WO2015125551A2 - Fuel injection valve control device - Google Patents

Fuel injection valve control device Download PDF

Info

Publication number
WO2015125551A2
WO2015125551A2 PCT/JP2015/051754 JP2015051754W WO2015125551A2 WO 2015125551 A2 WO2015125551 A2 WO 2015125551A2 JP 2015051754 W JP2015051754 W JP 2015051754W WO 2015125551 A2 WO2015125551 A2 WO 2015125551A2
Authority
WO
WIPO (PCT)
Prior art keywords
detection
fuel injection
valve
injection valve
cylinder
Prior art date
Application number
PCT/JP2015/051754
Other languages
French (fr)
Japanese (ja)
Inventor
修 向原
豊原 正裕
昌義 川津
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to JP2016504010A priority Critical patent/JP6478973B2/en
Publication of WO2015125551A2 publication Critical patent/WO2015125551A2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2055Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit with means for determining actual opening or closing time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2058Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit using information of the actual current value
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • F02D41/28Interface circuits
    • F02D2041/286Interface circuits comprising means for signal processing

Definitions

  • the present invention relates to a fuel injection valve control device.
  • Patent Document 1 a control device for an internal combustion engine that can more appropriately acquire and process the output of each pressure detection means is known (for example, Patent Document 1).
  • Patent Document 1 “a multi-cylinder internal combustion engine in which pressure detection means for detecting the pressure in the combustion chamber is provided in at least two or more cylinders is based on the detection result of the pressure detection means.
  • the control device for a multi-cylinder internal combustion engine that controls output each of the outputs of the pressure detection means for each angle region that does not overlap between the pressure detection means for the rotation angle of the output shaft of the multi-cylinder internal combustion engine.
  • a measurement window (measurement range) for in-cylinder pressure is set based on the crank angle.
  • the in-cylinder pressure detection circuit can be allocated in a time-sharing manner. Note that since the injection amount of the fuel injection valve is managed by the ON time of the injection pulse signal, there is no direct correlation with the crank angle.
  • An object of the present invention is to overlap detection of valve opening and closing within the same cylinder and between multiple cylinders when performing time-sharing detection of the fuel injection valve in a multi-cylinder internal combustion engine.
  • An object of the present invention is to provide a fuel injection valve control device that can be avoided.
  • the present invention provides a detection standby period that indicates a period during which detection of valve opening or valve closing is permitted based on a first signal that specifies a fuel injection valve in a multi-cylinder internal combustion engine.
  • a detection standby determination unit that starts or ends every time, and a signal switching unit that selectively supplies a second signal indicating the behavior of the valve body of the fuel injection valve provided in the cylinder in which the detection standby period is started, and Based on the second signal, a detection execution determination unit that determines whether to start or end detection of opening or closing of the fuel injection valve, and a determination of the fuel injection valve based on the determination of the detection execution determination unit
  • a signal processing function unit for starting or ending execution of detection of valve opening or valve closing.
  • the detection of the opening and closing of the valve is duplicated in the same cylinder and between multiple cylinders. It can be avoided. Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.
  • FIG. 5 is a schematic diagram showing a detection standby period of a valve opening state when the injection pulse signal shown in FIG. 4 is applied to a multi-cylinder internal combustion engine (four cylinders).
  • FIG. 5 is a schematic diagram showing a detection standby period in a closed state when the injection pulse signal shown in FIG. 4 is applied to a multi-cylinder internal combustion engine (four cylinders).
  • FIG. 1 is a configuration diagram of a fuel injection valve control device (101) according to an embodiment of the present invention.
  • the fuel injection valve control device (101) includes a microcomputer (102), a drive IC (105), a high voltage generation unit (106), a fuel injection valve drive unit (107a, 107b), a valve opening detection signal generation unit (111), A valve closing detection signal generation unit (112) and a signal switching unit (307) are provided.
  • the microcomputer (102) includes a fuel injection valve pulse width calculation unit (102a), a fuel injection valve drive waveform command unit (102b), and an on-off valve detection unit (102c).
  • the battery voltage (109) supplied from the battery is supplied to the fuel injection valve control device (101) provided in the ECM (Engine Control Module) via a fuse and a relay.
  • the high voltage generator (106) Based on the battery voltage (109), the high voltage generator (106) generates a high power supply voltage (hereinafter, high voltage: 110) required when the valve body provided in the fuel injection valve (108) opens. Generate.
  • the high voltage generation unit (106) boosts the battery voltage (109) so as to reach a desired target high voltage based on a command from the drive IC (105).
  • the power source of the fuel injection valve (108) is a high voltage (110) for the purpose of ensuring the valve opening force of the valve body and a battery voltage that keeps the valve body open so that the valve body does not close after the valve is opened. (109) will be provided.
  • the fuel injection valve drive unit (107a, 107b) is controlled by the drive IC (105) to apply a high voltage (110) or a battery voltage (109) to the fuel injection valve (108) to obtain a desired drive current. Control as follows.
  • the fuel injection valve (108) is provided at least for each cylinder.
  • the drive period of the fuel injection valve (108) (the energization time of the fuel injection valve (108)) and the selection of the drive voltage (high voltage (110), battery voltage (109)),
  • the set value of the drive current is managed by the microcomputer (102).
  • the on-off valve detection unit (102c) Based on the obtained information, the fuel injection valve (108) is controlled after correcting or changing the drive pulse width or drive waveform of the fuel injection valve (108).
  • the signal line is taken from the drive stage of the fuel injection valve (108) to the valve opening detection signal generator (111) and the valve closing detection signal generator (112). After detecting the drive current and drive voltage of the fuel injection valve (108) by each of these parts, the signal switching unit (307) switches between cylinders and performs fuel injection according to the timing determined by the on-off valve detection unit (102c). The drive voltage and drive current of the valve (108) are switched in a time-sharing manner. Details of this point will be described later with reference to FIG.
  • FIG. 2 is a configuration diagram of the fuel injection valve driving section (107a, 107b) shown in FIG.
  • the fuel injection valve drive section (107a) upstream of the fuel injection valve (108) supplies a current necessary for opening the fuel injection valve (108).
  • the fuel injection valve drive unit (107a) uses the transistor TR_Hivboost (203) to convert the high voltage (110) generated by the high voltage generation unit (106) into a diode (201) for preventing current backflow. To the fuel injection valve (108).
  • the fuel injection valve drive unit (107a) upstream of the fuel injection valve (108) uses the transistor TR_Hivb (204) to change the battery voltage (109), The fuel is supplied to the fuel injection valve (108) through the diode (202) for preventing current backflow. Thereby, the open state of the fuel injection valve (108) is maintained.
  • the fuel injection valve drive unit (107b) downstream of the fuel injection valve (108) includes a transistor TR_Low (205) and a shunt resistor (206).
  • TR_Low the transistor TR_Low
  • the power supplied from the upstream fuel injection valve drive section (107a) can be applied to the fuel injection valve (108).
  • the shunt resistance (206) the current control of the desired fuel injection valve (108) described later is performed.
  • This description shows an example of a method for driving the fuel injection valve (108) .
  • a high voltage (110 ) May be used instead of battery voltage (109).
  • FIG. 3 is a diagram for explaining the configuration of the on-off valve detector (102c) shown in FIG.
  • the on-off valve detection unit (102c) provided in the microcomputer (102) includes an A / D converter (301), a signal processing function unit (302), an on-off valve detection information generation unit (303), and a detection standby determination unit (304). And a detection execution determination unit (305).
  • the detection standby determination unit (304) performs the schedule management of specifying the cylinder that is the target of the on-off valve detection, and detecting whether the valve is open or closed. Based on the schedule management (result of the detection standby determination function) by the detection standby determination unit (304), the detection execution determination unit (305) performs execution and stop of the detection processing with the signal processing function unit (302) and the on-off valve detection information. Instructs the generation unit (303).
  • the detection standby determination unit (304) determines the selection of the detection cylinder and whether to perform valve opening detection or valve closing detection in a predetermined procedure, and outputs a switching signal to the signal switching unit (307).
  • the signal switching unit (307) converts the signal selected from the valve opening detection signal generating unit (111) and the valve closing detection signal generating unit (112) provided for the number of cylinders to A / D. Send to converter (301). Note that.
  • FIG. 3 as an example, a detection signal generation unit (111) and a valve closing detection signal generation unit (112) for each of the nth to (n + ⁇ ) cylinders are displayed.
  • the A / D converter (301) digitizes the signal sent from the signal switching unit (307).
  • the signal processing function unit (302) is used to calculate the electrical characteristics (current value, voltage value, etc.) of the signal digitized by the A / D converter (301) based on the valve body operation in the fuel injection valve (108). The change process and the change point are detected.
  • the detection execution determination unit (305) determines whether the fuel injection valve (108) is opened or closed based on a signal (drive current, drive voltage) indicating the behavior of the valve body of the fuel injection valve (108). It is determined that detection execution is started or ended.
  • the signal processing function unit (302) starts or ends execution of detection of opening or closing of the fuel injection valve (108) based on the determination of the detection execution determination unit (305).
  • the signal switching unit (307) selects and supplies a signal (drive current, drive voltage) indicating the behavior of the valve body of the fuel injection valve (108) provided in the cylinder in which the detection standby period is started.
  • the on-off valve detection information generation unit (303) is configured from the reference position (predetermined start timing) to the timing at which the change point of the signal (drive current, drive voltage) indicating the behavior of the valve body of the fuel injection valve (108) occurs. Calculate elapsed time. As described above, the information obtained by the on-off valve detection information generation unit (303) is corrected by at least one of the fuel injection valve pulse width calculation unit (102a) and the fuel injection valve drive waveform command unit (102b). Used for processing.
  • the detection standby period indicating the period during which the detection of the opening or closing of the valve is permitted is the time required for the detection standby determination unit (304) to perform the switching of the signal switching unit (307), the A / D converter ( 301) is determined in consideration of the time required to stabilize the output.
  • the A / D converter (301) starts the operation from the time point when the detection execution determination unit (305) determines the execution start within the detection standby period.
  • FIG. 4 is a view for explaining the basic processing of on-off valve detection in the fuel injection valve control apparatus (101) according to the embodiment of the present invention.
  • FIG. 4 shows an injection pulse signal (401) used for instructing the start and stop of driving of the fuel injection valve (108) and the behavior (402) of the valve body provided in the fuel injection valve.
  • valve body collides, bounce occurs in the valve body behavior due to the momentum of the opening force, and after the lift amount becomes unstable for a while, it becomes stable at the full lift position. Thereafter, when the injection pulse signal (401) is turned OFF at time T408, the current supply into the fuel injection valve (108) is stopped. The valve body starts the valve closing operation from T409 when the residual magnetic field in the fuel injection valve decreases to a certain amount. Thereafter, the valve body collides with the valve closing side stopper and is stabilized at the valve closing position.
  • valve opening detection At least one elapsed time from the preset measurement reference position to the valve opening start point (402a) or the valve opening completion point (402b) is grasped by measurement or prediction. This is defined herein as valve opening detection.
  • At least one elapsed time from the measurement reference position set in advance to detect valve closing to the valve closing start point (402c) or valve closing completion point (402d) is determined by measurement or prediction. This is defined as valve closing detection.
  • the detection standby determination unit (304) sets the standby periods (411, 412) for valve opening detection and valve closing detection.
  • FIG. 4 shows an example in which this setting condition is configured most simply.
  • the detection standby period (411) for valve opening detection starts, and when the injection pulse signal changes from ON to OFF (T409 ), A detection standby period (412) for detecting valve closing is started.
  • the detection standby determination unit (304) is a detection indicating a period during which detection of valve opening or closing is permitted based on the injection pulse signal (401) for each fuel injection valve (108) in the multi-cylinder internal combustion engine.
  • the standby period (411, 412, 413) is specified for each cylinder and then started or ended.
  • FIG. 4 also shows the valve behavior (403) during half lift control.
  • at least the valve opening start point (402a) is the same as that at the time of full lift control, so there is no problem with the detection standby period (411) on the valve opening side as it is.
  • a certain amount of time margin can be maintained between the time when the injection pulse signal is turned from ON to OFF (T406) and the valve closing completion point (403a), so that the detection standby period for valve closing (413) Setting is possible.
  • the crank angle is known to the ECM. Therefore, a predetermined angle may be set forward for each crank angle.
  • FIG. 5 is a schematic diagram showing a detection standby period (410a, 410b) of the valve opening state when the injection pulse signal (401) shown in FIG. 4 is applied to a multi-cylinder internal combustion engine (4 cylinders).
  • the injection pulse signals corresponding to the cylinders of cylinder numbers 1, 3, 4, and 2 are shown as CYL.1 (401a), CYL.3 (401b) CYL.4 (401C ), CYL.2 (401d).
  • T501c, T502c, T503c, and T504c are valve-opening state detection execution completion timings described later, and T501d, T502d, T503d, and T504d are valve-closing state detection execution completion timings.
  • the combustion order and the timing of the injection pulse signals (401a to 401d) change with a certain relationship.
  • the injection start timing (T501a, T502a, T503a, T504a) and the injection completion timing (T501b, T502b, T503b, T504b) change depending on the operating state of the internal combustion engine, etc. I cannot express it.
  • FIG. 5 is treated as an example.
  • This embodiment is characterized in that the detection standby period (410a) of the valve opening state in the next cylinder is set in view of the combustion order at the timing when the injection pulse signal of a certain cylinder is turned from ON to OFF.
  • the detection standby determination unit (304) is configured to detect the detection standby of the opening of the cylinder that burns next to the cylinder corresponding to the command. Determine to start the period.
  • the detection standby period (410a) of the open state of CYL.3, which is the next cylinder, is started from the time (T501b) when the injection pulse signal (401a) of CYL.1 is turned OFF from ON.
  • the detection standby period of the valve opening state does not overlap, and it is possible to avoid detecting an erroneous cylinder.
  • valve opening state of the next cylinder is not at the time when the injection pulse signal (401a) changes from ON to OFF (T501b) but at the completion timing (T501d, T502d, T503d, T504d) of the valve closing detection execution period (505).
  • the detection standby period (410b) is started.
  • the detection standby determination unit (304) when the signal processing function unit (302) finishes the detection of the closing of the fuel injection valve (108), the cylinder provided with the fuel injection valve (108) It is determined that the detection standby period of the valve opening of the cylinder that burns next is started.
  • the detection standby determination unit (304) detects the opening of the cylinder provided with the fuel injection valve. It is determined that the period ends.
  • FIG. 6 is a schematic diagram showing a detection standby period (411a, 411b) of the valve closing state when the injection pulse signal shown in FIG. 4 is applied to a multi-cylinder internal combustion engine (four cylinders).
  • FIG. 5 describes the detection standby determination of the valve open state, but it is also possible to set the standby period start condition of the valve closed state.
  • the basic configuration of FIG. 6 is the same as that of FIG. The difference is that, as shown in FIG. 6, in T501d, T502d, T503d, and T504d, which is the completion timing of the cylinder valve closing detection execution period (505), the valve closing state detection standby period for the next cylinder in the combustion order ( 411a) is started.
  • the detection standby determination unit (304) is provided with the fuel injection valve (108) when the signal processing function unit (302) finishes detecting the closing of the fuel injection valve (108). It is determined that the detection standby period of the valve closing of the cylinder that burns next to the cylinder is started.
  • valve detection state standby period (411b) may be started.
  • the detection standby determination unit (304) when the signal processing function unit (302) finishes the detection of the opening of the fuel injection valve (108), the cylinder provided with the fuel injection valve (108) It is determined that the valve closing detection standby period is started.
  • the detection execution determination unit (305) detects that a certain time or crank angle has elapsed since the detection standby period of the valve open state or the valve closed state is started. Make an execution decision. For example, the detection execution determination unit (305) determines to start execution of detection of valve opening when a predetermined time has elapsed from the timing at which the detection standby period is started for the cylinder in which the detection standby period has been started. .
  • FIG. 7 is a diagram showing a drive current (702) of the fuel injection valve (108) controlled by the fuel injection valve control device (101) according to the embodiment of the present invention.
  • the injection pulse signal (701) for the fuel injection valve (108) is turned from OFF to ON at T708, and from ON to OFF at T715.
  • the general drive current includes the valve opening current (current from T708 to T711) for the purpose of ensuring that the valve element can be opened even at high fuel pressures, and that the valve element that has been opened can maintain the valve open state thereafter. It is composed of a holding current (current from T713 to T715) for the purpose. Further, a high voltage (110) is supplied as the valve opening current and a battery voltage (109) is supplied as the holding current to the fuel injection valve.
  • the peak current (703) set as the target value of the valve opening current by the fuel injection valve (108) and the target current (704) of the holding current are set and controlled based on this.
  • the target current (704) of the holding current is at least one target value based on the characteristics of the fuel injection valve (108). In FIG. 7, only one target current (704) is displayed for the sake of simplicity.
  • the drive current draws a locus like a broken line 706.
  • the drive current for the fuel injection valve (108) is stopped until a certain condition is met, and when the certain condition is met (T712), the drive current is supplied again. In this case, the waveform of the drive current draws a locus like a broken line 707.
  • the drive current (702, 706, 707) is increased by turning on the injection pulse signal. Therefore, it is characterized in that it is determined that the valve-opening detection start is started after a predetermined time has elapsed from the time (T709) when the driving current value at this time becomes the constant value (705) shown in FIG.
  • the predetermined time lapse in this case includes 0, and in this case, it is determined from T709 that the execution of the valve opening detection is started.
  • the detection execution determination unit (305) performs detection of valve opening when a predetermined time has elapsed from the timing at which the drive current has reached a predetermined threshold for the cylinder in which the detection standby period has started. Determine to start.
  • the detection execution determination unit (305) executes detection of valve opening when a predetermined time has elapsed from the timing when the drive current becomes the peak current (703) for the cylinder in which the detection standby period has started. Is determined to start.
  • the execution of the valve opening detection may be started when the supply of the drive current is resumed (T712). That is, the detection execution determination unit (305), when a predetermined time ( ⁇ 0) has elapsed from the timing when supply is resumed after supply of drive current is stopped for a cylinder in which the detection standby period has started Then, it is determined that the execution of the valve opening detection is started.
  • the effect of the present invention is effective.
  • the valve opening is It is determined that detection execution is started.
  • the simplest method is to complete (end) after a predetermined time from the start of the valve opening detection execution.
  • the detection execution determination unit (305) ends the detection of the opening of the valve when a predetermined time has elapsed from the timing when the detection of the opening of the valve is started.
  • the target current value (704) required for maintaining the valve opening may be reached, and the completion may be completed after a predetermined time has elapsed from the timing (T713, T714) at which switching of the drive current is started. That is, the detection execution determination unit (305) passes a predetermined time from the timing when the transistor TR_Hivb (204) as a switch starts switching so that the drive current becomes a target current indicating a current for holding the valve open. It is determined that the execution of the valve opening detection is finished. Note that the target current is smaller than the peak current.
  • valve opening start point (402a) and the valve opening completion point (402b) shown in FIG. 4 exist in the period from T709 to T713 shown in FIG.
  • FIG. 8 is a diagram for explaining the valve-opening state detection execution determination unit (305).
  • FIG. 8 shows the injection pulse signal (801) for the fuel injection valve (108) used in the fuel injection valve control apparatus (101) according to the embodiment of the present invention, and the potential difference (upstream and downstream) of the fuel injection valve (108). 802) (hereinafter referred to as drive voltage).
  • the injection pulse signal (801) is turned ON and OFF at the same timing as the injection pulse signal (701) in FIG.
  • the drive voltage (802) increases until the drive current (702) reaches the peak current (703), and decreases to near 0 V when the peak current (703) is reached (T711).
  • the driving current (707) shown in FIG. 7 the period (from T711 to T712) during which the supply of the driving current (707) to the fuel injection valve (108) is stopped after the peak current (703) is reached.
  • the drive voltage (802) rises to a high voltage (110) by reverse bias.
  • the drive voltage (802) drops to around 0V.
  • the drive voltage (802) rises to a high voltage value (110) with the reverse bias of the drive voltage (802), and then the fuel Based on the electrical characteristics of the injection valve (108), it descends slowly.
  • the predetermined drive current (705) shown in FIG. 7 may be handled on the drive voltage (802). For example, when the drive voltage reaches a voltage value (803) equivalent to (corresponding to) the drive current 705, it may be determined that the valve-opening detection is started.
  • the detection execution determination unit (305) detects the valve opening when a predetermined time ( ⁇ 0) has elapsed from the timing at which the drive voltage reaches a predetermined threshold for the cylinder in which the detection standby period has started. Is determined to start.
  • the driving voltage rises to the high voltage value (110) starting from T715, and after the constant voltage (110) is detected, the valve closing detection is started.
  • the predetermined elapsed time has elapsed from when the drive voltage (802) becomes equal to or lower than the predetermined drive voltage (805) shown in FIG.
  • the execution of the valve closing detection is stopped.
  • FIG. 9 is a diagram for explaining an on-off valve detection sequence when the fuel injection valve control device according to the embodiment of the present invention is applied to multistage injection control.
  • the injection pulse signals (905 to 908) are repeatedly turned ON and OFF three times during one combustion cycle (905a to 908c) in order to perform multistage injection three times.
  • the detection execution period for valve opening and closing has been kept from overlapping, but in this case, the detection standby period is set for all injections (for example, 905a, 905b, 905c). If it does, there exists a possibility that the detection standby period of valve opening and closing may overlap between the same cylinders, or a detection standby period may overlap between different cylinders depending on injection timing.
  • the valve opening detection and the valve closing detection are performed in the case of at least the same injection timing, in other words, the same number of injections (for example, 905a, 906a, 907a, 908a) in consideration of the influence of a change in the in-cylinder pressure.
  • the same number of injections for example, 905a, 906a, 907a, 908a
  • the valve opening of CYL.4 The detection standby period of the state or the valve closing state is started.
  • the injection pulse signal (907) of the cylinder specified by the ignition signal is first switched from OFF to ON (907a), and thereafter, the injection pulse signal is switched from OFF to ON or The number of injections is incremented when turning from ON to OFF, and the detection standby period may be set when the number of injections to be detected is set in advance.
  • the detection standby determination unit (304) identifies a cylinder in which the first injection is not started among the multistage injections at the timing when the ignition signal changes, and the number of injections in a series of multistage injections is determined for the identified cylinders. When the predetermined number of times is reached, it is determined to start the valve opening detection standby period.
  • the injection pulse signal for example, when the injection pulse signal of a cylinder does not turn from OFF to ON for a predetermined crank angle or more and then turns OFF to ON, the number of injections of that cylinder is 1. It becomes possible to recognize that it is the second time.
  • the above relationship may vary depending on the injection timing and the ignition timing. However, since the basic relationship is similar, the effect of this embodiment can be achieved by changing the cylinder selection for the ignition signal. Can be obtained.
  • the valve opening is performed within the same cylinder and between multiple cylinders. Duplicate detection of valve closing can be avoided.
  • this invention is not limited to an above-described Example, Various modifications are included.
  • the above-described embodiments are illustrative of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of a certain embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of a certain embodiment. Moreover, it is also possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
  • Fuel injection valve control device 102 ... Microcomputer (first control unit) 102a ... Fuel injector pulse width calculator 102b ... Fuel injection valve drive waveform command section 102c ... Open / close valve detector 105 ... Drive IC (second controller) 106 ... High voltage generator 107a, 107b ... fuel injection valve drive unit 108 ... Fuel injection valve 109 ... Battery voltage 110 ... High voltage (boost voltage) 111... Valve open detection signal generator 112 ... Valve closing detection signal generator 201, 202 ... Diode 203, 204, 205 ... Transistor (switch) 206 ... Shunt resistance 301 ... A / D converter 302 ...
  • Signal processing function 303 Open / close valve detection information generator 304: Detection standby judgment unit 305 ... Detection execution determination unit 307 ...
  • Signal switching unit 401 Injection pulse signal 402... Valve behavior during full lift control 403... Valve behavior during half lift control 505 ... Valve closing detection execution period 601 ... Valve opening detection execution period 701 ... Injection pulse signal 702, 706, 707 ... Drive current 703 ... Peak current 704 ... Target current value required to hold the valve open 705 ...
  • Predetermined drive voltage (threshold) 806 Predetermined drive voltage (threshold) 901, 902, 903, 904 ... Ignition signal 905, 906, 907, 908 ... Injection pulse signal

Description

燃料噴射弁制御装置Fuel injection valve control device
 本発明は、燃料噴射弁制御装置に関する。 The present invention relates to a fuel injection valve control device.
 近年、直噴式内燃機関の燃料噴射弁を駆動する際、最小噴射量の改善を目的とした技術が各社から提案されている。このような技術における課題の1つとして、個体毎の噴射量ばらつきを如何に低減できるかが性能の指標として扱われている。 In recent years, companies have proposed technologies aimed at improving the minimum injection amount when driving a fuel injection valve of a direct injection internal combustion engine. As one of the problems in such a technique, how the variation in the injection amount for each individual can be reduced is treated as an index of performance.
 また、今後要求される最小噴射量を既存の燃料噴射弁で実現する場合、燃料噴射弁内に備わる弁体が完全に開弁(以下、フルリフトという。)する前の状態(以下、ハーフリフトという。)で精密な噴射制御を行う必要がある。 In addition, when the minimum fuel injection amount required in the future is realized by an existing fuel injection valve, a state (hereinafter referred to as half lift) before the valve body provided in the fuel injection valve is completely opened (hereinafter referred to as full lift). )), It is necessary to perform precise injection control.
 ハーフリフト制御を行う際に生じる個体毎の噴射量ばらつきの因子として、燃料噴射弁の開弁動作や閉弁動作のばらつきが挙げられる。これを低減するため、燃料噴射弁の開弁動作や閉弁動作を把握する開閉弁検知技術についての技術開発が盛んに行われている。 As a factor of the variation in the injection amount for each individual that occurs when performing the half lift control, there are variations in the opening and closing operations of the fuel injection valve. In order to reduce this, technical development has been actively conducted on an on-off valve detection technique for grasping the opening and closing operations of the fuel injection valve.
 上記の通り、開閉弁検知の方法は幾つか挙げられるが、その多くは、燃料噴射弁の駆動電流や駆動電圧を用いて、行われることが一般的である。 As described above, there are several open / close valve detection methods, but most of them are generally performed using the drive current and drive voltage of the fuel injection valve.
 このような方式によって、燃料噴射弁の開閉弁動作を把握する過程上、駆動電流や駆動電圧に対してなんらかの信号処理を行う必要がある。多気筒式内燃機関において、燃料噴射弁毎の特性(電流値、電圧値等)を検知しようとした場合、少なくとも、内燃機関に備わる燃料噴射弁の数だけ、信号処理を行うハード資源(A/D変換器、信号処理回路など)を必要とする。また、開閉弁検知を行う場合、一般的には、内燃機関の制御を統合的に行うECM(Engine Control Module)内に回路実装を行った上、マイコンなどの演算装置を用いて処理することが望ましい。 In this process, it is necessary to perform some signal processing on the drive current and drive voltage in the process of grasping the on / off valve operation of the fuel injection valve. In a multi-cylinder internal combustion engine, when trying to detect the characteristics (current value, voltage value, etc.) of each fuel injection valve, at least the number of fuel injection valves provided in the internal combustion engine is a hardware resource that performs signal processing (A / D converter, signal processing circuit, etc.). In addition, when performing on-off valve detection, circuit mounting is generally performed in an ECM (Engine Control Module) that performs integrated control of an internal combustion engine, and processing is performed using an arithmetic device such as a microcomputer. desirable.
 一方、燃焼室内の圧力を検出する圧力検出手段を複数備える場合であれ、これら各圧力検出手段の出力をより適切に取得・処理することのできる内燃機関の制御装置が知られている(例えば、特許文献1参照)。特許文献1には、「燃焼室内の圧力を検出する圧力検出手段が少なくとも2つ以上の気筒に設けられる多気筒式内燃機関について、前記圧力検出手段の検出結果に基づき前記多気筒式内燃機関の出力を制御する多気筒式内燃機関の制御装置において、前記多気筒式内燃機関の出力軸の回転角度についての前記圧力検出手段間で重複しない角度領域内毎に、各圧力検出手段の出力のそれぞれのディジタルデータを取得してディジタル演算を行なう演算手段と、前記2つ以上の気筒のそれぞれに対応して設けられる燃料噴射弁を操作することで、これら各気筒の燃焼室に燃料を供給する燃料噴射制御を行なう燃料噴射制御手段と、前記燃料噴射制御手段による燃料噴射制御態様に応じて前記角度領域を可変設定する可変手段とを備えることを特徴とする多気筒式内燃機関の制御装置。」が記載されている。 On the other hand, even when a plurality of pressure detection means for detecting the pressure in the combustion chamber is provided, a control device for an internal combustion engine that can more appropriately acquire and process the output of each pressure detection means is known (for example, Patent Document 1). In Patent Document 1, “a multi-cylinder internal combustion engine in which pressure detection means for detecting the pressure in the combustion chamber is provided in at least two or more cylinders is based on the detection result of the pressure detection means. In the control device for a multi-cylinder internal combustion engine that controls output, each of the outputs of the pressure detection means for each angle region that does not overlap between the pressure detection means for the rotation angle of the output shaft of the multi-cylinder internal combustion engine. The fuel for supplying the fuel to the combustion chambers of the cylinders by operating the calculation means for acquiring the digital data and performing the digital calculation and the fuel injection valves provided corresponding to each of the two or more cylinders Fuel injection control means for performing injection control, and variable means for variably setting the angle region in accordance with a fuel injection control mode by the fuel injection control means. Control apparatus for a multi-cylinder internal combustion engine to be. "Is described.
特許第4640324号公報Japanese Patent No. 4640324
 特許文献1に開示されるような技術では、クランク角に基づき、筒内圧の計測ウィンドウ(計測範囲)を設定する。これにより、筒内圧の検知回路を時分割的に割当てることができる。なお、燃料噴射弁の噴射量は、噴射パルス信号のON時間によって管理されるため、クランク角との直接的な相関はない。 In the technique disclosed in Patent Document 1, a measurement window (measurement range) for in-cylinder pressure is set based on the crank angle. Thereby, the in-cylinder pressure detection circuit can be allocated in a time-sharing manner. Note that since the injection amount of the fuel injection valve is managed by the ON time of the injection pulse signal, there is no direct correlation with the crank angle.
 しかし、多気筒式内燃機関において燃料噴射弁の開弁と閉弁の検知を時分割的に行う場合に、開弁と閉弁の検知の重複を回避することについては記載されていない。 However, in a multi-cylinder internal combustion engine, when detecting the opening and closing of the fuel injection valve in a time-sharing manner, there is no description about avoiding overlapping detection of opening and closing.
 また、多段噴射時には、1燃焼行程中に複数の噴射動作がそれぞれの気筒で行われるため、多気筒間において多重検知や検知漏れを回避することが必要となる。 Also, at the time of multi-stage injection, since multiple injection operations are performed in each cylinder during one combustion stroke, it is necessary to avoid multiple detection and detection omission among multiple cylinders.
 本発明の目的は、多気筒式内燃機関において燃料噴射弁の開弁と閉弁の検知を時分割的に行う場合に、同一気筒内及び多気筒間において開弁と閉弁の検知の重複を回避することができる燃料噴射弁制御装置を提供することにある。 An object of the present invention is to overlap detection of valve opening and closing within the same cylinder and between multiple cylinders when performing time-sharing detection of the fuel injection valve in a multi-cylinder internal combustion engine. An object of the present invention is to provide a fuel injection valve control device that can be avoided.
 上記目的を達成するために、本発明は、多気筒式内燃機関において燃料噴射弁を特定する第1の信号に基づいて、開弁又は閉弁の検知を許可する期間を示す検知スタンバイ期間を気筒毎に開始又は終了する検知スタンバイ判定部と、前記検知スタンバイ期間が開始された気筒に設けられた燃料噴射弁の弁体の挙動を示す第2の信号を選択して供給する信号切替部と、前記第2の信号に基づいて、燃料噴射弁の開弁又は閉弁の検知の実行を開始又は終了すると判定する検知実行判定部と、前記検知実行判定部の判定に基づいて、燃料噴射弁の開弁又は閉弁の検知の実行を開始又は終了する信号処理機能部と、を備えるようにしたものである。 In order to achieve the above object, the present invention provides a detection standby period that indicates a period during which detection of valve opening or valve closing is permitted based on a first signal that specifies a fuel injection valve in a multi-cylinder internal combustion engine. A detection standby determination unit that starts or ends every time, and a signal switching unit that selectively supplies a second signal indicating the behavior of the valve body of the fuel injection valve provided in the cylinder in which the detection standby period is started, and Based on the second signal, a detection execution determination unit that determines whether to start or end detection of opening or closing of the fuel injection valve, and a determination of the fuel injection valve based on the determination of the detection execution determination unit And a signal processing function unit for starting or ending execution of detection of valve opening or valve closing.
 本発明によれば、多気筒式内燃機関において燃料噴射弁の開弁と閉弁の検知を時分割的に行う場合に、同一気筒内及び多気筒間において開弁と閉弁の検知の重複を回避することができる。上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。 According to the present invention, in the multi-cylinder internal combustion engine, when detecting the opening and closing of the fuel injection valve in a time-sharing manner, the detection of the opening and closing of the valve is duplicated in the same cylinder and between multiple cylinders. It can be avoided. Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.
本発明の実施形態による燃料噴射弁制御装置の構成図である。It is a block diagram of the fuel injection valve control apparatus by embodiment of this invention. 図1で示した燃料噴射弁駆動部の構成図である。It is a block diagram of the fuel injection valve drive part shown in FIG. 図1で示した開閉弁検知部の構成を説明するための図である。It is a figure for demonstrating the structure of the on-off valve detection part shown in FIG. 本発明の実施形態による燃料噴射弁制御装置における開閉弁検知の基本処理を説明するための図である。It is a figure for demonstrating the basic process of on-off valve detection in the fuel injection valve control apparatus by embodiment of this invention. 図4に示す噴射パルス信号を多気筒式内燃機関(4気筒)に適用した場合における開弁状態の検知スタンバイ期間を示す模式図である。FIG. 5 is a schematic diagram showing a detection standby period of a valve opening state when the injection pulse signal shown in FIG. 4 is applied to a multi-cylinder internal combustion engine (four cylinders). 図4に示す噴射パルス信号を多気筒式内燃機関(4気筒)に適用した場合における閉弁状態の検知スタンバイ期間を示す模式図である。FIG. 5 is a schematic diagram showing a detection standby period in a closed state when the injection pulse signal shown in FIG. 4 is applied to a multi-cylinder internal combustion engine (four cylinders). 本発明の実施形態による燃料噴射弁制御装置によって制御される燃料噴射弁の駆動電流を示した図である。It is the figure which showed the drive current of the fuel injection valve controlled by the fuel injection valve control apparatus by embodiment of this invention. 本発明の実施形態による燃料噴射弁制御装置に用いる燃料噴射弁に対する噴射パルス信号と、燃料噴射弁の駆動電圧を示す図である。It is a figure which shows the injection pulse signal with respect to the fuel injection valve used for the fuel injection valve control apparatus by embodiment of this invention, and the drive voltage of a fuel injection valve. 本発明の実施形態による燃料噴射弁制御装置を多段噴射制御へ適用した場合における開閉弁検知シーケンスを説明するための図である。It is a figure for demonstrating the on-off valve detection sequence at the time of applying the fuel injection valve control apparatus by embodiment of this invention to multistage injection control.
 以下、図面を用いて、本発明の実施形態による燃料噴射弁制御装置の構成及び動作を説明する。なお、各図において、同一部分には同一符号を付すものとする。 Hereinafter, the configuration and operation of the fuel injection valve control apparatus according to the embodiment of the present invention will be described with reference to the drawings. In the drawings, the same parts are denoted by the same reference numerals.
 最初に、図1を用いて、燃料噴射弁制御装置(101)の構成を説明する。図1は、本発明の実施形態による燃料噴射弁制御装置(101)の構成図である。 First, the configuration of the fuel injection valve control device (101) will be described with reference to FIG. FIG. 1 is a configuration diagram of a fuel injection valve control device (101) according to an embodiment of the present invention.
 燃料噴射弁制御装置(101)は、マイコン(102)、駆動IC(105)、高電圧生成部(106)、燃料噴射弁駆動部(107a、107b)、開弁検知信号生成部(111)、閉弁検知信号生成部(112)、信号切替部(307)を備える。 The fuel injection valve control device (101) includes a microcomputer (102), a drive IC (105), a high voltage generation unit (106), a fuel injection valve drive unit (107a, 107b), a valve opening detection signal generation unit (111), A valve closing detection signal generation unit (112) and a signal switching unit (307) are provided.
 マイコン(102)は、燃料噴射弁パルス幅演算部(102a)、燃料噴射弁駆動波形指令部(102b)、開閉弁検知部(102c)を備える。 The microcomputer (102) includes a fuel injection valve pulse width calculation unit (102a), a fuel injection valve drive waveform command unit (102b), and an on-off valve detection unit (102c).
 まず、バッテリから供給されるバッテリ電圧(109)は、ヒューズとリレーを介して、ECM(Engine Control Module)内に備わる燃料噴射弁制御装置(101)へ供給される。 First, the battery voltage (109) supplied from the battery is supplied to the fuel injection valve control device (101) provided in the ECM (Engine Control Module) via a fuse and a relay.
 高電圧生成部(106)は、バッテリ電圧(109)を元に、燃料噴射弁(108)内に備わる弁体が開弁する際に必要となる高い電源電圧(以下、高電圧:110)を生成する。ここで、高電圧生成部(106)は、駆動IC(105)からの指令に基づき、所望の目標高電圧に至る様にバッテリ電圧(109)を昇圧する。 Based on the battery voltage (109), the high voltage generator (106) generates a high power supply voltage (hereinafter, high voltage: 110) required when the valve body provided in the fuel injection valve (108) opens. Generate. Here, the high voltage generation unit (106) boosts the battery voltage (109) so as to reach a desired target high voltage based on a command from the drive IC (105).
 これにより、燃料噴射弁(108)の電源は、弁体の開弁力確保を目的とした高電圧(110)と、開弁した後に弁体が閉弁しない様に開弁保持をさせるバッテリ電圧(109)の2系統を備えることになる。 As a result, the power source of the fuel injection valve (108) is a high voltage (110) for the purpose of ensuring the valve opening force of the valve body and a battery voltage that keeps the valve body open so that the valve body does not close after the valve is opened. (109) will be provided.
 また、燃料噴射弁(108)の上流側と下流側にそれぞれ設けられた燃料噴射弁駆動部(107a、107b)は、燃料噴射弁(108)に対し駆動電流の供給を行う。燃料噴射弁駆動部(107a、107b)は、駆動IC(105)により制御されて、燃料噴射弁(108)に高電圧(110)もしくはバッテリ電圧(109)を印加し、所望の駆動電流になるよう制御する。 Further, the fuel injection valve driving sections (107a, 107b) provided on the upstream side and the downstream side of the fuel injection valve (108) respectively supply drive current to the fuel injection valve (108). The fuel injection valve drive unit (107a, 107b) is controlled by the drive IC (105) to apply a high voltage (110) or a battery voltage (109) to the fuel injection valve (108) to obtain a desired drive current. Control as follows.
 尚、図1内の燃料噴射弁(108)は、1気筒分のみ記載しているが、多気筒式内燃機関の場合、燃料噴射弁(108)は、少なくとも気筒毎に備えるようにする。 Although only one cylinder is shown for the fuel injection valve (108) in FIG. 1, in the case of a multi-cylinder internal combustion engine, the fuel injection valve (108) is provided at least for each cylinder.
 また、駆動IC(105)内では、燃料噴射弁(108)の駆動期間( 燃料噴射弁(108)の通電時間 )、及び駆動電圧の選択(高電圧(110)、バッテリ電圧(109))、駆動電流の設定値は、マイコン(102)により管理される。 Further, in the drive IC (105), the drive period of the fuel injection valve (108) (the energization time of the fuel injection valve (108)) and the selection of the drive voltage (high voltage (110), battery voltage (109)), The set value of the drive current is managed by the microcomputer (102).
 また、マイコン(102)内に備わる燃料噴射弁パルス幅演算部(102a)と、燃料噴射弁駆動波形指令部(102b)にて算出された指令値に対して、開閉弁検知部(102c)から得た情報に基づき、燃料噴射弁(108)の駆動パルス幅や駆動波形に補正や変更等の処理を加えた上で、燃料噴射弁(108)は制御される。 Further, from the command value calculated by the fuel injection valve pulse width calculation unit (102a) and the fuel injection valve drive waveform command unit (102b) provided in the microcomputer (102), the on-off valve detection unit (102c) Based on the obtained information, the fuel injection valve (108) is controlled after correcting or changing the drive pulse width or drive waveform of the fuel injection valve (108).
 燃料噴射弁(108)の駆動段から開弁検知信号生成部(111)や閉弁検知信号生成部(112)へ信号線は取り込まれる。これらの各部により燃料噴射弁(108)の駆動電流や駆動電圧を検知した後、開閉弁検知部(102c)により決定されるタイミングによって、信号切替部(307)は、気筒間の切替えや燃料噴射弁(108)の駆動電圧と駆動電流の切替えを時分割的に行う。尚、この点についての詳細は、図3を用いて後述する。 The signal line is taken from the drive stage of the fuel injection valve (108) to the valve opening detection signal generator (111) and the valve closing detection signal generator (112). After detecting the drive current and drive voltage of the fuel injection valve (108) by each of these parts, the signal switching unit (307) switches between cylinders and performs fuel injection according to the timing determined by the on-off valve detection unit (102c). The drive voltage and drive current of the valve (108) are switched in a time-sharing manner. Details of this point will be described later with reference to FIG.
 次に、図2を用いて、燃料噴射弁駆動部(107a、107b)の構成を説明する。図2は、図1で示した燃料噴射弁駆動部(107a、107b)の構成図である。 Next, the configuration of the fuel injection valve drive unit (107a, 107b) will be described with reference to FIG. FIG. 2 is a configuration diagram of the fuel injection valve driving section (107a, 107b) shown in FIG.
 図1で説明した様に、燃料噴射弁(108)の上流の燃料噴射弁駆動部(107a)は、燃料噴射弁(108)を開弁させる為に必要となる電流を供給する。詳細には、燃料噴射弁駆動部(107a)は、トランジスタTR_Hivboost(203)を用いて、高電圧生成部(106)で生成された高電圧(110)を、電流逆流防止用のダイオード(201)を介し、燃料噴射弁(108)に供給する。 As described in FIG. 1, the fuel injection valve drive section (107a) upstream of the fuel injection valve (108) supplies a current necessary for opening the fuel injection valve (108). Specifically, the fuel injection valve drive unit (107a) uses the transistor TR_Hivboost (203) to convert the high voltage (110) generated by the high voltage generation unit (106) into a diode (201) for preventing current backflow. To the fuel injection valve (108).
 一方、燃料噴射弁(108)を開弁させた後、燃料噴射弁(108)の上流の燃料噴射弁駆動部(107a)は、トランジスタTR_Hivb(204)を用いて、バッテリ電圧(109)を、電流逆流防止用のダイオード(202)を介し、燃料噴射弁(108)に供給する。これにより、燃料噴射弁(108)の開弁状態が保持される。 On the other hand, after opening the fuel injection valve (108), the fuel injection valve drive unit (107a) upstream of the fuel injection valve (108) uses the transistor TR_Hivb (204) to change the battery voltage (109), The fuel is supplied to the fuel injection valve (108) through the diode (202) for preventing current backflow. Thereby, the open state of the fuel injection valve (108) is maintained.
 燃料噴射弁(108)の下流の燃料噴射弁駆動部(107b)は、トランジスタTR_Low(205)、シャント抵抗(206)を備える。トランジスタTR_Low(205)をONにする事で、上流側の燃料噴射弁駆動部(107a)から供給された電源を燃料噴射弁(108)に印加することができる。また、シャント抵抗(206)によって、燃料噴射弁(108)にて消費した電流を検出する事で、後述する所望の燃料噴射弁(108)の電流制御が行われる。 The fuel injection valve drive unit (107b) downstream of the fuel injection valve (108) includes a transistor TR_Low (205) and a shunt resistor (206). By turning on the transistor TR_Low (205), the power supplied from the upstream fuel injection valve drive section (107a) can be applied to the fuel injection valve (108). Further, by detecting the current consumed by the fuel injection valve (108) by the shunt resistance (206), the current control of the desired fuel injection valve (108) described later is performed.
 尚、本説明は燃料噴射弁(108)の駆動方法について1例を示したものであり、例えば、燃料圧力が比較的低い場合などにおいて、燃料噴射弁(108)の開弁時に高電圧(110)ではなくバッテリ電圧(109)を用いても良い。 This description shows an example of a method for driving the fuel injection valve (108) .For example, when the fuel pressure is relatively low, a high voltage (110 ) May be used instead of battery voltage (109).
 次に、図3を用いて、開閉弁検知部(102c)の構成を説明する。図3は、図1で示した開閉弁検知部(102c)の構成を説明するための図である。 Next, the configuration of the on-off valve detector (102c) will be described with reference to FIG. FIG. 3 is a diagram for explaining the configuration of the on-off valve detector (102c) shown in FIG.
 マイコン(102)内に備わる開閉弁検知部(102c)は、A/D変換器(301)、信号処理機能部(302)、開閉弁検知情報生成部(303)、検知スタンバイ判定部(304)、検知実行判定部(305)を備える。 The on-off valve detection unit (102c) provided in the microcomputer (102) includes an A / D converter (301), a signal processing function unit (302), an on-off valve detection information generation unit (303), and a detection standby determination unit (304). And a detection execution determination unit (305).
 検知スタンバイ判定部(304)は、開閉弁検知の対象となる気筒の特定、及び開弁と閉弁のどちらの検知を行うかというスケジュール管理を行う。検知実行判定部(305)は、検知スタンバイ判定部(304)によるスケジュール管理(検知スタンバイ判定機能の結果)に基づいて、検知処理の実行と停止を信号処理機能部(302)と開閉弁検知情報生成部(303)へ指示する。 The detection standby determination unit (304) performs the schedule management of specifying the cylinder that is the target of the on-off valve detection, and detecting whether the valve is open or closed. Based on the schedule management (result of the detection standby determination function) by the detection standby determination unit (304), the detection execution determination unit (305) performs execution and stop of the detection processing with the signal processing function unit (302) and the on-off valve detection information. Instructs the generation unit (303).
 検知スタンバイ判定部(304)は、検知気筒の選定及び開弁検知か閉弁検知のどちらを行うかを所定の手順にて決定し、信号切替部(307)へ切替え信号を出力する。信号切替部(307)は、切替え信号に応答して、気筒数分備わる開弁検知信号生成部(111)と閉弁検知信号生成部(112)の中から、選択された信号をA/D変換器(301)へ送る。なお。図3では、一例として、第n~第(n+α)の気筒毎の検知信号生成部(111)と閉弁検知信号生成部(112)を表示している。 The detection standby determination unit (304) determines the selection of the detection cylinder and whether to perform valve opening detection or valve closing detection in a predetermined procedure, and outputs a switching signal to the signal switching unit (307). In response to the switching signal, the signal switching unit (307) converts the signal selected from the valve opening detection signal generating unit (111) and the valve closing detection signal generating unit (112) provided for the number of cylinders to A / D. Send to converter (301). Note that. In FIG. 3, as an example, a detection signal generation unit (111) and a valve closing detection signal generation unit (112) for each of the nth to (n + α) cylinders are displayed.
 A/D変換器(301)は、信号切替部(307)から送られた信号をデジタル化する。信号処理機能部(302)は、燃料噴射弁(108)内の弁体動作に基づく、A/D変換器(301) によりデジタル化された信号の電気的特性(電流値、電圧値等)の変化経緯及びその変化点を検出する。 The A / D converter (301) digitizes the signal sent from the signal switching unit (307). The signal processing function unit (302) is used to calculate the electrical characteristics (current value, voltage value, etc.) of the signal digitized by the A / D converter (301) based on the valve body operation in the fuel injection valve (108). The change process and the change point are detected.
 ここで、検知実行判定部(305)は、燃料噴射弁(108)の弁体の挙動を示す信号(駆動電流、駆動電圧)に基づいて、燃料噴射弁(108)の開弁又は閉弁の検知の実行を開始又は終了すると判定する。 Here, the detection execution determination unit (305) determines whether the fuel injection valve (108) is opened or closed based on a signal (drive current, drive voltage) indicating the behavior of the valve body of the fuel injection valve (108). It is determined that detection execution is started or ended.
 信号処理機能部(302)は、検知実行判定部(305)の判定に基づいて、燃料噴射弁(108)の開弁又は閉弁の検知の実行を開始又は終了する。信号切替部(307)は、検知スタンバイ期間が開始された気筒に設けられた燃料噴射弁(108)の弁体の挙動を示す信号(駆動電流、駆動電圧)を選択して供給する。 The signal processing function unit (302) starts or ends execution of detection of opening or closing of the fuel injection valve (108) based on the determination of the detection execution determination unit (305). The signal switching unit (307) selects and supplies a signal (drive current, drive voltage) indicating the behavior of the valve body of the fuel injection valve (108) provided in the cylinder in which the detection standby period is started.
 開閉弁検知情報生成部(303)は、基準位置(所定の開始タイミング)から燃料噴射弁(108)の弁体の挙動を示す信号(駆動電流、駆動電圧)の変化点が生じたタイミングまでの経過時間の算出を行う。開閉弁検知情報生成部(303)にて得た情報は、前述の通り、燃料噴射弁パルス幅演算部(102a)と燃料噴射弁駆動波形指令部(102b)の少なくとも1つ以上にて補正等の処理に使用される。 The on-off valve detection information generation unit (303) is configured from the reference position (predetermined start timing) to the timing at which the change point of the signal (drive current, drive voltage) indicating the behavior of the valve body of the fuel injection valve (108) occurs. Calculate elapsed time. As described above, the information obtained by the on-off valve detection information generation unit (303) is corrected by at least one of the fuel injection valve pulse width calculation unit (102a) and the fuel injection valve drive waveform command unit (102b). Used for processing.
 開弁又は閉弁の検知を許可する期間を示す検知スタンバイ期間は、検知スタンバイ判定部(304)が信号切替部(307)の切替えを行うための処理に要する時間や、A/D変換器(301)の出力安定化を図る時間などを考慮して決定される。A/D変換器(301)は、この検知スタンバイ期間内において、検知実行判定部(305)が実行開始と判定した時点から動作を開始する。 The detection standby period indicating the period during which the detection of the opening or closing of the valve is permitted is the time required for the detection standby determination unit (304) to perform the switching of the signal switching unit (307), the A / D converter ( 301) is determined in consideration of the time required to stabilize the output. The A / D converter (301) starts the operation from the time point when the detection execution determination unit (305) determines the execution start within the detection standby period.
 次に、図4を用いて、開閉弁検知の基本処理について説明する。図4は、本発明の実施形態による燃料噴射弁制御装置(101)における開閉弁検知の基本処理を説明するための図である。 Next, the basic processing for detecting the on-off valve will be described with reference to FIG. FIG. 4 is a view for explaining the basic processing of on-off valve detection in the fuel injection valve control apparatus (101) according to the embodiment of the present invention.
 図4は、燃料噴射弁(108)の駆動開始及び駆動停止の指令を行うために用いられる噴射パルス信号(401)と、燃料噴射弁内に備わる弁体の挙動(402)を示している。 FIG. 4 shows an injection pulse signal (401) used for instructing the start and stop of driving of the fuel injection valve (108) and the behavior (402) of the valve body provided in the fuel injection valve.
 タイミングT404から噴射パルス信号(401)がONとなることで燃料噴射弁(108)へ電流供給が行われる。その後、T405にて、一定量の電流により燃料噴射弁(108)内の弁体が開弁動作を開始し、T407まで開弁動作を行い、開弁側ストッパに弁体が衝突する。 When the injection pulse signal (401) is turned on from timing T404, current is supplied to the fuel injection valve (108). After that, at T405, the valve body in the fuel injection valve (108) starts the valve opening operation by a certain amount of current, performs the valve opening operation until T407, and the valve body collides with the valve opening side stopper.
 弁体が衝突した際、開弁力の勢いによって弁体挙動にはバウシングが生じ、暫くリフト量が不安定となった後、フルリフト位置で安定した状態となる。その後、噴射パルス信号(401)がT408時点でOFFとなったことで、燃料噴射弁(108)内への電流供給が停止される。燃料噴射弁内の残留磁場が一定量まで減少した時点であるT409から弁体は閉弁動作を開始する。その後、弁体は、閉弁側ストッパへ衝突し、閉弁位置で安定する。 When the valve body collides, bounce occurs in the valve body behavior due to the momentum of the opening force, and after the lift amount becomes unstable for a while, it becomes stable at the full lift position. Thereafter, when the injection pulse signal (401) is turned OFF at time T408, the current supply into the fuel injection valve (108) is stopped. The valve body starts the valve closing operation from T409 when the residual magnetic field in the fuel injection valve decreases to a certain amount. Thereafter, the valve body collides with the valve closing side stopper and is stabilized at the valve closing position.
 この一連の弁体挙動において、予め設定した計測基準位置から、開弁開始点(402a)までか、開弁完了点(402b)までの少なくとも1つ以上の経過時間を計測もしくは予測などにより把握することを開弁検知と、本明細書では定義する。 In this series of valve body behavior, at least one elapsed time from the preset measurement reference position to the valve opening start point (402a) or the valve opening completion point (402b) is grasped by measurement or prediction. This is defined herein as valve opening detection.
 同様に、閉弁検知を行うために予め設定した計測基準位置から、閉弁開始点(402c)もしくは、閉弁完了点(402d)までの少なくとも1つ以上の経過時間を計測もしくは予測などにより把握することを閉弁検知と定義する。 Similarly, at least one elapsed time from the measurement reference position set in advance to detect valve closing to the valve closing start point (402c) or valve closing completion point (402d) is determined by measurement or prediction. This is defined as valve closing detection.
 これらの前提において、本実施形態では、検知スタンバイ判定部(304)は、開弁検知及び閉弁検知のスタンバイ期間(411、412)を設定する。図4では、この設定条件を最もシンプルに構成する場合の一例を示している。 Under these assumptions, in the present embodiment, the detection standby determination unit (304) sets the standby periods (411, 412) for valve opening detection and valve closing detection. FIG. 4 shows an example in which this setting condition is configured most simply.
 詳細は、噴射パルス信号(401)がOFFからONとなったとき(T404)に、開弁検知用の検知スタンバイ期間(411)を開始し、噴射パルス信号がONからOFFとなったとき(T409)に、閉弁検知用の検知スタンバイ期間(412)を開始する。 For details, when the injection pulse signal (401) changes from OFF to ON (T404), the detection standby period (411) for valve opening detection starts, and when the injection pulse signal changes from ON to OFF (T409 ), A detection standby period (412) for detecting valve closing is started.
 ここで、検知スタンバイ判定部(304)は、多気筒式内燃機関において燃料噴射弁(108)毎の噴射パルス信号(401)に基づいて、開弁又は閉弁の検知を許可する期間を示す検知スタンバイ期間(411、412、413)を気筒毎に特定した上で、開始又は終了する。 Here, the detection standby determination unit (304) is a detection indicating a period during which detection of valve opening or closing is permitted based on the injection pulse signal (401) for each fuel injection valve (108) in the multi-cylinder internal combustion engine. The standby period (411, 412, 413) is specified for each cylinder and then started or ended.
 これにより、内燃機関に複数備わる噴射パルス信号と検知すべき燃料噴射弁が一対一の関係になることから、気筒特定の必要はなくなり、制御ロジックを簡素化することができる。 Thereby, since there is a one-to-one relationship between the plurality of injection pulse signals provided in the internal combustion engine and the fuel injection valve to be detected, it is not necessary to specify the cylinder, and the control logic can be simplified.
 また、図4には、ハーフリフト制御時の弁体挙動(403)も示している。これを見ても分かる通り、少なくとも開弁開始点(402a)はフルリフト制御時と変わらないため、開弁側の検知スタンバイ期間(411)はそのままで問題ない。同様に噴射パルス信号がONからOFFとなった時点(T406)から閉弁完了点(403a)までの間においても、一定量の時間余裕が保てるため、閉弁用の検知スタンバイ期間(413)の設定が可能となる。 FIG. 4 also shows the valve behavior (403) during half lift control. As can be seen from this, at least the valve opening start point (402a) is the same as that at the time of full lift control, so there is no problem with the detection standby period (411) on the valve opening side as it is. Similarly, a certain amount of time margin can be maintained between the time when the injection pulse signal is turned from ON to OFF (T406) and the valve closing completion point (403a), so that the detection standby period for valve closing (413) Setting is possible.
 尚、当然のことながら、開閉弁検知に必要な資源(A/D変換器(301)など)が時分割的に使用されるため、この場合において、開弁検知スタンバイ期間(411)と閉弁検知スタンバイ期間(413)は重複しない様に制御することが必要となる。 Of course, since the resources (A / D converter (301), etc.) necessary for opening / closing valve detection are used in a time-sharing manner, in this case, the valve opening detection standby period (411) and the valve closing It is necessary to control the detection standby period (413) so as not to overlap.
 また、検知スタンバイ判定部(304)における別の方法として、次の方法がある。噴射パルス信号がOFFからONとなるタイミング(T404)、もしくはONからOFFとなるタイミング(T406、T408)は、ECMにより指令されることから、ECMにとって既知のクランク角になる。そのため、それぞれのクランク角に対して、予め設定した角度分を前倒して設定する様にしてもよい。 Also, as another method in the detection standby determination unit (304), there is the following method. Since the timing at which the injection pulse signal is turned from OFF to ON (T404) or the timing from which the injection pulse signal is turned ON (T406, T408) is commanded by the ECM, the crank angle is known to the ECM. Therefore, a predetermined angle may be set forward for each crank angle.
 (多気筒式内燃機関への使用例)
 次に、図5を用いて、開弁状態の検知スタンバイ判定の使用例を説明する。図5は、図4に示す噴射パルス信号(401)を多気筒式内燃機関(4気筒)に適用した場合における開弁状態の検知スタンバイ期間(410a,410b)を示す模式図である。
(Use example for multi-cylinder internal combustion engine)
Next, a usage example of the detection standby determination of the valve opening state will be described with reference to FIG. FIG. 5 is a schematic diagram showing a detection standby period (410a, 410b) of the valve opening state when the injection pulse signal (401) shown in FIG. 4 is applied to a multi-cylinder internal combustion engine (4 cylinders).
 図5では、一般的な燃焼順序にしたがって、気筒番号1、3、4、2の気筒にそれぞれ対応する噴射パルス信号を、CYL.1(401a)、 CYL.3(401b) CYL.4(401C)、 CYL.2(401d)として記載している。 In FIG. 5, according to the general combustion order, the injection pulse signals corresponding to the cylinders of cylinder numbers 1, 3, 4, and 2 are shown as CYL.1 (401a), CYL.3 (401b) CYL.4 (401C ), CYL.2 (401d).
 また、T501c、T502c、T503c、T504cは後述する開弁状態の検知実行完了タイミングとし、T501d、T502d、T503d、T504dは、閉弁状態の検知実行完了タイミングとする。 Also, T501c, T502c, T503c, and T504c are valve-opening state detection execution completion timings described later, and T501d, T502d, T503d, and T504d are valve-closing state detection execution completion timings.
 この様に燃焼順序と噴射パルス信号(401a~401d)のタイミングは、一定の関係性を以って、推移する。当然のことながら、噴射開始タイミング(T501a、T502a、T503a、T504a)及び噴射完了タイミング(T501b、T502b、T503b、T504b)は、内燃機関の運転状態などにより変化するため、関係性については図5だけでは表現し切れない。しかし、気筒間における各タイミング上の差は一定の関係性を持つため、図5は1例として扱うこととする。 In this way, the combustion order and the timing of the injection pulse signals (401a to 401d) change with a certain relationship. As a matter of course, the injection start timing (T501a, T502a, T503a, T504a) and the injection completion timing (T501b, T502b, T503b, T504b) change depending on the operating state of the internal combustion engine, etc. I cannot express it. However, since the timing differences between the cylinders have a certain relationship, FIG. 5 is treated as an example.
 本実施形態では、ある気筒の噴射パルス信号がONからOFFになるタイミングで、燃焼順序からみて次気筒における開弁状態の検知スタンバイ期間(410a)を設定することを特徴としている。ここで、検知スタンバイ判定部(304)は、噴射パルス信号により示される指令が開弁から閉弁へ変わったときに、この指令に対応する気筒の次に燃焼する気筒の開弁の前記検知スタンバイ期間を開始すると判定する。 This embodiment is characterized in that the detection standby period (410a) of the valve opening state in the next cylinder is set in view of the combustion order at the timing when the injection pulse signal of a certain cylinder is turned from ON to OFF. Here, when the command indicated by the injection pulse signal changes from valve opening to valve closing, the detection standby determination unit (304) is configured to detect the detection standby of the opening of the cylinder that burns next to the cylinder corresponding to the command. Determine to start the period.
 例えば、CYL.1の噴射パルス信号(401a)がONからOFFとなった時点(T501b)から、次気筒であるCYL.3の開弁状態の検知スタンバイ期間(410a)が開始される。これを燃焼順序に沿って行うことで、開弁状態の検知スタンバイ期間が重なることがなく、誤った気筒の検知を行うことなどを回避することができる。 For example, the detection standby period (410a) of the open state of CYL.3, which is the next cylinder, is started from the time (T501b) when the injection pulse signal (401a) of CYL.1 is turned OFF from ON. By performing this in accordance with the combustion order, the detection standby period of the valve opening state does not overlap, and it is possible to avoid detecting an erroneous cylinder.
 また、開弁検知と閉弁検知を行う場合、少なくとも、閉弁検知実行期間(505)との重複を回避する必要がある。そのため、噴射パルス信号(401a)がONからOFFとなった時点(T501b)ではなく、閉弁検知実行期間(505)の完了タイミング(T501d、T502d、T503d、T504d)で、次気筒の開弁状態の検知スタンバイ期間(410b)を開始する。 Also, when performing valve opening detection and valve closing detection, it is necessary to avoid at least overlap with the valve closing detection execution period (505). Therefore, the valve opening state of the next cylinder is not at the time when the injection pulse signal (401a) changes from ON to OFF (T501b) but at the completion timing (T501d, T502d, T503d, T504d) of the valve closing detection execution period (505). The detection standby period (410b) is started.
 すなわち、検知スタンバイ判定部(304)は、信号処理機能部(302)が燃料噴射弁(108)の閉弁の検知の実行を終了したときに、この燃料噴射弁(108)が設けられた気筒の次に燃焼する気筒の開弁の検知スタンバイ期間を開始すると判定する。 That is, the detection standby determination unit (304), when the signal processing function unit (302) finishes the detection of the closing of the fuel injection valve (108), the cylinder provided with the fuel injection valve (108) It is determined that the detection standby period of the valve opening of the cylinder that burns next is started.
 なお、検知スタンバイ判定部(304)は、信号処理機能部(302)が燃料噴射弁の開弁の検知の実行を終了したときに、この燃料噴射弁が設けられた気筒の開弁の検知スタンバイ期間を終了すると判定する。 When the signal processing function unit (302) finishes detecting the opening of the fuel injection valve, the detection standby determination unit (304) detects the opening of the cylinder provided with the fuel injection valve. It is determined that the period ends.
 次に、図6を用いて、閉弁状態の検知スタンバイ判定の使用例を記載する。図6は、図4に示す噴射パルス信号を多気筒式内燃機関(4気筒)に適用した場合における閉弁状態の検知スタンバイ期間(411a,411b)を示す模式図である。 Next, a usage example of the detection standby determination of the valve closing state will be described with reference to FIG. FIG. 6 is a schematic diagram showing a detection standby period (411a, 411b) of the valve closing state when the injection pulse signal shown in FIG. 4 is applied to a multi-cylinder internal combustion engine (four cylinders).
 図5では、開弁状態の検知スタンバイ判定について記載したが、同様に閉弁状態のスタンバイ期間開始条件も設定することができる。図6の基本構成は図5と同様であるため省略する。異なる点は、図6に示すように、気筒の閉弁検知実行期間(505)の完了タイミングであるT501d、T502d、T503d、T504dにおいて、燃焼順序上の次気筒に対する閉弁状態の検知スタンバイ期間(411a)を開始している点である。 FIG. 5 describes the detection standby determination of the valve open state, but it is also possible to set the standby period start condition of the valve closed state. The basic configuration of FIG. 6 is the same as that of FIG. The difference is that, as shown in FIG. 6, in T501d, T502d, T503d, and T504d, which is the completion timing of the cylinder valve closing detection execution period (505), the valve closing state detection standby period for the next cylinder in the combustion order ( 411a) is started.
 ここで、検知スタンバイ判定部(304)は、信号処理機能部(302)が燃料噴射弁(108)の閉弁の検知の実行を終了したときに、この燃料噴射弁(108)が設けられた気筒の次に燃焼する気筒の閉弁の検知スタンバイ期間を開始すると判定する。 Here, the detection standby determination unit (304) is provided with the fuel injection valve (108) when the signal processing function unit (302) finishes detecting the closing of the fuel injection valve (108). It is determined that the detection standby period of the valve closing of the cylinder that burns next to the cylinder is started.
 これにより、少なくとも閉弁検知のみ行う制御装置では、気筒間の重複を回避することが可能となる。また、開弁検知と閉弁検知を行う制御装置においては、開弁検知実行期間(601)との重複も回避する必要があるため、開弁検知実行期間(601)の完了タイミング(T501c、T502c、T503c、T504c)から閉弁状態の検知スタンバイ期間(411b)を開始すればよい。 This makes it possible to avoid overlapping between cylinders in at least a control device that only detects valve closing. In addition, in a control device that performs valve opening detection and valve closing detection, it is necessary to avoid overlap with the valve opening detection execution period (601), so the completion timing of the valve opening detection execution period (601) (T501c, T502c , T503c, T504c), the valve detection state standby period (411b) may be started.
 すなわち、検知スタンバイ判定部(304)は、信号処理機能部(302)が燃料噴射弁(108)の開弁の検知の実行を終了したときに、この燃料噴射弁(108)が設けられた気筒の閉弁の検知スタンバイ期間を開始すると判定する。 That is, the detection standby determination unit (304), when the signal processing function unit (302) finishes the detection of the opening of the fuel injection valve (108), the cylinder provided with the fuel injection valve (108) It is determined that the valve closing detection standby period is started.
 これにより、閉弁状態の検知スタンバイ期間が重なることがなく、誤った気筒の検知を行うことなどを回避することができる。 This prevents the detection standby period of the valve closing state from overlapping, and avoids erroneous cylinder detection and the like.
 また、図4から図6を用いて説明した通り、開弁状態もしくは閉弁状態の検知スタンバイ期間が開始されてから、一定の時間経過もしくはクランク角経過をもって、検知実行判定部(305)が検知実行判定を行うようにする。例えば、検知実行判定部(305)は、検知スタンバイ期間が開始された気筒について、検知スタンバイ期間が開始されたタイミングから所定の時間が経過したときに、開弁の検知の実行を開始すると判定する。 In addition, as described with reference to FIGS. 4 to 6, the detection execution determination unit (305) detects that a certain time or crank angle has elapsed since the detection standby period of the valve open state or the valve closed state is started. Make an execution decision. For example, the detection execution determination unit (305) determines to start execution of detection of valve opening when a predetermined time has elapsed from the timing at which the detection standby period is started for the cylinder in which the detection standby period has been started. .
 これにより、気筒間及び開弁状態と閉弁状態との間で検知期間の干渉を防ぐことができる。 This makes it possible to prevent interference in the detection period between the cylinders and between the valve open state and the valve closed state.
 (駆動電流による判定)
 次に、図7を用いて、開弁状態の検知実行判定部(305)の説明を行う。図7は、本発明の実施形態による燃料噴射弁制御装置(101)によって制御される燃料噴射弁(108)の駆動電流(702)を示した図である。
(Determination based on drive current)
Next, the detection execution determination unit (305) for the valve opening state will be described with reference to FIG. FIG. 7 is a diagram showing a drive current (702) of the fuel injection valve (108) controlled by the fuel injection valve control device (101) according to the embodiment of the present invention.
 図7では、燃料噴射弁(108)に対する噴射パルス信号(701)は、T708にてOFFからONとなり、T715にてONからOFFとなっている。 In FIG. 7, the injection pulse signal (701) for the fuel injection valve (108) is turned from OFF to ON at T708, and from ON to OFF at T715.
 一般的な駆動電流は、高燃圧時においても必ず弁体が開弁できることを目的とした開弁電流(T708~T711までの電流)と,開弁した弁体がその後も開弁状態を保持できることを目的とした保持電流(T713~T715までの電流)から構成される。また、燃料噴射弁に対して、開弁電流には、高電圧(110)を、保持電流はバッテリ電圧(109)を、供給する。 The general drive current includes the valve opening current (current from T708 to T711) for the purpose of ensuring that the valve element can be opened even at high fuel pressures, and that the valve element that has been opened can maintain the valve open state thereafter. It is composed of a holding current (current from T713 to T715) for the purpose. Further, a high voltage (110) is supplied as the valve opening current and a battery voltage (109) is supplied as the holding current to the fuel injection valve.
 この中で、燃料噴射弁(108)が開弁電流の目標値として設定したピーク電流(703)と、保持電流の目標電流(704)を設定しこれに基づき制御される。 Among these, the peak current (703) set as the target value of the valve opening current by the fuel injection valve (108) and the target current (704) of the holding current are set and controlled based on this.
 保持電流の目標電流(704)は、燃料噴射弁(108)の特性に基づき、少なくとも1つ以上の目標値となっている。なお、図7では、説明を簡単にするため、目標電流(704)は1つのみ表示している。 The target current (704) of the holding current is at least one target value based on the characteristics of the fuel injection valve (108). In FIG. 7, only one target current (704) is displayed for the sake of simplicity.
 図7に示すように、噴射パルス信号(701)が非常に短いタイミング(T710)でOFFとしたとき、駆動電流は、破線706の様な軌跡を描く。また、ピーク電流(703)を経過した後(T711)、燃料噴射弁(108)に対する駆動電流を一定の条件が成立するまで停止し、一定条件が成立したとき(T712)、再び駆動電流を供給する場合、駆動電流の波形は、破線707の様な軌跡を描く。 As shown in FIG. 7, when the injection pulse signal (701) is turned off at a very short timing (T710), the drive current draws a locus like a broken line 706. After the peak current (703) has elapsed (T711), the drive current for the fuel injection valve (108) is stopped until a certain condition is met, and when the certain condition is met (T712), the drive current is supplied again. In this case, the waveform of the drive current draws a locus like a broken line 707.
 本実施形態では、検知スタンバイ判定部(304)が開弁状態の検知スタンバイ期間の開始と判定した後、噴射パルス信号がONとなることで駆動電流(702、706、707)が上昇する。そのため、このときの駆動電流値が図7に示す一定値(705)となった時点(T709)から所定の時間経過を以って、開弁検知の実行開始と判定することを特徴としている。当然のことながら、この場合における所定の時間経過は0も含まれており、この場合はT709から開弁検知の実行開始と判定する。 In this embodiment, after the detection standby determination unit (304) determines that the detection standby period in the valve open state is started, the drive current (702, 706, 707) is increased by turning on the injection pulse signal. Therefore, it is characterized in that it is determined that the valve-opening detection start is started after a predetermined time has elapsed from the time (T709) when the driving current value at this time becomes the constant value (705) shown in FIG. As a matter of course, the predetermined time lapse in this case includes 0, and in this case, it is determined from T709 that the execution of the valve opening detection is started.
 ここで、検知実行判定部(305)は、検知スタンバイ期間が開始された気筒について、駆動電流が所定の閾値になったタイミングから、所定の時間が経過したときに、開弁の検知の実行を開始すると判定する。 Here, the detection execution determination unit (305) performs detection of valve opening when a predetermined time has elapsed from the timing at which the drive current has reached a predetermined threshold for the cylinder in which the detection standby period has started. Determine to start.
 また、別の方法として、ピーク電流(703)に達する時点(T711)から所定の時間経過後、開弁検知の実行開始と判定しても良い。すなわち、検知実行判定部(305)は、検知スタンバイ期間が開始された気筒について、駆動電流がピーク電流(703)となったタイミングから、所定の時間が経過したときに、開弁の検知の実行を開始すると判定する。 As another method, it may be determined that the execution of the valve opening detection is started after a predetermined time has elapsed from the time (T711) when the peak current (703) is reached. That is, the detection execution determination unit (305) executes detection of valve opening when a predetermined time has elapsed from the timing when the drive current becomes the peak current (703) for the cylinder in which the detection standby period has started. Is determined to start.
 図7に示す波形707の場合、駆動電流の供給が再開した時点(T712)で、開弁検知の実行開始としても良い。すなわち、検知実行判定部(305)は、検知スタンバイ期間が開始された気筒について、駆動電流の供給が停止された後、供給が再開されたタイミングから、所定の時間(≧0)が経過したときに、開弁の検知の実行を開始すると判定する。 In the case of the waveform 707 shown in FIG. 7, the execution of the valve opening detection may be started when the supply of the drive current is resumed (T712). That is, the detection execution determination unit (305), when a predetermined time (≧ 0) has elapsed from the timing when supply is resumed after supply of drive current is stopped for a cylinder in which the detection standby period has started Then, it is determined that the execution of the valve opening detection is started.
 また、駆動電流の停止及び再開の条件が所定電流値とした場合でも、本発明の効果は有効であり、この場合では、駆動電流が一定値以上もしくは一定値以下になったときに開弁の検知の実行を開始すると判定する。 In addition, even when the drive current stop and restart conditions are set to a predetermined current value, the effect of the present invention is effective. In this case, when the drive current becomes a certain value or less, the valve opening is It is determined that detection execution is started.
 開弁検知の実行完了については、最もシンプルな方法として、開弁検知の実行開始から所定時間の経過を以って完了(終了)とする。ここで、検知実行判定部(305)は、開弁の検知を実行することが開始されたタイミングから所定の時間が経過したときに、開弁の検知の実行を終了する。 About the completion of the execution of the valve opening detection, the simplest method is to complete (end) after a predetermined time from the start of the valve opening detection execution. Here, the detection execution determination unit (305) ends the detection of the opening of the valve when a predetermined time has elapsed from the timing when the detection of the opening of the valve is started.
 また、例えば、開弁保持に必要となる目標電流値(704)に達して、駆動電流のスイッチングが開始されるタイミング(T713、T714)から所定の時間経過を以って完了としても良い。すなわち、検知実行判定部(305)は、駆動電流が開弁を保持するための電流を示す目標電流になるようにスイッチとしてのトランジスタTR_Hivb(204)がスイッチングを開始したタイミングから所定の時間が経過したときに、開弁の検知の実行を終了すると判定する。
なお、目標電流は、ピーク電流よりも小さい。
Further, for example, the target current value (704) required for maintaining the valve opening may be reached, and the completion may be completed after a predetermined time has elapsed from the timing (T713, T714) at which switching of the drive current is started. That is, the detection execution determination unit (305) passes a predetermined time from the timing when the transistor TR_Hivb (204) as a switch starts switching so that the drive current becomes a target current indicating a current for holding the valve open. It is determined that the execution of the valve opening detection is finished.
Note that the target current is smaller than the peak current.
 これにより、少なくともスイッチによる駆動電流の変化を検知処理へ送ることなく、誤検知の可能性を回避することが可能となる。 This makes it possible to avoid the possibility of erroneous detection without sending at least a change in drive current due to the switch to the detection process.
 つまり、図4に示した開弁開始点(402a)と開弁完了点(402b)は、駆動電流(702)上の図7に示すT709からT713までの期間内に存在するため、駆動電流を用いて検知を行う場合、この期間において開弁検知の実行を設定すること望ましい。 That is, the valve opening start point (402a) and the valve opening completion point (402b) shown in FIG. 4 exist in the period from T709 to T713 shown in FIG. When performing detection by using, it is desirable to set execution of valve opening detection during this period.
 (駆動電圧による判定)
 次に、図8を用いて、開弁状態の検知実行判定部(305)の説明を行う。図8は、開弁状態の検知実行判定部(305)を説明するための図である。
(Determination based on drive voltage)
Next, the detection execution determination unit (305) for the valve open state will be described with reference to FIG. FIG. 8 is a diagram for explaining the valve-opening state detection execution determination unit (305).
 図8は、本発明の実施形態による燃料噴射弁制御装置(101)に用いる燃料噴射弁(108)に対する噴射パルス信号(801)と、燃料噴射弁(108)の上流側と下流側における電位差(802)(以下、駆動電圧)を示す図である。 FIG. 8 shows the injection pulse signal (801) for the fuel injection valve (108) used in the fuel injection valve control apparatus (101) according to the embodiment of the present invention, and the potential difference (upstream and downstream) of the fuel injection valve (108). 802) (hereinafter referred to as drive voltage).
 また、噴射パルス信号(801)は、図7の噴射パルス信号(701)と同じタイミングでONとOFFをするものとする。駆動電圧(802)は、駆動電流(702)がピーク電流(703)に達するまで上昇し、ピーク電流(703)に達した時点(T711)で、0V近傍まで低下する。 Also, the injection pulse signal (801) is turned ON and OFF at the same timing as the injection pulse signal (701) in FIG. The drive voltage (802) increases until the drive current (702) reaches the peak current (703), and decreases to near 0 V when the peak current (703) is reached (T711).
 また、図7に示した駆動電流(707)の場合、ピーク電流(703)に達した後、燃料噴射弁(108)への駆動電流(707)供給を停止する期間(T711からT712まで)は、図8の波形804に示す様に、駆動電圧(802)は逆バイアスで高電圧(110)まで上昇する。駆動電流(707)の供給の再開が行われる際(T712)、駆動電圧(802)は、0V近傍まで低下する。 In the case of the driving current (707) shown in FIG. 7, the period (from T711 to T712) during which the supply of the driving current (707) to the fuel injection valve (108) is stopped after the peak current (703) is reached. As shown by the waveform 804 in FIG. 8, the drive voltage (802) rises to a high voltage (110) by reverse bias. When the supply of the drive current (707) is resumed (T712), the drive voltage (802) drops to around 0V.
 その後、噴射パルス信号(801)が、ONからOFFとなったとき(T715)、駆動電圧(802)は、駆動電圧(802)は逆バイアスで高電圧値(110)まで上昇し、その後、燃料噴射弁(108)の電気的特性に基づき、ゆっくりと下降する。 After that, when the injection pulse signal (801) changes from ON to OFF (T715), the drive voltage (802) rises to a high voltage value (110) with the reverse bias of the drive voltage (802), and then the fuel Based on the electrical characteristics of the injection valve (108), it descends slowly.
 図7で示した所定の駆動電流(705)を駆動電圧上(802)で対応しても良い。例えば、駆動電圧が、駆動電流705と等価となる(対応する)電圧値(803)になったときに、開弁検知の実行開始と判定としてもよい。 The predetermined drive current (705) shown in FIG. 7 may be handled on the drive voltage (802). For example, when the drive voltage reaches a voltage value (803) equivalent to (corresponding to) the drive current 705, it may be determined that the valve-opening detection is started.
 すなわち、検知実行判定部(305)は、検知スタンバイ期間が開始された気筒について、駆動電圧が所定の閾値になったタイミングから、所定の時間(≧0)が経過したときに、開弁の検知の実行を開始すると判定する。 That is, the detection execution determination unit (305) detects the valve opening when a predetermined time (≧ 0) has elapsed from the timing at which the drive voltage reaches a predetermined threshold for the cylinder in which the detection standby period has started. Is determined to start.
 また、閉弁検知の実行開始条件については、T715を起点に駆動電圧が高電圧値(110)まで上昇し、一定電圧(110)を検知した後、閉弁検知の実行開始とする。例えば、図8に示す所定の駆動電圧(805)以下に駆動電圧(802)がなったとき(T807)から、所定の経過時間が経過したときに閉弁検知の実行開始とする。更に、第2の所定の駆動電圧(806)を下回ったとき(T808)に閉弁検知の実行停止とする。 As for the condition for starting the valve closing detection, the driving voltage rises to the high voltage value (110) starting from T715, and after the constant voltage (110) is detected, the valve closing detection is started. For example, when the predetermined elapsed time has elapsed from when the drive voltage (802) becomes equal to or lower than the predetermined drive voltage (805) shown in FIG. Further, when the voltage falls below the second predetermined drive voltage (806) (T808), the execution of the valve closing detection is stopped.
 (多段噴射制御への適用例)
 次に、図9を用いて、1燃焼サイクル中に複数回の噴射を行う所謂、多段噴射制御が可能な制御装置の開閉弁検知シーケンスについて説明を行う。図9は、本発明の実施形態による燃料噴射弁制御装置を多段噴射制御へ適用した場合における開閉弁検知シーケンスを説明するための図である。
(Application example for multi-stage injection control)
Next, referring to FIG. 9, a description will be given of an on-off valve detection sequence of a control device capable of so-called multistage injection control in which injection is performed a plurality of times during one combustion cycle. FIG. 9 is a diagram for explaining an on-off valve detection sequence when the fuel injection valve control device according to the embodiment of the present invention is applied to multistage injection control.
 図9中の上から、CYL.1の点火信号(901)、CYL.1の噴射パルス信号(905)、CYL.3の点火信号(902)、CYL.3の噴射パルス信号(906)、CYL.4の点火信号(903)、CYL.4の噴射パルス信号(907)、CYL.2の点火信号(904)、CYL.2の噴射パルス信号(908)である。噴射パルス信号(905~908)は、それぞれ3回の多段噴射を行うため1燃焼サイクル中にON⇔OFFを3回繰り返している(905a~908c)。 From the top in FIG. 9, the ignition signal (901) of CYL.1, the injection pulse signal (905) of CYL.1, the ignition signal (902) of CYL.3, the injection pulse signal (906) of CYL.3, and CYL .4 ignition signal (903), CYL.4 injection pulse signal (907), CYL.2 ignition signal (904), and CYL.2 injection pulse signal (908). The injection pulse signals (905 to 908) are repeatedly turned ON and OFF three times during one combustion cycle (905a to 908c) in order to perform multistage injection three times.
 図8までの各条件により、開弁及び閉弁の検知実行期間が重ならない様にしてきたが、この場合、全ての噴射回数(例えば、905a、905b、905c)にて、検知スタンバイ期間を設定してしまうと、同一気筒間で開弁と閉弁の検知スタンバイ期間が重複したり、噴射タイミング次第で、異なる気筒間で検知スタンバイ期間が重なったりする恐れがある。 According to the conditions up to Fig. 8, the detection execution period for valve opening and closing has been kept from overlapping, but in this case, the detection standby period is set for all injections (for example, 905a, 905b, 905c). If it does, there exists a possibility that the detection standby period of valve opening and closing may overlap between the same cylinders, or a detection standby period may overlap between different cylinders depending on injection timing.
 そのため、好ましくは、開弁検知及び閉弁検知は、筒内圧の変化などの影響を考慮して、少なくとも同じ噴射タイミング、言い換えると同じ噴射回数(例えば、905a、906a、907a、908a)の場合において、検知スタンバイ期間の開始判定を行うことが良いと言える。 Therefore, preferably, the valve opening detection and the valve closing detection are performed in the case of at least the same injection timing, in other words, the same number of injections (for example, 905a, 906a, 907a, 908a) in consideration of the influence of a change in the in-cylinder pressure. Thus, it can be said that it is preferable to determine whether to start the detection standby period.
 よって、本実施形態では、CYL1.の点火信号(901)がOFFからONとなった時点、もしくは、ONからOFFとなった時点において、燃焼順序と噴射タイミングの関係から、CYL.4の開弁状態もしくは閉弁状態の検知スタンバイ期間を開始することを特徴とする。これにより、点火信号により特定された気筒の噴射パルス信号(907)が最初にOFFからONとなったとき(907a)を1回目として認識することができ、その後、噴射パルス信号がOFFからONもしくは、ONからOFFとなったときに噴射回数をインクリメントとし、予め設定した検知すべき噴射回数となった時点で、検知スタンバイ期間を設定すればよい。 Therefore, in the present embodiment, when the ignition signal (901) of CYL1. Changes from OFF to ON, or at the time of ON to OFF, from the relationship between the combustion sequence and the injection timing, the valve opening of CYL.4 The detection standby period of the state or the valve closing state is started. As a result, it is possible to recognize when the injection pulse signal (907) of the cylinder specified by the ignition signal is first switched from OFF to ON (907a), and thereafter, the injection pulse signal is switched from OFF to ON or The number of injections is incremented when turning from ON to OFF, and the detection standby period may be set when the number of injections to be detected is set in advance.
 例えば、検知スタンバイ判定部(304)は、点火信号が変化したタイミングで、多段噴射のうち1回目の噴射が開始されていない気筒を特定し、特定した気筒について、一連の多段噴射における噴射回数が所定の回数になったときに、開弁の検知スタンバイ期間を開始すると判定する。 For example, the detection standby determination unit (304) identifies a cylinder in which the first injection is not started among the multistage injections at the timing when the ignition signal changes, and the number of injections in a series of multistage injections is determined for the identified cylinders. When the predetermined number of times is reached, it is determined to start the valve opening detection standby period.
 また、同様に噴射パルス信号を用いて、例えば、気筒の噴射パルス信号が所定のクランク角以上、OFFからONとならず、その後、OFFからONとなった時点を、その気筒の噴射回数が1回目であると認識することが可能となる。 Similarly, using the injection pulse signal, for example, when the injection pulse signal of a cylinder does not turn from OFF to ON for a predetermined crank angle or more and then turns OFF to ON, the number of injections of that cylinder is 1. It becomes possible to recognize that it is the second time.
 尚、噴射タイミング及び点火タイミング次第で、上記の関係性は変わることがあるが、基本的な思想においては同様の関係性があるため、点火信号に対する気筒選択を換えることで、本実施形態の効果を得ることが出来る。 The above relationship may vary depending on the injection timing and the ignition timing. However, since the basic relationship is similar, the effect of this embodiment can be achieved by changing the cylinder selection for the ignition signal. Can be obtained.
 以上説明したように、本実施形態によれば、多気筒式内燃機関において燃料噴射弁の開弁と閉弁の検知を時分割的に行う場合に、同一気筒内及び多気筒間において開弁と閉弁の検知の重複を回避することができる。 As described above, according to the present embodiment, in the multi-cylinder internal combustion engine, when the opening and closing of the fuel injection valve are detected in a time-sharing manner, the valve opening is performed within the same cylinder and between multiple cylinders. Duplicate detection of valve closing can be avoided.
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。
上記した実施例は本発明を分かりやすく説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることも可能であり、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることも可能である。
In addition, this invention is not limited to an above-described Example, Various modifications are included.
The above-described embodiments are illustrative of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of a certain embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of a certain embodiment. Moreover, it is also possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
101…燃料噴射弁制御装置
102…マイコン(第1の制御部)
102a…燃料噴射弁パルス幅演算部
102b…燃料噴射弁駆動波形指令部
102c…開閉弁検知部
105…駆動IC(第2の制御部)
106…高電圧生成部
107a、107b…燃料噴射弁駆動部
108…燃料噴射弁
109…バッテリ電圧
110…高電圧(昇圧電圧)
111…開弁検知信号生成部
112…閉弁検知信号生成部
201、202…ダイオード
203、204、205…トランジスタ(スイッチ)
206…シャント抵抗
301…A/D変換器
302…信号処理機能部
303…開閉弁検知情報生成部
304…検知スタンバイ判定部
305…検知実行判定部
307…信号切替部
401…噴射パルス信号
402…フルリフト制御時の弁体の挙動
403…ハーフリフト制御時の弁体の挙動
505…閉弁検知実行期間
601…開弁検知実行期間
701…噴射パルス信号
702、706、707…駆動電流
703…ピーク電流
704…開弁保持に必要となる目標電流値
705…所定の開弁電流(閾値)
801…噴射パルス信号
802、804…駆動電圧
805…所定の駆動電圧(閾値)
806…所定の駆動電圧(閾値)
901、902、903、904…点火信号
905、906、907、908…噴射パルス信号
101 ... Fuel injection valve control device
102 ... Microcomputer (first control unit)
102a ... Fuel injector pulse width calculator
102b ... Fuel injection valve drive waveform command section
102c ... Open / close valve detector
105 ... Drive IC (second controller)
106 ... High voltage generator
107a, 107b ... fuel injection valve drive unit
108 ... Fuel injection valve
109 ... Battery voltage
110 ... High voltage (boost voltage)
111… Valve open detection signal generator
112 ... Valve closing detection signal generator
201, 202 ... Diode
203, 204, 205 ... Transistor (switch)
206 ... Shunt resistance
301 ... A / D converter
302 ... Signal processing function
303: Open / close valve detection information generator
304: Detection standby judgment unit
305 ... Detection execution determination unit
307 ... Signal switching unit
401: Injection pulse signal
402… Valve behavior during full lift control
403… Valve behavior during half lift control
505 ... Valve closing detection execution period
601 ... Valve opening detection execution period
701 ... Injection pulse signal
702, 706, 707 ... Drive current
703 ... Peak current
704 ... Target current value required to hold the valve open
705 ... Predetermined valve opening current (threshold)
801 ... Injection pulse signal
802, 804 ... Driving voltage
805 ... Predetermined drive voltage (threshold)
806: Predetermined drive voltage (threshold)
901, 902, 903, 904 ... Ignition signal
905, 906, 907, 908 ... Injection pulse signal

Claims (14)

  1.  多気筒式内燃機関において燃料噴射弁を特定する第1の信号に基づいて、開弁又は閉弁の検知を許可する期間を示す検知スタンバイ期間を気筒毎に開始又は終了する検知スタンバイ判定部と、
     前記検知スタンバイ期間が開始された気筒に設けられた燃料噴射弁の弁体の挙動を示す第2の信号を選択して供給する信号切替部と、
     前記第2の信号に基づいて、燃料噴射弁の開弁又は閉弁の検知の実行を開始又は終了すると判定する検知実行判定部と、
     前記検知実行判定部の判定に基づいて、燃料噴射弁の開弁又は閉弁の検知の実行を開始又は終了する信号処理機能部と
     を備えることを特徴とする燃料噴射弁制御装置。
    A detection standby determination unit for starting or ending a detection standby period for each cylinder based on a first signal for specifying a fuel injection valve in a multi-cylinder internal combustion engine;
    A signal switching unit that selectively supplies a second signal indicating the behavior of the valve body of the fuel injection valve provided in the cylinder in which the detection standby period has started; and
    A detection execution determination unit that determines to start or end execution of detection of opening or closing of the fuel injection valve based on the second signal;
    A fuel injection valve control device comprising: a signal processing function unit for starting or ending execution of detection of opening or closing of the fuel injection valve based on the determination of the detection execution determination unit.
  2.  請求項1に記載の燃料噴射弁制御装置であって、
     前記第1の信号は、
     燃料噴射弁の開弁又は閉弁の指令を示す噴射パルス信号であり、
     前記検知スタンバイ判定部は、
     前記噴射パルス信号により示される指令が開弁から閉弁へ変わったとき、または、閉弁から開弁に変わったときに、この指令に対応する気筒の次に燃焼する気筒の開弁の前記検知スタンバイ期間を開始すると判定する
     ことを特徴とする燃料噴射弁制御装置。
    It is a fuel-injection-valve control apparatus of Claim 1, Comprising:
    The first signal is:
    An injection pulse signal indicating a command for opening or closing the fuel injection valve,
    The detection standby determination unit
    When the command indicated by the injection pulse signal changes from valve opening to valve closing, or when the command changes from valve closing to valve opening, the detection of the valve opening of the cylinder that burns next to the cylinder corresponding to the command is performed. A fuel injection valve control device, characterized in that it is determined that a standby period starts.
  3.  請求項1に記載の燃料噴射弁制御装置であって、
     前記検知スタンバイ判定部は、
     前記信号処理機能部が燃料噴射弁の閉弁の検知の実行を終了したときに、この燃料噴射弁が設けられた気筒の次に燃焼する気筒の開弁または閉弁の前記検知スタンバイ期間を開始すると判定する
     ことを特徴とする燃料噴射弁制御装置。
    It is a fuel-injection-valve control apparatus of Claim 1, Comprising:
    The detection standby determination unit
    When the signal processing function unit finishes detecting the closing of the fuel injection valve, the detection standby period for opening or closing the cylinder that burns next to the cylinder provided with the fuel injection valve is started. A fuel injection valve control device characterized in that it is determined.
  4.  請求項2に記載の燃料噴射弁制御装置であって、
     前記検知スタンバイ判定部は、
     前記信号処理機能部が燃料噴射弁の開弁の検知の実行を終了したときに、この燃料噴射弁が設けられた気筒の開弁の前記検知スタンバイ期間を終了すると判定する
     ことを特徴とする燃料噴射弁制御装置。
    The fuel injection valve control device according to claim 2,
    The detection standby determination unit
    When the signal processing function unit finishes detecting the opening of the fuel injection valve, it is determined to end the detection standby period of the valve opening of the cylinder provided with the fuel injection valve. Injection valve control device.
  5.  請求項2に記載の燃料噴射弁制御装置であって、
     前記第2の信号は、
     前記噴射パルス信号であり、
     前記検知実行判定部は、
     前記検知スタンバイ期間が開始された気筒について、前記検知スタンバイ期間が開始されたタイミングから所定の時間が経過したときに、開弁の検知の実行を開始すると判定する
     ことを特徴とする燃料噴射弁制御装置。
    The fuel injection valve control device according to claim 2,
    The second signal is:
    The jet pulse signal;
    The detection execution determination unit
    The fuel injection valve control characterized in that, for a cylinder for which the detection standby period has been started, it is determined that execution of valve opening detection is started when a predetermined time has elapsed from the timing at which the detection standby period has been started. apparatus.
  6.  請求項2に記載の燃料噴射弁制御装置であって、
     前記第2の信号は、
     燃料噴射弁の駆動電流であり、
     前記検知実行判定部は、
     前記検知スタンバイ期間が開始された気筒について、駆動電流が第1の閾値になったタイミングから、所定の時間が経過したときに、開弁の検知の実行を開始すると判定する
     ことを特徴とする燃料噴射弁制御装置。
    The fuel injection valve control device according to claim 2,
    The second signal is:
    The drive current of the fuel injection valve,
    The detection execution determination unit
    For the cylinder in which the detection standby period is started, it is determined that the detection of opening of the valve is started when a predetermined time has elapsed from the timing when the drive current becomes the first threshold value. Injection valve control device.
  7.  請求項6に記載の燃料噴射弁制御装置であって、
     前記第1の閾値は、
     燃料噴射弁の弁体を開弁させるために必要な開弁電流に設け、
     前記検知実行判定部は、
     前記検知スタンバイ期間が開始された気筒について、開弁電流が前記第1の閾値以上になったタイミングから、所定の時間が経過したときに、開弁の検知の実行を開始すると判定する
     ことを特徴とする燃料噴射弁制御装置。
    It is a fuel-injection-valve control apparatus of Claim 6, Comprising:
    The first threshold is:
    Provide the valve opening current necessary to open the valve body of the fuel injection valve,
    The detection execution determination unit
    For the cylinder in which the detection standby period has started, it is determined to start detection of valve opening when a predetermined time has elapsed from the timing when the valve opening current becomes equal to or greater than the first threshold value. A fuel injection valve control device.
  8.  請求項2に記載の燃料噴射弁制御装置であって、
     前記第2の信号は、
     燃料噴射弁の駆動電流であり、
     前記検知実行判定部は、
     前記検知スタンバイ期間が開始された気筒について、前記ピーク電流が制御目標値に達した後、予め設定された所定の期間において駆動電流の供給を停止後、再び駆動電流の供給を再開したタイミングから、所定の時間が経過したときに、開弁の検知の実行を開始すると判定する
     ことを特徴とする燃料噴射弁制御装置。
    The fuel injection valve control device according to claim 2,
    The second signal is:
    The drive current of the fuel injection valve,
    The detection execution determination unit
    For the cylinder in which the detection standby period is started, after the peak current reaches the control target value, the supply of the drive current is stopped again in a predetermined period set in advance, and then the supply of the drive current is resumed. A fuel injection valve control device that determines to start detection of valve opening when a predetermined time has elapsed.
  9.  請求項1に記載の燃料噴射弁制御装置であって、
     前記第1の信号は、
     点火信号であり、
     前記検知スタンバイ判定部は、
     前記点火信号が変化したタイミングで、多段噴射のうち1回目の噴射が開始されていない気筒を特定し、特定した気筒について、一連の多段噴射における噴射回数が所定の回数になったときに、開弁の前記検知スタンバイ期間を開始すると判定する
     ことを特徴とする燃料噴射弁制御装置。
    It is a fuel-injection-valve control apparatus of Claim 1, Comprising:
    The first signal is:
    Ignition signal,
    The detection standby determination unit
    When the ignition signal changes, a cylinder in which the first injection is not started among the multistage injections is specified, and when the number of injections in the series of multistage injections reaches a predetermined number for the specified cylinders, the cylinder is opened. It determines with starting the said detection standby period of a valve. The fuel injection valve control apparatus characterized by the above-mentioned.
  10.  請求項3に記載の燃料噴射弁制御装置であって、
     前記検知実行判定部は、
     開弁の検知を実行することが開始されたタイミングから所定の時間が経過したときに、開弁の検知の実行を終了する
     ことを特徴とする燃料噴射弁制御装置。
    The fuel injection valve control device according to claim 3,
    The detection execution determination unit
    The fuel injection valve control device is characterized in that the execution of the valve opening detection is terminated when a predetermined time elapses from the timing when the valve opening detection is started.
  11.  請求項3に記載の燃料噴射弁制御装置であって、
     保持電流が所定の目標値近傍になる様に保持電流をオン/オフするスイッチを備え、
     前記検知実行判定部は、
     開弁を保持するための保持電流を示す目標電流になるように前記スイッチがスイッチングを開始したタイミングから所定の時間が経過したときに、開弁の検知の実行を終了すると判定する
     ことを特徴とする燃料噴射弁制御装置。
    The fuel injection valve control device according to claim 3,
    A switch for turning on / off the holding current so that the holding current is close to a predetermined target value,
    The detection execution determination unit
    It is determined that the detection of the opening of the valve is terminated when a predetermined time has elapsed from the timing at which the switch starts switching so as to obtain a target current indicating a holding current for holding the valve opening. A fuel injection valve control device.
  12.  請求項2に記載の燃料噴射弁制御装置であって、
     前記第2の信号は、
     燃料噴射弁の駆動電圧であり、
     前記検知実行判定部は、
     前記検知スタンバイ期間が開始された気筒について、駆動電圧が第2の閾値になったタイミングから、所定の時間が経過したときに、開弁の検知の実行を開始すると判定する
     ことを特徴とする燃料噴射弁制御装置。
    The fuel injection valve control device according to claim 2,
    The second signal is:
    Drive voltage of the fuel injection valve,
    The detection execution determination unit
    A fuel that is determined to start detection of valve opening when a predetermined time has elapsed from the timing at which the drive voltage reaches the second threshold for the cylinder in which the detection standby period has started. Injection valve control device.
  13.  請求項1に記載の燃料噴射弁制御装置であって、
     前記検知スタンバイ判定部は、
     前記信号処理機能部が燃料噴射弁の閉弁の検知の実行を終了したときに、この燃料噴射弁が設けられた気筒の次に燃焼する気筒の閉弁の前記検知スタンバイ期間を開始すると判定する
     ことを特徴とする燃料噴射弁制御装置。
    It is a fuel-injection-valve control apparatus of Claim 1, Comprising:
    The detection standby determination unit
    When the signal processing function unit finishes executing the detection of the closing of the fuel injection valve, it is determined to start the detection standby period of the closing of the cylinder that burns next to the cylinder provided with the fuel injection valve. A fuel injection valve control device.
  14.  請求項1に記載の燃料噴射弁制御装置であって、
     前記検知スタンバイ判定部は、
     前記信号処理機能部が燃料噴射弁の開弁の検知の実行を終了したときに、この燃料噴射弁が設けられた気筒の閉弁の前記検知スタンバイ期間を開始すると判定する
     ことを特徴とする燃料噴射弁制御装置。
    It is a fuel-injection-valve control apparatus of Claim 1, Comprising:
    The detection standby determination unit
    When the signal processing function unit finishes the detection of the opening of the fuel injection valve, it is determined to start the detection standby period of the valve closing of the cylinder provided with the fuel injection valve. Injection valve control device.
PCT/JP2015/051754 2014-02-18 2015-01-23 Fuel injection valve control device WO2015125551A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016504010A JP6478973B2 (en) 2014-02-18 2015-01-23 Fuel injection valve control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014028806 2014-02-18
JP2014-028806 2014-02-18

Publications (1)

Publication Number Publication Date
WO2015125551A2 true WO2015125551A2 (en) 2015-08-27

Family

ID=53879190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/051754 WO2015125551A2 (en) 2014-02-18 2015-01-23 Fuel injection valve control device

Country Status (2)

Country Link
JP (1) JP6478973B2 (en)
WO (1) WO2015125551A2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018127937A (en) * 2017-02-07 2018-08-16 トヨタ自動車株式会社 Fuel injection control device of internal combustion engine
JP2019196761A (en) * 2018-05-11 2019-11-14 本田技研工業株式会社 Fuel injection control device
JPWO2019181291A1 (en) * 2018-03-22 2021-01-14 日立オートモティブシステムズ株式会社 Internal combustion engine controller
JP2021042699A (en) * 2019-09-10 2021-03-18 株式会社デンソー Injection control device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3872121B2 (en) * 1995-11-29 2007-01-24 富士重工業株式会社 In-cylinder direct injection multi-cylinder engine control device
JP5093050B2 (en) * 2008-10-28 2012-12-05 日産自動車株式会社 Direct injection spark ignition engine fuel injection control device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018127937A (en) * 2017-02-07 2018-08-16 トヨタ自動車株式会社 Fuel injection control device of internal combustion engine
CN108487998A (en) * 2017-02-07 2018-09-04 丰田自动车株式会社 The fuel injection control system of internal combustion engine and the fuel injection control device of internal combustion engine
US10450996B2 (en) 2017-02-07 2019-10-22 Toyota Jidosha Kabushiki Kaisha Fuel injection control device and fuel injection control method for internal combustion engine
CN108487998B (en) * 2017-02-07 2021-05-18 丰田自动车株式会社 Fuel injection control device for internal combustion engine and fuel injection control method for internal combustion engine
JPWO2019181291A1 (en) * 2018-03-22 2021-01-14 日立オートモティブシステムズ株式会社 Internal combustion engine controller
US11098669B2 (en) 2018-03-22 2021-08-24 Hitachi Automotive Systems, Ltd. Internal combustion engine control device
JP2019196761A (en) * 2018-05-11 2019-11-14 本田技研工業株式会社 Fuel injection control device
JP2021042699A (en) * 2019-09-10 2021-03-18 株式会社デンソー Injection control device
US11591982B2 (en) 2019-09-10 2023-02-28 Denso Corporation Injection control device
JP7255432B2 (en) 2019-09-10 2023-04-11 株式会社デンソー Injection control device

Also Published As

Publication number Publication date
JPWO2015125551A1 (en) 2017-03-30
JP6478973B2 (en) 2019-03-06

Similar Documents

Publication Publication Date Title
JP4776651B2 (en) Internal combustion engine control device
JP6314733B2 (en) Fuel injection control device for internal combustion engine
JP6478973B2 (en) Fuel injection valve control device
JP6233080B2 (en) Fuel injection control device
US10309336B2 (en) Control device for fuel injection valve
JP6318575B2 (en) Fuel injection control device and fuel injection system
JP2010255444A (en) Device and method for fuel injection control of internal combustion engine
US10865727B2 (en) Device for controlling at least one switchable valve
CN102345519A (en) Fuel injection control apparatus for internal combustion engine
JPH0618134B2 (en) Solenoid drive control unit
JP6483495B2 (en) Boost control device for fuel injection valve
WO2019225076A1 (en) Fuel injection control device
JP6932846B2 (en) Fuel injection control device
JPWO2017006814A1 (en) Control device for fuel injection device
JP7107057B2 (en) Injection control device
US20190010889A1 (en) Optimization of current injection profile for solenoid injectors
JP6445927B2 (en) Control device for fuel injection valve
JP2002303180A (en) Method and device for monitoring interval between two injection processes
JP2010174768A (en) On-vehicle control device
JP5907412B2 (en) Solenoid valve drive
JP2013137028A (en) Device and method for fuel injection control of internal combustion engine
US11105290B2 (en) Electronic control device
JP5815590B2 (en) Solenoid valve drive
JP6521725B2 (en) Control device of fuel injection valve
KR20170007292A (en) Method for determining a closing time of a fuel injector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15752764

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase in:

Ref document number: 2016504010

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15752764

Country of ref document: EP

Kind code of ref document: A2