WO2015129481A1 - Reception device and reception method - Google Patents

Reception device and reception method Download PDF

Info

Publication number
WO2015129481A1
WO2015129481A1 PCT/JP2015/053927 JP2015053927W WO2015129481A1 WO 2015129481 A1 WO2015129481 A1 WO 2015129481A1 JP 2015053927 W JP2015053927 W JP 2015053927W WO 2015129481 A1 WO2015129481 A1 WO 2015129481A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
unit
frequency
receiving device
local oscillation
Prior art date
Application number
PCT/JP2015/053927
Other languages
French (fr)
Japanese (ja)
Inventor
田中 勝之
均 富山
卓 寳地
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2015129481A1 publication Critical patent/WO2015129481A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/34Power consumption

Definitions

  • the present disclosure relates to a receiving device and a receiving method, and more particularly, to a receiving device and a receiving method that can reduce power without reducing the positioning frequency.
  • Car navigation equipment is equipped with a GPS receiver that receives signals from GPS (Global Positioning System) satellites and measures the current location.
  • GPS Global Positioning System
  • the basic function of the GPS receiver is to receive signals from four or more GPS satellites, calculate the position of the receiver from the received signals, and inform the user. That is, the GPS receiver demodulates the signal from each GPS satellite to acquire the orbit data of the GPS satellite, and calculates the three-dimensional position of the receiver from simultaneous equations using the GPS satellite orbit and time information and the delay time of the received signal. derive.
  • the reason why four reception satellites are required is that there is an error between the time inside the receiver and the time of the satellite, and the influence of the error is removed.
  • GPS receivers are now installed in mobile phones and digital still cameras (hereinafter referred to as DSC), and the market for GPS receivers tends to expand.
  • GPS receivers are also mounted on battery-powered products, and the power consumption of GPS receivers has been reduced.
  • applications are spreading to wristwatches and wearable sports / health-oriented products, so-called wearable products, but unlike mobile phones and DSCs that have relatively large battery capacities, the relationship between required size and weight Therefore, since the battery capacity cannot be secured, further reduction in power consumption is expected.
  • the operation of stopping almost the entire operation of the GPS receiver at a predetermined time interval is not a problem when the frequency of positioning is low, but the positioning frequency is not so high as represented by the use of behavior logs in recent years. If you do not want to drop it, the operation starts from the initial operation every time. Therefore, it is desired to reduce the power without reducing the positioning frequency.
  • the present disclosure has been made in view of such a situation, and is capable of reducing the power without reducing the positioning frequency.
  • a receiving device multiplies a received RF signal by a local oscillation signal generated by a local oscillation circuit, thereby converting the RF signal into an IF signal having a lower intermediate frequency.
  • a control unit that performs control to intermittently operate each part of the RF signal path that is the signal path of the RF signal in the frequency converter.
  • the frequency conversion unit of the reception device including the frequency conversion unit and the control unit multiplies the received RF signal by the local oscillation signal generated by the local oscillation circuit.
  • the RF signal is converted into an IF signal having a lower intermediate frequency, and the control unit performs control to intermittently operate each part of the RF signal path that is a signal path of the RF signal in the frequency conversion unit.
  • the RF signal is converted to an IF signal having a lower intermediate frequency by multiplying the received RF signal by a local oscillation signal generated by a local oscillation circuit, and the frequency conversion is performed.
  • Each part of the RF signal path which is the signal path of the RF signal in the part is intermittently operated.
  • the receiving device may be an independent device, or may be an internal block or a module constituting one device.
  • the power can be reduced without reducing the positioning frequency.
  • FIG. 1 is a block diagram illustrating an embodiment of a reception device according to the present disclosure.
  • the receiving device 1 shown in FIG. 1 is a GPS receiver that receives a transmission signal transmitted from a GPS (Global Positioning System) satellite and measures the current location.
  • GPS Global Positioning System
  • the receiving apparatus 1 includes an antenna 11, a frequency converter 12, a demodulator 13, an enable signal generator 14, an XO (crystal oscillator, X'taltOscillator) 15, a TCXO (Temperature Compensated X'tal Oscillator) 16, and a multiplication / minute.
  • a peripheral 17 is provided.
  • the antenna 11 receives a high-frequency transmission signal (hereinafter referred to as an RF signal) including a navigation message transmitted from a GPS satellite and supplies it to the frequency conversion unit 12.
  • a high-frequency transmission signal hereinafter referred to as an RF signal
  • the frequency converter 12 converts the frequency of the RF signal received by the antenna 11 into an IF signal (intermediate frequency signal) of an intermediate frequency (IF) and outputs the IF signal to the demodulator 13.
  • the frequency converter 12 includes an LNA (LowLNoise Amplifier) 41, a BPF (Band Pass Filter) 42, an amplifier 43, a local oscillation circuit (LO) 44, an amplifier 45, a multiplier 46, an amplifier 47, and an LPF (Low Pass Filter) 48. , And ADC (Analog Digital Converter) 49.
  • LNA LowLNoise Amplifier
  • BPF Band Pass Filter
  • LO local oscillation circuit
  • LO local oscillation circuit
  • multiplier 46 an amplifier 47
  • LPF Low Pass Filter
  • LPF Low Pass Filter
  • ADC Analog Digital Converter
  • the LNA 41 amplifies the RF signal supplied from the antenna 11 and supplies it to the BPF 42.
  • the BPF 42 is composed of, for example, a SAW filter (Surface Acoustic Wave Filter), extracts only a specific frequency component of the RF signal amplified by the LNA 41, and supplies it to the amplifier 43.
  • SAW filter Surface Acoustic Wave Filter
  • the amplifier 43 amplifies an RF signal having a specific frequency component output from the BPF 42 and supplies the amplified RF signal to the multiplier 46.
  • the amplifier 43 can be configured by, for example, a MOSFET (Metal Oxide Semiconductor Field effect transistor) differential amplifier, but is not limited thereto.
  • the local oscillation circuit 44 is constituted by, for example, a PLL (Phase Lock Loop) circuit, and generates a local oscillation signal having a predetermined frequency based on an oscillation signal supplied from a TCXO 16 described later.
  • the local oscillation circuit 44 is controlled by, for example, the CPU 63 included in the demodulation unit 13, but is not limited to the above, and may be controlled by a control unit of an external device or the like.
  • the amplifier 45 amplifies the local oscillation signal supplied from the local oscillation circuit 44 and supplies the amplified signal to the multiplier 46.
  • the multiplier 46 multiplies the RF signal supplied from the amplifier 43 by the local oscillation signal supplied from the local oscillation circuit 44 via the amplifier 45, so that an intermediate frequency lower than the carrier frequency is obtained according to the local oscillation signal.
  • An IF signal down-converted to a frequency (IF) is output.
  • Typical intermediate frequencies are, for example, 4.092 MHz, 1.023 MHz, 0 Hz, and the like, but are not limited thereto.
  • the amplifier 47 amplifies the IF signal down-converted by the multiplier 46 and supplies the amplified IF signal to the LPF 48.
  • the amplifier 47 can be composed of, for example, an operational amplifier, but is not limited to the above.
  • the LPF 48 extracts a low frequency component from the frequency components of the IF signal amplified by the amplifier 47 and supplies a signal having the extracted low frequency component to the ADC 49.
  • 1 illustrates the example in which the LPF 48 is disposed between the amplifier 47 and the ADC 49, but a BPF may be disposed between the amplifier 47 and the ADC 49.
  • the ADC 49 samples the analog IF signal supplied from the LPF 48 to convert it into a digital format, and converts the IF signal converted into the digital format bit by bit into the demodulator 13 (the synchronization acquisition unit 61 and the synchronization holding unit 62). ).
  • An analog circuit that performs signal processing in an analog format from the reception by the antenna 11 to the ADC 49 is an analog circuit, and the demodulator 13 subsequent to the ADC 49 is a digital circuit that performs signal processing in a digital format.
  • the demodulator 13 demodulates the IF signal output from the frequency converter 12 and outputs the position of the receiving device 1 as a processing result.
  • the demodulation unit 13 includes a synchronization acquisition unit 61, a synchronization holding unit 62, a CPU 63, an RTC 64, a timer 65, and a memory 66.
  • the synchronization acquisition unit 61 is controlled by the CPU 63 under the control of the CPU 63 based on the multiplied and / or frequency-divided oscillation signal supplied from the multiplier / divider 17 to generate a pseudo-random (PRN) IF signal output from the frequency converter 12. : Pseudo-Random Noise) code acquisition.
  • PRN pseudo-random
  • the synchronization acquisition unit 61 detects the carrier frequency of the IF signal. Then, the synchronization acquisition unit 61 supplies the phase of the PRN code, the carrier frequency of the IF signal, and the like to the synchronization holding unit 62 and the CPU 63.
  • the synchronization holding unit 62 uses the signal supplied from the multiplier / divider 17 based on the control of the CPU 63 to hold the synchronization of the PRN code of the IF signal supplied from the ADC 49 and the carrier. More specifically, the synchronization holding unit 62 operates using the phase of the PRN code supplied from the synchronization acquisition unit 61 and the carrier frequency of the IF signal as initial values. Then, the synchronization holding unit 62 demodulates the navigation message included in the IF signal supplied from the ADC 49, and supplies the demodulated navigation message, the phase of the highly accurate PRN code, and the carrier frequency to the CPU 63.
  • the CPU 63 calculates the position and velocity of each GPS satellite based on the navigation message supplied from the synchronization holding unit 62, the phase of the PRN code, and the carrier frequency, and calculates the position of the receiving device 1.
  • the CPU 63 controls the enable signal generation unit 14 based on the reception state of the reception signal, and controls the generation of the enable signal by the enable signal generation unit 14.
  • the CPU 63 is connected to a control terminal, an I / O terminal, an additional function terminal, and the like, and data and control signals necessary for processing are input / output via each terminal.
  • the RTC (Real Time Clock) 64 measures time based on the oscillation signal supplied from the XO 15. The time information measured by the RTC 64 is substituted, for example, until the GPS satellite time information is obtained. When the GPS satellite time information is obtained, the CPU 63 controls the timer 65. Corrected as appropriate.
  • the timer 65 is used, for example, to generate various timing signals for controlling the operation of each unit of the receiving device 1 in the CPU 63 and to refer to the time.
  • the memory 66 includes, for example, a ROM (Read Only Memory) or a RAM (Random Access Memory).
  • the ROM constituting the memory 66 records control data such as programs and calculation parameters used by the CPU 63.
  • the RAM temporarily stores programs executed by the CPU 63.
  • the enable signal generation unit 14 generates an enable signal in accordance with control from the CPU 63 and supplies the enable signal to the frequency conversion unit 12.
  • the generated enable signal is a portion surrounded by a broken line in the frequency converter 12 in FIG. 1, that is, an amplifier 45, and an LNA 41, BPF 42, amplifier 43, and multiplication which are RF signal signal paths (RF signal paths). Is supplied to the unit 46, the amplifier 47, the LPF 48, and the ADC 49.
  • the enable signal generation unit 14 supplies an enable signal generated based on information from the CPU 63 to each unit of the RF signal path and the amplifier 45. Each part of the RF signal path and the amplifier 45 turn on / off the bias current or the power supply according to the enable signal. As a result, as shown in FIG. 2, the IF signal that is the output of the frequency converter 12 is intermittently output corresponding to the enable signal.
  • the intermittent period of the enable signal is set to a period shorter than the 1-bit length of the RF signal. Since the 1-bit length of the transmission signal transmitted from the GPS satellite is 20 milliseconds as will be described later with reference to FIG. 3, in this embodiment, for example, 1 as shown in FIG. In the millisecond cycle, the frequency converter 12 performs an intermittent operation with an enable signal having an intermittent rate of 50%.
  • the XO 15 generates an oscillation signal having a predetermined oscillation frequency such as 32.768 kHz. Then, the XO 15 supplies the generated oscillation signal to the RTC 64.
  • the TCXO 16 generates an oscillation signal having a frequency different from that of the oscillation signal generated by the XO 15, such as 18.414 MHz. Then, the TCXO 16 supplies the generated oscillation signal to the multiplier / divider 17 or the local oscillation circuit 44 of the frequency conversion unit 12.
  • the multiplier / divider 17 multiplies or divides the oscillation signal supplied from the TCXO 16 based on an instruction from the CPU 63, or both.
  • the multiplier / divider 17 supplies a signal that has been multiplied, divided, or both to the demodulator 13 or the like.
  • the receiving apparatus 1 configured as described above receives a spread spectrum signal called a C1 / A (Clear and Acquisition) code transmitted from a GPS satellite, and performs a positioning calculation.
  • the transmission signal called the L1 band and C / A code has a transmission signal speed, that is, a chip rate of 1.023 MHz, and a pseudo-random noise (Pseudo-random Noise; PN) having a code length of 1023 such as a so-called Gold code.
  • PN pseudo-random noise
  • a 2-phase phase modulation method (Binary Phase Shift Keying; hereinafter referred to as BPSK modulation method) for a carrier having a frequency of 1575.42 MHz (hereinafter referred to as a carrier) using a signal obtained by directly spreading 50 bps data with a sequence spreading code. ).
  • FIG. 3 is a diagram for explaining a received signal transmitted from a GPS satellite and received by the receiving device 1.
  • the spread code of this C / A code is different for each GPS satellite, but which GPS satellite uses which spread code can be detected in advance by the receiving device 1.
  • the receiving device 1 is configured to be able to grasp which GPS satellite can receive a signal from that point and at that point by the navigation message. Therefore, for example, in the case of three-dimensional positioning, the receiving device 1 receives radio waves from at least four or more GPS satellites that can be acquired at that point and at that time, performs spectrum despreading, and performs positioning calculation. Thus, the position of itself is calculated.
  • one bit of the signal data from the GPS satellite is transmitted for 20 cycles of the spread code, that is, in units of 20 milliseconds. That is, the data transmission rate is 50 bps as described above. Further, 1023 chips for one cycle of the spread code are inverted when the bit is “1” and when it is “0”.
  • the signal from the GPS satellite forms one word with 30 bits, that is, 600 milliseconds. Furthermore, as shown in the fourth row of FIG. 3, the signal from the GPS satellite forms one subframe in 10 words, that is, 6 seconds.
  • a preamble that always has a prescribed bit pattern even when data is updated to the first word of one subframe. Is inserted, and data is transmitted following this preamble.
  • the signal from the GPS satellite forms 5 subframes, that is, 1 frame in 30 seconds.
  • the navigation message is transmitted in the data unit of one frame.
  • the first three subframes of this one frame of data are information specific to GPS satellites called ephemeris information.
  • the ephemeris information includes a parameter for obtaining the orbit of the GPS satellite and a transmission time of the signal from the GPS satellite.
  • All GPS satellites use the common time information by providing an atomic clock, and the transmission time of the signal from the GPS satellite included in the ephemeris information is in units of one second of the atomic clock. Further, the spread codes of GPS satellites are generated in synchronization with the atomic clock.
  • the trajectory information included in the ephemeris information is updated every few hours, but is the same information until the update is performed. Therefore, the receiving apparatus 1 can use the same orbit information accurately for several hours by holding the orbit information included in the ephemeris information in the memory. Note that the signal transmission time from the GPS satellite is updated every second.
  • the navigation messages of the remaining two subframes in one frame of data are information transmitted in common from all GPS satellites called almanac information.
  • This almanac information is required for 25 frames in order to acquire all information, and is composed of approximate position information of each GPS satellite, information indicating which GPS satellite can be used, and the like.
  • This almanac information is updated every several months, but is the same information until the update is performed. Therefore, the receiving apparatus 1 can use the same information accurately for several months by holding the almanac information in the memory.
  • the receiving device 1 In order to receive the signal from the GPS satellite and obtain the above-mentioned data, the receiving device 1 first removes the carrier and then uses the same spreading code as the C / A code used in the GPS satellite to be received. Using the signal from the GPS satellite, the signal from the GPS satellite is captured by phase-synchronizing the C / A code and the spectrum is despread. When the receiver 1 performs spectrum despreading in phase synchronization with the C / A code, the bits are detected, and a navigation message including time information and the like can be acquired based on a signal from a GPS satellite. Become.
  • the receiving device 1 captures a signal from a GPS satellite by a phase synchronization search of a C / A code.
  • a phase synchronization search a correlation between a spreading code generated by itself and a spreading code of a reception signal from a GPS satellite is performed. For example, when the correlation value of the correlation detection result is larger than a predetermined value, it is determined that the two are synchronized.
  • FIG. 4 is a block diagram illustrating a configuration example of the synchronization capturing unit 61.
  • the synchronization acquisition unit 61 can be configured by a digital matched filter using a fast Fourier transform (FFT: Faster Fourier Transform) as shown in FIG. 4, for example, in order to perform synchronization acquisition of the spreading code at high speed. .
  • FFT Faster Fourier Transform
  • the synchronization acquisition unit 61 includes a memory 81, an FFT unit 82, a memory 83, a spreading code generator 84, an FFT unit 85, a memory 86, a multiplier 87, an IFFT (Inverted Fast Fourier Transform) unit 88, and a peak detector 89. .
  • the memory 81 buffers the IF signal sampled by the ADC 49 of the frequency conversion unit 12.
  • the FFT unit 82 reads the IF signal buffered by the memory 81 and performs a fast Fourier transform.
  • the memory 83 buffers the frequency domain signal converted from the time domain IF signal by the fast Fourier transform in the FFT unit 82.
  • the spread code generator 84 generates the same spread code as the spread code in the RF signal from the GPS satellite.
  • the FFT unit 85 performs fast Fourier transform on the spreading code generated by the spreading code generator 84.
  • the memory 86 buffers the frequency domain spreading code converted from the time domain spreading code by the fast Fourier transform in the FFT unit 85.
  • Multiplier 87 multiplies the frequency domain signal buffered in memory 83 by the frequency domain spreading code buffered in memory 86.
  • the IFFT unit 88 performs inverse fast Fourier transform on the frequency domain signal after multiplication output from the multiplier 87. Thereby, a correlation signal in the time domain between the spread code in the RF signal from the GPS satellite and the spread code generated by the spread code generator 84 is acquired.
  • the peak detector 89 detects the peak of the correlation signal output from the IFFT unit 88.
  • the synchronization acquisition unit 61 is software that executes processing of each unit of the FFT units 82 and 85, the spread code generator 84, the multiplier 87, the IFFT unit 88, and the peak detector 89 using a DSP (Digital SignalDProcessor). It may be realized.
  • DSP Digital SignalDProcessor
  • FIG. 5 is a diagram illustrating an example of a peak of a correlation signal captured by the synchronization capturing unit 61.
  • a peak P1 with a prominent correlation level is detected in the output waveform of the correlation signal for one period.
