WO2015125262A1 - Biological optical measurement device and biological optical measurement method - Google Patents

Biological optical measurement device and biological optical measurement method Download PDF

Info

Publication number
WO2015125262A1
WO2015125262A1 PCT/JP2014/054102 JP2014054102W WO2015125262A1 WO 2015125262 A1 WO2015125262 A1 WO 2015125262A1 JP 2014054102 W JP2014054102 W JP 2014054102W WO 2015125262 A1 WO2015125262 A1 WO 2015125262A1
Authority
WO
WIPO (PCT)
Prior art keywords
biological
light
unit
subject
reaction
Prior art date
Application number
PCT/JP2014/054102
Other languages
French (fr)
Japanese (ja)
Inventor
洋和 敦森
木口 雅史
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2014/054102 priority Critical patent/WO2015125262A1/en
Publication of WO2015125262A1 publication Critical patent/WO2015125262A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/0261Measuring blood flow using optical means, e.g. infrared light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • A61B5/162Testing reaction times
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • A61B5/165Evaluating the state of mind, e.g. depression, anxiety
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/40Detecting, measuring or recording for evaluating the nervous system
    • A61B5/4058Detecting, measuring or recording for evaluating the nervous system for evaluating the central nervous system
    • A61B5/4064Evaluating the brain
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2503/00Evaluating a particular growth phase or type of persons or animals
    • A61B2503/20Workers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2505/00Evaluating, monitoring or diagnosing in the context of a particular type of medical care
    • A61B2505/09Rehabilitation or training
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0233Special features of optical sensors or probes classified in A61B5/00
    • A61B2562/0238Optical sensor arrangements for performing transmission measurements on body tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6814Head
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems

Definitions

  • the present invention relates to an apparatus that supports the evaluation of a subject's condition based on measurement data and performance data of a biological light measurement apparatus.
  • Patent Documents 2 and 3 describe methods for evaluating an individual's mental state and biological information based on a non-invasive biological light measurement technique using light having a wavelength from visible to infrared.
  • the light emitted from the light source is irradiated onto the subject, the light transmitted or reflected inside the subject is detected, and the blood circulation, hemodynamics, hemoglobin is detected from the detected light quantity. Convert to biological information such as concentration change.
  • linguistic WM tasks tasks that require phonological loops
  • non-linguistic WM tasks tasks that do not require phonological loops
  • WM human working memory
  • Patent Documents 2 and 3 have a feature that an index (a mood index) that reflects a depressed mood is calculated based on a specific formula using the measurement results of these frontal lobe activities.
  • Patent Document 3 has a feature that an appropriate mathematical formula is selected from a plurality of mathematical formulas prepared in advance according to the task performance (correct answer rate, reaction time) of an individual cognitive task, and a mood index is calculated.
  • the advantages of these methods are that there is no need to induce mood changes prior to measurement, and that non-constrained and non-invasive biological light measurement techniques are used. In other words, if this method is used, it is possible to directly obtain quantitative values reflecting daily mood states that are not triggered by specific information, and to evaluate moods in mental health measures.
  • the biological reaction measurement technology that acquires the reaction time for a cognitive task can easily give information on an individual's condition such as fatigue.
  • an individual it is possible for an individual to adjust the speed of a biological reaction such as a reaction time. For example, when an individual responds to a cognitive task, it is easy to intentionally delay in about 1 second and answer in about 2 seconds for a task that can be answered in 1 second with the current ability and state. .
  • a system based on biological reaction measurement technology receives such a biological reaction, determine whether the biological reaction reflects the individual's ability or condition or is intentionally modified It is difficult.
  • the biological optical measurement technology that visualizes the brain activity state is non-invasive and non-constrained, and can be used in a daily environment compared to large-scale brain function imaging technology.
  • this biological light measurement technique is promising as a technique for providing information on an individual's mental state such as daily mood and emotion by acquiring a biological signal for a cognitive task that requires short-term memory.
  • these conventional techniques that reflect the mental state of an individual evaluate the brain function, which is a biological signal for a cognitive task. For example, as described above, when an answer to a cognitive task is intentionally delayed, There is a possibility that a biological signal reflecting the state cannot be acquired.
  • the state of the brain or living body may be different from that of a healthy person, and the biological signal acquired by the biological light measurement technique is different from that of a healthy person. It is conceivable to have
  • a biological light measurement apparatus includes one or more light irradiating means for irradiating a subject with light and one or more lights for detecting light transmitted or reflected by the subject.
  • a detection unit one or a plurality of measurement points configured by one or a combination of the light irradiation unit and the light detection unit, and a display unit that presents one or a plurality of tasks to the subject,
  • An input unit that acquires a biological reaction of the subject with respect to the subject, a calculation unit that calculates a biological signal inside the subject from the intensity of light detected by the light detection unit, and a memory that stores the biological signal
  • the storage unit includes a biological signal and biological reaction database of a healthy person, and the calculation unit includes the database stored in advance in the storage unit and the biological body of the subject. The degree of coincidence and the relationship between the biological reaction calculates and displays on the display unit and the items.
  • the biological optical measurement device By using the biological optical measurement device according to the present invention, it is possible to objectively quantify how well the relationship between the biological signal measured in a daily environment and the biological reaction matches with the healthy person database. It is.
  • the figure which shows an example of the database preserve
  • the flowchart which shows the process of the biological light measuring device which is an Example of this invention, and a program.
  • the figure which shows an example of the database preserve
  • the inventors present multiple working memory (WM) tasks that require short-term memory to 13 subjects who are taking a leave of absence due to mental illness and undergoing training to return to work, and measure biological light.
  • Measurement of biological signals (brain activity signals) in the prefrontal cortex using a 22-channel measurement device based on the technology and biological reactions (reaction time, correct answer rate) by the input means (game controller) were obtained.
  • the WM task the spatial WM task shown in FIG. 3 and the linguistic WM task shown in FIG. 4 were used as the WM task in FIG. 3 will be described as an example.
  • the subject memorizes a plurality of white square locations presented on the target screen and remembers one white square location presented on the subsequent probe screen.
  • the biological reaction of the subject acquired by the input means is the response time (for example, milliseconds) from the presentation of the probe screen until the subject presses the button on the input means, and the correct answer of the ⁇ ⁇ information obtained by pressing the button of the subject It is information, and the correct answer rate is calculated from correct answer information of multiple tasks.
  • the biological light measurement technique will be described in detail in the following examples.
  • the inventors conducted the above measurement once a week for several months. Further, the biological signal data at each measurement point obtained in each of the spatial and linguistic WM tasks is subjected to fluctuation correction, noise processing, and the like, and after obtaining an average waveform between a plurality of task presentations, the target stimulus presentation 5 An average value of ⁇ 3.5 seconds was defined as a brain activity value. Furthermore, the relationship between the average value of reaction time acquired by multiple presentations of WM tasks and the brain activity value was examined. As a result, in the initial stage when the subject started participating in the training, the brain activity value and the reaction time for the spatial WM task were positively correlated, especially in the 46th and 10th fields of Broadman. However, a clear correlation tendency was not obtained.
  • FIG. 1 shows a schematic configuration diagram of the biological light measurement device of the present invention.
  • the living body light measurement apparatus includes a living body light measuring unit 100 that performs living body measurement by irradiating a subject with light and detecting light transmitted through or reflected from the subject, and presents a stimulus to the subject and the living body.
  • a display unit 110 that displays the measurement result, a calculation unit 111 that presents a stimulus to the display unit 110 and gives various controls to the biological light measurement unit 100, and displays the biological measurement result on the analysis and display unit 110, and a calculation unit 111
  • An input unit 112 that receives input of various information necessary for the biological reaction and analysis of the subject to be analyzed in step 1, a storage unit 109 that stores biological measurement results and information on task presentation, and the storage unit 109 that stores the information in advance It has a database 150 of biological reactions and biological measurement results.
  • the calculation unit 111 includes a stimulus presentation unit 111 a that presents a stimulus on the display unit 110, a measurement control unit 111 b that provides various controls to the biological light measurement unit 100, and an analysis unit that analyzes and displays the biological measurement result on the display unit 110. 111c.
  • the biological light measuring unit 100 irradiates light of one wavelength or a plurality of different wavelengths out of wavelengths of about 600 to 900 nm with high biological permeability. In this embodiment, the biological light measuring unit 100 irradiates light of two wavelengths. Show.
  • the digital / analog converters 101a and 101b for converting the digital signals D1a and D1b transmitted by the measurement control unit 111b into analog signals A1a and A1b, respectively, and the analog signals A1a and A1b having different predetermined frequencies, respectively.
  • Modulators 102a and 102b that generate light source drive signals L1a and L1b by modulation with F1a and F1b, light sources 103a and 103b such as laser diodes and LEDs that emit light of different wavelengths based on the light source drive signals L1a and L1b, and light sources
  • An optical mixer 105 that mixes the light emitted from the optical mixers 103a and 103b, an optical fiber 900 that guides the light mixed by the optical mixer 105 to the subject, and the subject that is irradiated with the light guided by the optical fiber 900
  • a light receiving unit 1061 that receives light that has been transmitted or reflected, a measurement point 1001 that is configured at a substantially midpoint between the light emitting unit 1041 and the light receiving unit 1061, and received by the light receiving unit 1061 and guided by the optical fiber 900.
  • the photodetector 106 such as a silicon photodiode, avalanche photodiode, or photomultiplier that detects the emitted light, and the analog signal A2 output from the photodetector 106 are locked in at different frequencies F1a and F1b, respectively.
  • Lock-in amplifiers 107a and 107b that output signals A3a and A3b, and analog / digital converters 108a and 108b that convert analog signals A3a and A3b into digital signals D3a and D3b, respectively, and transmit them to measurement control unit 111b.
  • the biological light measurement apparatus proceeds with processing according to the flowchart of FIG.
  • step s201 under the control of the measurement control unit 111b of the calculation unit 111, the light irradiation unit 1041 irradiates the subject 800 with light, and the light receiving unit 1061 receives the light transmitted or reflected inside the subject 800. And the biological signal of the measurement unit 1001 is acquired.
  • step s202 the stimulus presentation unit 111a of the calculation unit 111 displays one or more cognitive tasks to be imposed on the subject 800 on the display unit 110, and the biological reaction R of the subject 800 with respect to the cognitive task is displayed.
  • the input unit 112 transmits the data to the reception analysis unit 111c.
  • the cognitive task presented on the display unit 110 is a space that records and holds the positions of a plurality of white squares included in the target stimulus, as shown in FIG.
  • Linguistic working memory (WM) task or linguistic WM task that remembers / holds symbols and characters that require phonological loops to be presented as target stimuli, as shown in Fig. 4, and recalls / judges with probe stimuli after a few seconds
  • the biological reaction R in these cognitive tasks is the time from when the probe stimulus is presented until the input of the subject 800 is received by the input unit 112 (reaction time RT), and the subject 800 received by the input unit 112.
  • the analysis unit 111c receives the input, and the analysis unit 111c calculates the correct answer rate (% Correct) calculated based on the result of determining the correct and incorrect answers to the cognitive task. For example, when the analysis unit 111c receives the input of the subject 800 from the input unit 112 after 1650 milliseconds from the probe stimulus presentation, the analysis unit 111c records the time of 1650 milliseconds in the storage unit 109 as the reaction time RT. Further, for example, when the stimulus presentation unit 111a repeatedly presents the spatial WM task as shown in FIG.
  • the analysis unit 111c repeatedly inputs the subject 800 after each task presentation at the input unit 112 (5
  • the response time RT is recorded in the storage unit 109, and the result of determining the correct answer and the incorrect answer from each input is recorded in the storage unit 109.
  • the measurement control unit 111b ends the acquisition of the biological signal of the measurement unit 1001, and transmits the biological signal measurement result to the analysis unit 111c.
  • step s204 the analysis unit 111c stores the biological signal measurement result in the storage unit 109.
  • step s205 the analysis unit 111c calculates a brain activity value Act and a biological reaction R (reaction time RT and correct response rate% Correct) for the cognitive task based on the biological signal measurement result.
  • the brain activity value Act may be calculated using the same calculation method as that described in Patent Document 2.
  • step s206 the analysis unit 111c reads the database 150 stored in the storage unit 109.
  • the database 150 is stored as, for example, a table 151 as shown in FIG. 5, and the brain activity value Act of a healthy person measured in the past and the biological reaction R (reaction time RT and correct answer rate% Correct) for a cognitive task.
  • the information of this table 151 can be displayed on the display unit 110 as the relationship of the brain activity value Act to the biological reaction R by the analysis unit 111c.
  • FIG. 6 shows an example in which the reaction time RT is used as an example of the biological reaction R and the relationship between the brain activity values Act is displayed on the display unit 110.
  • the analysis unit 111 c reads the information in the table 151 stored in the storage unit 109, plots the brain activity values Act against the reaction time RT of each subject, and linearly fits a straight line 151 F to the plot data, Curves 151U and 151L indicating 95% confidence intervals calculated statistically are calculated by the analysis unit 111c and displayed on the display unit 110, and the relationship (correlation) between the reaction time RT and the brain activity value Act in a healthy person ).
  • the analysis unit 111c reads the table 151 which is the database 150 stored in the storage unit 109, and the information recorded in the table 151 and the brain activity calculated in step s205 are displayed on the display unit 110.
  • FIG. 7 is an example in which the extent to which the brain activity value Act and the reaction time RT calculated in step s205 coincide with the information recorded in the table 151 is displayed on the display unit 110.
  • the plot 152 indicating the brain activity value Act with respect to the reaction time RT of the subject 800 calculated in step s205 is between the 95% confidence intervals 151U and 151L calculated by the analysis unit 111c based on the table 151. Is not included.
  • the subject since the brain activity value Act is large and the reaction time RT is slow with respect to the healthy person database 150, the subject indicates that the behavior control and brain activity are not functioning well.
  • the reaction time RT is described as an example of the biological reaction R displayed on the display unit 110.
  • the correct response rate% Correct is displayed as the biological reaction R displayed on the display unit 110. Needless to say, the configuration using the is also effective.
  • FIG. 8 shows a display unit that displays the brain activity value Act of the subject 800 calculated by each analysis unit 111c and the acquired reaction time RT when the stimulus presentation unit 111a presents such a WM task six times.
  • An example plotted on 110 is shown.
  • the analysis unit 111c reads and displays the healthy person database 150 stored in the storage unit 109, and the display method is the same as in the first embodiment.
  • the plot of the brain activity value Act against the reaction time RT of the subject 800 with six WM task presentations is a white circle symbol in the region surrounded by the broken line 152b.
  • the broken line 152b is shown in FIG. 8 for explaining the present embodiment, but it may or may not be actually displayed on the display unit 110.
  • the analysis unit 111c calculates the barycentric values of the six plots in the broken line 152b and displays them as black circle symbols in the broken line 152b on the display unit 110. As described above, it is possible to visualize how much the brain activity value Act and the biological reaction R of each time when the cognitive task is performed a plurality of times overlap the database 150.
  • the analysis unit 111c determines that the data in which the white circle symbol included in the broken line 152b in FIG. 8 is within the 95% confidence intervals 151U and 151L based on the healthy person database 150 is OK_data, and the data outside the range is NG_data.
  • the degree of coincidence with the healthy person database is calculated as a percentage.
  • the analysis unit 111c calculates the matching degree with the healthy person database 150 as 33.3% based on (Equation 1).
  • the analysis unit 111c can store the degree of coincidence of the subject 800 calculated by (Equation 1) in the storage unit 109 in association with the measurement date.
  • the analysis unit 111c reads the degree of coincidence of the past measurement date calculated based on (Equation 1) and stored in the storage unit 109, and displays the degree of coincidence on each measurement date on the display unit 110. It is possible to display in time series.
  • the degree of coincidence with the healthy person database 150 continuously decreases, it is possible to display a message as shown in FIG. 10, and behavior control and brain activity are not functioning well for the target person. Can be alerted as an alarm.
  • the living body light measurement apparatus shows the mood state of the subject 800 in addition to the degree of coincidence with the healthy person database 150 described in Example 3 by adopting the technique disclosed in Patent Document 2.
  • the calculation unit 111 (including the stimulus presentation unit 111a, the measurement control unit 111b, and the analysis unit 111c) replaces the step s202 of the flowchart shown in FIG. 2 with a step s202a and a step as shown in FIG. Processing is performed in accordance with the flowchart introducing s202b.
  • processing with the same symbols or numbers as in the flowchart of FIG. In the flowchart of FIG.
  • step s202a the stimulus presentation unit 111a presents the first cognitive task on the display unit 110, and the analysis unit 111c receives a biological signal acquired by the measurement control unit 111b, and then in step s202b.
  • the stimulus presentation unit 111a presents the second cognitive task on the display unit 110, and the analysis unit 111c receives a biological signal acquired by the measurement control unit 111b.
  • step s205 the analysis unit 111c reads out the biological signal stored in the storage unit 109, calculates a brain activity value Act_1 for the first cognitive task, and a brain activity value Act_2 for the second cognitive task, as shown in FIG.
  • the mood index Mod_index displayed as a relative value is calculated, and the degree of coincidence with the healthy person database 150 is calculated by Equation 1 according to the method described in the third embodiment.
  • the brain activity value Act_1 for the first cognitive task or the brain activity value Act_2 for the second cognitive task may be used for calculating the degree of coincidence, or both may be used.
  • the calculation formula of the mood index Mood_index follows the calculation method of the “depression index (D_idx)” described in Patent Document 2.
  • the analysis unit 111c can display the degree of coincidence with the healthy person database 150 and the time series change of the mood index Mod_index on the display unit 110 as shown in FIG. 12, for example. By displaying in this way, the mood state can be visualized in addition to the relationship between the subject's behavior control and brain activity, and information useful for grasping the state of the subject can be provided.
  • the healthy person database 150 is exemplified as being based on a large number of subject data measured in advance.
  • this database may be stored data of the individual subject.
  • FIG. 13 shows a storage unit in which brain activity values Act and biological responses R (reaction time RT, correct response rate% Correct) acquired over a plurality of days in the past for the same subject 800 are associated with each measurement date.
  • 109 shows an example stored as the database 150p.
  • the past data of the subject 800 is stored in the storage unit 109 in advance as the database 150p, so that the analysis unit 111c is based on the data acquired in the past from the storage unit 109.
  • the database 150p can be read and displayed as shown in FIGS.
  • the biological optical measurement device accumulates data of the time when the subject 800 was healthy in the past as the database 150p, for example, thereby causing the biological reaction R of the subject 800 to occur. And the relationship between the brain activity Act and the brain activity Act can be visualized.
  • the distribution of the healthy person database 150 described in Examples 1 to 5 has been described mainly using a range showing a 95% confidence interval (for example, between the curves 151U and 151L in FIG. 7), but the 99% confidence interval. Even if it is a 90% confidence interval, it is not necessary to assume a specific distribution, and information that prescribes the range of healthy individuals in the relationship between the brain activity value Act and the biological reaction R is stored in advance. 109 may be stored.
  • DESCRIPTION OF SYMBOLS 100 ... Living body light measurement part, 100C ... Housing
  • Light receiving unit 107a, 107b ... Lock-in amplifier, 108a, 108b ... Analog / digital converter, 109 ... Storage unit, 110 ... Display unit, 111 ... Calculation unit, 111a ... Stimulus presentation unit, 111b ... Measurement control , 111c ... analysis unit, 112 ... input unit, 150 ... database, 150p ... database based on accumulation of personal data, 151 ... table that is an example of database, 800 ... subject, 900 ... optical fiber,

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Surgery (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Psychology (AREA)
  • Neurology (AREA)
  • Psychiatry (AREA)
  • Child & Adolescent Psychology (AREA)
  • Social Psychology (AREA)
  • Hospice & Palliative Care (AREA)
  • Developmental Disabilities (AREA)
  • Physiology (AREA)
  • Educational Technology (AREA)
  • Hematology (AREA)
  • Cardiology (AREA)
  • Neurosurgery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

Provided is a method for grasping a person's mental state, such as mood or emotion, by employing a noninvasive biological optical measurement technique. Disclosed is a biological optical measurement device comprising a light-emitting unit, a light-receiving unit, a storage unit, and an input unit, wherein: a cognitive task is presented to a subject; a biological signal within the subject is calculated from the intensity of light received by the light-receiving unit; a biological reaction to the cognitive task is acquired by the input unit; and the degree of matching between the biological signal and the biological reaction against a database indicating relationships between biological signals and biological reactions stored in the storage unit is calculated.

Description

生体光計測装置、生体光計測方法Biological light measurement device and biological light measurement method
 本発明は、生体光計測装置の計測データとパフォーマンスデータに基づき、被験者の状態評価を支援する装置に関する。 The present invention relates to an apparatus that supports the evaluation of a subject's condition based on measurement data and performance data of a biological light measurement apparatus.
 近年、メンタルヘルス不調者数は増加しつつあり、個人の心身の健康状態を適切に把握することが重要となっている。心身の健康状態を取得および管理する技術はこれまで提案されており、例えば、個人が記憶を要する認知課題を行い、回答すべき刺激が提示されてから当該個人が回答するまでの反応時間を取得し、この反応時間から疲労指標を算出し表示する技術が、特許文献1に記載されている。この技術によれば、個人の疲労の程度を簡便に把握することが可能である。 In recent years, the number of mental health disorders is increasing, and it is important to properly grasp the mental and physical health of individuals. Techniques for acquiring and managing mental and physical health conditions have been proposed so far, for example, an individual performs a cognitive task that requires memory, and obtains a reaction time from when a stimulus to be answered is presented to when the individual responds A technique for calculating and displaying a fatigue index from this reaction time is described in Patent Document 1. According to this technique, it is possible to easily grasp the degree of individual fatigue.
 また、可視から赤外にある波長の光を用いた非侵襲の生体光計測技術に基づき、個人の精神状態や生体情報を評価する方法が、例えば、特許文献2および3に記載されている。これらの文献に記載の生体光計測技術では、光源で発せられた光を被検体に照射し、被検体内を透過あるいは反射した光を検出し、その検出光量から、血液循環、血行動態、ヘモグロビン濃度変化などの生体情報に変換する。また、ヒトのワーキングメモリ(WM)機能を働かせる言語性WM課題(音韻ループを要する課題)と非言語性WM課題(音韻ループを要しない課題)を与え,生体光計測技術により、WM課題の記銘・保持および想起に伴う前頭葉活動を計測する。特許文献2および3で示される技術は、これらの前頭葉活動の計測結果を用い、抑うつ気分を反映した指標(気分指標)を特定の数式に基づいて算出するという特徴を有する。特に、特許文献3は、あらかじめ用意された複数の数式の中から、個人の認知課題の課題成績(正答率、反応時間)によって適切な数式を選択し、気分指標を算出するという特徴を有する。これらの手法の利点は、計測の前に気分変化を誘発する必要がないこと、また非拘束・非侵襲の生体光計測技術を用いることである。すなわち、本手法を用いれば、特定の情報に誘発されない日常的な気分状態を反映した定量値を直接取得し、メンタルヘルス対策における気分評価が可能である。 Also, for example, Patent Documents 2 and 3 describe methods for evaluating an individual's mental state and biological information based on a non-invasive biological light measurement technique using light having a wavelength from visible to infrared. In the biological light measurement techniques described in these documents, the light emitted from the light source is irradiated onto the subject, the light transmitted or reflected inside the subject is detected, and the blood circulation, hemodynamics, hemoglobin is detected from the detected light quantity. Convert to biological information such as concentration change. In addition, linguistic WM tasks (tasks that require phonological loops) and non-linguistic WM tasks (tasks that do not require phonological loops) that use human working memory (WM) functions are given. Measure frontal lobe activity associated with name, retention and recall. The techniques shown in Patent Documents 2 and 3 have a feature that an index (a mood index) that reflects a depressed mood is calculated based on a specific formula using the measurement results of these frontal lobe activities. In particular, Patent Document 3 has a feature that an appropriate mathematical formula is selected from a plurality of mathematical formulas prepared in advance according to the task performance (correct answer rate, reaction time) of an individual cognitive task, and a mood index is calculated. The advantages of these methods are that there is no need to induce mood changes prior to measurement, and that non-constrained and non-invasive biological light measurement techniques are used. In other words, if this method is used, it is possible to directly obtain quantitative values reflecting daily mood states that are not triggered by specific information, and to evaluate moods in mental health measures.
特開2011-161137号公報JP 2011-161137 A 特開2009-285000号公報JP 2009-285000 A 特開2013-146410号公報JP 2013-146410 A
 認知課題に対する反応時間などを取得する生体反応計測技術は、上述の通り、疲労のような個人の状態に関する情報を簡便に与えることが可能である。しかし、反応時間などの生体反応は、反応の速さを個人が調整することが可能である。例えば、個人が認知課題を回答する際に、その個人がその時点の能力や状態を以て1秒で回答できる課題に対し、意図的に1秒程度遅らせて2秒程度で回答することは容易である。生体反応計測技術に基づくシステムがこのような生体反応を受け取った場合、この生体反応が個人の能力や状態を反映したものであるか、意図的に改変されたものであるか、を判定することは困難である。 As described above, the biological reaction measurement technology that acquires the reaction time for a cognitive task can easily give information on an individual's condition such as fatigue. However, it is possible for an individual to adjust the speed of a biological reaction such as a reaction time. For example, when an individual responds to a cognitive task, it is easy to intentionally delay in about 1 second and answer in about 2 seconds for a task that can be answered in 1 second with the current ability and state. . When a system based on biological reaction measurement technology receives such a biological reaction, determine whether the biological reaction reflects the individual's ability or condition or is intentionally modified It is difficult.
 また、脳の活動状態を可視化する生体光計測技術は、非侵襲・非拘束で脳機能を評価するため、大型の脳機能画像化技術と比較し、日常的な環境での使用が可能である。さらに、この生体光計測技術は、短期的な記憶を要する認知課題に対する生体信号を取得することによって、日常的な気分、感情など個人の精神状態に関する情報を与える技術として有力である。しかし、個人の精神状態を反映するこれらの従来技術は、認知課題に対する生体信号である脳機能を評価するため、例えば、上述と同様に、認知課題に対する回答を意図的に遅らせた場合、本人の状態を反映した生体信号を取得できない可能性がある。また、例えば、個人が精神疾患などにより投薬を受けている場合などは、脳や生体の状態が健常者と異なる可能性があり、生体光計測技術で取得した生体信号が健常者とは異なる特徴を有することが考えられる。 In addition, the biological optical measurement technology that visualizes the brain activity state is non-invasive and non-constrained, and can be used in a daily environment compared to large-scale brain function imaging technology. . Furthermore, this biological light measurement technique is promising as a technique for providing information on an individual's mental state such as daily mood and emotion by acquiring a biological signal for a cognitive task that requires short-term memory. However, these conventional techniques that reflect the mental state of an individual evaluate the brain function, which is a biological signal for a cognitive task. For example, as described above, when an answer to a cognitive task is intentionally delayed, There is a possibility that a biological signal reflecting the state cannot be acquired. In addition, for example, when an individual is taking medication due to mental illness or the like, the state of the brain or living body may be different from that of a healthy person, and the biological signal acquired by the biological light measurement technique is different from that of a healthy person. It is conceivable to have
 以上より、従来技術においては、生体計測における個人の意図的な反応を回避するとともに、当該個人が健常者の状態にあるかどうかの指標を示すことが課題であった。 As described above, in the prior art, it is a problem to avoid an intentional reaction of an individual in living body measurement and to show an index as to whether or not the individual is in a normal state.
 上記課題を解決するため、本発明による生体光計測装置は、被検体に光を照射する1つまたは複数の光照射手段と、被検体を透過あるいは反射した光を検出する1つまたは複数の光検出手段と、前記光照射手段と前記光検出手段の1つまたは複数の組み合わせにより構成される1つまたは複数の計測点と、前記被検体へ1つまたは複数の課題を呈示する表示部と、前記被検体の前記課題に対する生体反応を取得する入力部と、前記光検出手段で検出された光の強度から前記被検体の内部における生体信号を算出する演算部と、前記生体信号を保存する記憶部とを有し、前記記憶部は健常者の生体信号と生体反応のデータベースを有するとともに、前記演算部は、前記記憶部にあらかじめ保存された前記データベースと前記被検体の前記生体信号と前記生体反応との一致度や関係性を計算し前記表示部に表示する。 In order to solve the above-described problems, a biological light measurement apparatus according to the present invention includes one or more light irradiating means for irradiating a subject with light and one or more lights for detecting light transmitted or reflected by the subject. A detection unit, one or a plurality of measurement points configured by one or a combination of the light irradiation unit and the light detection unit, and a display unit that presents one or a plurality of tasks to the subject, An input unit that acquires a biological reaction of the subject with respect to the subject, a calculation unit that calculates a biological signal inside the subject from the intensity of light detected by the light detection unit, and a memory that stores the biological signal The storage unit includes a biological signal and biological reaction database of a healthy person, and the calculation unit includes the database stored in advance in the storage unit and the biological body of the subject. The degree of coincidence and the relationship between the biological reaction calculates and displays on the display unit and the items.
 本発明による生体光計測装置を用いれば、日常的な環境下で計測される生体信号と生体反応の関係性が、健常者データベースとどの程度一致しているかを客観的に数値化することが可能である。 By using the biological optical measurement device according to the present invention, it is possible to objectively quantify how well the relationship between the biological signal measured in a daily environment and the biological reaction matches with the healthy person database. It is.
