WO2015126021A1 - Image sensor for acquiring three-dimensional image information and method for matching two-dimensional image and three-dimensional image information - Google Patents
Image sensor for acquiring three-dimensional image information and method for matching two-dimensional image and three-dimensional image information Download PDFInfo
- Publication number
- WO2015126021A1 WO2015126021A1 PCT/KR2014/007607 KR2014007607W WO2015126021A1 WO 2015126021 A1 WO2015126021 A1 WO 2015126021A1 KR 2014007607 W KR2014007607 W KR 2014007607W WO 2015126021 A1 WO2015126021 A1 WO 2015126021A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrons
- transistor
- accumulated
- image information
- photodiode
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/70—SSIS architectures; Circuits associated therewith
- H04N25/76—Addressed sensors, e.g. MOS or CMOS sensors
- H04N25/77—Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
- H04N25/771—Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising storage means other than floating diffusion
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/88—Lidar systems specially adapted for specific applications
- G01S17/89—Lidar systems specially adapted for specific applications for mapping or imaging
- G01S17/894—3D imaging with simultaneous measurement of time-of-flight at a 2D array of receiver pixels, e.g. time-of-flight cameras or flash lidar
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/70—SSIS architectures; Circuits associated therewith
- H04N25/702—SSIS architectures characterised by non-identical, non-equidistant or non-planar pixel layout
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/10—Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/40—Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
- H04N25/46—Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled by combining or binning pixels
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/222—Studio circuitry; Studio devices; Studio equipment
- H04N5/262—Studio circuits, e.g. for mixing, switching-over, change of character of image, other special effects ; Cameras specially adapted for the electronic generation of special effects
- H04N5/265—Mixing
Definitions
- the present invention relates to an image sensor for obtaining three-dimensional image information and a method of matching two-dimensional and three-dimensional image information, and more particularly, three-dimensional, characterized in that accumulates and outputs a plurality of times the optical signal of a certain phase
- An image sensor for obtaining image information and a method of matching two-dimensional and three-dimensional image information is a particularly, three-dimensional, characterized in that accumulates and outputs a plurality of times the optical signal of a certain phase
- an image sensor is used in a digital camera and serves as an analog film that can generate a single image by converting the amount of light received from each pixel into an electronic signal.
- the image sensor has a form in which a plurality of photodiodes for detecting light and generating charges are arranged.
- One of the distance measuring methods of the conventional distance measuring camera is a method of calculating the distance by measuring the phase difference between the transmitted light and the received light, that is, the time when the light is reflected and returned to the measurement target.
- the shutter operation time is short, there is a problem in that an insufficient amount of light is received to obtain an image having a desired brightness.
- the conventional distance measuring camera has a problem that the reality of the stereoscopic image is lowered due to the low resolution and the color configuration simply processed through the software due to the cost.
- An object of the present invention for solving the above problems is an image sensor and two-dimensional image and three-dimensional image information for obtaining three-dimensional image information that can obtain the image of the desired brightness even with a short wavelength optical signal based on a certain phase To provide a matching method.
- Another object of the present invention is to provide an apparatus for continuously receiving a reflected optical signal for each phase by using an image sensor capable of realizing a high quality 3D image.
- the image sensor for obtaining three-dimensional image information of the present invention for solving the above problems is a photodiode for accumulating electrons when light is received, a gate transistor for determining the transfer of electrons accumulated in the photodiode, and a parasitic capacitor And accumulate electrons transferred through the gate transistor, and transfer a voltage level according to the accumulated electron amount, and the gate transistor is operated a plurality of times based on a predetermined phase of an optical signal to generate electrons in the parasitic capacitor. It characterized in that it comprises a control unit for controlling to accumulate.
- control unit of the image sensor for obtaining the three-dimensional image information of the present invention is characterized in that for controlling the plurality of optical signals are received based on different phases using the operation of the gate transistor.
- the image sensor for obtaining three-dimensional image information of the present invention is characterized in that it further comprises a reset transistor for removing the electrons accumulated in the photodiode.
- the image sensor for obtaining 3D image information of the present invention is characterized in that it further comprises a first output transistor for outputting the voltage level according to the accumulated electron amount for each pixel row.
- the image sensor for obtaining the 3D image information of the present invention is characterized in that it further comprises a second output transistor for selectively outputting the voltage level according to the amount of electrons accumulated in each of the plurality of pixels.
- the reset transistor of the image sensor for obtaining the three-dimensional image information of the present invention is characterized in that the gate transistor is operated a plurality of times and the accumulated electrons are output and then reset operation.
- the reset transistor of the image sensor for obtaining the three-dimensional image information of the present invention is characterized in that it operates in a half cycle difference with the gate transistor.
- the matching method of the two-dimensional image and the three-dimensional image information of the present invention comprises the steps of photographing a two-dimensional image using a photodiode that accumulates electrons when light is received, based on a predetermined phase of the optical signal in the photodiode Acquiring three-dimensional image information for each pixel by using a cumulative transistor accumulated in a parasitic capacitor when the accumulated electrons are transferred a plurality of times; matching the two-dimensional image and three-dimensional image information for each pixel unit; and 3D image information is added to the 3D image to implement a stereoscopic image.
- the photographing of the two-dimensional image of the matching method of the two-dimensional image and the three-dimensional image information of the present invention includes a photodiode that accumulates electrons when light is received, and a gate that determines transfer of electrons accumulated in the photodiode. It is characterized in that to take a two-dimensional image by using a transistor and a control unit for controlling the exposure time according to the brightness of the measurement target by adjusting the operating time of the gate transistor.
- the step of obtaining the three-dimensional image information of the matching method of the two-dimensional image and three-dimensional image information of the present invention comprises a photodiode that accumulates electrons when light is received, and a gate for determining the transfer of electrons accumulated in the photodiode
- a cumulative transistor including a transistor, a parasitic capacitor, and electrons transferred through the gate transistor, and transferring a voltage level according to the accumulated amount of electrons; and the gate transistor operates a plurality of times based on a predetermined phase of an optical signal.
- obtain 3D image information by using a control unit which controls electrons to accumulate in the parasitic capacitor.
- an image having a desired brightness can be obtained even when an optical signal having a short wavelength is received.
- the image sensor and the matching method of the two-dimensional image and the three-dimensional image information for obtaining the three-dimensional image information according to the present invention has the effect of obtaining a high-quality three-dimensional image.
- control unit 107 control unit
- FIG. 1 is a circuit diagram showing a circuit configuration of an image sensor for obtaining three-dimensional image information according to the present invention as a first embodiment.
- FIG. 2 is a circuit diagram showing a circuit configuration of an image sensor for obtaining three-dimensional image information according to the present invention as a second embodiment.
- Figure 3 is a waveform diagram showing the operation of the reset transistor and the gate transistor according to the phase of the image sensor for obtaining three-dimensional image information according to the present invention.
- FIG. 4 is a waveform diagram showing the amount of electrons for each phase difference between a transmission optical signal and a reception optical signal of an image sensor for obtaining three-dimensional image information according to the present invention
- Fig. 5 is a circuit diagram showing a circuit configuration of an image sensor for obtaining three-dimensional image information according to the present invention as a third embodiment.
- FIG. 6 is a simplified diagram schematically showing a rolling shutter input signal of an image sensor for obtaining three-dimensional image information according to a third embodiment of the present invention.
- FIG. 7 is a waveform diagram illustrating a rolling shutter operation based on a phase 0 degree of an image sensor for obtaining three-dimensional image information according to a third embodiment of the present invention.
- FIG. 8 is a waveform diagram illustrating a rolling shutter operation based on a phase 90 degrees of an image sensor for obtaining three-dimensional image information according to a third embodiment of the present invention.
- FIG. 9 is a waveform diagram illustrating a rolling shutter operation based on a phase 1800 degrees of an image sensor for obtaining three-dimensional image information according to a third embodiment of the present invention.
- FIG. 10 is a waveform diagram illustrating a rolling shutter operation based on a phase 270 degrees of an image sensor for obtaining three-dimensional image information according to a third embodiment of the present invention.
- the present invention relates to an image sensor for obtaining 3D image information, and a method of matching 2D image and 3D image information. More particularly, 3D image information comprising accumulating and outputting an optical signal having a predetermined phase. An image sensor and a matching method of two-dimensional and three-dimensional image information to obtain a.
- FIG. 1 is a circuit diagram showing a circuit configuration of an image sensor for obtaining 3D image information according to the present invention as a first embodiment
- FIG. 2 is an image for obtaining 3D image information according to the present invention as a second embodiment
- 3 is a circuit diagram illustrating a circuit configuration of a sensor
- FIG. 3 is a waveform diagram illustrating operations of a reset transistor and a gate transistor according to a phase of an image sensor for obtaining three-dimensional image information according to the present invention
- FIG. FIG. 5 is a waveform diagram illustrating the amount of electrons for each phase difference between a transmission optical signal and a reception optical signal of an image sensor for obtaining three-dimensional image information.
- FIG. 5 is a third embodiment for obtaining three-dimensional image information according to the present invention.
- FIG. 6 is a circuit diagram illustrating a circuit configuration of an image sensor
- FIG. 6 is a third embodiment briefly illustrating a rolling shutter input signal of an image sensor for obtaining 3D image information according to the present invention
- 7 is a waveform diagram illustrating a rolling shutter operation based on a phase 0 degree of an image sensor for obtaining 3D image information according to the present invention as a third embodiment
- FIG. 8 is a third embodiment.
- FIG. 9 is a waveform diagram illustrating a rolling shutter operation based on a phase of 90 degrees of an image sensor for obtaining 3D image information according to the present invention.
- FIG. 9 is a third embodiment for obtaining 3D image information according to the present invention.
- FIG. 10 is a waveform diagram illustrating a rolling shutter operation based on a phase 1800 degree of an image sensor, and FIG. 10 illustrates a rolling shutter operation based on a phase 270 degree of an image sensor for obtaining three-dimensional image information according to a third embodiment of the present invention. Is a waveform diagram illustrating
- an image sensor for obtaining 3D image information includes a photodiode 101 that accumulates electrons when light is received, and a gate that determines transfer of electrons accumulated in the photodiode.
- An accumulation signal 105 including a transistor 102 and a parasitic capacitor 103 to accumulate electrons transferred through the gate transistor, and to transfer a voltage level according to the accumulated amount of electrons;
- the control unit 107 is operated a plurality of times based on a predetermined phase of the control to control the accumulation of electrons in the parasitic capacitor.
- the photodiode may be preferably a pinned photodiode in order to accumulate electrons according to the optical signal.
- Pinned photodiodes are photodetectors that are commonly used in image sensors. They are high in quantum efficiency, low in dark current, and capable of complete depletion. Quantum efficiency refers to the ratio of the quantum generated relative to the quantum incident to the photo detector, that is, the ratio (efficiency) at which photons incident on the photodiode are converted into electrical energy. Indicates.
- the image sensor for obtaining 3D image information according to the present invention further includes a reset transistor 104 for removing electrons accumulated in the photodiode 101.
- the image sensor for obtaining 3D image information according to the present invention further includes a first output transistor 106 for outputting the voltage level according to the accumulated electron amount for each pixel row.
- Fig. 1 shows a circuit configuration of a 4-transistor image sensor which is most used as the first embodiment, and the number of transistors is not limited.
- the basic operation of each pixel is repeated 'receive optical signal ⁇ accumulate same phase ⁇ output'.
- the control unit 107 first applies a signal to the SEL line shown in FIG. 1 to turn on the first output transistor to which the gate terminal is coupled to the SEL line. As a result, one row among all the pixels is selected.
- the reset transistor 104 and the gate transistor 102 are operated through RS and TG lines. This resets the electrons remaining in the photodiode 101 and parasitic capacitor 103 by the previous operation. The reference voltage level output by the parasitic capacitor 103 is read in the reset state.
- the gate transistor is operated at a period of an optical signal, and when the gate transistor is operated, electrons accumulated in the photodiode are diffused to the parasitic capacitor node.
- the controller controls the gate transistor to be operated a plurality of times based on a predetermined phase of the optical signal to accumulate electrons in the parasitic capacitor, and then reads a voltage level according to the accumulated electron quantity.
- the pure voltage level repeatedly accumulated by the same phase of the optical signal may be obtained. This is called correlated double sampling.
- the controller turns off the operation of the first output transistor to separate the pixel row from the OUT line at which the voltage level is output.
- controller 107 of the image sensor for obtaining 3D image information controls the plurality of optical signals to be received based on different phases by using the operation of the gate transistor 102.
- the transmission optical signal Since a series of processes described above are repeatedly operated based on one optical signal phase, an operation of accumulating and outputting electrons based on different phases in a plurality of optical signals such as a second phase and a third phase should be repeated.
- the time difference between the transmission optical signal and the reception optical signal can be known by comparing the output according to the accumulated electron quantity based on different phases. Accordingly, the transmission optical signal must be transmitted a plurality of times in the same manner as the number of phases to be accumulated, and the controller must control the plurality of transistors to operate in synchronization with the transmission optical signal.
- FIG. 2 is a configuration of a 4-transistor circuit according to a second embodiment, and the photodiode is reset when the reset transistor and the gate transistor are repeatedly operated in a half cycle, such as the operation of the circuit according to the first embodiment of FIG. 1.
- electrons accumulated in the parasitic capacitor 103 of the accumulation transistor are also reset, and electrons according to the optical signal may not be repeatedly accumulated.
- the reset transistor 104 of the image sensor for obtaining three-dimensional image information according to the present invention is operated after the gate transistor 102 is operated a plurality of times and the accumulated electrons are output, and then reset operation.
- the reset transistor is initially operated only after a basic reset operation, and then the gate transistor is repeatedly operated to output electrons accumulated in the parasitic capacitor, and then the reset transistor is operated to reset the remaining electrons.
- the gate transistor is operated in the same manner as a general photographing operation without being repeatedly operated in synchronization with an optical signal.
- electrons do not need to be repeatedly accumulated in the parasitic capacitor.
- the exposure time may be controlled by adjusting the operating time of the gate transistor according to the brightness of the measurement target.
- transmission and reception of optical signals for acquiring three-dimensional image information is not required to obtain a two-dimensional image.
- High-quality two-dimensional images may be obtained by operating a flash or an aperture according to the amount of ambient light.
- Operation order of each device to obtain a two-dimensional image is the operation of the gate transistor and the reset transistor for the initial reset, the operation of the gate transistor and the reset transistor OFF, the accumulation of electrons according to the amount of light in the photodiode, the accumulated electrons In order for the gate transistor to be transferred, and then the output.
- FIG. 3 shows the amount of light received based on phase 0 degrees, 90 degrees, 180 degrees, and 270 degrees of the transmission optical signal (LED of FIG. 3), and an operation signal of the reset transistor (RS of FIG. 3) and the gate transistor TG. It is shown.
- the reset transistor 104 of the image sensor for obtaining three-dimensional image information according to the present invention is operated alternately with the gate transistor 102 by a half period difference.
- the reset transistor resets electrons unnecessarily accumulated in the photodiode and serves to receive only an optical signal in a desired phase.
- the pulse width of the reset transistor is smaller than the pulse width of the gate transistor to reset the photodiode so that unnecessary electrons do not accumulate until just before the desired phase is reached. It is desirable to open and close the gate only at the desired phase to accumulate valid electrons.
- the gate transistor opens a gate at a desired phase so that electrons accumulated in the photodiode are transferred to the parasitic capacitor.
- the reset transistors do not accumulate unnecessary electrons in the photodiode until just before reaching the desired phase, and the gate transistors have half periods with each other since the gate transistors open and close only in the desired phase to accumulate the effective electrons.
- the operation is repeated a plurality of times based on a predetermined phase of the optical signal to collect the accumulated electrons of the phase in the parasitic capacitor of the accumulation transistor. As the number of repetitions increases, the image will be brightened by the amount of electrons accumulated due to the amount of light. Even if the phase difference between the transmission light signal and the reception light signal is small, the difference in the amount of electrons will also increase.
- the number of optical signal accumulations increases as the wavelength of the optical signal gets shorter, and the user automatically estimates the distance to the measurement target and obtains the test optical signal set to a median value or the length of the wavelength automatically before obtaining the 3D image information.
- the cumulative number of times may be set.
- Phase 0 degrees, 90 degrees, 180 degrees, and 270 degrees of FIG. 3 are arbitrarily designated reference phases, and a transmission optical signal must also be transmitted four times in order to measure the amount of light according to four reference phases. The more repeated the measurement, the higher the reliability of the phase difference, but too many phase measurements can waste time and energy.
- the RS signal and the TG signal according to the transmission optical signal of FIG. 3 are based on the image sensor circuit of FIG. 1.
- the ON of RS and TG causes the reset and gate transistors to be activated to reset the electrons remaining in the photodiode and parasitic capacitor. Thereafter, electrons are accumulated in the photodiode from the moment when the reset transistor is turned off, and the gate transistor is operated by the TG signal to transfer the electrons accumulated in the photodiode.
- FIG. 4 shows the difference in the amount of light accumulated in the received optical signal Reflected with a certain phase difference from the transmission optical signal LED.
- the phase difference between the transmitted optical signal and the reflected optical signal may be calculated based on the voltage level output from each pixel of the image sensor.
- the phase difference is determined based on the plurality of phases.
- the image sensor according to the present invention can also be distinguished from very small distances can be used in a device requiring a very sensitive sensitivity.
- the phase difference between the transmission optical signal and the reflection optical signal may be obtained based on the difference in the output voltage according to the amount of electrons accumulated in the photodiode by the transmission optical signal and the received reflection optical signal.
- the difference in phase is calculated using the amount of light accumulated by the reflected optical signal with reference to Equation 1 below.
- the difference between the magnitude A1 of the first reflected optical signal and the magnitude A3 of the third reflected optical signal is determined by the numerator, the difference between the magnitude A2 of the second reflected optical signal and the magnitude A4 of the fourth reflected optical signal. If the arc tangent is taken as the denominator, the phase difference ⁇ can be obtained.
- the magnitudes A1 to A4 of the reflected optical signal have a value of 0 or 1 representing the magnitude of the pulse.
- a value of 0 or 1 may be determined based on the magnitude of the amount of light in which the amount of light begins to accumulate according to the reference phase, for example, the magnitude of the amount of light at the end of the accumulation or the center value of the amount of light accumulating. .
- the optical signal size of each reference phase according to the transmission optical signal LED of FIG. 4 is 1, 1, 0, 0 based on the rising pulse, respectively, and the optical signal of each reference phase according to the reception optical signal (Reflected).
- the sizes are 0, 1, 1 and 0 respectively. Accordingly, it can be seen that the received optical signal has a phase difference within a reference phase compared to the transmitted optical signal.
- the transmission optical signal has 10, 5, 0, and 5 optical signals for each phase, respectively. 6, 9, 4, 1.
- the magnitude of the optical signal is reduced compared to the transmission optical signal based on the phase 0 degree and the phase 270 degree, and the magnitude of the optical signal is increased based on the phase 90 degree and the phase 180 degree.
- the received optical signal has a phase difference of 4/10 of the half wavelength of the transmission call optical signal.
- Either of taking a two-dimensional image and obtaining three-dimensional image information that accumulates the amount of light based on a predetermined phase of the optical signal may be performed first.
- the 2D image and the 3D image information are matched in units of pixels, if any one such as the direction of the image sensor or the position of the measurement target is changed, a high quality 3D image cannot be obtained. Therefore, the image sensor and the measurement target are fixed. It would be desirable to proceed in a controlled environment.
- the photographing of the two-dimensional image of the matching method of the two-dimensional image and the three-dimensional image information of the present invention may include a photodiode that accumulates electrons when light is received, and a gate transistor that determines transfer of electrons accumulated in the photodiode. And a 2D image by using a control unit controlling the exposure time according to the brightness of the measurement target by adjusting the operation time of the gate transistor.
- the step of obtaining the three-dimensional image information of the matching method of the two-dimensional image and three-dimensional image information of the present invention comprises a photodiode that accumulates electrons when light is received, and a gate for determining the transfer of electrons accumulated in the photodiode
- a cumulative transistor including a transistor, a parasitic capacitor, and electrons transferred through the gate transistor, and transferring a voltage level according to the accumulated amount of electrons; and the gate transistor operates a plurality of times based on a predetermined phase of an optical signal.
- 3D image information is obtained using a control unit which controls electrons to accumulate in the parasitic capacitor.
- the present invention can match 3D image information for each pixel of a 2D image, thereby maintaining the existing image quality.
- a 3D warping technique may be used based on the 3D image information.
- depth information and internal and external parameters may be used to calculate actual coordinates for each pixel of the image, and may be reprojected to a virtual view, thereby generating an image at any free virtual view and providing the user.
- an empty area that does not exist in the original image that is, an area to which no 3D image information is allocated, may be generated during the 3D warping.
- This area may be appropriately referred to as 3D image information allocated to nearby useful pixels. A method of guessing information and filling it in the blank area may be used.
- the image sensor for obtaining 3D image information according to the present invention further includes a second output transistor for selectively outputting a voltage level according to the amount of electrons accumulated in each of the plurality of pixels.
- FIG. 5 shows an image sensor having a five-transistor circuit structure as a third embodiment, and has a structure in which a second output transistor is further included in the circuit of FIG.
- CMOS image sensors with a four-transistor structure have lower image quality than CCD image sensors because of the unbalance between circuits due to the separate circuits in each line. Post-correction can remove some of the noise but falls short of the CCD image sensor's image quality. To solve this, an image sensor having a five-transistor structure can be used.
- the 5-transistor image sensor is similar in structure and function to the 4-transistor image sensor, but in addition to the first output transistor for selecting a pixel row, a single pixel of the corresponding pixel row can be selected. As a result, the voltage level may be controlled to operate according to the pixel and output the voltage level according to the accumulated electron quantity.
- the reset transistor and the gate transistor are operated to reset electrons remaining in the photodiode and parasitic capacitor, and then the SEL signal is turned on to select a pixel.
- a pulse is then applied to the TG signal line to operate the gate transistor through the operation of the added second output transistor. This allows random access, unlike the 4-transistor circuit structure.
- the controller After the reset, the controller applies a signal to the SEL line to output the reference voltage level.
- the reset transistor and the gate transistor are closed, electrons according to an optical signal are accumulated in the photodiode and the gate transistor is operated to diffuse the accumulated electrons to accumulate in the parasitic capacitor.
- the gate transistor is repeatedly operated according to the reference phase of the optical signal so that the amount of light based on the same phase is accumulated in the parasitic capacitor and the voltage level according to the amount of electrons accumulated in the parasitic capacitor is output to the OUT line. Read the voltage level output of the other pixel in the same way.
- a TG signal and an RS signal applied to one row of a pixel by a rolling shutter method among electronic shutter methods of an image sensor are illustrated.
- 7, 8, 9, and 10 illustrate TG signals and RS signal application waveforms of phases of the rolling shutter method of the electronic shutter method of the image sensor.
- the figures are based on any phase 0 degrees, 90 degrees, 180 degrees, 270 degrees.
- the number of reference phases and reference phases is not limited.
- 7, 8, 9, and 10 are signal waveforms input to the image sensor circuit according to the second embodiment of FIG. 2, except that the reset signal is input except for the initial input during the accumulation of a plurality of light quantities. It doesn't work.
- the reset transistor is operated to prevent electrons from accumulating in the photodiode and the light is accumulated in the photodiode only at a desired moment, thereby reading the accumulated electrons.
- the physical shutter mounted on the camera normally covers the image sensor or the film so that light is not irradiated, and then opens only when necessary, thereby exposing the light to the same function as the electronic shutter.
- the TG signal and the RS signal applied based on the phase 0 degree of FIG. 7 electrons accumulate in the photodiode from the moment when the RS signal is turned off.
- the TG signal is input so that electrons accumulated in the photodiode are transferred to the parasitic capacitor during the half period of the optical signal LED.
- the TG signal and the RS signal serve to operate the gate transistor and the reset transistor, respectively.
- the TG signal is shown to be repeated four times. However, the number of times of applying the signal may be automatically or manually adjusted.
- FIG. 8 illustrates a TG signal and an RS signal applied based on a phase of 90 degrees, and an RS signal controlling an operation of a reset transistor is applied only once in order to accumulate electrons in the parasitic capacitor.
- the TG signal is input so that electrons accumulated in the photodiode are transferred to the parasitic capacitor during the half period of the optical signal LED.
- the TG signal and the RS signal serve to operate the gate transistor and the reset transistor, respectively.
- FIG. 9 illustrates a TG signal and an RS signal applied based on a phase of 180 degrees, and electrons start to accumulate in the photodiode from the moment when the RS signal is turned off.
- the TG signal is input so that electrons accumulated in the photodiode are transferred to the parasitic capacitor during the half period of the optical signal LED.
- the TG signal and the RS signal serve to operate the gate transistor and the reset transistor, respectively.
- FIG. 10 illustrates a TG signal and an RS signal applied based on a phase of 270 degrees, and an RS signal controlling an operation of a reset transistor is applied only once at first to accumulate electrons in the parasitic capacitor.
- the TG signal is input so that electrons accumulated in the photodiode are transferred to the parasitic capacitor during the half period of the optical signal LED.
- the TG signal and the RS signal serve to operate the gate transistor and the reset transistor, respectively.
- the TG signal is shown to be repeated four times. However, the number of times of applying the signal may be automatically or manually adjusted.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Solid State Image Pick-Up Elements (AREA)
Abstract
The present invention comprises: a photodiode which accumulates electrons when light is received; a gate transistor which determines transfer of the electrons accumulated in the photodiode; an accumulation transistor which includes a parasitic capacitor in which electrons transferred through the gate transistor are accumulated, and transfers a voltage level according to the amount of the accumulated electrons; and a control unit which controls the gate transistor to be operated several times with respect to a certain phase of an optical signal such that electrons are accumulated in the parasitic capacitor.
Description
본 발명은 3차원 영상 정보를 얻기 위한 이미지센서 및 2차원 영상과 3차원 영상 정보의 정합 방법에 관한 것으로서, 더욱 상세하게는 일정 위상의 광신호를 복수 번 누적하여 출력하는 것을 특징으로 하는 3차원 영상 정보를 얻기 위한 이미지센서 및 2차원 영상과 3차원 영상 정보의 정합 방법에 관한 것이다.The present invention relates to an image sensor for obtaining three-dimensional image information and a method of matching two-dimensional and three-dimensional image information, and more particularly, three-dimensional, characterized in that accumulates and outputs a plurality of times the optical signal of a certain phase An image sensor for obtaining image information and a method of matching two-dimensional and three-dimensional image information.
일반적으로 이미지센서(Image Sensor)는 디지털 카메라에 사용되며 각 화소에서 수신한 광량을 전자신호로 변환하여 하나의 영상을 생성할 수 있는 아날로그 필름과 같은 역할을 한다. 이미지센서는 빛을 검출하여 전하를 발생시키는 광다이오드가 복수 개 배열되어 있는 형태를 가진다.In general, an image sensor is used in a digital camera and serves as an analog film that can generate a single image by converting the amount of light received from each pixel into an electronic signal. The image sensor has a form in which a plurality of photodiodes for detecting light and generating charges are arranged.
종래의 거리 측정 카메라의 거리 측정 방식 중 하나는 빛을 쏘아서 측정 대상에 반사되어 돌아오는 시간, 정확히 말하면 송신된 빛과 수신된 빛의 위상 차이를 측정하여 거리를 계산하는 방식이다.One of the distance measuring methods of the conventional distance measuring camera is a method of calculating the distance by measuring the phase difference between the transmitted light and the received light, that is, the time when the light is reflected and returned to the measurement target.
한편 측정 카메라와 측정 대상과의 거리가 가까울수록 송신되는 빛의 파장은 짧아야 하고 전자적인 셔터 작동 시간도 짧아야 한다. 그러나 셔터 작동 시간이 짧을수록 수신되는 광량이 부족하여 원하는 밝기의 영상을 얻을 수 없는 문제점이 있었다.On the other hand, the closer the distance between the measuring camera and the object to be measured, the shorter the wavelength of light transmitted and the shorter the electronic shutter operation time. However, as the shutter operation time is short, there is a problem in that an insufficient amount of light is received to obtain an image having a desired brightness.
또한 종래의 거리 측정 카메라는 비용 문제로 인한 낮은 해상도와 소프트웨어를 통해 단순하게 처리되는 색 구성으로 인해 입체 영상의 현실성이 떨어지는 문제점이 있었다.In addition, the conventional distance measuring camera has a problem that the reality of the stereoscopic image is lowered due to the low resolution and the color configuration simply processed through the software due to the cost.
상기와 같은 문제점을 해결하기 위한 본 발명의 목적은 일정 위상을 기준으로 짧은 파장의 광신호로도 원하는 밝기의 영상을 얻을 수 있는 3차원 영상 정보를 얻기 위한 이미지센서 및 2차원 영상과 3차원 영상 정보의 정합 방법을 제공하는 것이다.An object of the present invention for solving the above problems is an image sensor and two-dimensional image and three-dimensional image information for obtaining three-dimensional image information that can obtain the image of the desired brightness even with a short wavelength optical signal based on a certain phase To provide a matching method.
본 발명의 다른 목적은 고화질의 3차원 영상을 구현할 수 있는 이미지센서를 이용하여 위상별로 반사 광신호를 연속 수신하는 장치를 제공하는 것이다.Another object of the present invention is to provide an apparatus for continuously receiving a reflected optical signal for each phase by using an image sensor capable of realizing a high quality 3D image.
상기 과제를 해결하기 위한 본 발명의 3차원 영상 정보를 얻기 위한 이미지센서는 빛이 수신되면 전자를 축적하는 포토다이오드와, 상기 포토다이오드에 축적된 전자의 이송을 결정하는 게이트 트랜지스터와, 기생 커패시터가 포함되어 상기 게이트 트랜지스터를 통해 이송된 전자가 누적되며 상기 누적된 전자량에 따른 전압 레벨을 전달하는 누적 트랜지스터와, 상기 게이트 트랜지스터가 광신호의 일정 위상을 기준으로 복수 번 작동되어 상기 기생 커패시터에 전자가 누적되도록 제어하는 제어부를 포함하는 것을 특징으로 한다.The image sensor for obtaining three-dimensional image information of the present invention for solving the above problems is a photodiode for accumulating electrons when light is received, a gate transistor for determining the transfer of electrons accumulated in the photodiode, and a parasitic capacitor And accumulate electrons transferred through the gate transistor, and transfer a voltage level according to the accumulated electron amount, and the gate transistor is operated a plurality of times based on a predetermined phase of an optical signal to generate electrons in the parasitic capacitor. It characterized in that it comprises a control unit for controlling to accumulate.
또한 본 발명의 3차원 영상 정보를 얻기 위한 이미지센서의 상기 제어부는 상기 게이트 트랜지스터의 작동을 이용하여 복수 개의 광신호가 각각 서로 다른 위상을 기준으로 수신되도록 제어하는 것을 특징으로 한다.In addition, the control unit of the image sensor for obtaining the three-dimensional image information of the present invention is characterized in that for controlling the plurality of optical signals are received based on different phases using the operation of the gate transistor.
또한 본 발명의 3차원 영상 정보를 얻기 위한 상기 이미지센서는 상기 포토다이오드에 축적된 전자를 제거하는 리셋 트랜지스터를 더 포함하는 것을 특징으로 한다.In addition, the image sensor for obtaining three-dimensional image information of the present invention is characterized in that it further comprises a reset transistor for removing the electrons accumulated in the photodiode.
또한 본 발명의 3차원 영상 정보를 얻기 위한 상기 이미지센서는 상기 누적된 전자량에 따른 전압 레벨이 화소 Row별로 출력되기 위한 제 1 출력 트랜지스터를 더 포함하는 것을 특징으로 한다.In addition, the image sensor for obtaining 3D image information of the present invention is characterized in that it further comprises a first output transistor for outputting the voltage level according to the accumulated electron amount for each pixel row.
또한 본 발명의 3차원 영상 정보를 얻기 위한 상기 이미지센서는 복수 개의 화소에 각각 누적된 전자량에 따른 전압 레벨이 선택적으로 출력되기 위한 제 2 출력 트랜지스터를 더 포함하는 것을 특징으로 한다.In addition, the image sensor for obtaining the 3D image information of the present invention is characterized in that it further comprises a second output transistor for selectively outputting the voltage level according to the amount of electrons accumulated in each of the plurality of pixels.
또한 본 발명의 3차원 영상 정보를 얻기 위한 이미지센서의 상기 리셋 트랜지스터는 상기 게이트 트랜지스터가 복수 번 작동되어 누적된 전자가 출력된 다음 리셋 작동을 하는 것을 특징으로 한다.In addition, the reset transistor of the image sensor for obtaining the three-dimensional image information of the present invention is characterized in that the gate transistor is operated a plurality of times and the accumulated electrons are output and then reset operation.
또한 본 발명의 3차원 영상 정보를 얻기 위한 이미지센서의 상기 리셋 트랜지스터는 상기 게이트 트랜지스터와 반주기 차이로 작동하는 것을 특징으로 한다.In addition, the reset transistor of the image sensor for obtaining the three-dimensional image information of the present invention is characterized in that it operates in a half cycle difference with the gate transistor.
또한 본 발명의 2차원 영상과 3차원 영상 정보의 정합 방법은 빛이 수신되면 전자를 축적하는 포토다이오드를 이용하여 2차원 영상을 촬영하는 단계와, 상기 포토다이오드에서 광신호의 일정 위상을 기준으로 축적된 전자가 복수 번 이송되면 기생 커패시터에 누적하는 누적 트랜지스터를 이용하여 각 화소별 3차원 영상 정보를 얻는 단계와, 상기 2차원 영상과 3차원 영상 정보를 각 화소 단위로 정합하는 단계, 상기 2차원 영상에 3차원 영상 정보가 더해져 입체 영상을 구현하는 단계로 구성되는 것을 특징으로 한다.In addition, the matching method of the two-dimensional image and the three-dimensional image information of the present invention comprises the steps of photographing a two-dimensional image using a photodiode that accumulates electrons when light is received, based on a predetermined phase of the optical signal in the photodiode Acquiring three-dimensional image information for each pixel by using a cumulative transistor accumulated in a parasitic capacitor when the accumulated electrons are transferred a plurality of times; matching the two-dimensional image and three-dimensional image information for each pixel unit; and 3D image information is added to the 3D image to implement a stereoscopic image.
또한 본 발명의 2차원 영상과 3차원 영상 정보의 정합 방법의 상기 2차원 영상을 촬영하는 단계는 빛이 수신되면 전자를 축적하는 포토다이오드와, 상기 포토다이오드에 축적된 전자의 이송을 결정하는 게이트 트랜지스터와, 상기 게이트 트랜지스터의 작동 시간을 조절하여 측정 대상의 밝기에 따른 노광 시간을 제어하는 제어부를 이용하여 2차원 영상을 촬영하는 것을 특징으로 한다.In addition, the photographing of the two-dimensional image of the matching method of the two-dimensional image and the three-dimensional image information of the present invention includes a photodiode that accumulates electrons when light is received, and a gate that determines transfer of electrons accumulated in the photodiode. It is characterized in that to take a two-dimensional image by using a transistor and a control unit for controlling the exposure time according to the brightness of the measurement target by adjusting the operating time of the gate transistor.
또한 본 발명의 2차원 영상과 3차원 영상 정보의 정합 방법의 상기 3차원 영상 정보를 얻는 단계는 빛이 수신되면 전자를 축적하는 포토다이오드와, 상기 포토다이오드에 축적된 전자의 이송을 결정하는 게이트 트랜지스터와, 기생 커패시터가 포함되어 상기 게이트 트랜지스터를 통해 이송된 전자가 누적되며 상기 누적된 전자량에 따른 전압 레벨을 전달하는 누적 트랜지스터와, 상기 게이트 트랜지스터가 광신호의 일정 위상을 기준으로 복수 번 작동되어 상기 기생 커패시터에 전자가 누적되도록 제어하는 제어부를 이용하여 3차원 영상 정보를 얻는 것을 특징으로 한다.In addition, the step of obtaining the three-dimensional image information of the matching method of the two-dimensional image and three-dimensional image information of the present invention comprises a photodiode that accumulates electrons when light is received, and a gate for determining the transfer of electrons accumulated in the photodiode A cumulative transistor including a transistor, a parasitic capacitor, and electrons transferred through the gate transistor, and transferring a voltage level according to the accumulated amount of electrons; and the gate transistor operates a plurality of times based on a predetermined phase of an optical signal. And obtain 3D image information by using a control unit which controls electrons to accumulate in the parasitic capacitor.
상술한 바와 같이, 본 발명에 따른 3차원 영상 정보를 얻기 위한 이미지센서 및 2차원 영상과 3차원 영상 정보의 정합 방법에 의하면 짧은 파장의 광신호가 수신되어도 원하는 밝기의 영상을 얻을 수 있는 효과가 있다.As described above, according to the image sensor for obtaining 3D image information and the matching method of 2D image and 3D image information according to the present invention, an image having a desired brightness can be obtained even when an optical signal having a short wavelength is received. .
또한 본 발명에 따른 3차원 영상 정보를 얻기 위한 이미지센서 및 2차원 영상과 3차원 영상 정보의 정합 방법에 의하면 고화질의 3차원 영상을 얻을 수 있는 효과가 있다.In addition, according to the image sensor and the matching method of the two-dimensional image and the three-dimensional image information for obtaining the three-dimensional image information according to the present invention has the effect of obtaining a high-quality three-dimensional image.