  • the position of the peak P1 on the time axis corresponds to the beginning of the spread code. That is, the synchronization acquisition unit 61 can detect the synchronization of the received signal received from the GPS satellite (that is, detect the phase of the spread code) by detecting such a peak P1.
  • the synchronization holding unit 62 can perform synchronization holding of a plurality of GPS satellites in parallel by providing a plurality of channel circuits 100 shown in FIG.
  • FIG. 6 is a diagram illustrating a configuration example of the channel circuit 100.
  • the channel circuit 100 is divided into a Costas loop 101 that performs carrier synchronization and a DLL (Delay Lock Loop) 102 that performs spreading code synchronization.
  • a DLL Delay Lock Loop
  • the IF signal output from the frequency converter 12 is multiplied by a spreading code whose phase is P (Prompt) in the multiplier 104 and input to the Costas loop 101.
  • a spreading code whose phase is set to P (Prompt) is generated by a spreading code generator (PN Generator; hereinafter referred to as PNG) 154 to be described later, and is supplied to the multiplier 104.
  • PNG spreading code generator
  • the IF signal output from the frequency converter 12 is input to the DLL 102.
  • the multiplier 108 multiplies the input signal by the cosine component of the reproduced carrier generated by the NCO (Numerical Controlled Oscillator) 106.
  • the multiplier 110 multiplies the input signal by the sine component of the reproduced carrier generated by the NCO 106.
  • a predetermined frequency band component of the in-phase component signal obtained by the multiplier 108 is passed by the LPF 112, and this signal is supplied to the phase detector 118, the binarization circuit 120 and the square sum calculation circuit 122.
  • the LPF 112 can be configured by an integrator that integrates the signal output from the multiplier 108 for the integration time given from the CPU 63. The same applies to other LPF 114, LPF 132, LPF 134, LPF 142, and LPF 144 described later.
  • a predetermined frequency band component of the orthogonal component signal obtained by the multiplier 110 is passed by the LPF 114, and this signal is supplied to the phase detector 118 and the square sum calculation circuit 122.
  • the phase information detected by the phase detector 118 based on the signals output from the LPFs 112 and 114 is supplied to the NCO 106 via the loop filter 116.
  • the phase information from the loop filter 116 to the NCO 106 is supplied, for example, every 1 millisecond.
  • the square sum (I 2 + Q 2 ) of the signals output from the LPFs 112 and 114 is output as a correlation value (P) for a spreading code whose phase is P.
  • the signal output from the LPF 112 is also supplied to the binarization circuit 120, and information obtained by binarization in the binarization circuit 120 is output as a navigation message.
  • the input IF signal is supplied to the multiplier 124 and the multiplier 126.
  • the input IF signal is multiplied by a spreading code that is E (Early) whose phase is ahead of P, and is supplied to the multiplier 128 and the multiplier 130.
  • a spreading code whose phase is E ahead of P is generated by PNG 154 and supplied to multiplier 124.
  • the input IF signal is multiplied by a spread code whose phase is L (Late) delayed from P, and supplied to the multiplier 1138 and the multiplier 140.
  • a spreading code whose phase is L later than P is generated by PNG 154 and supplied to multiplier 126.
  • the signal obtained by the multiplier 124 is multiplied by the multiplier 128 by the cosine component of the regenerated carrier generated by the NCO 106 in the Costas loop 101.
  • the signal obtained by the multiplier 124 is multiplied by the multiplier 130 by the sine component of the reproduced carrier generated by the NCO 106.
  • a predetermined frequency band component of the in-phase component signal obtained by the multiplier 128 is passed by the LPF 132, and this signal is supplied to the square sum calculation circuit 136.
  • a predetermined frequency band component of the orthogonal component signal obtained by the multiplier 130 is passed by the LPF 134, and this signal is supplied to the square sum calculation circuit 136.
  • the multiplier 138 multiplies the signal obtained by the multiplier 126 with the cosine component of the regenerated carrier generated by the NCO 106 in the Costas loop 101.
  • the signal obtained by the multiplier 126 is multiplied by the multiplier 140 by the sine component of the reproduced carrier generated by the NCO 106.
  • a predetermined frequency band component of the in-phase component signal obtained by the multiplier 138 is passed by the LPF 142, and this signal is supplied to the square sum calculation circuit 146.
  • a predetermined frequency band component of the orthogonal component signal obtained by the multiplier 140 is passed by the LPF 144, and this signal is supplied to the square sum calculation circuit 146.
  • phase information detected by the phase detector 148 based on these signals is supplied to the NCO 152 via the loop filter 150. Is done.
  • the phase information from the loop filter 150 to the NCO 152 is supplied, for example, every 20 milliseconds.
  • a spreading code of each phase E, P, L is generated by the PNG 154.
  • the sum of squares (I 2 + Q 2 ) calculated by the sum-of-squares calculation circuit 136 is output as a correlation value (E) for a spreading code whose phase is E.
  • the square sum (I 2 + Q 2 ) calculated by the square sum calculation circuit 146 is output as a correlation value (L) for a spreading code whose phase is L.
  • the GPS satellite number, the spread code phase, and the carrier frequency are set as initial values before the operation is started. Then, the synchronization holding unit 62 performs the phase of the spread code and the carrier frequency with high accuracy using the given initial value.
  • the initial value is set by communicating directly between the synchronization capturing unit 61 and the synchronization holding unit 62 or via the CPU 63.
  • reception processing by the reception device 1 will be described with reference to the flowchart of FIG. This process is started, for example, when an instruction to start reception is input via a control terminal or the like.
  • step S1 the receiving device 1 performs initial setting. That is, the synchronization acquisition unit 61 of the demodulation unit 13 detects information such as the satellite number of the GPS satellite, the phase of the spreading code, and the carrier frequency. Then, the synchronization acquisition unit 61 supplies information such as the detected satellite number of the GPS satellite, the phase of the spreading code, and the carrier frequency to the synchronization holding unit 62 via the CPU 63 as initial values.
  • the intermittent rate of the enable signal generated by the enable signal generation unit 14 is 0%, and a continuous IF signal is input to the demodulation unit 13.
  • the synchronization acquisition unit 61 stops the operation after supplying the detected information to the synchronization holding unit 62.
  • step S2 the receiving apparatus 1 starts tracking the phase of the spreading code and the carrier frequency.
  • the synchronization holding unit 62 of the demodulation unit 13 uses the initial value supplied from the synchronization acquisition unit 61 to track the phase of the spread code and the carrier frequency.
  • step S3 the CPU 63 determines whether or not the reception state is good. Specifically, the CPU 63 calculates a C / N (Carrier to Noise) ratio of the received signal and determines whether or not the C / N ratio is larger than a predetermined threshold value.
  • the C / N ratio of the received signal can be calculated using a correlation value obtained by the synchronization holding unit 62, for example.
  • a method for calculating the C / N ratio using the correlation value is disclosed in, for example, InsideGNSS, 2009, 9-10, pp. 20-29, but is not limited thereto.
  • step S3 If it is determined in step S3 that the reception state is good, the process proceeds to step S4, and the CPU 63 causes the frequency converter 12 to operate intermittently.
  • the CPU 63 supplies control information representing, for example, a cycle of 1 millisecond and an intermittent rate of 50% to the enable signal generation unit 14, and the enable signal generation unit 14 provides an enable signal corresponding to the control information from the CPU 63. It is generated and supplied to each part of the frequency converter 12 except for the local oscillator circuit 44. Each part of the frequency converter 12 except the local oscillation circuit 44 performs an intermittent operation by turning on and off the bias current or the power supply based on the enable signal.
  • step S3 determines whether the reception state is good. If it is determined in step S3 that the reception state is not good, the process proceeds to step S5, and the CPU 63 causes the frequency conversion unit 12 to operate continuously.
  • the CPU 63 supplies control information indicating continuous operation to the enable signal generation unit 14, and the enable signal generation unit 14 generates an enable signal (an enable signal without intermittent) corresponding to the control information from the CPU 63. And supplied to each part of the frequency converter 12 except for the local oscillator circuit 44. Each part of the frequency converter 12 except the local oscillation circuit 44 performs continuous operation based on the enable signal.
  • step S4 or step S5 when the operation currently being executed is the same as the operation after the change, the operation currently being executed is continued as it is.
  • step S4 or step S5 the process returns to step S2, and the subsequent processes are repeated.
  • FIG. 8 is a diagram for explaining the operation of the DLL 102 when the frequency conversion unit 12 is intermittently operated.
  • one bit of the signal data from the GPS satellite is 20 milliseconds.
  • the intermittent period of the frequency conversion unit 12 is set to a period shorter than the 1-bit length of the RF signal, and in this embodiment, the period is 1 millisecond.
  • the IF signal that is intermittent in a cycle of 1 millisecond within 20 milliseconds is input to the DLL 102.
  • the NCO 106 and NCO 152 of the synchronization holding unit 62 are continuously operating, so that the spreading code generated by the PNG 154 of the DLL 102 is discontinuous. Absent. Therefore, even if the frequency converter 12 is intermittently operated, the phase of the spread code is not shifted.
  • the second stage signal in FIG. 9 indicates a carrier when the intermittent operation is not performed after the multiplier 46 of the frequency converter 12 multiplies the received signal by the local oscillation signal generated by the local oscillation circuit 44. ing.
  • the signal in the third stage in FIG. 9 is output from the multiplier 46 when the other parts of the frequency converter 12 are intermittently operated based on the enable signal while the local oscillation circuit 44 is continuously operated. Shows career.
  • the signal in the fourth stage in FIG. 9 indicates the carrier output from the multiplier 46 when all the frequency converters 12 including the local oscillator circuit 44 are intermittently operated based on the enable signal.
  • the local oscillation circuit 44 is continuously operated and the other parts of the frequency conversion unit 12 are intermittently operated based on the enable signal as the frequency conversion unit 12 performs, the local oscillation circuit 44 is Because of the continuous operation, it is possible to maintain the consistency of the carrier and phase at the previous ON time.
  • the LPFs 112 and 114 of the Costas loop 101 of the synchronization holding unit 62 do not perform significant integration during a period in which no carrier is input, and therefore integration when the intermittent rate is 50%.
  • the value is half that of continuous operation.
  • the frequency control of the NCO 106 does not become discontinuous by setting the integration time of the LPFs 112 and 114 of the Costas loop 101 longer than the intermittent period. Can be kept in sync.
  • the integration time given to the LPFs 112 and 114 of the Costas loop 101 can be, for example, 2 milliseconds, 5 milliseconds, 10 milliseconds, 20 milliseconds, etc., assuming that the intermittent period is 1 millisecond. .
  • FIG. 10 shows an example of a demodulation result when the reception apparatus 1 operates the RF signal path intermittently and a demodulation result when the reception apparatus 1 operates continuously without performing the intermittent operation.
  • the receiving apparatus 1 by intermittently operating the RF signal path, power consumption can be reduced without affecting the positioning accuracy, for example, the battery can be made longer.
  • the C / N ratio of the demodulated signal is deteriorated by intermittently operating the RF signal path, as shown in FIG. 11, there are factors other than the deterioration of the C / N ratio as the factors of ranging errors. Therefore, when the reception state is good, the influence of the C / N ratio deterioration is small.
  • the CPU 63 of the receiving device 1 may control (change) the intermittent rate as well as turning on / off the intermittent operation based on the reception state of the received signal.
  • FIG. 12 is a diagram showing the relationship between the intermittent rate and the deterioration of the C / N ratio.
  • the deterioration of the C / N ratio can be expressed by 10 Log 10 (1-intermittent rate) [dB]. For example, when the intermittent rate is 50%, the C / N ratio deteriorates by 3 dB.
  • FIG. 13 is a diagram showing the relationship between the intermittent rate and the power consumption.
  • the decrease in power consumption is represented by the total power consumption of the intermittent operation unit that performs intermittent operation ⁇ intermittent rate.
  • the CPU 63 reduces the C / N ratio of the received signal. Whether the intermittent rate is calculated when the reception state is good and the intermittent rate is low when the reception state is bad, based on the C / N ratio, calculated using the correlation value obtained by the synchronization holding unit 62 Alternatively, the intermittent operation can be controlled to stop.
  • the intermittent rate may be changed according to the operation mode set by the user.
  • the intermittent operation may be performed at an intermittent rate of 20%
  • the intermittent operation may be performed at an intermittent rate of 40%. it can.
  • the mode for changing the intermittent rate based on the C / N ratio may be one of a plurality of operation modes.
  • the intermittent operation when the intermittent operation is performed, not only the frequency conversion unit 12 but also the Costas loop 101 and the multiplier of the DLL 102 and the LPF in the synchronization holding unit 62 may be intermittently operated.
  • the multiplier 104, the multiplier 108, the multiplier 110, the multiplier 124, the multiplier 126, the multiplier 128, and the multiplier 130 are arranged on the left side of the broken line.
  • the multiplier 138, the multiplier 140, and the LPF 112, LPF 114, LPF 132, LPF 134, LPF 142, and LPF 144 can be intermittently operated.
  • the operation clock frequency on the left side of the broken line is higher than that on the right side.
  • the power consumption of the holding part 62 can also be reduced effectively.
  • FIG. 15 shows a detailed configuration example of the LPF 112 of the Costas loop 101.
  • the operation of the LPF 112 will be described below, but the same applies to other LPFs.
  • the LPF 112 includes an adder 181, a selector 182, an accumulating unit 183, a holding unit 184, and a control unit 185.
  • the adder 181 adds the signal (clock signal) output from the multiplier 108 and the signal supplied from the integrating unit 183 and outputs the result to the selector 182.
  • the selector 182 selects one of the two input signals based on the control signal supplied from the control unit 185, and outputs the selected signal to the integrating unit 183. Specifically, when the supplied control signal is 1 (“Hi”), the selector 182 outputs the signal input from the adder 181 to the integrating unit 183, and the supplied control signal is 0 ( In the case of “Low”), the selector 182 selects the reset signal (0) that is the other input, and outputs it to the integrating unit 183.
  • the integrating unit 183 adds the signal supplied from the selector 182 to the previous integrated value, and outputs the addition result.
  • the signal from the adder 181 is supplied from the selector 182 to the accumulating unit 183, the supplied signal is added to the integration value so far.
  • a reset signal is supplied from the selector 182 to the integrating unit 183, the integrated value stored in the integrating unit 183 is reset.
  • the signal output from the accumulating unit 183 is fed back to the adder 181 in addition to being supplied to the holding unit 184.
  • the holding unit 184 holds the signal (integrated value) supplied from the integrating unit 183, and the signal (integrated value) held when a control signal of 0 (“Low”) is supplied from the control unit 185. ) Is output.
  • the control unit 185 supplies a control signal of 1 (“Hi”) or 0 (“Low”) to the selector 182 and the holding unit 184 in accordance with the integration time supplied from the CPU 63.
  • FIG. 16 shows an enable signal, a control signal output from the control unit 185, a signal supplied from the multiplier 108 to the adder 181, and an integral value accumulated in the holding unit 184.
  • the signal supplied from the multiplier 108 to the adder 181 is also an intermittent signal corresponding to the enable signal as shown in FIG.
  • the integrated values stored in the integrating unit 183 and the holding unit 184 are held without being reset, and thus the integrated value becomes smaller than that during continuous operation. There is no problem in itself.
  • a control signal of 0 (“Low”) is supplied to the selector 182 and the holding unit 184, and the integrated value up to that time is output from the holding unit 184 and also to the integrating unit 183.
  • the stored integral value is reset.
  • the power consumption can be further reduced by intermittently operating not only the frequency conversion unit 12 but also the Costas loop 101 and the multipliers of the DLL 102 and the LPF in the synchronization holding unit 62.
  • the intermittent operation of the multiplier of the Costas loop 101, the DLL 102, and the LPF is synchronized with the enable signal, but it is not always necessary to synchronize.
  • the enable signal is generated, and the positioning is performed by intermittently operating the RF signal path of the frequency converter 12 with a cycle shorter than the 1-bit length of the RF signal based on the generated enable signal. Power consumption can be reduced without reducing the frequency.
  • the carrier and the phase can be kept consistent before and after the operation is stopped, and continuous positioning is possible.
  • the receiving apparatus 1 has been described as a GPS receiver that receives a transmission signal transmitted from a GPS satellite and measures the current location.
  • the technology according to the present disclosure is not limited to a receiving device that receives a transmission signal transmitted from a GPS satellite, but receives a spread spectrum signal transmitted from another GNSS (Global Navigation Satellite System) satellite. It is also applicable to the device.
  • GNSS Global Navigation Satellite System
  • GNSS Global Navigation Satellite Systems
  • GLONASS Global Navigation Satellite Systems
  • BeiDou operated by China
  • Galileo operated by EU (European Union)
  • Japan's Quasi-Zenith Satellite as a complementary satellite.
  • a transmission signal transmitted from a GLONASS satellite uses a carrier wave of 1602 MHz + p ⁇ 0.5625 MHz (p is the frequency channel number of each satellite) based on a spread spectrum signal having a code length of 511 and a chip rate of 0.511 MHz.
  • This is a BPSK modulated signal.
  • the technology according to the present disclosure can be applied to a receiving apparatus that receives a plurality of GNSS transmission signals, such as a receiving apparatus that receives transmission signals from GPS satellites and GLONASS satellites.
  • each step described in the above flowchart can be executed by one device or can be shared by a plurality of devices.
  • the plurality of processes included in the one step can be executed by being shared by a plurality of apparatuses in addition to being executed by one apparatus.
  • the technique of this indication can also take the following structures.
  • a frequency converter that converts the RF signal into an IF signal having a lower intermediate frequency by multiplying the received RF signal by a local oscillation signal generated by a local oscillation circuit;
  • a control unit that performs control to intermittently operate each part of the RF signal path that is the signal path of the RF signal in the frequency conversion unit.
  • the frequency converter has an amplifier that amplifies the local oscillation signal before multiplying the local oscillation signal by the RF signal, The receiving device according to (1), wherein the control unit causes the amplifier to intermittently operate in addition to each unit of the RF signal path.
  • a demodulator that demodulates the IF signal converted by the frequency converter The reception device according to any one of (1) to (7), wherein the control unit also causes the multiplier and the LPF in the demodulation unit to intermittently operate during intermittent operation of each unit of the RF signal path.
  • the frequency converter of the receiving device including the frequency converter and the control unit multiplies the received RF signal by the local oscillation signal generated by the local oscillation circuit, thereby reducing the RF signal to a lower intermediate frequency.
  • 1 receiver, 12 frequency converter, 13 demodulator, 14 enable signal generator, 41 LNA, 42 BPF, 43 amplifier, 44 local oscillator (LO), 45 amplifier, 46 multiplier, 47 amplifier, 48 LPF, 49 ADC, 61 synchronization acquisition unit, 62 synchronization holding unit, 63 CPU, 66 memory

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

This disclosure pertains to a reception device and a reception method that make it possible to reduce power consumption without reducing how often positioning is performed. A frequency conversion unit converts a received RF signal to an IF signal of a lower intermediate frequency by multiplying the RF signal by a local-oscillator signal generated by a local oscillator circuit. A control unit controls the frequency conversion unit such that each part of the RF-signal path therein, i.e. the pathway that the RF signal follows within the frequency conversion unit, operates intermittently. This technology can be applied, for example, to a reception device that receives signals from GPS satellites.

Description

受信装置および受信方法Receiving apparatus and receiving method
 本開示は、受信装置および受信方法に関し、特に、測位頻度を落とさずに低電力化することができるようにする受信装置および受信方法に関する。 The present disclosure relates to a receiving device and a receiving method, and more particularly, to a receiving device and a receiving method that can reduce power without reducing the positioning frequency.
 カーナビゲーション機器には、GPS(Global Positioning System)衛星からの信号を受信して、現在地を測位するGPS受信機が搭載されている。GPS受信機は、4個以上のGPS衛星からの信号を受信し、受信信号から受信機の位置を計算し、ユーザに知らせることが基本機能である。すなわち、GPS受信機は、各GPS衛星からの信号を復調してGPS衛星の軌道データを獲得し、GPS衛星の軌道および時間情報と受信信号の遅延時間から受信機の3次元位置を連立方程式により導き出す。受信衛星が4個必要となるのは、受信機内部の時間と衛星の時間とで誤差があり、その誤差の影響を除去するためである。 Car navigation equipment is equipped with a GPS receiver that receives signals from GPS (Global Positioning System) satellites and measures the current location. The basic function of the GPS receiver is to receive signals from four or more GPS satellites, calculate the position of the receiver from the received signals, and inform the user. That is, the GPS receiver demodulates the signal from each GPS satellite to acquire the orbit data of the GPS satellite, and calculates the three-dimensional position of the receiver from simultaneous equations using the GPS satellite orbit and time information and the delay time of the received signal. derive. The reason why four reception satellites are required is that there is an error between the time inside the receiver and the time of the satellite, and the influence of the error is removed.
 GPS受信機は、携帯電話機やディジタルスチルカメラ(以下、DSC)等にも搭載されるようになり、GPS受信機の市場は広がる傾向にある。 GPS receivers are now installed in mobile phones and digital still cameras (hereinafter referred to as DSC), and the market for GPS receivers tends to expand.
 また、近年では、電池駆動の製品にもGPS受信機が搭載されるようになり、GPS受信機の低消費電力化が進んでいる。最近では、腕時計や身に着けるスポーツ・健康志向の製品、いわゆるウェアラブル製品分野まで用途が広がりつつあるが、電池容量が比較的大きいスマートフォンを含む携帯電話機やDSCと異なり、求められるサイズ、重量の関係で電池容量は大きく確保できないため、より一層の低消費電力化が期待されている。 In recent years, GPS receivers are also mounted on battery-powered products, and the power consumption of GPS receivers has been reduced. Recently, applications are spreading to wristwatches and wearable sports / health-oriented products, so-called wearable products, but unlike mobile phones and DSCs that have relatively large battery capacities, the relationship between required size and weight Therefore, since the battery capacity cannot be secured, further reduction in power consumption is expected.
 低消費電力を目的として、所定の時間間隔でGPS受信機のほぼ全体の動作を停止させるようにしたGPS受信機がある(例えば、特許文献1参照)。 There is a GPS receiver in which almost the entire operation of the GPS receiver is stopped at predetermined time intervals for the purpose of low power consumption (see, for example, Patent Document 1).
特許2959470号公報Japanese Patent No. 2959470
 GPS受信機のほぼ全体の動作を所定の時間間隔で停止させる動作は、測位の頻度が少なくて良い場合には問題ないが、近年の行動ログの用途に代表されるように、測位頻度をあまり落としたくない場合には、毎回初期動作から動作を開始することになるため好ましくない。そのため、測位頻度を落とさずに低電力化することが望まれている。 The operation of stopping almost the entire operation of the GPS receiver at a predetermined time interval is not a problem when the frequency of positioning is low, but the positioning frequency is not so high as represented by the use of behavior logs in recent years. If you do not want to drop it, the operation starts from the initial operation every time. Therefore, it is desired to reduce the power without reducing the positioning frequency.
 本開示は、このような状況に鑑みてなされたものであり、測位頻度を落とさずに低電力化することができるようにするものである。 The present disclosure has been made in view of such a situation, and is capable of reducing the power without reducing the positioning frequency.
 本開示の一側面の受信装置は、受信したRF信号を、局部発振回路で生成された局部発振信号と乗算することにより、前記RF信号を、それより低い中間周波数のIF信号に変換する周波数変換部と、前記周波数変換部内の、RF信号の信号経路であるRF信号パスの各部を間欠動作させる制御を行う制御部とを備える。 A receiving device according to one aspect of the present disclosure multiplies a received RF signal by a local oscillation signal generated by a local oscillation circuit, thereby converting the RF signal into an IF signal having a lower intermediate frequency. And a control unit that performs control to intermittently operate each part of the RF signal path that is the signal path of the RF signal in the frequency converter.
 本開示の一側面の受信方法は、周波数変換部と制御部とを備える受信装置の前記周波数変換部が、受信したRF信号を、局部発振回路で生成された局部発振信号と乗算することにより、前記RF信号を、それより低い中間周波数のIF信号に変換し、前記制御部が、前記周波数変換部内の、RF信号の信号経路であるRF信号パスの各部を間欠動作させる制御を行う。 In the reception method of one aspect of the present disclosure, the frequency conversion unit of the reception device including the frequency conversion unit and the control unit multiplies the received RF signal by the local oscillation signal generated by the local oscillation circuit. The RF signal is converted into an IF signal having a lower intermediate frequency, and the control unit performs control to intermittently operate each part of the RF signal path that is a signal path of the RF signal in the frequency conversion unit.
 本開示の一側面においては、受信したRF信号を、局部発振回路で生成された局部発振信号と乗算することにより、前記RF信号が、それより低い中間周波数のIF信号に変換され、前記周波数変換部内の、RF信号の信号経路であるRF信号パスの各部が間欠動作される。 In one aspect of the present disclosure, the RF signal is converted to an IF signal having a lower intermediate frequency by multiplying the received RF signal by a local oscillation signal generated by a local oscillation circuit, and the frequency conversion is performed. Each part of the RF signal path which is the signal path of the RF signal in the part is intermittently operated.
 受信装置は、独立した装置であっても良いし、1つの装置を構成している内部ブロックまたはモジュールであっても良い。 The receiving device may be an independent device, or may be an internal block or a module constituting one device.
 本開示の一側面によれば、測位頻度を落とさずに低電力化することができる。 According to one aspect of the present disclosure, the power can be reduced without reducing the positioning frequency.
 なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。 It should be noted that the effects described here are not necessarily limited, and may be any of the effects described in the present disclosure.
本開示に係る受信装置の一実施の形態を示すブロック図である。It is a block diagram showing an embodiment of a receiving device concerning this indication. イネーブル信号と、それに対応するIF信号の例を示す図である。It is a figure which shows the example of an enable signal and IF signal corresponding to it. 受信装置で受信される受信信号を説明する図である。It is a figure explaining the received signal received with a receiver. 同期捕捉部の構成例を示すブロック図である。It is a block diagram which shows the structural example of a synchronous acquisition part. 同期捕捉部の処理を説明する図である。It is a figure explaining the process of a synchronous acquisition part. 同期保持部内のチャンネル回路の構成例を示す図である。It is a figure which shows the structural example of the channel circuit in a synchronous holding | maintenance part. 受信装置による受信処理を説明するフローチャートである。It is a flowchart explaining the reception process by a receiver. 間欠動作中の同期保持部を説明する図である。It is a figure explaining the synchronous holding | maintenance part in intermittent operation | movement. 間欠動作中の同期保持部を説明する図である。It is a figure explaining the synchronous holding | maintenance part in intermittent operation | movement. 受信装置による復調結果の例を示す図である。It is a figure which shows the example of the demodulation result by a receiver. C/N比と測距誤差との関係を示す図である。It is a figure which shows the relationship between C / N ratio and ranging error. 間欠率とC/N比の劣化との関係を示す図である。It is a figure which shows the relationship between an intermittent rate and deterioration of C / N ratio. 間欠率と消費電力の関係を示す図である。It is a figure which shows the relationship between an intermittent rate and power consumption. 同期保持部の間欠動作を説明する図である。It is a figure explaining the intermittent operation | movement of a synchronous holding | maintenance part. 同期保持部の間欠動作を説明する図である。It is a figure explaining the intermittent operation | movement of a synchronous holding | maintenance part. 同期保持部の間欠動作を説明する図である。It is a figure explaining the intermittent operation | movement of a synchronous holding | maintenance part.
<受信装置の構成例>
 図1は、本開示に係る受信装置の一実施の形態を示すブロック図である。
<Configuration example of receiving device>
FIG. 1 is a block diagram illustrating an embodiment of a reception device according to the present disclosure.
 図1に示される受信装置1は、GPS(Global Positioning System)衛星から送信されてくる送信信号を受信して、現在地を測位するGPS受信機である。 The receiving device 1 shown in FIG. 1 is a GPS receiver that receives a transmission signal transmitted from a GPS (Global Positioning System) satellite and measures the current location.
 受信装置1は、アンテナ11、周波数変換部12、復調部13、イネーブル信号生成部14、XO(水晶発振器、X’tal Oscillator)15、TCXO(Temperature Compensated X’tal Oscillator)16、及び逓倍/分周器17を備える。 The receiving apparatus 1 includes an antenna 11, a frequency converter 12, a demodulator 13, an enable signal generator 14, an XO (crystal oscillator, X'taltOscillator) 15, a TCXO (Temperature Compensated X'tal Oscillator) 16, and a multiplication / minute. A peripheral 17 is provided.
 アンテナ11は、GPS衛星から送信された航法メッセージなどを含む高周波の送信信号(以下、RF信号という。)を受信して周波数変換部12へ供給する。 The antenna 11 receives a high-frequency transmission signal (hereinafter referred to as an RF signal) including a navigation message transmitted from a GPS satellite and supplies it to the frequency conversion unit 12.
 周波数変換部12は、アンテナ11が受信したRF信号の周波数を中間周波数(IF)のIF信号(中間周波数信号)に変換して、復調部13に出力する。 The frequency converter 12 converts the frequency of the RF signal received by the antenna 11 into an IF signal (intermediate frequency signal) of an intermediate frequency (IF) and outputs the IF signal to the demodulator 13.
 周波数変換部12は、LNA(Low Noise Amplifier)41、BPF(Band Pass Filter)42、増幅器43、局部発振回路(LO)44、増幅器45、乗算器46、増幅器47、LPF(Low Pass Filter)48、及びADC(Analog Digital Converter)49を備える。 The frequency converter 12 includes an LNA (LowLNoise Amplifier) 41, a BPF (Band Pass Filter) 42, an amplifier 43, a local oscillation circuit (LO) 44, an amplifier 45, a multiplier 46, an amplifier 47, and an LPF (Low Pass Filter) 48. , And ADC (Analog Digital Converter) 49.
 LNA41は、アンテナ11から供給されたRF信号を増幅し、BPF42へ供給する。BPF42は、例えば、SAWフィルタ(Surface Acoustic Wave Filter)から構成され、LNA41により増幅されたRF信号の特定の周波数成分のみを抽出して増幅器43へ供給する。 The LNA 41 amplifies the RF signal supplied from the antenna 11 and supplies it to the BPF 42. The BPF 42 is composed of, for example, a SAW filter (Surface Acoustic Wave Filter), extracts only a specific frequency component of the RF signal amplified by the LNA 41, and supplies it to the amplifier 43.
 増幅器43は、BPF42から出力される特定の周波数成分のRF信号を増幅し、乗算器46へ供給する。増幅器43は、例えば、MOSFET(Metal Oxide Semiconductor Field effect transistor)差動増幅器で構成することができるが、上記に限られない。 The amplifier 43 amplifies an RF signal having a specific frequency component output from the BPF 42 and supplies the amplified RF signal to the multiplier 46. The amplifier 43 can be configured by, for example, a MOSFET (Metal Oxide Semiconductor Field effect transistor) differential amplifier, but is not limited thereto.
 局部発振回路44は、例えば、PLL(Phase Lock Loop)回路により構成され、後述するTCXO16から供給される発振信号に基づいて、所定の周波数を有する局部発振信号を生成する。局部発振回路44は、例えば、復調部13が備えるCPU63により制御されるが、上記に限られず、外部装置の制御部などによって制御されてもよい。 The local oscillation circuit 44 is constituted by, for example, a PLL (Phase Lock Loop) circuit, and generates a local oscillation signal having a predetermined frequency based on an oscillation signal supplied from a TCXO 16 described later. The local oscillation circuit 44 is controlled by, for example, the CPU 63 included in the demodulation unit 13, but is not limited to the above, and may be controlled by a control unit of an external device or the like.
 増幅器45は、局部発振回路44から供給される局部発振信号を増幅し、乗算器46に供給する。 The amplifier 45 amplifies the local oscillation signal supplied from the local oscillation circuit 44 and supplies the amplified signal to the multiplier 46.
 乗算器46は、増幅器43から供給されるRF信号と、増幅器45を介して局部発振回路44から供給される局部発振信号を乗算することによって、局部発振信号に応じて、搬送波周波数よりも低い中間周波数(IF)にダウンコンバートされたIF信号を出力する。典型的な中間周波数は、例えば、4.092MHz、1.023MHz、0Hz等であるが、これに限られない。 The multiplier 46 multiplies the RF signal supplied from the amplifier 43 by the local oscillation signal supplied from the local oscillation circuit 44 via the amplifier 45, so that an intermediate frequency lower than the carrier frequency is obtained according to the local oscillation signal. An IF signal down-converted to a frequency (IF) is output. Typical intermediate frequencies are, for example, 4.092 MHz, 1.023 MHz, 0 Hz, and the like, but are not limited thereto.
 増幅器47は、乗算器46によりダウンコンバートされたIF信号を増幅し、LPF48へ供給する。増幅器47は、例えば、オペアンプで構成することができるが、上記に限られない。 The amplifier 47 amplifies the IF signal down-converted by the multiplier 46 and supplies the amplified IF signal to the LPF 48. The amplifier 47 can be composed of, for example, an operational amplifier, but is not limited to the above.
 LPF48は、増幅器47により増幅されたIF信号の周波数成分のうちの低周波成分を抽出し、抽出した低周波成分を有する信号をADC49へ供給する。なお、図1においては増幅器47とADC49の間にLPF48が配置される例を説明しているが、増幅器47とADC49の間にはBPFが配置されてもよい。 The LPF 48 extracts a low frequency component from the frequency components of the IF signal amplified by the amplifier 47 and supplies a signal having the extracted low frequency component to the ADC 49. 1 illustrates the example in which the LPF 48 is disposed between the amplifier 47 and the ADC 49, but a BPF may be disposed between the amplifier 47 and the ADC 49.
 ADC49は、LPF48から供給されたアナログ形式のIF信号をサンプリングすることによりデジタル形式に変換し、デジタル形式に変換したIF信号を、1ビットずつ復調部13(の同期捕捉部61及び同期保持部62)へ供給する。アンテナ11で受信してからADC49までが、アナログ形式で信号処理を行うアナログ回路であり、ADC49より後段の復調部13は、デジタル形式で信号処理を行うデジタル回路となる。 The ADC 49 samples the analog IF signal supplied from the LPF 48 to convert it into a digital format, and converts the IF signal converted into the digital format bit by bit into the demodulator 13 (the synchronization acquisition unit 61 and the synchronization holding unit 62). ). An analog circuit that performs signal processing in an analog format from the reception by the antenna 11 to the ADC 49 is an analog circuit, and the demodulator 13 subsequent to the ADC 49 is a digital circuit that performs signal processing in a digital format.
 復調部13は、周波数変換部12から出力されるIF信号の復調処理を行い、処理結果として、受信装置1の位置を出力する。 The demodulator 13 demodulates the IF signal output from the frequency converter 12 and outputs the position of the receiving device 1 as a processing result.
 復調部13は、同期捕捉部61、同期保持部62、CPU63、RTC64、タイマ65、及び、メモリ66で構成される。 The demodulation unit 13 includes a synchronization acquisition unit 61, a synchronization holding unit 62, a CPU 63, an RTC 64, a timer 65, and a memory 66.
 同期捕捉部61は、CPU63の制御の下、逓倍/分周器17から供給される逓倍および/または分周された発振信号に基づいて、周波数変換部12が出力するIF信号の疑似ランダム(PRN:Pseudo-Random Noise)符号での同期捕捉を行う。また、同期捕捉部61は、IF信号のキャリア周波数を検出する。そして、同期捕捉部61は、PRN符号の位相やIF信号のキャリア周波数などを同期保持部62及びCPU63へ供給する。 The synchronization acquisition unit 61 is controlled by the CPU 63 under the control of the CPU 63 based on the multiplied and / or frequency-divided oscillation signal supplied from the multiplier / divider 17 to generate a pseudo-random (PRN) IF signal output from the frequency converter 12. : Pseudo-Random Noise) code acquisition. In addition, the synchronization acquisition unit 61 detects the carrier frequency of the IF signal. Then, the synchronization acquisition unit 61 supplies the phase of the PRN code, the carrier frequency of the IF signal, and the like to the synchronization holding unit 62 and the CPU 63.
 同期保持部62は、CPU63による制御に基づき、逓倍/分周器17から供給される信号を利用し、ADC49から供給されるIF信号のPRN符号とキャリアの同期を保持する。より詳細には、同期保持部62は、同期捕捉部61から供給されるPRN符号の位相やIF信号のキャリア周波数を初期値として動作する。そして、同期保持部62は、ADC49から供給されるIF信号に含まれる航法メッセージを復調し、復調された航法メッセージ、精度の高いPRN符号の位相及びキャリア周波数をCPU63へ供給する。 The synchronization holding unit 62 uses the signal supplied from the multiplier / divider 17 based on the control of the CPU 63 to hold the synchronization of the PRN code of the IF signal supplied from the ADC 49 and the carrier. More specifically, the synchronization holding unit 62 operates using the phase of the PRN code supplied from the synchronization acquisition unit 61 and the carrier frequency of the IF signal as initial values. Then, the synchronization holding unit 62 demodulates the navigation message included in the IF signal supplied from the ADC 49, and supplies the demodulated navigation message, the phase of the highly accurate PRN code, and the carrier frequency to the CPU 63.
 CPU63は、同期保持部62から供給される航法メッセージ、PRN符号の位相及びキャリア周波数に基づいて、各GPS衛星の位置や速度を算出し、受信装置1の位置を計算する。 The CPU 63 calculates the position and velocity of each GPS satellite based on the navigation message supplied from the synchronization holding unit 62, the phase of the PRN code, and the carrier frequency, and calculates the position of the receiving device 1.
 また、CPU63は、受信信号の受信状態に基づいて、イネーブル信号生成部14を制御し、イネーブル信号生成部14によるイネーブル信号の生成を制御する。 Further, the CPU 63 controls the enable signal generation unit 14 based on the reception state of the reception signal, and controls the generation of the enable signal by the enable signal generation unit 14.
 CPU63は、制御端子、I/O端子、及び付加機能端子などに接続されており、各端子を介して処理に必要なデータや制御信号が入出力される。 The CPU 63 is connected to a control terminal, an I / O terminal, an additional function terminal, and the like, and data and control signals necessary for processing are input / output via each terminal.
 RTC(Real Time Clock)64は、XO15から供給される発振信号に基づいて時間を計測する。RTC64によって計測される時間情報は、例えば、GPS衛星の時間情報が得られるまでの間に代用されるものであり、GPS衛星の時間情報が得られたときには、CPU63がタイマ65を制御することによって適宜補正される。 The RTC (Real Time Clock) 64 measures time based on the oscillation signal supplied from the XO 15. The time information measured by the RTC 64 is substituted, for example, until the GPS satellite time information is obtained. When the GPS satellite time information is obtained, the CPU 63 controls the timer 65. Corrected as appropriate.