本発明の実施例である生体光計測装置の構成を示すブロック図。The block diagram which shows the structure of the biological light measuring device which is an Example of this invention. 本発明の実施例である生体光計測装置およびプログラムの処理を示すフローチャート。The flowchart which shows the process of the biological light measuring device which is an Example of this invention, and a program. 本発明の実施例であるワーキングメモリ課題の一例を示す図。The figure which shows an example of the working memory subject which is an Example of this invention. 本発明の実施例であるワーキングメモリ課題の一例を示す図。The figure which shows an example of the working memory subject which is an Example of this invention. 本発明における記憶部に保存されたデータベースの一例を示す図。The figure which shows an example of the database preserve | saved at the memory | storage part in this invention. データベースをグラフ化した一例を示す図。The figure which shows an example which graphed the database. 本発明の実施例である生体光計測装置の表示部の表示例を示す図。The figure which shows the example of a display of the display part of the biological light measuring device which is an Example of this invention. 本発明の実施例である生体光計測装置の表示部の表示例を示す図。The figure which shows the example of a display of the display part of the biological light measuring device which is an Example of this invention. 本発明の実施例で用いる数式を示す図。The figure which shows the numerical formula used in the Example of this invention. 本発明の実施例である生体光計測装置の表示部の表示例を示す図。The figure which shows the example of a display of the display part of the biological light measuring device which is an Example of this invention. 本発明の実施例である生体光計測装置およびプログラムの処理を示すフローチャート。The flowchart which shows the process of the biological light measuring device which is an Example of this invention, and a program. 本発明の実施例である生体光計測装置の表示部の表示例を示す図。The figure which shows the example of a display of the display part of the biological light measuring device which is an Example of this invention. 本発明における記憶部に保存されたデータベースの一例を示す図。The figure which shows an example of the database preserve | saved at the memory | storage part in this invention. 本発明の実施例である生体光計測装置の表示部の表示例を示す図。The figure which shows the example of a display of the display part of the biological light measuring device which is an Example of this invention.
 本発明では、日常的な環境下において、個人に対し呈示する認知課題に対する生体信号と生体反応の関係性に着目する。特に、精神疾患等により治療を受けている者がその回復に従い、個人間の生体信号と生体反応の関係性が変化するという以下の新しい知見を利用する。 In the present invention, attention is paid to the relationship between a biological signal and a biological reaction with respect to a cognitive task presented to an individual in a daily environment. In particular, the following new knowledge is utilized that a person being treated for a mental illness or the like changes the relationship between a biological signal and a biological reaction between individuals according to the recovery.
 発明者らは、精神疾患等により休職し職場復帰に向けてトレーニングを受けている13名の被験者に対し、短期的な記憶を要する複数回のワーキングメモリ(WM)課題を呈示し、生体光計測技術に基づく22チャンネル計測装置を用いた前頭前野の生体信号(脳活動信号)計測と、入力手段(ゲームコントローラ)による生体反応(反応時間、正答率)を取得した。ここで、WM課題として、図3に示す空間性WM課題と、図4に示す言語性WM課題を用いた。図3の空間性WM課題を例として説明すると、被験者は、ターゲット画面で呈示される複数の白い四角形の場所を記憶し、その後のプローブ画面で呈示される1つの白い四角形の場所が覚えた場所にあったかどうかを、入力手段の○ボタンと×ボタンで回答する。入力手段で取得される被験者の生体反応とは、プローブ画面の呈示から被験者が入力手段のボタン押下までの反応時間(例えばミリ秒)と、被験者のボタン押下によって得られる○×情報の正答誤答情報であり、複数課題の正答誤答情報から正答率を算出するものとした。なお、生体光計測技術については以下の実施例内で詳細に説明する。 The inventors present multiple working memory (WM) tasks that require short-term memory to 13 subjects who are taking a leave of absence due to mental illness and undergoing training to return to work, and measure biological light. Measurement of biological signals (brain activity signals) in the prefrontal cortex using a 22-channel measurement device based on the technology and biological reactions (reaction time, correct answer rate) by the input means (game controller) were obtained. Here, as the WM task, the spatial WM task shown in FIG. 3 and the linguistic WM task shown in FIG. 4 were used. The spatial WM task in FIG. 3 will be described as an example. The subject memorizes a plurality of white square locations presented on the target screen and remembers one white square location presented on the subsequent probe screen. Answer whether or not there is a problem with the ○ and × buttons on the input means. The biological reaction of the subject acquired by the input means is the response time (for example, milliseconds) from the presentation of the probe screen until the subject presses the button on the input means, and the correct answer of the ○ × information obtained by pressing the button of the subject It is information, and the correct answer rate is calculated from correct answer information of multiple tasks. The biological light measurement technique will be described in detail in the following examples.
 発明者らは、上記の計測を週1回、数か月にわたって実施した。また、空間性および言語性WM課題それぞれで得られる各計測点の生体信号データについて、揺らぎ補正やノイズ処理などを施し、複数回の課題呈示間の平均波形を求めた後、ターゲット刺激呈示から5~3.5秒の平均値を脳活動値として定義した。さらに、複数回のWM課題呈示で取得される反応時間の平均値と、脳活動値の関係性を調べた。その結果、被験者がトレーニングへの参加を開始した初期の段階では、特にブロードマンの46野および10野において、空間性WM課題に対する脳活動値と反応時間は正の相関、言語性WM課題に対しては明確な相関傾向が得られなかった。一方、被験者がトレーニングを終了し職場復帰に至る直前の状態では、空間性および言語性WM課題に対する脳活動値と反応時間は負の相関がみられた。この後者の結果は、発明者らが過去に健常者に対して計測した結果と同じ傾向であることを確認した。すなわち、本発明で根拠としている上記の計測結果は、脳活動値と反応時間の関係性が、職場復帰に必要な能力が不十分である時期(初期)においては健常者とは異なる一方、職場復帰直前においては健常者と類似の傾向を示すことから、被験者の状態が健常であるか否かを示す有益な情報となりうることを示唆する。 The inventors conducted the above measurement once a week for several months. Further, the biological signal data at each measurement point obtained in each of the spatial and linguistic WM tasks is subjected to fluctuation correction, noise processing, and the like, and after obtaining an average waveform between a plurality of task presentations, the target stimulus presentation 5 An average value of ˜3.5 seconds was defined as a brain activity value. Furthermore, the relationship between the average value of reaction time acquired by multiple presentations of WM tasks and the brain activity value was examined. As a result, in the initial stage when the subject started participating in the training, the brain activity value and the reaction time for the spatial WM task were positively correlated, especially in the 46th and 10th fields of Broadman. However, a clear correlation tendency was not obtained. On the other hand, in the state immediately before the subject finished training and returned to work, there was a negative correlation between the brain activity value and the reaction time for spatial and verbal WM tasks. This latter result confirmed that the present inventors had the same tendency as the result that the inventors measured in the past in healthy subjects. That is, the above measurement results based on the present invention show that the relationship between the brain activity value and the reaction time is different from that of a healthy person at the time when the ability necessary for returning to work is insufficient (initial stage) Since it shows a tendency similar to that of a healthy person immediately before returning, it suggests that it can be useful information indicating whether or not the state of the subject is healthy.
 本発明では、以上の知見に基づき、以下に実施例として、生体光計測装置の具体的構成および手順を説明する。 In the present invention, based on the above knowledge, a specific configuration and procedure of the biological optical measurement device will be described below as an example.
 図1に本発明の生体光計測装置の概略構成図を示す。本実施例における生体光計測装置は、被検体に光を照射および被検体を透過あるいは反射した光を検出することにより生体計測を行う生体光計測部100と、被検体に刺激を呈示し且つ生体計測結果を表示する表示部110と、表示部110に刺激を呈示し且つ生体光計測部100に各種制御を与えるとともに生体計測結果を解析および表示部110に表示する演算部111と、演算部111で解析する被検体の課題に対する生体反応や解析に必要な各種情報の入力を受け付ける入力部112と、生体計測結果や課題呈示の情報を保存する記憶部109と、記憶部109にあらかじめ保存された生体反応と生体計測結果のデータベース150とを有する。 FIG. 1 shows a schematic configuration diagram of the biological light measurement device of the present invention. The living body light measurement apparatus according to the present embodiment includes a living body light measuring unit 100 that performs living body measurement by irradiating a subject with light and detecting light transmitted through or reflected from the subject, and presents a stimulus to the subject and the living body. A display unit 110 that displays the measurement result, a calculation unit 111 that presents a stimulus to the display unit 110 and gives various controls to the biological light measurement unit 100, and displays the biological measurement result on the analysis and display unit 110, and a calculation unit 111 An input unit 112 that receives input of various information necessary for the biological reaction and analysis of the subject to be analyzed in step 1, a storage unit 109 that stores biological measurement results and information on task presentation, and the storage unit 109 that stores the information in advance It has a database 150 of biological reactions and biological measurement results.
 ここで、演算部111は、表示部110に刺激を呈示する刺激呈示部111a、生体光計測部100に各種制御を与える計測制御部111b、生体計測結果を解析し表示部110に表示する解析部111cを有する。また、生体光計測部100は、生体透過性の高い600~900nm程度の波長のうち1波長または異なる複数波長の光を照射するものであり、本実施例では2波長の光を照射する例を示している。具体的には、計測制御部111bが送信するデジタル信号D1a、D1bをそれぞれアナログ信号A1a、A1bに変換するデジタル/アナログ変換機101a、101bと、アナログ信号A1a、A1bをそれぞれあらかじめ決められた異なる周波数F1a、F1bで変調し光源駆動信号L1a、L1bを生成する変調器102a、102bと、光源駆動信号L1a、L1bに基づきそれぞれ異なる波長の光を発するレーザーダイオードやLEDなどの光源103a、103bと、光源103a、103bで発せられた光を混合する光混合器105と、光混合器105で混合された光を被検体に導く光ファイバ900と、光ファイバ900で導かれた光を被検体に照射する光照射部1041と、光照射部1041で照射された光のうち被検体内部を透過または反射した光を受光する受光部1061と、光照射部1041と受光部1061の組み合わせで両者の略中点に構成される計測点1001と、受光部1061で受光され光ファイバ900で導かれた光を検出するシリコンフォトダイオード、アバランシェフォトダイオード、フォトマルチプライヤーなどの光検出器106と、光検出器106で出力されたアナログ信号A2をそれぞれ異なる前記周波数F1a、F1bでロックイン処理しアナログ信号A3a、A3bを出力するロックインアンプ107a、107bと、アナログ信号A3a、A3bをそれぞれデジタル信号D3a、D3bに変換し計測制御部111bに送信するアナログ/デジタル変換機108a、108bを有する。 Here, the calculation unit 111 includes a stimulus presentation unit 111 a that presents a stimulus on the display unit 110, a measurement control unit 111 b that provides various controls to the biological light measurement unit 100, and an analysis unit that analyzes and displays the biological measurement result on the display unit 110. 111c. The biological light measuring unit 100 irradiates light of one wavelength or a plurality of different wavelengths out of wavelengths of about 600 to 900 nm with high biological permeability. In this embodiment, the biological light measuring unit 100 irradiates light of two wavelengths. Show. Specifically, the digital / analog converters 101a and 101b for converting the digital signals D1a and D1b transmitted by the measurement control unit 111b into analog signals A1a and A1b, respectively, and the analog signals A1a and A1b having different predetermined frequencies, respectively. Modulators 102a and 102b that generate light source drive signals L1a and L1b by modulation with F1a and F1b, light sources 103a and 103b such as laser diodes and LEDs that emit light of different wavelengths based on the light source drive signals L1a and L1b, and light sources An optical mixer 105 that mixes the light emitted from the optical mixers 103a and 103b, an optical fiber 900 that guides the light mixed by the optical mixer 105 to the subject, and the subject that is irradiated with the light guided by the optical fiber 900 The light irradiation unit 1041 and the inside of the subject out of the light irradiated by the light irradiation unit 1041 A light receiving unit 1061 that receives light that has been transmitted or reflected, a measurement point 1001 that is configured at a substantially midpoint between the light emitting unit 1041 and the light receiving unit 1061, and received by the light receiving unit 1061 and guided by the optical fiber 900. The photodetector 106 such as a silicon photodiode, avalanche photodiode, or photomultiplier that detects the emitted light, and the analog signal A2 output from the photodetector 106 are locked in at different frequencies F1a and F1b, respectively. Lock-in amplifiers 107a and 107b that output signals A3a and A3b, and analog / digital converters 108a and 108b that convert analog signals A3a and A3b into digital signals D3a and D3b, respectively, and transmit them to measurement control unit 111b.
 上記の概略構成において、本実施例における生体光計測装置は、図2のフローチャートに従い処理を進める。まず、ステップs201において、演算部111の計測制御部111bの制御に従い、光照射部1041よる被検体800への光の照射と、受光部1061による被検体800の内部を透過あるいは反射した光の受光を開始し、計測部1001の生体信号を取得する。次に、ステップs202において、演算部111の刺激呈示部111aが、被検体800に課する1つまたは複数の認知課題を表示部110に表示するとともに、認知課題に対する被検体800の生体反応Rを入力部112により受け付け解析部111cに送信する。ここで、表示部110に呈示する認知課題は、例えば図3に記載のような、ターゲット刺激に含まれる複数の白色正方形の位置を記銘・保持し、数秒後にプローブ刺激とともに想起・判断する空間性ワーキングメモリ(WM)課題、または、図4に記載のような、ターゲット刺激として呈示する音韻ループを要する記号や文字を記銘・保持し、数秒後にプローブ刺激とともに想起・判断する言語性WM課題とする。また、これらの認知課題における生体反応Rとは、プローブ刺激を呈示したタイミングから被検体800の入力を入力部112で受け付けるまでの時間(反応時間RT)と、入力部112で受け付けた被検体800の入力を解析部111cが受信し、解析部111cが認知課題に対する正答および誤答を判定した結果に基づき算出する正答率(%Correct)とする。例えば、解析部111cは、プローブ刺激呈示から1650ミリ秒後に入力部112から被検体800の入力を受け取った場合、この1650ミリ秒という時間を反応時間RTとして記憶部109に記録する。また例えば、刺激呈示部111aが、図3のような空間性WM課題を繰り返し5回呈示する場合、解析部111cは、各々の課題呈示後の被検体800の入力を入力部112で繰り返し(5回分)受信し、各々の反応時間RTを記憶部109に記録するとともに、各々の入力から正答および誤答を判定した結果を記憶部109に記録する。正答率%Correctは、例えば、上述のような5回の課題呈示に対し、4回の課題呈示に対する正答が記録されていれば、解析部111cが課題呈示回数と正答数を読み出し、正答率%Correct=100×(4/5)=80%と計算される。次に、ステップs203において、計測制御部111bは計測部1001の生体信号の取得を終了し、生体信号計測結果を解析部111cに送信する。次に、ステップs204において、解析部111cは生体信号計測結果を記憶部109に保存する。次に、ステップs205において、解析部111cは、生体信号計測結果に基づき、認知課題に対する脳活動値Actと生体反応R(反応時間RTおよび正答率%Correct)を計算する。脳活動値Actの計算は、特許文献2に記載の手法と同じ計算方法で良い。次に、ステップs206で、解析部111cは記憶部109に保存されたデータベース150を読み出す。データベース150は、例えば、図5に示すようなテーブル151として保存されており、過去に計測された健常者の脳活動値Actと、認知課題に対する生体反応R(反応時間RTおよび正答率%Correct)が、被験者毎に対応付けて保存されている。また、このテーブル151の情報は、解析部111cにより、生体反応Rに対する脳活動値Actの関係性として表示部110に表示可能である。図6に、生体反応Rの一例として反応時間RTを用い、脳活動値Actの関係性を表示部110に表示する例を示す。図6では、解析部111cが記憶部109に保存されたテーブル151の情報を読み出し、各被験者の反応時間RTに対する脳活動値Actをプロットするとともに、プロットデータに対し、線形フィッティングした直線151Fと、統計的に算出される95%信頼区間を示す曲線151Uと151Lを解析部111cが計算し表示部110に表示するものであり、健常者における反応時間RTと脳活動値Actの関係性(相関関係)を示している。次に、ステップs207において、解析部111cは、記憶部109に保存されたデータベース150であるテーブル151を読み出し、表示部110に、テーブル151に記録された情報と、ステップs205で計算された脳活動値Actと生体反応Rを表示する。図7は、ステップs205で計算された脳活動値Actと反応時間RTが、テーブル151に記録された情報とどの程度一致しているかを表示部110に表示した例である。図7では、ステップs205で計算された当該被検体800の反応時間RTに対する脳活動値Actを示すプロット152が、テーブル151に基づいて解析部111cが計算した95%信頼区間151Uと151Lの間には含まれていない。この例では、健常者データベース150に対し、脳活動値Actが大きく反応時間RTも遅いため、当該被験者は行動制御や脳活動がうまく機能していないことを示す。 In the schematic configuration described above, the biological light measurement apparatus according to the present embodiment proceeds with processing according to the flowchart of FIG. First, in step s201, under the control of the measurement control unit 111b of the calculation unit 111, the light irradiation unit 1041 irradiates the subject 800 with light, and the light receiving unit 1061 receives the light transmitted or reflected inside the subject 800. And the biological signal of the measurement unit 1001 is acquired. Next, in step s202, the stimulus presentation unit 111a of the calculation unit 111 displays one or more cognitive tasks to be imposed on the subject 800 on the display unit 110, and the biological reaction R of the subject 800 with respect to the cognitive task is displayed. The input unit 112 transmits the data to the reception analysis unit 111c. Here, the cognitive task presented on the display unit 110 is a space that records and holds the positions of a plurality of white squares included in the target stimulus, as shown in FIG. Linguistic working memory (WM) task, or linguistic WM task that remembers / holds symbols and characters that require phonological loops to be presented as target stimuli, as shown in Fig. 4, and recalls / judges with probe stimuli after a few seconds And In addition, the biological reaction R in these cognitive tasks is the time from when the probe stimulus is presented until the input of the subject 800 is received by the input unit 112 (reaction time RT), and the subject 800 received by the input unit 112. The analysis unit 111c receives the input, and the analysis unit 111c calculates the correct answer rate (% Correct) calculated based on the result of determining the correct and incorrect answers to the cognitive task. For example, when the analysis unit 111c receives the input of the subject 800 from the input unit 112 after 1650 milliseconds from the probe stimulus presentation, the analysis unit 111c records the time of 1650 milliseconds in the storage unit 109 as the reaction time RT. Further, for example, when the stimulus presentation unit 111a repeatedly presents the spatial WM task as shown in FIG. 3 five times, the analysis unit 111c repeatedly inputs the subject 800 after each task presentation at the input unit 112 (5 The response time RT is recorded in the storage unit 109, and the result of determining the correct answer and the incorrect answer from each input is recorded in the storage unit 109. The correct answer rate% Correct is, for example, if the correct answers for the four task presentations are recorded with respect to the five task presentations as described above, the analysis unit 111c reads the number of task presentations and the number of correct answers, and the correct answer rate% Calculate = 100 × (4/5) = 80%. Next, in step s203, the measurement control unit 111b ends the acquisition of the biological signal of the measurement unit 1001, and transmits the biological signal measurement result to the analysis unit 111c. Next, in step s204, the analysis unit 111c stores the biological signal measurement result in the storage unit 109. Next, in step s205, the analysis unit 111c calculates a brain activity value Act and a biological reaction R (reaction time RT and correct response rate% Correct) for the cognitive task based on the biological signal measurement result. The brain activity value Act may be calculated using the same calculation method as that described in Patent Document 2. Next, in step s206, the analysis unit 111c reads the database 150 stored in the storage unit 109. The database 150 is stored as, for example, a table 151 as shown in FIG. 5, and the brain activity value Act of a healthy person measured in the past and the biological reaction R (reaction time RT and correct answer rate% Correct) for a cognitive task. Are stored in association with each subject. The information of this table 151 can be displayed on the display unit 110 as the relationship of the brain activity value Act to the biological reaction R by the analysis unit 111c. FIG. 6 shows an example in which the reaction time RT is used as an example of the biological reaction R and the relationship between the brain activity values Act is displayed on the display unit 110. In FIG. 6, the analysis unit 111 c reads the information in the table 151 stored in the storage unit 109, plots the brain activity values Act against the reaction time RT of each subject, and linearly fits a straight line 151 F to the plot data, Curves 151U and 151L indicating 95% confidence intervals calculated statistically are calculated by the analysis unit 111c and displayed on the display unit 110, and the relationship (correlation) between the reaction time RT and the brain activity value Act in a healthy person ). Next, in step s207, the analysis unit 111c reads the table 151 which is the database 150 stored in the storage unit 109, and the information recorded in the table 151 and the brain activity calculated in step s205 are displayed on the display unit 110. The value Act and the biological reaction R are displayed. FIG. 7 is an example in which the extent to which the brain activity value Act and the reaction time RT calculated in step s205 coincide with the information recorded in the table 151 is displayed on the display unit 110. In FIG. 7, the plot 152 indicating the brain activity value Act with respect to the reaction time RT of the subject 800 calculated in step s205 is between the 95 % confidence intervals 151U and 151L calculated by the analysis unit 111c based on the table 151. Is not included. In this example, since the brain activity value Act is large and the reaction time RT is slow with respect to the healthy person database 150, the subject indicates that the behavior control and brain activity are not functioning well.
 なお、本実施例においては、表示部110に表示する生体反応Rの一例として反応時間RTを挙げて説明したが、図14のように、表示部110に表示する生体反応Rとして正答率%Correctを用いた構成も同様に有効であることは言うまでもない。 In this embodiment, the reaction time RT is described as an example of the biological reaction R displayed on the display unit 110. However, as shown in FIG. 14, the correct response rate% Correct is displayed as the biological reaction R displayed on the display unit 110. Needless to say, the configuration using the is also effective.
 次に、健常者データベース150に対する、被検体800の脳活動値Actと生体反応Rの別の表示例を示す。ここでは、刺激呈示部111aが、図3または図4に示すようなWM課題を、表示部110に繰り返し複数回表示する場合を例示する。このとき、各々のWM課題呈示に対し、解析部111cは被検体800の脳活動値Actと生体反応R(反応時間RTおよび正答率%Correct)を取得する。図8は、刺激呈示部111aがこのようなWM課題を6回呈示した際に、解析部111cが各課題呈示で算出した被検体800の脳活動値Actと取得した反応時間RTをそれぞれ表示部110上にプロットした例を示す。ここで解析部111cは、記憶部109に保存された健常者データベース150をあわせて読み出し表示しており、この表示の方法は実施例1と同様である。図8において、6回のWM課題呈示の被検体800の反応時間RTに対する脳活動値Actのプロットは、破線152bで囲んだ領域内の白抜きの丸シンボルである。破線152bは、本実施例の説明のために図8中に示すものであるが、実際に表示部110上に表示してもしなくても良い。またここで、解析部111cは、破線152b内の6つのプロットの重心値を算出し、表示部110上の破線152b内の黒い丸シンボルのように表示する。このように、認知課題を複数回実施した場合の各回の脳活動値Actと生体反応Rが、データベース150に対してどの程度重なるかを可視化することが可能である。 Next, another display example of the brain activity value Act and the biological reaction R of the subject 800 with respect to the healthy person database 150 is shown. Here, the case where the stimulus presenting unit 111a repeatedly displays the WM task as illustrated in FIG. 3 or 4 on the display unit 110 a plurality of times. At this time, for each WM task presentation, the analysis unit 111c acquires the brain activity value Act and the biological reaction R (reaction time RT and correct answer rate% Correct) of the subject 800. FIG. 8 shows a display unit that displays the brain activity value Act of the subject 800 calculated by each analysis unit 111c and the acquired reaction time RT when the stimulus presentation unit 111a presents such a WM task six times. An example plotted on 110 is shown. Here, the analysis unit 111c reads and displays the healthy person database 150 stored in the storage unit 109, and the display method is the same as in the first embodiment. In FIG. 8, the plot of the brain activity value Act against the reaction time RT of the subject 800 with six WM task presentations is a white circle symbol in the region surrounded by the broken line 152b. The broken line 152b is shown in FIG. 8 for explaining the present embodiment, but it may or may not be actually displayed on the display unit 110. Here, the analysis unit 111c calculates the barycentric values of the six plots in the broken line 152b and displays them as black circle symbols in the broken line 152b on the display unit 110. As described above, it is possible to visualize how much the brain activity value Act and the biological reaction R of each time when the cognitive task is performed a plurality of times overlap the database 150.
