WO2015128190A1 - Procédé de surveillance de la charge thermique de résistances d'équilibrage - Google Patents

Procédé de surveillance de la charge thermique de résistances d'équilibrage Download PDF

Info

Publication number
WO2015128190A1
WO2015128190A1 PCT/EP2015/052859 EP2015052859W WO2015128190A1 WO 2015128190 A1 WO2015128190 A1 WO 2015128190A1 EP 2015052859 W EP2015052859 W EP 2015052859W WO 2015128190 A1 WO2015128190 A1 WO 2015128190A1
Authority
WO
WIPO (PCT)
Prior art keywords
balancing
balancing resistors
battery
thermal load
resistors
Prior art date
Application number
PCT/EP2015/052859
Other languages
German (de)
English (en)
Inventor
Ulrich Zimmermann
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2015128190A1 publication Critical patent/WO2015128190A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/22Balancing the charge of battery modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the invention relates to a method for monitoring the thermal load of balancing resistors in a battery device having a plurality of battery cells.
  • the electrical energy storage device is designed for such applications mostly as a battery with a plurality of battery cells, which are connected in series and or also in parallel with each other electrically to the battery. In this way, batteries can be provided with power and / or energy data adapted to the respective application.
  • Battery cell has reached its discharge voltage limit. The same applies to the charging of the battery. The charging stops as soon as the
  • the weakest cell is therefore the first to be fully charged or discharged.
  • the battery or the battery module is always only as good as its / its weakest cell.
  • methods for so-called cell balancing are known, which aim to balance the voltages of the individual battery cells to have.
  • the electrical energy to be discharged is converted into heat via balancing resistors.
  • the multiplicity and the magnitude of the temperature changes represent a not inconsiderable thermal load for the solder joints of the balancing resistors, so that they are subject to the risk of tearing or breakage due to material fatigue. Not only is this risk associated with the risk of a failure of a balancing resistor, but in particular in moving batteries, for example in vehicle batteries, a falling balancing resistance can lead to considerable consequential damage such as short-circuits and fires. It is therefore necessary to recognize such a risk in good time before the occurrence of a corresponding damage.
  • the invention relates to a method for monitoring the thermal load of balancing resistors in a battery device having a plurality of battery cells.
  • the invention further relates to a
  • Battery device with a plurality of battery cells and a balancing device, which has a control device which is set up for monitoring the thermal load of balancing resistors and a
  • a method for monitoring the thermal load of balancing resistors in a battery device having a plurality of battery cells is provided, which is characterized by the steps of Determining a thermal load TBV of balancing resistors, caused by a plurality of varying Tertels due to a varying in frequency and intensity of the use of balancing resistors for balancing operations, a determination of an equivalent number of temperature strokes of a certain predetermined or predetermined height, the on the balancing resistors exercise a thermal load TBA, which corresponds to the previously determined thermal load TBV and a comparison of the equivalent number with a predetermined or predeterminable threshold and output a signal when reaching or exceeding the threshold.
  • the thermal load TBV caused by a plurality of varying temperature strokes is represented by the number of temperature strokes of a given height and the thermal load caused by the single temperature stroke of this predetermined height.
  • Measurement of a successful or already performed thermal load provides, so that the determined measured value comparable to a permissible limit or threshold value and the occurrence of a caused by thermal load loss case is averted. That's the procedure
  • the thermal load is caused by a variety in their height varying temperature changes. Much of this is due to temperature swings that arise due to the use of balancing resistors for balancing operations. It is the height of the Temperarturhube caused by the balancing, depending on the number of balancing resistors, the balancing is performed simultaneously.
  • This number in turn can scatter significantly depending on the battery or battery module and depends strongly on an equal distribution of battery cell characteristics of the operated within a string battery cells.
  • a method according to the invention which specifies a method for monitoring the thermal load of the balancing resistors, which takes into account the actual thermal load due to the use of the balancing resistances for balancing operations.
  • the thermal load TBV determined in a first step which results on the basis of a multiplicity of varying temperature strokes, is converted in a second step into an equivalent number of temperature strokes of a specific predetermined or predefinable, thus non-varying, but fixed height.
  • a number of temperature strokes of a fixed height is determined, which results in a thermal Load TBA of the balancing resistors leads, which corresponds to the caused by the plurality of varying temperature strokes thermal load TBV.
  • This value is compared in a third step with a predetermined or predeterminable threshold value at the time of reaching or exceeding which a signal is emitted.
  • the threshold value can be selected, for example, such that the signal is emitted at a thermal load TBA of 90% of a thermal load TBmax, at which cracking or breaking of the solder joint is to be expected.
  • TBA thermal load
  • TBmax thermal load
  • this may mean that the driver is informed, for example via an indicator in the dashboard, that a permitted balance load of the control unit is 90% consumed and that it must be replaced.