 タイマ65は、例えば、CPU63における受信装置1の各部の動作を制御する各種タイミング信号の生成や、時間の参照に用いられる。 The timer 65 is used, for example, to generate various timing signals for controlling the operation of each unit of the receiving device 1 in the CPU 63 and to refer to the time.
 メモリ66は、例えば、ROM(Read Only Memory)やRAM(Random Access Memory)で構成される。メモリ66を構成するROMには、CPU63が使用するプログラムや演算パラメータなどの制御用データが記録される。また、RAMには、CPU63により実行されるプログラムなどが一時記憶される。 The memory 66 includes, for example, a ROM (Read Only Memory) or a RAM (Random Access Memory). The ROM constituting the memory 66 records control data such as programs and calculation parameters used by the CPU 63. The RAM temporarily stores programs executed by the CPU 63.
 イネーブル信号生成部14は、CPU63からの制御に従って、イネーブル信号を生成し、周波数変換部12に供給する。生成されたイネーブル信号は、図1において周波数変換部12内の破線で囲まれた部分、即ち、増幅器45と、RF信号の信号経路(RF信号パス)である、LNA41、BPF42、増幅器43、乗算器46、増幅器47、LPF48、及びADC49に供給される。 The enable signal generation unit 14 generates an enable signal in accordance with control from the CPU 63 and supplies the enable signal to the frequency conversion unit 12. The generated enable signal is a portion surrounded by a broken line in the frequency converter 12 in FIG. 1, that is, an amplifier 45, and an LNA 41, BPF 42, amplifier 43, and multiplication which are RF signal signal paths (RF signal paths). Is supplied to the unit 46, the amplifier 47, the LPF 48, and the ADC 49.
 イネーブル信号生成部14には、イネーブル信号の間欠率(=オフ時間/周期)、周期などの情報が、CPU63から供給される。イネーブル信号生成部14は、CPU63からの情報に基づいて生成したイネーブル信号を、RF信号パスの各部と増幅器45に供給する。RF信号パスの各部と増幅器45は、バイアス電流、または、電源を、イネーブル信号に応じてオンオフさせる。これにより、図2に示されるように、周波数変換部12の出力であるIF信号が、イネーブル信号に対応して、間欠的に出力される。 The enable signal generator 14 is supplied with information such as the intermittent rate (= off time / cycle) and cycle of the enable signal from the CPU 63. The enable signal generation unit 14 supplies an enable signal generated based on information from the CPU 63 to each unit of the RF signal path and the amplifier 45. Each part of the RF signal path and the amplifier 45 turn on / off the bias current or the power supply according to the enable signal. As a result, as shown in FIG. 2, the IF signal that is the output of the frequency converter 12 is intermittently output corresponding to the enable signal.
 ここで、イネーブル信号の間欠周期は、RF信号の1ビット長より短周期に設定される。GPS衛星から送信されてくる送信信号の1ビット長は、図3を参照して後述するように、20ミリ秒であるので、本実施の形態においては、例えば、図2に示されるように1ミリ秒周期で、間欠率50%のイネーブル信号により、周波数変換部12において間欠動作が行われる。 Here, the intermittent period of the enable signal is set to a period shorter than the 1-bit length of the RF signal. Since the 1-bit length of the transmission signal transmitted from the GPS satellite is 20 milliseconds as will be described later with reference to FIG. 3, in this embodiment, for example, 1 as shown in FIG. In the millisecond cycle, the frequency converter 12 performs an intermittent operation with an enable signal having an intermittent rate of 50%.
 図1に戻り、XO15は、例えば32.768kHzなどの所定の発振周波数を有する発振信号を生成する。そして、XO15は、生成した発振信号をRTC64に供給する。 Referring back to FIG. 1, the XO 15 generates an oscillation signal having a predetermined oscillation frequency such as 32.768 kHz. Then, the XO 15 supplies the generated oscillation signal to the RTC 64.
 TCXO16は、例えば18.414MHzなど、XO15が生成する発振信号とは周波数が異なる発振信号を生成する。そして、TCXO16は、生成した発振信号を、逓倍/分周器17や周波数変換部12の局部発振回路44などに供給する。 The TCXO 16 generates an oscillation signal having a frequency different from that of the oscillation signal generated by the XO 15, such as 18.414 MHz. Then, the TCXO 16 supplies the generated oscillation signal to the multiplier / divider 17 or the local oscillation circuit 44 of the frequency conversion unit 12.
 逓倍/分周器17は、TCXO16から供給された発振信号を、CPU63からの指示に基づいて、逓倍(multiply)若しくは分周(divide)、又はそれら双方を行う。そして、逓倍/分周器17は、逓倍、分周又はその双方を行った信号を、復調部13等へ供給する。 The multiplier / divider 17 multiplies or divides the oscillation signal supplied from the TCXO 16 based on an instruction from the CPU 63, or both. The multiplier / divider 17 supplies a signal that has been multiplied, divided, or both to the demodulator 13 or the like.
 以上のように構成される受信装置1では、GPS衛星から送信された、L1帯、C/A(Clear and Acquisition)コードと呼ばれるスペクトラム拡散信号を受信して、測位演算を行う。このL1帯、C/Aコードと呼ばれる送信信号は、送信信号速度、すなわち、チップレートが1.023MHzであり、例えばいわゆるGold符号等の符号長が1023の擬似ランダムノイズ(Pseudo-random Noise;PN)系列の拡散符号で、50bpsのデータを直接拡散した信号により、周波数が1575.42MHzの搬送波(以下、キャリアという。)に対して2相位相変調方式(Binary Phase Shift Keying;以下、BPSK変調方式)に基づく変調を施した信号である。 The receiving apparatus 1 configured as described above receives a spread spectrum signal called a C1 / A (Clear and Acquisition) code transmitted from a GPS satellite, and performs a positioning calculation. The transmission signal called the L1 band and C / A code has a transmission signal speed, that is, a chip rate of 1.023 MHz, and a pseudo-random noise (Pseudo-random Noise; PN) having a code length of 1023 such as a so-called Gold code. ) A 2-phase phase modulation method (Binary Phase Shift Keying; hereinafter referred to as BPSK modulation method) for a carrier having a frequency of 1575.42 MHz (hereinafter referred to as a carrier) using a signal obtained by directly spreading 50 bps data with a sequence spreading code. ).
<受信信号のフォーマット>
 図3は、GPS衛星から送信され、受信装置1で受信される受信信号を説明する図である。
<Received signal format>
FIG. 3 is a diagram for explaining a received signal transmitted from a GPS satellite and received by the receiving device 1.
 L1帯、C/Aコードと呼ばれる送信信号は、チップレートが1.023MHzであり、符号長が1023であることから、C/Aコードは、図3の1段目に示されるように、拡散符号が1023チップを1周期として、すなわち、1周期=1ミリ秒(msec)として、繰り返すものとなる。 The transmission signal called the L1 band and C / A code has a chip rate of 1.023 MHz and a code length of 1023. Therefore, the C / A code is spread as shown in the first row of FIG. The code is repeated with 1023 chips as one cycle, that is, 1 cycle = 1 millisecond (msec).
 このC/Aコードの拡散符号は、GPS衛星毎に異なっているが、どのGPS衛星が、どの拡散符号を用いるかは、予め受信装置1によって検知できるようになされている。また、受信装置1は、航法メッセージにより、どのGPS衛星からの信号をその地点及びその時点で受信することができるかが把握できるようになされている。そのため、受信装置1は、例えば3次元測位であれば、その地点及びその時点で取得することができる少なくとも4個以上のGPS衛星からの電波を受信してスペクトラム逆拡散を施し、測位演算を行うことにより、自己の位置を算出する。 The spread code of this C / A code is different for each GPS satellite, but which GPS satellite uses which spread code can be detected in advance by the receiving device 1. In addition, the receiving device 1 is configured to be able to grasp which GPS satellite can receive a signal from that point and at that point by the navigation message. Therefore, for example, in the case of three-dimensional positioning, the receiving device 1 receives radio waves from at least four or more GPS satellites that can be acquired at that point and at that time, performs spectrum despreading, and performs positioning calculation. Thus, the position of itself is calculated.
 また、GPS衛星からの信号データの1ビットは、図3の2段目に示されるように、拡散符号の20周期分、すなわち、20ミリ秒単位として伝送される。すなわち、データの伝送速度は、上述したように、50bpsである。さらに、拡散符号の1周期分の1023チップは、ビットが"1"であるときと"0"であるときとでは、反転したものとなる。 Further, as shown in the second stage of FIG. 3, one bit of the signal data from the GPS satellite is transmitted for 20 cycles of the spread code, that is, in units of 20 milliseconds. That is, the data transmission rate is 50 bps as described above. Further, 1023 chips for one cycle of the spread code are inverted when the bit is “1” and when it is “0”.
 さらに、GPS衛星からの信号は、図3の3段目に示されるように、30ビット、すなわち、600ミリ秒で1ワードを形成する。さらにまた、GPS衛星からの信号は、図3の4段目に示されるように、10ワード、すなわち、6秒で1サブフレームを形成する。そして、GPS衛星からの信号には、図3の5段目に示されるように、1サブフレームの先頭のワードに、データが更新されたときであっても常に規定のビットパターンとされるプリアンブルが挿入され、このプリアンブルに後続してデータが伝送されてくる。 Furthermore, as shown in the third row of FIG. 3, the signal from the GPS satellite forms one word with 30 bits, that is, 600 milliseconds. Furthermore, as shown in the fourth row of FIG. 3, the signal from the GPS satellite forms one subframe in 10 words, that is, 6 seconds. In the signal from the GPS satellite, as shown in the fifth row of FIG. 3, a preamble that always has a prescribed bit pattern even when data is updated to the first word of one subframe. Is inserted, and data is transmitted following this preamble.
 さらにまた、GPS衛星からの信号は、5サブフレーム、すなわち、30秒で1フレームを形成する。そして、GPS衛星からの信号においては、航法メッセージが、この1フレームのデータ単位で伝送されてくる。 Furthermore, the signal from the GPS satellite forms 5 subframes, that is, 1 frame in 30 seconds. In the signal from the GPS satellite, the navigation message is transmitted in the data unit of one frame.
 この1フレームのデータのうちの始めの3個のサブフレームは、エフェメリス(Ephemeris)情報と呼ばれるGPS衛星固有の情報である。このエフェメリス情報には、GPS衛星の軌道を求めるためのパラメータと、GPS衛星からの信号の送出時刻とが含まれる。 The first three subframes of this one frame of data are information specific to GPS satellites called ephemeris information. The ephemeris information includes a parameter for obtaining the orbit of the GPS satellite and a transmission time of the signal from the GPS satellite.
 全てのGPS衛星は、原子時計を備えることによって共通の時刻情報を用いており、エフェメリス情報に含まれるGPS衛星からの信号の送出時刻は、原子時計の1秒単位とされている。また、GPS衛星の拡散符号は、原子時計に同期したものとして生成される。 All GPS satellites use the common time information by providing an atomic clock, and the transmission time of the signal from the GPS satellite included in the ephemeris information is in units of one second of the atomic clock. Further, the spread codes of GPS satellites are generated in synchronization with the atomic clock.
 エフェメリス情報に含まれる軌道情報は、数時間毎に更新されるが、その更新が行われるまでは同一の情報となる。そのため、受信装置1は、エフェメリス情報に含まれる軌道情報をメモリに保持しておくことにより、数時間は同じ軌道情報を精度よく使用することができる。なお、GPS衛星からの信号の送出時刻は、1秒毎に更新される。 The trajectory information included in the ephemeris information is updated every few hours, but is the same information until the update is performed. Therefore, the receiving apparatus 1 can use the same orbit information accurately for several hours by holding the orbit information included in the ephemeris information in the memory. Note that the signal transmission time from the GPS satellite is updated every second.
 一方、1フレームのデータのうちの残りの2個のサブフレームの航法メッセージは、アルマナック(Almanac)情報と呼ばれる全てのGPS衛星から共通に送信される情報である。このアルマナック情報は、全情報を取得するために25フレーム分必要となるものであり、各GPS衛星のおおよその位置情報や、どのGPS衛星が使用可能であるのかを示す情報等から構成される。このアルマナック情報は、数か月毎に更新されるが、その更新が行われるまでは同一の情報となる。そのため、受信装置1は、アルマナック情報をメモリに保持しておくことにより、数か月は同じ情報を精度よく使用することができる。 On the other hand, the navigation messages of the remaining two subframes in one frame of data are information transmitted in common from all GPS satellites called almanac information. This almanac information is required for 25 frames in order to acquire all information, and is composed of approximate position information of each GPS satellite, information indicating which GPS satellite can be used, and the like. This almanac information is updated every several months, but is the same information until the update is performed. Therefore, the receiving apparatus 1 can use the same information accurately for several months by holding the almanac information in the memory.
 受信装置1は、GPS衛星からの信号を受信して上述したデータを得るために、まず、キャリアを除去した後、受信しようとするGPS衛星で用いられているC/Aコードと同じ拡散符号を用いて、そのGPS衛星からの信号について、C/Aコードの位相同期をとることによってGPS衛星からの信号を捕捉し、スペクトラム逆拡散を行う。受信装置1は、C/Aコードとの位相同期をとってスペクトラム逆拡散を行うと、ビットが検出され、GPS衛星からの信号に基づいて時刻情報等を含む航法メッセージを取得することが可能となる。 In order to receive the signal from the GPS satellite and obtain the above-mentioned data, the receiving device 1 first removes the carrier and then uses the same spreading code as the C / A code used in the GPS satellite to be received. Using the signal from the GPS satellite, the signal from the GPS satellite is captured by phase-synchronizing the C / A code and the spectrum is despread. When the receiver 1 performs spectrum despreading in phase synchronization with the C / A code, the bits are detected, and a navigation message including time information and the like can be acquired based on a signal from a GPS satellite. Become.
 受信装置1は、GPS衛星からの信号の捕捉をC/Aコードの位相同期探索によって行うが、この位相同期探索として、自己が発生する拡散符号とGPS衛星からの受信信号の拡散符号との相関を検出し、例えば、その相関検出結果の相関値が予め定められた値よりも大きい場合に、両者が同期しているものと判定する。 The receiving device 1 captures a signal from a GPS satellite by a phase synchronization search of a C / A code. As this phase synchronization search, a correlation between a spreading code generated by itself and a spreading code of a reception signal from a GPS satellite is performed. For example, when the correlation value of the correlation detection result is larger than a predetermined value, it is determined that the two are synchronized.
<同期捕捉部の構成例>
 図4は、同期捕捉部61の構成例を示すブロック図である。
<Configuration example of the synchronization acquisition unit>
FIG. 4 is a block diagram illustrating a configuration example of the synchronization capturing unit 61.
 同期捕捉部61は、拡散符号の同期捕捉を高速に行うために、例えば、図4に示されるような、高速フーリエ変換(FFT:Fast Fourier Transform)を利用したデジタルマッチドフィルタにより構成することができる。 The synchronization acquisition unit 61 can be configured by a digital matched filter using a fast Fourier transform (FFT: Faster Fourier Transform) as shown in FIG. 4, for example, in order to perform synchronization acquisition of the spreading code at high speed. .
 同期捕捉部61は、メモリ81、FFT部82、メモリ83、拡散符号発生器84、FFT部85、メモリ86、乗算器87、IFFT(Inversed Fast Fourier Transform)部88、及びピーク検出器89を有する。 The synchronization acquisition unit 61 includes a memory 81, an FFT unit 82, a memory 83, a spreading code generator 84, an FFT unit 85, a memory 86, a multiplier 87, an IFFT (Inverted Fast Fourier Transform) unit 88, and a peak detector 89. .
 メモリ81は、周波数変換部12のADC49によってサンプリングされたIF信号をバッファリングする。FFT部82は、メモリ81によりバッファリングされたIF信号を読み出して高速フーリエ変換する。メモリ83は、FFT部82における高速フーリエ変換により時間領域のIF信号から変換された周波数領域信号をバッファリングする。 The memory 81 buffers the IF signal sampled by the ADC 49 of the frequency conversion unit 12. The FFT unit 82 reads the IF signal buffered by the memory 81 and performs a fast Fourier transform. The memory 83 buffers the frequency domain signal converted from the time domain IF signal by the fast Fourier transform in the FFT unit 82.
 一方、拡散符号発生器84は、GPS衛星からのRF信号における拡散符号と同じ拡散符号を発生する。FFT部85は、拡散符号発生器84により発生された拡散符号を高速フーリエ変換する。メモリ86は、FFT部85における高速フーリエ変換により時間領域の拡散符号から変換された周波数領域の拡散符号をバッファリングする。 On the other hand, the spread code generator 84 generates the same spread code as the spread code in the RF signal from the GPS satellite. The FFT unit 85 performs fast Fourier transform on the spreading code generated by the spreading code generator 84. The memory 86 buffers the frequency domain spreading code converted from the time domain spreading code by the fast Fourier transform in the FFT unit 85.
 乗算器87は、メモリ83にバッファリングされている周波数領域信号と、メモリ86にバッファリングされている周波数領域の拡散符号とを乗算する。IFFT部88は、乗算器87から出力される乗算後の周波数領域信号を逆高速フーリエ変換する。それにより、GPS衛星からのRF信号における拡散符号と、拡散符号発生器84により発生された拡散符号との間の時間領域での相関信号が取得される。そして、ピーク検出器89は、IFFT部88から出力される相関信号のピークを検出する。 Multiplier 87 multiplies the frequency domain signal buffered in memory 83 by the frequency domain spreading code buffered in memory 86. The IFFT unit 88 performs inverse fast Fourier transform on the frequency domain signal after multiplication output from the multiplier 87. Thereby, a correlation signal in the time domain between the spread code in the RF signal from the GPS satellite and the spread code generated by the spread code generator 84 is acquired. The peak detector 89 detects the peak of the correlation signal output from the IFFT unit 88.
 かかる同期捕捉部61は、FFT部82及び85、拡散符号発生器84、乗算器87、IFFT部88、及びピーク検出器89の各部の処理をDSP(Digital Signal Processor)を用いて実行するソフトウェアとして実現されてもよい。 The synchronization acquisition unit 61 is software that executes processing of each unit of the FFT units 82 and 85, the spread code generator 84, the multiplier 87, the IFFT unit 88, and the peak detector 89 using a DSP (Digital SignalDProcessor). It may be realized.
 図5は、同期捕捉部61により捕捉される相関信号のピークの一例を示す図である。 FIG. 5 is a diagram illustrating an example of a peak of a correlation signal captured by the synchronization capturing unit 61.
 図5を参照すると、1周期分の相関信号の出力波形の中で、相関レベルが突出したピークP1が検出されている。かかるピークP1の時間軸上の位置は、拡散符号の先頭に相当する。即ち、同期捕捉部61は、このようなピークP1を検出することにより、GPS衛星から受信された受信信号の同期を検出(即ち、拡散符号の位相を検出)することができる。 Referring to FIG. 5, a peak P1 with a prominent correlation level is detected in the output waveform of the correlation signal for one period. The position of the peak P1 on the time axis corresponds to the beginning of the spread code. That is, the synchronization acquisition unit 61 can detect the synchronization of the received signal received from the GPS satellite (that is, detect the phase of the spread code) by detecting such a peak P1.
<同期保持部の構成例>
 これに対して、同期保持部62は、図6に示されるチャンネル回路100を複数設けることで、複数のGPS衛星の同期保持を並列的に行うことができる。
<Configuration example of synchronization holding unit>
On the other hand, the synchronization holding unit 62 can perform synchronization holding of a plurality of GPS satellites in parallel by providing a plurality of channel circuits 100 shown in FIG.
 図6は、チャンネル回路100の構成例を示す図である。 FIG. 6 is a diagram illustrating a configuration example of the channel circuit 100.
 チャンネル回路100は、キャリアの同期を行うコスタスループ101と、拡散符号の同期を行うDLL(Delay Lock Loop)102に分けられる。 The channel circuit 100 is divided into a Costas loop 101 that performs carrier synchronization and a DLL (Delay Lock Loop) 102 that performs spreading code synchronization.
 周波数変換部12から出力されたIF信号は、乗算器104において、位相がP(Prompt)とされる拡散符号と乗算されて、コスタスループ101に入力される。位相がP(Prompt)とされる拡散符号は、後述する拡散符号発生器(PN Generator;以下、PNGという。)154によって発生され、乗算器104に供給される。一方、DLL102には、周波数変換部12から出力されたIF信号が入力される。 The IF signal output from the frequency converter 12 is multiplied by a spreading code whose phase is P (Prompt) in the multiplier 104 and input to the Costas loop 101. A spreading code whose phase is set to P (Prompt) is generated by a spreading code generator (PN Generator; hereinafter referred to as PNG) 154 to be described later, and is supplied to the multiplier 104. On the other hand, the IF signal output from the frequency converter 12 is input to the DLL 102.
 コスタスループ101においては、入力された信号に対して、NCO(Numeric Controlled Oscillator)106によって生成された再生キャリアのうちのコサイン成分が乗算器108によって乗算される。一方、入力された信号に対して、NCO106によって生成された再生キャリアのうちのサイン成分が乗算器110によって乗算される。 In the Costas loop 101, the multiplier 108 multiplies the input signal by the cosine component of the reproduced carrier generated by the NCO (Numerical Controlled Oscillator) 106. On the other hand, the multiplier 110 multiplies the input signal by the sine component of the reproduced carrier generated by the NCO 106.
 乗算器108によって得られた同相成分の信号のうち所定の周波数帯域成分がLPF112によって通過され、この信号が位相検出器118、2値化回路120及び2乗和算出回路122に供給される。LPF112は、図16を参照して後述するように、CPU63から与えられた積分時間だけ、乗算器108から出力された信号を積分する積分器により構成することができる。後述するその他のLPF114、LPF132、LPF134、LPF142、及びLPF144についても同様である。 A predetermined frequency band component of the in-phase component signal obtained by the multiplier 108 is passed by the LPF 112, and this signal is supplied to the phase detector 118, the binarization circuit 120 and the square sum calculation circuit 122. As will be described later with reference to FIG. 16, the LPF 112 can be configured by an integrator that integrates the signal output from the multiplier 108 for the integration time given from the CPU 63. The same applies to other LPF 114, LPF 132, LPF 134, LPF 142, and LPF 144 described later.
 一方、乗算器110によって得られた直交成分の信号のうち所定の周波数帯域成分がLPF114によって通過され、この信号が位相検出器118及び2乗和算出回路122に供給される。 On the other hand, a predetermined frequency band component of the orthogonal component signal obtained by the multiplier 110 is passed by the LPF 114, and this signal is supplied to the phase detector 118 and the square sum calculation circuit 122.
 LPF112及び114のそれぞれから出力された信号に基づいて位相検出器118によって検出された位相情報がループフィルタ116を介してNCO106に供給される。ループフィルタ116からNCO106への位相情報は、例えば、1ミリ秒ごとに供給される。 The phase information detected by the phase detector 118 based on the signals output from the LPFs 112 and 114 is supplied to the NCO 106 via the loop filter 116. The phase information from the loop filter 116 to the NCO 106 is supplied, for example, every 1 millisecond.
 2乗和算出回路122では、LPF112及び114のそれぞれから出力された信号の2乗和(I+Q)が、位相がPとされる拡散符号についての相関値(P)として出力される。 In the square sum calculation circuit 122, the square sum (I 2 + Q 2 ) of the signals output from the LPFs 112 and 114 is output as a correlation value (P) for a spreading code whose phase is P.
 さらに、LPF112から出力された信号は、2値化回路120にも供給され、2値化回路120において2値化されて得られた情報が、航法メッセージとして出力される。 Furthermore, the signal output from the LPF 112 is also supplied to the binarization circuit 120, and information obtained by binarization in the binarization circuit 120 is output as a navigation message.
 一方、DLL102においては、入力されたIF信号が、乗算器124と乗算器126に供給される。 On the other hand, in the DLL 102, the input IF signal is supplied to the multiplier 124 and the multiplier 126.
 乗算器124では、入力されたIF信号と、位相がPよりも進んだE(Early)とされる拡散符号が乗算され、乗算器128及び乗算器130に供給される。位相がPよりも進んだEとされる拡散符号は、PNG154によって発生されて、乗算器124に供給される。 In the multiplier 124, the input IF signal is multiplied by a spreading code that is E (Early) whose phase is ahead of P, and is supplied to the multiplier 128 and the multiplier 130. A spreading code whose phase is E ahead of P is generated by PNG 154 and supplied to multiplier 124.
 乗算器126では、入力されたIF信号と、位相がPよりも遅れたL(Late)とされる拡散符号が乗算され、乗算器1138及び乗算器140に供給される。位相がPよりも遅れたLとされる拡散符号は、PNG154によって発生され、乗算器126に供給される。 In the multiplier 126, the input IF signal is multiplied by a spread code whose phase is L (Late) delayed from P, and supplied to the multiplier 1138 and the multiplier 140. A spreading code whose phase is L later than P is generated by PNG 154 and supplied to multiplier 126.
 そして、乗算器124によって得られた信号に対して、コスタスループ101におけるNCO106によって生成された再生キャリアのうちのコサイン成分が乗算器128によって乗算される。また、乗算器124によって得られた信号に対して、NCO106によって生成された再生キャリアのうちのサイン成分が乗算器130によって乗算される。 Then, the signal obtained by the multiplier 124 is multiplied by the multiplier 128 by the cosine component of the regenerated carrier generated by the NCO 106 in the Costas loop 101. In addition, the signal obtained by the multiplier 124 is multiplied by the multiplier 130 by the sine component of the reproduced carrier generated by the NCO 106.
 乗算器128によって得られた同相成分の信号のうち所定の周波数帯域成分がLPF132によって通過され、この信号が2乗和算出回路136に供給される。一方、乗算器130によって得られた直交成分の信号のうち所定の周波数帯域成分がLPF134によって通過され、この信号が2乗和算出回路136に供給される。 A predetermined frequency band component of the in-phase component signal obtained by the multiplier 128 is passed by the LPF 132, and this signal is supplied to the square sum calculation circuit 136. On the other hand, a predetermined frequency band component of the orthogonal component signal obtained by the multiplier 130 is passed by the LPF 134, and this signal is supplied to the square sum calculation circuit 136.
 また、DLL102においては、乗算器126によって得られた信号に対して、コスタスループ101におけるNCO106によって生成された再生キャリアのうちのコサイン成分が乗算器138によって乗算される。また、乗算器126によって得られた信号に対して、NCO106によって生成された再生キャリアのうちのサイン成分が乗算器140によって乗算される。 In the DLL 102, the multiplier 138 multiplies the signal obtained by the multiplier 126 with the cosine component of the regenerated carrier generated by the NCO 106 in the Costas loop 101. In addition, the signal obtained by the multiplier 126 is multiplied by the multiplier 140 by the sine component of the reproduced carrier generated by the NCO 106.
 乗算器138によって得られた同相成分の信号のうち所定の周波数帯域成分がLPF142によって通過され、この信号が2乗和算出回路146に供給される。一方、乗算器140によって得られた直交成分の信号のうち所定の周波数帯域成分がLPF144によって通過され、この信号が2乗和算出回路146に供給される。 A predetermined frequency band component of the in-phase component signal obtained by the multiplier 138 is passed by the LPF 142, and this signal is supplied to the square sum calculation circuit 146. On the other hand, a predetermined frequency band component of the orthogonal component signal obtained by the multiplier 140 is passed by the LPF 144, and this signal is supplied to the square sum calculation circuit 146.
 2乗和算出回路136及び146のそれぞれから出力された信号が位相検出器148に供給され、これらの信号に基づいて位相検出器148によって検出された位相情報がループフィルタ150を介してNCO152に供給される。ループフィルタ150からNCO152への位相情報は、例えば、20ミリ秒ごとに供給される。 Signals output from the sum of squares calculation circuits 136 and 146 are supplied to the phase detector 148, and phase information detected by the phase detector 148 based on these signals is supplied to the NCO 152 via the loop filter 150. Is done. The phase information from the loop filter 150 to the NCO 152 is supplied, for example, every 20 milliseconds.
 さらに、NCO152によって生成された所定の周波数を有する信号に基づいて、PNG154によって各位相E,P,Lの拡散符号が発生される。 Further, based on a signal having a predetermined frequency generated by the NCO 152, a spreading code of each phase E, P, L is generated by the PNG 154.
 また、2乗和算出回路136によって算出された2乗和(I+Q)が、位相がEとされる拡散符号についての相関値(E)として出力される。そして、2乗和算出回路146によって算出された2乗和(I+Q)が、位相がLとされる拡散符号についての相関値(L)として出力される。 The sum of squares (I 2 + Q 2 ) calculated by the sum-of-squares calculation circuit 136 is output as a correlation value (E) for a spreading code whose phase is E. Then, the square sum (I 2 + Q 2 ) calculated by the square sum calculation circuit 146 is output as a correlation value (L) for a spreading code whose phase is L.
 以上のように構成されるチャンネル回路100を有する同期保持部62では、動作開始前に、GPS衛星の衛星番号、拡散符号の位相、及びキャリア周波数が初期値として設定される。そして、同期保持部62は、与えられた初期値を用いて、高精度に、拡散符号とキャリア周波数の位相を行う。なお、初期値の設定は、同期捕捉部61と同期保持部62との間で直接的に通信を行うか、又は、CPU63を介して行うことによってなされる。 In the synchronization holding unit 62 having the channel circuit 100 configured as described above, the GPS satellite number, the spread code phase, and the carrier frequency are set as initial values before the operation is started. Then, the synchronization holding unit 62 performs the phase of the spread code and the carrier frequency with high accuracy using the given initial value. The initial value is set by communicating directly between the synchronization capturing unit 61 and the synchronization holding unit 62 or via the CPU 63.
<受信処理の処理フロー>
 次に、図7のフローチャートを参照して、受信装置1による受信処理を説明する。この処理は、例えば、受信開始の指示が、制御端子等を介して入力されたとき、開始される。
<Reception processing flow>
Next, reception processing by the reception device 1 will be described with reference to the flowchart of FIG. This process is started, for example, when an instruction to start reception is input via a control terminal or the like.
 初めに、ステップS1において、受信装置1は、初期設定を行う。すなわち、復調部13の同期捕捉部61は、GPS衛星の衛星番号、拡散符号の位相、及びキャリア周波数などの情報を検出する。そして、同期捕捉部61は、検出したGPS衛星の衛星番号、拡散符号の位相、及びキャリア周波数などの情報を、初期値として、CPU63を介して同期保持部62に供給する。受信開始当初においては、イネーブル信号生成部14により生成されるイネーブル信号の間欠率は0%であり、復調部13には、連続的なIF信号が入力される。 First, in step S1, the receiving device 1 performs initial setting. That is, the synchronization acquisition unit 61 of the demodulation unit 13 detects information such as the satellite number of the GPS satellite, the phase of the spreading code, and the carrier frequency. Then, the synchronization acquisition unit 61 supplies information such as the detected satellite number of the GPS satellite, the phase of the spreading code, and the carrier frequency to the synchronization holding unit 62 via the CPU 63 as initial values. At the beginning of reception, the intermittent rate of the enable signal generated by the enable signal generation unit 14 is 0%, and a continuous IF signal is input to the demodulation unit 13.
 同期捕捉部61は、検出した情報を同期保持部62に供給した後は、動作を停止する。 The synchronization acquisition unit 61 stops the operation after supplying the detected information to the synchronization holding unit 62.
 ステップS2において、受信装置1は、拡散符号の位相、及びキャリア周波数のトラッキングを開始する。すなわち、復調部13の同期保持部62は、同期捕捉部61から供給された初期値を用いて、拡散符号とキャリア周波数の位相のトラッキングを行う。 In step S2, the receiving apparatus 1 starts tracking the phase of the spreading code and the carrier frequency. In other words, the synchronization holding unit 62 of the demodulation unit 13 uses the initial value supplied from the synchronization acquisition unit 61 to track the phase of the spread code and the carrier frequency.
 ステップS3において、CPU63は、受信状態が良好であるかを判定する。具体的には、CPU63は、受信信号のC/N(Carrier to Noise)比を計算し、C/N比が予め定めた所定の閾値よりも大きいか否かを判定する。受信信号のC/N比は、例えば、同期保持部62で得られる相関値を用いて算出することができる。相関値を用いたC/N比の算出方法は、例えば、InsideGNSS,2009,9-10,pp.20-29に開示されているが、これに限られない。 In step S3, the CPU 63 determines whether or not the reception state is good. Specifically, the CPU 63 calculates a C / N (Carrier to Noise) ratio of the received signal and determines whether or not the C / N ratio is larger than a predetermined threshold value. The C / N ratio of the received signal can be calculated using a correlation value obtained by the synchronization holding unit 62, for example. A method for calculating the C / N ratio using the correlation value is disclosed in, for example, InsideGNSS, 2009, 9-10, pp. 20-29, but is not limited thereto.
 ステップS3で、受信状態が良好であると判定された場合、処理はステップS4に進み、CPU63は、周波数変換部12を間欠動作させる。 If it is determined in step S3 that the reception state is good, the process proceeds to step S4, and the CPU 63 causes the frequency converter 12 to operate intermittently.
 具体的には、CPU63は、例えば周期1ミリ秒及び間欠率50%を表す制御情報をイネーブル信号生成部14に供給し、イネーブル信号生成部14は、CPU63からの制御情報に対応したイネーブル信号を生成し、周波数変換部12の局部発振回路44を除く各部に供給する。周波数変換部12の局部発振回路44を除く各部は、イネーブル信号に基づいて、バイアス電流、または、電源をオンオフさせることにより、間欠動作を行う。 Specifically, the CPU 63 supplies control information representing, for example, a cycle of 1 millisecond and an intermittent rate of 50% to the enable signal generation unit 14, and the enable signal generation unit 14 provides an enable signal corresponding to the control information from the CPU 63. It is generated and supplied to each part of the frequency converter 12 except for the local oscillator circuit 44. Each part of the frequency converter 12 except the local oscillation circuit 44 performs an intermittent operation by turning on and off the bias current or the power supply based on the enable signal.
 一方、ステップS3で、受信状態が良好ではないと判定された場合、処理はステップS5に進み、CPU63は、周波数変換部12を連続動作させる。 On the other hand, if it is determined in step S3 that the reception state is not good, the process proceeds to step S5, and the CPU 63 causes the frequency conversion unit 12 to operate continuously.
 具体的には、CPU63は、連続動作を表す制御情報をイネーブル信号生成部14に供給し、イネーブル信号生成部14は、CPU63からの制御情報に対応したイネーブル信号(間欠なしのイネーブル信号)を生成し、周波数変換部12の局部発振回路44を除く各部に供給する。周波数変換部12の局部発振回路44を除く各部は、イネーブル信号に基づいて連続動作を行う。 Specifically, the CPU 63 supplies control information indicating continuous operation to the enable signal generation unit 14, and the enable signal generation unit 14 generates an enable signal (an enable signal without intermittent) corresponding to the control information from the CPU 63. And supplied to each part of the frequency converter 12 except for the local oscillator circuit 44. Each part of the frequency converter 12 except the local oscillation circuit 44 performs continuous operation based on the enable signal.
 なお、ステップS4またはステップS5において、現在実行中の動作と、変更後の動作が同じ場合には、現在実行中の動作が、そのまま継続される。 In step S4 or step S5, when the operation currently being executed is the same as the operation after the change, the operation currently being executed is continued as it is.
 ステップS4またはステップS5の後、処理はステップS2に戻り、それ以降の処理が繰り返される。 After step S4 or step S5, the process returns to step S2, and the subsequent processes are repeated.
 図7の受信処理が、例えば、受信終了の指示が制御端子等を介して供給されるまでの間、実行される。 7 is executed until, for example, a reception end instruction is supplied via the control terminal or the like.
<間欠動作時の同期保持部の動作>
 次に、周波数変換部12が間欠動作している場合の同期保持部62の動作について説明する。
<Operation of the synchronization holding unit during intermittent operation>
Next, the operation of the synchronization holding unit 62 when the frequency conversion unit 12 is intermittently operated will be described.
 図8は、周波数変換部12が間欠動作している場合のDLL102の動作を説明する図である。 FIG. 8 is a diagram for explaining the operation of the DLL 102 when the frequency conversion unit 12 is intermittently operated.
 図3を参照して説明したように、GPS衛星からの信号データの1ビットは、20ミリ秒である。また、周波数変換部12の間欠周期は、RF信号の1ビット長より短周期に設定され、本実施の形態では、1ミリ秒周期である。 As described with reference to FIG. 3, one bit of the signal data from the GPS satellite is 20 milliseconds. Further, the intermittent period of the frequency conversion unit 12 is set to a period shorter than the 1-bit length of the RF signal, and in this embodiment, the period is 1 millisecond.
 従って、図8に示されるように、DLL102には、20ミリ秒内において1ミリ秒周期で間欠しているIF信号が入力される。 Therefore, as shown in FIG. 8, the IF signal that is intermittent in a cycle of 1 millisecond within 20 milliseconds is input to the DLL 102.
 しかし、周波数変換部12が間欠動作している場合であっても、同期保持部62のNCO106およびNCO152は連続動作しているため、DLL102のPNG154が発生する拡散符号が不連続になることとはない。したがって、周波数変換部12が間欠動作している場合であっても、拡散符号の位相がずれることはない。 However, even if the frequency conversion unit 12 is intermittently operating, the NCO 106 and NCO 152 of the synchronization holding unit 62 are continuously operating, so that the spreading code generated by the PNG 154 of the DLL 102 is discontinuous. Absent. Therefore, even if the frequency converter 12 is intermittently operated, the phase of the spread code is not shifted.
 次に、図9を参照して、キャリアの同期についても説明する。 Next, carrier synchronization will also be described with reference to FIG.
 図9の2段目の信号は、周波数変換部12の乗算器46において、受信信号と、局部発振回路44で生成した局部発振信号を乗算した後の、間欠動作を行わない場合のキャリアを示している。 The second stage signal in FIG. 9 indicates a carrier when the intermittent operation is not performed after the multiplier 46 of the frequency converter 12 multiplies the received signal by the local oscillation signal generated by the local oscillation circuit 44. ing.
 図9の3段目の信号は、局部発振回路44を連続動作させたまま、それ以外の周波数変換部12の各部をイネーブル信号に基づいて間欠動作させた場合に、乗算器46から出力されるキャリアを示している。 The signal in the third stage in FIG. 9 is output from the multiplier 46 when the other parts of the frequency converter 12 are intermittently operated based on the enable signal while the local oscillation circuit 44 is continuously operated. Shows career.
 一方、図9の4段目の信号は、局部発振回路44を含む周波数変換部12のすべてをイネーブル信号に基づいて間欠動作させた場合に、乗算器46から出力されるキャリアを示している。 On the other hand, the signal in the fourth stage in FIG. 9 indicates the carrier output from the multiplier 46 when all the frequency converters 12 including the local oscillator circuit 44 are intermittently operated based on the enable signal.
 局部発振回路44を含む周波数変換部12のすべてをイネーブル信号に基づいて間欠動作させた場合には、局部発振回路44の動作も停止し、再開されるときには、PLL回路が毎回初期動作から始まるため、図9に示されるように、前のオン時のキャリアと位相の一貫性は保たれない。したがって、キャリア同期はできず、かなり不安定となり、結果として測位できない場合も起こり得る。 When all the frequency conversion units 12 including the local oscillation circuit 44 are intermittently operated based on the enable signal, the operation of the local oscillation circuit 44 is also stopped, and when restarted, the PLL circuit starts from the initial operation every time. As shown in FIG. 9, the carrier and phase consistency at the previous ON time is not maintained. Therefore, carrier synchronization cannot be performed, and it becomes considerably unstable. As a result, positioning may not be possible.
 しかし、周波数変換部12が行うように、局部発振回路44を連続動作させたまま、それ以外の周波数変換部12の各部をイネーブル信号に基づいて間欠動作させた場合には、局部発振回路44が連続動作しているため、前のオン時のキャリアと位相の一貫性を保つことができる。 However, when the local oscillation circuit 44 is continuously operated and the other parts of the frequency conversion unit 12 are intermittently operated based on the enable signal as the frequency conversion unit 12 performs, the local oscillation circuit 44 is Because of the continuous operation, it is possible to maintain the consistency of the carrier and phase at the previous ON time.
 入力されるIF信号が間欠信号である場合、同期保持部62のコスタスループ101のLPF112及び114では、キャリアが入力されない期間は有意な積分がなされないため、間欠率が50%であるときの積分値は、連続動作時の半分になる。 When the input IF signal is an intermittent signal, the LPFs 112 and 114 of the Costas loop 101 of the synchronization holding unit 62 do not perform significant integration during a period in which no carrier is input, and therefore integration when the intermittent rate is 50%. The value is half that of continuous operation.
 しかし、キャリアの位相の一貫性が保たれているので、コスタスループ101のLPF112及び114の積分時間を間欠周期より長く設定することにより、NCO106の周波数制御は不連続になることが無いため、キャリアの同期を維持することができる。 However, since the carrier phase is consistent, the frequency control of the NCO 106 does not become discontinuous by setting the integration time of the LPFs 112 and 114 of the Costas loop 101 longer than the intermittent period. Can be kept in sync.
 コスタスループ101のLPF112及び114に与えられる積分時間は、例えば、間欠周期を1ミリ秒とすると、積分時間は、2ミリ秒、5ミリ秒、10ミリ秒、20ミリ秒などとすることができる。 The integration time given to the LPFs 112 and 114 of the Costas loop 101 can be, for example, 2 milliseconds, 5 milliseconds, 10 milliseconds, 20 milliseconds, etc., assuming that the intermittent period is 1 millisecond. .
<間欠動作による効果>
 図10は、受信装置1が、RF信号パスを間欠動作させた場合の復調結果と、間欠動作させずに連続動作させた場合の復調結果の例を示している。
<Effects of intermittent operation>
FIG. 10 shows an example of a demodulation result when the reception apparatus 1 operates the RF signal path intermittently and a demodulation result when the reception apparatus 1 operates continuously without performing the intermittent operation.
 図10に示されるように、RF信号パスを間欠動作させた場合、C/N比は、間欠時間比の分だけ劣化する。 As shown in FIG. 10, when the RF signal path is intermittently operated, the C / N ratio is deteriorated by the intermittent time ratio.
 しかし、図11に示されるように、受信場所が屋内であるか、障害物が多い屋外である場合に、C/N比は大きく劣化するが、障害物がほとんどない屋外のような、いわゆるオープンスカイ(Open Sky)の好条件下においては、C/N比が多少劣化しても位置精度に対する影響は少ない。 However, as shown in FIG. 11, when the reception place is indoors or outdoors where there are many obstacles, the C / N ratio is greatly deteriorated, but the so-called open like outdoors where there are almost no obstacles. Under favorable conditions of sky (OpenOSky), even if the C / N ratio is somewhat deteriorated, the influence on the position accuracy is small.