 また、図8のように複数回の認知課題呈示に基づき被検体800から取得した各回の生体反応Rと脳活動値Actを用い、健常者データベース150との一致度を算出することが可能である。解析部111cは、図8の破線152b内に含まれる白抜き丸シンボルが、健常者データベース150に基づく95%信頼区間151Uと151Lの範囲にあるデータをOK_data、範囲外にあるデータをNG_dataと判定するとともに、図9の(数1)に基づき、健常者データベースとの一致度を百分率で計算する。例えば、OK_dataが2、NG_dataが4である場合、解析部111cは、(数1)に基づき、健常者データベース150との一致度は33.3%と算出する。解析部111cは、(数1)により算出した被検体800の一致度をその計測日と対応づけて記憶部109に保存しておくことが可能である。解析部111cは、例えば、図10に示すように、(数1)に基づき算出し記憶部109に保存した過去の計測日の一致度を読み出し、表示部110に、各計測日における一致度を時系列で表示することが可能である。また、健常者データベース150との一致度が継続して低下した場合、図10のようにメッセージを表示することが可能であり、対象者に対し、行動制御や脳活動がうまく機能していないことをアラームとして警告することができる。 In addition, as shown in FIG. 8, it is possible to calculate the degree of coincidence with the healthy person database 150 using the biological reaction R and the brain activity value Act obtained each time from the subject 800 based on a plurality of cognitive task presentations. . The analysis unit 111c determines that the data in which the white circle symbol included in the broken line 152b in FIG. 8 is within the 95 % confidence intervals 151U and 151L based on the healthy person database 150 is OK_data, and the data outside the range is NG_data. At the same time, based on (Equation 1) of FIG. 9, the degree of coincidence with the healthy person database is calculated as a percentage. For example, when OK_data is 2 and NG_data is 4, the analysis unit 111c calculates the matching degree with the healthy person database 150 as 33.3% based on (Equation 1). The analysis unit 111c can store the degree of coincidence of the subject 800 calculated by (Equation 1) in the storage unit 109 in association with the measurement date. For example, as shown in FIG. 10, the analysis unit 111c reads the degree of coincidence of the past measurement date calculated based on (Equation 1) and stored in the storage unit 109, and displays the degree of coincidence on each measurement date on the display unit 110. It is possible to display in time series. In addition, when the degree of coincidence with the healthy person database 150 continuously decreases, it is possible to display a message as shown in FIG. 10, and behavior control and brain activity are not functioning well for the target person. Can be alerted as an alarm.
 また、本発明による生体光計測装置は、特許文献2に開示された手法を取り入れることにより、実施例3に記載の健常者データベース150との一致度に加え、被検体800の気分状態を示すことが可能である。例えば、演算部111(その内部に刺激呈示部111a、計測制御部111b、解析部111cを含む)は、図2に示したフローチャートのステップs202に代えて、図11のように、ステップs202aとステップs202bを導入したフローチャートに従って処理をする。以下、図2のフローチャートと同じ記号または番号を付した処理は実施例1に準じるものとする。この図11のフローチャートでは、ステップs202aにおいて、刺激呈示部111aは表示部110に第1の認知課題を呈示し、解析部111cは計測制御部111bが取得する生体信号を受信したのち、ステップs202bにおいて、刺激呈示部111aは表示部110に第2の認知課題を呈示し、解析部111cは計測制御部111bが取得する生体信号を受信する。ステップs205において、解析部111cは、記憶部109に保存された生体信号を読み出し、第1の認知課題に対する脳活動値Act_1、第2の認知課題に対する脳活動値Act_2を算出し、図9の(数2)に基づき、これらの相対値として表示される気分指標Mood_indexを計算するとともに、実施例3に記載の手法に従い、(数1)により健常者データベース150との一致度を計算する。ここで、一致度の計算には、第1の認知課題に対する脳活動値Act_1、第2の認知課題に対する脳活動値Act_2のいずれかを使用しても、両者を使用しても良い。また、気分指標Mood_indexの計算式である(数2)は、特許文献2に記載の「抑うつインデックス(D_idx)」の計算方法に従う。本実施例により、解析部111cは表示部110に、例えば図12のように、健常者データベース150との一致度を表示するとともに、気分指標Mood_indexの時系列変化を表示することが可能である。このように表示することにより、対象者の行動制御と脳活動の関係性に加えて気分状態を可視化することができ、対象者の状態把握に有用な情報を提供可能である。 In addition, the living body light measurement apparatus according to the present invention shows the mood state of the subject 800 in addition to the degree of coincidence with the healthy person database 150 described in Example 3 by adopting the technique disclosed in Patent Document 2. Is possible. For example, the calculation unit 111 (including the stimulus presentation unit 111a, the measurement control unit 111b, and the analysis unit 111c) replaces the step s202 of the flowchart shown in FIG. 2 with a step s202a and a step as shown in FIG. Processing is performed in accordance with the flowchart introducing s202b. In the following, processing with the same symbols or numbers as in the flowchart of FIG. In the flowchart of FIG. 11, in step s202a, the stimulus presentation unit 111a presents the first cognitive task on the display unit 110, and the analysis unit 111c receives a biological signal acquired by the measurement control unit 111b, and then in step s202b. The stimulus presentation unit 111a presents the second cognitive task on the display unit 110, and the analysis unit 111c receives a biological signal acquired by the measurement control unit 111b. In step s205, the analysis unit 111c reads out the biological signal stored in the storage unit 109, calculates a brain activity value Act_1 for the first cognitive task, and a brain activity value Act_2 for the second cognitive task, as shown in FIG. Based on Equation 2), the mood index Mod_index displayed as a relative value is calculated, and the degree of coincidence with the healthy person database 150 is calculated by Equation 1 according to the method described in the third embodiment. Here, either the brain activity value Act_1 for the first cognitive task or the brain activity value Act_2 for the second cognitive task may be used for calculating the degree of coincidence, or both may be used. The calculation formula of the mood index Mood_index follows the calculation method of the “depression index (D_idx)” described in Patent Document 2. According to the present embodiment, the analysis unit 111c can display the degree of coincidence with the healthy person database 150 and the time series change of the mood index Mod_index on the display unit 110 as shown in FIG. 12, for example. By displaying in this way, the mood state can be visualized in addition to the relationship between the subject's behavior control and brain activity, and information useful for grasping the state of the subject can be provided.
 以上の実施例では、健常者データベース150はあらかじめ計測された多数の被験者データに基づくものとして例示したが、このデータベースは、対象者個人の蓄積データであっても構わない。例えば、図13は、同一の被検体800を対象に過去に複数日にわたって取得した脳活動値Act、生体反応R(反応時間RT、正答率%Correct)を、各計測日に対応づけて記憶部109にデータベース150pとして保存した例を示す。図13のように、あらかじめ当該被検体800の過去のデータを記憶部109にデータベース150pとして保存しておくことにより、解析部111cが記憶部109から当該被検体800の過去取得済みのデータに基づくデータベース150pを読み出し、新たに取得した当該被検体800の脳活動値Actと生体反応R、およびデータベース150pを用い、図7、8、10、12、14のように表示することが可能である。本実施例によれば、本発明による生体光計測装置は、例えば、被検体800が過去に健常であった時期のデータをデータベース150pとして蓄積しておくことにより、当該被検体800の生体反応Rと脳活動Actの関係性が過去と比較して変化しているを可視化することが可能である。 In the above embodiment, the healthy person database 150 is exemplified as being based on a large number of subject data measured in advance. However, this database may be stored data of the individual subject. For example, FIG. 13 shows a storage unit in which brain activity values Act and biological responses R (reaction time RT, correct response rate% Correct) acquired over a plurality of days in the past for the same subject 800 are associated with each measurement date. 109 shows an example stored as the database 150p. As shown in FIG. 13, the past data of the subject 800 is stored in the storage unit 109 in advance as the database 150p, so that the analysis unit 111c is based on the data acquired in the past from the storage unit 109. The database 150p can be read and displayed as shown in FIGS. 7, 8, 10, 12, and 14 using the brain activity value Act and biological reaction R of the subject 800 newly acquired and the database 150p. According to the present embodiment, the biological optical measurement device according to the present invention accumulates data of the time when the subject 800 was healthy in the past as the database 150p, for example, thereby causing the biological reaction R of the subject 800 to occur. And the relationship between the brain activity Act and the brain activity Act can be visualized.
 なお、上記実施例1から5に記載の健常者データベース150の分布として、主として95%信頼区間を示す範囲(例えば図7の曲線151Uと151Lの間)を用いて説明したが、99%信頼区間であっても、90%信頼区間であっても、また特定の分布を前提とする必要はなく、脳活動値Actと生体反応Rの関係性における健常者の範囲を規定する情報をあらかじめ記憶部109に保存されていれば良い。 The distribution of the healthy person database 150 described in Examples 1 to 5 has been described mainly using a range showing a 95% confidence interval (for example, between the curves 151U and 151L in FIG. 7), but the 99% confidence interval. Even if it is a 90% confidence interval, it is not necessary to assume a specific distribution, and information that prescribes the range of healthy individuals in the relationship between the brain activity value Act and the biological reaction R is stored in advance. 109 may be stored.
100…生体光計測部、100C…筐体、100i…生体光計測部100の内側面のうち光照射部と受光部と計測点を含む領域、1001…計測点、101a、101b…デジタルアナログ変換器、102a、102b…変調器、103a、103b…光源、105…光混合器、1041…光照射部、1042…光照射部、1049…光照射部、106…検出器、1061…受光部、1062…受光部、1069…受光部、107a、107b…ロックインアンプ、108a、108b…アナログデジタル変換器、109…記憶部、110…表示部、111…演算部、111a…刺激呈示部、111b…計測制御部、111c…解析部、112…入力部、150…データベース、150p…個人データの蓄積によるデータベース、151…データベースの一例であるテーブル、800…被検体、900…光ファイバ、 DESCRIPTION OF SYMBOLS 100 ... Living body light measurement part, 100C ... Housing | casing, 100i ... The area | region containing a light irradiation part, a light-receiving part, and a measurement point among the inner surfaces of the biological light measurement part 100, 1001 ... Measurement point, 101a, 101b ... Digital analog converter 102a, 102b ... modulator, 103a, 103b ... light source, 105 ... light mixer, 1041 ... light irradiation unit, 1042 ... light irradiation unit, 1049 ... light irradiation unit, 106 ... detector, 1061 ... light receiving unit, 1062 ... Light receiving unit, 1069 ... Light receiving unit, 107a, 107b ... Lock-in amplifier, 108a, 108b ... Analog / digital converter, 109 ... Storage unit, 110 ... Display unit, 111 ... Calculation unit, 111a ... Stimulus presentation unit, 111b ... Measurement control , 111c ... analysis unit, 112 ... input unit, 150 ... database, 150p ... database based on accumulation of personal data, 151 ... table that is an example of database, 800 ... subject, 900 ... optical fiber,

Claims (5)

  1.  被検体に光を照射する1つまたは複数の光照射部と、被検体を透過あるいは反射した光を検出する1つまたは複数の受光部と、前記光照射部と前記受光部の組み合わせにより構成される計測点と、被検体へ認知課題を呈示する表示部と、前記被検体の前記課題に対する生体反応を取得する入力部と、前記受光部で受光された光の強度から前記被検体の内部における生体信号を算出する演算部と、前記生体信号を保存する記憶部とを有し、
     前記記憶部は、複数の、課題に対する生体信号と生体反応の情報を、あらかじめ保存しており、
     前記演算部は、前記記憶部に保存された前記生体信号および生体反応と、前記被検体の前記生体信号と前記生体反応との関係性を計算し、
     前記表示部は計算された前記関係性を表示することを特長とする、生体光計測装置。
    One or a plurality of light irradiating units for irradiating the subject with light, one or a plurality of light receiving units for detecting light transmitted through or reflected by the subject, and a combination of the light irradiating unit and the light receiving unit. Measurement points, a display unit that presents a cognitive task to the subject, an input unit that acquires a biological reaction of the subject to the task, and an intensity of light received by the light receiving unit. A calculation unit that calculates a biological signal; and a storage unit that stores the biological signal;
    The storage unit stores in advance a plurality of biological signal and biological reaction information for the task,
    The computing unit calculates the relationship between the biological signal and biological reaction stored in the storage unit, and the biological signal and biological reaction of the subject,
    The biological light measuring device, wherein the display unit displays the calculated relationship.
  2.  請求項1に記載の生体光計測装置において、前記演算部は、前記被検体の生体信号と生体反応が、前記記憶部に保存された前記生体信号及び生体反応の分布範囲に含まれる一致度を計算することを特長とする生体光計測装置。 The biological light measurement apparatus according to claim 1, wherein the calculation unit calculates a degree of coincidence in which the biological signal and the biological reaction of the subject are included in the distribution range of the biological signal and the biological reaction stored in the storage unit. A biological light measuring device characterized by calculating.
  3.  請求項2に記載の生体光計測装置において、前記演算部は、過去に取得した前記一致度の経時変化を計算することを特長とする生体光計測装置。 3. The biological light measurement apparatus according to claim 2, wherein the calculation unit calculates a temporal change in the degree of coincidence acquired in the past.
  4.  前記記憶部に保存された前記生体信号と生体反応の情報は、健常者のものであることを特徴とする請求項1に記載の生体光計測装置。 The biological light measurement apparatus according to claim 1, wherein the biological signal and biological reaction information stored in the storage unit are those of a healthy person.
  5.  前記演算部は、前記記憶部に保存された、複数の前記生体信号と生体反応の情報で、前記健常者の前記複数の生体信号と生体反応の分布範囲を規定し、前記被検体の生体信号及び生体反応が、前記分布範囲との一致度を計算することを特徴とする請求項4に記載の生体光計測装置。 The calculation unit defines a plurality of biological signals and biological reaction distribution ranges of the healthy person using the plurality of biological signals and biological reaction information stored in the storage unit, and the biological signals of the subject The biological light measurement apparatus according to claim 4, wherein the biological reaction calculates a degree of coincidence with the distribution range.
PCT/JP2014/054102 2014-02-21 2014-02-21 Biological optical measurement device and biological optical measurement method WO2015125262A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/054102 WO2015125262A1 (en) 2014-02-21 2014-02-21 Biological optical measurement device and biological optical measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/054102 WO2015125262A1 (en) 2014-02-21 2014-02-21 Biological optical measurement device and biological optical measurement method

Publications (1)

Publication Number Publication Date
WO2015125262A1 true WO2015125262A1 (en) 2015-08-27

Family

ID=53877796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/054102 WO2015125262A1 (en) 2014-02-21 2014-02-21 Biological optical measurement device and biological optical measurement method

Country Status (1)

Country Link
WO (1) WO2015125262A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017060571A (en) * 2015-09-24 2017-03-30 株式会社日立製作所 Diagnosis assist system and diagnosis assist information display method
CN111787861A (en) * 2018-03-09 2020-10-16 三菱电机株式会社 Unpleasant state determination device
CN112927773A (en) * 2019-12-06 2021-06-08 株式会社岛津制作所 Biological data management method, system and computer-readable recording medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009285000A (en) * 2008-05-28 2009-12-10 Hitachi Ltd Living body optical measurement apparatus, living body optical measurement method, and program
JP2011161137A (en) * 2010-02-15 2011-08-25 Hitachi Ltd Fatigue evaluation system, intracompany fatigue evaluation system using the same, and fatigue evaluation method
JP2011251167A (en) * 2009-09-30 2011-12-15 Mitsubishi Chemicals Corp Information processing method about body motion signal, information processing system about body motion signal, information processor about body motion signal, recording medium recording program therein, and program
JP2012016508A (en) * 2010-07-09 2012-01-26 Toshiba Corp Ultrasonic diagnostic apparatus and signal analysis program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009285000A (en) * 2008-05-28 2009-12-10 Hitachi Ltd Living body optical measurement apparatus, living body optical measurement method, and program
JP2011251167A (en) * 2009-09-30 2011-12-15 Mitsubishi Chemicals Corp Information processing method about body motion signal, information processing system about body motion signal, information processor about body motion signal, recording medium recording program therein, and program
JP2011161137A (en) * 2010-02-15 2011-08-25 Hitachi Ltd Fatigue evaluation system, intracompany fatigue evaluation system using the same, and fatigue evaluation method
JP2012016508A (en) * 2010-07-09 2012-01-26 Toshiba Corp Ultrasonic diagnostic apparatus and signal analysis program

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017060571A (en) * 2015-09-24 2017-03-30 株式会社日立製作所 Diagnosis assist system and diagnosis assist information display method
WO2017051762A1 (en) * 2015-09-24 2017-03-30 株式会社日立製作所 Diagnosis assisting system, and diagnosis assisting information display method
CN107847144A (en) * 2015-09-24 2018-03-27 株式会社日立制作所 Diagnosis aid system and diagnostic assistance method for information display
CN111787861A (en) * 2018-03-09 2020-10-16 三菱电机株式会社 Unpleasant state determination device
CN111787861B (en) * 2018-03-09 2023-02-17 三菱电机株式会社 Unpleasant state determination device
CN112927773A (en) * 2019-12-06 2021-06-08 株式会社岛津制作所 Biological data management method, system and computer-readable recording medium

Similar Documents

Publication Publication Date Title
JP5982483B2 (en) Biological condition evaluation apparatus and program therefor
Schuurmans et al. Validity of the Empatica E4 wristband to measure heart rate variability (HRV) parameters: A comparison to electrocardiography (ECG)
JP5668138B2 (en) Biological light measurement device
Nordgreen et al. Stepped care versus direct face-to-face cognitive behavior therapy for social anxiety disorder and panic disorder: a randomized effectiveness trial
Abdalmalak et al. Single-session communication with a locked-in patient by functional near-infrared spectroscopy
Matsumura et al. iPhysioMeter: a new approach for measuring heart rate and normalized pulse volume using only a smartphone
Abdalmalak et al. Can time-resolved NIRS provide the sensitivity to detect brain activity during motor imagery consistently?
Li et al. Dynamic functional connectivity revealed by resting-state functional near-infrared spectroscopy
JP5462941B2 (en) Fatigue evaluation system
Kolanowski et al. Pay attention!: The critical importance of assessing attention in older adults with dementia
JP2009285000A (en) Living body optical measurement apparatus, living body optical measurement method, and program
JP2017510313A (en) Performance evaluation tool
Madden et al. Interaction of hypertension and age in visual selective attention performance.
WO2015125262A1 (en) Biological optical measurement device and biological optical measurement method
Grabell et al. Using facial muscular movements to understand young children's emotion regulation and concurrent neural activation
US9131887B2 (en) System for measuring mood state
Jerath et al. The future of stress management: integration of smartwatches and HRV technology
Dijk et al. I blush, therefore I will be judged negatively: influence of false blush feedback on anticipated others’ judgments and facial coloration in high and low blushing-fearfuls
Mihuta et al. Correspondence between subjective and objective cognitive functioning following chemotherapy for breast cancer
JP2024069191A (en) Monitoring catabolic markers
Dall’Ora et al. Development and validation of a methodology to measure the time taken by hospital nurses to make vital signs observations
RU165429U1 (en) DEVICE FOR PSYCHOPHYSIOLOGICAL EXPRESS CONTROL OF FUNCTIONAL STATE OF STAFF WORKING IN DANGEROUS PRODUCTION OBJECTS
Nemati et al. Dynamic light scattering from pulsatile flow in the presence of induced motion artifacts
Hizbullin et al. Ways to improve safety in the power industry: an automated hardware complex for pre-shift inspection of personnel of power enterprises
Choo et al. Exploring a multimodal approach for utilizing digital biomarkers for childhood mental health screening

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14883451

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14883451

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP