WO2015129640A1 - Bisphenol a production method - Google Patents

Bisphenol a production method Download PDF

Info

Publication number
WO2015129640A1
WO2015129640A1 PCT/JP2015/055092 JP2015055092W WO2015129640A1 WO 2015129640 A1 WO2015129640 A1 WO 2015129640A1 JP 2015055092 W JP2015055092 W JP 2015055092W WO 2015129640 A1 WO2015129640 A1 WO 2015129640A1
Authority
WO
WIPO (PCT)
Prior art keywords
bisphenol
concentration
phenol
adduct
mass
Prior art date
Application number
PCT/JP2015/055092
Other languages
French (fr)
Japanese (ja)
Inventor
岳志 早川
浩昭 星野
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to KR1020167023286A priority Critical patent/KR20160127002A/en
Priority to RU2016134753A priority patent/RU2016134753A/en
Priority to CN201580010942.0A priority patent/CN106061931A/en
Priority to JP2016505210A priority patent/JPWO2015129640A1/en
Publication of WO2015129640A1 publication Critical patent/WO2015129640A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/11Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms
    • C07C37/20Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms using aldehydes or ketones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/68Purification; separation; Use of additives, e.g. for stabilisation
    • C07C37/70Purification; separation; Use of additives, e.g. for stabilisation by physical treatment
    • C07C37/82Purification; separation; Use of additives, e.g. for stabilisation by physical treatment by solid-liquid treatment; by chemisorption
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C39/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring
    • C07C39/12Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings
    • C07C39/15Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings with all hydroxy groups on non-condensed rings, e.g. phenylphenol
    • C07C39/16Bis-(hydroxyphenyl) alkanes; Tris-(hydroxyphenyl)alkanes

Definitions

  • the present invention relates to a production method for producing high-quality bisphenol A, particularly bisphenol A having a good hue.
  • Polycarbonate resin produced from bisphenol A (hereinafter sometimes abbreviated as PC resin) has excellent transparency, heat resistance, low moisture absorption, and mechanical properties, so it is installed in mobile phones, portable game machines, car navigation systems, etc. Suitable for applications such as light guide plates.
  • the polycarbonate material used for such applications as the light guide plate requires transparency (low YI).
  • isopropenylphenol (hereinafter sometimes abbreviated as IPP) is formed in several hours.
  • IPP isopropenylphenol
  • the production of isopropenylphenol causes coloring of the raw material bisphenol A, which deteriorates the hue, and the polycarbonate produced using this as a raw material has reduced transparency. Therefore, in order to obtain a highly transparent polycarbonate, it is necessary to suppress coloring of the raw material bisphenol A (low APHA) by reducing the amount of isopropenylphenol.
  • Patent Document 1 when bisphenol A is kept in a molten state at a high temperature, 4-isopropenylphenol is produced in a few hours, whereby the raw material bisphenol A starts to be colored. Is described as worsening.
  • Patent Document 1 discloses a production method that maintains a liquid molten state even at a low temperature by setting the ratio of bisphenol A / phenol to a specific range.
  • Patent Document 1 describes a production method in which bisphenol A is used in the production of polycarbonate in a molten state without going through a granulation step. However, in the case of granulating molten bisphenol A and prilling it, There is no description.
  • Patent Document 2 Since the production of isopropenylphenol is largely caused by the acid flowing out from the main reaction step, it has been found that the installation of a effluent acid removal facility (filter, anion exchange resin, etc.) is effective.
  • a free acid removal step is provided to generate a colored substance present in the mother liquor or the isomerization treatment liquid, thereby removing the free acid that causes the deterioration of the hue of the product bisphenol A.
  • a method for producing bisphenol A having excellent transparency (hue) is disclosed.
  • Patent Document 3 it is also known that in the method for producing bisphenol A, decomposition of bisphenol A and production of 2,4′-bisphenol A are promoted due to free acid generated in the main reactor.
  • Patent Document 4 provides a method in which a crystallized adduct of bisphenol A and phenol is separated by a known method and then washed with purified phenol. In this washing treatment, the purified phenol is usually used at a ratio of 30 to 100 parts by mass with respect to 100 parts by mass of the adduct.
  • JP 2002-173530 A JP 2007-308408 A JP 2001-316313 A Japanese Patent Laid-Open No. 6-048970
  • isopropenylphenol is a causative substance of hue deterioration.
  • isopropenylphenol has a very high reactivity and easily changes to other components even at room temperature, which makes it difficult to set a concentration adjustment target in the production of bisphenol A.
  • the present invention has been made to solve such a problem. By setting an isopropenyl phenol concentration adjustment target for bisphenol A obtained after granulation and controlling this concentration, bisphenol having a good hue is obtained. It aims at providing the manufacturing method which can manufacture A continuously.
  • the present inventors control the isopropenylphenol concentration within a specific range within 10 hours after the granulation of bisphenol A obtained by granulating a bisphenol A melt within 10 hours. Thus, it was found that bisphenol A having a good hue can be continuously produced. That is, the present invention includes the following. 1. A method for producing bisphenol A, wherein the concentration of isopropenyl phenol under ambient temperature conditions of 10 to 50 ° C. is monitored within 1 hour after granulation of bisphenol A, and the concentration is controlled to 150 ppm by mass or less. 2.
  • All or part of the mother liquor obtained in the crystallization / solid-liquid separation step (2) is isomerized with an isomerization catalyst, and the isomerization solution is condensed in the condensation reaction step (1) and / or concentrated.
  • the concentration of isopropenyl phenol is monitored within an hour after granulation of bisphenol A under an ambient temperature condition of 10 to 50 ° C., and the concentration is controlled to 150 ppm by mass or less.
  • concentration is controlled to 150 ppm by mass or less.
  • the method for producing bisphenol A monitors the concentration of isopropenyl phenol under ambient temperature conditions of 10 to 50 ° C. within 1 hour after granulation of bisphenol A, and controls the concentration to 150 ppm by mass or less. Cost.
  • the concentration of isopropenylphenol can be monitored by measuring, for example, by high performance liquid chromatography (hereinafter sometimes abbreviated as HPLC). If the isopropenyl phenol concentration exceeds 150 ppm by mass, the hue of bisphenol A obtained is deteriorated, resulting in a problem in quality.
  • the isopropenyl phenol concentration is preferably controlled to 100 mass ppm or less, more preferably 50 mass ppm or less.
  • “after granulation” refers to the time when molten bisphenol A comes into contact with a cooling means such as a cooling gas.
  • Isopropenylphenol is represented by the following general formula (1).
  • the isopropenylphenol concentration of bisphenol A is monitored within 1 hour after granulation under ambient temperature conditions of 10 to 50 ° C., more preferably 15 to 40 ° C., more preferably 20 to 30 ° C. Since the isopropenylphenol concentration varies greatly depending on time and temperature, it is necessary to control the time and temperature within a specific range in order to monitor the isopropenylphenol concentration. More specifically, the condition for monitoring the isopropenyl phenol concentration in the present invention is an ambient temperature of 30 ° C. for 1 hour after granulation.
  • the increase or decrease in the isopropenyl phenol concentration of bisphenol A is largely related to the free acid concentration in the adduct decomposition process.
  • the free acid in the process is removed to reduce the free acid concentration in the adduct crystal of bisphenol A and phenol (hereinafter sometimes referred to as adduct crystal).
  • adduct crystal The method and / or the method of removing the free acid adhering to a crystal
  • the isopropenyl phenol concentration of bisphenol A obtained by decomposing the adduct crystal can be controlled to 150 mass ppm or less.
  • the concentration of isopropenylphenol can be controlled by providing a free acid removal step (A), which will be described later, as a method for removing the free acid in the process, if necessary. Washing of the adduct crystal in the crystallization / solid-liquid separation step can be controlled as follows. That is, when the production facilities are the same and the production amount is constant, the isopropenylphenol concentration of bisphenol A under the ambient temperature condition of 10 to 50 ° C.
  • the isopropenyl phenol concentration depends on the particle size of the adduct crystal.
  • the particle size of the adduct crystal is greatly influenced by the type and operating conditions of the crystallization equipment and the impurity concentration in the crystallization introduction liquid.
  • the particle size of the adduct crystal changes periodically. Therefore, it is difficult to directly control the particle size of the adduct crystal.
  • Monitoring the isopropenyl phenol concentration which depends on the particle size of the adduct crystals or changes periodically, is very important in the production process of bisphenol A.
  • the isopropenyl phenol concentration of bisphenol A is measured under a predetermined condition
  • the isopropenyl phenol concentration is increased (that is, the particle size of the adduct crystal is reduced).
  • the quality of the bisphenol A product can be kept good by changing the manufacturing process conditions so that the concentration of isopropenylphenol is reduced.
  • the isopropenyl phenol concentration decreases that is, the particle size of the adduct crystal increases
  • an unnecessary production process or the like can be stopped, which is industrially advantageous.
  • a crystallization / solid-liquid separation process that can be purified at a low temperature is often employed in order to prevent thermal degradation and coloring of the product.
  • washing is often performed in addition to crystallization and solid-liquid separation.
  • the cleaning performance greatly affects product quality in the cleaning operation.
  • This cleaning performance is greatly related not only to the amount of cleaning solution but also to the crystal shape obtained by the crystallization operation.
  • the crystal grain size distribution depends on the stirring speed and the production equipment volume. Furthermore, the grain size of the crystals can change periodically. From the above, it is important to adjust the amount of cleaning liquid each time while confirming the properties of the desired bisphenol A product in the manufacturing process in order to achieve optimal cleaning results and obtain excellent product quality.
  • a granulator for granulating a general bisphenol A melt can be used.
  • a granulating tower in which a nozzle plate having a large number of holes, in which bisphenol A melt is used as droplets, is installed at the top of the tower and a duct for blowing cooling gas is provided at the bottom of the tower.
  • the bisphenol A melt is fed to the top of the granulation tower, and the bisphenol A melt is sprayed in a shower form from a number of holes provided in the nozzle plate installed at the top of the tower.
  • the sprayed molten liquid is cooled by a circulating gas rising from the bottom of the granulation tower, and a particulate solid called prill from the bottom of the tower (referring to bisphenol A obtained by granulation is called “bisphenol A prill”)
  • bisphenol A prill a particulate solid obtained by granulation
  • the product bisphenol A is extracted from the granulation delivery outlet.
  • a metal plate or the like provided with a large number of holes is used and can be heated by an electric heater, steam, or the like in order to prevent bisphenol A from solidifying.
  • the temperature of the bisphenol A melt is preferably 157 to 200 ° C. If the temperature of the bisphenol A melt is lower than 157 ° C., the melt may solidify when the bisphenol A melt is introduced into the granulation step, and the piping may be blocked. Moreover, when it exceeds 200 degreeC, there exists a possibility that decomposition
  • the temperature of the bisphenol A melt is more preferably 160 to 180 ° C.
  • the granulation nozzle is, for example, a plate provided with a nozzle.
  • the average particle diameter is adjusted by setting the nozzle hole diameter (diameter) to preferably 0.3 to 1.0 mm, more preferably 0.4 to 0.7 mm, and still more preferably 0.5 to 0.6 mm.
  • Bisphenol A prill having a diameter of about 0.5 to 1.5 mm can be obtained.
  • the flow rate of the bisphenol A melt flowing out from the granulation nozzle is preferably 0.5 to 1.8 m / sec. If the outflow speed of the bisphenol A melt is 0.5 m / second or more, the bisphenol A prill obtained by combining the droplets of the bisphenol A melt is within the above particle size range.
  • the outflow rate of the bisphenol A melt is preferably 1.0 to 1.8 m / sec, more preferably 1.4 to 1.8 m / sec.
  • the cooling time for the droplets of the bisphenol A melt is usually several tens of seconds to 1 minute.
  • the height of the granulation tower is determined by the cooling time of the bisphenol A melt droplets, but is usually about 10 to 50 m.
  • a condensation reaction step in which an excess amount of phenol and acetone are subjected to a condensation reaction in the presence of an acidic catalyst
  • a reaction obtained in step (1) Crystallization / solid-liquid separation step of crystallizing the adduct of bisphenol A and phenol by cooling the mixture and separating the adduct and mother liquor
  • Bisphenol A and phenol obtained in step (2) The adduct decomposition
  • Condensation reaction step In this step, the raw material phenol and acetone are reacted stoichiometrically in an excess of phenol.
  • the reaction temperature is usually 50 to 100 ° C.
  • the reaction pressure is usually normal pressure to 1.5 MPa, preferably normal pressure to 0.6 MPa.
  • a strongly acidic cation exchange resin is usually used as the catalyst.
  • a sulfonic acid type strongly acidic cation exchange resin having a sulfonic acid group as a functional group is common and preferred.
  • examples of commercially available ion exchange resins include Diaion SK104H manufactured by Mitsubishi Chemical Corporation, Levachit MP-62 manufactured by Bayer, and Amberlyst A26 manufactured by R & H, which can also be used in the present invention.
  • a catalyst obtained by neutralizing a part of the strongly acidic cation exchange resin catalyst with a promoter such as mercaptoalkylamine can also be used.
  • Examples thereof include those in which 5 to 30 mol% of the groups are neutralized.
  • the condensation reaction of the raw material liquid of phenol and acetone is carried out by a fixed bed flow system, which is a continuous system and a forced flow system, or a suspension bed batch system.
  • the liquid space velocity (LHSV) of the raw material liquid supplied to the reactor is about 0.1 to 50 hr ⁇ 1 .
  • a resin catalyst amount in the range of 20 to 100% by mass with respect to the raw material liquid is used, and the reaction time is 0. About 5 to 5 hours.
  • the production method of the present invention may optionally have a concentration step (D) between (1) the condensation reaction step and (2) the crystallization / solid-liquid separation step.
  • the reaction mixture from the above (1) condensation reaction step can usually be concentrated in a two-step process.
  • unreacted acetone, reaction product water, and the like are removed by a method such as vacuum distillation.
  • the vacuum distillation is usually carried out at a temperature of about 30 to 180 ° C. and a pressure of about 13 to 67 kPa.
  • phenol is distilled off and the concentration of bisphenol A is adjusted.
  • the concentration of bisphenol A at this time is preferably about 20 to 60% by mass.
  • the concentration of bisphenol A is usually adjusted by pre-concentrating the reaction mixture in the first concentration step.
  • This second concentration step is usually preferably carried out under conditions of a temperature of about 70 to 140 ° C. and a pressure of about 4 to 40 kPa.
  • the reaction mixture from the condensation reaction step (1) or the concentrate from the concentration step (D) is usually cooled from about 70 to 140 ° C. to about 35 to 60 ° C., An adduct of bisphenol A and phenol crystallizes into a slurry. The cooling of the concentrate is removed by latent heat due to evaporation of water added to the external heat exchanger or the crystallization can. Next, the slurry liquid is solid-liquid separated.
  • the composition of the mother liquor obtained in this crystallization / solid-liquid separation step is usually 65 to 85% by mass of phenol, 10 to 20% by mass of bisphenol A, and 5 to 15 by-products such as 2,4′-isomer. % By mass.
  • the adduct crystals of bisphenol A and phenol separated by solid-liquid separation of the slurry-like reaction mixture are then sent to an adduct decomposition step to remove the phenol, whereby high purity bisphenol A is obtained.
  • the solid component mainly composed of adduct crystals that have been filtered and deposited on the filter surface of the solid-liquid separator is subjected to washing with a washing liquid.
  • a washing liquid in addition to phenol recovered by evaporation, raw material phenol, water, water-phenol mixed liquid, the same one as the saturated phenol solution of bisphenol A can be used.
  • the amount of the cleaning liquid is one means for controlling the isopropenylphenol concentration of the present invention, and will be described later.
  • the mother liquor obtained in the crystallization / solid-liquid separation step (2) is recycled to the condensation reaction step (1) and / or the concentration step (D) or further subjected to the isomerization step (B) described later.
  • the total amount of the mother liquor or a part thereof is supplied to the isomerization step (B).
  • the adduct crystal may be redissolved after crystallization and solid-liquid separation, and crystallization and solid-liquid separation may be repeated again. By repeating this crystallization and solid-liquid separation in multiple stages, impurities taken into the adduct crystal are sequentially reduced.
  • a washing solution for washing a redissolved solution and a solid component mainly composed of adduct crystals obtained by solid-liquid separation evaporated and recovered phenol, raw material phenol, water, water-phenol mixed solution
  • the same solution as the saturated phenol solution of bisphenol A can be used in each stage.
  • the amount of the cleaning liquid at the time of recrystallization is also one means for controlling the concentration of isopropenylphenol of the present invention, which will be described later. Further, the mother liquor obtained by recrystallization and solid-liquid separation can be recycled to the crystallization process described above.
  • the adduct crystal recovered by solid-liquid separation removes phenol in the adduct decomposition step to become high-purity bisphenol A.
  • the adduct crystal is decomposed into bisphenol A and phenol by heating and melting at about 100 to 160 ° C., and most of the phenol is removed from the melt with an evaporator, and steam is further removed. By removing residual phenol by stripping, a bisphenol A melt is obtained.
  • the bisphenol A melt obtained by the adduct decomposition step (3) is granulated in this step by the granulation method described above. That is, a general bisphenol A melt such as a granulation tower having a nozzle plate having a large number of holes for droplets of bisphenol A melt at the top and a duct for blowing a cooling gas at the bottom of the tower. It can granulate using the granulator which granulates a liquid.
  • the temperature of the bisphenol A melt is preferably 157 to 200 ° C.
  • the nozzle hole diameter (diameter) is preferably 0.3 to 1.0 mm
  • the outflow rate of the bisphenol A melt flowing out of the granulation nozzle is preferably Is 0.5 to 1.8 m / sec.
  • the height of the granulation tower is usually about 10 to 50 m. The preferable reason and the more preferable range are as described above.
  • the isopropenylphenol concentration is monitored under an ambient temperature condition of 10 to 50 ° C., and the production process is controlled so that the concentration is 150 mass ppm or less. Cost.
  • the free acid is removed as one means of controlling the production process so that the concentration of isopropenylphenol under the ambient temperature condition of 10 to 50 ° C. is less than 150 ppm by mass within 1 hour after granulation of bisphenol A. It can mention providing a free acid removal process (A) in the manufacturing method of bisphenol A of the present invention. Therefore, the method for producing bisphenol A of the present invention may have the following free acid removal step (A).
  • the installation place of the free acid removal process (A) is not particularly limited, but before the raw material phenol and the condensation reaction process (1) (inlet liquid), after the condensation reaction process (1) (outlet liquid) ), And the crystallization mother liquor obtained after the crystallization / mother liquor separation step (2), preferably the crystallization mother liquor obtained after the crystallization / solid-liquid separation step (2). Is done.
  • an acid adsorbent or an anion exchange resin can be used as the acid removal means.
  • the acid adsorbent for example, an alkali metal compound / alkaline earth metal compound can be used as disclosed in JP-A-11-152240.
  • the anion exchange resin a strong basic ion exchange resin and a weak basic ion exchange resin can be used.
  • the strongly basic anion exchange resin having a quaternary ammonium base (R-N + R 1 R 2 R 3) or a tertiary sulfonium group to (R-S + R 1 R 2) as a functional group
  • R-N + R 1 R 2 R 3 quaternary ammonium base
  • R-S + R 1 R 2 R 3 tertiary sulfonium group to (R-S + R 1 R 2) as a functional group
  • examples of commercially available anion exchange resins include Diaion WA-20, 21, and 30 manufactured by Mitsubishi Chemical Corporation, and Amberlyst A21 manufactured by R & H, which can also be used in the present invention.
  • the raw phenol or mother liquor is removed from the free acid removal step (A) within 1 hour after granulation of bisphenol A while monitoring the concentration of isopropenylphenol under ambient temperature conditions of 10 to 50 ° C. ) Or not. That is, when the isopropenyl phenol concentration of bisphenol A obtained after granulation begins to exceed 150 ppm by mass, the raw acid phenol and mother liquor are removed through the free acid removal step (A). To lower the isopropenyl phenol concentration.
  • the raw acid phenol or mother liquor is not passed through the free acid removal step (A).
  • the manufacturing process can proceed.
  • bisphenol A having a low isopropenylphenol concentration and good quality can be obtained. If the isopropenylphenol concentration is 150 mass ppm or less, the free acid removal step can be omitted, and the production amount per unit time can be increased when producing bisphenol A continuously, which is industrially advantageous. .
  • the amount of the washing liquid is usually preferably 10 to 100 parts by mass, more preferably 15 to 85 parts by mass with respect to 100 parts by mass of the adduct crystal obtained in the crystallization / solid-liquid separation step (2) on a mass basis. More preferably, it is 20 to 75 parts by mass.
  • the amount of the cleaning liquid is less than 10 parts by mass with respect to 100 parts by mass of the adduct crystal, the cleaning efficiency is not preferable. If the amount of the cleaning liquid exceeds 100 parts by mass, the remelting loss of the adduct crystals tends to increase, and it is not preferable from the viewpoint of circulation, recovery, and reuse of the cleaning liquid.
  • the amount of the cleaning liquid in the crystallization / solid-liquid separation step (2) is changed as a process control means, the amount of the cleaning liquid is determined as follows.
  • the amount of the cleaning solution is changed within the above range while monitoring the isopropenylphenol concentration under the ambient temperature condition of 10 to 50 ° C. within 1 hour after the granulation of bisphenol A. That is, when the concentration of isopropenyl phenol under the above conditions of bisphenol A obtained after granulation starts to exceed 150 ppm by mass, the concentration of isopropenyl phenol is increased by increasing the amount of the cleaning solution within the above range and strengthening the cleaning. Perform the operation to lower.
  • the concentration of isopropenylphenol under the above conditions becomes 150 ppm by mass or less due to an increase in the particle size of the adduct crystals, the amount of the cleaning liquid is reduced within the above range.
  • the concentration of isopropenylphenol under the above conditions becomes 150 ppm by mass or less due to an increase in the particle size of the adduct crystals
  • the amount of the cleaning liquid is reduced within the above range.
  • the method for producing bisphenol A according to the present invention comprises isomerizing a total amount or a part of the mother liquor obtained in the crystallization / solid-liquid separation step (2) with an isomerization catalyst.
  • an isomerization step (B) in which the crystallization treatment liquid is circulated to the condensation reaction step (1) and / or the concentration step (D).
  • the whole or part of the liquid phase part (mother liquor) obtained in the crystallization / solid-liquid separation process (2) is supplied to the isomerization process (B), and reaction by-products in the mother liquor (2 , 4′-isomer etc.) can be isomerized.
  • the mother liquor obtained in the crystallization / solid-liquid separation step (2) not supplied to the isomerization step (B) is recycled to the condensation reaction step (1) and / or the concentration step (D) as described above. Is done.
  • the isomerization treatment is preferably carried out by a fixed bed flow system in which the mother liquor is supplied continuously and in a forced flow manner to a fixed bed reactor (isomerization vessel) filled with a strongly acidic cation exchange resin.
  • the strong acid cation exchange resin for example, a sulfonic acid type cation exchange resin can be used.
  • the isomerization reaction temperature is preferably in the range of 50 to 100 ° C, more preferably 70 to 80 ° C. By setting the temperature to 50 ° C. or higher, solidification of bisphenol A in the mother liquor is avoided, and by setting the temperature to 100 ° C. or lower, problems of product quality deterioration due to elimination of sulfonic acid from the catalyst and acid decomposition of bisphenol A are avoided. .
  • the liquid hourly space velocity (LHSV) is usually preferably 0.1 to 50 hr ⁇ 1 , more preferably 0.15 to 25 hr ⁇ 1 , still more preferably 0.2 to 0.4 hr ⁇ . 1 .
  • LHSV liquid hourly space velocity
  • the amount of by-products is reduced, and by setting it to 50 hr ⁇ 1 or less, a high conversion can be obtained.
  • Most of the isomerization treatment liquid after the isomerization treatment is recycled to the condensation reaction step (1) and / or the concentration step (D), preferably to the concentration step (D). Further, if necessary, a part of the isomerization treatment liquid is extracted to prevent accumulation of impurities and is sent to the following recovery step (C) as an exhaust liquid.
  • (C) Recovery process Some of the isomerization solution sent from the isomerization process (B) contains about 15 to 20% by mass of bisphenol A and 5 to 5 of by-products such as 2,4′-isomer. About 10% by mass is contained.
  • the adduct crystal of bisphenol A and phenol is crystallized by cooling in the presence of phenol. After solid-liquid separation, the adduct crystal is melted and then recycled to the concentration step (D) and / or the crystallization / solid-liquid separation step (2). The mother liquor after the solid-liquid separation is treated after recovering phenol.
  • Examples of other methods for controlling the concentration of isopropenyl phenol include the following methods.
  • the isopropenylphenol concentration can vary depending on the particle size of the adduct crystal obtained in the crystallization / solid-liquid separation step.
  • the concentration of isopropenylphenol under ambient temperature conditions of 10 to 50 ° C. is monitored within 1 hour after granulation of bisphenol A, and the concentration is controlled to 150 ppm by mass or less.
  • bisphenol A having a good hue (low APHA) can be produced.
  • APHA used for the evaluation of hue is, for example, JIS K-4101 or ASTM D-1686 (Japan Oil Chemist's Society), Standard Methods for the Analysis of Fats, Oils and Related Materials)).
  • APHA is preferably 50 or less, more preferably 40 or less, and still more preferably 30 or less.
  • Example 1 A fixed bed reaction column packed with 20 mol% partially neutralized cation exchange resin [Mitsubishi Chemical Co., Ltd., “Diaion SK104H”] with 2-mercaptoethylamine was charged with phenol at a molar ratio of 10: 1. Acetone was continuously passed through LHSV 3 hr ⁇ 1 and the reaction was performed at 75 ° C. (condensation reaction step (1)). The resulting reaction mixture was introduced into a vacuum distillation tower, distilled under reduced pressure at a tower bottom temperature of 170 ° C. and a pressure of 67 kPa to remove unreacted acetone, reaction product water, and the like, and further at a temperature of 130 ° C. and a pressure of 14 kPa.
  • the obtained slurry solution was supplied to a two-stage extrusion centrifuge (400G), and washed with 40 parts by mass of raw material phenol with respect to 100 parts by mass of adduct crystals to obtain wet adduct crystals.
  • the obtained wet adduct crystal was heated and melted at 130 ° C., dephenolized, and then granulated in a spray granulation tower to obtain bisphenol A (prill) as a product.
  • the bisphenol A obtained after granulation is stored at room temperature (30 ° C.), and bisphenol A that has passed 1 hour, 2 hours, 8 hours, 24 hours, 48 hours after granulation is subjected to high performance liquid chromatography. Analysis.
  • the time when the bisphenol A melt flows out of the granulation nozzle is defined as 0 hour after granulation.
  • a high performance liquid chromatograph (Waters, model: 2695, column: Inertsil (registered trademark) ODS-3V GL Sciences) was used. After being kept in a 25% by mass acetonitrile aqueous solution as a mobile phase for 45 minutes, it was analyzed with a gradient of 3.5% by mass / min. After reaching 100% by mass acetonitrile, it was held for 5 minutes.
  • the sample injection volume was 5.0 ⁇ L
  • the column temperature was 40 ° C.
  • the flow rate was 1.0 mL / min
  • the analysis wavelength was 277 nm.
  • the IPP concentrations were 40 (after granulation (hereinafter the same) for 1 hour), 36 (2 hours), 32 (8 hours), 26 (24 hours), and 23 (48 hours) mass ppm, respectively. .
  • the results are shown in Table 1.
  • hue evaluation of bisphenol A was performed by APHA evaluation. APHA was measured by the method defined in JIS K-4101. Specifically, bisphenol A prill was heated at 220 ° C. for 40 minutes in an air atmosphere, and the hue was visually evaluated using an APHA standard color. All the results were APHA10. The results are shown in Table 1.
  • polycarbonate resin was manufactured according to the following manufacture examples, and YI was measured.
  • This BPA aqueous solution of sodium hydroxide 40 L / hr, methylene chloride 15 L / hr and phosgene 4.0 kg / hr were continuously passed through a tubular reactor having an inner diameter of 6 mm and a tube length of 30 m.
  • the tubular reactor had a jacket portion, and the temperature of the reaction solution was kept at 40 ° C. or lower by passing cooling water through the jacket.
  • the reaction solution exiting the tubular reactor was continuously introduced into a 40-liter baffled tank reactor equipped with a receding blade, and further BPA sodium hydroxide aqueous solution 2.8 L / hr, 25 mass%.
  • the YI value of the produced polycarbonate resin was measured as follows. The resin flakes obtained above are pelletized, and the resin pellets are dried at 110 ° C. for 5 hours, and then plasticized at 300 ° C. using an injection molding machine (product name: FS80S-12ASE, manufactured by Nissei Plastic Industry Co., Ltd.). Then, it was allowed to stay in the cylinder for 15 seconds to form a molded product having a thickness of 3.2 mm and a square of 60 mm, and this test piece was used with a spectral color difference meter SE-2000 manufactured by Nippon Denshoku Industries Co., Ltd. and JIS K-7105. Measured by a method based on The results are shown in Table 2.
  • Example 2 100 parts by weight of the adduct crystal obtained in the crystallization / solid-liquid separation step (2) was washed with phenol recovered by evaporation at a ratio of 5 parts by weight, and the adduct crystal was recrystallized. At this time, bisphenol A was produced in the same manner as in Example 1 except that 100 parts by mass of the adduct crystal was washed with 5 parts by mass of raw material phenol. The bisphenol A obtained after granulation was stored under room temperature conditions (30 ° C.), and bisphenol A that had passed 1 hour, 2 hours, 8 hours, 24 hours, and 48 hours after granulation was the same as in Example 1. The analysis was performed by high performance liquid chromatography.
  • IPP concentrations were 99 (after granulation (hereinafter the same) for 1 hour), 92 (2 hours), 81 (8 hours), 63 (24 hours), and 56 (48 hours) mass ppm, respectively.
  • the results are shown in Table 1.
  • the obtained bisphenol A was also evaluated for hue by APHA as in Example 1. All the results were APHA20.
  • the results are shown in Table 1.
  • a polycarbonate resin was produced according to the production example in the same manner as in Example 1 except that bisphenol A obtained in this example was used, and the YI value was measured in the same manner as in Example 1. The results are shown in Table 2.
  • Example 3 Except that the free acid was not removed, the same operation as in Example 1 was performed to produce bisphenol A.
  • the obtained bisphenol A was stored under room temperature conditions (30 ° C.), and bisphenol A that had passed 1 hour, 2 hours, 8 hours, 24 hours, and 48 hours after granulation was subjected to a high-speed liquid in the same manner as in Example 1. Analysis was performed by chromatography. As a result of the measurement, the IPP concentrations were 150 (after granulation (hereinafter the same) for 1 hour), 133 (2 hours), 121 (8 hours), 94 (24 hours), and 84 (48 hours) mass ppm, respectively. The results are shown in Table 1. The obtained bisphenol A was also evaluated for hue by APHA as in Example 1. All the results were APHA35.
  • Comparative Example 1 A fixed bed reaction column packed with 20 mol% partially neutralized cation exchange resin [Made by Mitsubishi Chemical Co., Ltd., “Diaion SK104H”] with 2-mercaptoethylamine was mixed with phenol having a molar ratio of 10: 1. Acetone was continuously passed through LHSV 3 hr ⁇ 1 and reacted at 75 ° C. The resulting reaction mixture was introduced into a vacuum distillation tower, distilled under reduced pressure at a tower bottom temperature of 170 ° C. and a pressure of 67 kPa to remove unreacted acetone, reaction product water, and the like, and further at a temperature of 130 ° C. and a pressure of 14 kPa.
  • the phenol was distilled off and concentrated until the bisphenol A concentration became 40% by mass to obtain a phenol / bisphenol A concentrate.
  • crystallization was performed by adding water to the obtained concentrated liquid and maintaining at 45 ° C. in a crystallization tank reduced in pressure to 2 kPa (15 Torr), and the obtained slurry solution was filtered with a horizontal belt filter. Thereafter, the obtained adduct crystal was washed with phenol collected by evaporation at a ratio of 5 parts by mass with respect to 100 parts by mass of the adduct. The obtained adduct crystal was subjected to a recrystallization operation described later.
  • the evaporated and recovered phenol and the mother liquor from the recrystallization step are added and heated to 90 ° C. to prepare a solution containing 45% by mass of bisphenol A. And filtered. Water was added to the obtained crystal again, and recrystallization was performed at 5.33 kPa (40 Torr) at 50 ° C., and the resulting slurry solution was supplied to a two-stage extrusion centrifuge (400 G). The wet adduct crystal was obtained by washing with 100 parts by mass of the raw material phenol in a proportion of 5 parts by mass.
  • the obtained wet adduct crystal was heated and melted at 130 ° C., dephenolized, and granulated in a spray granulation tower to obtain bisphenol A as a product.
  • the bisphenol A obtained after granulation was stored under room temperature conditions (30 ° C.), and bisphenol A that had passed 1 hour, 2 hours, 8 hours, 24 hours, and 48 hours after granulation was the same as in Example 1.
  • the analysis was performed by high performance liquid chromatography. As a result of the measurement, the IPP concentrations were 202 (after granulation (hereinafter the same) 1 hour), 178 (2 hours), 162 (8 hours), 132 (24 hours), 98 (48 hours) mass ppm, respectively.
  • the obtained bisphenol A was also evaluated for hue by APHA as in Example 1.
  • Example 1 is the removal of free acid and the amount of washing liquid for washing adduct crystals (including recrystallization),
  • Example 2 is the removal of free acid
  • Example 3 is adduct crystals (recrystallization)
  • the amount of the cleaning solution for cleaning is increased.
  • the comparative example 1 does not include the free acid removal step, and the amount of the cleaning liquid for cleaning the adduct crystals is lower than that of the example.
  • Table 1 the APHA value of Comparative Example 1 in which the isopropenyl phenol concentration under the ambient temperature condition of 30 ° C. for 1 hour after granulation of bisphenol A exceeds 150 ppm by mass is as follows.
  • the isopropenylphenol concentration is monitored under an ambient temperature condition of 10 to 50 ° C., and the hue is good by controlling the concentration to 150 mass ppm or less.
  • Bisphenol A can be produced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Provided is a bisphenol A production method in which, within one hour after granulating bisphenol A, isopropenylphenol concentration under ambient temperature conditions of 10-50˚C is monitored and the concentration is controlled to be no more than 150 ppm by mass.

Description

ビスフェノールAの製造方法Method for producing bisphenol A
 本発明は、高品質のビスフェノールA、特に色相が良好なビスフェノールAを製造するための製造方法に関する。 The present invention relates to a production method for producing high-quality bisphenol A, particularly bisphenol A having a good hue.
 ビスフェノールAから製造されるポリカーボネート樹脂(以下、PC樹脂と略すことがある。)は、透明性、耐熱性、低吸湿性、機械特性に優れることから、携帯電話、携帯ゲーム機、カーナビ等に搭載される導光板等の用途に適している。かかる導光板等の用途で用いられるポリカーボネート材料では透明性(低いYI)が要求される。
 ビスフェノールAはその製造工程中に高温下で溶融状態を保持した場合に、数時間でイソプロペニルフェノール(以下、IPPと略すことがある。)が生成する。イソプロペニルフェノールが生成することによって原料ビスフェノールAの着色が起こり、色相が悪化し、これを原料として製造したポリカーボネートは透明性が低下する。
 そのため、透明性が高いポリカーボネートを得るためには、イソプロペニルフェノール量を低減することにより、原料ビスフェノールAの着色を抑える(低いAPHA)必要がある。
Polycarbonate resin produced from bisphenol A (hereinafter sometimes abbreviated as PC resin) has excellent transparency, heat resistance, low moisture absorption, and mechanical properties, so it is installed in mobile phones, portable game machines, car navigation systems, etc. Suitable for applications such as light guide plates. The polycarbonate material used for such applications as the light guide plate requires transparency (low YI).
When the bisphenol A is kept in a molten state at a high temperature during the production process, isopropenylphenol (hereinafter sometimes abbreviated as IPP) is formed in several hours. The production of isopropenylphenol causes coloring of the raw material bisphenol A, which deteriorates the hue, and the polycarbonate produced using this as a raw material has reduced transparency.
Therefore, in order to obtain a highly transparent polycarbonate, it is necessary to suppress coloring of the raw material bisphenol A (low APHA) by reducing the amount of isopropenylphenol.
 特許文献1には、ビスフェノールAを高温下で溶融状態にて保持した場合、数時間で4-イソプロペニルフェノールが生成することにより原料ビスフェノールAが着色を始め、これを原料として製造したポリカーボネートは色調が悪化する旨が記載されている。この4-イソプロペニルフェノールの生成を抑えるために、特許文献1には、ビスフェノールA/フェノールの割合を特定の範囲にすることにより低温下でも液状溶融状態を保持する製造方法が開示されている。特許文献1には、造粒工程を介さずにビスフェノールAを溶融状態のままポリカーボネートの製造に用いる製造方法が記載されているが、溶融状態のビスフェノールAを造粒してプリル化する場合については記載がない。
 イソプロペニルフェノールの生成は、主反応工程から流出する酸が大きく起因しているため、流出酸の除去設備(フィルター・陰イオン交換樹脂等)の設置が有効であることが分かっている。特許文献2には、遊離酸除去工程を設けて母液又は異性化処理液中に存在する着色物質を生成させ製品ビスフェノールAの色相悪化を引き起こす原因となる遊離酸を除去し、高品質の、特に透明性(色相)に優れたビスフェノールAを製造する方法が開示されている。
 特許文献3には、ビスフェノールAを製造する方法において、主反応器で発生した遊離酸が原因となって、ビスフェノールAの分解や2,4’-ビスフェノールAの生成が促進されることも知られている旨の記載があり、ビスフェノールAの製造工程における遊離酸濃度を特定の範囲内とするビスフェノールAの製造方法が開示されている。
 特許文献4は、晶析させたビスフェノールAとフェノールとの付加物を公知の方法により分離したのち、精製フェノールにより洗浄処理が施す方法を提供している。この洗浄処理においては、該精製フェノールは、通常付加物100質量部に対し、30~100質量部の割合で用いられる。
In Patent Document 1, when bisphenol A is kept in a molten state at a high temperature, 4-isopropenylphenol is produced in a few hours, whereby the raw material bisphenol A starts to be colored. Is described as worsening. In order to suppress the production of 4-isopropenylphenol, Patent Document 1 discloses a production method that maintains a liquid molten state even at a low temperature by setting the ratio of bisphenol A / phenol to a specific range. Patent Document 1 describes a production method in which bisphenol A is used in the production of polycarbonate in a molten state without going through a granulation step. However, in the case of granulating molten bisphenol A and prilling it, There is no description.
Since the production of isopropenylphenol is largely caused by the acid flowing out from the main reaction step, it has been found that the installation of a effluent acid removal facility (filter, anion exchange resin, etc.) is effective. In Patent Document 2, a free acid removal step is provided to generate a colored substance present in the mother liquor or the isomerization treatment liquid, thereby removing the free acid that causes the deterioration of the hue of the product bisphenol A. A method for producing bisphenol A having excellent transparency (hue) is disclosed.
In Patent Document 3, it is also known that in the method for producing bisphenol A, decomposition of bisphenol A and production of 2,4′-bisphenol A are promoted due to free acid generated in the main reactor. The manufacturing method of bisphenol A which makes the free acid density | concentration in the manufacturing process of bisphenol A into the specific range is disclosed.
Patent Document 4 provides a method in which a crystallized adduct of bisphenol A and phenol is separated by a known method and then washed with purified phenol. In this washing treatment, the purified phenol is usually used at a ratio of 30 to 100 parts by mass with respect to 100 parts by mass of the adduct.
特開2002-173530号公報JP 2002-173530 A 特開2007-308408号公報JP 2007-308408 A 特開2001-316313号公報JP 2001-316313 A 特開平6-048970号公報Japanese Patent Laid-Open No. 6-048970
 特許文献等に記載されるように、イソプロペニルフェノールが色相悪化の原因物質であることが分かっている。しかしながら、イソプロペニルフェノールは非常に反応性が高く、常温においても容易に他の成分に変質するため、ビスフェノールAの製造における濃度調整目標を設定することが難しいといった問題があった。本発明は、このような問題を解決するためになされたものであり、造粒後得られるビスフェノールAのイソプロペニルフェノール濃度調整目標を設定し、この濃度を制御することにより、色相の良好なビスフェノールAを連続して製造することができる製造方法を提供することを目的とする。 As described in patent documents and the like, it is known that isopropenylphenol is a causative substance of hue deterioration. However, isopropenylphenol has a very high reactivity and easily changes to other components even at room temperature, which makes it difficult to set a concentration adjustment target in the production of bisphenol A. The present invention has been made to solve such a problem. By setting an isopropenyl phenol concentration adjustment target for bisphenol A obtained after granulation and controlling this concentration, bisphenol having a good hue is obtained. It aims at providing the manufacturing method which can manufacture A continuously.
 本発明者らは、ビスフェノールA溶融液を造粒して得られるビスフェノールAの造粒後1時間以内、10~50℃の周囲温度条件下でのイソプロペニルフェノール濃度を特定範囲以下に制御することにより、色相の良好なビスフェノールAを連続的に製造することができることを見出した。
 すなわち本発明は以下を含むものである。
1.ビスフェノールAの造粒後1時間以内、10~50℃の周囲温度条件下におけるイソプロペニルフェノール濃度を監視し、前記濃度を150質量ppm以下に制御する、ビスフェノールAの製造方法。
2.(1)過剰量のフェノールとアセトンとを酸性触媒の存在下、縮合反応させる縮合反応工程、
 (2)工程(1)で得られた反応混合物を冷却することにより、ビスフェノールAとフェノールとの付加物を晶析させ、該付加物と母液に分離する晶析・固液分離工程、
 (3)工程(2)で得られたビスフェノールAとフェノールとの付加物からフェノールを除去し、ビスフェノールA溶融液とするアダクト分解工程、及び
 (4)工程(3)で得られるビスフェノールA溶融液を造粒する造粒工程、
を有するビスフェノールAの製造方法において、
ビスフェノールAの造粒後1時間以内、10~50℃の周囲温度条件下におけるイソプロペニルフェノール濃度を監視し、前記濃度を150質量ppm以下に制御する、ビスフェノールAの製造方法。
3.(D)工程(1)で得られた反応混合物を濃縮する濃縮工程をさらに有する、2に記載のビスフェノールAの製造方法。
4.(A)遊離酸除去工程
をさらに有し、遊離酸を除去することにより前記イソプロペニルフェノール濃度を制御する、1~3のいずれかに記載のビスフェノールAの製造方法。
5.前記晶析・固液分離工程(2)においてビスフェノールAとフェノールとの付加物結晶を洗浄する洗浄液量を変化させることにより、前記イソプロペニルフェノール濃度を制御する、2または3に記載のビスフェノールAの製造方法。
6.前記洗浄液量は、ビスフェノールAとフェノールとの付加物結晶100質量部に対して10~100質量部である、5に記載のビスフェノールAの製造方法。
7.(B)前記晶析・固液分離工程(2)で得られた母液の全量またはその一部を異性化触媒で異性化処理し、異性化処理液を縮合反応工程(1)及び/又は濃縮工程(D)に循環させる異性化工程、及び
 (C)異性化工程(B)で処理された異性化処理液の残部からビスフェノールAとフェノールとの付加物を回収する回収工程
をさらに有する、2~6のいずれかに記載のビスフェノールAの製造方法。
The present inventors control the isopropenylphenol concentration within a specific range within 10 hours after the granulation of bisphenol A obtained by granulating a bisphenol A melt within 10 hours. Thus, it was found that bisphenol A having a good hue can be continuously produced.
That is, the present invention includes the following.
1. A method for producing bisphenol A, wherein the concentration of isopropenyl phenol under ambient temperature conditions of 10 to 50 ° C. is monitored within 1 hour after granulation of bisphenol A, and the concentration is controlled to 150 ppm by mass or less.
2. (1) a condensation reaction step in which an excess amount of phenol and acetone is subjected to a condensation reaction in the presence of an acidic catalyst;
(2) a crystallization / solid-liquid separation step of cooling the reaction mixture obtained in step (1) to crystallize an adduct of bisphenol A and phenol, and separating the adduct and mother liquor;
(3) Adduct decomposition step for removing phenol from the adduct of bisphenol A and phenol obtained in step (2) to obtain a bisphenol A melt, and (4) bisphenol A melt obtained in step (3). Granulating process,
In the method for producing bisphenol A having
A method for producing bisphenol A, wherein the concentration of isopropenyl phenol under ambient temperature conditions of 10 to 50 ° C. is monitored within 1 hour after granulation of bisphenol A, and the concentration is controlled to 150 ppm by mass or less.
3. (D) The method for producing bisphenol A according to 2, further comprising a concentration step of concentrating the reaction mixture obtained in step (1).
4). (A) The method for producing bisphenol A according to any one of 1 to 3, further comprising a free acid removing step, wherein the isopropenylphenol concentration is controlled by removing the free acid.
5. The concentration of the isopropenyl phenol is controlled by changing the amount of the washing liquid for washing the adduct crystal of bisphenol A and phenol in the crystallization / solid-liquid separation step (2). Production method.
6). 6. The method for producing bisphenol A according to 5, wherein the amount of the washing liquid is 10 to 100 parts by mass with respect to 100 parts by mass of an adduct crystal of bisphenol A and phenol.
7). (B) All or part of the mother liquor obtained in the crystallization / solid-liquid separation step (2) is isomerized with an isomerization catalyst, and the isomerization solution is condensed in the condensation reaction step (1) and / or concentrated. An isomerization step to be circulated in the step (D); and (C) a recovery step of recovering an adduct of bisphenol A and phenol from the remainder of the isomerization solution treated in the isomerization step (B). A method for producing bisphenol A according to any one of 1 to 6.
 本発明のビスフェノールAの製造方法よれば、ビスフェノールAの造粒後1時間以内、10~50℃の周囲温度条件下におけるイソプロペニルフェノール濃度を監視し、前記濃度を150質量ppm以下に制御することにより、色相が良好なビスフェノールAを製造することができる。 According to the method for producing bisphenol A of the present invention, the concentration of isopropenyl phenol is monitored within an hour after granulation of bisphenol A under an ambient temperature condition of 10 to 50 ° C., and the concentration is controlled to 150 ppm by mass or less. Thus, bisphenol A having a good hue can be produced.
 本発明のビスフェノールAの製造方法は、ビスフェノールAの造粒後1時間以内、10~50℃の周囲温度条件下におけるイソプロペニルフェノール濃度を監視し、前記濃度を150質量ppm以下に制御することを要する。イソプロペニルフェノール濃度は、例えば高速液体クロマトグラフィー(以下、HPLCと略すことがある。)によって測定することにより監視することができる。イソプロペニルフェノール濃度が150質量ppmを超えると、得られるビスフェノールAの色相が悪化し、品質に問題が生じる。上記イソプロペニルフェノール濃度を好ましくは100質量ppm以下、より好ましくは50質量ppm以下に制御する。ここで「造粒後」とは、溶融状態のビスフェノールAが冷却用ガス等の冷却手段と接した時点を指すものとする。
 イソプロペニルフェノールは下記の一般式(1)で示される。
The method for producing bisphenol A according to the present invention monitors the concentration of isopropenyl phenol under ambient temperature conditions of 10 to 50 ° C. within 1 hour after granulation of bisphenol A, and controls the concentration to 150 ppm by mass or less. Cost. The concentration of isopropenylphenol can be monitored by measuring, for example, by high performance liquid chromatography (hereinafter sometimes abbreviated as HPLC). If the isopropenyl phenol concentration exceeds 150 ppm by mass, the hue of bisphenol A obtained is deteriorated, resulting in a problem in quality. The isopropenyl phenol concentration is preferably controlled to 100 mass ppm or less, more preferably 50 mass ppm or less. Here, “after granulation” refers to the time when molten bisphenol A comes into contact with a cooling means such as a cooling gas.
Isopropenylphenol is represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 本発明においては、ビスフェノールAのイソプロペニルフェノール濃度は、造粒後1時間以内、10~50℃、より好ましくは15~40℃、より好ましくは20~30℃の周囲温度条件下で監視する。イソプロペニルフェノール濃度は時間と温度によって大きく変わるため、イソプロペニルフェノール濃度を監視するために時間と温度も特定の範囲に管理する必要がある。より具体的には、本発明においてイソプロペニルフェノール濃度を監視する条件は、造粒後1時間、30℃の周囲温度である。 In the present invention, the isopropenylphenol concentration of bisphenol A is monitored within 1 hour after granulation under ambient temperature conditions of 10 to 50 ° C., more preferably 15 to 40 ° C., more preferably 20 to 30 ° C. Since the isopropenylphenol concentration varies greatly depending on time and temperature, it is necessary to control the time and temperature within a specific range in order to monitor the isopropenylphenol concentration. More specifically, the condition for monitoring the isopropenyl phenol concentration in the present invention is an ambient temperature of 30 ° C. for 1 hour after granulation.
 ビスフェノールAのイソプロペニルフェノール濃度の増減には、アダクト分解工程における遊離酸濃度が大きく関係している。イソプロペニルフェノール濃度を下げるために、一例として、プロセス中の遊離酸を除去してビスフェノールAとフェノールとの付加物結晶(以下、アダクト結晶と呼ぶことがある。)中の遊離酸濃度を低下させる方法、及び/又は晶析・固液分離工程においてビスフェノールAとフェノールとのアダクト結晶を洗浄することにより結晶に付着した遊離酸を除去する方法を挙げることができる。アダクト結晶に含まれる及び/又は付着する遊離酸の濃度を十分に低下させることにより、このアダクト結晶を分解して得られるビスフェノールAのイソプロペニルフェノール濃度を150質量ppm以下に制御することができる。
 プロセス中の遊離酸を除去する方法として後述する遊離酸除去工程(A)を必要に応じて設けることにより、イソプロペニルフェノール濃度を制御することができる。
 晶析・固液分離工程におけるアダクト結晶の洗浄は、以下のように制御することができる。すなわち、製造設備が同一で生産量が一定のとき、造粒後1時間以内、10~50℃の周囲温度条件下におけるビスフェノールAのイソプロペニルフェノール濃度は、縮合反応混合物の晶析工程において得られるアダクト結晶の粒径に依存する。アダクト結晶の粒径が小さくなれば比表面積が増え、晶析・固液分離工程において得られる結晶に付着する不純物量(遊離酸、異性体等)が増え、結晶に付着する遊離酸が増えることによりイソプロペニルフェノール濃度も高くなる。一方、アダクト結晶の粒径が大きくなれば比表面積が小さくなり、晶析・固液分離工程において得られる結晶に付着する不純物量が減り、イソプロペニルフェノール濃度は低くなる。すなわち、イソプロペニルフェノール濃度はアダクト結晶の粒径に依存している。
 ここで、アダクト結晶の粒径は晶析機器の種類や運転条件、晶析導入液中の不純物濃度に大きく影響を受ける。また、工業的な製造では、同一条件で製造していても厳密にはアダクト結晶の粒径は周期的に変化しているといわれている。そのため、アダクト結晶の粒径を直接的に制御するのは困難である。
 アダクト結晶の粒径に依存したり、周期的に変化するイソプロペニルフェノール濃度を監視することは、ビスフェノールAの製造プロセスにおいて非常に重要である。本発明の製造方法によれば、造粒後、所定条件下においてビスフェノールAのイソプロペニルフェノール濃度を測定することにより、イソプロペニルフェノール濃度が上昇(すなわち、アダクト結晶の粒径が小さくなる)した場合には、製造プロセス条件をイソプロペニルフェノール濃度が減少するように変更することによりビスフェノールA製品の品質を良好に保つことができる。また、イソプロペニルフェノール濃度が減少(すなわち、アダクト結晶の粒径が大きくなる)した場合には、不要な製造プロセス等を停止することができ、工業的に有利である。
 ビスフェノールAの製造においては、製品の熱劣化や着色を防ぐために、低温で精製可能な晶析・固液分離工程が採用されることが多い。晶析・固液分離工程においては、晶析、固液分離に加えて洗浄を行うことが多い。特に洗浄操作においては、その洗浄成績が製品品質に大きく影響を与える。この洗浄成績は洗浄液量だけでなく、晶析操作にて得られる結晶形状にも大きく関係している。しかしながら、通常の製造装置においては,結晶の粒径確認が非常に困難である。加えて、結晶粒度分布は撹拌速度や製造装置容積に依存する。さらに結晶の粒径は周期的に変化し得る。以上のことから、最適な洗浄成績を実現して優れた製品品質を得るためには、製造プロセス中で目的のビスフェノールA製品性状を確認しながら、洗浄液量をその都度調節することが重要となってくる。
The increase or decrease in the isopropenyl phenol concentration of bisphenol A is largely related to the free acid concentration in the adduct decomposition process. In order to lower the isopropenylphenol concentration, for example, the free acid in the process is removed to reduce the free acid concentration in the adduct crystal of bisphenol A and phenol (hereinafter sometimes referred to as adduct crystal). The method and / or the method of removing the free acid adhering to a crystal | crystallization by wash | cleaning the adduct crystal | crystallization of bisphenol A and a phenol in a crystallization and solid-liquid separation process can be mentioned. By sufficiently reducing the concentration of the free acid contained in and / or adhering to the adduct crystal, the isopropenyl phenol concentration of bisphenol A obtained by decomposing the adduct crystal can be controlled to 150 mass ppm or less.
The concentration of isopropenylphenol can be controlled by providing a free acid removal step (A), which will be described later, as a method for removing the free acid in the process, if necessary.
Washing of the adduct crystal in the crystallization / solid-liquid separation step can be controlled as follows. That is, when the production facilities are the same and the production amount is constant, the isopropenylphenol concentration of bisphenol A under the ambient temperature condition of 10 to 50 ° C. is obtained in the crystallization step of the condensation reaction mixture within 1 hour after granulation. Depends on the particle size of the adduct crystal. As the adduct crystal particle size decreases, the specific surface area increases, the amount of impurities (free acids, isomers, etc.) adhering to the crystal obtained in the crystallization / solid-liquid separation process increases, and the free acid adhering to the crystal increases. This also increases the isopropenylphenol concentration. On the other hand, when the particle size of the adduct crystal is increased, the specific surface area is decreased, the amount of impurities adhering to the crystal obtained in the crystallization / solid-liquid separation step is decreased, and the isopropenylphenol concentration is decreased. That is, the isopropenyl phenol concentration depends on the particle size of the adduct crystal.
Here, the particle size of the adduct crystal is greatly influenced by the type and operating conditions of the crystallization equipment and the impurity concentration in the crystallization introduction liquid. In addition, in industrial production, it is said that strictly speaking, even if the production is performed under the same conditions, the particle size of the adduct crystal changes periodically. Therefore, it is difficult to directly control the particle size of the adduct crystal.
Monitoring the isopropenyl phenol concentration, which depends on the particle size of the adduct crystals or changes periodically, is very important in the production process of bisphenol A. According to the production method of the present invention, after granulation, when the isopropenyl phenol concentration of bisphenol A is measured under a predetermined condition, the isopropenyl phenol concentration is increased (that is, the particle size of the adduct crystal is reduced). The quality of the bisphenol A product can be kept good by changing the manufacturing process conditions so that the concentration of isopropenylphenol is reduced. Moreover, when the isopropenyl phenol concentration decreases (that is, the particle size of the adduct crystal increases), an unnecessary production process or the like can be stopped, which is industrially advantageous.
In the production of bisphenol A, a crystallization / solid-liquid separation process that can be purified at a low temperature is often employed in order to prevent thermal degradation and coloring of the product. In the crystallization / solid-liquid separation step, washing is often performed in addition to crystallization and solid-liquid separation. In particular, the cleaning performance greatly affects product quality in the cleaning operation. This cleaning performance is greatly related not only to the amount of cleaning solution but also to the crystal shape obtained by the crystallization operation. However, it is very difficult to confirm the crystal grain size in a normal manufacturing apparatus. In addition, the crystal grain size distribution depends on the stirring speed and the production equipment volume. Furthermore, the grain size of the crystals can change periodically. From the above, it is important to adjust the amount of cleaning liquid each time while confirming the properties of the desired bisphenol A product in the manufacturing process in order to achieve optimal cleaning results and obtain excellent product quality. Come.
 本発明の製造方法においてビスフェノールAを造粒するに際しては、一般的なビスフェノールAの溶融液を造粒する造粒装置を用いることができる。例えば、ビスフェノールA溶融液を液滴にする、多数の孔をもつノズルプレートを塔頂に設置し、冷却用気体を吹き込むダクトを塔底に備えた造粒塔を用いることができる。ビスフェノールA溶融液を造粒塔の塔頂に送液し、塔頂に設置されたノズルプレートに設けられた多数の孔より、ビスフェノールA溶融液はシャワー状に噴霧される。噴霧された溶融液は、造粒塔の塔底から上昇する循環ガスにより冷却され、塔底よりプリルと呼ばれる粒子状の固体(造粒して得られるビスフェノールAを「ビスフェノールAプリル」と呼ぶことがある)として造粒送出口から抜き出され、製品ビスフェノールAとなる。上記ノズルプレートとしては、多数の孔が設けられた金属板等が使用され、ビスフェノールAの固化を防止するため、電気ヒーターやスチーム等により加温できるようになっている。 When granulating bisphenol A in the production method of the present invention, a granulator for granulating a general bisphenol A melt can be used. For example, it is possible to use a granulating tower in which a nozzle plate having a large number of holes, in which bisphenol A melt is used as droplets, is installed at the top of the tower and a duct for blowing cooling gas is provided at the bottom of the tower. The bisphenol A melt is fed to the top of the granulation tower, and the bisphenol A melt is sprayed in a shower form from a number of holes provided in the nozzle plate installed at the top of the tower. The sprayed molten liquid is cooled by a circulating gas rising from the bottom of the granulation tower, and a particulate solid called prill from the bottom of the tower (referring to bisphenol A obtained by granulation is called “bisphenol A prill”) The product bisphenol A is extracted from the granulation delivery outlet. As the nozzle plate, a metal plate or the like provided with a large number of holes is used and can be heated by an electric heater, steam, or the like in order to prevent bisphenol A from solidifying.
 上記ビスフェノールA溶融液の温度は、157~200℃が好ましい。ビスフェノールA溶融液の温度が157℃未満であると、ビスフェノールA溶融液を造粒工程に導入する際に溶融液が固化することにより配管内を閉塞させるおそれがある。また、200℃を超えると、ビスフェノールAの分解が促進されて着色するおそれがある。上記ビスフェノールA溶融液の温度はより好ましくは、160~180℃である。 The temperature of the bisphenol A melt is preferably 157 to 200 ° C. If the temperature of the bisphenol A melt is lower than 157 ° C., the melt may solidify when the bisphenol A melt is introduced into the granulation step, and the piping may be blocked. Moreover, when it exceeds 200 degreeC, there exists a possibility that decomposition | disassembly of bisphenol A may be accelerated | stimulated and it may color. The temperature of the bisphenol A melt is more preferably 160 to 180 ° C.
 造粒ノズルは、例えばプレートにノズルが設けられたものである。本発明においては、ノズルの孔径(直径)は好ましくは0.3~1.0mm、より好ましくは0.4~0.7mm、さらに好ましくは0.5~0.6mmとすることにより、平均粒径が0.5~1.5mm程度のビスフェノールAプリルを得ることができる。
 本発明においては、上記造粒ノズルから流出するビスフェノールA溶融液の流出速度を0.5~1.8m/秒とすることが好ましい。ビスフェノールA溶融液の流出速度が0.5m/秒以上であれば、ビスフェノールA溶融液の液滴同士が合一して得られるビスフェノールAプリルが上記粒径範囲となる。ビスフェノールA溶融液の流出速度が1.8m/秒以下であれば、得られるビスフェノールAプリルの大きさは均一となる。上記ビスフェノールA溶融液の流出速度は好ましくは1.0~1.8m/秒であり、より好ましくは1.4~1.8m/秒である。
The granulation nozzle is, for example, a plate provided with a nozzle. In the present invention, the average particle diameter is adjusted by setting the nozzle hole diameter (diameter) to preferably 0.3 to 1.0 mm, more preferably 0.4 to 0.7 mm, and still more preferably 0.5 to 0.6 mm. Bisphenol A prill having a diameter of about 0.5 to 1.5 mm can be obtained.
In the present invention, the flow rate of the bisphenol A melt flowing out from the granulation nozzle is preferably 0.5 to 1.8 m / sec. If the outflow speed of the bisphenol A melt is 0.5 m / second or more, the bisphenol A prill obtained by combining the droplets of the bisphenol A melt is within the above particle size range. When the flow rate of the bisphenol A melt is 1.8 m / sec or less, the size of the bisphenol A prill obtained is uniform. The outflow rate of the bisphenol A melt is preferably 1.0 to 1.8 m / sec, more preferably 1.4 to 1.8 m / sec.
 ビスフェノールA溶融液の液滴の冷却時間は、通常、数十秒~1分ほどである。造粒塔の塔高は、ビスフェノールA溶融液の液滴の冷却時間により決まるが、通常、約10~50mである。 The cooling time for the droplets of the bisphenol A melt is usually several tens of seconds to 1 minute. The height of the granulation tower is determined by the cooling time of the bisphenol A melt droplets, but is usually about 10 to 50 m.
 本発明のビスフェノールAの製造方法はその一形態において、(1)過剰量のフェノールとアセトンとを酸性触媒の存在下、縮合反応させる縮合反応工程、(2)工程(1)で得られた反応混合物を冷却することによりビスフェノールAとフェノールとの付加物を晶析させ、該付加物と母液に分離する晶析・固液分離工程、(3)工程(2)で得られたビスフェノールAとフェノールとの付加物からフェノールを除去し、ビスフェノールA溶融液とするアダクト分解工程、及び(4)工程(3)で得られるビスフェノールA溶融液を造粒する造粒工程を有していてもよい。
 また、(1)縮合反応工程と(2)晶析・固液分離工程の間に、(D)工程(1)で得られた反応混合物を濃縮する濃縮工程をさらに有していてもよい。
 各工程について以下に説明する。
In one form of the method for producing bisphenol A of the present invention, (1) a condensation reaction step in which an excess amount of phenol and acetone are subjected to a condensation reaction in the presence of an acidic catalyst, (2) a reaction obtained in step (1) Crystallization / solid-liquid separation step of crystallizing the adduct of bisphenol A and phenol by cooling the mixture and separating the adduct and mother liquor, (3) Bisphenol A and phenol obtained in step (2) The adduct decomposition | disassembly process which removes phenol from the adduct and makes a bisphenol A melt, and the granulation process which granulates the bisphenol A melt obtained by (4) process (3) may be provided.
Moreover, you may have further the concentration process which concentrates the reaction mixture obtained by (D) process (1) between (1) condensation reaction process and (2) crystallization and solid-liquid separation process.
Each step will be described below.
 (1)縮合反応工程
 本工程において、原料のフェノールとアセトンは、化学量論的にフェノール過剰で反応させる。フェノールとアセトンとのモル比は、通常、フェノール/アセトン=3~30の範囲であり、好ましくは5~20の範囲である。反応温度として、通常、50~100℃、反応圧力として、通常、常圧~1.5MPa、好ましくは常圧~0.6MPaを用いる。触媒としては、通常、強酸性陽イオン交換樹脂が用いられる。強酸性陽イオン交換樹脂としては、官能基にスルホン酸基(RSO3 -+)を持ったものが、弱酸性陽イオン交換樹脂としては官能基にカルボン酸基(R-COO-+)、ホスホン酸基(R-P(O)(O-+2)、ホスフィン酸基(R-PH(O)(O-+))、亜ヒ酸基(R-OAsO-+)、フェノキシド基(R-C64-+)を持ったものなどが知られていて、本発明においても用いることができる。官能基にスルホン酸基を有するスルホン酸型強酸性陽イオン交換樹脂が一般的で好ましい。
 イオン交換樹脂の市販品としては、三菱化学(株)製ダイヤイオンSK104H、バイエル社製レバチットMP-62、及びR&H社製アンバーリストA26等を挙げることができ、本発明においても用いることができる。
 さらに、強酸性陽イオン交換樹脂触媒の一部をメルカプトアルキルアミン等の助触媒で中和した触媒を用いることもできる。例えば、2-メルカプトエチルアミン、3-メルカプトプロピルアミン、N,N-ジメチル-3-メルカプトプロピルアミン、N,N-ジ-n-ブチル-4-メルカプトブチルアミン、2,2-ジメチルチアゾリジン等でスルホン酸基の5~30モル%が中和されたものが挙げられる。
(1) Condensation reaction step In this step, the raw material phenol and acetone are reacted stoichiometrically in an excess of phenol. The molar ratio of phenol to acetone is usually in the range of phenol / acetone = 3 to 30, preferably in the range of 5 to 20. The reaction temperature is usually 50 to 100 ° C., and the reaction pressure is usually normal pressure to 1.5 MPa, preferably normal pressure to 0.6 MPa. As the catalyst, a strongly acidic cation exchange resin is usually used. The strong acid cation exchange resins, sulfonic acid functional group (RSO 3 - H +) that have, and examples of the weakly acidic cation exchange resin carboxylic acid group in the functional group (R-COO - H +) Phosphonic acid group (RP (O) (O H + ) 2 ), phosphinic acid group (R—PH (O) (O H + )), arsenite group (R—OAsO H + ) And those having a phenoxide group (R—C 6 H 4 O H + ) are known and can also be used in the present invention. A sulfonic acid type strongly acidic cation exchange resin having a sulfonic acid group as a functional group is common and preferred.
Examples of commercially available ion exchange resins include Diaion SK104H manufactured by Mitsubishi Chemical Corporation, Levachit MP-62 manufactured by Bayer, and Amberlyst A26 manufactured by R & H, which can also be used in the present invention.
Furthermore, a catalyst obtained by neutralizing a part of the strongly acidic cation exchange resin catalyst with a promoter such as mercaptoalkylamine can also be used. For example, 2-mercaptoethylamine, 3-mercaptopropylamine, N, N-dimethyl-3-mercaptopropylamine, N, N-di-n-butyl-4-mercaptobutylamine, 2,2-dimethylthiazolidine, etc. Examples thereof include those in which 5 to 30 mol% of the groups are neutralized.
 フェノールとアセトンとの原料液の縮合反応は、連続方式で且つ押し流れ方式である固定床流通方式、あるいは懸濁床回分方式で行われる。固定床流通方式の場合、反応器に供給する原料液の液空間速度(LHSV)は、0.1~50hr-1程度である。また、懸濁床回分方式で行う場合、反応温度、反応圧力によっても異なるが、一般的に、該原料液に対して20~100質量%の範囲の樹脂触媒量を用い、反応時間は、0.5~5時間程度である。 The condensation reaction of the raw material liquid of phenol and acetone is carried out by a fixed bed flow system, which is a continuous system and a forced flow system, or a suspension bed batch system. In the case of a fixed bed flow system, the liquid space velocity (LHSV) of the raw material liquid supplied to the reactor is about 0.1 to 50 hr −1 . In addition, when the suspension bed batch method is used, although depending on the reaction temperature and reaction pressure, generally, a resin catalyst amount in the range of 20 to 100% by mass with respect to the raw material liquid is used, and the reaction time is 0. About 5 to 5 hours.
 (D)濃縮工程
 本発明の製造方法は、場合により、(1)縮合反応工程と(2)晶析・固液分離工程の間に濃縮工程(D)を有していてもよい。上記(1)縮合反応工程からの反応混合物は、通常、二段階の工程で濃縮することができる。第一濃縮工程において、減圧蒸留等の方法により未反応アセトン、反応生成水等が除かれる。減圧蒸留は、通常、温度30~180℃程度、及び圧力13~67kPa程度で実施される。
 続いて、第二濃縮工程において、フェノールを留去し、ビスフェノールAの濃度を調整する。この際のビスフェノールAの濃度は20~60質量%程度とすることが好ましい。ビスフェノールAの濃度が20質量%よりも低い場合には収率が低くなる。また、60質量%より高くなるとビスフェノールAの固化温度が高くなって、固化しやすくなり、移送不可能になるという問題が起こる。従って、通常は第一濃縮工程において反応混合液を予め濃縮することにより前記濃度に調整する。この第二濃縮工程は、通常、温度70~140℃程度、及び圧力4~40kPa程度の条件下で実施することが好ましい。
(D) Concentration step The production method of the present invention may optionally have a concentration step (D) between (1) the condensation reaction step and (2) the crystallization / solid-liquid separation step. The reaction mixture from the above (1) condensation reaction step can usually be concentrated in a two-step process. In the first concentration step, unreacted acetone, reaction product water, and the like are removed by a method such as vacuum distillation. The vacuum distillation is usually carried out at a temperature of about 30 to 180 ° C. and a pressure of about 13 to 67 kPa.
Subsequently, in the second concentration step, phenol is distilled off and the concentration of bisphenol A is adjusted. The concentration of bisphenol A at this time is preferably about 20 to 60% by mass. When the concentration of bisphenol A is lower than 20% by mass, the yield is low. On the other hand, if it exceeds 60% by mass, the solidification temperature of bisphenol A becomes high, and it becomes easy to solidify, which causes a problem that it cannot be transferred. Accordingly, the concentration is usually adjusted by pre-concentrating the reaction mixture in the first concentration step. This second concentration step is usually preferably carried out under conditions of a temperature of about 70 to 140 ° C. and a pressure of about 4 to 40 kPa.
 (2)晶析・固液分離工程
 縮合反応工程(1)からの反応混合物または濃縮工程(D)からの濃縮液は、通常、70~140℃程度から35~60℃程度までに冷却され、ビスフェノールAとフェノールとの付加物(アダクト)が晶析し、スラリー状になる。濃縮液の冷却は、外部熱交換器や、晶析缶に加えられる水の蒸発による潜熱によって除熱される。次にスラリー状の液は固液分離される。この晶析・固液分離工程で得られる母液の組成は、通常、フェノールが65~85質量%、ビスフェノールAが10~20質量%、2,4’-異性体等の副生物が5~15質量%である。
 スラリー状の反応混合物を固液分離することにより分離されたビスフェノールAとフェノールとのアダクト結晶は、次にアダクト分解工程に送られてフェノールを除去することによって高純度のビスフェノールAが得られる。
(2) Crystallization / Solid-Liquid Separation Step The reaction mixture from the condensation reaction step (1) or the concentrate from the concentration step (D) is usually cooled from about 70 to 140 ° C. to about 35 to 60 ° C., An adduct of bisphenol A and phenol crystallizes into a slurry. The cooling of the concentrate is removed by latent heat due to evaporation of water added to the external heat exchanger or the crystallization can. Next, the slurry liquid is solid-liquid separated. The composition of the mother liquor obtained in this crystallization / solid-liquid separation step is usually 65 to 85% by mass of phenol, 10 to 20% by mass of bisphenol A, and 5 to 15 by-products such as 2,4′-isomer. % By mass.
The adduct crystals of bisphenol A and phenol separated by solid-liquid separation of the slurry-like reaction mixture are then sent to an adduct decomposition step to remove the phenol, whereby high purity bisphenol A is obtained.
 固液分離機のフィルター表面にろ過されて堆積されたアダクト結晶を主成分とする固体成分は、洗浄液による洗浄に付される。洗浄液としては、蒸発して回収したフェノール、原料フェノール、水、水-フェノール混合液の他、ビスフェノールAの飽和フェノール溶液と同じものも使用できる。洗浄液の量については、本発明のイソプロペニルフェノール濃度の制御する1つの手段であり、後述する。
 なお、晶析・固液分離工程(2)で得られる母液は、縮合反応工程(1)及び/又は濃縮工程(D)に再循環されるか、又は後述する異性化工程(B)をさらに設ける場合には、母液の全量またはその一部は、異性化工程(B)に供給される。
 晶析・固液分離の後にアダクト結晶を再溶解し、再度晶析と固液分離を繰り返しても良い。この晶析と固液分離を多段で繰り返すことによりアダクト結晶内に取り込まれた不純物が順次減少して行く。この場合、再溶解の溶解液ならびに固液分離で得られるアダクト結晶を主成分とする固体成分を洗浄する際の洗浄液としては、蒸発して回収したフェノール、原料フェノール、水、水-フェノール混合液の他、ビスフェノールAの飽和フェノール溶液と同じものを各段で使用できる。この再結晶時の洗浄液の量についても、本発明のイソプロペニルフェノール濃度の制御する1つの手段であり、後述する。また、再度の晶析と固液分離で得られた母液は、前述の晶析工程にリサイクルすることもできる。
The solid component mainly composed of adduct crystals that have been filtered and deposited on the filter surface of the solid-liquid separator is subjected to washing with a washing liquid. As the cleaning liquid, in addition to phenol recovered by evaporation, raw material phenol, water, water-phenol mixed liquid, the same one as the saturated phenol solution of bisphenol A can be used. The amount of the cleaning liquid is one means for controlling the isopropenylphenol concentration of the present invention, and will be described later.
The mother liquor obtained in the crystallization / solid-liquid separation step (2) is recycled to the condensation reaction step (1) and / or the concentration step (D) or further subjected to the isomerization step (B) described later. When provided, the total amount of the mother liquor or a part thereof is supplied to the isomerization step (B).
The adduct crystal may be redissolved after crystallization and solid-liquid separation, and crystallization and solid-liquid separation may be repeated again. By repeating this crystallization and solid-liquid separation in multiple stages, impurities taken into the adduct crystal are sequentially reduced. In this case, as a washing solution for washing a redissolved solution and a solid component mainly composed of adduct crystals obtained by solid-liquid separation, evaporated and recovered phenol, raw material phenol, water, water-phenol mixed solution In addition, the same solution as the saturated phenol solution of bisphenol A can be used in each stage. The amount of the cleaning liquid at the time of recrystallization is also one means for controlling the concentration of isopropenylphenol of the present invention, which will be described later. Further, the mother liquor obtained by recrystallization and solid-liquid separation can be recycled to the crystallization process described above.
 (3)アダクト分解工程
 晶析・固液分離工程(2)において、固液分離により回収されたアダクト結晶は、アダクト分解工程においてフェノールを除去して高純度ビスフェノールAとなる。例えば、一般的には、該アダクト結晶を100~160℃程度で加熱溶融することによりビスフェノールAとフェノールとに分解し、この溶融液から蒸発缶などによって大部分のフェノールを除去し、更に、スチームストリッピングによって残存するフェノールを除去することによって、ビスフェノールA溶融物が得られる。
(3) Adduct decomposition step In the crystallization / solid-liquid separation step (2), the adduct crystal recovered by solid-liquid separation removes phenol in the adduct decomposition step to become high-purity bisphenol A. For example, generally, the adduct crystal is decomposed into bisphenol A and phenol by heating and melting at about 100 to 160 ° C., and most of the phenol is removed from the melt with an evaporator, and steam is further removed. By removing residual phenol by stripping, a bisphenol A melt is obtained.
 (4)造粒工程
 上記アダクト分解工程(3)により得られたビスフェノールA溶融物は、上述した造粒方法により本工程において造粒される。すなわち、ビスフェノールA溶融液を液滴にする多数の孔をもつノズルプレートを塔頂に設置し、冷却用気体を吹き込むダクトを塔底に備えた造粒塔のような一般的なビスフェノールAの溶融液を造粒する造粒装置を用いて造粒することができる。ビスフェノールA溶融液の温度は好ましくは157~200℃であり、ノズルの孔径(直径)は好ましくは0.3~1.0mmであり、造粒ノズルから流出するビスフェノールA溶融液の流出速度は好ましくは0.5~1.8m/秒とする。造粒塔の塔高は、通常10~50m程度である。好ましい理由及びより好ましい範囲等は上述した通りである。
 本発明においては、ビスフェノールAの造粒後1時間以内、10~50℃の周囲温度条件下におけるイソプロペニルフェノール濃度を監視し、上記濃度が150質量ppm以下となるように製造プロセスを制御することを要する。
(4) Granulation step The bisphenol A melt obtained by the adduct decomposition step (3) is granulated in this step by the granulation method described above. That is, a general bisphenol A melt such as a granulation tower having a nozzle plate having a large number of holes for droplets of bisphenol A melt at the top and a duct for blowing a cooling gas at the bottom of the tower. It can granulate using the granulator which granulates a liquid. The temperature of the bisphenol A melt is preferably 157 to 200 ° C., the nozzle hole diameter (diameter) is preferably 0.3 to 1.0 mm, and the outflow rate of the bisphenol A melt flowing out of the granulation nozzle is preferably Is 0.5 to 1.8 m / sec. The height of the granulation tower is usually about 10 to 50 m. The preferable reason and the more preferable range are as described above.
In the present invention, within 1 hour after granulation of bisphenol A, the isopropenylphenol concentration is monitored under an ambient temperature condition of 10 to 50 ° C., and the production process is controlled so that the concentration is 150 mass ppm or less. Cost.
 ビスフェノールAの造粒後1時間以内、10~50℃の周囲温度条件下におけるイソプロペニルフェノール濃度が150質量ppm以下となるように製造プロセスを制御する方法の1つの手段として、遊離酸を除去する遊離酸除去工程(A)を本発明のビスフェノールAの製造方法に設けることを挙げることができる。従って、本発明のビスフェノールAの製造方法は、以下の遊離酸除去工程(A)を有していてもよい。 The free acid is removed as one means of controlling the production process so that the concentration of isopropenylphenol under the ambient temperature condition of 10 to 50 ° C. is less than 150 ppm by mass within 1 hour after granulation of bisphenol A. It can mention providing a free acid removal process (A) in the manufacturing method of bisphenol A of the present invention. Therefore, the method for producing bisphenol A of the present invention may have the following free acid removal step (A).
 (A)遊離酸除去工程
 遊離酸除去工程(A)の設置場所は特に限定されないが、原料フェノールや縮合反応工程(1)の前(入口液)、縮合反応工程(1)の後(出口液)、及び晶析・母液分離工程(2)後に得られる晶析母液などを対象に設けることが好ましく、より好ましくは晶析・固液分離工程(2)後に得られる晶析母液を対象に設置される。
 本発明の遊離酸除去工程においては、酸除去手段として、酸吸着剤や陰イオン交換樹脂を用いることができる。酸吸着剤としては、例えば特開平11-152240号公報に示されるように、アルカリ金属化合物/アルカリ土類金属化合物を用いることができる。陰イオン交換樹脂としては強塩基性イオン交換樹脂及び弱塩基性イオン交換樹脂を用いることができる。
(A) Free acid removal process The installation place of the free acid removal process (A) is not particularly limited, but before the raw material phenol and the condensation reaction process (1) (inlet liquid), after the condensation reaction process (1) (outlet liquid) ), And the crystallization mother liquor obtained after the crystallization / mother liquor separation step (2), preferably the crystallization mother liquor obtained after the crystallization / solid-liquid separation step (2). Is done.
In the free acid removal step of the present invention, an acid adsorbent or an anion exchange resin can be used as the acid removal means. As the acid adsorbent, for example, an alkali metal compound / alkaline earth metal compound can be used as disclosed in JP-A-11-152240. As the anion exchange resin, a strong basic ion exchange resin and a weak basic ion exchange resin can be used.
 また、強塩基性陰イオン交換樹脂としては、第4級アンモニウム塩基(R-N+123)又は第3級スルホニウム基(R-S+12)を官能基として持ったものを用いることができる。
 陰イオン交換樹脂の市販品としては、三菱化学(株)製ダイヤイオンWA-20,21,30、R&H社製アンバーリストA21を挙げることができ、本発明においても用いることができる。
As the strongly basic anion exchange resin, having a quaternary ammonium base (R-N + R 1 R 2 R 3) or a tertiary sulfonium group to (R-S + R 1 R 2) as a functional group Can be used.
Examples of commercially available anion exchange resins include Diaion WA-20, 21, and 30 manufactured by Mitsubishi Chemical Corporation, and Amberlyst A21 manufactured by R & H, which can also be used in the present invention.
 本発明の製造方法においては、ビスフェノールAの造粒後1時間以内、10~50℃の周囲温度条件下におけるイソプロペニルフェノール濃度を監視しながら、原料フェノールや母液等を上記遊離酸除去工程(A)に供するか否か決定することができる。すなわち、造粒後得られるビスフェノールAの上記条件下でのイソプロペニルフェノール濃度が150質量ppmを超え始めた場合には、原料フェノールや母液等を遊離酸除去工程(A)を通して、遊離酸を除去することによりイソプロペニルフェノール濃度を下げる操作を行う。また、アダクト結晶の粒径が大きくなる等によって上記条件下でのイソプロペニルフェノール濃度が150質量ppm以下となった場合には、遊離酸除去工程(A)に原料フェノールや母液等を通すことなく製造プロセスを進行させることができる。
 このように、所定条件下でイソプロペニルフェノール濃度を監視して遊離酸除去工程の要否を決定することにより、イソプロペニルフェノール濃度が低く品質のよいビスフェノールAを得ることができる。イソプロペニルフェノール濃度が150質量ppm以下となれば、遊離酸除去工程は省くことができ、連続してビスフェノールAを製造する際に単位時間内の生産量を上げることができ工業的に有利である。
In the production method of the present invention, the raw phenol or mother liquor is removed from the free acid removal step (A) within 1 hour after granulation of bisphenol A while monitoring the concentration of isopropenylphenol under ambient temperature conditions of 10 to 50 ° C. ) Or not. That is, when the isopropenyl phenol concentration of bisphenol A obtained after granulation begins to exceed 150 ppm by mass, the raw acid phenol and mother liquor are removed through the free acid removal step (A). To lower the isopropenyl phenol concentration. Moreover, when the isopropenyl phenol concentration under the above conditions is 150 ppm by mass or less due to an increase in the particle size of the adduct crystal, etc., the raw acid phenol or mother liquor is not passed through the free acid removal step (A). The manufacturing process can proceed.
Thus, by monitoring the isopropenylphenol concentration under predetermined conditions and determining whether or not the free acid removal step is necessary, bisphenol A having a low isopropenylphenol concentration and good quality can be obtained. If the isopropenylphenol concentration is 150 mass ppm or less, the free acid removal step can be omitted, and the production amount per unit time can be increased when producing bisphenol A continuously, which is industrially advantageous. .
 ビスフェノールAの造粒後1時間以内、10~50℃の周囲温度条件下におけるイソプロペニルフェノール濃度が150質量ppm以下となるように製造プロセスを制御する方法の他の手段として、晶析・固液分離工程(2)において上述した固液分離機のフィルター表面にろ過されて堆積されたアダクト結晶を主成分とする固体成分を洗浄する際の、及びこのアダクト結晶を再結晶した際の固体成分を洗浄する際の洗浄液の量を変化させることを挙げることができる。洗浄液としては、精製フェノール、蒸発して回収したフェノール、原料フェノール、水、水-フェノール混合液の他、ビスフェノールAの飽和フェノール溶液と同じもの等を用いることができるのは上記した通りである。 Within one hour after granulation of bisphenol A, as another means of controlling the production process so that the concentration of isopropenylphenol under ambient temperature of 10 to 50 ° C. is 150 ppm by mass or less, crystallization / solid liquid In the separation step (2), when the solid component mainly composed of the adduct crystal that has been filtered and deposited on the filter surface of the solid-liquid separator described above is washed, and when the adduct crystal is recrystallized, It can be mentioned that the amount of the cleaning liquid at the time of cleaning is changed. As described above, as the cleaning liquid, purified phenol, phenol recovered by evaporation, raw material phenol, water, water-phenol mixed solution, and the same saturated phenol solution of bisphenol A can be used as described above.
 上記洗浄液量としては、通常、質量基準で当該晶析・固液分離工程(2)において得られるアダクト結晶100質量部に対して好ましくは10~100質量部、より好ましくは15~85質量部、さらに好ましくは20~75質量部である。アダクト結晶100質量部に対して洗浄液量が10質量部未満となると、洗浄効率が低下するため好ましくない。洗浄液量が100質量部を超えると、アダクト結晶の再溶解ロスが大きくなる傾向にあり、また、洗浄液の循環、回収、再使用の観点から好ましくない。 The amount of the washing liquid is usually preferably 10 to 100 parts by mass, more preferably 15 to 85 parts by mass with respect to 100 parts by mass of the adduct crystal obtained in the crystallization / solid-liquid separation step (2) on a mass basis. More preferably, it is 20 to 75 parts by mass. When the amount of the cleaning liquid is less than 10 parts by mass with respect to 100 parts by mass of the adduct crystal, the cleaning efficiency is not preferable. If the amount of the cleaning liquid exceeds 100 parts by mass, the remelting loss of the adduct crystals tends to increase, and it is not preferable from the viewpoint of circulation, recovery, and reuse of the cleaning liquid.
 本発明のビスフェノールAの製造方法においてプロセス制御の手段として、晶析・固液分離工程(2)における洗浄液量を変化させる場合に、洗浄液の量は以下の通り決定する。
 本発明の製造方法においては、ビスフェノールAの造粒後1時間以内、10~50℃の周囲温度条件下におけるイソプロペニルフェノール濃度を監視しながら、上記範囲内で洗浄液量を変化させる。すなわち、造粒後得られるビスフェノールAの上記条件下でのイソプロペニルフェノール濃度が150質量ppmを超え始めた場合には、上記範囲内で洗浄液量を増やし、洗浄を強化することによりイソプロペニルフェノール濃度を下げる操作を行う。また、アダクト結晶の粒径が大きくなる等によって上記条件下でのイソプロペニルフェノール濃度が150質量ppm以下となった場合には、洗浄液量を上記範囲内で低下させる。
 このように、ビスフェノールAの造粒後1時間以内、10~50℃の周囲温度条件下におけるイソプロペニルフェノール濃度を監視して洗浄をコントロールすることにより、イソプロペニルフェノール濃度が低く品質のよいビスフェノールAを得ることができる。イソプロペニルフェノール濃度が150質量ppm以下となれば、余計な洗浄をやめることができ、連続してビスフェノールAを製造する際に工業的に有利である。
In the method for producing bisphenol A of the present invention, when the amount of the cleaning liquid in the crystallization / solid-liquid separation step (2) is changed as a process control means, the amount of the cleaning liquid is determined as follows.
In the production method of the present invention, the amount of the cleaning solution is changed within the above range while monitoring the isopropenylphenol concentration under the ambient temperature condition of 10 to 50 ° C. within 1 hour after the granulation of bisphenol A. That is, when the concentration of isopropenyl phenol under the above conditions of bisphenol A obtained after granulation starts to exceed 150 ppm by mass, the concentration of isopropenyl phenol is increased by increasing the amount of the cleaning solution within the above range and strengthening the cleaning. Perform the operation to lower. Further, when the concentration of isopropenylphenol under the above conditions becomes 150 ppm by mass or less due to an increase in the particle size of the adduct crystals, the amount of the cleaning liquid is reduced within the above range.
Thus, by controlling the washing by monitoring the isopropenyl phenol concentration under the ambient temperature condition of 10 to 50 ° C. within 1 hour after the granulation of bisphenol A, the bisphenol A has a low isopropenyl phenol concentration and good quality. Can be obtained. If the isopropenylphenol concentration is 150 mass ppm or less, unnecessary washing can be stopped, and this is industrially advantageous when continuously producing bisphenol A.
 また、本発明のビスフェノールAの製造方法は、他の態様において、晶析・固液分離工程(2)にて得られた母液の全量またはその一部を異性化触媒で異性化処理し、異性化処理液を縮合反応工程(1)及び/又は濃縮工程(D)に循環させる異性化工程(B)を有していてもよい。 In another embodiment, the method for producing bisphenol A according to the present invention comprises isomerizing a total amount or a part of the mother liquor obtained in the crystallization / solid-liquid separation step (2) with an isomerization catalyst. There may be provided an isomerization step (B) in which the crystallization treatment liquid is circulated to the condensation reaction step (1) and / or the concentration step (D).
 (B)異性化工程
 晶析・固液分離工程(2)で得られる液相部(母液)の全量またはその一部を異性化工程(B)に供給し、母液中の反応副生物(2,4’-異性体等)を異性化処理することができる。なお、異性化工程(B)に供給されなかった晶析・固液分離工程(2)で得られる母液は、上述した通り、縮合反応工程(1)及び/又は濃縮工程(D)に再循環される。
 異性化処理は、強酸性陽イオン交換樹脂を充填した固定床反応器(異性化容器)に母液を連続式で且つ押し流れ方式で供給する固定床流通方式で行うことが好ましい。強酸性陽イオン交換樹脂としては、例えばスルホン酸型陽イオン交換樹脂を用いることができる。異性化反応温度は、50℃~100℃の範囲が好ましく、より好ましくは70~80℃である。50℃以上とすることにより母液中のビスフェノールAの固化が回避され、100℃以下とすることにより、スルホン酸の触媒からの脱離やビスフェノールAの酸分解により製品品質悪化の問題が回避される。
 固定床異性化反応器の場合、液空間速度(LHSV)は、通常0.1~50hr-1が好ましく、より好ましくは0.15~25hr-1、さらに好ましくは0.2~0.4hr-1である。LHSVを0.1hr-1以上とすることで副生成物量が少なくなり、50hr-1以下とすることにより高い転化率が得られる。
 上記異性化処理後の異性化処理液の大部分は、縮合反応工程(1)及び/又は濃縮工程(D)に、好ましくは濃縮工程(D)に再循環される。また、必要に応じて、異性化処理液の一部は、不純物の蓄積を防ぐために抜き出され、排出液として以下の回収工程(C)に送られる。
(B) Isomerization process The whole or part of the liquid phase part (mother liquor) obtained in the crystallization / solid-liquid separation process (2) is supplied to the isomerization process (B), and reaction by-products in the mother liquor (2 , 4′-isomer etc.) can be isomerized. The mother liquor obtained in the crystallization / solid-liquid separation step (2) not supplied to the isomerization step (B) is recycled to the condensation reaction step (1) and / or the concentration step (D) as described above. Is done.
The isomerization treatment is preferably carried out by a fixed bed flow system in which the mother liquor is supplied continuously and in a forced flow manner to a fixed bed reactor (isomerization vessel) filled with a strongly acidic cation exchange resin. As the strong acid cation exchange resin, for example, a sulfonic acid type cation exchange resin can be used. The isomerization reaction temperature is preferably in the range of 50 to 100 ° C, more preferably 70 to 80 ° C. By setting the temperature to 50 ° C. or higher, solidification of bisphenol A in the mother liquor is avoided, and by setting the temperature to 100 ° C. or lower, problems of product quality deterioration due to elimination of sulfonic acid from the catalyst and acid decomposition of bisphenol A are avoided. .
In the case of a fixed bed isomerization reactor, the liquid hourly space velocity (LHSV) is usually preferably 0.1 to 50 hr −1 , more preferably 0.15 to 25 hr −1 , still more preferably 0.2 to 0.4 hr −. 1 . By adjusting LHSV to 0.1 hr −1 or more, the amount of by-products is reduced, and by setting it to 50 hr −1 or less, a high conversion can be obtained.
Most of the isomerization treatment liquid after the isomerization treatment is recycled to the condensation reaction step (1) and / or the concentration step (D), preferably to the concentration step (D). Further, if necessary, a part of the isomerization treatment liquid is extracted to prevent accumulation of impurities and is sent to the following recovery step (C) as an exhaust liquid.
(C)回収工程
 異性化工程(B)から送られてきた一部の異性化処理液には、ビスフェノールAが15~20質量%程度、2,4’-異性体等の副生物が5~10質量%程度含まれている。この異性化処理液を濃縮した後、フェノールの存在下で、冷却することによりビスフェノールAとフェノールとのアダクト結晶を晶析させる。固液分離後、該アダクト結晶を溶融した後、濃縮工程(D)および/又は晶析・固液分離工程(2)に再循環させる。上記固液分離後の母液は、フェノールを回収後、処理される。
(C) Recovery process Some of the isomerization solution sent from the isomerization process (B) contains about 15 to 20% by mass of bisphenol A and 5 to 5 of by-products such as 2,4′-isomer. About 10% by mass is contained. After concentrating the isomerization solution, the adduct crystal of bisphenol A and phenol is crystallized by cooling in the presence of phenol. After solid-liquid separation, the adduct crystal is melted and then recycled to the concentration step (D) and / or the crystallization / solid-liquid separation step (2). The mother liquor after the solid-liquid separation is treated after recovering phenol.
 その他のイソプロペニルフェノール濃度を制御する方法として、例えば以下の方法も挙げることができる。
 上述した通り、イソプロペニルフェノール濃度は、晶析・固液分離工程において得られるアダクト結晶の粒径によって変化し得る。一般に、結晶成長において、生成過飽和の増大が結晶平均径の増大に寄与するものと推察される。そこで、イソプロペニルフェノール濃度を低下させるためにアダクト結晶の粒径を大きくする方法の1つとして、ビスフェノールA製造装置における操作過飽和度(ΔC=P(結晶生産量)/G(槽内循環量))が小さくなるように製造プロセスを調節することを挙げることができる。
Examples of other methods for controlling the concentration of isopropenyl phenol include the following methods.
As described above, the isopropenylphenol concentration can vary depending on the particle size of the adduct crystal obtained in the crystallization / solid-liquid separation step. In general, in crystal growth, it is presumed that an increase in production supersaturation contributes to an increase in average crystal diameter. Therefore, as one method of increasing the particle size of adduct crystals in order to reduce the isopropenylphenol concentration, the degree of operation supersaturation in the bisphenol A production apparatus (ΔC = P (crystal production amount) / G (circulation amount in the tank)) ) May be adjusted to reduce the manufacturing process.
 以上、本発明の製造方法によれば、ビスフェノールAの造粒後1時間以内、10~50℃の周囲温度条件下におけるイソプロペニルフェノール濃度を監視し、前記濃度を150質量ppm以下に制御することにより、色相が良好(低いAPHA)なビスフェノールAを製造することができる。色相の評価に用いられるAPHAは、例えば、JIS K-4101、又はASTM D-1686(日本油化学会(Japan Oil Chemist's Society)の基準油脂分析試験法(Standard Methods for the Analysis of Fats, Oils and Related Materials))により測定することができる。APHAは50以下であることが好ましく、より好ましくは40以下、さらに好ましくは30以下である。 As described above, according to the production method of the present invention, the concentration of isopropenylphenol under ambient temperature conditions of 10 to 50 ° C. is monitored within 1 hour after granulation of bisphenol A, and the concentration is controlled to 150 ppm by mass or less. Thus, bisphenol A having a good hue (low APHA) can be produced. APHA used for the evaluation of hue is, for example, JIS K-4101 or ASTM D-1686 (Japan Oil Chemist's Society), Standard Methods for the Analysis of Fats, Oils and Related Materials)). APHA is preferably 50 or less, more preferably 40 or less, and still more preferably 30 or less.
 以下、本発明を実施例によりさらに具体的に説明するが、本発明はこれらの例により何ら限定されるものではない。実施例及び比較例において、ビスフェノールAの造粒後1時間以内、10~50℃の周囲温度条件下におけるイソプロペニルフェノール濃度を150質量ppm以下に制御する方法について検討する。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples. In Examples and Comparative Examples, a method for controlling the concentration of isopropenylphenol under an ambient temperature of 10 to 50 ° C. within 1 hour after granulation of bisphenol A to 150 ppm by mass or less is examined.
実施例1
 陽イオン交換樹脂[三菱化学(株)製、「ダイヤイオンSK104H」]を2-メルカプトエチルアミンにて20モル%部分中和したものを充填した固定床反応塔に、モル比10:1のフェノールとアセトンを連続的にLHSV3hr-1で通液し、75℃で反応を行った(縮合反応工程(1))。得られた反応混合液を減圧蒸留塔に導入し、塔底温度170℃、圧力67kPaの条件で減圧蒸留し、未反応アセトン、反応生成水等を除去した後、更に温度130℃、圧力14kPaの条件で減圧蒸留し、フェノールを留去させ、ビスフェノールA濃度が40質量%になるまで濃縮し、フェノール/ビスフェノールAの濃縮液を得た(濃縮工程(D))。
 次に、得られた濃縮液に水を加え、2kPa(15Torr)に減圧された晶析槽にて45℃に保持することにより晶析を行い、得られたスラリー溶液を水平ベルトフィルターでろ過した後、得られたアダクト結晶100質量部に対し、40質量部の割合で原料フェノールを用いて洗浄を行った。得られたアダクト結晶は、後述する再結晶操作を行った(晶析・固液分離工程(2))。
 水平ベルトフィルターでろ過した液(晶析母液)には、水分が5質量%存在しているため、蒸留塔にて母液中の水分濃度を0.5質量%に調整を行った。この調整した母液を異性化処理する前に、弱塩基性陰イオン交換樹脂(R&H社「アンバーリストA21」)が充填された遊離酸除去塔に送り、反応温度75℃、LHSV=1hr-1にて処理した(遊離酸除去工程(A))。遊離酸を除去した母液を全量、陽イオン交換樹脂(三菱化学(株)製、「ダイヤイオンSK104H」)が充填された異性化反応器に、反応温度75℃、LHSV=1hr-1にて供給した(異性化処理工程(B))。なお、異性化処理された母液の8割を、ビスフェノールA濃度を40質量%に調整するため濃縮工程(D)の減圧蒸留塔の上流に循環し、2割を回収工程(C)に送液した。
 上記水平ベルトフィルターでろ過して得られたアダクト結晶に、蒸発回収フェノールと再結晶工程での母液を加え、90℃に加熱してビスフェノールA45質量%を含む溶液を調製し、10ミクロンサイズのフィルターにてろ過した。得られた結晶に再び水を加え、5.33kPa(40Torr)で50℃の条件で、再結晶を行った。得られたスラリー溶液を2段押出型遠心分離機(400G)に供給し、アダクト結晶100質量部に対し、40質量部の割合の原料フェノールにより洗浄を行い、湿潤アダクト結晶を得た。得られた湿潤アダクト結晶を130℃にて加熱溶融し、脱フェノールした後、噴霧造粒塔にて造粒し、ビスフェノールA(プリル)を製品として得た。
 造粒後得られたビスフェノールAを室温条件下(30℃)にて保管し、造粒後1時間、2時間、8時間、24時間、48時間と経過したビスフェノールAについて、高速液体クロマトグラフィーにて分析を行った。本実施例では、ビスフェノールA溶融液が造粒ノズルから流出した時点を造粒後0時間とする。分析には、高速液体クロマトグラフ(Waters社製、型式:2695、カラム:Inertsil(商標登録)ODS-3Vジーエルサイエンス(株)製)を用いた。移動相としての25質量%アセトニトリル水溶液に45分保持した後に、3.5質量%/分のグラジエントで分析した。100質量%アセトニトリルに到達後5分間保持した。サンプルの注入量は5.0μL、カラム温度は40℃、流量は1.0mL/分で、分析波長は277nmとした。
 HPLC測定の結果、IPP濃度はそれぞれ40(造粒後(以下同じ)1時間)、36(2時間)、32(8時間)、26(24時間)、23(48時間)質量ppmであった。結果を表1に示す。
 また、ビスフェノールAの色相評価を、APHA評価により行った。APHAは、JIS K-4101に定められた方法により測定した。具体的には、ビスフェノールAプリルを空気雰囲気下で220℃、40分間加熱し、APHA標準色を用い、目視にて色相を評価した。結果は、全てAPHA10であった。結果を表1に示す。
 また、本実施例にて得られたビスフェノールAを用いて、以下の製造例に従ってポリカーボネート樹脂を製造し、YIを測定した。
Example 1
A fixed bed reaction column packed with 20 mol% partially neutralized cation exchange resin [Mitsubishi Chemical Co., Ltd., “Diaion SK104H”] with 2-mercaptoethylamine was charged with phenol at a molar ratio of 10: 1. Acetone was continuously passed through LHSV 3 hr −1 and the reaction was performed at 75 ° C. (condensation reaction step (1)). The resulting reaction mixture was introduced into a vacuum distillation tower, distilled under reduced pressure at a tower bottom temperature of 170 ° C. and a pressure of 67 kPa to remove unreacted acetone, reaction product water, and the like, and further at a temperature of 130 ° C. and a pressure of 14 kPa. Under reduced pressure, the phenol was distilled off and concentrated until the bisphenol A concentration became 40% by mass to obtain a concentrated solution of phenol / bisphenol A (concentration step (D)).
Next, crystallization was performed by adding water to the obtained concentrated liquid and maintaining at 45 ° C. in a crystallization tank reduced in pressure to 2 kPa (15 Torr), and the obtained slurry solution was filtered with a horizontal belt filter. Then, it wash | cleaned using raw material phenol in the ratio of 40 mass parts with respect to 100 mass parts of obtained adduct crystals. The obtained adduct crystal was subjected to a recrystallization operation described later (crystallization / solid-liquid separation step (2)).
Since the liquid filtered through the horizontal belt filter (crystallization mother liquor) contains 5% by mass of water, the concentration of water in the mother liquor was adjusted to 0.5% by mass using a distillation tower. Prior to isomerization of the prepared mother liquor, it was sent to a free acid removal tower packed with a weakly basic anion exchange resin (R & H “Amberlyst A21”), and the reaction temperature was 75 ° C. and LHSV = 1 hr −1 . (Free acid removal step (A)). The whole amount of the mother liquor from which free acid has been removed is supplied to an isomerization reactor filled with a cation exchange resin (manufactured by Mitsubishi Chemical Corporation, “Diaion SK104H”) at a reaction temperature of 75 ° C. and LHSV = 1 hr −1 . (Isomerization treatment step (B)). In order to adjust the bisphenol A concentration to 40% by mass, 80% of the isomerized mother liquor is circulated upstream of the vacuum distillation tower in the concentration step (D), and 20% is sent to the recovery step (C). did.
To the adduct crystal obtained by filtration through the horizontal belt filter, the evaporated and recovered phenol and the mother liquor from the recrystallization step are added and heated to 90 ° C. to prepare a solution containing 45% by mass of bisphenol A. And filtered. Water was again added to the obtained crystal, and recrystallization was performed at 5.33 kPa (40 Torr) at 50 ° C. The obtained slurry solution was supplied to a two-stage extrusion centrifuge (400G), and washed with 40 parts by mass of raw material phenol with respect to 100 parts by mass of adduct crystals to obtain wet adduct crystals. The obtained wet adduct crystal was heated and melted at 130 ° C., dephenolized, and then granulated in a spray granulation tower to obtain bisphenol A (prill) as a product.
The bisphenol A obtained after granulation is stored at room temperature (30 ° C.), and bisphenol A that has passed 1 hour, 2 hours, 8 hours, 24 hours, 48 hours after granulation is subjected to high performance liquid chromatography. Analysis. In this embodiment, the time when the bisphenol A melt flows out of the granulation nozzle is defined as 0 hour after granulation. For the analysis, a high performance liquid chromatograph (Waters, model: 2695, column: Inertsil (registered trademark) ODS-3V GL Sciences) was used. After being kept in a 25% by mass acetonitrile aqueous solution as a mobile phase for 45 minutes, it was analyzed with a gradient of 3.5% by mass / min. After reaching 100% by mass acetonitrile, it was held for 5 minutes. The sample injection volume was 5.0 μL, the column temperature was 40 ° C., the flow rate was 1.0 mL / min, and the analysis wavelength was 277 nm.
As a result of HPLC measurement, the IPP concentrations were 40 (after granulation (hereinafter the same) for 1 hour), 36 (2 hours), 32 (8 hours), 26 (24 hours), and 23 (48 hours) mass ppm, respectively. . The results are shown in Table 1.
Moreover, hue evaluation of bisphenol A was performed by APHA evaluation. APHA was measured by the method defined in JIS K-4101. Specifically, bisphenol A prill was heated at 220 ° C. for 40 minutes in an air atmosphere, and the hue was visually evaluated using an APHA standard color. All the results were APHA10. The results are shown in Table 1.
Moreover, using bisphenol A obtained in the present Example, polycarbonate resin was manufactured according to the following manufacture examples, and YI was measured.
製造例:ビスフェノールAポリカーボネート樹脂の製造
1.ポリカーボネートオリゴマー合成工程
 5.6質量%水酸化ナトリウム水溶液に、後に溶解するビスフェノールA(以下、BPAと略記することがある)に対して2000質量ppmの亜二チオン酸ナトリウムを加え、これにBPA濃度が13.5質量%になるように本実施例で得られたBPAを溶解し、BPAの水酸化ナトリウム水溶液を調製した。このBPAの水酸化ナトリウム水溶液40L/hr、塩化メチレン15L/hrおよびホスゲン4.0kg/hrを、内径6mm、管長30mの管型反応器に連続的に通した。管型反応器はジャケット部分を有しており、ジャケットに冷却水を通して反応液の温度を40℃以下に保った。
 管型反応器を出た反応液は後退翼を備えた内容積40Lのバッフル付き槽型反応器へ連続的に導入し、これに更にBPAの水酸化ナトリウム水溶液2.8L/hr、25質量%水酸化ナトリウム水溶液0.07L/hr、水17L/hrおよび1質量%トリエチルアミン水溶液を0.64L/hrを添加して反応を行った。
 槽型反応器から溢れる反応液を連続的に抜出し、静置することで水相を分離除去し、塩化メチレン相を採取した。得られたポリカーボネートオリゴマーは濃度325g/L、クロロホーメート基濃度は0.77mol/Lであった。
Production Example: Production of bisphenol A polycarbonate resin Polycarbonate oligomer synthesis step To a 5.6 mass% aqueous sodium hydroxide solution, 2000 mass ppm of sodium dithionite is added to bisphenol A (hereinafter sometimes abbreviated as BPA) which is dissolved later, and the BPA concentration is added thereto. The BPA obtained in this example was dissolved so that the amount of the solution was 13.5% by mass to prepare an aqueous sodium hydroxide solution of BPA. This BPA aqueous solution of sodium hydroxide 40 L / hr, methylene chloride 15 L / hr and phosgene 4.0 kg / hr were continuously passed through a tubular reactor having an inner diameter of 6 mm and a tube length of 30 m. The tubular reactor had a jacket portion, and the temperature of the reaction solution was kept at 40 ° C. or lower by passing cooling water through the jacket.
The reaction solution exiting the tubular reactor was continuously introduced into a 40-liter baffled tank reactor equipped with a receding blade, and further BPA sodium hydroxide aqueous solution 2.8 L / hr, 25 mass%. Sodium hydroxide aqueous solution 0.07L / hr, water 17L / hr, and 1 mass% triethylamine aqueous solution 0.64L / hr were added, and reaction was performed.
The reaction liquid overflowing from the tank reactor was continuously extracted and allowed to stand to separate and remove the aqueous phase, and the methylene chloride phase was collected. The polycarbonate oligomer obtained had a concentration of 325 g / L and a chloroformate group concentration of 0.77 mol / L.
2.ポリカーボネートの重合工程
 邪魔板、パドル型攪拌翼及び冷却用ジャケットを備えた50L槽型反応器の冷却溶媒の温度が20℃以下になった後、オリゴマー溶液15L、塩化メチレン8.9L、p-tert-ブチルフェノール192g、トリエチルアミン0.7mL、及びBPAの水酸化ナトリウム水溶液(NaOH647gと後に溶解するBPAに対して2000質量ppmの亜二チオン酸ナトリウムを水9.5Lに溶解した水溶液にBPA1185gを溶解させたもの)を添加し、30分間重合反応を実施した。その後0.8mLのトリエチルアミンを加えさらに30分撹拌した。
 希釈のため塩化メチレン15Lを加えた後、ポリカーボネート樹脂を含む有機相と過剰のBPA及びNaOHを含む水相とに分離し、有機相を単離した。得られたポリカーボネート樹脂の塩化メチレン溶液を、その溶液に対し順次15容量%の0.03mol/L・NaOH水溶液および0.2mol/L塩酸で洗浄し、次いで洗浄後の水相中の電気伝導度が0.05μS/m以下になるまで純水で洗浄を繰り返した。洗浄により得られたポリカーボネート樹脂のジクロロメタン溶液を濃縮・粉砕し、得られたフレークを減圧下、100℃で乾燥し、ビスフェノールAポリカーボネート樹脂を得た。
2. Polymerization process of polycarbonate After the temperature of the cooling solvent in a 50 L tank reactor equipped with baffle plates, paddle type stirring blades and a cooling jacket became 20 ° C. or less, 15 L of oligomer solution, 8.9 L of methylene chloride, p-tert -192 g of butylphenol, 0.7 mL of triethylamine, and an aqueous solution of BPA in sodium hydroxide (1185 g of BPA was dissolved in an aqueous solution of 647 g of NaOH and 2000 mass ppm of sodium dithionite dissolved in 9.5 L of BPA. And the polymerization reaction was carried out for 30 minutes. Thereafter, 0.8 mL of triethylamine was added and the mixture was further stirred for 30 minutes.
After addition of 15 L of methylene chloride for dilution, the organic phase was isolated by separating into an organic phase containing polycarbonate resin and an aqueous phase containing excess BPA and NaOH. The obtained methylene chloride solution of polycarbonate resin was washed successively with 15% by volume of 0.03 mol / L · NaOH aqueous solution and 0.2 mol / L hydrochloric acid, and then the electric conductivity in the aqueous phase after washing. Was repeatedly washed with pure water until 0.05 μS / m or less. The dichloromethane solution of the polycarbonate resin obtained by washing was concentrated and pulverized, and the obtained flakes were dried at 100 ° C. under reduced pressure to obtain a bisphenol A polycarbonate resin.
 製造したポリカーボネート樹脂のYI値の測定は、以下の通り行った。
 上記にて得られた樹脂フレークをペレット化し、この樹脂ペレットを110℃で5時間乾燥した後、射出成形機(日精樹脂工業(株)製、製品名FS80S-12ASE)を用い、300℃で可塑化した後、シリンダー内で15秒滞留させ、厚さ3.2mm、60mm角の成形体を成形し、この試験片を日本電色工業製の分光色差計SE-2000を用い、JIS K-7105に準拠した方法で測定した。結果を表2に示す。
The YI value of the produced polycarbonate resin was measured as follows.
The resin flakes obtained above are pelletized, and the resin pellets are dried at 110 ° C. for 5 hours, and then plasticized at 300 ° C. using an injection molding machine (product name: FS80S-12ASE, manufactured by Nissei Plastic Industry Co., Ltd.). Then, it was allowed to stay in the cylinder for 15 seconds to form a molded product having a thickness of 3.2 mm and a square of 60 mm, and this test piece was used with a spectral color difference meter SE-2000 manufactured by Nippon Denshoku Industries Co., Ltd. and JIS K-7105. Measured by a method based on The results are shown in Table 2.
実施例2
 晶析・固液分離工程(2)において得られるアダクト結晶100質量部に対し、5質量部の割合で蒸発回収したフェノールを用いて洗浄を行ったこと、及び上記アダクト結晶の再結晶を行った際に、アダクト結晶100質量部に対し、5質量部の原料フェノールによる洗浄を行ったこと以外は実施例1と同様の操作を行い、ビスフェノールAを製造した。
 造粒後得られたビスフェノールAを室温条件下(30℃)にて保管し、造粒後1時間、2時間、8時間、24時間、48時間と経過したビスフェノールAについて、実施例1と同様に高速液体クロマトグラフィーにて分析を行った。測定の結果、IPP濃度はそれぞれ99(造粒後(以下同じ)1時間)、92(2時間)、81(8時間)、63(24時間)、56(48時間)質量ppmであった。結果を表1に示す。
 得られたビスフェノールAについても、実施例1と同様にAPHAによる色相評価を行った。結果は、全てAPHA20であった。結果を表1に示す。
 また、本例で得られたビスフェノールAを用いること以外は実施例1と同様に製造例に従ってポリカーボネート樹脂を製造し、実施例1と同様の方法でYI値を測定した。結果を表2に示す。
Example 2
100 parts by weight of the adduct crystal obtained in the crystallization / solid-liquid separation step (2) was washed with phenol recovered by evaporation at a ratio of 5 parts by weight, and the adduct crystal was recrystallized. At this time, bisphenol A was produced in the same manner as in Example 1 except that 100 parts by mass of the adduct crystal was washed with 5 parts by mass of raw material phenol.
The bisphenol A obtained after granulation was stored under room temperature conditions (30 ° C.), and bisphenol A that had passed 1 hour, 2 hours, 8 hours, 24 hours, and 48 hours after granulation was the same as in Example 1. The analysis was performed by high performance liquid chromatography. As a result of the measurement, IPP concentrations were 99 (after granulation (hereinafter the same) for 1 hour), 92 (2 hours), 81 (8 hours), 63 (24 hours), and 56 (48 hours) mass ppm, respectively. The results are shown in Table 1.
The obtained bisphenol A was also evaluated for hue by APHA as in Example 1. All the results were APHA20. The results are shown in Table 1.
A polycarbonate resin was produced according to the production example in the same manner as in Example 1 except that bisphenol A obtained in this example was used, and the YI value was measured in the same manner as in Example 1. The results are shown in Table 2.
実施例3
 遊離酸除去を行わなかったこと以外は、実施例1と同様の操作を行い、ビスフェノールAを製造した。得られたビスフェノールAを室温条件下(30℃)にて保管し、造粒後1時間、2時間、8時間、24時間、48時間と経過したビスフェノールAについて、実施例1と同様に高速液体クロマトグラフィーにて分析を行った。測定の結果、IPP濃度はそれぞれ150(造粒後(以下同じ)1時間)、133(2時間)、121(8時間)、94(24時間)、84(48時間)質量ppmであった。結果を表1に示す。
 得られたビスフェノールAについても、実施例1と同様にAPHAによる色相評価を行った。結果は、全てAPHA35であった。結果を表1に示す。
 また、本例で得られたビスフェノールAを用いること以外は実施例1と同様に製造例に従ってポリカーボネートを製造し、実施例1と同様の方法で成形体を作成しYI値を測定した。結果を表2に示す。
Example 3
Except that the free acid was not removed, the same operation as in Example 1 was performed to produce bisphenol A. The obtained bisphenol A was stored under room temperature conditions (30 ° C.), and bisphenol A that had passed 1 hour, 2 hours, 8 hours, 24 hours, and 48 hours after granulation was subjected to a high-speed liquid in the same manner as in Example 1. Analysis was performed by chromatography. As a result of the measurement, the IPP concentrations were 150 (after granulation (hereinafter the same) for 1 hour), 133 (2 hours), 121 (8 hours), 94 (24 hours), and 84 (48 hours) mass ppm, respectively. The results are shown in Table 1.
The obtained bisphenol A was also evaluated for hue by APHA as in Example 1. All the results were APHA35. The results are shown in Table 1.
Further, a polycarbonate was produced according to the production example in the same manner as in Example 1 except that bisphenol A obtained in this example was used, and a molded article was prepared in the same manner as in Example 1, and the YI value was measured. The results are shown in Table 2.
比較例1
 陽イオン交換樹脂〔三菱化学(株)製、「ダイヤイオンSK104H」〕を2-メルカプトエチルアミンにて20モル%部分中和したものを充填した固定床反応塔に、モル比10:1のフェノールとアセトンを連続的にLHSV3hr-1で通液し、75℃で反応を行った。得られた反応混合液を減圧蒸留塔に導入し、塔底温度170℃、圧力67kPaの条件で減圧蒸留し、未反応アセトン、反応生成水等を除去した後、更に温度130℃、圧力14kPaの条件で減圧蒸留し、フェノールを留去させ、ビスフェノールA濃度が40質量%になるまで濃縮し、フェノール/ビスフェノールAの濃縮液を得た。
 次に、得られた濃縮液に水を加え、2kPa(15Torr)に減圧された晶析槽にて45℃に保持することにより晶析を行い、得られたスラリー溶液を水平ベルトフィルターでろ過した後、得られたアダクト結晶を付加物100質量部に対し、5質量部の割合で蒸発回収したフェノールを用いて洗浄を行った。得られたアダクト結晶は、後述する再結晶操作を行った。
 水平ベルトフィルターでろ過した液(晶析母液)には、水分が5質量%存在しているため、蒸留塔にて母液中の水分濃度を0.5質量%に調整を行った。この水分濃度を調整した母液を、全量、陽イオン交換樹脂(三菱化学(株)製、「ダイヤイオンSK104H」)が充填された異性化反応器に反応温度75℃、LHSV=1hr-1にて供給した。
 なお、異性化処理された母液の8割を、前記ビスフェノールA濃度を40質量%に調整するため濃縮工程(D)の減圧蒸留塔の上流に循環し、2割を回収工程(C)に送液した。
 水平ベルトフィルターでろ過して得られたアダクト結晶に、蒸発回収フェノールと再結晶工程での母液を加え、90℃に加熱してビスフェノールA45質量%を含む溶液を調製し、10ミクロンサイズのフィルターにてろ過した。得られた結晶に再び水を加え、5.33kPa(40Torr)で50℃の条件で、再結晶を行い、得られたスラリー溶液を2段押出型遠心分離機(400G)に供給し、付加物100質量部に対し、5質量部の割合の原料フェノールにより洗浄を行い、湿潤アダクト結晶を得た。得られた湿潤アダクト結晶を130℃にて加熱溶融し、脱フェノールした後、噴霧造粒塔にて造粒し、ビスフェノールAを製品として得た。
 造粒後得られたビスフェノールAを室温条件下(30℃)にて保管し、造粒後1時間、2時間、8時間、24時間、48時間と経過したビスフェノールAについて、実施例1と同様に高速液体クロマトグラフィーにて分析を行った。測定の結果、IPP濃度はそれぞれ202(造粒後(以下同じ)1時間)、178(2時間)、162(8時間)、132(24時間)、98(48時間)質量ppmであった。
 得られたビスフェノールAについても、実施例1と同様にAPHAによる色相評価を行った。結果は、全てAPHA60であった。
 また、本例にて得られたビスフェノールAを用いること以外は実施例1と同様に製造例に従ってポリカーボネートを製造し、実施例1と同様の方法で成形体を作成しYI値を測定した。結果を表2に示す。
Comparative Example 1
A fixed bed reaction column packed with 20 mol% partially neutralized cation exchange resin [Made by Mitsubishi Chemical Co., Ltd., “Diaion SK104H”] with 2-mercaptoethylamine was mixed with phenol having a molar ratio of 10: 1. Acetone was continuously passed through LHSV 3 hr −1 and reacted at 75 ° C. The resulting reaction mixture was introduced into a vacuum distillation tower, distilled under reduced pressure at a tower bottom temperature of 170 ° C. and a pressure of 67 kPa to remove unreacted acetone, reaction product water, and the like, and further at a temperature of 130 ° C. and a pressure of 14 kPa. Under reduced pressure, the phenol was distilled off and concentrated until the bisphenol A concentration became 40% by mass to obtain a phenol / bisphenol A concentrate.
Next, crystallization was performed by adding water to the obtained concentrated liquid and maintaining at 45 ° C. in a crystallization tank reduced in pressure to 2 kPa (15 Torr), and the obtained slurry solution was filtered with a horizontal belt filter. Thereafter, the obtained adduct crystal was washed with phenol collected by evaporation at a ratio of 5 parts by mass with respect to 100 parts by mass of the adduct. The obtained adduct crystal was subjected to a recrystallization operation described later.
Since the liquid filtered through the horizontal belt filter (crystallization mother liquor) contains 5% by mass of water, the concentration of water in the mother liquor was adjusted to 0.5% by mass using a distillation tower. The mother liquor with adjusted water concentration was charged into an isomerization reactor filled with a cation exchange resin (Made by Mitsubishi Chemical Corporation, “Diaion SK104H”) at a reaction temperature of 75 ° C. and LHSV = 1 hr −1 . Supplied.
In order to adjust the bisphenol A concentration to 40% by mass, 80% of the isomerized mother liquor is circulated upstream of the vacuum distillation tower in the concentration step (D), and 20% is sent to the recovery step (C). Liquid.
To the adduct crystal obtained by filtration through a horizontal belt filter, the evaporated and recovered phenol and the mother liquor from the recrystallization step are added and heated to 90 ° C. to prepare a solution containing 45% by mass of bisphenol A. And filtered. Water was added to the obtained crystal again, and recrystallization was performed at 5.33 kPa (40 Torr) at 50 ° C., and the resulting slurry solution was supplied to a two-stage extrusion centrifuge (400 G). The wet adduct crystal was obtained by washing with 100 parts by mass of the raw material phenol in a proportion of 5 parts by mass. The obtained wet adduct crystal was heated and melted at 130 ° C., dephenolized, and granulated in a spray granulation tower to obtain bisphenol A as a product.
The bisphenol A obtained after granulation was stored under room temperature conditions (30 ° C.), and bisphenol A that had passed 1 hour, 2 hours, 8 hours, 24 hours, and 48 hours after granulation was the same as in Example 1. The analysis was performed by high performance liquid chromatography. As a result of the measurement, the IPP concentrations were 202 (after granulation (hereinafter the same) 1 hour), 178 (2 hours), 162 (8 hours), 132 (24 hours), 98 (48 hours) mass ppm, respectively.
The obtained bisphenol A was also evaluated for hue by APHA as in Example 1. All the results were APHA60.
Further, a polycarbonate was produced according to the production example in the same manner as in Example 1 except that bisphenol A obtained in this example was used, and a molded body was prepared in the same manner as in Example 1, and the YI value was measured. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 実施例1は遊離酸の除去と、アダクト結晶(再結晶時含む)を洗浄する洗浄液量を強化したもの、実施例2は遊離酸の除去を行ったもの、実施例3はアダクト結晶(再結晶時含む)を洗浄する洗浄液量を強化したものである。これに対し、比較例1は、遊離酸除去工程を含まず、またアダクト結晶を洗浄する洗浄液量が実施例と比べて低いものである。
 表1から、ビスフェノールAの造粒後1時間、30℃の周囲温度条件下におけるイソプロペニルフェノール濃度が150質量ppmを超える比較例1のAPHA値は、上記条件下でイソプロペニルフェノール濃度が150質量ppm以下に制御された実施例1~3と比べて大きく上昇していて、色相が大きく劣化したことがわかる。また、実施例1~3の色相に優れたビスフェノールAを用いて作製したポリカーボネート成形体は優れたYI値を有する。これに対し、色相に劣る比較例1のビスフェノールAを用いて作製したポリカーボネート成形体はYI値が劣る結果となり、透明性が改善されていないことがわかる。
 イソプロペニルフェノール濃度は表1にまとめる通り時間と共に変化するが、実施例1~3と比較例1から明らかな通り、ビスフェノールAの造粒後1時間の時点でのイソプロペニルフェノール濃度を150質量ppm以下に制御することにより、色相に優れたビスフェノールAを製造できることがわかる。
Example 1 is the removal of free acid and the amount of washing liquid for washing adduct crystals (including recrystallization), Example 2 is the removal of free acid, Example 3 is adduct crystals (recrystallization) The amount of the cleaning solution for cleaning is increased. On the other hand, the comparative example 1 does not include the free acid removal step, and the amount of the cleaning liquid for cleaning the adduct crystals is lower than that of the example.
From Table 1, the APHA value of Comparative Example 1 in which the isopropenyl phenol concentration under the ambient temperature condition of 30 ° C. for 1 hour after granulation of bisphenol A exceeds 150 ppm by mass is as follows. Compared with Examples 1 to 3 controlled to ppm or less, it is greatly increased, and it can be seen that the hue is greatly deteriorated. In addition, the polycarbonate molded articles produced using bisphenol A having excellent hues in Examples 1 to 3 have excellent YI values. On the other hand, the polycarbonate molded body produced using bisphenol A of Comparative Example 1 inferior in hue has a poor YI value, indicating that the transparency is not improved.
The isopropenylphenol concentration varies with time as summarized in Table 1, but as is apparent from Examples 1 to 3 and Comparative Example 1, the concentration of isopropenylphenol at 150 hours after granulation of bisphenol A was 150 ppm by mass. It turns out that bisphenol A excellent in hue can be manufactured by controlling to the following.
 本発明によれば、ビスフェノールAの造粒後1時間以内、10~50℃の周囲温度条件下におけるイソプロペニルフェノール濃度を監視し、前記濃度を150質量ppm以下に制御することにより、色相が良好なビスフェノールAを製造することができる。 According to the present invention, within 1 hour after granulation of bisphenol A, the isopropenylphenol concentration is monitored under an ambient temperature condition of 10 to 50 ° C., and the hue is good by controlling the concentration to 150 mass ppm or less. Bisphenol A can be produced.

Claims (7)

  1.  ビスフェノールAの造粒後1時間以内、10~50℃の周囲温度条件下におけるイソプロペニルフェノール濃度を監視し、前記濃度を150質量ppm以下に制御する、ビスフェノールAの製造方法。 A method for producing bisphenol A, wherein the concentration of isopropenyl phenol under ambient temperature conditions of 10 to 50 ° C. is monitored within 1 hour after granulation of bisphenol A, and the concentration is controlled to 150 ppm by mass or less.
  2.  (1)過剰量のフェノールとアセトンとを酸性触媒の存在下、縮合反応させる縮合反応工程、
     (2)工程(1)で得られた反応混合物を冷却することにより、ビスフェノールAとフェノールとの付加物を晶析させ、該付加物と母液に分離する晶析・固液分離工程、
     (3)工程(2)で得られたビスフェノールAとフェノールとの付加物からフェノールを除去し、ビスフェノールA溶融液とするアダクト分解工程、及び
     (4)工程(3)で得られるビスフェノールA溶融液を造粒する造粒工程、
    を有するビスフェノールAの製造方法において、
    ビスフェノールAの造粒後1時間以内、10~50℃の周囲温度条件下におけるイソプロペニルフェノール濃度を監視し、前記濃度を150質量ppm以下に制御する、ビスフェノールAの製造方法。
    (1) a condensation reaction step in which an excess amount of phenol and acetone is subjected to a condensation reaction in the presence of an acidic catalyst;
    (2) a crystallization / solid-liquid separation step of cooling the reaction mixture obtained in step (1) to crystallize an adduct of bisphenol A and phenol, and separating the adduct and mother liquor;
    (3) Adduct decomposition step for removing phenol from the adduct of bisphenol A and phenol obtained in step (2) to obtain a bisphenol A melt, and (4) bisphenol A melt obtained in step (3). Granulating process,
    In the method for producing bisphenol A having
    A method for producing bisphenol A, wherein the concentration of isopropenyl phenol under ambient temperature conditions of 10 to 50 ° C. is monitored within 1 hour after granulation of bisphenol A, and the concentration is controlled to 150 ppm by mass or less.
  3.  (D)工程(1)で得られた反応混合物を濃縮する濃縮工程をさらに有する、請求項2に記載のビスフェノールAの製造方法。 (D) The method for producing bisphenol A according to claim 2, further comprising a concentration step of concentrating the reaction mixture obtained in step (1).
  4.  (A)遊離酸除去工程
    をさらに有し、遊離酸を除去することにより前記イソプロペニルフェノール濃度を制御する、請求項1~3のいずれかに記載のビスフェノールAの製造方法。
    The method for producing bisphenol A according to any one of claims 1 to 3, further comprising (A) a free acid removing step, wherein the isopropenylphenol concentration is controlled by removing the free acid.
  5.  前記晶析・固液分離工程(2)においてビスフェノールAとフェノールとの付加物結晶を洗浄する洗浄液量を変化させることにより、前記イソプロペニルフェノール濃度を制御する、請求項2~4のいずれかに記載のビスフェノールAの製造方法。 5. The isopropenyl phenol concentration is controlled by changing a washing liquid amount for washing an adduct crystal of bisphenol A and phenol in the crystallization / solid-liquid separation step (2). The manufacturing method of bisphenol A of description.
  6.  前記洗浄液量は、ビスフェノールAとフェノールとの付加物結晶100質量部に対して10~100質量部である、請求項5に記載のビスフェノールAの製造方法。 The method for producing bisphenol A according to claim 5, wherein the amount of the cleaning liquid is 10 to 100 parts by mass with respect to 100 parts by mass of an adduct crystal of bisphenol A and phenol.
  7.  (B)前記晶析・固液分離工程(2)で得られた母液の全量またはその一部を異性化触媒で異性化処理し、異性化処理液を縮合反応工程(1)及び/又は濃縮工程(D)に循環させる異性化工程、及び
     (C)異性化工程(B)で処理された異性化処理液の残部からビスフェノールAとフェノールとの付加物を回収する回収工程
    をさらに有する、請求項2~6のいずれかに記載のビスフェノールAの製造方法。
    (B) All or part of the mother liquor obtained in the crystallization / solid-liquid separation step (2) is isomerized with an isomerization catalyst, and the isomerization solution is condensed in the condensation reaction step (1) and / or concentrated. An isomerization step to be circulated in step (D); and (C) a recovery step of recovering an adduct of bisphenol A and phenol from the remainder of the isomerization treatment liquid treated in the isomerization step (B). Item 7. A method for producing bisphenol A according to any one of Items 2 to 6.
PCT/JP2015/055092 2014-02-28 2015-02-23 Bisphenol a production method WO2015129640A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020167023286A KR20160127002A (en) 2014-02-28 2015-02-23 Bisphenol a production method
RU2016134753A RU2016134753A (en) 2014-02-28 2015-02-23 METHOD FOR PRODUCING BISPHENOL A
CN201580010942.0A CN106061931A (en) 2014-02-28 2015-02-23 Process for producing bisphenol A
JP2016505210A JPWO2015129640A1 (en) 2014-02-28 2015-02-23 Method for producing bisphenol A

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014039482 2014-02-28
JP2014-039482 2014-02-28

Publications (1)

Publication Number Publication Date
WO2015129640A1 true WO2015129640A1 (en) 2015-09-03

Family

ID=54008958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/055092 WO2015129640A1 (en) 2014-02-28 2015-02-23 Bisphenol a production method

Country Status (6)

Country Link
JP (1) JPWO2015129640A1 (en)
KR (1) KR20160127002A (en)
CN (1) CN106061931A (en)
RU (1) RU2016134753A (en)
TW (1) TW201538467A (en)
WO (1) WO2015129640A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020037530A (en) * 2018-09-04 2020-03-12 三菱ケミカル株式会社 Method for producing bisphenol and method for producing polycarbonate resin
US20210188750A1 (en) * 2018-09-05 2021-06-24 Badger Licensing Llc Process for producing bisphenol-a
US11312822B2 (en) 2017-01-17 2022-04-26 Sabic Global Technologies B.V. Reduced color polycarbonate compositions, methods of manufacture, and articles thereof
US12084542B2 (en) 2018-12-05 2024-09-10 Sabic Global Technologies B.V. Polycarbonate compositions with improved oxidation stability and methods of manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005075736A (en) * 2003-08-28 2005-03-24 Mitsubishi Chemicals Corp Method for producing aromatic dihydroxy compound and method for producing polycarbonate
JP2007308408A (en) * 2006-05-17 2007-11-29 Idemitsu Kosan Co Ltd Method and apparatus for manufacturing high purity bisphenol a

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0648970A (en) 1992-07-31 1994-02-22 Idemitsu Petrochem Co Ltd Production of 2,2-bis@(3754/24)4-hydroxyphenyl) propane
JP4140171B2 (en) 2000-05-02 2008-08-27 三菱化学株式会社 Method for producing crystalline adduct of bisphenol A and phenol for the production of high quality bisphenol A
JP4080710B2 (en) 2000-09-26 2008-04-23 三菱化学株式会社 Method for producing aromatic polycarbonate
JP4152655B2 (en) * 2002-03-29 2008-09-17 出光興産株式会社 Method for producing bisphenol A
WO2014002787A1 (en) * 2012-06-28 2014-01-03 出光興産株式会社 Bisphenol-a production method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005075736A (en) * 2003-08-28 2005-03-24 Mitsubishi Chemicals Corp Method for producing aromatic dihydroxy compound and method for producing polycarbonate
JP2007308408A (en) * 2006-05-17 2007-11-29 Idemitsu Kosan Co Ltd Method and apparatus for manufacturing high purity bisphenol a

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11312822B2 (en) 2017-01-17 2022-04-26 Sabic Global Technologies B.V. Reduced color polycarbonate compositions, methods of manufacture, and articles thereof
JP2020037530A (en) * 2018-09-04 2020-03-12 三菱ケミカル株式会社 Method for producing bisphenol and method for producing polycarbonate resin
JP7087848B2 (en) 2018-09-04 2022-06-21 三菱ケミカル株式会社 Method for producing bisphenol and method for producing polycarbonate resin
US20210188750A1 (en) * 2018-09-05 2021-06-24 Badger Licensing Llc Process for producing bisphenol-a
US12084542B2 (en) 2018-12-05 2024-09-10 Sabic Global Technologies B.V. Polycarbonate compositions with improved oxidation stability and methods of manufacturing the same

Also Published As

Publication number Publication date
JPWO2015129640A1 (en) 2017-03-30
TW201538467A (en) 2015-10-16
KR20160127002A (en) 2016-11-02
RU2016134753A (en) 2018-03-29
RU2016134753A3 (en) 2018-09-11
CN106061931A (en) 2016-10-26

Similar Documents

Publication Publication Date Title
RU2422429C2 (en) Method of producing high-purity bisphenol a and production apparatus
JP6055472B2 (en) Method for producing bisphenol A
CA3004802C (en) Method of reprocessing alkanesulfonic acid
WO2015129640A1 (en) Bisphenol a production method
JP2001199919A (en) Method for producing bisphenol a
JP6163487B2 (en) Method for producing bisphenol A
JP4904064B2 (en) Method for producing bisphenol A
WO2003082785A1 (en) Process for production of bisphenol a
JP4398674B2 (en) Method for producing bisphenol A
EP1978011A1 (en) Process for producing bisphenol-a prill
JP2014037368A (en) Method for producing bisphenol a
JP5150086B2 (en) Recovery method of bisphenol A
JP4615831B2 (en) Method for recovering phenol in the production of bisphenol A
WO2007046434A1 (en) Process for producing bisphenol a with satisfactory hue
JP4590188B2 (en) Method for producing prill of bisphenol A
KR102349519B1 (en) Method for preparing bisphenol-a
WO2013157972A2 (en) Method of producing bisphenol a
JP2003160524A (en) Method and facility for producing bisphenol a
KR20180033679A (en) Method for removing Impurities from Mother liquor of Isophthalic acid using Crystallization
JP2003160523A (en) Method and facility for producing bisphenol a

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15754842

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016505210

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167023286

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016134753

Country of ref document: RU

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15754842

Country of ref document: EP

Kind code of ref document: A1