  • the determination of the thermal load TBV of the balancing resistors is carried out in such a way that a determination of a distribution function takes place on the height of the temperature strokes, which occur on the basis of a use of the balancing resistors, so that the thermal load TBV through the
  • Distribution function is writable.
  • the frequency of temperature strokes of a respective height can be described; cumulatively, it describes the thermal load TBV which has arisen due to the balancing.
  • the determination of the distribution function on the height of the temperature strokes takes place in such a way that a determination of the number and frequency of use of the balancing resistors takes place and from this a calculation of a distribution function over the height of the temperature strokes on the basis of a
  • This data may be available, for example, from a memory of the control device, also called field data acquisition device.
  • an assignment of temperature strokes to a predetermined number of balancing resistances involved in the balancing can be specified, so that on the basis of the data of the control device
  • Distribution function can be formed over the temperature strokes.
  • a classification of the number of simultaneously used balancing resistors takes place as an intermediate step during or after the determination of the number and frequency of use of the balancing resistors.
  • Such class division advantageously takes place in such a way that classes are formed for the simultaneous use of up to 5, from 6 to 10, from 1 to 20 and from over 20 balancing resistors.
  • Such a classification helps to reduce the complexity of the process.
  • the heating function is performed by the control device, usually in two parts as Cell Supervision Circuit CSC and Battery Control Unit BCU, measured and / or stored in the battery device during use of the balancing resistors.
  • a measurement of the heating function can be done once during a first commissioning.
  • the heating function can also be preprogrammed or fed via interfaces usually present in the control device.
  • the method is designed such that before the
  • a base load is added. This is advantageously done by adding a distribution function representing the base load before the conversion of the aforementioned distribution function to an equivalent number of predetermined or predefinable temperature strokes to the distribution function.
  • this base load corresponds to the number of temperature strokes due to the change of the ambient temperature and / or of the control device switch-on periods. This way, at the
  • Temperaturh a certain predetermined or predetermined height, which exert on the balancing resistors a thermal load TBA, which corresponds to the previously determined thermal load TBV, via suitable
  • the invention furthermore relates to a battery device having a plurality of battery cells and a balancing device, which has a control device and balancing resistors for balancing the battery cells, and wherein monitoring by the control device of the thermal load of the balancing resistors according to a method of the preceding claims , As well as a battery-powered vehicle with such a battery device.
  • Fig. 1 shows three examples of distribution functions 1 1, 21, 31 of the balancing number n over the number N of balancing resistors.
  • the three distribution functions 1 1, 21, 31 describe for three
  • the three distribution functions 1 1, 21, 31 designate three identical battery devices, hereinafter also referred to as batteries, but the battery cell characteristics of the battery cells connected in series within the batteries differ from one another due to production and / or aging. This manifests itself in
  • the distribution function 1 1 belongs to a battery whose battery cells have low Dientladedifferenzen of 0.15 mV / day.
  • the low Density of the battery cells require only minor corrections to the state of charge individual battery cells, the most common therefore only a single battery cell is involved. Balancing with many battery cells is rare or never necessary.
  • the distribution function 21 belongs to a battery whose battery cells have average self-discharge differences of 0.3 mV / day. Because of the bigger ones
  • Deviations of the charging states among each other are most often involved in the balancing of two battery cells with their respective balancing resistors.
  • the distribution function 31 belongs to a battery whose battery cells are high
  • the use of a high number 4 of balancing resistors takes place correspondingly less frequently with the associated frequency values 6 ' and 6 " for the distribution functions 11 and 21.
  • the data for generating the distribution functions can be taken from a field data acquisition device of a control device which comprises a BCU and a CSC consists.
  • Fig. 2 shows an example of a heating function in a graph in which the number N of balancing resistors is plotted versus a temperature rise.
  • This heating function is for a number of 4 participating balancing resistors to see a corresponding increase in temperature 5.
  • the characteristic is not linear, the temperature increase increases disproportionately with increasing number of simultaneously used balancing resistors.
  • FIG. 3 shows three examples of a distribution function 12, 22, 32, which describe the frequency 6 ' , 6 " , 6 "' of a temperature lift 5.
  • Self-discharge difference 7 increases the frequency (or number n ') of higher
  • the distribution functions 12, 22, 32 for describing the frequencies of temperature strokes are via the heating function in FIG. 2 from the distribution functions 1 1, 21, 31 in Fig. 1 can be determined. They indicate which thermal load TBV the balancing resistors are subject to due to their use.
  • Fig. 4 shows three examples of an equivalent number A 13, 23, 33 which over
  • the equivalent number A 13, 23, 33 which represents the thermal load of the balancing resistors TBV, is comparable to a threshold value 8 for monitoring them.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Transportation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

L'invention concerne un procédé de surveillance de la charge thermique de résistances d'équilibrage dans un dispositif accumulateur comprenant une pluralité d'éléments de batterie. Selon l'invention : ‑ on détermine une charge thermique TBV des résistances d'équilibrage provoquée par une pluralité d'élévations de température (5) variables dues à une utilisation de fréquence (6', 6", 6‴) et d'intensité variables des résistances pour des opérations d'équilibrage; ‑ on détermine un nombre équivalent d'élévations de température (5), ayant une amplitude donnée prédéfinie ou prédéfinissable, qui exercent sur les résistances d'équilibrage une charge thermique TBA correspondant à la charge thermique TBV précédemment déterminée; et ‑ on compare ce nombre équivalent à une valeur seuil prédéfinie ou prédéfinissable et on délivre un signal lorsque cette valeur seuil est atteinte ou dépassée. L'invention concerne en outre un dispositif accumulateur qui comprend plusieurs éléments de batterie et un dispositif d'équilibrage comportant un dispositif de commande adapté pour surveiller la charge thermique des résistances d'équilibrage, ainsi qu'un véhicule fonctionnant sur batterie qui est équipé d'un dispositif accumulateur de ce type.
PCT/EP2015/052859 2014-02-27 2015-02-11 Procédé de surveillance de la charge thermique de résistances d'équilibrage WO2015128190A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014203606.2A DE102014203606A1 (de) 2014-02-27 2014-02-27 Verfahren zur Überwachung der thermischen Belastung von Balancing-Widerständen
DE102014203606.2 2014-02-27

Publications (1)

Publication Number Publication Date
WO2015128190A1 true WO2015128190A1 (fr) 2015-09-03

Family

ID=52472309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/052859 WO2015128190A1 (fr) 2014-02-27 2015-02-11 Procédé de surveillance de la charge thermique de résistances d'équilibrage

Country Status (2)

Country Link
DE (1) DE102014203606A1 (fr)
WO (1) WO2015128190A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11489347B2 (en) * 2018-03-08 2022-11-01 Sanyo Electric Co., Ltd. Management device and electricity storage system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109986966B (zh) * 2017-12-28 2021-02-23 长沙市比亚迪汽车有限公司 电动汽车及其高压配电箱的监控系统、监控方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0392471A2 (fr) * 1989-04-10 1990-10-17 Hitachi, Ltd. Méthode d'évaluation de la durée de vie d'une connexion
US20030074173A1 (en) * 2001-10-17 2003-04-17 Intel Corporation Technique for defining probabilistic reliability test requirements
US20090187353A1 (en) * 2008-01-23 2009-07-23 Fujitsu Limited Crack growth evaluation apparatus, crack growth evaluation method, and recording medium recording crack growth evaluation program
JP2011155752A (ja) * 2010-01-27 2011-08-11 Panasonic Corp 蓄電装置
US20120094151A1 (en) * 2010-10-13 2012-04-19 Samsung Sdi Co., Ltd Battery management system and method thereof, and power storage apparatus using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0392471A2 (fr) * 1989-04-10 1990-10-17 Hitachi, Ltd. Méthode d'évaluation de la durée de vie d'une connexion
US20030074173A1 (en) * 2001-10-17 2003-04-17 Intel Corporation Technique for defining probabilistic reliability test requirements
US20090187353A1 (en) * 2008-01-23 2009-07-23 Fujitsu Limited Crack growth evaluation apparatus, crack growth evaluation method, and recording medium recording crack growth evaluation program
JP2011155752A (ja) * 2010-01-27 2011-08-11 Panasonic Corp 蓄電装置
US20120094151A1 (en) * 2010-10-13 2012-04-19 Samsung Sdi Co., Ltd Battery management system and method thereof, and power storage apparatus using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11489347B2 (en) * 2018-03-08 2022-11-01 Sanyo Electric Co., Ltd. Management device and electricity storage system

Also Published As

Publication number Publication date
DE102014203606A1 (de) 2015-08-27

Similar Documents

Publication Publication Date Title
EP2611646B1 (fr) Procédé d'équilibrage d'états de charge d'une batterie dotée de plusieurs cellules de batterie, système de gestion de batterie correspondant et batterie
EP2482422A1 (fr) Dispositif et procédé de surveillance et de mise en symétrie d'une pile d'accumulation d'énergie à plusieurs cellules
DE102014220005A1 (de) Verfahren für eine Zellsymmetrierung einer Mehrzahl von Batteriezellen und Batteriesystem zum Durchführen eines derartigen Verfahrens
DE102013204888A1 (de) Verfahren zum Ausgleich unterschiedlicher Ladungszustände von Batterien
EP3475713B1 (fr) Procédé de détermination de l'âge d'un accumulateur d'énergie électrochimique
DE102013204885A1 (de) Verfahren zur Reduzierung des Gesamtladungsverlusts von Batterien
DE112016002067T5 (de) Verfahren und Überwachungseinheit zum Überwachen eines Batteriesystems
WO2019020303A1 (fr) Dispositif et procédé de symétrisation d'un module accumulateur d'énergie
WO2011042243A1 (fr) Système accumulateur et procédé d'équilibrage des piles d'un système accumulateur
DE102012015522A1 (de) Batterielager- und -logistiksystem
EP2617115A2 (fr) Procédé de charge d'une batterie de véhicule à moteur
DE102013013471A1 (de) Verfahren zur Bestimmung der Zuleitungsimpedanz in mehrzelligen Batteriepacks zur Leitungsfehlererkennung
WO2015128190A1 (fr) Procédé de surveillance de la charge thermique de résistances d'équilibrage
DE102013207187B4 (de) Zeitgesteuerter Ladungsausgleich bei Batteriesystemen
DE102013214817A1 (de) Verfahren zur Diagnose eines Zustands einer Batterie
DE102022200721B4 (de) Verfahren zum Betrieb eines Batteriesystems während eines Ladevorgangs
DE102021203390B3 (de) Verfahren zum spannungsgeführten Betrieb eines Batteriesystems während eines Ladevorgangs
DE102014220008A1 (de) Verfahren zum Ausgleichen der Ladezustände einer Mehrzahl von Batteriezellen und Batteriesystem zum Durchführen eines derartigen Verfahrens
EP4122071A1 (fr) Procédé de fonctionnement d'un accumulateur au lithium avec un réseau de bord, conçu pour un accumulateur au plomb, d'un sous-marin
WO2020083874A1 (fr) Système de batterie pour véhicule électrique, procédé de fonctionnement d'un système de batterie et véhicule électrique
DE102013204520A1 (de) Verfahren und Vorrichtung zur Erhöhung der Sicherheit beim Gebrauch von Batteriemodulen
DE102013002341A1 (de) Vorrichtung zur elektrisch leitfähigen Verbindung eines Zell-Controllers mit einer Mehrzahl elektrischer Speicherzellen
DE102017209659A1 (de) Verfahren und Vorrichtung zum Betrieb eines elektrischen Energiespeichersystems
WO2019072511A1 (fr) Procédé de charge d'un accumulateur d'énergie électrique au moyen d'impulsions de tension
DE102012214808A1 (de) Verfahren und Vorrichtung zum Ausgleichen von Ladungsunterschieden zwischen Batteriezellen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15704514

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15704514

Country of ref document: EP

Kind code of ref document: A1