101 : 포토다이오드101: photodiode
102 : 게이트 트랜지스터102: gate transistor
103 : 기생 커패시터103: Parasitic Capacitors
104 : 리셋 트랜지스터104: reset transistor
105 : 누적 트랜지스터105: cumulative transistor
106 : 제 1 출력 트랜지스터106: first output transistor
107 : 제어부107: control unit
108 : 제 2 출력 트랜지스터 108: second output transistor
도 1은 제 1 실시예로서 본 발명에 따른 3차원 영상 정보를 얻기 위한 이미지센서의 회로 구성을 도시한 회로도.1 is a circuit diagram showing a circuit configuration of an image sensor for obtaining three-dimensional image information according to the present invention as a first embodiment.
도 2는 제 2 실시예로서 본 발명에 따른 3차원 영상 정보를 얻기 위한 이미지센서의 회로 구성을 도시한 회로도.2 is a circuit diagram showing a circuit configuration of an image sensor for obtaining three-dimensional image information according to the present invention as a second embodiment.
도 3은 본 발명에 따른 3차원 영상 정보를 얻기 위한 이미지센서의 위상에 따른 리셋 트랜지스터와 게이트 트랜지스터의 작동을 도시한 파형도.Figure 3 is a waveform diagram showing the operation of the reset transistor and the gate transistor according to the phase of the image sensor for obtaining three-dimensional image information according to the present invention.
도 4는 본 발명에 따른 3차원 영상 정보를 얻기 위한 이미지센서의 송신 광신호와 수신 광신호의 위상 차이별 전자량을 도시한 파형도.4 is a waveform diagram showing the amount of electrons for each phase difference between a transmission optical signal and a reception optical signal of an image sensor for obtaining three-dimensional image information according to the present invention;
도 5는 제 3 실시예로서 본 발명에 따른 3차원 영상 정보를 얻기 위한 이미지센서의 회로 구성을 도시한 회로도.Fig. 5 is a circuit diagram showing a circuit configuration of an image sensor for obtaining three-dimensional image information according to the present invention as a third embodiment.
도 6은 제 3 실시예로서 본 발명에 따른 3차원 영상 정보를 얻기 위한 이미지센서의 롤링 셔터 입력 신호를 간략하게 도시한 간략도.6 is a simplified diagram schematically showing a rolling shutter input signal of an image sensor for obtaining three-dimensional image information according to a third embodiment of the present invention.
도 7은 제 3 실시예로서 본 발명에 따른 3차원 영상 정보를 얻기 위한 이미지센서의 위상 0도를 기준으로 롤링 셔터 작동을 도시한 파형도.FIG. 7 is a waveform diagram illustrating a rolling shutter operation based on a phase 0 degree of an image sensor for obtaining three-dimensional image information according to a third embodiment of the present invention. FIG.
도 8은 제 3 실시예로서 본 발명에 따른 3차원 영상 정보를 얻기 위한 이미지센서의 위상 90도를 기준으로 롤링 셔터 작동을 도시한 파형도.8 is a waveform diagram illustrating a rolling shutter operation based on a phase 90 degrees of an image sensor for obtaining three-dimensional image information according to a third embodiment of the present invention.
도 9는 제 3 실시예로서 본 발명에 따른 3차원 영상 정보를 얻기 위한 이미지센서의 위상 1800도를 기준으로 롤링 셔터 작동을 도시한 파형도.9 is a waveform diagram illustrating a rolling shutter operation based on a phase 1800 degrees of an image sensor for obtaining three-dimensional image information according to a third embodiment of the present invention.
도 10은 제 3 실시예로서 본 발명에 따른 3차원 영상 정보를 얻기 위한 이미지센서의 위상 270도를 기준으로 롤링 셔터 작동을 도시한 파형도.10 is a waveform diagram illustrating a rolling shutter operation based on a phase 270 degrees of an image sensor for obtaining three-dimensional image information according to a third embodiment of the present invention.
본 발명의 구체적 특징 및 이점들은 이하에서 첨부도면을 참조하여 상세히 설명한다. 이에 앞서 본 발명에 관련된 기능 및 그 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 구체적인 설명을 생략하기로 한다.Specific features and advantages of the invention will now be described in detail with reference to the accompanying drawings. Prior to this, when it is determined that the detailed description of the function and its configuration related to the present invention may unnecessarily obscure the subject matter of the present invention, the detailed description will be omitted.
본 발명은 3차원 영상 정보를 얻기 위한 이미지센서 및 2차원 영상과 3차원 영상 정보의 정합 방법에 관한 것으로서, 더욱 상세하게는 일정 위상의 광신호를 누적하여 출력하는 것을 특징으로 하는 3차원 영상 정보를 얻기 위한 이미지센서 및 2차원 영상과 3차원 영상 정보의 정합 방법에 관한 것이다.The present invention relates to an image sensor for obtaining 3D image information, and a method of matching 2D image and 3D image information. More particularly, 3D image information comprising accumulating and outputting an optical signal having a predetermined phase. An image sensor and a matching method of two-dimensional and three-dimensional image information to obtain a.
이하, 본 발명의 바람직한 실시 예를 첨부한 도면을 참고로 상세하게 설명하기로 한다.Hereinafter, with reference to the accompanying drawings, preferred embodiments of the present invention will be described in detail.
도 1은 제 1 실시예로서 본 발명에 따른 3차원 영상 정보를 얻기 위한 이미지센서의 회로 구성을 도시한 회로도이고, 도 2는 제 2 실시예로서 본 발명에 따른 3차원 영상 정보를 얻기 위한 이미지센서의 회로 구성을 도시한 회로도이며, 도 3은 본 발명에 따른 3차원 영상 정보를 얻기 위한 이미지센서의 위상에 따른 리셋 트랜지스터와 게이트 트랜지스터의 작동을 도시한 파형도이고, 도 4는 본 발명에 따른 3차원 영상 정보를 얻기 위한 이미지센서의 송신 광신호와 수신 광신호의 위상 차이별 전자량을 도시한 파형도이며, 도 5는 제 3 실시예로서 본 발명에 따른 3차원 영상 정보를 얻기 위한 이미지센서의 회로 구성을 도시한 회로도이고, 도 6은 제 3 실시예로서 본 발명에 따른 3차원 영상 정보를 얻기 위한 이미지센서의 롤링 셔터 입력 신호를 간략하게 도시한 간략도이며, 도 7은 제 3 실시예로서 본 발명에 따른 3차원 영상 정보를 얻기 위한 이미지센서의 위상 0도를 기준으로 롤링 셔터 작동을 도시한 파형도이고, 도 8은 제 3 실시예로서 본 발명에 따른 3차원 영상 정보를 얻기 위한 이미지센서의 위상 90도를 기준으로 롤링 셔터 작동을 도시한 파형도이며, 도 9는 제 3 실시예로서 본 발명에 따른 3차원 영상 정보를 얻기 위한 이미지센서의 위상 1800도를 기준으로 롤링 셔터 작동을 도시한 파형도이고, 도 10은 제 3 실시예로서 본 발명에 따른 3차원 영상 정보를 얻기 위한 이미지센서의 위상 270도를 기준으로 롤링 셔터 작동을 도시한 파형도이다.1 is a circuit diagram showing a circuit configuration of an image sensor for obtaining 3D image information according to the present invention as a first embodiment, and FIG. 2 is an image for obtaining 3D image information according to the present invention as a second embodiment. 3 is a circuit diagram illustrating a circuit configuration of a sensor, and FIG. 3 is a waveform diagram illustrating operations of a reset transistor and a gate transistor according to a phase of an image sensor for obtaining three-dimensional image information according to the present invention, and FIG. FIG. 5 is a waveform diagram illustrating the amount of electrons for each phase difference between a transmission optical signal and a reception optical signal of an image sensor for obtaining three-dimensional image information. FIG. 5 is a third embodiment for obtaining three-dimensional image information according to the present invention. 6 is a circuit diagram illustrating a circuit configuration of an image sensor, and FIG. 6 is a third embodiment briefly illustrating a rolling shutter input signal of an image sensor for obtaining 3D image information according to the present invention. 7 is a waveform diagram illustrating a rolling shutter operation based on a phase 0 degree of an image sensor for obtaining 3D image information according to the present invention as a third embodiment, and FIG. 8 is a third embodiment. FIG. 9 is a waveform diagram illustrating a rolling shutter operation based on a phase of 90 degrees of an image sensor for obtaining 3D image information according to the present invention. FIG. 9 is a third embodiment for obtaining 3D image information according to the present invention. FIG. 10 is a waveform diagram illustrating a rolling shutter operation based on a phase 1800 degree of an image sensor, and FIG. 10 illustrates a rolling shutter operation based on a phase 270 degree of an image sensor for obtaining three-dimensional image information according to a third embodiment of the present invention. Is a waveform diagram illustrating
도 1에 도시된 바와 같이, 본 발명에 따른 3차원 영상 정보를 얻기 위한 이미지센서는 빛이 수신되면 전자를 축적하는 포토다이오드(101)와, 상기 포토다이오드에 축적된 전자의 이송을 결정하는 게이트 트랜지스터(102)와, 기생 커패시터(103)가 포함되어 상기 게이트 트랜지스터를 통해 이송된 전자가 누적되며 상기 누적된 전자량에 따른 전압 레벨을 전달하는 누적 트랜지스터(105)와, 상기 게이트 트랜지스터가 광신호의 일정 위상을 기준으로 복수 번 작동되어 상기 기생 커패시터에 전자가 누적되도록 제어하는 제어부(107)를 포함한다.As shown in FIG. 1, an image sensor for obtaining 3D image information according to the present invention includes a photodiode 101 that accumulates electrons when light is received, and a gate that determines transfer of electrons accumulated in the photodiode. An accumulation signal 105 including a transistor 102 and a parasitic capacitor 103 to accumulate electrons transferred through the gate transistor, and to transfer a voltage level according to the accumulated amount of electrons; The control unit 107 is operated a plurality of times based on a predetermined phase of the control to control the accumulation of electrons in the parasitic capacitor.
포토다이오드는 광신호에 따른 전자가 축적되기 위하여 Pinned 포토다이오드가 사용되는 것이 바람직할 것이다. Pinned 포토다이오드는 일반적으로 이미지센서에 사용되는 Photodetector(광신호 검출기)로서 Quantum Efficiency(양자 효율)이 높고 Dark Current(암전류)가 낮으며 완전한 공핍이 가능한 소자이다. 양자 효율은 광 검출기에 입사된 양자에 대비해 발생된 양자의 비, 즉 포토다이오드에 입사된 광자가 전기적 에너지로 변환되는 비율(효율)을 의미하며 암전류는 빛이 조사되지 않았는데도 흐르는 전류를 말하며 불량 값을 나타낸다.The photodiode may be preferably a pinned photodiode in order to accumulate electrons according to the optical signal. Pinned photodiodes are photodetectors that are commonly used in image sensors. They are high in quantum efficiency, low in dark current, and capable of complete depletion. Quantum efficiency refers to the ratio of the quantum generated relative to the quantum incident to the photo detector, that is, the ratio (efficiency) at which photons incident on the photodiode are converted into electrical energy. Indicates.
본 발명에 따른 3차원 영상 정보를 얻기 위한 이미지센서는 상기 포토다이오드(101)에 축적된 전자를 제거하는 리셋 트랜지스터(104)를 더 포함한다.The image sensor for obtaining 3D image information according to the present invention further includes a reset transistor 104 for removing electrons accumulated in the photodiode 101.
또한 본 발명에 따른 3차원 영상 정보를 얻기 위한 상기 이미지센서는 상기 누적된 전자량에 따른 전압 레벨이 화소 Row별로 출력되기 위한 제 1 출력 트랜지스터(106)를 더 포함한다.In addition, the image sensor for obtaining 3D image information according to the present invention further includes a first output transistor 106 for outputting the voltage level according to the accumulated electron amount for each pixel row.
도 1은 제 1 실시예로서 가장 많이 사용되는 4-Transistor(트랜지스터) 이미지 센서의 회로 구성을 도시하고 있으며 트랜지스터의 개수는 한정되지 않는다. 또한 화소별 기본적인 작동은 '광신호 수신→동일 위상 누적→출력'을 반복한다.Fig. 1 shows a circuit configuration of a 4-transistor image sensor which is most used as the first embodiment, and the number of transistors is not limited. In addition, the basic operation of each pixel is repeated 'receive optical signal → accumulate same phase → output'.
제어부(107)는 우선 도 1에 도시된 SEL 선에 신호를 인가하여 상기 SEL 선에 게이트 단자가 결합되는 제 1 출력 트랜지스터를 ON 작동시킨다. 이로써 전체 화소 중에 하나의 Row(행)이 선택된다.The control unit 107 first applies a signal to the SEL line shown in FIG. 1 to turn on the first output transistor to which the gate terminal is coupled to the SEL line. As a result, one row among all the pixels is selected.
또한 RS와 TG 선을 통해 상기 리셋 트랜지스터(104)와 게이트 트랜지스터(102)를 작동시킨다. 이로 인해 이전 작동에 의해 상기 포토다이오드(101)와 기생 커패시터(103)에 남아있던 전자들이 리셋된다. 리셋된 상태에서 기생 커패시터(103)에 의해 출력되는 기준 전압 레벨을 읽어낸다.In addition, the reset transistor 104 and the gate transistor 102 are operated through RS and TG lines. This resets the electrons remaining in the photodiode 101 and parasitic capacitor 103 by the previous operation. The reference voltage level output by the parasitic capacitor 103 is read in the reset state.
제어부가 상기 리셋 트랜지스터와 게이트 트랜지스터의 작동을 OFF시키면 수신되는 광신호로 인해 상기 포토다이오드에 전자가 축적된다.When the controller turns off the reset transistor and the gate transistor, electrons are accumulated in the photodiode due to the received optical signal.
상기 게이트 트랜지스터는 광신호의 주기에 맞춰 작동되며 게이트 트랜지스터가 작동되면 상기 포토다이오드에 축적된 전자가 기생 커패시터 노드로 확산된다. 상기 제어부는 상기 게이트 트랜지스터가 광신호의 일정 위상을 기준으로 복수 번 작동되어 상기 기생 커패시터에 전자가 누적되도록 제어하며 이후에 상기 누적된 전자 량에 따른 전압 레벨을 읽어낸다.The gate transistor is operated at a period of an optical signal, and when the gate transistor is operated, electrons accumulated in the photodiode are diffused to the parasitic capacitor node. The controller controls the gate transistor to be operated a plurality of times based on a predetermined phase of the optical signal to accumulate electrons in the parasitic capacitor, and then reads a voltage level according to the accumulated electron quantity.
상기 기준 전압 레벨에서 상기 누적된 전자 량에 따른 전압 레벨을 빼면 광신호의 동일 위상에 의해 반복 누적된 순수 전압 레벨을 얻을 수 있다. 이것을 Correlated Double Sampling이라고 한다.By subtracting the voltage level according to the accumulated electron quantity from the reference voltage level, the pure voltage level repeatedly accumulated by the same phase of the optical signal may be obtained. This is called correlated double sampling.
상기 제어부가 제 1 출력 트랜지스터의 작동을 OFF하여 전압 레벨이 출력되는 OUT 선으로부터 화소 Row를 분리시킨다.The controller turns off the operation of the first output transistor to separate the pixel row from the OUT line at which the voltage level is output.
또한 본 발명에 따른 3차원 영상 정보를 얻기 위한 이미지센서의 상기 제어부(107)는 상기 게이트 트랜지스터(102)의 작동을 이용하여 복수 개의 광신호가 각각 서로 다른 위상을 기준으로 수신되도록 제어한다.Also, the controller 107 of the image sensor for obtaining 3D image information according to the present invention controls the plurality of optical signals to be received based on different phases by using the operation of the gate transistor 102.
상기에서 설명한 일련의 과정은 하나의 광신호 위상을 기준으로 반복 작동되는 것이므로 제 2 위상, 제 3 위상 등 복수 개의 광신호에서 서로 다른 위상을 기준으로 전자를 축적시켜 출력하는 작동을 반복하여야 한다. 서로 다른 위상을 기준으로 누적된 전자량에 따른 출력을 비교하여 송신 광신호와 수신 광신호 사이의 시간차이를 알 수 있다. 이에 따라 송신 광신호는 누적하고자 하는 위상의 개수와 동일하게 복수 번 송신되어야 하며 상기 제어부는 상기 송신 광신호와 동기를 맞추어 복수 개의 트랜지스터가 작동되도록 제어해야 한다.Since a series of processes described above are repeatedly operated based on one optical signal phase, an operation of accumulating and outputting electrons based on different phases in a plurality of optical signals such as a second phase and a third phase should be repeated. The time difference between the transmission optical signal and the reception optical signal can be known by comparing the output according to the accumulated electron quantity based on different phases. Accordingly, the transmission optical signal must be transmitted a plurality of times in the same manner as the number of phases to be accumulated, and the controller must control the plurality of transistors to operate in synchronization with the transmission optical signal.
도 2는 제 2 실시예에 따른 4-Transistor(트랜지스터) 회로 구성으로서 도 1의 제 1 실시예에 따른 회로의 작동과 같이 상기 리셋 트랜지스터와 게이트 트랜지스터가 반주기로 반복 작동되면 상기 포토다이오드가 리셋될 뿐만 아니라 상기 누적 트랜지스터의 기생 커패시터(103)에 누적된 전자도 리셋되어 광신호에 따른 전자가 반복적으로 누적될 수 없다.FIG. 2 is a configuration of a 4-transistor circuit according to a second embodiment, and the photodiode is reset when the reset transistor and the gate transistor are repeatedly operated in a half cycle, such as the operation of the circuit according to the first embodiment of FIG. 1. In addition, electrons accumulated in the parasitic capacitor 103 of the accumulation transistor are also reset, and electrons according to the optical signal may not be repeatedly accumulated.
본 발명에 따른 3차원 영상 정보를 얻기 위한 이미지센서의 상기 리셋 트랜지스터(104)는 상기 게이트 트랜지스터(102)가 복수 번 작동되어 누적된 전자가 출력된 다음 리셋 작동한다.The reset transistor 104 of the image sensor for obtaining three-dimensional image information according to the present invention is operated after the gate transistor 102 is operated a plurality of times and the accumulated electrons are output, and then reset operation.
이에 따라 상기 리셋 트랜지스터는 처음에 기본적인 리셋 작동만 진행한 후 상기 게이트 트랜지스터가 반복 작동되어 상기 기생 커패시터에 누적된 전자가 출력되고 나면 다시 리셋 트랜지스터가 작동되어 남아있는 전자를 리셋시키도록 작동된다.Accordingly, the reset transistor is initially operated only after a basic reset operation, and then the gate transistor is repeatedly operated to output electrons accumulated in the parasitic capacitor, and then the reset transistor is operated to reset the remaining electrons.
2차원 영상을 얻기 위해서는 상기 게이트 트랜지스터가 광신호와 동기를 맞추어 반복 작동되지 않고 일반적인 촬영 작동과 동일하게 작동된다. 일반적인 2차원 영상을 얻는 경우에는 상기 기생 커패시터에 전자가 반복하여 누적될 필요가 없다. 또한 측정 대상의 밝기에 따라 상기 게이트 트랜지스터의 작동 시간이 조정되어 노광시간이 제어될 수 있다.In order to obtain a two-dimensional image, the gate transistor is operated in the same manner as a general photographing operation without being repeatedly operated in synchronization with an optical signal. In the case of obtaining a general two-dimensional image, electrons do not need to be repeatedly accumulated in the parasitic capacitor. In addition, the exposure time may be controlled by adjusting the operating time of the gate transistor according to the brightness of the measurement target.
또한 2차원 영상을 얻기 위해서는 3차원 영상 정보를 획득하기 위한 광신호의 송수신도 요구되지 않는다. 주변 광량에 따른 플래쉬나 조리개 등의 작동으로 고화질의 2차원 영상이 얻어질 수도 있다.In addition, transmission and reception of optical signals for acquiring three-dimensional image information is not required to obtain a two-dimensional image. High-quality two-dimensional images may be obtained by operating a flash or an aperture according to the amount of ambient light.
2차원 영상을 얻기 위한 각 소자의 작동 순서는 초기 리셋을 위한 상기 게이트 트랜지스터 및 리셋 트랜지스터의 작동, 상기 게이트 트랜지스터와 리셋 트랜지스터의 작동 OFF로 상기 포토다이오드에 광량에 따른 전자의 축적, 상기 축적된 전자가 이송되기 위해 상기 게이트 트랜지스터의 작동, 그리고 출력 순이다.Operation order of each device to obtain a two-dimensional image is the operation of the gate transistor and the reset transistor for the initial reset, the operation of the gate transistor and the reset transistor OFF, the accumulation of electrons according to the amount of light in the photodiode, the accumulated electrons In order for the gate transistor to be transferred, and then the output.
도 3은 송신 광신호(도 3의 LED)의 위상 0도, 90도, 180도, 270도를 기준으로 수신되는 광량 및 상기 리셋 트랜지스터(도 3의 RS)와 게이트 트랜지스터(TG)의 작동 신호를 도시하고 있다.FIG. 3 shows the amount of light received based on phase 0 degrees, 90 degrees, 180 degrees, and 270 degrees of the transmission optical signal (LED of FIG. 3), and an operation signal of the reset transistor (RS of FIG. 3) and the gate transistor TG. It is shown.
본 발명에 따른 3차원 영상 정보를 얻기 위한 이미지센서의 상기 리셋 트랜지스터(104)는 상기 게이트 트랜지스터(102)와 반주기 차이로 번갈아서 작동된다.The reset transistor 104 of the image sensor for obtaining three-dimensional image information according to the present invention is operated alternately with the gate transistor 102 by a half period difference.
상기 리셋 트랜지스터는 상기 포토다이오드에 불필요하게 축적되는 전자를 리셋시키고 원하는 위상에서의 광신호만 수신될 수 있는 역할을 한다. 이때 도3에 도시된 바와 같이 리셋 트랜지스터의 펄스폭(width)은 게이트 트랜지스터의 펄스폭(width)보다 좁게 함으로써 원하는 위상에 도달하기 직전까지 상기 포토다이오드에 불필요한 전자가 축적되지 않도록 리셋하며, 게이트 트랜지스터는 원하는 위상에서만 게이트를 열고 닫아 유효한 전자를 누적시키는 것이 바람직하다. 또한 게이트 트랜지스터는 원하는 위상에서 게이트를 열어 상기 포토다이오드에 축적된 전자가 상기 기생 커패시터로 이적되도록 하는 역할을 한다.The reset transistor resets electrons unnecessarily accumulated in the photodiode and serves to receive only an optical signal in a desired phase. In this case, as shown in FIG. 3, the pulse width of the reset transistor is smaller than the pulse width of the gate transistor to reset the photodiode so that unnecessary electrons do not accumulate until just before the desired phase is reached. It is desirable to open and close the gate only at the desired phase to accumulate valid electrons. In addition, the gate transistor opens a gate at a desired phase so that electrons accumulated in the photodiode are transferred to the parasitic capacitor.
이와 같이 상기 리셋 트랜지스터는 원하는 위상에 도달하기 직전까지 상기 포토다이오드에 불필요한 전자가 축적되지 않도록 하고 상기 게이트 트랜지스터는 원하는 위상에서만 게이트를 열고 닫아 유효한 전자를 누적시키므로 서로 반주기를 가지는 것이 바람직할 것이다.As described above, the reset transistors do not accumulate unnecessary electrons in the photodiode until just before reaching the desired phase, and the gate transistors have half periods with each other since the gate transistors open and close only in the desired phase to accumulate the effective electrons.
광신호의 일정 위상을 기준으로 상기 작동을 복수 번 반복하여 해당 위상의 누적 전자를 상기 누적 트랜지스터의 기생 커패시터에 모은다. 반복 횟수가 커질수록 광량으로 인해 누적되는 전자량에 의해 영상은 밝게 촬영될 것이며 송신 광신호와 수신 광신호의 위상 차이가 작더라도 누적되는 만큼 전자 량의 차이도 커질 것이다.The operation is repeated a plurality of times based on a predetermined phase of the optical signal to collect the accumulated electrons of the phase in the parasitic capacitor of the accumulation transistor. As the number of repetitions increases, the image will be brightened by the amount of electrons accumulated due to the amount of light. Even if the phase difference between the transmission light signal and the reception light signal is small, the difference in the amount of electrons will also increase.
광신호 누적 횟수는 광신호의 파장이 짧을수록 많아지며 사용자는 3차원 영상 정보를 얻기 전에 측정 대상과의 거리를 어림잡아 미리 설정하거나 중간 값으로 설정된 테스트 광신호를 송신하여 자동으로 파장의 길이 및 누적 횟수가 설정될 수도 있다.The number of optical signal accumulations increases as the wavelength of the optical signal gets shorter, and the user automatically estimates the distance to the measurement target and obtains the test optical signal set to a median value or the length of the wavelength automatically before obtaining the 3D image information. The cumulative number of times may be set.
도 3의 위상 0도, 90도, 180도, 270도는 임의로 지정한 기준 위상이며 네 개의 기준 위상에 따른 광량이 측정되기 위해서는 송신 광신호도 네 번 송신되어야 한다. 여러 번 측정될수록 위상차에 대한 신뢰도는 높아지지만 너무 많은 위상별 측정은 시간과 에너지의 낭비를 초래할 수 있다.Phase 0 degrees, 90 degrees, 180 degrees, and 270 degrees of FIG. 3 are arbitrarily designated reference phases, and a transmission optical signal must also be transmitted four times in order to measure the amount of light according to four reference phases. The more repeated the measurement, the higher the reliability of the phase difference, but too many phase measurements can waste time and energy.
또한 도 3의 송신 광신호에 따른 RS 신호와 TG 신호는 도 1의 이미지센서 회로를 기준으로 하고 있다.In addition, the RS signal and the TG signal according to the transmission optical signal of FIG. 3 are based on the image sensor circuit of FIG. 1.
가장 먼저 RS와 TG의 ON은 리셋 트랜지스터와 게이트 트랜지스터가 작동되어 포토다이오드 및 기생 커패시터에 남아있는 전자가 리셋되도록 한다. 이후 리셋 트랜지스터가 작동 OFF되는 순간부터 포토다이오드에 전자가 축적되고 TG 신호로 인해 게이트 트랜지스터가 작동되어 상기 포토다이오드에 축적된 전자가 이송된다.First of all, the ON of RS and TG causes the reset and gate transistors to be activated to reset the electrons remaining in the photodiode and parasitic capacitor. Thereafter, electrons are accumulated in the photodiode from the moment when the reset transistor is turned off, and the gate transistor is operated by the TG signal to transfer the electrons accumulated in the photodiode.
다시 TG 신호가 OFF되어 게이트 트랜지스터가 닫히면 반주기 차이로 RS 신호에 의해 리셋 트랜지스터가 작동되어 포토다이오드에 축적된 불필요한 전자를 리셋시킨다. 상기 설명한 일련의 작동은 수신되는 광신호 별로 다른 위상을 기준으로 반복하여 수행되어야 할 것이다.When the TG signal is turned off again and the gate transistor is closed, the reset transistor is activated by the RS signal at a half cycle difference to reset unnecessary electrons accumulated in the photodiode. The series of operations described above will have to be performed repeatedly on the basis of different phases for each received optical signal.
이로써 하나의 광신호에 대해 각 위상별로 연속 측정하는 방식과 유사한 결과를 얻을 수 있지만 더욱 선명한 영상을 얻을 수 있을 것이다.As a result, a result similar to the method of continuously measuring each phase of one optical signal may be obtained, but a clearer image may be obtained.
도 4는 송신 광신호(LED)와 임의의 위상 차이를 가지는 수신 광신호(Reflected)의 축적된 광량의 차이를 도시하고 있다. 송신 광신호와 반사 광신호의 위상 차이는 이미지센서의 각 화소에서 출력되는 전압 레벨을 바탕으로 연산 될 수 있다.FIG. 4 shows the difference in the amount of light accumulated in the received optical signal Reflected with a certain phase difference from the transmission optical signal LED. The phase difference between the transmitted optical signal and the reflected optical signal may be calculated based on the voltage level output from each pixel of the image sensor.
하나의 위상을 기준으로 한 누적 광량의 차이는 위상의 차이를 정확하게 판단하기에 오차가 크므로 복수 개의 위상을 기준으로 위상 차이를 판단한다.Since the difference in the cumulative amount of light based on one phase is large enough to accurately determine the difference in phase, the phase difference is determined based on the plurality of phases.
또한 송신 광신호와 수신 광신호의 위상 차이가 거의 없어 한 번의 광신호 수신에서는 광량의 차이가 뚜렷하지 않더라도 복수 번 누적되는 광량은 큰 차이를 가질 수 있다. 이에 따라 본 발명에 따른 이미지센서는 매우 근소한 차이의 거리도 구분될 수 있어 매우 민감한 감도가 필요한 장치에 이용될 수 있다.In addition, since there is almost no phase difference between the transmission optical signal and the reception optical signal, the amount of light accumulated a plurality of times may have a large difference even if the difference in the amount of light is not obvious in one optical signal reception. Accordingly, the image sensor according to the present invention can also be distinguished from very small distances can be used in a device requiring a very sensitive sensitivity.
송신 광신호와 수신된 반사 광신호에 의해 포토다이오드에 축적된 전자량에 따른 출력 전압의 차이를 바탕으로 상기 송신 광신호와 반사 광신호의 위상 차이가 구해질 수 있다.The phase difference between the transmission optical signal and the reflection optical signal may be obtained based on the difference in the output voltage according to the amount of electrons accumulated in the photodiode by the transmission optical signal and the received reflection optical signal.
다음의 수학식 1을 참조하여 반사 광신호에 의해 축적된 광량을 이용하여 위상의 차이를 산출한다.The difference in phase is calculated using the amount of light accumulated by the reflected optical signal with reference to Equation 1 below.
제 1 반사 광신호의 크기(A1)와 제 3 반사 광신호의 크기(A3)의 차이를 분자, 제 2 반사 광신호의 크기(A2)와 제 4 반사 광신호의 크기(A4)의 차이를 분모로 하여 아크탄젠트를 취하면 위상 차이(θ)를 구할 수 있다.The difference between the magnitude A1 of the first reflected optical signal and the magnitude A3 of the third reflected optical signal is determined by the numerator, the difference between the magnitude A2 of the second reflected optical signal and the magnitude A4 of the fourth reflected optical signal. If the arc tangent is taken as the denominator, the phase difference θ can be obtained.
이때 반사 광신호의 크기(A1~A4)는 펄스의 크기를 나타내는 0 또는 1 값을 가진다. 0 또는 1의 값은 도 4를 예를 들어서 기준 위상에 따라 광량이 누적되기 시작하는 위상의 광량 크기나 누적이 끝나는 순간의 광량 크기 또는 광량이 누적되는 위상의 가운데 값을 기준으로 정해질 수도 있다.At this time, the magnitudes A1 to A4 of the reflected optical signal have a value of 0 or 1 representing the magnitude of the pulse. For example, a value of 0 or 1 may be determined based on the magnitude of the amount of light in which the amount of light begins to accumulate according to the reference phase, for example, the magnitude of the amount of light at the end of the accumulation or the center value of the amount of light accumulating. .
예를 들어 도 4의 송신 광신호(LED)에 따른 각 기준 위상의 광신호 크기는 라이징 펄스를 기준으로 각각 1, 1, 0, 0이고 수신 광신호(Reflected)에 따른 각 기준 위상의 광신호 크기는 각각 0, 1, 1, 0이다. 이로 인해 상기 수신 광신호가 상기 송신 광신호에 비해 기준 위상 이내의 위상 차이를 가진다는 것을 알 수 있다.For example, the optical signal size of each reference phase according to the transmission optical signal LED of FIG. 4 is 1, 1, 0, 0 based on the rising pulse, respectively, and the optical signal of each reference phase according to the reception optical signal (Reflected). The sizes are 0, 1, 1 and 0 respectively. Accordingly, it can be seen that the received optical signal has a phase difference within a reference phase compared to the transmitted optical signal.
또한 도 4의 파형을 참고로 광신호가 ON일 때 온전히 노출된 광신호의 크기가 10이라고 가정하면 송신 광신호는 위상별 광신호의 크기가 각각 10, 5, 0, 5이고 수신 광신호는 각각 6, 9, 4, 1이다. 위상 0도와 위상 270도를 기준으로는 광신호의 크기가 송신 광신호에 비해 줄었고 위상 90도와 위상 180도를 기준으로는 광신호의 크기가 커졌다. 이로 인해 수신 광신호가 송신호 광신호 반파장의 4/10만큼 위상 차이를 가진다는 것을 알 수 있다.In addition, referring to the waveform of FIG. 4, when the optical signal is ON, assuming that the size of the fully exposed optical signal is 10, the transmission optical signal has 10, 5, 0, and 5 optical signals for each phase, respectively. 6, 9, 4, 1. The magnitude of the optical signal is reduced compared to the transmission optical signal based on the phase 0 degree and the phase 270 degree, and the magnitude of the optical signal is increased based on the phase 90 degree and the phase 180 degree. As a result, it can be seen that the received optical signal has a phase difference of 4/10 of the half wavelength of the transmission call optical signal.
본 발명의 2차원 영상과 3차원 영상 정보의 정합 방법은 빛이 수신되면 전자를 축적하는 포토다이오드를 이용하여 2차원 영상을 촬영하는 단계와, 상기 포토다이오드에서 광신호의 일정 위상을 기준으로 축적된 전자가 복수 번 이송되면 기생 커패시터에 누적하는 누적 트랜지스터를 이용하여 각 화소별 3차원 영상 정보를 얻는 단계와, 상기 2차원 영상과 3차원 영상 정보를 각 화소 단위로 정합하는 단계, 상기 2차원 영상에 3차원 영상 정보가 더해져 입체 영상을 구현하는 단계로 구성된다.In the matching method of the 2D image and the 3D image information of the present invention, photographing a 2D image using a photodiode that accumulates electrons when light is received, and accumulating the photodiode based on a predetermined phase of an optical signal. Acquiring three-dimensional image information for each pixel using a cumulative transistor accumulated in a parasitic capacitor when a plurality of electrons are transferred a plurality of times; matching the two-dimensional image and three-dimensional image information for each pixel unit; 3D image information is added to the image to implement a stereoscopic image.
2차원 영상을 촬영하는 단계와 광신호의 일정 위상을 기준으로 광량을 누적하는 3차원 영상 정보를 얻는 단계는 어느 것이 먼저 수행되어도 관계없다. 다만 상기 2차원 영상과 3차원 영상 정보가 화소 단위로 정합되기 때문에 이미지 센서의 방향이나 측정 대상의 위치 등 어느 것 하나가 바뀌면 제대로 된 고화질의 3차원 영상을 얻을 수 없으므로 이미지센서와 측정 대상이 고정되어 있는 환경에서 진행되는 것이 바람직할 것이다.Either of taking a two-dimensional image and obtaining three-dimensional image information that accumulates the amount of light based on a predetermined phase of the optical signal may be performed first. However, since the 2D image and the 3D image information are matched in units of pixels, if any one such as the direction of the image sensor or the position of the measurement target is changed, a high quality 3D image cannot be obtained. Therefore, the image sensor and the measurement target are fixed. It would be desirable to proceed in a controlled environment.
본 발명의 2차원 영상과 3차원 영상 정보의 정합 방법의 상기 2차원 영상을 촬영하는 단계는 빛이 수신되면 전자를 축적하는 포토다이오드와, 상기 포토다이오드에 축적된 전자의 이송을 결정하는 게이트 트랜지스터와, 상기 게이트 트랜지스터의 작동 시간을 조절하여 측정 대상의 밝기에 따른 노광 시간을 제어하는 제어부를 이용하여 2차원 영상을 촬영한다.The photographing of the two-dimensional image of the matching method of the two-dimensional image and the three-dimensional image information of the present invention may include a photodiode that accumulates electrons when light is received, and a gate transistor that determines transfer of electrons accumulated in the photodiode. And a 2D image by using a control unit controlling the exposure time according to the brightness of the measurement target by adjusting the operation time of the gate transistor.
또한 본 발명의 2차원 영상과 3차원 영상 정보의 정합 방법의 상기 3차원 영상 정보를 얻는 단계는 빛이 수신되면 전자를 축적하는 포토다이오드와, 상기 포토다이오드에 축적된 전자의 이송을 결정하는 게이트 트랜지스터와, 기생 커패시터가 포함되어 상기 게이트 트랜지스터를 통해 이송된 전자가 누적되며 상기 누적된 전자량에 따른 전압 레벨을 전달하는 누적 트랜지스터와, 상기 게이트 트랜지스터가 광신호의 일정 위상을 기준으로 복수 번 작동되어 상기 기생 커패시터에 전자가 누적되도록 제어하는 제어부를 이용하여 3차원 영상 정보를 얻는다.In addition, the step of obtaining the three-dimensional image information of the matching method of the two-dimensional image and three-dimensional image information of the present invention comprises a photodiode that accumulates electrons when light is received, and a gate for determining the transfer of electrons accumulated in the photodiode A cumulative transistor including a transistor, a parasitic capacitor, and electrons transferred through the gate transistor, and transferring a voltage level according to the accumulated amount of electrons; and the gate transistor operates a plurality of times based on a predetermined phase of an optical signal. 3D image information is obtained using a control unit which controls electrons to accumulate in the parasitic capacitor.
종래의 3차원 영상을 얻기 위한 과정은 매우 복잡하였으나 본 발명에서는 2차원 영상의 각 화소별로 3차원 영상 정보를 정합할 수 있어 기존의 화질을 그대로 유지할 수 있다.Although a conventional process for obtaining a 3D image is very complicated, the present invention can match 3D image information for each pixel of a 2D image, thereby maintaining the existing image quality.
입체 영상이 구현되는데 있어서 상기 3차원 영상 정보를 바탕으로 3차원 워핑(3D Warping) 기법이 이용될 수 있다. 3차원 워핑은 깊이 정보와 내외부 파라미터가 이용되어 영상의 각 화소들에 대한 실제 좌표가 산출되고 다시 가상의 시점으로 재투영되어 임의의 자유로운 가상 시점에서의 영상이 생성되어 사용자에게 제공될 수 있다.In implementing a stereoscopic image, a 3D warping technique may be used based on the 3D image information. In the 3D warping, depth information and internal and external parameters may be used to calculate actual coordinates for each pixel of the image, and may be reprojected to a virtual view, thereby generating an image at any free virtual view and providing the user.
또한 3차원 워핑을 거치면서 원래 영상에 존재하지 않는 빈 영역, 즉 3차원 영상 정보가 할당되지 않은 영역이 발생될 수 있는데 이 영역은 인근의 유용한 화소들에 할당된 3차원 영상 정보를 참고로 적절한 정보를 추측하여 상기 빈 영역에 채워넣는 방법 등이 이용될 수 있다.In addition, an empty area that does not exist in the original image, that is, an area to which no 3D image information is allocated, may be generated during the 3D warping. This area may be appropriately referred to as 3D image information allocated to nearby useful pixels. A method of guessing information and filling it in the blank area may be used.
본 발명에 따른 3차원 영상 정보를 얻기 위한 상기 이미지센서는 복수 개의 화소에 각각 누적된 전자량에 따른 전압 레벨이 선택적으로 출력되기 위한 제 2 출력 트랜지스터를 더 포함한다.The image sensor for obtaining 3D image information according to the present invention further includes a second output transistor for selectively outputting a voltage level according to the amount of electrons accumulated in each of the plurality of pixels.
도 5는 제 3 실시예로서 5-트랜지스터 회로 구조를 가지는 이미지센서를 도시하고 있으며 도 1의 회로에 제 2 출력 트랜지스터가 더 포함된 구조를 가진다.FIG. 5 shows an image sensor having a five-transistor circuit structure as a third embodiment, and has a structure in which a second output transistor is further included in the circuit of FIG.
4-트랜지스터 구조를 갖는 CMOS 이미지센서는 CCD 이미지센서에 비해 화질이 떨어지는데 그 이유는 각 라인마다 별도로 존재하는 회로로 인한 회로간 불균형에 있다. 후 보정으로 어느 정도의 노이즈는 제거될 수 있지만 CCD 이미지센서의 화질에는 못 미치고 있다. 이것을 해소하기 위하여 5-트랜지스터 구조를 갖는 이미지센서가 이용될 수 있다.CMOS image sensors with a four-transistor structure have lower image quality than CCD image sensors because of the unbalance between circuits due to the separate circuits in each line. Post-correction can remove some of the noise but falls short of the CCD image sensor's image quality. To solve this, an image sensor having a five-transistor structure can be used.
5-트랜지스터 이미지센서는 상기 4-트랜지스터 이미지센서와 기능과 구조가 유사하나 화소 Row를 선택하는 상기 제 1 출력 트랜지스터에 더하여 해당 화소 Row의 Single 화소가 선택될 수 있는 구조이다. 이로 인해 화소별로 동작되고 누적 전자량에 따른 전압레벨이 출력되도록 제어할 수 있다.The 5-transistor image sensor is similar in structure and function to the 4-transistor image sensor, but in addition to the first output transistor for selecting a pixel row, a single pixel of the corresponding pixel row can be selected. As a result, the voltage level may be controlled to operate according to the pixel and output the voltage level according to the accumulated electron quantity.
처음에 상기 리셋 트랜지스터와 게이트 트랜지스터를 작동시켜 상기 포토다이오드와 기생 커패시터에 잔존하는 전자를 리셋시킨 뒤 SEL 신호를 ON 시켜 화소를 선택한다. 이후 TG 신호선에 펄스를 인가하여 추가된 제 2 출력 트랜지스터의 작동을 통해 상기 게이트 트랜지스터가 작동되도록 한다. 이에 따라 4-트랜지스터 회로 구조와 다르게 무작위 접근(Random Access)이 가능하다.Initially, the reset transistor and the gate transistor are operated to reset electrons remaining in the photodiode and parasitic capacitor, and then the SEL signal is turned on to select a pixel. A pulse is then applied to the TG signal line to operate the gate transistor through the operation of the added second output transistor. This allows random access, unlike the 4-transistor circuit structure.
리셋된 후에 상기 제어부는 SEL 선에 신호를 인가하여 기준 전압 레벨이 출력되도록 한다. 상기 리셋 트랜지스터와 게이트 트랜지스터가 닫히면 상기 포토다이오드에 광신호에 따른 전자가 축적되고 상기 게이트 트랜지스터를 작동시켜 상기 축적된 전자가 확산되어 상기 기생 커패시터에 누적되도록 한다. 광신호의 기준 위상에 따라 상기 게이트 트랜지스터가 반복 작동되어 상기 기생 커패시터에 동일 위상을 기준으로 한 광량이 누적되도록 하며 상기 기생 커패시터에 누적된 전자량에 따른 전압 레벨이 OUT 선으로 출력되도록 한다. 같은 방식으로 다른 화소의 전압 레벨 출력을 읽어낸다.After the reset, the controller applies a signal to the SEL line to output the reference voltage level. When the reset transistor and the gate transistor are closed, electrons according to an optical signal are accumulated in the photodiode and the gate transistor is operated to diffuse the accumulated electrons to accumulate in the parasitic capacitor. The gate transistor is repeatedly operated according to the reference phase of the optical signal so that the amount of light based on the same phase is accumulated in the parasitic capacitor and the voltage level according to the amount of electrons accumulated in the parasitic capacitor is output to the OUT line. Read the voltage level output of the other pixel in the same way.
도 6에 도시된 바와 같이 이미지센서의 전자 셔터 방식 중 롤링 셔터 방식에 의해 화소(Pixel)의 한 Row(행)에 인가되는 TG 신호 및 RS 신호를 도시하고 있다.As shown in FIG. 6, a TG signal and an RS signal applied to one row of a pixel by a rolling shutter method among electronic shutter methods of an image sensor are illustrated.
도 7, 도 8, 도 9, 도 10은 이미지센서의 전자 셔터 방식 중 롤링 셔터 방식의 위상 별 TG 신호와 RS 신호 인가 파형을 도시하고 있다. 상기 도면들은 임의의 위상 0도, 90도, 180도, 270도를 기준으로 한다. 기준 위상과 기준 위상의 개수는 한정되지 않는다. 또한 도 7, 도 8, 도 9, 도 10은 도 2의 제 2 실시예에 따른 이미지센서 구성 회로에 입력되는 신호 파형으로서 복수 번의 광량 누적이 진행되는 동안은 초기 입력을 제외하고 리셋 신호가 입력되지 않는다.7, 8, 9, and 10 illustrate TG signals and RS signal application waveforms of phases of the rolling shutter method of the electronic shutter method of the image sensor. The figures are based on any phase 0 degrees, 90 degrees, 180 degrees, 270 degrees. The number of reference phases and reference phases is not limited. 7, 8, 9, and 10 are signal waveforms input to the image sensor circuit according to the second embodiment of FIG. 2, except that the reset signal is input except for the initial input during the accumulation of a plurality of light quantities. It doesn't work.
상기 리셋 트랜지스터가 작동되어 상기 포토다이오드에 전자가 축적되는 것을 막고 원하는 순간에만 상기 포토다이오드가 빛이 축적되도록 하여 누적된 전자를 읽어내는 작동을 전자 셔터라고 부른다. 카메라에 장착되는 물리적인 셔터는 평소에는 이미지센서나 필름에 빛이 조사되지 않도록 가리고 있다가 필요한 순간에만 열려서 빛에 노출되도록 하는 역할로서 상기 전자 셔터와 동일한 기능을 한다.The reset transistor is operated to prevent electrons from accumulating in the photodiode and the light is accumulated in the photodiode only at a desired moment, thereby reading the accumulated electrons. The physical shutter mounted on the camera normally covers the image sensor or the film so that light is not irradiated, and then opens only when necessary, thereby exposing the light to the same function as the electronic shutter.
전자 셔터의 종류에는 한 수평 라인(Row) 별로 누적된 전자 량에 따른 전압 레벨이 출력되도록 하는 롤링 셔터 방식과 전체 화소에서 동시에 전압 레벨이 출력되도록 하는 글로벌 셔터 방식 등이 있으며 롤링 셔터 방식은 화소의 라인별로 RS신호와 TG신호가 다르게 인가되기는 하지만 모든 라인이 같은 위상을 기준으로 작동되는 것은 동일하다.There are two types of electronic shutters: a rolling shutter method for outputting a voltage level according to the amount of electrons accumulated per horizontal line, and a global shutter method for simultaneously outputting voltage levels from all pixels. Although RS and TG signals are applied differently for each line, all lines operate in the same phase.
도 7의 위상 0도를 기준으로 인가되는 TG 신호와 RS 신호를 참고로 설명하면 RS 신호가 OFF되는 순간부터 포토다이오드에 전자가 축적되기 시작한다. 광신호(LED)의 반주기동안 상기 포토다이오드에 축적된 전자가 상기 기생 커패시터에 이송되도록 TG 신호가 입력된다. TG 신호와 RS 신호는 각각 게이트 트랜지스터와 리셋 트랜지스터를 작동시키는 역할을 한다.Referring to the TG signal and the RS signal applied based on the phase 0 degree of FIG. 7, electrons accumulate in the photodiode from the moment when the RS signal is turned off. The TG signal is input so that electrons accumulated in the photodiode are transferred to the parasitic capacitor during the half period of the optical signal LED. The TG signal and the RS signal serve to operate the gate transistor and the reset transistor, respectively.
도 7 내지 도 10에서 TG 신호는 네 번 반복되도록 도시되고 있으나 신호 인가 횟수는 자동 또는 수동으로 조절될 수 있다.In FIG. 7 to FIG. 10, the TG signal is shown to be repeated four times. However, the number of times of applying the signal may be automatically or manually adjusted.
도 8은 위상 90도를 기준으로 인가되는 TG 신호와 RS 신호를 도시하며 상기 기생 커패시터에 전자가 누적되기 위하여 리셋 트랜지스터의 작동을 제어하는 RS 신호는 초기에 한번만 인가된다.FIG. 8 illustrates a TG signal and an RS signal applied based on a phase of 90 degrees, and an RS signal controlling an operation of a reset transistor is applied only once in order to accumulate electrons in the parasitic capacitor.
광신호(LED)의 반주기동안 상기 포토다이오드에 축적된 전자가 상기 기생 커패시터에 이송되도록 TG 신호가 입력된다. TG 신호와 RS 신호는 각각 게이트 트랜지스터와 리셋 트랜지스터를 작동시키는 역할을 한다.The TG signal is input so that electrons accumulated in the photodiode are transferred to the parasitic capacitor during the half period of the optical signal LED. The TG signal and the RS signal serve to operate the gate transistor and the reset transistor, respectively.
도 9는 위상 180도를 기준으로 인가되는 TG 신호와 RS 신호를 도시하며, RS 신호가 OFF되는 순간부터 포토다이오드에 전자가 축적되기 시작한다. 광신호(LED)의 반주기동안 상기 포토다이오드에 축적된 전자가 상기 기생 커패시터에 이송되도록 TG 신호가 입력된다. TG 신호와 RS 신호는 각각 게이트 트랜지스터와 리셋 트랜지스터를 작동시키는 역할을 한다.9 illustrates a TG signal and an RS signal applied based on a phase of 180 degrees, and electrons start to accumulate in the photodiode from the moment when the RS signal is turned off. The TG signal is input so that electrons accumulated in the photodiode are transferred to the parasitic capacitor during the half period of the optical signal LED. The TG signal and the RS signal serve to operate the gate transistor and the reset transistor, respectively.
도 10은 위상 270도를 기준으로 인가되는 TG 신호와 RS 신호를 도시하며 상기 기생커패시터에 전자가 누적되기 위하여 리셋 트랜지스터의 작동을 제어하는 RS 신호는 초기에 한번만 인가된다.FIG. 10 illustrates a TG signal and an RS signal applied based on a phase of 270 degrees, and an RS signal controlling an operation of a reset transistor is applied only once at first to accumulate electrons in the parasitic capacitor.
광신호(LED)의 반주기동안 상기 포토다이오드에 축적된 전자가 상기 기생 커패시터에 이송되도록 TG 신호가 입력된다. TG 신호와 RS 신호는 각각 게이트 트랜지스터와 리셋 트랜지스터를 작동시키는 역할을 한다.The TG signal is input so that electrons accumulated in the photodiode are transferred to the parasitic capacitor during the half period of the optical signal LED. The TG signal and the RS signal serve to operate the gate transistor and the reset transistor, respectively.
도 7 내지 도 10에서 TG 신호는 네 번 반복되도록 도시되고 있으나 신호 인가 횟수는 자동 또는 수동으로 조절될 수 있다.In FIG. 7 to FIG. 10, the TG signal is shown to be repeated four times. However, the number of times of applying the signal may be automatically or manually adjusted.
이상과 같이 본 발명은, 바람직한 실시예를 중심으로 설명하였지만 본 발명이 속하는 기술 분야에서 통상의 지식을 가진자가 본 발명의 특허청구범위에 기재된 기술적 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 또는 변형하여 실시할 수 있다. 따라서 본 발명의 범주는 이러한 많은 변형의 예들을 포함하도록 기술된 청구범위에 의해서 해석되어야 한다.As described above, the present invention has been described based on the preferred embodiments, but various modifications of the present invention can be made without departing from the technical spirit and scope described in the claims of the present invention by those skilled in the art. Can be modified or modified. Therefore, the scope of the invention should be construed by the claims described to include examples of many such variations.
Claims (6)
- 빛이 수신되면 전자를 축적하는 포토다이오드와;A photodiode that accumulates electrons when light is received;상기 포토다이오드에 축적된 전자의 이송을 결정하는 게이트 트랜지스터와;A gate transistor for determining transfer of electrons accumulated in the photodiode;기생 커패시터가 포함되어 상기 게이트 트랜지스터를 통해 이송된 전자가 누적되며 상기 누적된 전자량에 따른 전압 레벨을 전달하는 누적 트랜지스터와;An accumulation transistor including a parasitic capacitor to accumulate electrons transferred through the gate transistor and to transfer a voltage level according to the accumulated electron amount;상기 게이트 트랜지스터가 광신호의 일정 위상을 기준으로 복수 번 작동되어 상기 기생 커패시터에 전자가 누적되도록 제어하는 제어부;를 포함하며,And a controller configured to control the gate transistor to operate with a plurality of times based on a predetermined phase of an optical signal to accumulate electrons in the parasitic capacitor.상기 제어부는 상기 게이트 트랜지스터의 작동을 이용하여 복수 개의 광신호가 각각 서로 다른 위상을 기준으로 수신되도록 제어하며,The controller controls the plurality of optical signals to be received based on different phases using the operation of the gate transistor,상기 전자의 누적 횟수는 상기 광신호의 파장이 짧을수록 많아지며,The cumulative number of electrons increases as the wavelength of the optical signal is shorter,상기 포토다이오드에 축적된 전자를 제거하는 리셋 트랜지스터를 포함하며,A reset transistor for removing electrons accumulated in the photodiode,상기 리셋 트랜지스터는 상기 게이트 트랜지스터와 반주기 차이로 작동하며, The reset transistor operates at a half period difference from the gate transistor,상기 리셋 트랜지스터는 원하는 위상에 도달하기 직전까지 상기 포토다이오드에 불필요한 전자가 축적되지 않도록 리셋하며, The reset transistor is reset so that unnecessary electrons do not accumulate in the photodiode until just before reaching a desired phase,상기 게이트 트랜지스터는 원하는 위상에서만 게이트를 열고 닫아 유효한 전자를 누적시키는 것을 특징으로 하는The gate transistor opens and closes a gate only at a desired phase to accumulate valid electrons.3차원 영상 정보를 얻기 위한 이미지센서.Image sensor for obtaining 3D image information.
- 제 1항에 있어서,The method of claim 1,상기 이미지센서는 상기 누적된 전자량에 따른 전압 레벨이 화소 Row별로 출력되기 위한 제 1 출력 트랜지스터를 더 포함하는 것을 특징으로 하는The image sensor may further include a first output transistor for outputting a voltage level according to the accumulated electron quantity for each pixel row.3차원 영상 정보를 얻기 위한 이미지센서.Image sensor for obtaining 3D image information.
- 제 1항에 있어서,The method of claim 1,상기 이미지센서는 복수 개의 화소에 각각 누적된 전자량에 따른 전압 레벨이 선택적으로 출력되기 위한 제 2 출력 트랜지스터를 더 포함하는 것을 특징으로 하는The image sensor may further include a second output transistor for selectively outputting a voltage level according to the amount of electrons accumulated in each of the plurality of pixels.3차원 영상 정보를 얻기 위한 이미지센서.Image sensor for obtaining 3D image information.
- 빛이 수신되면 전자를 축적하는 포토다이오드를 이용하여 2차원 영상을 촬영하는 단계와;Photographing a 2D image using a photodiode that accumulates electrons when light is received;상기 포토다이오드에서 광신호의 일정 위상을 기준으로 축적된 전자가 복수 번 이송되면 기생 커패시터에 누적하는 누적 트랜지스터를 이용하여 각 화소별 3차원 영상 정보를 얻는 단계와;Obtaining three-dimensional image information for each pixel by using a cumulative transistor accumulated in a parasitic capacitor when electrons accumulated on the basis of a predetermined phase of an optical signal are transferred a plurality of times in the photodiode;상기 2차원 영상과 3차원 영상 정보를 각 화소 단위로 정합하는 단계;Matching the 2D image and the 3D image information on a pixel basis;상기 2차원 영상에 3차원 영상 정보가 더해져 입체 영상을 구현하는 단계;로 구성되며,And adding 3D image information to the 2D image to implement a 3D image.상기 축적된 전자의 누적횟수는 상기 광신호의 파장이 짧을수록 많아지는 것을 특징으로 하는The accumulated number of accumulated electrons increases as the wavelength of the optical signal is shorter.2차원 영상과 3차원 영상 정보의 정합 방법.Method of matching 2D image and 3D image information.
- 상기 2차원 영상을 촬영하는 단계는Taking the 2D image빛이 수신되면 전자를 축적하는 포토다이오드와,A photodiode that accumulates electrons when light is received,상기 포토다이오드에 축적된 전자의 이송을 결정하는 게이트 트랜지스터와,A gate transistor for determining transfer of electrons accumulated in the photodiode;상기 게이트 트랜지스터의 작동 시간을 조절하여 측정 대상의 밝기에 따른 노광 시간을 제어하는 제어부를 이용하여 2차원 영상을 촬영하는 것을 특징으로 하는It is characterized by taking a two-dimensional image by using the control unit for controlling the exposure time according to the brightness of the measurement target by adjusting the operating time of the gate transistor2차원 영상과 3차원 영상 정보의 정합 방법.Method of matching 2D image and 3D image information.
- 상기 3차원 영상 정보를 얻는 단계는Obtaining the 3D image information빛이 수신되면 전자를 축적하는 포토다이오드와,A photodiode that accumulates electrons when light is received,상기 포토다이오드에 축적된 전자의 이송을 결정하는 게이트 트랜지스터와,A gate transistor for determining transfer of electrons accumulated in the photodiode;기생 커패시터가 포함되어 상기 게이트 트랜지스터를 통해 이송된 전자가 누적되며 상기 누적된 전자량에 따른 전압 레벨을 전달하는 누적 트랜지스터와,A cumulative transistor including a parasitic capacitor to accumulate electrons transferred through the gate transistor and to transfer a voltage level according to the accumulated electron amount;상기 게이트 트랜지스터가 광신호의 일정 위상을 기준으로 복수 번 작동되어 상기 기생 커패시터에 전자가 누적되도록 제어하는 제어부를 이용하여 3차원 영상 정보를 얻으며,The gate transistor is operated a plurality of times based on a predetermined phase of the optical signal to obtain three-dimensional image information by using a control unit for controlling electrons to accumulate in the parasitic capacitor,상기 포토다이오드에 축적된 전자를 제거하는 리셋 트랜지스터를 포함하며,A reset transistor for removing electrons accumulated in the photodiode,상기 리셋 트랜지스터는 상기 게이트 트랜지스터와 반주기 차이로 작동하며, The reset transistor operates at a half period difference from the gate transistor,상기 리셋 트랜지스터는 원하는 위상에 도달하기 직전까지 상기 포토다이오드에 불필요한 전자가 축적되지 않도록 리셋하며, The reset transistor is reset so that unnecessary electrons do not accumulate in the photodiode until just before reaching a desired phase,상기 게이트 트랜지스터는 원하는 위상에서만 게이트를 열고 닫아 유효한 전자를 누적시키는 것을 특징으로 하는The gate transistor opens and closes a gate only at a desired phase to accumulate valid electrons.2차원 영상과 3차원 영상 정보의 정합 방법.Method of matching 2D image and 3D image information.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2014-0018529 | 2014-02-18 | ||
KR1020140018529A KR101434916B1 (en) | 2014-02-18 | 2014-02-18 | Image Sensor for getting 3-D Image Information and Matching Method of 2-D Image and 3-D Image Information. |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015126021A1 true WO2015126021A1 (en) | 2015-08-27 |
Family
ID=51751459
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2014/007607 WO2015126021A1 (en) | 2014-02-18 | 2014-08-18 | Image sensor for acquiring three-dimensional image information and method for matching two-dimensional image and three-dimensional image information |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101434916B1 (en) |
WO (1) | WO2015126021A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3706409A1 (en) * | 2019-03-07 | 2020-09-09 | Melexis Technologies NV | Pixel voltage regulator |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11985431B2 (en) * | 2021-01-19 | 2024-05-14 | Semiconductor Components Industries, Llc | Imaging system with an electronic shutter |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20100034996A (en) * | 2008-09-25 | 2010-04-02 | 삼성전자주식회사 | Three dimensional image sensor |
KR20110059253A (en) * | 2009-11-27 | 2011-06-02 | 삼성전자주식회사 | Image sensor for sensing object distance information |
KR20130045833A (en) * | 2010-02-26 | 2013-05-06 | 하마마츠 포토닉스 가부시키가이샤 | Range image sensor |
KR20130134739A (en) * | 2012-05-31 | 2013-12-10 | 삼성전자주식회사 | Three-dimensional image sensor |
-
2014
- 2014-02-18 KR KR1020140018529A patent/KR101434916B1/en active IP Right Grant
- 2014-08-18 WO PCT/KR2014/007607 patent/WO2015126021A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20100034996A (en) * | 2008-09-25 | 2010-04-02 | 삼성전자주식회사 | Three dimensional image sensor |
KR20110059253A (en) * | 2009-11-27 | 2011-06-02 | 삼성전자주식회사 | Image sensor for sensing object distance information |
KR20130045833A (en) * | 2010-02-26 | 2013-05-06 | 하마마츠 포토닉스 가부시키가이샤 | Range image sensor |
KR20130134739A (en) * | 2012-05-31 | 2013-12-10 | 삼성전자주식회사 | Three-dimensional image sensor |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3706409A1 (en) * | 2019-03-07 | 2020-09-09 | Melexis Technologies NV | Pixel voltage regulator |
US11284027B2 (en) | 2019-03-07 | 2022-03-22 | Melexis Technologies Nv | Pixel voltage regulator |
Also Published As
Publication number | Publication date |
---|---|
KR101434916B1 (en) | 2014-08-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI803506B (en) | Pixel and method for operating the pixel | |
JP6410824B2 (en) | Flicker detection of image sensor | |
KR100718404B1 (en) | Image sensor incorporating saturation time measurement to increase dynamic range | |
US5887049A (en) | Self-triggered X-ray sensor | |
EP1142312A2 (en) | Dark-current compensation circuit | |
CA3047698A1 (en) | Global shutter scheme that reduces the effects of dark current | |
JPS61133784A (en) | Apparatus for extracting signal indicating level of dark current | |
JPH03832B2 (en) | ||
US5027148A (en) | Autofocus chip with reference level determination circuit | |
CN106454156B (en) | Imaging sensor and its operation method | |
JP3022166B2 (en) | Solid-state imaging device | |
WO2015126021A1 (en) | Image sensor for acquiring three-dimensional image information and method for matching two-dimensional image and three-dimensional image information | |
KR100538322B1 (en) | Detector system of time delay integration type using area sensor | |
KR101434915B1 (en) | Image Sensor having a Parallel Structure for Cumulative Light per Phase | |
KR101909744B1 (en) | A light accumulation image sensor of parallel structure having remove circuit | |
EP3445039B1 (en) | Detection circuit for photo sensor with stacked substrates | |
Kamberova | Understanding the systematic and random errors in video sensor data | |
EP3445040B1 (en) | Detecting high intensity light in photo sensor | |
KR100494100B1 (en) | Cmos image sensor | |
JP2020506608A (en) | Back-illuminated global shutter imaging array | |
KR200319567Y1 (en) | Detector device of time delay integration type using area sensor | |
JP2005175986A (en) | Image input device | |
JP2018182445A (en) | Imaging apparatus | |
JPS63240184A (en) | Solid-state image sensor circuit | |
JPH11127459A (en) | Method for inspecting solid-state image pickup device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14883004 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14883004 Country of ref document: EP Kind code of ref document: A1 |