2 (en) Vehicle drive device
JP7272811B2 (en) control device for continuously variable transmission
JP2010071151A (en) Control device for internal combustion engine
JP2006316699A (en) Vehicle control device
JP2016013740A (en) Vehicle control unit
JP4269956B2 (en) Control device for internal combustion engine with continuously variable transmission
JP2005207376A (en) Control device for vehicle
JP5182039B2 (en) Vehicle control device
JP6065047B2 (en) Vehicle control apparatus and vehicle control method
JP3673909B2 (en) Internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15755220

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15755220

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP