WO2015125849A1 - METHOD FOR MASS-PRODUCING BACTERIOCHLOROPHYL b, AND PRODUCING STRAIN - Google Patents

METHOD FOR MASS-PRODUCING BACTERIOCHLOROPHYL b, AND PRODUCING STRAIN Download PDF

Info

Publication number
WO2015125849A1
WO2015125849A1 PCT/JP2015/054552 JP2015054552W WO2015125849A1 WO 2015125849 A1 WO2015125849 A1 WO 2015125849A1 JP 2015054552 W JP2015054552 W JP 2015054552W WO 2015125849 A1 WO2015125849 A1 WO 2015125849A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
producing
bchz
bchl
bchy
Prior art date
Application number
PCT/JP2015/054552
Other languages
French (fr)
Japanese (ja)
Inventor
祐介 塚谷
均 民秋
二朗 原田
祐一 藤田
次郎 野亦
Original Assignee
学校法人立命館
学校法人 久留米大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人立命館, 学校法人 久留米大学 filed Critical 学校法人立命館
Priority to JP2016504149A priority Critical patent/JP6480414B2/en
Publication of WO2015125849A1 publication Critical patent/WO2015125849A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/18Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms containing at least two hetero rings condensed among themselves or condensed with a common carbocyclic ring system, e.g. rifamycin
    • C12P17/182Heterocyclic compounds containing nitrogen atoms as the only ring heteroatoms in the condensed system

Definitions

  • the present invention relates to a recombinant bacteriochlorophyll b high-producing bacterium, a method for producing the same, and a method for mass production of bacteriochlorophyll b using the high-producing bacterium.
  • Bacteriochlorophyll is a name given to tetrapyrroles found in non-oxygen-producing photosynthetic bacteria. There are 7 types from a to g, and 6 types except BChl f so far. It is found from nature. Among these, BChl a, BChl b and BChl g have a bacteriochlorin skeleton in which the CC double bond at the ⁇ -position of both the B and D rings of the tetrapyrrole ring is reduced to a single bond.
  • BChl a and BChl b are present in red photosynthetic bacteria and BChl g are present in heliobacteria, and form non-covalent bonds with oligopeptides to form dye-protein complexes.
  • the absorption spectrum of (bacterio) chlorophyll has four absorption bands from the long wavelength side: Qy, Qx, By, and Bx (By and Bx bands are collectively referred to as the Soray band), but BChl a / has a bacteriochlorin skeleton.
  • the Qy band is greatly shifted in the near infrared region by a longer wavelength than BChl c / d / e and chlorophyll having a chlorin skeleton.
  • BChl b has a longer wavelength shift in the Qy band than BChl a due to the presence of the ethylidene side chain at the C8 position. Therefore, BChl b, bacteriochlorophyllide b (BChlide b) from which the long-chain hydrocarbon group in the propionate residue on the 17th position is removed, bacteriopheophytin b (BPhe b) and bacteriopheophore from which the central metal is eliminated. If bide b (BPheoide b) can be supplied at low cost and in large quantities, it is useful for the production of optical devices with improved light energy conversion efficiency.
  • BChlide b bacteriochlorophyllide b
  • BPhe b bacteriopheophytin b
  • bacteriopheophore from which the central metal is eliminated.
  • 8-vinyl chlorophyllide a (8V-Chlide a) is reduced to ethyl group by the action of 8-vinyl reductase (or divinyl reductase, called DVR).
  • DVR divinyl reductase
  • a (Chlide a) is generated.
  • chlorophyllide a oxidoreductase (COR) consisting of three proteins, BchX, BchY and BchZ, turns the double bond at the C7-8 position of the B ring into a single bond.
  • Bacteriochlorophyllide a (3V-BChlide a) is produced (Non-patent Document 1), and the C3 position is acetylated by the action of 3-vinyl bacteriochlorophyllide hydratase (BchF) and 3-hydroxyethylbacteriochlorophyllide dehydrogenase (BchC). After being converted to BChlide a, a long-chain hydrocarbon group is added to the propionate residue at position 17 by the action of BchG to generate BChl a.
  • BchF 3-vinyl bacteriochlorophyllide hydratase
  • BchC 3-hydroxyethylbacteriochlorophyllide dehydrogenase
  • BchX / Y / Z reduces the conjugated diene of the B ring of the chlorin ring of 8V-Chlide a by 1,4 addition and reduces the bacterio BChlide g, which is a precursor of BChl b and BChl g, is produced directly from 8V-Chlide a by catalyzing the reaction of providing an ethylidene group at the C8 position of the chlorin ring (Patent Document 1).
  • BChF and BchC act to acetylate the C3 position of BChlide g to produce BChlide b, and then BchG acts to produce BChl b, as in BChla-producing bacteria.
  • BchF / BchC does not exist in BChl g-producing bacteria, and BChl g is produced from BChlide g by the action of BchG.
  • an object of the present invention is to provide a BChl b high-producing bacterium, and to provide a method for mass-producing BChl b using the bacterium.
  • the inventors of the present invention have proposed that the reaction from BChlide g to BChl b in BChl b-producing bacteria is the same as the reaction from 3V-BChlide a to BChla in BChla-producing bacteria, as well as the acetyl group of the C3-vinyl group by BchF and BchC.
  • BchX / Y / Z (hereinafter referred to as “BvCOR”) derived from BChl b producing bacterium Blastochloris viridis and Rhodobacter sphaeroides It was tried whether BChlb could be produced by expressing. However, it alone did not lead to production of BChlb (FIG. 2). Several hypotheses were conceivable as the reason, but the present inventors originally found that R. spheroides was originally endogenous to R.
  • the bacterium has a third enzyme that can reduce 8V-Chlide a to Chlide a. It has been suggested (Canniffe, DP et al., Biochem. J., 450: 397-405 (2013)) that the present inventors confer the ability to produce BChlb to R. sphaeroides.
  • RcCOR BchX / Y / Z
  • BChl b could not be produced simply by expressing BvCOR in a wild strain of R. spheroides is that BchF and BchC endogenous to R. spheroides are not able to produce BChlide g or 3-hydroxyethylbacteriochlorophyllide b.
  • R. sphaeroides 2.4.1 and BChl b producing bacterium, Thioflaviococcus mobilis whose genome sequence is already known.
  • BchF and BchC show 71% / 80% and 56% / 69% amino acid identity / similarity respectively, but 80% / 90%, 70% / 75% and 65% / 77% respectively.
  • the present invention provides the following.
  • a photosynthetic bacterium that produces bacteriochlorophyll a it lacks the endogenous bciA gene and bchY and / or bchZ gene, and expresses bchY and bchZ genes derived from a photosynthetic bacterium that produces bacteriochlorophyll b or bacteriochlorophyll g.
  • Bacteriochlorophyll b producing mutants engineered as follows.
  • BChl b or a derivative thereof in which the Qy band is in the near-infrared region having a longer wavelength can be provided easily and in large quantities, and thus functional dyes having a changed light absorption band are used industrially. It becomes possible to do.
  • the endogenous bciA gene and bchY and / or bchZ gene are deleted, and bchY and bchZ genes derived from photosynthetic bacteria producing BChl b or BChl g are expressed.
  • An engineered BChlb producing mutant is provided.
  • the strain used as a parent strain for genetic manipulation is a photosynthetic bacterium capable of producing BChla, which grows quickly, can grow under dark (slight) aerobic conditions, and can be genetically manipulated. There is no particular limitation as long as it is correct.
  • Examples of BChl a-producing bacteria include R. spheroides, R.
  • capslatas Rhodospirillum photometricum, Rhodopseudomonas palustris, Thiocapsa marina, Thiocapsa marina, Allochromatium chromium vinosum) and the like, but is not limited thereto.
  • BChla-producing bacteria include, for example, ATCC, CAUP, CCAP, CCMP, CCCM, CGCCCC, CSIRO, DSMZ, Kagawa Prefectural Fisheries Experiment Station, Akashi Research Institute, Kobe University Seaweed Collection (KU-MACC), National Institute for Environmental Studies It can be obtained from culture collections of photosynthetic organisms, such as the Microbiology Preservation Facility (NIES) and the Biotechnology Center (NBRC) of the National Institute of Technology and Evaluation (NITE). For example, R. spheroides (NBRC 12203, 100037 and 100038) and R.
  • BChla-producing bacteria that can grow under microaerobic conditions and can be genetically modified are preferably R. spheroides, R. capsulatus, Rps. Pulstris, etc., more preferably R. spheroides and R. capsulatus, particularly preferably R. Spheroides is mentioned. If BChl a-producing bacteria, such as R. spheroides and R.
  • capsulatus have not established an efficient natural transformation / electroporation system, and if gene transfer is performed by conjugative transfer via E. coli, donor / In order to facilitate removal of the helper E. coli, it is preferable to use a rifampicin-resistant BChla-producing bacterium.
  • Rifampicin resistant bacteria can be easily obtained by, for example, seeding BChla-producing bacteria on a solid medium containing 100 ⁇ g / ml rifampicin and picking up naturally occurring resistant colonies.
  • the “bciA gene” to be deleted in the present invention is a gene having a coding region (cds) consisting of the nucleotide sequence shown in SEQ ID NO: 1 isolated from the R. sphaeroides genome (the amino acid encoded by the cds) The sequence is shown in SEQ ID NO: 2), as well as its orthologs in other BChla producing bacteria.
  • cds coding region consisting of the nucleotide sequence shown in SEQ ID NO: 1 isolated from the R. sphaeroides genome (the amino acid encoded by the cds) The sequence is shown in SEQ ID NO: 2), as well as its orthologs in other BChla producing bacteria.
  • capsulatus SB1003 strain whose entire genome sequences have been decoded are listed in the NCBI database as Gene ID: 552536492 (positions 111258-112292 (complementary strand) of NC_007494.2); locus tag : RSP_3070), and Gene ID: 294675557 (NC_014034.1, positions 3460325-3461290 (complementary strand); locus tag: RCAP_rcc03260), and those skilled in the art can easily obtain the genome sequence information of the gene and its upstream and downstream regions. Can be obtained.
  • the genome sequence is decoded by a conventional method, and then the Blast search is performed on the obtained genome sequence using the nucleotide sequence shown in SEQ ID NO: 1 as a query. Can be identified.
  • Confirmation that the hit gene is the bciA gene is, for example, whether 8V-Chlide a is brought into contact with a recombinant protein obtained by introducing an expression vector containing the gene into Escherichia coli to produce Chlide a. Can be done by examining. Based on the nucleotide sequence information of the bciA gene thus obtained, an appropriate oligonucleotide was synthesized as a primer, and a genomic DNA fraction prepared from a BChla-producing bacterium was used as a template. The target bciA gene can be amplified by “PCR method”. The nucleotide sequence of the DNA obtained as described above can be determined using a known sequence technique such as the Maxam-Gilbert method or the dideoxy termination method.
  • the “bchY gene” to be deleted in the present invention is a gene having a coding region (cds) consisting of the nucleotide sequence shown in SEQ ID NO: 3 isolated from the R. sphaeroides genome (the amino acid encoded by the cds) The sequence is shown in SEQ ID NO: 4), as well as its orthologs in other BChla producing bacteria.
  • cds coding region
  • capsulatus SB1003 strain whose entire genome sequence has been decoded are respectively listed in the NCBI database as Gene ID: 552535527 (1984719-1986227 positions of NC_007493.2 (complementary strand); locus tag : RSP_0261), and Gene ID: 294675557 (No. 759425-760918 in NC_014034.1; locus tag: RCAP_rcc00688).
  • Gene ID: 552535527 (1984719-1986227 positions of NC_007493.2 (complementary strand); locus tag : RSP_0261), and Gene ID: 294675557 (No. 759425-760918 in NC_014034.1; locus tag: RCAP_rcc00688).
  • Those skilled in the art can easily obtain the genome sequence information of the gene and its upstream and downstream regions. Can do.
  • the genome sequence is decoded by a conventional method, and then the Blast search is performed on the obtained genome sequence using the nucleotide sequence shown in SEQ ID NO: 3 as a query. Can be identified.
  • Confirmation that the hit gene is the bchY gene can be performed, for example, by examining whether or not the BChla production ability is lost when the gene is deleted.
  • an appropriate oligonucleotide was synthesized as a primer, and a genomic DNA fraction prepared from BChla-producing bacteria was used as a template, and the target bchY was obtained by PCR.
  • Genes can be amplified.
  • the nucleotide sequence of the DNA obtained as described above can be determined using a known sequence technique such as the Maxam-Gilbert method or the dideoxy termination method.
  • the “bchZ gene” to be deleted in the present invention is a gene having a coding region (cds) consisting of the nucleotide sequence shown in SEQ ID NO: 5 isolated from the R. sphaeroides genome (the amino acid encoded by the cds) The sequence is shown in SEQ ID NO: 6), as well as its orthologs in other BChla producing bacteria.
  • capsulatus SB1003 strain whose entire genome sequences have been decoded are listed in the NCBI database as Gene ID: 552535527 (NC_007493.2 at positions 1983244-1984719 (complementary strand); locus tag : RSP_0260) and Gene ID: 294675557 (positions 760918-762390 of NC_014034.1; locus tag: RCAP_rcc00689), and those skilled in the art can easily obtain the genome sequence information of the gene and its upstream and downstream regions. Can do.
  • the genome sequence is decoded by a conventional method, and then the Blast search is performed on the obtained genome sequence using the nucleotide sequence shown in SEQ ID NO: 5 as a query. Can be identified.
  • Confirmation that the hit gene is the bchZ gene can be performed, for example, by examining whether or not the BChla production ability is lost when the gene is deleted.
  • an appropriate oligonucleotide was synthesized as a primer, and a genomic DNA fraction prepared from a BChla-producing bacterium was used as a template.
  • Genes can be amplified. In many photosynthetic bacteria, the bchY gene and the bchZ gene are close to each other and partially overlap. In that case, both genes (may be referred to as bchYZ gene) may be cloned together. .
  • the nucleotide sequence of the DNA obtained as described above can be determined using a known sequence technique such as the Maxam-Gilbert method or the dideoxy termination method.
  • “Deleting an endogenous gene” in a BChl a-producing bacterium means that complete mRNA cannot be produced by destroying or removing the gene.
  • a target gene (genomic DNA) ⁇ derived from a target BChl a-producing bacterium is isolated according to a conventional method.For example, (1) ⁇ ⁇ ⁇ its coding region (cds) or other DNA in the promoter region Insert a fragment (e.g., drug resistance gene or reporter gene) cd to destroy the function of cds or promoter, or (2) cut out all or part of the target gene and delete the gene (e.g., drug (3) Insert a stop codon in cds to disable complete protein translation, or (4) DNA that terminates gene transcription into the transcription region By inserting a sequence (terminator sequence) ⁇ ⁇ ⁇ and disabling the synthesis of complete mRNA, the resulting DNA strand ⁇ (hereinafter referred to as a terminator
  • Tsu the computing vector and abbreviated may a scheme of incorporated target locus of interest BChl a producing bacteria is used by homologous recombination.
  • a drug resistance gene is inserted into cds to destroy the target gene, or all or part of the target gene is replaced with a drug resistance gene.
  • kanamycin resistance gene As the drug resistance gene, kanamycin resistance gene, streptomycin resistance gene, spectinomycin resistance gene, gentamicin resistance gene, chloramphenicol resistance gene, erythromycin resistance gene and the like can be used.
  • the kanamycin resistance gene the neo gene contained in pUCKM1 (J. Biol. Chem., 266 (20): 12889-12895 (1991)) is used as the streptomycin and spectinomycin resistance gene, pHP45 ⁇ (Gene, 29: 303-313 (1984)), pSRA2, pSRA81 Method (Methods Mol.
  • the aadA gene is pMS255, pMS266 (Gene, 162: 37 -39 (1995)), the aacC1 gene contained in, erythromycin resistance gene and chloramphenicol resistance gene, ermC gene and cat gene contained in pRL409 (Gene, 68: 119-138 (1988)) It is done.
  • These genes can be excised from the plasmid with an appropriate restriction enzyme, or can be amplified by PCR using the plasmid as a template and the upstream and downstream regions of these genes as primers.
  • a targeting vector in which a drug resistance gene is inserted into cds of a target gene or all or part of the target gene is replaced with a drug resistance gene, see, for example, MethodsMethodin Enzymology, 497: 519-538 (2011) However, the method is not limited thereto, and a method well known in the technical field can be used as appropriate.
  • the vector By introducing the above targeting vector into the target BChl a-producing bacterium, the vector can be incorporated into the target locus of the target BChl a-producing bacterium by homologous recombination.
  • the gene transfer method is not particularly limited as long as it is a method applicable to the target BChl a-producing bacterium, and any method known per se (for example, natural transformation method, electroporation method, etc.) may be used.
  • any method known per se for example, natural transformation method, electroporation method, etc.
  • selection of homologous recombinants using gene transfer by conjugation transfer and drug selection using a suicide vector is a preferred embodiment. Methods in Enzymology, 497: 519-538 (2011)).
  • bciA gene isolated as described above or bchY and / or bchZ gene (hereinafter sometimes abbreviated as bchY / Z gene)
  • the gene is treated in cds.
  • a sequence homologous to the target enzyme gene at both ends of the inactivated enzyme gene by cutting or excluding a part of the gene and inserting the drug resistance gene isolated as described above. Construct a cassette containing Different drug resistance genes are inserted into the bciA gene and the bchY / Z gene, respectively.
  • the obtained cassette is obtained by using an appropriate suicide gene (for example, sacB gene derived from Bacillus subtilis (producing a fructose polymer that inhibits the growth of Gram-negative bacteria)) and the origin of replication of the donor E. coli (eg, colE1 Etc.) but is inserted into a vector (suicide vector) that cannot be replicated by the recipients R. spheroides or R. capsulatus to construct a targeting vector. Subsequently, donor E. coli is transformed with the targeting vector by a conventional method.
  • an appropriate suicide gene for example, sacB gene derived from Bacillus subtilis (producing a fructose polymer that inhibits the growth of Gram-negative bacteria)
  • a vector siicide vector
  • Transformation of R. sphaeroides and R. Capsulatus is performed by conjugating with E. coli (donor E. coli containing the targeting vector, helper E. coli that induces conjugation, and recipients such as R. Spheroides and R. Capsulatus. Or a parental transformant (donor E. coli) obtained by introducing the target expression vector into Escherichia coli having the ability to transfer conjugation with R. Spheroides or R. Capsulatus.
  • the donor Escherichia coli in the triple parental conjugation there are no particular limitations on the donor Escherichia coli in the triple parental conjugation, and a normal strain such as JM105 may be used, such as XL1-Blue, DH5, and C600 having the helper plasmid pDPT51.
  • Escherichia coli having conjugation transmission ability used for double parental joining include, (Bio / Technology, 1: 784-791 (1983)) The conjugation of donor Escherichia coli with the recipients R. Spheroides and R. Capsulatus (additional E. coli in the case of triple parental joining) is known per se.
  • rifampicin resistance for example, it can be easily done by selecting on rifampicin-containing medium. Contamination of donor and helper E. coli can be prevented.
  • a transformant can be obtained by culturing a bacterial cell into which a targeting vector has been introduced on a solid medium containing a drug and selecting resistant colonies.
  • the medium used here any medium suitable for the growth of the target BChla-producing bacterium can be used.
  • a medium recommended by a culture collection that stores BChla-producing bacteria can be used.
  • the BChla-producing bacterium is R. spheroides or R. capsulatus
  • medium No. 802 available from Wako Pure Chemical Industries listed in the medium information of online catalog search provided by NBRC Examples include Medium No. 360 (SA medium).
  • PYS medium 1% polypeptone, 0.5% yeast extract, 1% sodium chloride; J. Mol.
  • Evol., 45 (2): 131-136 (1997)) is also preferably used.
  • concentration of the selective agent added to the medium varies depending on the type of antibiotic and the type of strain.For example, in the case of R. sphaeroides 2.4.1, 25 ⁇ g / mL kanamycin, 10 ⁇ g / mL gentamicin, 50 ⁇ g, respectively. / mL Streptomycin, 50 ⁇ g / mL spectinomycin can be added to the medium to a final concentration. It is desirable to start the drug selection by plating the cells on a selective medium after culturing in a non-selective medium for about 1 to 3 days from the gene transfer treatment.
  • Cultivation is usually carried out at a temperature of 20-40 ° C., preferably 25-30 ° C., in a dark (slight) aerobic condition.
  • the targeting vector When the targeting vector is inserted into the target enzyme gene on the genome by one homologous recombination, it becomes drug resistant by the expression of the drug resistance gene and can grow on the drug-containing medium.
  • the suicide gene since the suicide gene is also inserted into the genome, for example, when the sacB gene is used, this insertion mutant cannot grow in the presence of 10% sucrose.
  • the strain can grow in the presence of drugs (antibiotics) and sucrose.
  • resistant colonies are obtained in about 1-2 weeks from the start of selection. It can be confirmed by genomic PCR and / or sequence analysis of the target gene region that the obtained resistant clone is a homologous recombinant (bciA gene (bchY / Z gene) -deficient mutant).
  • bciA gene bchY / Z gene
  • homologous recombination mutants lacking these genes can be obtained.
  • the obtained mutant strain can be cryopreserved ( ⁇ 70 or 80 ° C. or lower) in a medium containing 5% DMSO or 15% glycerol.
  • GTA Gene disruption method using phage-like particles
  • G. overcapillus eg, R121, Y262, CB1127
  • a targeting vector eg, R121, Y262, CB1127
  • a large amount of GTA accumulates in the medium.
  • Some of these have cut out targeting vectors and incorporated them into the particles. Therefore, when this culture filtrate is brought into contact with the recipient's R. Capsulatus, the targeting vector is introduced from the GTA into the recipient cell, and homologous recombination is induced, so that the target gene is efficiently targeted to the target locus. be able to.
  • BChl a-producing bacteria The introduction of bchY and bchZ genes derived from BChl b or BChl g-producing bacteria into BChl a-producing bacteria can be performed as follows.
  • the photosynthetic bacterium from which the bchY and bchZ genes introduced into BChl a-producing bacteria are derived is not particularly limited as long as it produces BChl b or BChl g.
  • BChl b-producing bacteria include Blastochloris viridis, Thioflavicoccus mobilis, Thiococcus pfennigii, Thioalkalicoccus limnaeus, Thioalkalicoccus ⁇ ⁇ limnaeus, Phobilis (Blastochloris sulfoviridis), Halorhospira halochloris (Halorhodospira halochloris) and the like, and BChl g producing bacteria, for example, Heliobacterium modesticaldum, Heliobacterium chlorum (Heliobacterium chlorum), Examples include Heliobacterium gestii, Heliophilum fasciatum, and Heliobacillus mobilis.
  • B. viridis T. mobilis
  • Cloning of enzyme genes is usually performed by the following method.
  • the enzyme is completely or partially purified from a cell or tissue that produces the desired enzyme, and its N-terminal amino acid sequence is determined using the Edman method or mass spectrometry.
  • the amino acid sequence of an oligopeptide obtained by partially decomposing the enzyme with a protease or chemical substance that cleaves the peptide in a sequence-specific manner is similarly determined by Edman method or mass spectrometry.
  • An oligonucleotide having a nucleotide sequence corresponding to the determined partial amino acid sequence is synthesized, and this is used as a probe from a cDNA or genomic DNA library prepared from a cell or tissue producing the enzyme.
  • the DNA encoding the enzyme is cloned by a hybridization method.
  • an antibody against the enzyme is prepared according to a conventional method using all or part of the completely or partially purified enzyme as an antigen, and the antibody is prepared from a cDNA or genomic DNA library prepared from a cell or tissue producing the enzyme.
  • DNA encoding the enzyme can also be cloned by a screening method.
  • the gene of an enzyme similar in enzymatic properties to the target enzyme is known, for example, the NCBI BLAST website (http://www.ncbi.nlm.nih.gov/BLAST/) is accessed and the known gene Search for a sequence homologous to the nucleotide sequence of the gene, create a probe as described above based on the hit nucleotide sequence, and clone the DNA encoding the enzyme by colony (or plaque) hybridization be able to.
  • B. viridis-derived BchY and BchZ consisting of the amino acid sequences shown in SEQ ID NOs: 8 and 10, respectively, 33% respectively at the amino acid level with B. ch.
  • BchZ (SEQ ID NOs: 12 and 14) derived from H. And 37% identity (similarities are 53% and 54%, respectively), so that a homology search with the nucleotide sequences of BchY and bchZ genes from B. viridis (SEQ ID NOs: 7 and 9) revealed that H. ORFs (SEQ ID NOs: 11 and 13) encoding BchY and BchZ on the genome of Rudeum can be found.
  • RNA or mRNA fraction was used as a template for Polymerase Chain Reaction ( Hereinafter, it can also be directly amplified by “PCR method” or Reverse Transcriptase-PCR (hereinafter abbreviated as “RT-PCR method”).
  • PCR method or Reverse Transcriptase-PCR (hereinafter abbreviated as “RT-PCR method”).
  • RT-PCR method Reverse Transcriptase-PCR
  • the cloned DNA can be used as it is depending on the purpose, or after digestion with a restriction enzyme or addition of a linker as desired.
  • the DNA may have ATG as a translation initiation codon on the 5 'end side and TAA, TGA or TAG as a translation termination codon on the 3' end side. These translation initiation codon and translation termination codon can be added using an appropriate synthetic DNA adapter.
  • Examples of large-scale expression vectors in R. Spheroides and R. Capsulatus include pJN3 and pJNY constructed from the broad host range vector pBBR1-MCS2 (Gene, 166: 175 (1995)) (Cryogenic Science, 67: 649- 653 (2009)). Both vectors control the expression of pucAB encoding a light-harvesting bacteriochlorophyll-binding protein, and have a cloning site downstream of the puc promoter that exhibits high transcriptional activity under anaerobic conditions, allowing insertion of DNA encoding the target protein. .
  • a 6xHN tag is inserted in pJN3 and a Strep tag is inserted in pJNY, facilitating purification of the expressed protein.
  • a streptomycin / spectinomycin resistance gene has been newly introduced as a drug resistance marker.
  • pJN3 and pJNY are as expression vectors for introducing bchY and Z genes from BChl b / g-producing bacteria, bciA and bchY / Z gene-deficient mutants endogenous to BChl a-producing bacteria It is necessary to use a drug resistance gene other than the kanamycin resistance gene, streptomycin resistance gene, and spectinomycin resistance gene for selection.
  • kanamycin resistance gene e.g., streptomycin resistance gene, or spectinomycin resistance gene is used to create bciA and bchY / Z gene deletion mutants
  • other drug resistance genes eg, gentamicin resistance gene
  • pJN3 and pJNY can be used.
  • An expression vector containing DNA encoding BchY or BchZ is, for example, excising a target DNA fragment from DNA encoding BchY or BchZ, and the DNA fragment is extracted from the above-mentioned large-scale expression vectors in R. Spheroides and R. Capsulatus. Can be produced by ligating downstream of the promoter.
  • the DNAs encoding BchY and BchZ may be inserted into separate vectors, but it is desirable to insert both into a single vector.
  • the bchY and bchZ genes are present in one operon on the genome of BChl b / g producing bacteria, by subcloning the genome sequence containing both the ORF encoding BchY and the ORF encoding BchZ into an expression vector, It can be designed to express BchYZ from a single promoter polycistronic.
  • the obtained expression vector containing the bchY gene and the bchZ gene can be introduced using an efficient gene transfer system depending on the BChl a-producing bacterium serving as the host, but the host is R. spheroides or R. Capsulatus.
  • gene transfer by conjugation transfer is preferably used, as in the case of producing the bciA and bchY / Z deletion mutants. Specific methods are described in Cryogenic Science, 67: 649-653 (2009).
  • a puc promoter such as pJN3 or pJNY
  • a strain in which the puc promoter is more strongly induced than a wild type strain such as R. Capsulatus DB176, may be used as a recipient.
  • Transformants into which the bchY and bchZ genes derived from BChl b / g-producing bacteria have been successfully introduced can be selected by culturing on an appropriate drug-containing solid medium.
  • the culture is usually performed at a temperature of 20-40 ° C., preferably 25-30 ° C., in a dark (slight) aerobic condition.
  • resistant colonies are obtained in about 1-2 weeks from the start of selection.
  • the obtained mutant strain can be cryopreserved ( ⁇ 70 or 80 ° C. or lower) in a medium containing 5% DMSO or 15% glycerol.
  • the bciA and bchY / Z gene-deficient / BChl b / g-producing bchYZ gene-introduced mutants derived from BChl a-producing bacteria thus obtained are deficient in endogenous BciA and BchYZ having DVR activity.
  • 8V-Chlide a cannot be converted to Chlide a.
  • 8V-Chlide a is converted to BChlide g by the action of BchYZ derived from BChl b / g producing bacteria.
  • BChlide g is converted to BChlide b by the action of endogenous BchF and BchC, and further BChl b is produced by the action of intrinsic BchG (see Fig.
  • the long chain ester group on the C17 position is usually a farnesyl group, but may be a phytyl group, a geranylgeranyl group, a dihydrogeranyl group or a tetrahydrogeranyl group.
  • the present invention also provides a method for producing BChl b, which comprises culturing the BChl b-producing mutant strain of the present invention in a medium and recovering BChl b from the resulting culture.
  • the BChl b production mutant can be cultured by the same method as used in the selection of the bciA and bchY / Z gene-deficient mutants, except that a liquid medium is used instead of the solid medium.
  • a selection agent used for selecting a gene-deficient / transgene-expressing mutant it is desirable to add it to prevent the introduced drug resistance gene from falling off.
  • the concentration of the selective agent may be lower than that used in the selective medium.
  • Extraction of BChlb from the BChlb-producing mutant strain of the present invention can be performed, for example, as follows, but any method known in the art can be used as well.
  • the cultured cells of the BChlb-producing mutant are collected by filtration or centrifugation. Under an anaerobic atmosphere in which nitrogen gas is passed, an acetone / methanol mixed solvent is added to the cells and stirred, and then the liquid phase is recovered, and the same extraction operation is repeated on the residue until no pigment is extracted.
  • the obtained extract is collected, separated and washed with ether and water, and then the ether layer is dehydrated and washed with saturated brine, and further dehydrated by adding anhydrous sodium sulfate.
  • the solvent is distilled off on a rotary evaporator.
  • the residue can be stored frozen by filling with nitrogen gas, or can be stored frozen using diethyl ether or acetone as a solvent. In either case, the container is shielded from light. If light shielding, temperature control, and maintenance of anaerobic conditions are thoroughly implemented, yearly storage is possible.
  • the carotenoid dye is separated and removed from the dye obtained by the above extraction operation by column chromatography, recrystallization or the like, and BChlb is isolated and purified. Sepharose or cellulose can be used as the column, but Sepharose has a higher resolution. Since BChlb has low solubility in nonpolar solvents such as hexane, it can be easily isolated and purified by recrystallization.
  • Example 1 ⁇ Preparation of bciA / bchZ-deficient strain of R. sphaeroides as host>
  • bciA and bchZ gene-deficient mutants hereinafter referred to as dA / Z strains.
  • the method is shown below.
  • R. sphaeroides 2.4.1 strain FEBS Lett 580 (28-29): 6644-6648 2006
  • PYS agar medium J Mol Evol 45 (2): 131-136 1997) containing the antibiotic rifampicin (100 ⁇ g / mL).
  • R. spheroides J001 strain To obtain colonies that spontaneously became rifampicin resistant. This was designated as R. spheroides J001 strain and the parent strain for transformation.
  • R. spheroides J001 strain In order to delete the bciA gene region of R. sphaeroides J001 strain by homologous recombination by a genetic modification method, a plasmid for mutagenesis, pJSCbciAKm, was constructed as follows. Using the genomic DNA of R.
  • This fragment was treated with the restriction enzyme EcoRI and cloned into the SmaI and EcoRI sites of the cloning vector pUC118 (Takara, Japan) to obtain a pUCbciA plasmid.
  • a DNA fragment containing the kanamycin resistance gene neo was obtained by treatment with HindIII and SmaI from pUCKM1 (J Biol Chem 266 (20): 12889-12895 1991), and the cut ends were blunted.
  • the XhoI site inside the bciA gene of pUCbciA was cleaved with a restriction enzyme to make blunt ends.
  • This plasmid fragment and the above neo gene fragment were ligated by a ligation reaction to obtain a pUCbciAKm plasmid.
  • This pUC-bciAKm was treated with restriction enzymes SmaI and XbaI, and the DNA fragment containing the region where the neo gene was replaced with the majority of the bciA gene was converted into the SmaI and XbaI sites of the pJSC vector (Biochemistry 41 (37): 11211-11217 2002).
  • pJSCbciAKm pJSC is a suicide vector, and E. coli JM109 ( ⁇ -pir) strain was used for cloning.
  • pJSC has a mobility site and can be transferred to the J001 strain by transforming it into the Escherichia coli S17-1 ( ⁇ -pir) strain capable of conjugation and then mating with the R. sphaeroides J001 strain. is there. Therefore, S17-1 ( ⁇ -pir) transformed with pJSCbciAKm was mixed with R. sphaeroides J001 strain for conjugation, spotted on PYS agar medium, and incubated at 30 ° C. overnight in the dark.
  • the spots are then scraped off, suspended in PYS liquid medium, spread on PYS agar medium containing rifampicin (100 ⁇ g / mL), kanamycin (25 ⁇ g / mL), and 5% shoecloth, and at 30 ° C in the dark. Incubated. After 5-7 days, a colony of a strain lacking the bciA gene was obtained by homologous recombination.
  • sphaeroides dbciA strain a plasmid for mutagenesis, pJSCbchZSm
  • aadA-F primer sequence: CTGTTCGGTTCGTAAGCTGT (SEQ ID NO: 19)
  • aadA-R primer sequence: CGTCGGCTTGAACGAATTGT (SEQ ID NO: 20)
  • bchYZ-F (sequence: ATGGCATCGCCGCCGACA (SEQ ID NO: 21)
  • bchYZ-R sequence: TAAGACTGACGCCACATGCT (SEQ ID NO: 22)
  • primer set was used for PCR using the genomic DNA of R. sphaeroides J001 strain as a template.
  • a DNA fragment containing a part of the gene and the entire bchZ gene region was obtained.
  • the fragment was cloned into the TA cloning site of T-vector pTA2 (TOYOBO, Japan) to obtain the pTA2bchYZ plasmid.
  • inverse PCR using this plasmid as a template was performed using bciYZ-inf-FI primer (sequence: TCGTTCAAGCCGACG CGTAGAGGAGCATCCGGTT (SEQ ID NO: 23)) and bciYZ-inf-RI primer (sequence: TTACGAACCGAACAG AATGCAGCACCGAGGTCAC (SEQ ID NO: 24)) was used.
  • the underlines of these primer sequences were designed to overlap with the sequences of the aadA-R and aadA-F primers, respectively, for subsequent In-Fusion cloning.
  • the PCR fragment amplified as a result and the fragment containing the aadA gene amplified with the above-mentioned aadA-F and aadA-R were obtained using In-Fusion (registered trademark) HD Cloning Kit (Clontech, USA). Ligation was performed to obtain the pTAbchYZSm plasmid.
  • PCR was performed using the bchYZ-inf-FII primer (sequence: TCGAGCTCGGTACCC TATGAGGGCTCCGAGCTGA (SEQ ID NO: 25)) and bchYZ-inf-RII primer (sequence: CTCTAGAGGATCCCC ACCATGCCCTCCCGATTAAT (SEQ ID NO: 26)). Obtained a DNA fragment containing a region in which most of the bchZ gene was replaced.
  • the underline of the bchYZ-inf-FII and bchYZ-inf-RII primer sequences was designed to overlap with the cut end region of the SmaI site at the multiple clone site of pJSC for subsequent In-Fusion cloning. Therefore, pJSC treated with SmaI and its PCR amplified DNA fragment were ligated by the reaction of In-Fusion kit to prepare pJSCbchYZSm. This pJSCbchYZSm was transformed into E. coli S17-1 ( ⁇ -pir), cultured, mixed with the R. sphaeroides dbciA strain for conjugation, and the bchZ gene was deleted as described above.
  • a PYS agar medium containing rifampicin (100 ⁇ g / mL), streptomycin (50 ⁇ g / mL), and 5% shoe cloth was used. Confirmation of mutagenesis of the obtained colonies is performed by PCR using bchYZ-comf-F primer (sequence: GGCGATCCATCCCTTCTAC (SEQ ID NO: 27)) and bchYZ-comf-R primer (sequence: TATCAGCCATGCTATCCTCC (SEQ ID NO: 28)). In addition, the PCR amplification sequence was determined and further mutation introduction was confirmed. The strain in which the introduction of the mutation was confirmed was named dA / Z.
  • Example 2 ⁇ Preparation method of expression vector pJN7 used for introduction of bchYZ gene of BChl b-producing bacterium B. viridis> Two primers pPucf6 (5'-ata gtcgac ttcactgggattttgcgccc-3 (SEQ ID NO: 29)) and pJr6 (5'-tat ggtacc gatatcaGAGACCccgcGGTCTCggcgccgaccctatgcgactgcattctcgaactgcggtg) ) To obtain a DNA fragment. This DNA fragment contains the promoter Ppuc region and the BsaI restriction enzyme site (uppercase) for use in cloning.
  • pPucf6 5'-ata gtcgac ttcactgggattttgcgccc-3 (SEQ ID NO: 29)
  • pJr6 5'-tat ggtacc gatatca
  • This fragment was treated with BamHI and SalI (underlined), and then an approximately 0.2 kbp fragment was purified (Wizard SV Gel and PCR Clean-Up System: Promega).
  • the broad host range vector pBBR1MCS2 (provided by Professor Carl E. Bauer, Indiana University) was treated with BamHI and SalI. The treated mixture was loaded onto a 1% agarose gel and run at 100 V for 1 hour to purify the approximately 5.3 kbp fragment. Wizard SV Gel and PCR Clean-Up System was used for DNA recovery from the agarose gel.
  • PBBR1MCS2 contains a gene cassette that provides resistance to the antibiotic kanamycin as a marker gene.
  • This pJN6 plasmid has a BsaI restriction enzyme site derived from pBBR1MCS2 in one place in addition to the BsaI restriction enzyme site used for cloning.
  • KOBsaI-f1 (5'-ttcaggcgctcccgaa gatccc gggccgtctcttgg-3 '(SEQ ID NO: 31)
  • KOBsaI-r1 (5'-aagagacggccc gggatc ttcgggagcgc-3' (SEQ ID NO: 32)) was used to amplify the entire region of pJN6 by PCR. This was designated as pJN7pre.
  • Spc2f1 5'-ATA GAGCTCTAGA TAATGCAAGTAGCGTATGC-3 '(SEQ ID NO: 33)
  • Spc2r1 5'-ATA GAGCTCTAGA GCGGATGTTGCGATTACTTCG-3' (SEQ ID NO: 34)
  • the completed pJN7 has been shown to be retained in E. coli and the red non-sulfur bacterium R. capsulatus. Cloning of the gene of interest into this vector utilizes the BsaI restriction enzyme site and can be selected using spectinomycin / streptomycin / kanamycin.
  • Example 3 Preparation of R. sphaeroides mutant producing BChl b>
  • the bciA and bchZ gene-deficient mutant dA / Z obtained in Example 1 and the R. sphaeroides wild strain were grown in PYS medium under dark microaerobic conditions. Using these strains as hosts, bchY and bchZ genes derived from B. viridis were introduced.
  • BvYZ-infu-F1 (sequence: CGAGAAGGGCGGCGCCAGGGCTGCCAGTTACGTTC (SEQ ID NO: 35)
  • BvYZ-infu-R1 (sequence: CTGGGTACCGATATCTCACAGAGCCTGCCCCCCGACA (SEQ ID NO: 36))
  • BvYZ-infu-R1 (sequence: CTGGGTACCGATATCTCACAGAGCCTGCCCCCCGACA (SEQ ID NO: 36)) using the viridis genome as a template, PCR, B.
  • Bilidis-derived bchY and bchZ genes were amplified together (in photosynthetic bacteria, both genes usually overlap, and the start codon of the bchZ gene precedes the stop codon of the bchY gene).
  • the amplified DNA fragment was excised from an agarose gel and purified using NucleoSpin Extract II kit (Macherey-Nagel, Duren, Germany).
  • NucleoSpin Extract II kit Macherey-Nagel, Duren, Germany.
  • This purified DNA fragment containing the B. viridis bchYZ gene was subcloned into the Bsa I restriction site of the pJN7 plasmid prepared in Example 2 using the In-Fusion HD Cloning kit (Clontech, USA), and the plasmid pJ7-BvYZ was Obtained.
  • the Kpn I restriction site is located after the coding region of bchZ.
  • the gentamicin resistance gene aacC1 was obtained from the plasmid pUCGM-star (Biotechniques, 15: 831-834 (1993)) with the following primers, Gm-JN7-F (sequence: CTGCGTGAGATATCGCAACTGGTCCAGAACCTTGA (SEQ ID NO: 37)) and Gm-JN7-R ( The sequence was amplified using GGGAACAAAAGCTGGAAGCTTGCATGCCTGCAGG (SEQ ID NO: 38)).
  • the obtained PCR product containing the aacC1 gene and the Kpn I digested pJ7-BvYZ plasmid were ligated using the In-Fusion HD Cloning kit to obtain pJ7-BvYZ-Gm.
  • This plasmid was introduced into R. sphaeroides bciA and bchZ gene-deficient mutant dA / Z by three-parental conjugation using E. coli Tec5 strain (J Bacteriol. 1983; 154: 580-590 1983) containing a helper plasmid. .
  • Transconjugant was selected on PYS solid medium (J Mol Evol 45 (2): 131-136 1997) containing rifampicin (100 ⁇ g / ml), kanamycin (25 ⁇ g / ml) and gentamicin (10 ⁇ g / ml) .
  • the thus obtained transconjugate expressing B. viridis-derived BchYZ under the control of the puc promoter was named ⁇ bciA / bchZ + BvYZ.
  • Example 4 ⁇ BChlb production by R. sphaeroides ⁇ bciA / bchZ + BvYZ strain>
  • the R. sphaeroides ⁇ bciA / bchZ + BvYZ strain obtained in Example 3 and the strain obtained by introducing the B. viridis-derived bchYZ gene into the wild strain of R. spheroides were each cultured in PYS medium, and the culture solution was centrifuged. Each cell was collected and the pigment was extracted with acetone / methanol (7: 2, vol / vol).
  • BChlb or a derivative thereof having a Qy band in the near-infrared region having a longer wavelength can be provided simply and in large quantities.
  • BChl b or its derivative has the longest absorption wavelength maximum shifted to the near infrared region compared to other chlorin or bacteriochlorin compounds.
  • this as a dye sensitizer, light energy conversion than before is possible.
  • a dye-sensitized solar cell excellent in efficiency can be provided.
  • cancer cells actively divide and proliferate and easily take up fat-soluble porphyrin compounds having a large ⁇ plane, so porphyrin compounds can be used to distinguish cancer cells from normal cells. Attempts have been made to use.
  • BChlb or a derivative thereof has an absorption band in the near-infrared region of a longer wavelength, and thus is useful for deep cancer diagnosis. Furthermore, it has been clarified that chlorophyll molecules also have an anticancer effect, and research is being conducted as photodynamic therapy. Therefore, BChlb or a derivative thereof having a strong absorption band in the near infrared region that is selectively adsorbed to cancer cells can be a useful tool for cancer treatment.
  • This application is based on Japanese Patent Application No. 2014-030085 filed in Japan (filing date: February 19, 2014), the contents of which are incorporated in full herein.

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

 Provided is a bacteriochlorophyl b-producing variant obtained by deleting the bciA gene and bchY and/or bchZ gene inherent to a photosynthetic bacterium which produces bacteriochlorophyl a, and performing a manipulation so as to express the bchY and bchZ genes derived from photosynthetic bacterium that produce bacteriochlorophyl b or bacteriochlorophyl g. Also provided is a method for producing bacteriochlorophyl b, which entails culturing said variant in a culture, and recovering bacteriochlorophyl b from the culture obtained.

Description

バクテリオクロロフィルbの大量産生方法及び産生菌Mass production method of bacteriochlorophyll b and producing bacteria
 本発明は、組換えバクテリオクロロフィルb高産生菌及びその作製方法、並びに該高産生菌を用いたバクテリオクロロフィルbの大量産生方法に関する。 The present invention relates to a recombinant bacteriochlorophyll b high-producing bacterium, a method for producing the same, and a method for mass production of bacteriochlorophyll b using the high-producing bacterium.
 再生可能エネルギーの利用拡大に向けて、太陽光発電の導入を進める必要があるが、そのためには太陽電池の低コスト化と大量生産が重要である。ところが、現在の太陽電池の原料である高純度シリコンは高価な上、わが国ではその安定確保にも問題を抱えている。
 シリコン太陽電池に代わる次世代太陽電池として、光合成初期過程と類似する色素の光誘起電子移動を利用する色素増感太陽電池が注目を集めている。これまでに、人工ポルフィリンを増感色素として利用したもののほか、天然のクロロフィルa誘導体を利用した色素増感太陽電池が報告されている。しかし、光エネルギー変換効率を高めるには、より長波長の近赤外領域に吸収波長を伸ばすことが望まれる。
In order to expand the use of renewable energy, it is necessary to proceed with the introduction of solar power generation. To that end, it is important to reduce the cost and mass production of solar cells. However, high-purity silicon, which is the current raw material for solar cells, is expensive and has a problem in securing its stability in Japan.
As a next-generation solar cell that replaces a silicon solar cell, a dye-sensitized solar cell that uses photo-induced electron transfer of a dye similar to the initial process of photosynthesis has attracted attention. So far, in addition to those using artificial porphyrins as sensitizing dyes, dye-sensitized solar cells using natural chlorophyll a derivatives have been reported. However, in order to increase the light energy conversion efficiency, it is desired to extend the absorption wavelength to a longer wavelength near infrared region.
 バクテリオクロロフィル(BChl)は、酸素非発生型光合成細菌から見出されたテトラピロール類に対して与えた名称であり、aからgまでの7種類が有り、これまでにBChl fを除く6種類が天然より見出されている。このうち、BChl a、BChl b及びBChl gは、テトラピロール環のB、D両環のβ位のC-C二重結合が単結合に還元されたバクテリオクロリン骨格を有している。BChl aやBChl bは紅色光合成細菌に、BChl gはヘリオバクテリアにそれぞれ存在し、オリゴペプチドと非共有結合して色素-タンパク複合体を形成している。
 (バクテリオ)クロロフィルの吸収スペクトルは、長波長側からQy、Qx、By、Bxの4つの吸収帯があるが(By・Bx帯をまとめてソーレー帯ともいう)、バクテリオクロリン骨格を有するBChl a/b/gは、クロリン骨格を有するBChl c/d/eや植物クロロフィルに比べてQy帯が近赤外領域に大きく長波長シフトしている。中でも、BChl bは、C8位のエチリデン側鎖の存在により、BChl aよりもQy帯がさらに長波長シフトしている。従って、BChl bや17位上のプロピオネート残基における長鎖炭化水素基が除去されたバクテリオクロロフィリドb(BChlide b)、それらから中心金属が脱離したバクテリオフェオフィチンb(BPhe b)やバクテリオフェオフォルバイドb(BPheoide b)を、安価にかつ大量に供給できれば、光エネルギー変換効率が向上した光デバイス等の生産に有用である。
Bacteriochlorophyll (BChl) is a name given to tetrapyrroles found in non-oxygen-producing photosynthetic bacteria. There are 7 types from a to g, and 6 types except BChl f so far. It is found from nature. Among these, BChl a, BChl b and BChl g have a bacteriochlorin skeleton in which the CC double bond at the β-position of both the B and D rings of the tetrapyrrole ring is reduced to a single bond. BChl a and BChl b are present in red photosynthetic bacteria and BChl g are present in heliobacteria, and form non-covalent bonds with oligopeptides to form dye-protein complexes.
The absorption spectrum of (bacterio) chlorophyll has four absorption bands from the long wavelength side: Qy, Qx, By, and Bx (By and Bx bands are collectively referred to as the Soray band), but BChl a / has a bacteriochlorin skeleton. In b / g, the Qy band is greatly shifted in the near infrared region by a longer wavelength than BChl c / d / e and chlorophyll having a chlorin skeleton. In particular, BChl b has a longer wavelength shift in the Qy band than BChl a due to the presence of the ethylidene side chain at the C8 position. Therefore, BChl b, bacteriochlorophyllide b (BChlide b) from which the long-chain hydrocarbon group in the propionate residue on the 17th position is removed, bacteriopheophytin b (BPhe b) and bacteriopheophore from which the central metal is eliminated. If bide b (BPheoide b) can be supplied at low cost and in large quantities, it is useful for the production of optical devices with improved light energy conversion efficiency.
 BChl a産生菌では、8-ビニルクロロフィリドa(8V-Chlide a)から、8-ビニルレダクターゼ(またはジビニルリダクターゼ、DVRと呼ばれる)の作用により、8-ビニル基がエチル基に還元されてクロロフィリドa(Chlide a)を生じる。次に、Chlide aから、BchX、BchY及びBchZの3つのタンパク質からなるクロロフィリドaオキシドレダクターゼ(COR)の作用により、B環のC7-8位の二重結合が単結合となって3-ビニルバクテリオクロロフィリドa(3V-BChlide a)を生じ(非特許文献1)、さらに3-ビニルバクテリオクロロフィリドヒドラターゼ(BchF)及び3-ヒドロキシエチルバクテリオクロロフィリドデヒドロゲナーゼ(BchC)の作用によってC3位がアセチル化されてBChlide aを生じた後、BchGの作用により、17位上のプロピオネート残基に長鎖炭化水素基が付加されて、BChl aを生じる。
 一方、BChl b及びBChl g産生菌にはDVRが存在せず、BchX/Y/Z(COR)が、8V-Chlide aのクロリン環のB環の共役ジエンを1,4付加還元して、バクテリオクロリン環のC8位にエチリデン基を与える反応を触媒し、8V-Chlide aから直接BChl b及びBChl gの前駆体であるBChlide gを生じる(特許文献1)。BChl b産生菌では、BChl a産生菌と同様、BchF及びBchCの作用により、BChlide gのC3位がアセチル化されてBChlide bを生じた後、BchGの作用によりBChl bを生じる。BChl g産生菌にはBchF/BchCは存在せず、BChlide gからBchGの作用によりBChl gを生じる。
In BChl a-producing bacteria, 8-vinyl chlorophyllide a (8V-Chlide a) is reduced to ethyl group by the action of 8-vinyl reductase (or divinyl reductase, called DVR). a (Chlide a) is generated. Next, from Chlide a, chlorophyllide a oxidoreductase (COR) consisting of three proteins, BchX, BchY and BchZ, turns the double bond at the C7-8 position of the B ring into a single bond. Bacteriochlorophyllide a (3V-BChlide a) is produced (Non-patent Document 1), and the C3 position is acetylated by the action of 3-vinyl bacteriochlorophyllide hydratase (BchF) and 3-hydroxyethylbacteriochlorophyllide dehydrogenase (BchC). After being converted to BChlide a, a long-chain hydrocarbon group is added to the propionate residue at position 17 by the action of BchG to generate BChl a.
On the other hand, there is no DVR in BChl b and BChl g producing bacteria, and BchX / Y / Z (COR) reduces the conjugated diene of the B ring of the chlorin ring of 8V-Chlide a by 1,4 addition and reduces the bacterio BChlide g, which is a precursor of BChl b and BChl g, is produced directly from 8V-Chlide a by catalyzing the reaction of providing an ethylidene group at the C8 position of the chlorin ring (Patent Document 1). In BChl b-producing bacteria, BChF and BchC act to acetylate the C3 position of BChlide g to produce BChlide b, and then BchG acts to produce BChl b, as in BChla-producing bacteria. BchF / BchC does not exist in BChl g-producing bacteria, and BChl g is produced from BChlide g by the action of BchG.
 紅色光合成細菌に属する多くの種がBChl aを産生するのに対し、BChl bを産生する種は稀少であり、現在知られているBChl b産生菌は、いずれも生育が遅く、嫌気条件下でしか生育できず、遺伝子操作も不可能であることから、BChl bを簡便に大量産生する技術は未だ確立していない。 Many species belonging to the red photosynthetic bacteria produce BChl a, whereas those that produce BChl b are rare, and all of the currently known BChl b-producing bacteria are slow growing under anaerobic conditions However, since it can only grow and genetic manipulation is impossible, a technique for easily mass-producing BChl b has not yet been established.
特開2014-003938号公報JP 2014-003938 A
 したがって、本発明の目的は、BChl b高産生菌を提供することであり、当該細菌を用いてBChl bを大量産生する方法を提供することである。 Therefore, an object of the present invention is to provide a BChl b high-producing bacterium, and to provide a method for mass-producing BChl b using the bacterium.
 本発明者らは、BChl b産生菌におけるBChlide gからBChl bに至る反応が、BChl a産生菌における3V-BChlide aからBChl aに至る反応と同じく、BchF及びBchCによるC3-ビニル基のアセチル基への変換と、BchGによるC17-プロピオネート基への長鎖炭化水素基の付加により進行することに着目し、生育が早く、暗所(微)好気条件下でも生育可能で培養が容易であり、かつ遺伝子操作が可能なBChl a産生菌であるロドバクター・スフェロイデス(Rhodobacter sphaeroides)に、BChl b産生菌であるブラストクロリス・ビリディス(Blastochloris viridis)由来のBchX/Y/Z(以下、「BvCOR」ともいう)を発現させることにより、BChl bを産生させ得るかどうか試みた。しかし、それだけではBChl bを産生するには至らなかった(図2)。その理由としていくつもの仮説が考えられたが、本発明者らは、組換えR. スフェロイデスにおいて、8V-Chlide aから、BvCORの作用によりBChlide gを生じる反応よりも、R. スフェロイデスに元来内在するDVRの作用により8V-Chlide a からChlide aを生じる反応が圧倒的に支配的であるため、生じたChlide aを基質とするR.スフェロイデスに内在のBchX/Y/Z(以下、「RsCOR」ともいう)の作用により、依然としてBChl aのみが産生されると予測した。
 そこで、次に、R. スフェロイデスに内在するDVR活性を有する酵素BciAをコードするbciA遺伝子を欠損させてみたが、やはりBChl bの大量産生には至らなかった。R. スフェロイデスにおいて、bciA(rsp_3070)遺伝子と、R. スフェロイデスと同属のBChl a産生菌ロドバクター・カプスラタス(Rhodobacter capsulatus)において8V-Chlide aをChlide aに還元する反応を担うと考えられているbchJ遺伝子のオルソログとを、ダブルノックアウトしてもBChl a産生能が保持されたことから、該細菌には、BciA及びBchJ以外にも8V-Chlide aをChlide aに還元し得る第3の酵素が存在することが示唆されていたので(Canniffe, D.P. et al., Biochem. J., 450: 397-405 (2013))、本発明者らは、R. スフェロイデスにBChl b産生能を付与するには、少なくともこの未知の酵素遺伝子を破壊する必要があると考えた。
 本発明者らは、R. カプスラタス由来のBchX/Y/Z(以下、「RcCOR」ともいう)に、基質とはならないはずの8V-Chlide aを接触させると、驚くべきことにChlide a及び3V-BChlide aが生成することを見出した。このことは、RcCORが、Chlide aから3V-BChlide aを生じる反応のみならず、8V-Chlide aをChlide aに還元する反応をも触媒し得ることを示している。かかる知見に基づいて、本発明者らは、R. スフェロイデスに内在するDVR活性を有する未知の酵素がRsCORであると予測し、RsCORの構成タンパク質をコードする遺伝子の破壊を試みた。具体的には、R. スフェロイデスに内在のbchZ遺伝子を欠損させることでRsCORのBchYZコンポーネントを失活させ、代わりにB. ビリディス由来のbchY及びbchZ遺伝子を導入した。
 その結果、R. スフェロイデスに内在のbciA及びbchZ遺伝子を欠損させるとともに、B. ビリディス由来のbchY及びbchZ遺伝子を導入することにより、BChl bを大量に産生する組換え菌を作製することに成功した。
(1) R. スフェロイデスの野生株に単にBvCORを発現させただけではBChl bを産生できなかった理由として、R. スフェロイデスに内在のBchFやBchCが、BChlide gや3-ヒドロキシエチルバクテリオクロロフィリドbを基質として利用できないことも十分に考えられたこと(例えば、全ゲノム配列が既知の、R. スフェロイデス2.4.1株とBChl b産生菌であるチオフラビオコッカス・モビリス(Thioflaviococcus mobilis)とのホモロジー検索によれば、BchF及びBchCはそれぞれ71%/80%及び56%/69%のアミノ酸同一性/類似性を示すが、それぞれ80%/90%、70%/75%及び65%/77%の高いアミノ酸同一性/類似性を示すBchX、BchY及びBchZからなるCORは、両種間で異なる基質特異性を示す);
(2) 同属のR. カプスラタスでDVR活性を有することが知られているBchJを欠損させなかったこと;
(3) BchY及びBchZのみをB. ビリディス由来のタンパク質に置き換え、BchXはR. スフェロイデスに内在のものをそのまま利用したこと;
等の不確定要素を考慮すると、上記の遺伝子操作(内在のbciA遺伝子、及びbchZ遺伝子の欠損と、B. ビリディス由来bchYZ遺伝子の導入)のみによって、R. スフェロイデスにBChl b高産生能を付与できたことは、当業者といえども予期し得るものではなく、驚くべき結果であった。
 本発明者らは、これらの知見に基づいてさらに研究を重ねた結果、本発明を完成するに至った。
The inventors of the present invention have proposed that the reaction from BChlide g to BChl b in BChl b-producing bacteria is the same as the reaction from 3V-BChlide a to BChla in BChla-producing bacteria, as well as the acetyl group of the C3-vinyl group by BchF and BchC. Focusing on the conversion to the C17-propionate group by BchG and the addition of a long-chain hydrocarbon group, it grows quickly, can grow even in dark (slight) aerobic conditions, and is easy to culture And BchX / Y / Z (hereinafter referred to as “BvCOR”) derived from BChl b producing bacterium Blastochloris viridis and Rhodobacter sphaeroides It was tried whether BChlb could be produced by expressing. However, it alone did not lead to production of BChlb (FIG. 2). Several hypotheses were conceivable as the reason, but the present inventors originally found that R. spheroides was originally endogenous to R. spheroides rather than the reaction that produced BChlide g from 8V-Chlide a by the action of BvCOR. The reaction that generates Chlide a from 8V-Chlide a is overwhelmingly dominant due to the action of DVR, so BchX / Y / Z (hereinafter referred to as “RsCOR”) in R. sphaeroides using the generated Chlide a as a substrate. It was predicted that only BChl a would still be produced by the action of (also called).
Then, next, the bciA gene encoding the enzyme BciA having the DVR activity inherent in R. spheroides was deleted, but mass production of BChlb was not achieved. In R. sphaeroides, the bciA (rsp_3070) gene and the bchJ gene that is thought to be responsible for the reduction of 8V-Chlide a to Chlide a in the BChla-producing bacterium Rhodobacter capsulatus belonging to the same genus as R. spheroides In addition to BciA and BchJ, the bacterium has a third enzyme that can reduce 8V-Chlide a to Chlide a. It has been suggested (Canniffe, DP et al., Biochem. J., 450: 397-405 (2013)) that the present inventors confer the ability to produce BChlb to R. sphaeroides. I thought that at least this unknown enzyme gene needs to be destroyed.
When the present inventors contact BchX / Y / Z (hereinafter also referred to as “RcCOR”) derived from R. capsulatus with 8V-Chlide a that should not be a substrate, surprisingly, Chlide a and 3V -I found that BChlide a generates. This indicates that RcCOR can catalyze not only the reaction that produces 3V-BChlide a from Chlide a but also the reaction that reduces 8V-Chlide a to Chlide a. Based on such findings, the present inventors predicted that an unknown enzyme having DVR activity inherent in R. sphaeroides is RsCOR, and attempted to destroy a gene encoding a constituent protein of RsCOR. Specifically, the BchYZ component of RsCOR was inactivated by deleting the endogenous bchZ gene in R. sphaeroides, and the BchY and bchZ genes derived from B. viridis were introduced instead.
As a result, the bciA and bchZ genes endogenous to R. sphaeroides were deleted, and the Bch viridis-derived bchY and bchZ genes were introduced to successfully produce recombinant bacteria producing large amounts of BChl b. .
(1) The reason that BChl b could not be produced simply by expressing BvCOR in a wild strain of R. spheroides is that BchF and BchC endogenous to R. spheroides are not able to produce BChlide g or 3-hydroxyethylbacteriochlorophyllide b. (For example, R. sphaeroides 2.4.1 and BChl b producing bacterium, Thioflaviococcus mobilis), whose genome sequence is already known. BchF and BchC show 71% / 80% and 56% / 69% amino acid identity / similarity respectively, but 80% / 90%, 70% / 75% and 65% / 77% respectively. COR with BchX, BchY and BchZ showing high amino acid identity / similarity shows different substrate specificity between both species);
(2) BchJ, which is known to have DVR activity, was not deleted in the same genus R. capsulatus;
(3) Only BchY and BchZ were replaced with proteins derived from B. viridis, and BchX was used as it was in R. sphaeroides;
In consideration of uncertain factors such as the above, it is possible to confer high production capacity of BChl b to R. sphaeroides only by the above-mentioned genetic manipulation (deletion of the endogenous bciA gene and bchZ gene and introduction of the bchYZ gene derived from B. viridis). This was surprising and surprising, even for those skilled in the art.
As a result of further studies based on these findings, the present inventors have completed the present invention.
 即ち、本発明は以下のものを提供する。
〔1〕バクテリオクロロフィルaを産生する光合成細菌において、内在のbciA遺伝子並びにbchY及び/又はbchZ遺伝子を欠損し、かつバクテリオクロロフィルbもしくはバクテリオクロロフィルgを産生する光合成細菌由来のbchY及びbchZ遺伝子を発現するように操作された、バクテリオクロロフィルb産生変異株。
〔2〕バクテリオクロロフィルaを産生する光合成細菌がロドバクター属に属する細菌である、上記〔1〕記載の変異株。
〔3〕ロドバクター属に属する細菌が、ロドバクター・スフェロイデス又はロドバクター・カプスラタスである、上記〔2〕記載の変異株。
〔4〕ロドバクター属に属する細菌が、ロドバクター・スフェロイデスである、上記〔2〕記載の変異株。
〔5〕ブラストクロリス・ビリディス由来のbchY及びbchZ遺伝子を発現するように操作された、上記〔1〕~〔4〕のいずれかに記載の変異株。
〔6〕バクテリオクロロフィルaを産生する光合成細菌に内在するbciA遺伝子並びにbchY及び/又はbchZ遺伝子を欠損させ、さらにバクテリオクロロフィルbもしくはバクテリオクロロフィルgを産生する光合成細菌由来のbchY及びbchZ遺伝子を発現するように、該細菌を操作することを特徴とする、バクテリオクロロフィルb産生変異株の製造方法。
〔7〕上記〔1〕~〔5〕のいずれかに記載の変異株を培地中で培養し、得られる培養物からバクテリオクロロフィルbを回収することを含む、バクテリオクロロフィルbの製造方法。
That is, the present invention provides the following.
[1] In a photosynthetic bacterium that produces bacteriochlorophyll a, it lacks the endogenous bciA gene and bchY and / or bchZ gene, and expresses bchY and bchZ genes derived from a photosynthetic bacterium that produces bacteriochlorophyll b or bacteriochlorophyll g. Bacteriochlorophyll b producing mutants, engineered as follows.
[2] The mutant strain according to the above [1], wherein the photosynthetic bacterium producing bacteriochlorophyll a is a bacterium belonging to the genus Rhodobacter.
[3] The mutant strain of [2] above, wherein the bacterium belonging to the genus Rhodobacter is Rhodobacter spheroides or Rhodobacter capsulatus.
[4] The mutant strain of [2] above, wherein the bacterium belonging to the genus Rhodobacter is Rhodobacter spheroides.
[5] The mutant strain according to any one of the above [1] to [4], which is engineered to express bchY and bchZ genes derived from Blast chloris viridis.
[6] BciA gene and bchY and / or bchZ gene inherent in photosynthetic bacteria producing bacteriochlorophyll a are deleted, and bchY and bchZ genes derived from photosynthetic bacteria producing bacteriochlorophyll b or bacteriochlorophyll g are expressed. And a method for producing a bacteriochlorophyll b-producing mutant strain, which comprises manipulating the bacterium.
[7] A method for producing bacteriochlorophyll b, comprising culturing the mutant strain according to any one of [1] to [5] in a medium and recovering bacteriochlorophyll b from the obtained culture.
 本発明によれば、Qy帯がより長波長の近赤外領域にあるBChl b又はその誘導体を簡便かつ大量に提供することができるので、光吸収帯の変化した機能性色素を産業的に利用することが可能となる。 According to the present invention, BChl b or a derivative thereof in which the Qy band is in the near-infrared region having a longer wavelength can be provided easily and in large quantities, and thus functional dyes having a changed light absorption band are used industrially. It becomes possible to do.
BChl a産生菌R. スフェロイデスにおけるBChl a生合成経路(上)と、BChl b産生菌B. ビリディスにおけるBChl b生合成経路(下)とを示す図である。It is a figure which shows BChl a biosynthesis pathway (upper) in BChl a producing bacteria R. spheroides and BChl b biosynthesis pathway (lower) in BChl b producing bacteria B. viridis. R. スフェロイデスの野生株(上)及びbciA/bchZ遺伝子欠損変異株(中)にB. ビリディス由来のbchYZ遺伝子を導入した変異株が産生する色素のHPLC分析結果を示す図である。下は、B. ビリディス野生株が産生する色素(BChl b)を示す。It is a figure which shows the HPLC analysis result of the pigment | dye which the mutant strain which introduce | transduced the bchYZ gene derived from B. cocoon viridis into the wild strain (upper) and bciA / bchZ gene deletion mutant strain (middle) of R. The bottom shows the pigment (BChl b) produced by the wild strain of B. pylori.
 本発明は、BChl aを産生する光合成細菌において、内在のbciA遺伝子並びにbchY及び/又はbchZ遺伝子を欠損し、かつBChl bもしくはBChl gを産生する光合成細菌由来のbchY及びbchZ遺伝子を発現するように操作された、BChl b産生変異株を提供する。
 本発明において、遺伝子操作の親株として用いられる菌株は、BChl aを産生し得る光合成細菌であって、生育が早く、暗所(微)好気条件下で生育可能であり、かつ遺伝子操作が可能なものであれば特に制限されない。BChl a産生菌としては、例えば、R. スフェロイデス、R. カプスラタス、ロドスピリラム・フォトメトリカム(Rhodospirillum photometricum)、ロドシュードモナス・パルストリス(Rhodopseudomonas palustris)、チオカプサ・マリナ(Thiocapsa marina)、アロクロマチウム・ビノサム(Allochromatium vinosum)等が挙げられるが、これらに限定されない。BChl a産生菌は、例えば、ATCC、CAUP、CCAP、CCMP、CCCM、CGCCCC、CSIRO、DSMZ、香川県水産試験場 赤潮研究所、神戸大学海藻類系統コレクション (KU-MACC)、独立行政法人 国立環境研究所 微生物系統保存施設 (NIES)、独立行政法人 製品評価技術基盤機構 (NITE) のバイオテクノロジーセンター (NBRC) 等の光合成生物のカルチャーコレクションから入手することができる。例えば、R.スフェロイデス (NBRC 12203株、100037株及び100038株)、並びにR. カプスラタス (NBRC 16435株及び16581株) は、NBRC(URL: http://www.nbrc.nite.go.jp/NBRC2/NBRCCatalogueSearchServlet参照)から入手することができる。
 微好気条件下で生育でき、遺伝子改変可能なBChl a産生菌として、好ましくはR. スフェロイデス、R. カプスラタス、Rps. パルストリス等、より好ましくはR. スフェロイデス及びR. カプスラタス、特に好ましくはR. スフェロイデスが挙げられる。
 BChl a産生菌として、R. スフェロイデスやR. カプスラタス等の効率的な自然形質転換・エレクトロポレーション系が確立していない細菌を用い、大腸菌を介した接合伝達により遺伝子導入を行う場合、ドナー/ヘルパー大腸菌の除去を容易にするため、リファンピシン耐性のBChl a産生菌を使用することが好ましい。リファンピシン耐性菌は、例えば100μg/mlリファンピシンを含む固形培地上にBChl a産生菌を播種し、自然発生した耐性コロニーをピックアップすることにより、容易に入手することができる。
In the photosynthetic bacterium producing BChl a, the endogenous bciA gene and bchY and / or bchZ gene are deleted, and bchY and bchZ genes derived from photosynthetic bacteria producing BChl b or BChl g are expressed. An engineered BChlb producing mutant is provided.
In the present invention, the strain used as a parent strain for genetic manipulation is a photosynthetic bacterium capable of producing BChla, which grows quickly, can grow under dark (slight) aerobic conditions, and can be genetically manipulated. There is no particular limitation as long as it is correct. Examples of BChl a-producing bacteria include R. spheroides, R. capslatas, Rhodospirillum photometricum, Rhodopseudomonas palustris, Thiocapsa marina, Thiocapsa marina, Allochromatium chromium vinosum) and the like, but is not limited thereto. BChla-producing bacteria include, for example, ATCC, CAUP, CCAP, CCMP, CCCM, CGCCCC, CSIRO, DSMZ, Kagawa Prefectural Fisheries Experiment Station, Akashi Research Institute, Kobe University Seaweed Collection (KU-MACC), National Institute for Environmental Studies It can be obtained from culture collections of photosynthetic organisms, such as the Microbiology Preservation Facility (NIES) and the Biotechnology Center (NBRC) of the National Institute of Technology and Evaluation (NITE). For example, R. spheroides (NBRC 12203, 100037 and 100038) and R. Capslatas (NBRC 16435 and 16581) are registered in NBRC (URL: http://www.nbrc.nite.go.jp/NBRC2 / NBRCCatalogueSearchServlet)
BChla-producing bacteria that can grow under microaerobic conditions and can be genetically modified are preferably R. spheroides, R. capsulatus, Rps. Pulstris, etc., more preferably R. spheroides and R. capsulatus, particularly preferably R. Spheroides is mentioned.
If BChl a-producing bacteria, such as R. spheroides and R. capsulatus, have not established an efficient natural transformation / electroporation system, and if gene transfer is performed by conjugative transfer via E. coli, donor / In order to facilitate removal of the helper E. coli, it is preferable to use a rifampicin-resistant BChla-producing bacterium. Rifampicin resistant bacteria can be easily obtained by, for example, seeding BChla-producing bacteria on a solid medium containing 100 μg / ml rifampicin and picking up naturally occurring resistant colonies.
 本発明において欠損させるべき「bciA遺伝子」は、R. スフェロイデスゲノムから単離された、配列番号1に示されるヌクレオチド配列からなるコード領域 (cds) を有する遺伝子 (該cdsにコードされるアミノ酸配列を配列番号2に示す)、並びに他のBChl a産生菌におけるそのオルソログである。全ゲノム配列が解読されているR. スフェロイデス2.4.1株及びR. カプスラタスSB1003株のbciA遺伝子は、それぞれNCBIデータベースにGene ID:552536492 (NC_007494.2の111258-112292位 (相補鎖);locus tag:RSP_3070)、及びGene ID:294675557 (NC_014034.1の3460325-3461290位 (相補鎖);locus tag:RCAP_rcc03260)として登録されており、当業者は当該遺伝子及びその上下流領域のゲノム配列情報を容易に取得することができる。ゲノム配列が解読されていないBChl a産生菌のbciA遺伝子は、常法によりそのゲノム配列を解読し、次いで、配列番号1に示されるヌクレオチド配列をqueryとして、得られたゲノム配列に対してBlast検索をかけることにより同定することができる。Blast検索は、例えば以下の条件(期待値=10;ギャップを許す;マトリクス=BLOSUM62;フィルタリング=OFF)にて行うことができる。Blast検索の結果、配列番号2に示されるアミノ酸配列と、約70%以上、好ましくは約80%以上の類似性を有するアミノ酸配列をコードする遺伝子を、該菌株のbciA遺伝子と推定することができる。ヒットした遺伝子がbciA遺伝子であることの確認は、例えば、当該遺伝子を含む発現ベクターを大腸菌に導入して得られる組換えタンパク質に8V-Chlide aを接触させ、Chlide aを産生するか否かを調べることによって行うことができる。
 このようにして得られたbciA遺伝子のヌクレオチド配列情報を基にして、適当なオリゴヌクレオチドをプライマーとして合成し、BChl a産生菌より調製したゲノムDNA画分を鋳型として用い、Polymerase Chain Reaction(以下、「PCR法」と略称する)によって、標的bciA遺伝子を増幅することができる。
 上記のようにして得られたDNAのヌクレオチド配列は、マキサム・ギルバート法やジデオキシターミネーション法等の公知のシークエンス技術を用いて決定することができる。
The “bciA gene” to be deleted in the present invention is a gene having a coding region (cds) consisting of the nucleotide sequence shown in SEQ ID NO: 1 isolated from the R. sphaeroides genome (the amino acid encoded by the cds) The sequence is shown in SEQ ID NO: 2), as well as its orthologs in other BChla producing bacteria. The bciA genes of R. sphaeroides 2.4.1 strain and R. capsulatus SB1003 strain whose entire genome sequences have been decoded are listed in the NCBI database as Gene ID: 552536492 (positions 111258-112292 (complementary strand) of NC_007494.2); locus tag : RSP_3070), and Gene ID: 294675557 (NC_014034.1, positions 3460325-3461290 (complementary strand); locus tag: RCAP_rcc03260), and those skilled in the art can easily obtain the genome sequence information of the gene and its upstream and downstream regions. Can be obtained. For the bciA gene of BChla-producing bacteria whose genome sequence has not been decoded, the genome sequence is decoded by a conventional method, and then the Blast search is performed on the obtained genome sequence using the nucleotide sequence shown in SEQ ID NO: 1 as a query. Can be identified. The Blast search can be performed, for example, under the following conditions (expected value = 10; allow gap; matrix = BLOSUM62; filtering = OFF). As a result of the Blast search, a gene encoding an amino acid sequence having a similarity of about 70% or more, preferably about 80% or more with the amino acid sequence shown in SEQ ID NO: 2 can be estimated as the bciA gene of the strain. . Confirmation that the hit gene is the bciA gene is, for example, whether 8V-Chlide a is brought into contact with a recombinant protein obtained by introducing an expression vector containing the gene into Escherichia coli to produce Chlide a. Can be done by examining.
Based on the nucleotide sequence information of the bciA gene thus obtained, an appropriate oligonucleotide was synthesized as a primer, and a genomic DNA fraction prepared from a BChla-producing bacterium was used as a template. The target bciA gene can be amplified by “PCR method”.
The nucleotide sequence of the DNA obtained as described above can be determined using a known sequence technique such as the Maxam-Gilbert method or the dideoxy termination method.
 本発明において欠損させるべき「bchY遺伝子」は、R. スフェロイデスゲノムから単離された、配列番号3に示されるヌクレオチド配列からなるコード領域 (cds) を有する遺伝子 (該cdsにコードされるアミノ酸配列を配列番号4に示す)、並びに他のBChl a産生菌におけるそのオルソログである。全ゲノム配列が解読されているR. スフェロイデス2.4.1株及びR. カプスラタスSB1003株のbchY遺伝子は、それぞれNCBIデータベースにGene ID:552535527 (NC_007493.2の1984719-1986227位 (相補鎖);locus tag:RSP_0261)、及びGene ID:294675557 (NC_014034.1の759425-760918位;locus tag:RCAP_rcc00688)として登録されており、当業者は当該遺伝子及びその上下流領域のゲノム配列情報を容易に取得することができる。ゲノム配列が解読されていないBChl a産生菌のbchY遺伝子は、常法によりそのゲノム配列を解読し、次いで、配列番号3に示されるヌクレオチド配列をqueryとして、得られたゲノム配列に対してBlast検索をかけることにより同定することができる。Blast検索は、例えば以下の条件(期待値=10;ギャップを許す;マトリクス=BLOSUM62;フィルタリング=OFF)にて行うことができる。Blast検索の結果、配列番号4に示されるアミノ酸配列と、約70%以上、好ましくは約80%以上の類似性を有するアミノ酸配列をコードする遺伝子を、該菌株のbchY遺伝子と推定することができる。ヒットした遺伝子がbchY遺伝子であることの確認は、例えば、当該遺伝子を欠損させた場合に、BChl a産生能を失うか否かを調べることによって行うことができる。
 このようにして得られたbchY遺伝子のヌクレオチド配列情報を基にして、適当なオリゴヌクレオチドをプライマーとして合成し、BChl a産生菌より調製したゲノムDNA画分を鋳型として用い、PCR法によって、標的bchY遺伝子を増幅することができる。
 上記のようにして得られたDNAのヌクレオチド配列は、マキサム・ギルバート法やジデオキシターミネーション法等の公知のシークエンス技術を用いて決定することができる。
The “bchY gene” to be deleted in the present invention is a gene having a coding region (cds) consisting of the nucleotide sequence shown in SEQ ID NO: 3 isolated from the R. sphaeroides genome (the amino acid encoded by the cds) The sequence is shown in SEQ ID NO: 4), as well as its orthologs in other BChla producing bacteria. The bchY genes of R. spheroides 2.4.1 strain and R. capsulatus SB1003 strain whose entire genome sequence has been decoded are respectively listed in the NCBI database as Gene ID: 552535527 (1984719-1986227 positions of NC_007493.2 (complementary strand); locus tag : RSP_0261), and Gene ID: 294675557 (No. 759425-760918 in NC_014034.1; locus tag: RCAP_rcc00688). Those skilled in the art can easily obtain the genome sequence information of the gene and its upstream and downstream regions. Can do. For the bchY gene of BChla-producing bacteria whose genome sequence has not been decoded, the genome sequence is decoded by a conventional method, and then the Blast search is performed on the obtained genome sequence using the nucleotide sequence shown in SEQ ID NO: 3 as a query. Can be identified. The Blast search can be performed, for example, under the following conditions (expected value = 10; allow gap; matrix = BLOSUM62; filtering = OFF). As a result of the Blast search, a gene encoding an amino acid sequence having similarity of about 70% or more, preferably about 80% or more with the amino acid sequence shown in SEQ ID NO: 4 can be estimated as the bchY gene of the strain. . Confirmation that the hit gene is the bchY gene can be performed, for example, by examining whether or not the BChla production ability is lost when the gene is deleted.
Based on the nucleotide sequence information of the bchY gene thus obtained, an appropriate oligonucleotide was synthesized as a primer, and a genomic DNA fraction prepared from BChla-producing bacteria was used as a template, and the target bchY was obtained by PCR. Genes can be amplified.
The nucleotide sequence of the DNA obtained as described above can be determined using a known sequence technique such as the Maxam-Gilbert method or the dideoxy termination method.
 本発明において欠損させるべき「bchZ遺伝子」は、R. スフェロイデスゲノムから単離された、配列番号5に示されるヌクレオチド配列からなるコード領域 (cds) を有する遺伝子 (該cdsにコードされるアミノ酸配列を配列番号6に示す)、並びに他のBChl a産生菌におけるそのオルソログである。全ゲノム配列が解読されているR. スフェロイデス2.4.1株及びR. カプスラタスSB1003株のbchZ遺伝子は、それぞれNCBIデータベースにGene ID:552535527 (NC_007493.2の1983244-1984719位 (相補鎖);locus tag:RSP_0260)、及びGene ID:294675557 (NC_014034.1の760918-762390位;locus tag:RCAP_rcc00689)として登録されており、当業者は当該遺伝子及びその上下流領域のゲノム配列情報を容易に取得することができる。ゲノム配列が解読されていないBChl a産生菌のbchZ遺伝子は、常法によりそのゲノム配列を解読し、次いで、配列番号5に示されるヌクレオチド配列をqueryとして、得られたゲノム配列に対してBlast検索をかけることにより同定することができる。Blast検索は、例えば以下の条件(期待値=10;ギャップを許す;マトリクス=BLOSUM62;フィルタリング=OFF)にて行うことができる。Blast検索の結果、配列番号6に示されるアミノ酸配列と、約70%以上、好ましくは約80%以上の類似性を有するアミノ酸配列をコードする遺伝子を、該菌株のbchZ遺伝子と推定することができる。ヒットした遺伝子がbchZ遺伝子であることの確認は、例えば、当該遺伝子を欠損させた場合に、BChl a産生能を失うか否かを調べることによって行うことができる。
 このようにして得られたbchZ遺伝子のヌクレオチド配列情報を基にして、適当なオリゴヌクレオチドをプライマーとして合成し、BChl a産生菌より調製したゲノムDNA画分を鋳型として用い、PCR法によって、標的bchZ遺伝子を増幅することができる。尚、多くの光合成細菌において、bchY遺伝子とbchZ遺伝子とは近接し、一部オーバーラップしているため、その場合は両遺伝子(bchYZ遺伝子と表記する場合がある)をまとめてクローニングしてもよい。
 上記のようにして得られたDNAのヌクレオチド配列は、マキサム・ギルバート法やジデオキシターミネーション法等の公知のシークエンス技術を用いて決定することができる。
The “bchZ gene” to be deleted in the present invention is a gene having a coding region (cds) consisting of the nucleotide sequence shown in SEQ ID NO: 5 isolated from the R. sphaeroides genome (the amino acid encoded by the cds) The sequence is shown in SEQ ID NO: 6), as well as its orthologs in other BChla producing bacteria. The bchZ genes of R. sphaeroides 2.4.1 strain and R. capsulatus SB1003 strain whose entire genome sequences have been decoded are listed in the NCBI database as Gene ID: 552535527 (NC_007493.2 at positions 1983244-1984719 (complementary strand); locus tag : RSP_0260) and Gene ID: 294675557 (positions 760918-762390 of NC_014034.1; locus tag: RCAP_rcc00689), and those skilled in the art can easily obtain the genome sequence information of the gene and its upstream and downstream regions. Can do. For the bchZ gene of BChla producing bacteria whose genome sequence has not been decoded, the genome sequence is decoded by a conventional method, and then the Blast search is performed on the obtained genome sequence using the nucleotide sequence shown in SEQ ID NO: 5 as a query. Can be identified. The Blast search can be performed, for example, under the following conditions (expected value = 10; allow gap; matrix = BLOSUM62; filtering = OFF). As a result of the Blast search, a gene encoding an amino acid sequence having about 70% or more, preferably about 80% or more similarity to the amino acid sequence shown in SEQ ID NO: 6 can be estimated as the bchZ gene of the strain. . Confirmation that the hit gene is the bchZ gene can be performed, for example, by examining whether or not the BChla production ability is lost when the gene is deleted.
Based on the nucleotide sequence information of the bchZ gene thus obtained, an appropriate oligonucleotide was synthesized as a primer, and a genomic DNA fraction prepared from a BChla-producing bacterium was used as a template. Genes can be amplified. In many photosynthetic bacteria, the bchY gene and the bchZ gene are close to each other and partially overlap. In that case, both genes (may be referred to as bchYZ gene) may be cloned together. .
The nucleotide sequence of the DNA obtained as described above can be determined using a known sequence technique such as the Maxam-Gilbert method or the dideoxy termination method.
 BChl a産生菌において「内在の遺伝子を欠損させる」とは、当該遺伝子を破壊したり、除去したりすることにより完全なmRNAを産生不能にすることを意味する。内在遺伝子を欠損させる具体的な手段としては、対象BChl a産生菌由来の標的遺伝子 (ゲノムDNA) を常法に従って単離し、例えば、(1) そのコード領域 (cds) やプロモーター領域に他のDNA断片 (例えば、薬剤耐性遺伝子やレポーター遺伝子等) を挿入することによりcdsもしくはプロモーターの機能を破壊するか、(2) 標的遺伝子の全部または一部を切り出して該遺伝子を欠失させる (例えば、薬剤耐性遺伝子やレポーター遺伝子等で置換する) か、(3) cds内に終止コドンを挿入して完全な蛋白質の翻訳を不能にするか、あるいは (4) 転写領域内部へ遺伝子の転写を終結させるDNA配列 (ターミネーター配列) を挿入して、完全なmRNAの合成を不能にすることによって、結果的に遺伝子を不活性化するように構築したDNA配列を有するDNA鎖 (以下、ターゲッティングベクターと略記する) を、相同組換えにより対象BChl a産生菌の標的遺伝子座に組み込ませる方法などが用いられ得る。好ましくは、薬剤耐性遺伝子をcds内に挿入して標的遺伝子を破壊するか、標的遺伝子の全部もしくは一部を薬剤耐性遺伝子で置換除去する方法が挙げられる。 “Deleting an endogenous gene” in a BChl a-producing bacterium means that complete mRNA cannot be produced by destroying or removing the gene. As a specific means for deleting an endogenous gene, a target gene (genomic DNA) 由来 derived from a target BChl a-producing bacterium is isolated according to a conventional method.For example, (1) コ ー ド its coding region (cds) or other DNA in the promoter region Insert a fragment (e.g., drug resistance gene or reporter gene) cd to destroy the function of cds or promoter, or (2) cut out all or part of the target gene and delete the gene (e.g., drug (3) Insert a stop codon in cds to disable complete protein translation, or (4) DNA that terminates gene transcription into the transcription region By inserting a sequence (terminator sequence) に す る and disabling the synthesis of complete mRNA, the resulting DNA strand を (hereinafter referred to as a terminator) having a DNA sequence constructed to inactivate the gene. Tsu the computing vector and abbreviated), may a scheme of incorporated target locus of interest BChl a producing bacteria is used by homologous recombination. Preferably, a drug resistance gene is inserted into cds to destroy the target gene, or all or part of the target gene is replaced with a drug resistance gene.
 薬剤耐性遺伝子としては、カナマイシン耐性遺伝子、ストレプトマイシン耐性遺伝子、スペクチノマイシン耐性遺伝子、ゲンタマイシン耐性遺伝子、クロラムフェニコール耐性遺伝子、エリスロマイシン耐性遺伝子などを用いることができる。例えば、カナマイシン耐性遺伝子として、pUCKM1 (J. Biol. Chem., 266(20): 12889-12895 (1991)) に含まれるneo遺伝子が、ストレプトマイシン及びスペクチノマイシン耐性遺伝子として、pHP45Ω (Gene, 29: 303-313 (1984))、pSRA2、pSRA81 (以上、Methods Mol. Biol., 274; 325-340 (2004)) に含まれるaadA遺伝子が、ゲンタマイシン耐性遺伝子として、pMS255、pMS266 (Gene, 162: 37-39 (1995)) に含まれるaacC1遺伝子が、エリスロマイシン耐性遺伝子及びクロラムフェニコール耐性遺伝子として、pRL409 (Gene, 68: 119-138 (1988)) に含まれるermC遺伝子及びcat遺伝子が、それぞれ挙げられる。これらの遺伝子は、上記プラスミドから適当な制限酵素により切り出すこともできるし、あるいは上記プラスミドを鋳型として、これらの遺伝子の上下流域の配列をプライマーに用い、PCR法により増幅してもよい。 As the drug resistance gene, kanamycin resistance gene, streptomycin resistance gene, spectinomycin resistance gene, gentamicin resistance gene, chloramphenicol resistance gene, erythromycin resistance gene and the like can be used. For example, as the kanamycin resistance gene, the neo gene contained in pUCKM1 (J. Biol. Chem., 266 (20): 12889-12895 (1991)) is used as the streptomycin and spectinomycin resistance gene, pHP45Ω (Gene, 29: 303-313 (1984)), pSRA2, pSRA81 Method (Methods Mol. Biol., 274; 325-340 2004 (2004)) a, the aadA gene is pMS255, pMS266 (Gene, 162: 37 -39 (1995)), the aacC1 gene contained in, erythromycin resistance gene and chloramphenicol resistance gene, ermC gene and cat gene contained in pRL409 (Gene, 68: 119-138 (1988)) It is done. These genes can be excised from the plasmid with an appropriate restriction enzyme, or can be amplified by PCR using the plasmid as a template and the upstream and downstream regions of these genes as primers.
 薬剤耐性遺伝子を標的遺伝子のcds内に挿入するか、標的遺伝子の全部もしくは一部を薬剤耐性遺伝子で置換したターゲッティングベクター構築の詳細については、例えば、Methods in Enzymology, 497: 519-538 (2011) に記載されているが、それらに限定されず、当該技術分野で周知の方法を適宜用いることができる。 For details on the construction of a targeting vector in which a drug resistance gene is inserted into cds of a target gene or all or part of the target gene is replaced with a drug resistance gene, see, for example, MethodsMethodin Enzymology, 497: 519-538 (2011) However, the method is not limited thereto, and a method well known in the technical field can be used as appropriate.
 対象BChl a産生菌に上記ターゲッティングベクターを導入することにより、該ベクターを、相同組換えにより対象BChl a産生菌の標的遺伝子座に組み込ませることができる。遺伝子導入方法としては、対象BChl a産生菌に適用可能な方法であれば特に制限されず、自体公知のいかなる方法(例えば、自然形質転換法、エレクトロポレーション法等)を用いてもよいが、R. スフェロイデスやR. カプスラタスの場合、接合伝達による遺伝子導入と、自殺ベクターを用いた薬剤選択とを利用して、相同組換え体を選抜することが、好ましい一実施態様として挙げられる (例えば、Methods in Enzymology, 497: 519-538 (2011)などを参照)。 By introducing the above targeting vector into the target BChl a-producing bacterium, the vector can be incorporated into the target locus of the target BChl a-producing bacterium by homologous recombination. The gene transfer method is not particularly limited as long as it is a method applicable to the target BChl a-producing bacterium, and any method known per se (for example, natural transformation method, electroporation method, etc.) may be used. In the case of R. sp. Ferroides and R. capsulatus, selection of homologous recombinants using gene transfer by conjugation transfer and drug selection using a suicide vector is a preferred embodiment. Methods in Enzymology, 497: 519-538 (2011)).
 以下に、BChl a産生菌としてR. スフェロイデスやR. カプスラタスを用いる場合の、bciA遺伝子並びにbchY及び/又はbchZ遺伝子の相同組換えによる欠損変異体の好適な作製方法について、具体的に説明する。 Hereinafter, a preferred method for producing a deletion mutant by homologous recombination of bciA gene and bchY and / or bchZ gene when R. spheroides or R. Capsulatas is used as a BChl a-producing bacterium will be specifically described.
 上記のようにして単離したbciA遺伝子(或いは、bchY及び/又はbchZ遺伝子 (以下、bchY/Z遺伝子と略記する場合がある))を適当な制限酵素で処理することにより該遺伝子をcds内で切断するか、該遺伝子の一部を除き、そこに、上記のようにして単離した薬剤耐性遺伝子を挿入することにより、不活性化された酵素遺伝子の両端に、標的酵素遺伝子に相同な配列を含むカセットを構築する。bciA遺伝子と、bchY/Z遺伝子には、それぞれ異なる薬剤耐性遺伝子を挿入する。得られたカセットを、適当な自殺遺伝子(例えば、枯草菌由来のsacB遺伝子 (グラム陰性細菌の生育を阻害するフラクトース重合体を産生する) 等)と、ドナーである大腸菌の複製起点(例、colE1等)とを含むが、レシピエントであるR. スフェロイデスやR. カプスラタスでは複製できないベクター(自殺ベクター)中に挿入して、ターゲッティングベクターを構築する。次いで、常法により、ターゲッティングベクターでドナー大腸菌を形質転換する。 By treating the bciA gene isolated as described above (or bchY and / or bchZ gene (hereinafter sometimes abbreviated as bchY / Z gene)) with an appropriate restriction enzyme, the gene is treated in cds. A sequence homologous to the target enzyme gene at both ends of the inactivated enzyme gene by cutting or excluding a part of the gene and inserting the drug resistance gene isolated as described above. Construct a cassette containing Different drug resistance genes are inserted into the bciA gene and the bchY / Z gene, respectively. The obtained cassette is obtained by using an appropriate suicide gene (for example, sacB gene derived from Bacillus subtilis (producing a fructose polymer that inhibits the growth of Gram-negative bacteria)) and the origin of replication of the donor E. coli (eg, colE1 Etc.) but is inserted into a vector (suicide vector) that cannot be replicated by the recipients R. spheroides or R. capsulatus to construct a targeting vector. Subsequently, donor E. coli is transformed with the targeting vector by a conventional method.
 R. スフェロイデスやR. カプスラタスの形質転換(ターゲッティングベクターの導入)は、大腸菌との接合(ターゲッティングベクターを含むドナー大腸菌と、接合を誘発するヘルパー大腸菌と、レシピエントであるR. スフェロイデスやR. カプスラタスとの三親接合、あるいは接合伝達能を有する大腸菌に目的の発現ベクターを導入して得られる形質転換体(ドナー大腸菌)と、レシピエントであるR. スフェロイデスやR. カプスラタスとの二親接合を利用して行うことができる。三親接合において、ドナー大腸菌は特に制限はなく、JM105等の通常の菌株を用いればよい。ヘルパー大腸菌としては、ヘルパープラスミドpDPT51を有するXL1-Blue、DH5、C600等が使用できる。一方、二親接合に用いる接合伝達能を有する大腸菌としては、例えばS17-1株(Bio/Technology, 1: 784-791 (1983))が挙げられる。ドナー大腸菌とレシピエントのR. スフェロイデスやR. カプスラタス(三親接合の場合はさらにヘルパー大腸菌)との接合は、自体公知の方法(例えば、低温科学, 67: 649-653 (2009) 参照)にて行うことができる。レシピエントに、例えばリファンピシン耐性を付与しておけば、リファンピシン含有培地で選択を行うことにより、容易にドナー及びヘルパー大腸菌のコンタミネーションを防ぐことができる。 Transformation of R. sphaeroides and R. Capsulatus (introduction of targeting vector) is performed by conjugating with E. coli (donor E. coli containing the targeting vector, helper E. coli that induces conjugation, and recipients such as R. Spheroides and R. Capsulatus. Or a parental transformant (donor E. coli) obtained by introducing the target expression vector into Escherichia coli having the ability to transfer conjugation with R. Spheroides or R. Capsulatus. There are no particular limitations on the donor Escherichia coli in the triple parental conjugation, and a normal strain such as JM105 may be used, such as XL1-Blue, DH5, and C600 having the helper plasmid pDPT51. On the other hand, examples of Escherichia coli having conjugation transmission ability used for double parental joining include, (Bio / Technology, 1: 784-791 (1983)) The conjugation of donor Escherichia coli with the recipients R. Spheroides and R. Capsulatus (additional E. coli in the case of triple parental joining) is known per se. (For example, see Cryogenic Science, 67: 選 択 649-653 (2009)) If the recipient is given rifampicin resistance, for example, it can be easily done by selecting on rifampicin-containing medium. Contamination of donor and helper E. coli can be prevented.
 ターゲッティングベクターを導入した菌体を、薬剤含有固形培地上で培養して耐性コロニーを選択することにより、形質転換体を取得することができる。ここで用いられる培地としては、対象BChl a産生菌の生育に適した任意の培地を用いることができる。例えば、BChl a産生菌を保存しているカルチャーコレクションが推奨する培地を用いることができる。具体的には、例えば、BChl a産生菌がR. スフェロイデスやR. カプスラタスの場合、NBRCが提供するオンラインカタログ検索の培地情報に掲載される培地No. 802(和光純薬工業より入手可能)や培地No. 360 (SA培地) 等が挙げられる。あるいは、PYS培地(1% ポリペプトン、0.5% 酵母エキス、1% 塩化ナトリウム; J. Mol. Evol., 45(2): 131-136 (1997)) 等も好ましく用いられる。培地に添加される選択剤の濃度は、抗生物質の種類、菌株の種類によって異なるが、例えばR. スフェロイデス2.4.1株の場合には、それぞれ25μg/mL カナマイシン、10 μg/mL ゲンタマイシン、50 μg/mL ストレプトマイシン、50 μg/mL スペクチノマイシンの終濃度となるように、培地に添加することができる。遺伝子導入処理から1晩~3日間程度非選択培地で培養した後に、菌体を選択培地にプレーティングして薬剤選択を開始するのが望ましい。培養は、通常20-40℃、好ましくは25-30℃の温度で、暗所(微)好気条件下で行われる。
 ターゲッティングベクターが1回の相同組換えによりゲノム上の標的酵素遺伝子中に挿入されると、薬剤耐性遺伝子の発現により薬剤耐性となり、薬剤含有培地上で生育可能となる。しかし、自殺遺伝子もゲノム中に挿入されているため、例えばsacB遺伝子を用いた場合には、10%ショ糖存在下ではこの挿入変異株は生育できない。2回目の相同組換えにより、薬剤(抗生物質)耐性遺伝子が挿入された欠損酵素遺伝子のみがゲノム上に残り、sacB遺伝子がゲノムから切り出された場合のみ、(自殺ベクターはレシピエント内で自律複製できないので)当該菌株は薬剤(抗生物質)及びショ糖存在下で生育可能となる。
A transformant can be obtained by culturing a bacterial cell into which a targeting vector has been introduced on a solid medium containing a drug and selecting resistant colonies. As the medium used here, any medium suitable for the growth of the target BChla-producing bacterium can be used. For example, a medium recommended by a culture collection that stores BChla-producing bacteria can be used. Specifically, for example, when the BChla-producing bacterium is R. spheroides or R. capsulatus, medium No. 802 (available from Wako Pure Chemical Industries) listed in the medium information of online catalog search provided by NBRC Examples include Medium No. 360 (SA medium). Alternatively, PYS medium (1% polypeptone, 0.5% yeast extract, 1% sodium chloride; J. Mol. Evol., 45 (2): 131-136 (1997)) is also preferably used. The concentration of the selective agent added to the medium varies depending on the type of antibiotic and the type of strain.For example, in the case of R. sphaeroides 2.4.1, 25 μg / mL kanamycin, 10 μg / mL gentamicin, 50 μg, respectively. / mL Streptomycin, 50 μg / mL spectinomycin can be added to the medium to a final concentration. It is desirable to start the drug selection by plating the cells on a selective medium after culturing in a non-selective medium for about 1 to 3 days from the gene transfer treatment. Cultivation is usually carried out at a temperature of 20-40 ° C., preferably 25-30 ° C., in a dark (slight) aerobic condition.
When the targeting vector is inserted into the target enzyme gene on the genome by one homologous recombination, it becomes drug resistant by the expression of the drug resistance gene and can grow on the drug-containing medium. However, since the suicide gene is also inserted into the genome, for example, when the sacB gene is used, this insertion mutant cannot grow in the presence of 10% sucrose. Only when a defective enzyme gene into which a drug (antibiotic) resistance gene is inserted remains in the genome and the sacB gene is excised from the genome by the second homologous recombination (the suicide vector is autonomously replicated in the recipient) The strain can grow in the presence of drugs (antibiotics) and sucrose.
 通常、選択開始から約1-2週間程度で耐性コロニーが得られる。得られた耐性クローンが相同組み換え体 (bciA遺伝子(bchY/Z遺伝子)欠損変異体) であることは、標的遺伝子領域のゲノミックPCR及び/又はシークエンス解析により確認することができる。
 上記の操作をbciA遺伝子及びbchY/Z遺伝子のそれぞれについて実施することにより、これらの遺伝子を欠損した相同組換え変異株を取得することができる。
 得られた変異株は、5% DMSO又は15% グリセロールを含有する培地中で、凍結保存 (-70又は80℃以下) することができる。
Usually, resistant colonies are obtained in about 1-2 weeks from the start of selection. It can be confirmed by genomic PCR and / or sequence analysis of the target gene region that the obtained resistant clone is a homologous recombinant (bciA gene (bchY / Z gene) -deficient mutant).
By carrying out the above operation for each of the bciA gene and the bchY / Z gene, homologous recombination mutants lacking these genes can be obtained.
The obtained mutant strain can be cryopreserved (−70 or 80 ° C. or lower) in a medium containing 5% DMSO or 15% glycerol.
 接合伝達による遺伝子導入では効率が低く、相同組換え体がうまく得られない場合には、GTAと呼ばれるファージ様粒子を利用した遺伝子破壊法を用いることができる。例えば、R. カプスラタスのGTA過剰産生変異株(例、R121、Y262、CB1127株)を用い、大腸菌との接合によりターゲッティングベクターを該変異株に導入し培養すると、培地中に多量のGTAが蓄積し、このうちあるものはターゲティングベクターを切り出し、粒子内に取り込んでいる。そこで、この培養濾液をレシピエントのR. カプスラタスと接触させると、GTAからターゲッティングベクターがレシピエント菌体内に導入され、相同組換えが誘発されるので、効率よく標的遺伝子座に目的遺伝子をターゲッティングすることができる。 When gene transfer by conjugation transfer is low in efficiency and homologous recombinants cannot be obtained successfully, a gene disruption method using phage-like particles called GTA can be used. For example, using a mutant strain of G. overcapillus (eg, R121, Y262, CB1127) of R. Capsulatas and introducing a targeting vector into the mutant strain by conjugation with E. coli, a large amount of GTA accumulates in the medium. Some of these have cut out targeting vectors and incorporated them into the particles. Therefore, when this culture filtrate is brought into contact with the recipient's R. Capsulatus, the targeting vector is introduced from the GTA into the recipient cell, and homologous recombination is induced, so that the target gene is efficiently targeted to the target locus. be able to.
 BChl a産生菌へのBChl bもしくはBChl g産生菌由来のbchY及びbchZ遺伝子の導入は、以下のようにして行うことができる。 The introduction of bchY and bchZ genes derived from BChl b or BChl g-producing bacteria into BChl a-producing bacteria can be performed as follows.
 本発明においてBChl a産生菌に導入されるbchY及びbchZ遺伝子が由来する光合成細菌としては、BChl bもしくはBChl gを産生するものであれば特に制限はない。BChl b産生菌としては、例えば、ブラストクロリス・ビリディス(Blastochloris viridis)、チオフラビコッカス・モビリス(Thioflavicoccus mobilis)、チオコッカス・ペニヒ(Thiococcus pfennigii)、チオアルカリコッカス・リムナエウス(Thioalkalicoccus limnaeus)、ブラストクロリス・スルフォビリディス(Blastochloris sulfoviridis)、ハロロドスピラ・ハロクロリス(Halorhodospira halochloris)等が、また、BChl g産生菌としては、例えば、ヘリオバクテリウム・モデスティカルダム(Heliobacterium modesticaldum)、ヘリオバクテリウム・クロラム(Heliobacterium chlorum)、ヘリオバクテリウム・ゲスティ(Heliobacterium gestii)、ヘリオフィラム・ファシアタム(Heliophilum fasciatum)、ヘリオバチラス・モビリス(Heliobacillus mobilis)等が挙げられる。好ましくは、B. ビリディス、T. モビリス、H. モデスティカルダム、より好ましくはB. ビリディス由来のbchY及びbchZ遺伝子を用いることができる。 In the present invention, the photosynthetic bacterium from which the bchY and bchZ genes introduced into BChl a-producing bacteria are derived is not particularly limited as long as it produces BChl b or BChl g. Examples of BChl b-producing bacteria include Blastochloris viridis, Thioflavicoccus mobilis, Thiococcus pfennigii, Thioalkalicoccus limnaeus, Thioalkalicoccus ブ ラ limnaeus, Phobilis (Blastochloris sulfoviridis), Halorhospira halochloris (Halorhodospira halochloris) and the like, and BChl g producing bacteria, for example, Heliobacterium modesticaldum, Heliobacterium chlorum (Heliobacterium chlorum), Examples include Heliobacterium gestii, Heliophilum fasciatum, and Heliobacillus mobilis. Preferably, B. viridis, T. mobilis, H. modern dam, more preferably B. viridis-derived bchY and bchZ genes can be used.
 酵素遺伝子のクローニングは、通常、以下の方法により行われる。まず、所望の酵素を産生する細胞または組織より、該酵素を完全または部分精製し、そのN末端アミノ酸配列をエドマン法や質量分析などを用いて決定する。また、ペプチドを配列特異的に切断するプロテアーゼや化学物質で該酵素を部分分解して得られるオリゴペプチドのアミノ酸配列を同様にエドマン法や質量分析により決定する。決定された部分アミノ酸配列に対応するヌクレオチド配列を有するオリゴヌクレオチドを合成し、これをプローブとして用いて、該酵素を産生する細胞または組織より調製されたcDNAまたはゲノミックDNAライブラリーから、コロニー(もしくはプラーク)ハイブリダイゼーション法によって該酵素をコードするDNAをクローニングする。
 あるいは、完全または部分精製された酵素の全部または一部を抗原として該酵素に対する抗体を常法にしたがって作製し、該酵素を産生する細胞または組織より調製されたcDNAまたはゲノミックDNAライブラリーから、抗体スクリーニング法によって該酵素をコードするDNAをクローニングすることもできる。
 目的の酵素と酵素学的性質の類似する酵素の遺伝子が公知である場合、例えば、NCBI BLASTのホームページ(http://www.ncbi.nlm.nih.gov/BLAST/)にアクセスし、該公知遺伝子のヌクレオチド配列と相同性を有する配列を検索し、ヒットしたヌクレオチド配列を基にして、上記のようにプローブを作製し、コロニー(もしくはプラーク)ハイブリダイゼーション法によって該酵素をコードするDNAをクローニングすることができる。例えば、配列番号8及び10に示される各アミノ酸配列からなるB. ビリディス由来BchY及びBchZの場合、H. モデスティカルダム由来のBchY及びBchZ(配列番号12及び14)とアミノ酸レベルで、それぞれ33%及び37%の同一性(類似性はそれぞれ53%及び54%)があるので、B. ビリディス由来のbchY及びbchZ遺伝子のヌクレオチド配列(配列番号7及び9)とのホモロジー検索により、H. モデスティカルダムのゲノム上のBchY及びBchZをコードするORF(配列番号11及び13)を見出すことができる。
 また、ヒットしたヌクレオチド配列を基にして、適当なオリゴヌクレオチドをプライマーとして合成し、BChl b/g産生菌より調製したゲノムDNA画分または全RNAもしくはmRNA画分を鋳型として用い、Polymerase Chain Reaction(以下、「PCR法」と略称する)またはReverse Transcriptase-PCR(以下、「RT-PCR法」と略称する)によって直接増幅することもできる。
 上記のようにして得られたDNAのヌクレオチド配列は、マキサム・ギルバート法やジデオキシターミネーション法等の公知のシークエンス技術を用いて決定することができる。
Cloning of enzyme genes is usually performed by the following method. First, the enzyme is completely or partially purified from a cell or tissue that produces the desired enzyme, and its N-terminal amino acid sequence is determined using the Edman method or mass spectrometry. In addition, the amino acid sequence of an oligopeptide obtained by partially decomposing the enzyme with a protease or chemical substance that cleaves the peptide in a sequence-specific manner is similarly determined by Edman method or mass spectrometry. An oligonucleotide having a nucleotide sequence corresponding to the determined partial amino acid sequence is synthesized, and this is used as a probe from a cDNA or genomic DNA library prepared from a cell or tissue producing the enzyme. ) The DNA encoding the enzyme is cloned by a hybridization method.
Alternatively, an antibody against the enzyme is prepared according to a conventional method using all or part of the completely or partially purified enzyme as an antigen, and the antibody is prepared from a cDNA or genomic DNA library prepared from a cell or tissue producing the enzyme. DNA encoding the enzyme can also be cloned by a screening method.
When the gene of an enzyme similar in enzymatic properties to the target enzyme is known, for example, the NCBI BLAST website (http://www.ncbi.nlm.nih.gov/BLAST/) is accessed and the known gene Search for a sequence homologous to the nucleotide sequence of the gene, create a probe as described above based on the hit nucleotide sequence, and clone the DNA encoding the enzyme by colony (or plaque) hybridization be able to. For example, in the case of B. viridis-derived BchY and BchZ consisting of the amino acid sequences shown in SEQ ID NOs: 8 and 10, respectively, 33% respectively at the amino acid level with B. ch. And BchZ (SEQ ID NOs: 12 and 14) derived from H. And 37% identity (similarities are 53% and 54%, respectively), so that a homology search with the nucleotide sequences of BchY and bchZ genes from B. viridis (SEQ ID NOs: 7 and 9) revealed that H. ORFs (SEQ ID NOs: 11 and 13) encoding BchY and BchZ on the genome of Rudeum can be found.
In addition, based on the hit nucleotide sequence, an appropriate oligonucleotide was synthesized as a primer, and a genomic DNA fraction prepared from BChl b / g-producing bacteria or a total RNA or mRNA fraction was used as a template for Polymerase Chain Reaction ( Hereinafter, it can also be directly amplified by “PCR method” or Reverse Transcriptase-PCR (hereinafter abbreviated as “RT-PCR method”).
The nucleotide sequence of the DNA obtained as described above can be determined using a known sequence technique such as the Maxam-Gilbert method or the dideoxy termination method.
 クローン化されたDNAは、目的によりそのまま、または所望により制限酵素で消化するか、リンカーを付加した後に、使用することができる。該DNAはその5’末端側に翻訳開始コドンとしてのATGを有し、また3’末端側には翻訳終止コドンとしてのTAA、TGAまたはTAGを有していてもよい。これらの翻訳開始コドンや翻訳終止コドンは、適当な合成DNAアダプターを用いて付加することができる。 The cloned DNA can be used as it is depending on the purpose, or after digestion with a restriction enzyme or addition of a linker as desired. The DNA may have ATG as a translation initiation codon on the 5 'end side and TAA, TGA or TAG as a translation termination codon on the 3' end side. These translation initiation codon and translation termination codon can be added using an appropriate synthetic DNA adapter.
 R. スフェロイデスやR. カプスラタスにおける大量発現ベクターとして、広宿主域ベクターpBBR1-MCS2(Gene, 166: 175 (1995))から構築されたpJN3やpJNYを挙げることができる(低温科学, 67: 649-653 (2009))。いずれのベクターも、集光性バクテリオクロロフィル結合タンパク質をコードするpucABの発現を制御し、嫌気条件下で高い転写活性を示すpucプロモーターの下流にクローニング部位があり、目的タンパク質をコードするDNAを挿入できる。pucプロモーターとクローニング部位との間に、pJN3は6xHNタグ、pJNYはStrepタグが挿入されており、発現したタンパク質の精製を容易にしている。薬剤耐性マーカーとしてpBBR1-MCS2由来のカナマイシン耐性遺伝子に加え、新たにストレプトマイシン/スペクチノマイシン耐性遺伝子が導入されている。従って、pJN3やpJNYを、BChl b/g産生菌由来bchY及びZ遺伝子導入のための発現ベクターとしてそのまま利用する場合には、BChl a産生菌に内在のbciA及びbchY/Z遺伝子の欠損変異株の選択に、カナマイシン耐性遺伝子、ストレプトマイシン耐性遺伝子、スペクチノマイシン耐性遺伝子以外の薬剤耐性遺伝子を使用する必要がある。あるいは、bciA及びbchY/Z遺伝子欠損変異株の作製にカナマイシン耐性遺伝子、ストレプトマイシン耐性遺伝子、スペクチノマイシン耐性遺伝子を使用する場合には、pJN3やpJNYに他の薬剤耐性遺伝子(例えば、ゲンタマイシン耐性遺伝子)を付加して用いることができる。 Examples of large-scale expression vectors in R. Spheroides and R. Capsulatus include pJN3 and pJNY constructed from the broad host range vector pBBR1-MCS2 (Gene, 166: 175 (1995)) (Cryogenic Science, 67: 649- 653 (2009)). Both vectors control the expression of pucAB encoding a light-harvesting bacteriochlorophyll-binding protein, and have a cloning site downstream of the puc promoter that exhibits high transcriptional activity under anaerobic conditions, allowing insertion of DNA encoding the target protein. . Between the puc promoter and the cloning site, a 6xHN tag is inserted in pJN3 and a Strep tag is inserted in pJNY, facilitating purification of the expressed protein. In addition to the pBBR1-MCS2-derived kanamycin resistance gene, a streptomycin / spectinomycin resistance gene has been newly introduced as a drug resistance marker. Therefore, when pJN3 and pJNY are used as they are as expression vectors for introducing bchY and Z genes from BChl b / g-producing bacteria, bciA and bchY / Z gene-deficient mutants endogenous to BChl a-producing bacteria It is necessary to use a drug resistance gene other than the kanamycin resistance gene, streptomycin resistance gene, and spectinomycin resistance gene for selection. Alternatively, if a kanamycin resistance gene, streptomycin resistance gene, or spectinomycin resistance gene is used to create bciA and bchY / Z gene deletion mutants, other drug resistance genes (eg, gentamicin resistance gene) for pJN3 and pJNY Can be used.
 BchYもしくはBchZをコードするDNAを含む発現ベクターは、例えば、BchYもしくはBchZをコードするDNAから目的とするDNA断片を切り出し、該DNA断片を、前記したR. スフェロイデスやR. カプスラタスにおける大量発現ベクター中のプロモーターの下流に連結することにより製造することができる。BchY及びBchZをコードするDNAは、それぞれ別個のベクターに挿入してもよいが、両者を単一のベクターに挿入することが望ましい。bchY及びbchZ遺伝子はBChl b/g産生菌のゲノム上では1つのオペロン内に存在するので、BchYをコードするORFとBchZをコードするORFの両方を含むゲノム配列を発現ベクターにサブクローニングすることで、単一のプロモーターからポリシストロニックにBchYZを発現するようにデザインすることができる。 An expression vector containing DNA encoding BchY or BchZ is, for example, excising a target DNA fragment from DNA encoding BchY or BchZ, and the DNA fragment is extracted from the above-mentioned large-scale expression vectors in R. Spheroides and R. Capsulatus. Can be produced by ligating downstream of the promoter. The DNAs encoding BchY and BchZ may be inserted into separate vectors, but it is desirable to insert both into a single vector. Since the bchY and bchZ genes are present in one operon on the genome of BChl b / g producing bacteria, by subcloning the genome sequence containing both the ORF encoding BchY and the ORF encoding BchZ into an expression vector, It can be designed to express BchYZ from a single promoter polycistronic.
 得られたbchY遺伝子及びbchZ遺伝子を含む発現ベクターは、宿主となるBChl a産生菌に応じて、効率的な遺伝子導入系を用いて導入することができるが、宿主がR. スフェロイデスやR. カプスラタスの場合、上記bciA及びbchY/Z欠損変異体の作製の場合と同様に、接合伝達による遺伝子導入が好ましく利用される。具体的な方法は、低温科学, 67: 649-653 (2009) 等に記載されている。尚、pJN3やpJNY等のpucプロモーターを含む発現ベクターを利用する場合、レシピエントとして、R. カプスラタスDB176等の、pucプロモーターが野生株より強く誘導される菌株を用いてもよい。 The obtained expression vector containing the bchY gene and the bchZ gene can be introduced using an efficient gene transfer system depending on the BChl a-producing bacterium serving as the host, but the host is R. spheroides or R. Capsulatus. In this case, gene transfer by conjugation transfer is preferably used, as in the case of producing the bciA and bchY / Z deletion mutants. Specific methods are described in Cryogenic Science, 67: 649-653 (2009). When an expression vector containing a puc promoter such as pJN3 or pJNY is used, a strain in which the puc promoter is more strongly induced than a wild type strain, such as R. Capsulatus DB176, may be used as a recipient.
 BChl b/g産生菌由来のbchY及びbchZ遺伝子が首尾よく導入された形質転換体は、適当な薬剤含有固形培地上で培養することにより選択することができる。培養は、上記相同組換え体の選択の場合と同様、通常20-40℃、好ましくは25-30℃の温度で、暗所(微)好気条件下で行われる。通常、選択開始から約1-2週間程度で耐性コロニーが得られる。
 得られた変異株は、5% DMSO又は15% グリセロールを含有する培地中で、凍結保存 (-70又は80℃以下) することができる。
Transformants into which the bchY and bchZ genes derived from BChl b / g-producing bacteria have been successfully introduced can be selected by culturing on an appropriate drug-containing solid medium. As in the case of selecting the homologous recombinant, the culture is usually performed at a temperature of 20-40 ° C., preferably 25-30 ° C., in a dark (slight) aerobic condition. Usually, resistant colonies are obtained in about 1-2 weeks from the start of selection.
The obtained mutant strain can be cryopreserved (−70 or 80 ° C. or lower) in a medium containing 5% DMSO or 15% glycerol.
 尚、相同組換えによる内在bciA及びbchY/Z遺伝子の欠損変異と、BChl b/g産生菌由来のbchY及びbchZ遺伝子(以下、bchYZ遺伝子と略記する場合がある)の導入とは、どちらを先に実施してもよい。 Which is the first of the deletion mutations in the endogenous bciA and bchY / Z genes by homologous recombination and the introduction of bchY and bchZ genes from BChl b / g producing bacteria (hereinafter sometimes abbreviated as bchYZ gene). May be implemented.
 このようにして得られたBChl a産生菌由来のbciA及びbchY/Z遺伝子欠損・BChl b/g産生菌由来bchYZ遺伝子導入変異株は、DVR活性を有する内在のBciA及びBchYZを欠損しているため、8V-Chlide aをChlide aに変換することができず、代わりにBChl b/g産生菌由来のBchYZの作用により、8V-Chlide aがBChlide gに変換される。BChlide gは内在のBchF、BchCの作用によりBChlide bに変換され、さらに内在のBchGの作用により、BChl bが産生する(図1参照)。尚、C17位上の長鎖エステル基は、通常ファルネシル基であるが、フィチル基、ゲラニルゲラニル基、ジヒドロゲラニル基又はテトラヒドロゲラニル基であってもよい。 The bciA and bchY / Z gene-deficient / BChl b / g-producing bchYZ gene-introduced mutants derived from BChl a-producing bacteria thus obtained are deficient in endogenous BciA and BchYZ having DVR activity. However, 8V-Chlide a cannot be converted to Chlide a. Instead, 8V-Chlide a is converted to BChlide g by the action of BchYZ derived from BChl b / g producing bacteria. BChlide g is converted to BChlide b by the action of endogenous BchF and BchC, and further BChl b is produced by the action of intrinsic BchG (see Fig. 1). The long chain ester group on the C17 position is usually a farnesyl group, but may be a phytyl group, a geranylgeranyl group, a dihydrogeranyl group or a tetrahydrogeranyl group.
 従って、本発明はまた、本発明のBChl b産生変異株を培地中で培養し、得られる培養物からBChl bを回収することを含む、BChl bの製造方法を提供する。
 BChl b産生変異株の培養は、固形培地に代えて液体培地を用いる以外は、上記bciA及びbchY/Z遺伝子欠損変異株の選抜において用いたのと同様の方法により行うことができる。遺伝子欠損・導入遺伝子発現変異株の選抜の際に用いた選択剤の添加は必須ではないが、導入された薬剤耐性遺伝子の脱落を防ぐために添加しておくことが望ましい。但し、選択剤の濃度は選択培地で用いたよりも低濃度とすることもできる。
Therefore, the present invention also provides a method for producing BChl b, which comprises culturing the BChl b-producing mutant strain of the present invention in a medium and recovering BChl b from the resulting culture.
The BChl b production mutant can be cultured by the same method as used in the selection of the bciA and bchY / Z gene-deficient mutants, except that a liquid medium is used instead of the solid medium. Although it is not essential to add a selection agent used for selecting a gene-deficient / transgene-expressing mutant, it is desirable to add it to prevent the introduced drug resistance gene from falling off. However, the concentration of the selective agent may be lower than that used in the selective medium.
 本発明のBChl b産生変異株からのBChl bの抽出は、例えば、以下のようにして行うことができるが、当該技術分野で周知のいかなる方法も同様に使用可能である。
 まず培養したBChl b産生変異株の菌体を、濾過もしくは遠心分離により回収する。窒素ガスを通気した嫌気的雰囲気下で、菌体にアセトン/メタノール混合溶媒を加えて攪拌した後、液相を回収し、色素が抽出されなくなるまで、残渣に対して同様の抽出操作を繰り返す。得られた抽出液を集め、エーテルと水で分液・洗浄した後、エーテル層を飽和食塩水で脱水・洗浄し、無水硫酸ナトリウムを加えてさらに脱水する。ロータリーエバポレーターで溶媒を留去する。残渣は窒素ガスを封入して冷凍保存したり、ジエチルエーテルやアセトンを溶媒として冷凍保存したりすることができる。いずれの場合も容器は遮光しておく。遮光、温度管理、嫌気状態の維持を徹底すれば、年単位の保存も可能である。
 上記抽出操作で得られた色素から、カラムクロマトグラフィーや再結晶等によりカロテノイド色素を分離除去し、BChl bを単離精製する。カラムとしてはSepharoseやセルロースを用いることができるが、Sepharoseの方が分離能は高い。BChl bはヘキサン等の無極性溶媒への溶解度が低いので、再結晶により容易に単離精製することができる。
Extraction of BChlb from the BChlb-producing mutant strain of the present invention can be performed, for example, as follows, but any method known in the art can be used as well.
First, the cultured cells of the BChlb-producing mutant are collected by filtration or centrifugation. Under an anaerobic atmosphere in which nitrogen gas is passed, an acetone / methanol mixed solvent is added to the cells and stirred, and then the liquid phase is recovered, and the same extraction operation is repeated on the residue until no pigment is extracted. The obtained extract is collected, separated and washed with ether and water, and then the ether layer is dehydrated and washed with saturated brine, and further dehydrated by adding anhydrous sodium sulfate. The solvent is distilled off on a rotary evaporator. The residue can be stored frozen by filling with nitrogen gas, or can be stored frozen using diethyl ether or acetone as a solvent. In either case, the container is shielded from light. If light shielding, temperature control, and maintenance of anaerobic conditions are thoroughly implemented, yearly storage is possible.
The carotenoid dye is separated and removed from the dye obtained by the above extraction operation by column chromatography, recrystallization or the like, and BChlb is isolated and purified. Sepharose or cellulose can be used as the column, but Sepharose has a higher resolution. Since BChlb has low solubility in nonpolar solvents such as hexane, it can be easily isolated and purified by recrystallization.
 以下、実施例により本発明をさらに説明するが、本発明はいかなる意味においてもこれらに限定されるものではない。 Hereinafter, the present invention will be further described with reference to examples. However, the present invention is not limited to these examples.
実施例1 <ホストとなるR. スフェロイデスのbciA/bchZ欠損株の作製>
 R. スフェロイデスのbciAおよびbchZ遺伝子領域の大部分を、それぞれ異なる薬剤耐性遺伝子と入れ替えることにより、bciA及びbchZ遺伝子欠損変異株(以下、dA/Z株と呼ぶ)を得た。その方法を以下に示す。
 R. スフェロイデス 2.4.1株 (FEBS Lett 580 (28-29):6644-6648 2006) を抗生物質リファンピシン(100 μg/mL)を含むPYS寒天培地 (J Mol Evol 45 (2):131-136 1997) に撒き、自然発生的にリファンピシン耐性となったコロニーを得た。これをR. スフェロイデス J001株とし、形質転換の親株とした。
 R. スフェロイデス J001株のbciA遺伝子領域を、遺伝子改変法による相同組み換えで欠損させるために、変異導入用のプラスミド、pJSCbciAKmを以下のように構築した。R. スフェロイデス J001株のゲノムDNAをテンプレートとし、bciA-Fプライマー (配列: GGGCATATGCCCGAGACCGCCCCC (配列番号15)) とbciA-Rプライマー (配列: TTTTGAATTC TCTAGAATCACGATTTCCGGGCGATCCTT (配列番号16)、 アンダーライン(GAATTC)はEcoRIサイトを、アンダーライン(TCTAGA)はXbaIサイトをそれぞれ示す) を用いてPCRを行い、bciA遺伝子を含む1.04 kbpのDNA断片を得た[KOD -Plus- DNAポリメラーゼ (TOYOBO, Japan) を使用]。この断片を制限酵素EcoRIで処理し、クローニングベクターであるpUC118 (Takara, Japan) のSmaIとEcoRIサイトにクローニングし、pUCbciAプラスミドを得た。カナマイシン耐性遺伝子neoを含むDNA断片を、pUCKM1 (J Biol Chem 266 (20):12889-12895 1991) よりHindIIIとSmaIで処理することで得て、その切断末端を平滑化した。一方でpUCbciAのbciA遺伝子内部のXhoIサイトを、制限酵素によって切断し、平滑末端とした。このプラスミド断片と、上記neo遺伝子断片をライゲーション反応により連結させ、pUCbciAKmプラスミドを得た。このpUC-bciAKmを制限酵素SmaIとXbaIで処理し、neo遺伝子がbciA遺伝子の大部分と入れ替わった領域を含むDNA断片をpJSCベクター(Biochemistry 41 (37):11211-11217 2002) のSmaIとXbaIサイトにクローニングし、pJSCbciAKmを作製した。pJSCは自殺ベクターであり、クローニングの際には大腸菌JM109(λ-pir)株を使用した。またこのベクターはsacB遺伝子を持つため、シュークロス存在下でネガティブ選抜を行うことが可能である。さらに、pJSCはモビリティーサイトを持っており、接合伝達可能な大腸菌S17-1(λ-pir)株に形質転換させた後にR. スフェロイデス J001株と接合させることで、J001株への移動が可能である。よって、pJSCbciAKmを形質転換したS17-1(λ-pir)をR. スフェロイデスJ001株と接合のために混ぜ合わせ、PYS寒天培地上にスポットして暗所にて一晩、30℃でインキュベーションした。その後、スポットを掻きとり、PYS液体培地に懸濁し、リファンピシン(100 μg/mL)、カナマイシン(25 μg/mL)、5% シュークロスを含むPYS寒天培地に撒いてから暗所にて30℃でインキュベーションした。5-7日後に相同組み換えによってbciA遺伝子が欠損した株のコロニーを得た。変異導入の確認は、bciA-comf-Fプライマー (配列: CTGTGTCATGTGAGAGCTT (配列番号17)) とbciA-comf-R プライマー (配列: CCAATGTCAACGATTTCCGG (配列番号18)) を用いたPCRによって行った。また、そのPCR増幅配列を、DNAシークエンサーABI PRISM(登録商標)3100 Genetic Analyzer (Applied Biosystems, USA) を用いて決定し、さらなる変異導入の確認を行った。変異の導入が確認された株をdbciAと名付けた。
 R. スフェロイデスのdbciA株からさらにbchZ遺伝子領域を欠損させるために、変異導入用のプラスミド、pJSCbchZSmを以下のように構築した。まずは、ストレプトマイシンの耐性遺伝子aadAを含む領域を、pHP45Ωプラスミド (Gene 29 (3):303-313 1984) をテンプレートとしてPCRによって増幅した。この時、aadA-Fプライマー(配列: CTGTTCGGTTCGTAAGCTGT (配列番号19))とaadA-Rプライマー(配列: CGTCGGCTTGAACGAATTGT (配列番号20)) を用いた。次にR. スフェロイデスJ001株のゲノムDNAをテンプレートとし、bchYZ-F (配列: ATGGCATCGCCGCCGACA (配列番号21)) とbchYZ-R (配列: TAAGACTGACGCCACATGCT (配列番号22))プライマーセットを用いたPCRによって、bchY遺伝子の一部とbchZ遺伝子全領域を含むDNA断片を得た。その断片を、T-ベクターであるpTA2 (TOYOBO, Japan) のTAクローニングサイトにクローニングし、pTA2bchYZプラスミドを得た。このpTAbchYZプラスミドのbchZの内側の大部分を取り除くため、このプラスミドをテンプレートとしたインバースPCRをbciYZ-inf-FIプライマー (配列: TCGTTCAAGCCGACGCGTAGAGGAGCATCCGGTT (配列番号23)) とbciYZ-inf-RIプライマー (配列: TTACGAACCGAACAGAATGCAGCACCGAGGTCAC (配列番号24)) を用いて行った。これらのプライマー配列のアンダーラインは、引き続き行うIn-Fusionクローニングのために、上記のaadA-RプライマーとaadA-Fプライマーの配列とそれぞれオーバーラップするように設計した。よって、結果として増幅されたPCR断片と、上述のaadA-FとaadA-Rにて増幅したaadA遺伝子を含む断片とを、In-Fusion(登録商標)HD Cloning Kit (Clontech, USA) を用いてライゲーションを行い、pTAbchYZSmプラスミドを得た。このpTAbchYZSmをテンプレートとし、bchYZ-inf-FIIプライマー (配列: TCGAGCTCGGTACCCTATGAGGGCTCCGAGCTGA (配列番号25)) とbchYZ-inf-RIIプライマー (配列: CTCTAGAGGATCCCCACCATGCCCTCCCGATTAAT (配列番号26)) を用いてPCRを行い、aadA遺伝子がbchZ遺伝子の大部分と入れ替わった領域を含むDNA断片を得た。bchYZ-inf-FIIとbchYZ-inf-RIIプライマー配列のアンダーラインは、引き続き行うIn-Fusionクローニングのために、pJSCのマルチクローンサイトにあるSmaIサイトの切断末端領域とオーバーラップするように設計した。よって、SmaI処理を行ったpJSCとそのPCR増幅DNA断片とをIn-Fusionキットの反応により連結させ、pJSCbchYZSmを作製した。このpJSCbchYZSmを大腸菌S17-1(λ-pir)に形質転換を行い培養し、接合のためにR. スフェロイデス dbciA株と混ぜて、上記と同様にbchZ遺伝子の欠損を行った。その際にコロニーの選抜のために、リファンピシン(100 μg/mL)、ストレプトマイシン(50 μg/mL)、5% シュークロスを含むPYS寒天培地を用いた。得られたコロニーの変異導入の確認は、bchYZ-comf-Fプライマー (配列: GGCGATCCATCCCTTCTAC (配列番号27)) とbchYZ-comf-R プライマー (配列: TATCAGCCATGCTATCCTCC (配列番号28)) を用いたPCRによって行い、また、そのPCR増幅配列を決定してさらなる変異導入の確認を行った。変異の導入が確認された株をdA/Zと名付けた。
Example 1 <Preparation of bciA / bchZ-deficient strain of R. sphaeroides as host>
By replacing most of the bciA and bchZ gene regions of R. sphaeroides with different drug resistance genes, bciA and bchZ gene-deficient mutants (hereinafter referred to as dA / Z strains) were obtained. The method is shown below.
R. sphaeroides 2.4.1 strain (FEBS Lett 580 (28-29): 6644-6648 2006) was added to the PYS agar medium (J Mol Evol 45 (2): 131-136 1997) containing the antibiotic rifampicin (100 μg / mL). ) To obtain colonies that spontaneously became rifampicin resistant. This was designated as R. spheroides J001 strain and the parent strain for transformation.
In order to delete the bciA gene region of R. sphaeroides J001 strain by homologous recombination by a genetic modification method, a plasmid for mutagenesis, pJSCbciAKm, was constructed as follows. Using the genomic DNA of R. sphaeroides J001 as a template, bciA-F primer (sequence: GGGCATATGCCCGAGACCGCCCCC (SEQ ID NO: 15)) and bciA-R primer (sequence: TTTT GAATTC TCTAGA ATCACGATTTCCGGGCGATCCTT (SEQ ID NO: 16), underline (GAATTC) PCR was performed using the EcoRI site (underlined (TCTAGA indicates XbaI site)) to obtain a 1.04 kbp DNA fragment containing the bciA gene [using KOD-Plus-DNA polymerase (TOYOBO, Japan)] . This fragment was treated with the restriction enzyme EcoRI and cloned into the SmaI and EcoRI sites of the cloning vector pUC118 (Takara, Japan) to obtain a pUCbciA plasmid. A DNA fragment containing the kanamycin resistance gene neo was obtained by treatment with HindIII and SmaI from pUCKM1 (J Biol Chem 266 (20): 12889-12895 1991), and the cut ends were blunted. On the other hand, the XhoI site inside the bciA gene of pUCbciA was cleaved with a restriction enzyme to make blunt ends. This plasmid fragment and the above neo gene fragment were ligated by a ligation reaction to obtain a pUCbciAKm plasmid. This pUC-bciAKm was treated with restriction enzymes SmaI and XbaI, and the DNA fragment containing the region where the neo gene was replaced with the majority of the bciA gene was converted into the SmaI and XbaI sites of the pJSC vector (Biochemistry 41 (37): 11211-11217 2002). To prepare pJSCbciAKm. pJSC is a suicide vector, and E. coli JM109 (λ-pir) strain was used for cloning. Since this vector has a sacB gene, it is possible to perform negative selection in the presence of shoe cloth. Furthermore, pJSC has a mobility site and can be transferred to the J001 strain by transforming it into the Escherichia coli S17-1 (λ-pir) strain capable of conjugation and then mating with the R. sphaeroides J001 strain. is there. Therefore, S17-1 (λ-pir) transformed with pJSCbciAKm was mixed with R. sphaeroides J001 strain for conjugation, spotted on PYS agar medium, and incubated at 30 ° C. overnight in the dark. The spots are then scraped off, suspended in PYS liquid medium, spread on PYS agar medium containing rifampicin (100 μg / mL), kanamycin (25 μg / mL), and 5% shoecloth, and at 30 ° C in the dark. Incubated. After 5-7 days, a colony of a strain lacking the bciA gene was obtained by homologous recombination. Confirmation of mutagenesis was performed by PCR using bciA-comf-F primer (sequence: CTGTGTCATGTGAGAGCTT (SEQ ID NO: 17)) and bciA-comf-R primer (sequence: CCAATGTCAACGATTTCCGG (SEQ ID NO: 18)). Further, the PCR amplification sequence was determined using a DNA sequencer ABI PRISM (registered trademark) 3100 Genetic Analyzer (Applied Biosystems, USA), and further mutagenesis was confirmed. The strain in which the mutation was confirmed was named dbciA.
In order to further delete the bchZ gene region from the R. sphaeroides dbciA strain, a plasmid for mutagenesis, pJSCbchZSm, was constructed as follows. First, the region containing the streptomycin resistance gene aadA was amplified by PCR using the pHH45Ω plasmid (Gene 29 (3): 303-313 1984) as a template. At this time, an aadA-F primer (sequence: CTGTTCGGTTCGTAAGCTGT (SEQ ID NO: 19)) and an aadA-R primer (sequence: CGTCGGCTTGAACGAATTGT (SEQ ID NO: 20)) were used. Next, bchYZ-F (sequence: ATGGCATCGCCGCCGACA (SEQ ID NO: 21)) and bchYZ-R (sequence: TAAGACTGACGCCACATGCT (SEQ ID NO: 22)) primer set was used for PCR using the genomic DNA of R. sphaeroides J001 strain as a template. A DNA fragment containing a part of the gene and the entire bchZ gene region was obtained. The fragment was cloned into the TA cloning site of T-vector pTA2 (TOYOBO, Japan) to obtain the pTA2bchYZ plasmid. In order to remove most of the inside of bchZ of this pTAbchYZ plasmid, inverse PCR using this plasmid as a template was performed using bciYZ-inf-FI primer (sequence: TCGTTCAAGCCGACG CGTAGAGGAGCATCCGGTT (SEQ ID NO: 23)) and bciYZ-inf-RI primer (sequence: TTACGAACCGAACAG AATGCAGCACCGAGGTCAC (SEQ ID NO: 24)) was used. The underlines of these primer sequences were designed to overlap with the sequences of the aadA-R and aadA-F primers, respectively, for subsequent In-Fusion cloning. Therefore, the PCR fragment amplified as a result and the fragment containing the aadA gene amplified with the above-mentioned aadA-F and aadA-R were obtained using In-Fusion (registered trademark) HD Cloning Kit (Clontech, USA). Ligation was performed to obtain the pTAbchYZSm plasmid. Using this pTAbchYZSm as a template, PCR was performed using the bchYZ-inf-FII primer (sequence: TCGAGCTCGGTACCC TATGAGGGCTCCGAGCTGA (SEQ ID NO: 25)) and bchYZ-inf-RII primer (sequence: CTCTAGAGGATCCCC ACCATGCCCTCCCGATTAAT (SEQ ID NO: 26)). Obtained a DNA fragment containing a region in which most of the bchZ gene was replaced. The underline of the bchYZ-inf-FII and bchYZ-inf-RII primer sequences was designed to overlap with the cut end region of the SmaI site at the multiple clone site of pJSC for subsequent In-Fusion cloning. Therefore, pJSC treated with SmaI and its PCR amplified DNA fragment were ligated by the reaction of In-Fusion kit to prepare pJSCbchYZSm. This pJSCbchYZSm was transformed into E. coli S17-1 (λ-pir), cultured, mixed with the R. sphaeroides dbciA strain for conjugation, and the bchZ gene was deleted as described above. At that time, for selection of colonies, a PYS agar medium containing rifampicin (100 μg / mL), streptomycin (50 μg / mL), and 5% shoe cloth was used. Confirmation of mutagenesis of the obtained colonies is performed by PCR using bchYZ-comf-F primer (sequence: GGCGATCCATCCCTTCTAC (SEQ ID NO: 27)) and bchYZ-comf-R primer (sequence: TATCAGCCATGCTATCCTCC (SEQ ID NO: 28)). In addition, the PCR amplification sequence was determined and further mutation introduction was confirmed. The strain in which the introduction of the mutation was confirmed was named dA / Z.
実施例2 <BChl b産生菌B. ビリディスのbchYZ遺伝子の導入に用いた発現ベクターpJN7の作製法>
 紅色非硫黄細菌R. カプスラタスのゲノムDNAを鋳型とし、2つのプライマーpPucf6 (5’-atagtcgacttcactgggattttgcgccc-3 (配列番号29)) およびpJr6 (5’-tatggtaccgatatcaGAGACCccgcGGTCTCggcgccgcccttctcgaactgcggatgcgacc-3’(配列番号30)) を用いてPCR法により増幅し、DNA断片を得た。このDNA断片はプロモーターPpuc領域およびクローニングに利用するためのBsaI制限酵素サイト (大文字) を含む。この断片をBamHI、SalI(下線)処理を行ったのち、約0.2 kbp断片を精製した (Wizard SV Gel and PCR Clean-Up System : Promega社)。同様に広宿主域べクターpBBR1MCS2(インディアナ大学Carl E. Bauer教授より供与)をBamHI、SalIで処理した。その処理混合液を1%のアガロースゲルに充填し、100 Vで1時間泳動して約5.3 kbp断片を精製した。アガロースゲルからのDNAの回収にはWizard SV Gel and PCR Clean-Up Systemを用いた。なお、pBBR1MCS2は、マーカー遺伝子として抗生物質カナマイシンに対する耐性を与える遺伝子カセットを含んでいる。得られたPpuc配列を含む断片とpBBR1MCS2の部分断片を混合し(混合比=4:1)、DNA Ligation Kit Ver. 2 (宝酒造(株))を用いて両者を連結し、pJN6とした。
 このpJN6プラスミドは、クローニングに利用するためのBsaI制限酵素サイト以外に、pBBR1MCS2に由来するBsaI制限酵素サイトを一カ所に有する。これを消去するために、2つのプライマー; KOBsaI-f1 (5’-ttcaggcgctcccgaagatcccgggccgtctcttgg-3’ (配列番号31)) およびKOBsaI-r1 (5’-aagagacggcccgggatcttcgggagcgc-3’(配列番号32)) を用いてpJN6の全域をPCR法により増幅した。これをpJN7preとした。
 次に、pJN3プラスミドを鋳型とし、2つのプライマーSpc2f1 (5’-ATAGAGCTCTAGATAATGCAAGTAGCGTATGC-3’(配列番号33)) および Spc2r1 (5’-ATAGAGCTCTAGAGCGGATGTTGCGATTACTTCG-3’(配列番号34)) を用いてPCR法により増幅し、Spc2を得た。このDNA断片は抗生物質スペクチノマイシン/ストレプトマイシン対する耐性を与える遺伝子カセットを含んでいる。この断片をSacI(下線)処理を行ったのち精製し (Wizard SV Gel and PCR Clean-Up System)、同様にpJN7preべクターをSacIで処理・精製して得られたpJN7pre断片を混合し(混合比=3:1)、DNA Ligation Kit Ver. 2 (宝酒造(株)) を用いて両者を連結し、pJN7とした。
 完成したpJN7は、大腸菌と紅色非硫黄細菌R. カプスラタスにおいて保持されることが示されている。このベクターへの目的遺伝子のクローニングにはBsaI制限酵素サイトを利用し、スペクチノマイシン/ストレプトマイシン/カナマイシンを用いて選抜が可能である。
Example 2 <Preparation method of expression vector pJN7 used for introduction of bchYZ gene of BChl b-producing bacterium B. viridis>
Two primers pPucf6 (5'-ata gtcgac ttcactgggattttgcgccc-3 (SEQ ID NO: 29)) and pJr6 (5'-tat ggtacc gatatcaGAGACCccgcGGTCTCggcgccgaccctatgcgactgcattctcgaactgcggtg) ) To obtain a DNA fragment. This DNA fragment contains the promoter Ppuc region and the BsaI restriction enzyme site (uppercase) for use in cloning. This fragment was treated with BamHI and SalI (underlined), and then an approximately 0.2 kbp fragment was purified (Wizard SV Gel and PCR Clean-Up System: Promega). Similarly, the broad host range vector pBBR1MCS2 (provided by Professor Carl E. Bauer, Indiana University) was treated with BamHI and SalI. The treated mixture was loaded onto a 1% agarose gel and run at 100 V for 1 hour to purify the approximately 5.3 kbp fragment. Wizard SV Gel and PCR Clean-Up System was used for DNA recovery from the agarose gel. PBBR1MCS2 contains a gene cassette that provides resistance to the antibiotic kanamycin as a marker gene. The fragment containing the obtained Ppuc sequence and the partial fragment of pBBR1MCS2 were mixed (mixing ratio = 4: 1), and both were ligated using DNA Ligation Kit Ver. 2 (Takara Shuzo Co., Ltd.) to obtain pJN6.
This pJN6 plasmid has a BsaI restriction enzyme site derived from pBBR1MCS2 in one place in addition to the BsaI restriction enzyme site used for cloning. To eliminate this, two primers; KOBsaI-f1 (5'-ttcaggcgctcccgaa gatccc gggccgtctcttgg-3 '(SEQ ID NO: 31)) and KOBsaI-r1 (5'-aagagacggccc gggatc ttcgggagcgc-3' (SEQ ID NO: 32)) Was used to amplify the entire region of pJN6 by PCR. This was designated as pJN7pre.
Next, using pJN3 plasmid as a template and two primers Spc2f1 (5'-ATA GAGCTCTAGA TAATGCAAGTAGCGTATGC-3 '(SEQ ID NO: 33)) and Spc2r1 (5'-ATA GAGCTCTAGA GCGGATGTTGCGATTACTTCG-3' (SEQ ID NO: 34)) Amplification was performed by PCR to obtain Spc2. This DNA fragment contains a gene cassette that confers resistance to the antibiotic spectinomycin / streptomycin. This fragment was purified after treatment with SacI (underlined) (Wizard SV Gel and PCR Clean-Up System). Similarly, the pJN7pre fragment obtained by treating and purifying the pJN7pre vector with SacI was mixed (mixing ratio). = 3: 1), DNA Ligation Kit Ver. 2 (Takara Shuzo Co., Ltd.) was used to link both together to obtain pJN7.
The completed pJN7 has been shown to be retained in E. coli and the red non-sulfur bacterium R. capsulatus. Cloning of the gene of interest into this vector utilizes the BsaI restriction enzyme site and can be selected using spectinomycin / streptomycin / kanamycin.
実施例3 <BChl bを産生するR. スフェロイデス変異株の作製>
 実施例1で得られたbciA及びbchZ遺伝子欠損変異株dA/Zと、R. スフェロイデス野生株とをPYS培地中、暗所微好気条件下で生育させた。これらの菌株を宿主として、B. ビリディス由来のbchY及びbchZ遺伝子を導入した。
 B. ビリディスゲノムを鋳型として、以下のプライマー、BvYZ-infu-F1 (配列: CGAGAAGGGCGGCGCCAGGGCTGCCAGTTACGTTC (配列番号35)) 及びBvYZ-infu-R1 (配列: CTGGGTACCGATATCTCACGCAGCCTGCCCCCCGACA (配列番号36)) を用い、PCRにより、B. ビリディス由来bchY及びbchZ遺伝子を一緒に増幅した(光合成細菌では、通常両遺伝子はオーバーラップしており、bchY遺伝子の終止コドンの前にbchZ遺伝子の開始コドンがある)。増幅したDNA断片をアガロースゲルから切り出し、NucleoSpin Extract II kit (Macherey-Nagel, Duren, Germany) を用いて精製した。このB. ビリディスbchYZ遺伝子を含む精製DNA断片を、In-Fusion HD Cloning kit (Clontech, USA) を用いて、実施例2で作製したpJN7プラスミドのBsa I制限サイトにサブクローニングし、プラスミドpJ7-BvYZを得た。このプラスミドは、Kpn I制限サイトがbchZのコード領域の後に位置している。ゲンタマイシン耐性遺伝子aacC1を、プラスミドpUCGM-star(Biotechniques, 15: 831-834 (1993))から、以下のプライマー、Gm-JN7-F (配列: CTGCGTGAGATATCGCAACTGGTCCAGAACCTTGA (配列番号37)) 及びGm-JN7-R (配列: GGGAACAAAAGCTGGAAGCTTGCATGCCTGCAGG (配列番号38)) を用いて増幅した。得られたaacC1遺伝子を含むPCR産物と、Kpn I消化したpJ7-BvYZプラスミドとを、In-Fusion HD Cloning kitを用いてライゲーションし、pJ7-BvYZ-Gmを得た。
 このプラスミドを、ヘルパープラスミドを含む大腸菌Tec5株 (J Bacteriol. 1983;154:580-590 1983) を用いた三親接合により、R. スフェロイデスのbciA及びbchZ遺伝子欠損変異株dA/Zとに導入した。リファンピシン (100 μg/ml)、カナマイシン(25 μg/ml) 及びゲンタマイシン (10 μg/ml) を含むPYS固形培地 (J Mol Evol 45 (2):131-136 1997) 上でトランスコンジュガントを選抜した。こうして得られた、pucプロモーターの制御下にB. ビリディス由来BchYZを発現するトランスコンジュガントを、ΔbciA/bchZ+BvYZと命名した。
Example 3 <Preparation of R. sphaeroides mutant producing BChl b>
The bciA and bchZ gene-deficient mutant dA / Z obtained in Example 1 and the R. sphaeroides wild strain were grown in PYS medium under dark microaerobic conditions. Using these strains as hosts, bchY and bchZ genes derived from B. viridis were introduced.
B. Using the following primers, BvYZ-infu-F1 (sequence: CGAGAAGGGCGGCGCCAGGGCTGCCAGTTACGTTC (SEQ ID NO: 35)) and BvYZ-infu-R1 (sequence: CTGGGTACCGATATCTCACAGAGCCTGCCCCCCGACA (SEQ ID NO: 36)) using the viridis genome as a template, PCR, B. Bilidis-derived bchY and bchZ genes were amplified together (in photosynthetic bacteria, both genes usually overlap, and the start codon of the bchZ gene precedes the stop codon of the bchY gene). The amplified DNA fragment was excised from an agarose gel and purified using NucleoSpin Extract II kit (Macherey-Nagel, Duren, Germany). This purified DNA fragment containing the B. viridis bchYZ gene was subcloned into the Bsa I restriction site of the pJN7 plasmid prepared in Example 2 using the In-Fusion HD Cloning kit (Clontech, USA), and the plasmid pJ7-BvYZ was Obtained. In this plasmid, the Kpn I restriction site is located after the coding region of bchZ. The gentamicin resistance gene aacC1 was obtained from the plasmid pUCGM-star (Biotechniques, 15: 831-834 (1993)) with the following primers, Gm-JN7-F (sequence: CTGCGTGAGATATCGCAACTGGTCCAGAACCTTGA (SEQ ID NO: 37)) and Gm-JN7-R ( The sequence was amplified using GGGAACAAAAGCTGGAAGCTTGCATGCCTGCAGG (SEQ ID NO: 38)). The obtained PCR product containing the aacC1 gene and the Kpn I digested pJ7-BvYZ plasmid were ligated using the In-Fusion HD Cloning kit to obtain pJ7-BvYZ-Gm.
This plasmid was introduced into R. sphaeroides bciA and bchZ gene-deficient mutant dA / Z by three-parental conjugation using E. coli Tec5 strain (J Bacteriol. 1983; 154: 580-590 1983) containing a helper plasmid. . Transconjugant was selected on PYS solid medium (J Mol Evol 45 (2): 131-136 1997) containing rifampicin (100 μg / ml), kanamycin (25 μg / ml) and gentamicin (10 μg / ml) . The thus obtained transconjugate expressing B. viridis-derived BchYZ under the control of the puc promoter was named ΔbciA / bchZ + BvYZ.
実施例4 <R. スフェロイデスΔbciA/bchZ+BvYZ株によるBChl b産生>
 実施例3で得られた、R. スフェロイデスΔbciA/bchZ+BvYZ株と、R. スフェロイデスの野生株にB. ビリディス由来bchYZ遺伝子を導入した株を、それぞれPYS培地で培養し、培養液を遠心分離して各菌体を集め、色素をアセトン/メタノール (7:2, vol/vol) で抽出した。色素混合物のアセトン/メタノール溶液に、等量の石油エーテル/ジエチルエーテル混合液 (1:1, vol/vol)、次いで蒸留水を加え、エーテル相を窒素ガス流により減圧乾燥した。
 次いで、乾燥した色素をHPLC溶媒に溶解し、HPLC分析に供した。Cosmosil 5C18-AR-II column (4.6 x 150 mm; Nacalai Tesque, Kyoto, Japan) 及び移動相としてメタノール/水 (96:4; 流速: 1.0 mL/min) を用い、HPLC測定を実施した。BChl bピークのコントロールとして、B. ビリディスの野生株から抽出した色素についても、同様に測定した。その結果、R. スフェロイデスの野生株にB. ビリディス由来のBchYZを発現させてもBChl b産生には至らなかったのに対し、R. スフェロイデスdA/Z株にB. ビリディス由来のBchYZを発現させる(ΔbciA/bchZ+BvYZ株)と、BChl bを大量に産生させることができた(図2)。
 尚、bciA遺伝子のみを欠損させたR. スフェロイデスdbciA株にB. ビリディス由来のBchYZを発現させても、BChl bを産生させることはできなかった。
Example 4 <BChlb production by R. sphaeroides ΔbciA / bchZ + BvYZ strain>
The R. sphaeroides ΔbciA / bchZ + BvYZ strain obtained in Example 3 and the strain obtained by introducing the B. viridis-derived bchYZ gene into the wild strain of R. spheroides were each cultured in PYS medium, and the culture solution was centrifuged. Each cell was collected and the pigment was extracted with acetone / methanol (7: 2, vol / vol). To an acetone / methanol solution of the dye mixture, an equal amount of a petroleum ether / diethyl ether mixture (1: 1, vol / vol) and then distilled water were added, and the ether phase was dried under reduced pressure by a stream of nitrogen gas.
The dried dye was then dissolved in HPLC solvent and subjected to HPLC analysis. HPLC measurement was performed using Cosmosil 5C18-AR-II column (4.6 × 150 mm; Nacalai Tesque, Kyoto, Japan) and methanol / water (96: 4; flow rate: 1.0 mL / min) as the mobile phase. As a control for the BChl b peak, the same measurement was performed on a pigment extracted from a wild strain of B. viridis. As a result, expression of BchYZ derived from B. viridis in the wild strain of R. sphaeroides did not lead to BChl b production, whereas expression of BchYZ from B. viridis was expressed in the R. sphaeroides dA / Z strain. (ΔbciA / bchZ + BvYZ strain) and BChl b could be produced in large quantities (FIG. 2).
BChlb could not be produced even when BchYZ derived from B. viridis was expressed in an R. sphaeroides dbciA strain lacking only the bciA gene.
 本発明によれば、Qy帯がより長波長の近赤外領域にあるBChl b又はその誘導体を簡便かつ大量に提供することができる。BChl b又はその誘導体は、他のクロリン又はバクテリオクロリン化合物に比べて最長吸収波長極大が近赤外領域にシフトしているので、これを色素増感剤として用いることにより、従来よりも光エネルギー変換効率に優れた色素増感太陽電池を提供できる可能性がある。
 また、がん細胞は活発に細胞分裂して増殖しており、大きなπ平面を有する脂溶性のポルフィリン化合物を取り込みやすいので、これを利用してがん細胞と正常細胞を区別するのにポルフィリン化合物を用いることが試みられている。しかし、細胞表面から深い部分については、ヘムなどの生体色素が吸収してしまうため、可視光はがん部に到達できないという問題があった。BChl b又はその誘導体は、より長波長の近赤外領域に吸収帯を有するので、深部のがん診断にも有用である。
 さらに、クロロフィル分子は抗がん作用も有することが明らかとなっており、光線力学療法として研究が進められている。したがって、がん細胞に選択吸着する近赤外領域に強い吸収帯を有するBChl b又はその誘導体は、がん治療にも有用なツールとなり得る。
 本出願は、日本で出願された特願2014-030085(出願日:平成26年2月19日)を基礎としており、その内容はすべて本明細書に包含されるものとする。
According to the present invention, BChlb or a derivative thereof having a Qy band in the near-infrared region having a longer wavelength can be provided simply and in large quantities. BChl b or its derivative has the longest absorption wavelength maximum shifted to the near infrared region compared to other chlorin or bacteriochlorin compounds. By using this as a dye sensitizer, light energy conversion than before is possible. There is a possibility that a dye-sensitized solar cell excellent in efficiency can be provided.
In addition, cancer cells actively divide and proliferate and easily take up fat-soluble porphyrin compounds having a large π plane, so porphyrin compounds can be used to distinguish cancer cells from normal cells. Attempts have been made to use. However, there is a problem that visible light cannot reach the cancerous part because the living body pigment such as heme absorbs the part deep from the cell surface. BChlb or a derivative thereof has an absorption band in the near-infrared region of a longer wavelength, and thus is useful for deep cancer diagnosis.
Furthermore, it has been clarified that chlorophyll molecules also have an anticancer effect, and research is being conducted as photodynamic therapy. Therefore, BChlb or a derivative thereof having a strong absorption band in the near infrared region that is selectively adsorbed to cancer cells can be a useful tool for cancer treatment.
This application is based on Japanese Patent Application No. 2014-030085 filed in Japan (filing date: February 19, 2014), the contents of which are incorporated in full herein.

Claims (7)

  1.  バクテリオクロロフィルaを産生する光合成細菌において、内在のbciA遺伝子並びにbchY及び/又はbchZ遺伝子を欠損し、かつバクテリオクロロフィルbもしくはバクテリオクロロフィルgを産生する光合成細菌由来のbchY及びbchZ遺伝子を発現するように操作された、バクテリオクロロフィルb産生変異株。 Operate to express bchY and bchZ genes derived from photosynthetic bacteria that produce bacteriochlorophyll b or bacteriochlorophyll g and lack bciA and bchY and / or bchZ genes in photosynthetic bacteria that produce bacteriochlorophyll a A bacteriochlorophyll b-producing mutant.
  2.  バクテリオクロロフィルaを産生する光合成細菌がロドバクター属に属する細菌である、請求項1記載の変異株。 The mutant according to claim 1, wherein the photosynthetic bacterium producing bacteriochlorophyll a is a bacterium belonging to the genus Rhodobacter.
  3.  ロドバクター属に属する細菌が、ロドバクター・スフェロイデス又はロドバクター・カプスラタスである、請求項2記載の変異株。 The mutant according to claim 2, wherein the bacterium belonging to the genus Rhodobacter is Rhodobacter spheroides or Rhodobacter capsulatus.
  4.  ロドバクター属に属する細菌が、ロドバクター・スフェロイデスである、請求項2記載の変異株。 The mutant according to claim 2, wherein the bacterium belonging to the genus Rhodobacter is Rhodobacter spheroides.
  5.  ブラストクロリス・ビリディス由来のbchY及びbchZ遺伝子を発現するように操作された、請求項1~4のいずれか1項に記載の変異株。 The mutant strain according to any one of claims 1 to 4, which has been engineered to express bchY and bchZ genes derived from Blast chloris viridis.
  6.  バクテリオクロロフィルaを産生する光合成細菌に内在するbciA遺伝子並びにbchY及び/又はbchZ遺伝子を欠損させ、さらにバクテリオクロロフィルbもしくはバクテリオクロロフィルgを産生する光合成細菌由来のbchY及びbchZ遺伝子を発現するように、該細菌を操作することを特徴とする、バクテリオクロロフィルb産生変異株の製造方法。 In order to express bchY and bchZ genes derived from photosynthetic bacteria that produce bacteriochlorophyll b or bacteriochlorophyll g, and that lack bciA gene and bchY and / or bchZ gene endogenous to the photosynthetic bacterium that produces bacteriochlorophyll a A method for producing a bacteriochlorophyll b-producing mutant, characterized by manipulating bacteria.
  7.  請求項1~5のいずれか1項に記載の変異株を培地中で培養し、得られる培養物からバクテリオクロロフィルbを回収することを含む、バクテリオクロロフィルbの製造方法。 A method for producing bacteriochlorophyll b, comprising culturing the mutant strain according to any one of claims 1 to 5 in a medium and recovering bacteriochlorophyll b from the obtained culture.
PCT/JP2015/054552 2014-02-19 2015-02-19 METHOD FOR MASS-PRODUCING BACTERIOCHLOROPHYL b, AND PRODUCING STRAIN WO2015125849A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016504149A JP6480414B2 (en) 2014-02-19 2015-02-19 Mass production method of bacteriochlorophyll b and producing bacteria

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-030085 2014-02-19
JP2014030085 2014-02-19

Publications (1)

Publication Number Publication Date
WO2015125849A1 true WO2015125849A1 (en) 2015-08-27

Family

ID=53878348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/054552 WO2015125849A1 (en) 2014-02-19 2015-02-19 METHOD FOR MASS-PRODUCING BACTERIOCHLOROPHYL b, AND PRODUCING STRAIN

Country Status (2)

Country Link
JP (1) JP6480414B2 (en)
WO (1) WO2015125849A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014003938A (en) * 2012-06-22 2014-01-16 Ritsumeikan New enzyme and method for producing bacteriochlorophyll using the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014003938A (en) * 2012-06-22 2014-01-16 Ritsumeikan New enzyme and method for producing bacteriochlorophyll using the same

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CANNIFFE D.P. ET AL.: "Engineered biosynthesis of bacteriochlorophyll b in Rhodobacter sphaeroides", BIOCHIM.BIOPHYS.ACTA, vol. 37, no. 10, 18 October 2014 (2014-10-18), pages 1611 - 6, XP055221546 *
HARADA J. ET AL.: "Chlorophyllide a oxidoreductase works as one of the divinyl reductases specifically involved in bacteriochlorophyll a biosynthesis", J.BIOL. CHEM., vol. 289, no. 18, 2 May 2014 (2014-05-02), pages 12716 - 26, XP055221547 *
NOMATA J. ET AL.: "A second nitrogenase-like enzyme for bacteriochlorophyll biosynthesis: reconstitution of chlorophyllide a reductase with purified X-protein (BchX) and YZ-protein (BchY-BchZ) from Rhodobacter capsulatus", J.BIOL. CHEM., vol. 281, no. 21, 26 May 2006 (2006-05-26), pages 15021 - 8, XP055221545 *
TSUKATANI Y. ET AL.: "An unexpectedly branched biosynthetic pathway for bacteriochlorophyll b capable of absorbing near-infrared light", SCI. REP., vol. 3, 2013, pages 12 17, XP055221541 *
TSUKATANI Y. ET AL.: "Completion of biosynthetic pathways for bacteriochlorophyll g in Heliobacterium modesticaldum: The C8-ethylidene group formation", BIOCHIM.BIOPHYS.ACTA, vol. 27, no. 10, 18 October 2013 (2013-10-18), pages 1200 - 4, XP055221539 *

Also Published As

Publication number Publication date
JP6480414B2 (en) 2019-03-13
JPWO2015125849A1 (en) 2017-03-30

Similar Documents

Publication Publication Date Title
CA3001815A1 (en) Genetic tool for the transformation of clostridium bacteria
US10787651B2 (en) Bradyrhizobium monooxygenase and use thereof for preparation of chiral sulfoxide
JP4775258B2 (en) Method for producing L-fucose and method for producing L-fucose
CN111218431A (en) Monooxygenase and application thereof in preparation of optically pure sulfoxide
CN109554415B (en) Method for improving thaxtomin fermentation yield
JP4658244B2 (en) Gene for producing 2-pyrone-4,6-dicarboxylic acid by fermentation, plasmid containing said gene, transformant containing said plasmid, and method for producing 2-pyrone-4,6-dicarboxylic acid
CN114703222B (en) Cultivation method of plant capable of completely degrading polycyclic aromatic hydrocarbon
WO1989006688A2 (en) Novel enzyme
JP4998957B2 (en) Hydroxylase gene and its use
JP7067706B2 (en) Transformed microorganisms and their utilization
WO2020231426A1 (en) Production of mycosporine-like amino acids employing enhanced production strains and novel enzymes
KR101163542B1 (en) Methods of preparing for Biotransformed Vanillin from Isoeugenol
JP6480414B2 (en) Mass production method of bacteriochlorophyll b and producing bacteria
JP2007533319A (en) Microbial production of aromatic acids
JP6470534B2 (en) Method for producing 1α, 25-dihydroxyvitamin D2
JP2009291171A (en) METHOD FOR PRODUCING 1alpha,25-DIHYDROXYVITAMIN D
CN114875094B (en) Method for improving fermentation yield of thaxtomin
JP7083124B2 (en) Muconic acid-producing transformed microorganisms and their utilization
WO2018199111A1 (en) Transgenic microorganism capable of producing muconic acid, and use thereof
KR20230122246A (en) Recombinant E. coli for carotenoid production and use thereof
JP6103577B2 (en) Green sulfur bacterial mutant and method for producing bacteriochlorophyll c homologue using the same
JP5678356B2 (en) Method for producing phenolic acid
WO2022140493A1 (en) Methods for producing biochemicals using enzyme genes derived from a strain of brevundimonas, and compositions made thereby
CN114836395A (en) Thioether monooxygenase mutant and application thereof in preparation of chiral prazole medicine
JP5866604B2 (en) Novel microorganism and method for producing 2,3-dihydroxybenzoic acid and salicylic acid using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15752058

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016504149

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15752058

Country of ref document: EP

Kind code of ref document: A1