 従って、受信装置1によれば、RF信号パスを間欠動作させることにより、測位精度に影響を及ぼすことなく、消費電力を低減させることができ、例えば、電池を長く持たせることができる。 Therefore, according to the receiving apparatus 1, by intermittently operating the RF signal path, power consumption can be reduced without affecting the positioning accuracy, for example, the battery can be made longer.
 なお、RF信号パスを間欠動作させることにより、復調信号のC/N比は劣化するが、図11に示されるように、測距誤差の要因としては、C/N比の劣化以外の要因もあるため、受信状態が良好なところでは、C/N比劣化の影響は少ない。 Although the C / N ratio of the demodulated signal is deteriorated by intermittently operating the RF signal path, as shown in FIG. 11, there are factors other than the deterioration of the C / N ratio as the factors of ranging errors. Therefore, when the reception state is good, the influence of the C / N ratio deterioration is small.
 そこで、受信装置1のCPU63は、受信信号の受信状態に基づいて、間欠動作をオンオフさせるだけでなく、間欠率を制御(変更)するようにしてもよい。 Therefore, the CPU 63 of the receiving device 1 may control (change) the intermittent rate as well as turning on / off the intermittent operation based on the reception state of the received signal.
 図12は、間欠率とC/N比の劣化との関係を示す図である。 FIG. 12 is a diagram showing the relationship between the intermittent rate and the deterioration of the C / N ratio.
 C/N比の劣化は、10Log10(1-間欠率)[dB]で表すことができ、例えば、間欠率が50%のときには、C/N比は、3dB劣化する。 The deterioration of the C / N ratio can be expressed by 10 Log 10 (1-intermittent rate) [dB]. For example, when the intermittent rate is 50%, the C / N ratio deteriorates by 3 dB.
 図13は、間欠率と消費電力の関係を示す図である。 FIG. 13 is a diagram showing the relationship between the intermittent rate and the power consumption.
 消費電力の減少量は、間欠動作を行う間欠動作部の総消費電力×間欠率で表される。 The decrease in power consumption is represented by the total power consumption of the intermittent operation unit that performs intermittent operation × intermittent rate.
 図12及び図13に示されるように、間欠率が大きいほど、C/N比の劣化が大きくなるが、消費電力をより低減させることはできるため、CPU63は、受信信号のC/N比を、同期保持部62で得られる相関値を用いて算出し、C/N比に基づいて、受信状態が良い場合には間欠率を高くし、受信状態が悪い場合には間欠率を低くするか、または、間欠動作を停止させるように制御することができる。 As shown in FIG. 12 and FIG. 13, the greater the intermittent rate, the greater the deterioration of the C / N ratio. However, since the power consumption can be further reduced, the CPU 63 reduces the C / N ratio of the received signal. Whether the intermittent rate is calculated when the reception state is good and the intermittent rate is low when the reception state is bad, based on the C / N ratio, calculated using the correlation value obtained by the synchronization holding unit 62 Alternatively, the intermittent operation can be controlled to stop.
 あるいはまた、受信装置1が、節電モードなど、複数の動作モードを備え、ユーザが所望の動作モードを設定可能である場合、ユーザが設定した動作モードに応じて、間欠率を変更してもよい。例えば、第1の動作モードでは、間欠動作するときは間欠率20%で動作し、第2の動作モードでは、間欠動作するときは間欠率40%で動作する、などのように設定することができる。C/N比に基づいて間欠率を変化させるモードを、複数の動作モードのうちの一つとしてもよい。 Alternatively, when the receiving device 1 includes a plurality of operation modes such as a power saving mode and the user can set a desired operation mode, the intermittent rate may be changed according to the operation mode set by the user. . For example, in the first operation mode, the intermittent operation may be performed at an intermittent rate of 20%, and in the second operation mode, the intermittent operation may be performed at an intermittent rate of 40%. it can. The mode for changing the intermittent rate based on the C / N ratio may be one of a plurality of operation modes.
<変形例>
 上述した実施の形態では、間欠動作時においては、局部発振回路44を除く周波数変換部12の各部のみが、イネーブル信号に応じて動作をオンオフするする構成とされていた。
<Modification>
In the above-described embodiment, during the intermittent operation, only each part of the frequency conversion unit 12 except the local oscillation circuit 44 is configured to turn on / off the operation according to the enable signal.
 しかし、間欠動作する場合には、周波数変換部12だけでなく、同期保持部62内のコスタスループ101とDLL102の乗算器とLPFについても、間欠動作させるようにしてもよい。 However, when the intermittent operation is performed, not only the frequency conversion unit 12 but also the Costas loop 101 and the multiplier of the DLL 102 and the LPF in the synchronization holding unit 62 may be intermittently operated.
 具体的には、図14のチャンネル回路100において、破線よりも左側に配置されている、乗算器104、乗算器108、乗算器110、乗算器124、乗算器126、乗算器128、乗算器130、乗算器138、および乗算器140と、LPF112、LPF114、LPF132、LPF134、LPF142、及びLPF144を間欠動作させることができる。 Specifically, in the channel circuit 100 of FIG. 14, the multiplier 104, the multiplier 108, the multiplier 110, the multiplier 124, the multiplier 126, the multiplier 128, and the multiplier 130 are arranged on the left side of the broken line. The multiplier 138, the multiplier 140, and the LPF 112, LPF 114, LPF 132, LPF 134, LPF 142, and LPF 144 can be intermittently operated.
 図14に示されるように、破線より左側は、右側よりも動作クロック周波数が高いため、周波数変換部12の間欠動作とともに、コスタスループ101とDLL102の乗算器とLPFも間欠動作させることで、同期保持部62の消費電力も効果的に低減することができる。 As shown in FIG. 14, the operation clock frequency on the left side of the broken line is higher than that on the right side. The power consumption of the holding part 62 can also be reduced effectively.
 図15及び図16を参照して、コスタスループ101とDLL102の乗算器とLPFが間欠動作した場合について説明する。 A case where the Costas loop 101, the multiplier of the DLL 102, and the LPF intermittently operate will be described with reference to FIGS.
 図15は、コスタスループ101のLPF112の詳細構成例を示している。なお、以下では、LPF112の動作について説明するが、その他のLPFについても同様である。 FIG. 15 shows a detailed configuration example of the LPF 112 of the Costas loop 101. The operation of the LPF 112 will be described below, but the same applies to other LPFs.
 LPF112は、加算器181、セレクタ182、積算部183、保持部184、及び制御部185により構成される。 The LPF 112 includes an adder 181, a selector 182, an accumulating unit 183, a holding unit 184, and a control unit 185.
 加算器181は、乗算器108から出力された信号(クロック信号)と、積算部183から供給される信号を加算して、セレクタ182に出力する。 The adder 181 adds the signal (clock signal) output from the multiplier 108 and the signal supplied from the integrating unit 183 and outputs the result to the selector 182.
 セレクタ182は、制御部185から供給される制御信号に基づいて、2つの入力信号のいずれかを選択して、積算部183に出力する。具体的には、供給される制御信号が1(“Hi”)である場合、セレクタ182は、加算器181から入力される信号を、積算部183に出力し、供給される制御信号が0(“Low”)である場合、セレクタ182は、他方の入力であるリセット信号(0)を選択して、積算部183に出力する。 The selector 182 selects one of the two input signals based on the control signal supplied from the control unit 185, and outputs the selected signal to the integrating unit 183. Specifically, when the supplied control signal is 1 (“Hi”), the selector 182 outputs the signal input from the adder 181 to the integrating unit 183, and the supplied control signal is 0 ( In the case of “Low”), the selector 182 selects the reset signal (0) that is the other input, and outputs it to the integrating unit 183.
 積算部183は、セレクタ182から供給される信号を、1つ前の積分値と加算し、その加算結果を出力する。セレクタ182から積算部183に、加算器181からの信号が供給された場合には、供給された信号が、それまでの積分値と加算される。一方、セレクタ182から積算部183に、リセット信号が供給された場合には、積算部183内に記憶されている積分値がリセットされる。積算部183から出力された信号は、保持部184に供給される他、加算器181にもフィードバックされる。 The integrating unit 183 adds the signal supplied from the selector 182 to the previous integrated value, and outputs the addition result. When the signal from the adder 181 is supplied from the selector 182 to the accumulating unit 183, the supplied signal is added to the integration value so far. On the other hand, when a reset signal is supplied from the selector 182 to the integrating unit 183, the integrated value stored in the integrating unit 183 is reset. The signal output from the accumulating unit 183 is fed back to the adder 181 in addition to being supplied to the holding unit 184.
 保持部184は、積算部183から供給された信号(積分値)を保持し、制御部185から、0(“Low”)の制御信号が供給された場合に、保持していた信号(積分値)を出力する。 The holding unit 184 holds the signal (integrated value) supplied from the integrating unit 183, and the signal (integrated value) held when a control signal of 0 (“Low”) is supplied from the control unit 185. ) Is output.
 制御部185は、CPU63から供給される積分時間に対応して、1(“Hi”)または0(“Low”)の制御信号を、セレクタ182および保持部184に供給する。 The control unit 185 supplies a control signal of 1 (“Hi”) or 0 (“Low”) to the selector 182 and the holding unit 184 in accordance with the integration time supplied from the CPU 63.
 図16は、イネーブル信号、制御部185が出力する制御信号、乗算器108から加算器181に供給される信号、及び、保持部184に蓄積される積分値を示している。 FIG. 16 shows an enable signal, a control signal output from the control unit 185, a signal supplied from the multiplier 108 to the adder 181, and an integral value accumulated in the holding unit 184.
 同期保持部62が間欠動作を行う場合、乗算器108から加算器181に供給される信号も、図16に示されるように、イネーブル信号に応じた間欠信号となる。しかし、その場合であっても、積算部183及び保持部184に記憶されている積分値は、リセットされずに、保持されるため、積分値は、連続動作時と比べて小さくなるが、処理自体に支障はない。 When the synchronization holding unit 62 performs an intermittent operation, the signal supplied from the multiplier 108 to the adder 181 is also an intermittent signal corresponding to the enable signal as shown in FIG. However, even in that case, the integrated values stored in the integrating unit 183 and the holding unit 184 are held without being reset, and thus the integrated value becomes smaller than that during continuous operation. There is no problem in itself.
 そして、積分時間が経過した場合に、0(“Low”)の制御信号が、セレクタ182および保持部184に供給され、それまでの積算値が保持部184から出力されるとともに、積算部183に記憶されている積分値がリセットされる。 Then, when the integration time has elapsed, a control signal of 0 (“Low”) is supplied to the selector 182 and the holding unit 184, and the integrated value up to that time is output from the holding unit 184 and also to the integrating unit 183. The stored integral value is reset.
 以上のように、周波数変換部12だけでなく、同期保持部62内のコスタスループ101とDLL102の乗算器とLPFの動作も間欠動作させることにより、さらに消費電力を低減させることができる。 As described above, the power consumption can be further reduced by intermittently operating not only the frequency conversion unit 12 but also the Costas loop 101 and the multipliers of the DLL 102 and the LPF in the synchronization holding unit 62.
 なお、図16の例では、コスタスループ101とDLL102の乗算器とLPFの間欠動作を、イネーブル信号に同期させているが、必ずしも同期させなくてもよい。 In the example of FIG. 16, the intermittent operation of the multiplier of the Costas loop 101, the DLL 102, and the LPF is synchronized with the enable signal, but it is not always necessary to synchronize.
 以上、受信装置1によれば、イネーブル信号を生成し、生成したイネーブル信号に基づいて、周波数変換部12のRF信号パスを、RF信号の1ビット長より短周期で間欠動作させることで、測位頻度を落とさずに、消費電力を低減させることができる。 As described above, according to the receiving device 1, the enable signal is generated, and the positioning is performed by intermittently operating the RF signal path of the frequency converter 12 with a cycle shorter than the 1-bit length of the RF signal based on the generated enable signal. Power consumption can be reduced without reducing the frequency.
 また、周波数変換部12の局部発振回路44については常時動作させておくことで、動作停止の前後でもキャリアと位相の一貫性を保つことができ、継続的な測位が可能である。 In addition, by always operating the local oscillation circuit 44 of the frequency converter 12, the carrier and the phase can be kept consistent before and after the operation is stopped, and continuous positioning is possible.
 さらに、受信状態に応じて、間欠率を制御することで、C/N比の劣化を考慮した、消費電力の低減が可能となる。換言すれば、消費電力と受信感度劣化のバランスを調整した受信が可能である。 Furthermore, by controlling the intermittent rate according to the reception state, it is possible to reduce the power consumption in consideration of the deterioration of the C / N ratio. In other words, it is possible to perform reception with a balance between power consumption and reception sensitivity degradation adjusted.
 なお、上述した実施の形態では、受信装置1が、GPS衛星から送信されてくる送信信号を受信して、現在地を測位するGPS受信機であるとして説明した。 In the above-described embodiment, the receiving apparatus 1 has been described as a GPS receiver that receives a transmission signal transmitted from a GPS satellite and measures the current location.
 しかし、本開示にかかる技術は、GPS衛星から送信されてくる送信信号を受信する受信装置に限らず、その他のGNSS(Global Navigation Satellite System)の衛星から送信されてくるスペクトラム拡散信号を受信する受信装置にも適用可能である。 However, the technology according to the present disclosure is not limited to a receiving device that receives a transmission signal transmitted from a GPS satellite, but receives a spread spectrum signal transmitted from another GNSS (Global Navigation Satellite System) satellite. It is also applicable to the device.
 その他のGNSSとしては、ロシアにより運用されるGLONASS(Global Navigation Satellites System)、中国により運用されるBeiDou、EU(欧州連合)により運用されるGalileo、補完衛星として日本の準天頂衛星などがある。 Other GNSS include GLONASS (Global Navigation Satellite Systems) operated by Russia, BeiDou operated by China, Galileo operated by EU (European Union), and Japan's Quasi-Zenith Satellite as a complementary satellite.
 例えば、GLONASS衛星から送信される送信信号は、50bpsのデータを符号長511、チップレート0.511MHzのスペクトラム拡散信号に基づいて1602MHz+p×0.5625MHz(pは各衛星の周波数チャンネル番号)の搬送波をBPSK変調した信号である。 For example, a transmission signal transmitted from a GLONASS satellite uses a carrier wave of 1602 MHz + p × 0.5625 MHz (p is the frequency channel number of each satellite) based on a spread spectrum signal having a code length of 511 and a chip rate of 0.511 MHz. This is a BPSK modulated signal.
 さらに言えば、本開示にかかる技術は、例えば、GPS衛星とGLONASS衛星からの送信信号を受信する受信装置など、複数のGNSSの送信信号を受信する受信装置にも適用可能である。 Furthermore, the technology according to the present disclosure can be applied to a receiving apparatus that receives a plurality of GNSS transmission signals, such as a receiving apparatus that receives transmission signals from GPS satellites and GLONASS satellites.
 本開示の実施の形態は、上述した実施の形態に限定されるものではなく、本開示の要旨を逸脱しない範囲において種々の変更が可能である。 The embodiment of the present disclosure is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present disclosure.
 例えば、上述した複数の実施の形態の全てまたは一部を組み合わせた形態を採用することができる。 For example, it is possible to adopt a form in which all or a part of the plurality of embodiments described above are combined.
 また、上述のフローチャートで説明した各ステップは、1つの装置で実行する他、複数の装置で分担して実行することができる。 Further, each step described in the above flowchart can be executed by one device or can be shared by a plurality of devices.
 さらに、1つのステップに複数の処理が含まれる場合には、その1つのステップに含まれる複数の処理は、1つの装置で実行する他、複数の装置で分担して実行することができる。 Further, when a plurality of processes are included in one step, the plurality of processes included in the one step can be executed by being shared by a plurality of apparatuses in addition to being executed by one apparatus.
 なお、本明細書に記載された効果はあくまで例示であって限定されるものではなく、本明細書に記載されたもの以外の効果があってもよい。 It should be noted that the effects described in this specification are merely examples and are not limited, and there may be effects other than those described in this specification.
 なお、本開示の技術は以下のような構成も取ることができる。
(1)
 受信したRF信号を、局部発振回路で生成された局部発振信号と乗算することにより、前記RF信号を、それより低い中間周波数のIF信号に変換する周波数変換部と、
 前記周波数変換部内の、RF信号の信号経路であるRF信号パスの各部を間欠動作させる制御を行う制御部と
 を備える受信装置。
(2)
 前記周波数変換部は、前記局部発振信号を前記RF信号と乗算する前に、前記局部発振信号を増幅する増幅器を有し、
 前記制御部は、前記RF信号パスの各部に加えて、前記増幅器も間欠動作させる
 前記(1)に記載の受信装置。
(3)
 前記周波数変換部において、前記RF信号パスの各部の間欠動作中、前記局部発振回路は連続動作する
 前記(1)または(2)に記載の受信装置。
(4)
 前記制御部は、前記間欠動作の間欠率も制御する
 前記(1)乃至(3)のいずれかに記載の受信装置。
(5)
 前記制御部は、前記RF信号の受信状態に応じて、前記間欠率を制御する
 前記(4)に記載の受信装置。
(6)
 前記RF信号の受信状態は、C/N比である
 前記(5)に記載の受信装置。
(7)
 前記制御部は、動作モードに応じて、前記間欠率を制御する
 前記(4)乃至(6)のいずれかに記載の受信装置。
(8)
 前記周波数変換部により変換された前記IF信号を復調する復調部をさらに備え、
 前記制御部は、前記RF信号パスの各部の間欠動作時には、前記復調部内の乗算器とLPFも間欠動作させる
 前記(1)乃至(7)のいずれかに記載の受信装置。
(9)
 前記制御部は、前記RF信号パスの各部を、前記RF信号の1ビット長より短周期で間欠動作させる
 前記(1)乃至(8)のいずれかに記載の受信装置。
(10)
 周波数変換部と制御部とを備える受信装置の
 前記周波数変換部が、受信したRF信号を、局部発振回路で生成された局部発振信号と乗算することにより、前記RF信号を、それより低い中間周波数のIF信号に変換し、
 前記制御部が、前記周波数変換部内の、RF信号の信号経路であるRF信号パスの各部を間欠動作させる制御を行う
 受信方法。
In addition, the technique of this indication can also take the following structures.
(1)
A frequency converter that converts the RF signal into an IF signal having a lower intermediate frequency by multiplying the received RF signal by a local oscillation signal generated by a local oscillation circuit;
A control unit that performs control to intermittently operate each part of the RF signal path that is the signal path of the RF signal in the frequency conversion unit.
(2)
The frequency converter has an amplifier that amplifies the local oscillation signal before multiplying the local oscillation signal by the RF signal,
The receiving device according to (1), wherein the control unit causes the amplifier to intermittently operate in addition to each unit of the RF signal path.
(3)
The receiving device according to (1) or (2), wherein in the frequency conversion unit, the local oscillation circuit continuously operates during intermittent operation of each part of the RF signal path.
(4)
The receiving device according to any one of (1) to (3), wherein the control unit also controls an intermittent rate of the intermittent operation.
(5)
The receiving device according to (4), wherein the control unit controls the intermittent rate according to a reception state of the RF signal.
(6)
The receiving apparatus according to (5), wherein the reception state of the RF signal is a C / N ratio.
(7)
The receiving device according to any one of (4) to (6), wherein the control unit controls the intermittent rate according to an operation mode.
(8)
A demodulator that demodulates the IF signal converted by the frequency converter;
The reception device according to any one of (1) to (7), wherein the control unit also causes the multiplier and the LPF in the demodulation unit to intermittently operate during intermittent operation of each unit of the RF signal path.
(9)
The receiving device according to any one of (1) to (8), wherein the control unit causes each unit of the RF signal path to intermittently operate at a cycle shorter than a 1-bit length of the RF signal.
(10)
The frequency converter of the receiving device including the frequency converter and the control unit multiplies the received RF signal by the local oscillation signal generated by the local oscillation circuit, thereby reducing the RF signal to a lower intermediate frequency. To IF signal,
A receiving method in which the control unit performs control to intermittently operate each part of an RF signal path that is a signal path of an RF signal in the frequency converter.
 1 受信装置, 12 周波数変換部, 13 復調部, 14 イネーブル信号生成部, 41 LNA, 42 BPF, 43 増幅器, 44 局部発振回路(LO), 45 増幅器, 46 乗算器, 47 増幅器, 48 LPF, 49 ADC, 61 同期捕捉部, 62 同期保持部, 63 CPU, 66 メモリ 1 receiver, 12 frequency converter, 13 demodulator, 14 enable signal generator, 41 LNA, 42 BPF, 43 amplifier, 44 local oscillator (LO), 45 amplifier, 46 multiplier, 47 amplifier, 48 LPF, 49 ADC, 61 synchronization acquisition unit, 62 synchronization holding unit, 63 CPU, 66 memory

Claims (10)

  1.  受信したRF信号を、局部発振回路で生成された局部発振信号と乗算することにより、前記RF信号を、それより低い中間周波数のIF信号に変換する周波数変換部と、
     前記周波数変換部内の、RF信号の信号経路であるRF信号パスの各部を間欠動作させる制御を行う制御部と
     を備える受信装置。
    A frequency converter that converts the RF signal into an IF signal having a lower intermediate frequency by multiplying the received RF signal by a local oscillation signal generated by a local oscillation circuit;
    A control unit that performs control to intermittently operate each part of the RF signal path that is the signal path of the RF signal in the frequency conversion unit.
  2.  前記周波数変換部は、前記局部発振信号を前記RF信号と乗算する前に、前記局部発振信号を増幅する増幅器を有し、
     前記制御部は、前記RF信号パスの各部に加えて、前記増幅器も間欠動作させる
     請求項1に記載の受信装置。
    The frequency converter has an amplifier that amplifies the local oscillation signal before multiplying the local oscillation signal by the RF signal,
    The receiving device according to claim 1, wherein the control unit intermittently operates the amplifier in addition to each unit of the RF signal path.
  3.  前記周波数変換部において、前記RF信号パスの各部の間欠動作中、前記局部発振回路は連続動作する
     請求項1に記載の受信装置。
    The receiving device according to claim 1, wherein in the frequency conversion unit, the local oscillation circuit continuously operates during intermittent operation of each part of the RF signal path.
  4.  前記制御部は、前記間欠動作の間欠率も制御する
     請求項1に記載の受信装置。
    The receiving device according to claim 1, wherein the control unit also controls an intermittent rate of the intermittent operation.
  5.  前記制御部は、前記RF信号の受信状態に応じて、前記間欠率を制御する
     請求項4に記載の受信装置。
    The receiving device according to claim 4, wherein the control unit controls the intermittent rate according to a reception state of the RF signal.
  6.  前記RF信号の受信状態は、C/N比である
     請求項5に記載の受信装置。
    The receiving apparatus according to claim 5, wherein the reception state of the RF signal is a C / N ratio.
  7.  前記制御部は、動作モードに応じて、前記間欠率を制御する
     請求項4に記載の受信装置。
    The receiving device according to claim 4, wherein the control unit controls the intermittent rate according to an operation mode.
  8.  前記周波数変換部により変換された前記IF信号を復調する復調部をさらに備え、
     前記制御部は、前記RF信号パスの各部の間欠動作時には、前記復調部内の乗算器とLPFも間欠動作させる
     請求項1に記載の受信装置。
    A demodulator that demodulates the IF signal converted by the frequency converter;
    The receiving device according to claim 1, wherein the control unit also causes the multiplier and the LPF in the demodulation unit to intermittently operate during intermittent operation of each unit of the RF signal path.
  9.  前記制御部は、前記RF信号パスの各部を、前記RF信号の1ビット長より短周期で間欠動作させる
     請求項1に記載の受信装置。
    The receiving device according to claim 1, wherein the control unit causes each unit of the RF signal path to intermittently operate at a cycle shorter than a 1-bit length of the RF signal.
  10.  周波数変換部と制御部とを備える受信装置の
     前記周波数変換部が、受信したRF信号を、局部発振回路で生成された局部発振信号と乗算することにより、前記RF信号を、それより低い中間周波数のIF信号に変換し、
     前記制御部が、前記周波数変換部内の、RF信号の信号経路であるRF信号パスの各部を間欠動作させる制御を行う
     受信方法。
    The frequency converter of the receiving device including the frequency converter and the control unit multiplies the received RF signal by the local oscillation signal generated by the local oscillation circuit, thereby reducing the RF signal to a lower intermediate frequency. To IF signal,
    A receiving method in which the control unit performs control to intermittently operate each part of an RF signal path that is a signal path of an RF signal in the frequency converter.
PCT/JP2015/053927 2014-02-28 2015-02-13 Reception device and reception method WO2015129481A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014038585 2014-02-28
JP2014-038585 2014-02-28

Publications (1)

Publication Number Publication Date
WO2015129481A1 true WO2015129481A1 (en) 2015-09-03

Family

ID=54008804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/053927 WO2015129481A1 (en) 2014-02-28 2015-02-13 Reception device and reception method

Country Status (1)

Country Link
WO (1) WO2015129481A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001308737A (en) * 2000-04-24 2001-11-02 Maspro Denkoh Corp Receiver and satellite tracking system
JP2003248043A (en) * 2002-02-25 2003-09-05 Sony Corp Gps receiver and reception method
JP2007312187A (en) * 2006-05-19 2007-11-29 Renesas Technology Corp Radio lan integrated-circuit device, radio lan system, and mobile telephone set
JP2013029364A (en) * 2011-07-27 2013-02-07 Kyocera Corp Radio terminal device and control method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001308737A (en) * 2000-04-24 2001-11-02 Maspro Denkoh Corp Receiver and satellite tracking system
JP2003248043A (en) * 2002-02-25 2003-09-05 Sony Corp Gps receiver and reception method
JP2007312187A (en) * 2006-05-19 2007-11-29 Renesas Technology Corp Radio lan integrated-circuit device, radio lan system, and mobile telephone set
JP2013029364A (en) * 2011-07-27 2013-02-07 Kyocera Corp Radio terminal device and control method

Similar Documents

Publication Publication Date Title
JP3983812B2 (en) Receiver with improved multipath signal cancellation
WO2015133319A1 (en) Receiver device and reception method
JP5310333B2 (en) Reception device, signal processing method, and program
US6724807B1 (en) Methods and apparatuses for processing of global positioning system signals with a matched filter
US7085309B2 (en) Radiofrequency signal receiver with means for correcting the effects of multipath signals, and method for activating the receiver
US8692713B2 (en) Receiving device, receiving method, computer program, and portable terminal
JP5655419B2 (en) Receiving device, receiving method, and portable terminal
US7053825B2 (en) Communication device
JP4306693B2 (en) Correlation detection device, correlation detection method, and reception device
JP2008286753A (en) Position measuring device and method for controlling the same
JP5933559B2 (en) Signal capturing apparatus and method
WO2015129481A1 (en) Reception device and reception method
US8351470B2 (en) Signal receiver, control method of signal receiver, and GPS device utilizing the signal receiver and method
JP2005204079A (en) Receiving method and apparatus
JP3864807B2 (en) Correlation detection apparatus, correlation detection method, and reception apparatus
JP3826808B2 (en) Demodulator and receiver
JP2003258682A (en) Matched filter, correlation detecting method and receiver
US20130114646A1 (en) Receiver apparatus, reception method and computer program
JP2003232844A (en) Receiving device
JP2004260473A (en) Communication equipment
JP2004260478A (en) Communication device
JP2003258681A (en) Matched filter, correlation detecting method and receiver
JP2006046911A (en) Receiving apparatus and receiving method
AU2007202854B2 (en) Methods and apparatuses for processing of global positioning system signals with a matched filter
AU2001297683A1 (en) Methods and apparatuses for processing of global positioning system using a matched filter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15755188

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15755188

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP