WO2015124085A1 - 用于墙体表面的发电装置 - Google Patents

用于墙体表面的发电装置 Download PDF

Info

Publication number
WO2015124085A1
WO2015124085A1 PCT/CN2015/072951 CN2015072951W WO2015124085A1 WO 2015124085 A1 WO2015124085 A1 WO 2015124085A1 CN 2015072951 W CN2015072951 W CN 2015072951W WO 2015124085 A1 WO2015124085 A1 WO 2015124085A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
layer
insulating layer
polymer insulating
electrode layer
Prior art date
Application number
PCT/CN2015/072951
Other languages
English (en)
French (fr)
Inventor
徐传毅
Original Assignee
纳米新能源(唐山)有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 纳米新能源(唐山)有限责任公司 filed Critical 纳米新能源(唐山)有限责任公司
Publication of WO2015124085A1 publication Critical patent/WO2015124085A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • H02N1/04Friction generators

Definitions

  • the invention relates to the field of power generation, and in particular to a power generating device for a wall surface.
  • the present invention provides a power generating device for a wall surface for solving the problem that the conventional power generating device cannot utilize the natural energy stored around the wall of the building.
  • a power generating device for a wall surface includes a friction generator, the friction generator further comprising: a first electrode layer disposed on a surface of the wall, and a surface disposed on a surface of the first electrode layer a second electrode layer, wherein the first electrode layer is a flat electrode layer including a first electrode disposed on a surface of the wall; the second electrode layer is an electrode layer having a plurality of convex structures, Forming a closed cavity between each of the convex structures and the first electrode layer, the upper surface of the closed cavity and the lower surface of the closed cavity being capable of contacting and rubbing against each other as a frictional interface when subjected to pressure; Wherein the second electrode layer comprises a second polymer insulation layered in a stack a layer and a second electrode, the second polymer insulating layer being located between the first electrode layer and the second electrode, wherein the first electrode and the second electrode are the frictional power generation The power output of the machine.
  • the friction generator is constituted by the first electrode layer disposed on the surface of the wall and the second electrode layer disposed on the surface of the first electrode layer, wherein the first electrode layer is a flat electrode layer
  • the second electrode layer is an electrode layer having a plurality of convex structures, wherein each of the convex structures on the second electrode layer forms a closed cavity with the first electrode layer, and the sealed cavity has a certain Air pressure.
  • the power generation device can utilize the natural energy stored around the wall of the building, and the power generation device has the advantages of simple structure, convenient preparation, low price, light and easy installation, and the like, and is suitable for large Scale use.
  • FIG. 1 is a cross-sectional structural view showing a power generating device for a wall surface provided by the present invention
  • FIG. 2a is a cross-sectional structural view showing a friction generator in a power generating device according to Embodiment 1 of the present invention
  • Figure 2b is a schematic view showing an improved implementation of the friction generator of the first embodiment
  • 3a is a cross-sectional structural view showing a friction generator in a power generating device according to Embodiment 2 of the present invention.
  • Figure 3b is a schematic view showing an improved implementation of the friction generator of the second embodiment
  • Figure 3c is a schematic view showing another modified implementation of the friction generator of the second embodiment
  • Figure 4 is a schematic view showing a convex structure on the second electrode layer
  • 5a and 5b respectively show the first electricity when the third polymer insulating layer is provided
  • Figures 6a to 6c show schematic diagrams of the principle of raindrops inducing charge on the surface of the second electrode.
  • the present invention provides a power generating device for the surface of the wall.
  • the power generating apparatus includes a friction generator, and the friction generator further includes: a surface disposed on a surface of the wall An electrode layer, and a second electrode layer disposed on a surface of the first electrode layer.
  • the first electrode layer is a flat electrode layer including a first electrode 11 disposed on a surface of the wall;
  • the second electrode layer is an electrode layer having a plurality of convex structures, each convex structure and the first electrode layer Forming a closed cavity therebetween, the upper surface and the lower surface of the closed cavity are capable of contacting and rubbing against each other as a frictional interface (specifically, the raised structure on the second electrode layer serves as the upper surface of the closed cavity)
  • the portion of the first electrode layer opposite the convex structure serves as the lower surface of the closed cavity, where the upper and lower surfaces are relative to the closed cavity itself, regardless of the placement angle of the friction generator.
  • the second electrode layer includes a second polymer insulating layer 12 and a second electrode 13 , and the second polymer insulating layer 12 is located between the first electrode layer and the second electrode 13 .
  • An electrode 11 and a second electrode 13 are power output terminals of the friction generator.
  • a friction generator is constituted by a first electrode layer disposed on a surface of a wall and a second electrode layer disposed on a surface of the first electrode layer, wherein the first electrode layer is a flat electrode
  • the second electrode layer is an electrode layer having a plurality of convex structures, wherein each of the convex structures on the second electrode layer forms a closed cavity with the first electrode layer, and the sealed cavity has a certain cavity Air pressure.
  • the second electrode layer When the surface of the wall is subjected to natural forces (such as wind and rain), the second electrode layer is pressed under the action of natural force, so that the shape of the convex structure changes, and then the first electrode layer is in contact with each other; When the action disappears or weakens, the convex structure returns to the original state due to the air pressure in the closed cavity, and then separates from the first electrode layer, and through repeated contact and separation between the second electrode layer and the first electrode layer, Producing alternating between the first electrode and the second electrode Electrical signals to convert natural energy into electrical energy.
  • natural forces such as wind and rain
  • the friction generator described above may be disposed on the surface of the outer wall of the building or on the surface of the inner wall of the building.
  • the friction generator described above is placed on the surface of the outer wall of the building.
  • the power generating device of the present invention may further include an electric storage component and an electric component.
  • the input end of the power storage component is connected to the output end of the friction generator, and is used for storing the electric energy generated by the friction generator, specifically by using energy storage components such as a battery (such as a lithium battery, a nickel hydrogen battery) and a super capacitor. achieve.
  • the electrical component is connected to the output of the electrical storage component.
  • the electrical component may be any small power device such as an LED light, a USB interface, and/or an alarm device disposed on the inner wall of the building corridor according to actual needs.
  • the lights can be illuminated by LED lights without the need to consume conventional electrical energy.
  • the USB interface on the inner wall of the corridor can provide users with convenient services such as charging at any time, and the alarm device on the inner wall of the corridor can facilitate the user to quickly alarm.
  • Those skilled in the art can also set the type of electrical components according to actual needs to meet various needs of users.
  • the above-mentioned electric storage component further includes: an AC/DC converter connected to the energy storage component, for converting the AC electric signal output by the friction generator into DC power The signal is provided to the energy storage component for storage.
  • the AC/DC converter further includes: a rectifier connected to the friction generator for rectifying an alternating current signal output by the friction generator; and a unidirectional ripple connected to the rectifier and outputting the rectifier a filter for filtering the remaining AC component of the DC signal; and a voltage regulator connected to the filter for unidirectionally pulsing the DC signal output by the filter to obtain a constant electrical signal.
  • the power generating device provided by the present invention can also generate power by combining solar cells to realize dual utilization of wind energy and solar energy. At this time, for convenience of setting, a thin film solar cell is preferred to increase the output power of the overall power generating device.
  • a waterproof layer may also be disposed on the outer surface of the friction generator of the present invention to accommodate each Kind of use environment.
  • the friction generator is a core component in the present invention
  • the structure of the friction generator in the power generating apparatus provided by the present invention will be described in detail below through several specific embodiments.
  • the friction generator includes: a first electrode 21 disposed on a surface of the wall, a second polymer insulating layer 22 disposed on a surface of the first electrode 21, and a second polymer disposed on the second polymer The second electrode 23 on the surface of the insulating layer 22.
  • the first electrode 21 described above constitutes a first electrode layer; the second polymer insulating layer 22 and the second electrode 23 constitute a second electrode layer.
  • the first electrode layer composed of the first electrode 21 is a flat electrode layer which is directly disposed on the surface of the wall by a bonding and fixing method (for example, gluing or the like).
  • the second electrode layer composed of the second polymer insulating layer 22 and the second electrode 23 is an electrode layer having a plurality of convex structures.
  • the second polymer insulating layer 22 can be realized by a polymer film, and can be fabricated into the structure shown in FIG. 4.
  • the second polymer insulating layer has a plurality of layers.
  • the convex structure, each convex structure has a square shape, and each convex structure is regularly arranged in a matrix form.
  • the convex structure can be set into a plurality of shapes such as a sphere, a hemisphere, a cone, and the like.
  • the arrangement density of the convex structure can be adjusted according to the strength of the local wind, for example, the density of the convex structure of the region with strong wind force is arranged larger, and the density of the convex structure of the weak wind region is arranged. It is smaller.
  • the second polymer insulating layer 22 is disposed on the surface of the first electrode 21 by a plurality of methods such as direct placement or bonding, and each of the protruding structures on the second polymer insulating layer 22 is first.
  • a sealed cavity having a certain air pressure is formed between the electrodes 21, the upper surface of the closed cavity is a second polymer insulating layer, and the lower surface is a first electrode (where the upper surface and the lower surface are opposite to the cavity) In terms of, regardless of the placement angle of the friction generator itself).
  • the second electrode 23 is provided on the second polymer insulating layer 22 by magnetron sputtering or coating to form the same structure as the second polymer insulating layer 22. There is no gap between the second electrode 23 and the second polymer insulating layer 22.
  • the second electrode layer is a two-layer structure composed of the second polymer insulating layer 22 and the second electrode 23.
  • the entire friction generator is a three-layer consisting of a single layer of a first electrode layer and a double layer of a second electrode layer.
  • the structure of the generator wherein the second polymer insulating layer 22 is located between the first electrode 21 and the second electrode 23 for rubbing with the first electrode 21 so that the first electrode 21 and the second electrode 23 An electric charge is generated between them, and therefore, the first electrode 21 and the second electrode 23 are the two electric power output ends of the friction generator.
  • the upper surface of the cavity (ie, the second polymer insulating layer 22) and the lower surface of the closed cavity (ie, the first electrode 21) are mutually rubbed to generate an electrostatic charge, and the generation of the static charge causes the first electrode
  • the capacitance between 21 and the second electrode 23 changes, resulting in a potential difference between the first electrode 21 and the second electrode 23.
  • the free electrons will pass through an external circuit (for example, the external circuit can be formed by connecting the first electrode and the second electrode by wires) from the side having the low potential
  • the electrode flows to the side electrode with a high potential to form a current in the external circuit.
  • the insulating structure can prevent free electrons from neutralizing inside the friction generator, and the first balance has been achieved at this time.
  • a reverse potential difference is again generated between the electrode and the second electrode, thereby forming a reverse current in the external circuit. It can be seen that under the blowing of the wind, the convex structure in the friction generator is continuously deformed and continuously restored to the original state, thereby generating an electrical signal of the alternating current.
  • the pressure of the gas filled in the closed cavity can be controlled to achieve an optimum power generation effect.
  • the inventors found through research that when the pressure of the gas charged in the closed cavity is stronger than one atmosphere, the closed cavity is completely expanded, resulting in a closed cavity. The upper and lower surfaces are incapable of contacting the friction; and when the pressure of the gas charged in the closed cavity is less than one atmosphere, the closed cavity is completely compressed, and the upper and lower surfaces are fitted to each other, so that the separation of the friction interface cannot be achieved. Therefore, when the gas pressure in the closed cavity is one atmosphere, an optimum friction power generation effect can be achieved.
  • the closed cavity can The maximum amount of gas filled is n max , and when the upper and lower surfaces of the closed cavity are close to each other, the minimum amount of gas filled is n min , and n min can be approximately zero.
  • n max the upper and lower surfaces are not in good contact with the friction
  • the optimal amount of inflation in the closed cavity should be between n min and Between n max .
  • the friction in the present invention The generator is driven by the natural force of wind or raindrops, so the outer polymer (second polymer insulation layer) of the generator is made of a flexible and light material.
  • the maximum volume of each of the closed cavities is the volume corresponding to when the flexible second polymer insulating layer is fully expanded, assuming that the volume is V max .
  • V max the amount of gas filled in the cavity causes the pressure in the cavity to be equal to the atmospheric pressure; and when the amount of gas charged in the cavity is small, the external atmospheric pressure is strong, and power generation is added.
  • the second polymer insulation layer of the machine is flexible, resulting in the volume of the cavity being less than V max at this time. If the influence of gravity is neglected, the internal pressure of the cavity is equal to the atmospheric pressure.
  • n max P V max /RT
  • the volume of the cavity will be less than V max
  • the intracavity pressure is approximately equal to
  • the atmospheric pressure is strong, and the amount of gas n charged at this time ranges as follows: 0 ⁇ n ⁇ n max , preferably, the amount of gas charged is between 10% and 60% of n max .
  • an n max that is, a maximum amount of inflation is defined, which is an amount of inflation when the closed cavity is just filled and is in equilibrium with the external air pressure when the external force is not applied. Contact separation can be achieved.
  • the air pressure in the closed cavity is equal to an atmospheric pressure, and the upper surface and the lower surface of the closed cavity are They are separated from each other without external force and can come into contact with each other when subjected to an external force.
  • FIG. 2b shows a schematic representation of an improved implementation of the friction generator of the first embodiment.
  • the structure shown in Fig. 2b is different from the structure shown in Fig. 2a in that a portion facing the first electrode 21 is formed at a portion where the convex structure is formed on the second polymer insulating layer 22.
  • each of the convex structures of the second polymer insulating layer 22 has a protruding portion facing the first electrode 21, and the protruding portion may have a shape of a square in FIG. 2b. It can also be other shapes such as a hemisphere.
  • a solid protrusion may be formed inside each convex structure of the second polymer insulating layer 22, or may be formed in each convex structure of the second polymer insulating layer 22.
  • the inside of the invention is made into a hollow recess, and the specific manufacturing method of the protruding portion of the present invention is not limited.
  • the main function of the protruding portion is to shorten the distance between the inner surface of each of the convex structures of the second polymer insulating layer 22 and the first electrode 21 (i.e., the distance between the upper and lower surfaces of the closed cavity), so that Both of them are more prone to contact friction under the action of wind, thereby increasing the output power of the friction generator.
  • a plurality of protruding portions may be formed on the second polymer insulating layer 22 inside each of the convex structures.
  • the metal rubs against the polymer and the metal is more likely to lose electrons. Therefore, in the first embodiment, the friction between the first electrode and the second polymer insulating layer made of metal can improve the energy output. . Therefore, the friction generator in the first embodiment mainly generates electrical signals by friction between the metal (first electrode) and the polymer (second polymer insulating layer), and mainly utilizes the characteristics that the metal easily loses electrons. An induced electric field is formed between the first electrode and the second polymer insulating layer to generate a voltage or a current.
  • the friction generator of the second embodiment has a four-layer structure, and the main difference from the first embodiment is that the first polymer insulation layer is added.
  • the friction generator includes: a first electrode 31 disposed on a surface of the wall, a first polymer insulating layer 32 disposed on a surface of the first electrode 31, and a first polymer insulation A second polymer insulating layer 33 on the surface of the layer 32 and a second electrode 34 disposed on the surface of the second polymer insulating layer 33.
  • the first electrode 31 and the first polymer insulating layer 32 constitute a first electrode layer
  • the second polymer insulating layer 33 and the second electrode 34 constitute a second electrode layer.
  • the first electrode 31 and the first polymer insulating layer 32 may be laminated together to form the first electrode layer by fixing (such as gluing) or non-fixing (such as direct placement).
  • the first electrode layer is a flat electrode layer, and the flat electrode layer can be disposed on the surface of the wall by adhesive bonding or the like. When specifically disposed, the first electrode 31 is in direct contact with the surface of the wall.
  • the second electrode layer composed of the second polymer insulating layer 33 and the second electrode 34 is an electrode layer having a plurality of convex structures.
  • the second polymer insulating layer 33 can be realized by a polymer film, and can be fabricated as the structure shown in FIG. 4.
  • the second polymer insulating layer 33 has a plurality of convex structures, each of which has a rectangular parallelepiped shape, and each of the convex structures is regularly arranged in a matrix form.
  • the second polymer insulating layer 33 is disposed on the surface of the first polymer insulating layer 32 by a plurality of methods such as direct placement or bonding, and each of the second polymer insulating layers 33 is convex.
  • a closed cavity having a certain air pressure is formed between the structure and the first polymer polymer insulating layer 32.
  • the upper surface of the closed cavity is a second polymer insulating layer, and the lower surface is a first polymer. Insulation.
  • the second electrode 34 is provided on the second polymer insulating layer 33 by magnetron sputtering or coating to form the same structure as the second polymer insulating layer 33. There is no gap between the second electrode 34 and the second polymer insulating layer 33.
  • the first electrode layer is a two-layer structure composed of the first polymer insulating layer 32 and the first electrode 31, and the second electrode layer is composed of the second polymer insulating layer 33 and the second layer.
  • the electrode 34 has a two-layer structure.
  • the whole friction generator is a four-layer generator composed of a double-layer first electrode layer and a double-layer second electrode layer, wherein the second polymer insulating layer and the first polymer insulating layer Located between the first electrode and the second electrode for rubbing against each other as two friction interfaces, thereby generating a charge between the first electrode and the second electrode, and therefore, the first electrode and the second electrode are the friction generator Two power outputs.
  • Friction hair in the second embodiment The principle of the power generation of the motor is similar to that of the embodiment, and is not described here. The only difference is that in the first embodiment, the first electrode and the second polymer insulating layer are used as the friction interface, and the second embodiment is used. The first polymer polymer insulating layer and the second polymer polymer insulating layer are rubbed as two friction interfaces, but substantially all are rubbed by the upper and lower surfaces of the closed cavity.
  • the second electrode layer since the second electrode layer has a plurality of convex structures, a closed cavity having a certain air pressure is formed between the first electrode layer and the first electrode layer, which can be squeezed and rubbed after being rubbed. Recovering rapidly, the two friction interfaces composed of the first polymer insulating layer and the second polymer insulating layer can be quickly separated to prepare for the next friction between the two friction interfaces.
  • This arrangement avoids the problem that the two friction interfaces due to the aging of the layers of the friction generator are attached to each other regardless of whether or not they are stressed, and cannot be separated, thereby affecting the power generation effect.
  • Figure 3b shows a schematic diagram of an improved implementation of the friction generator of the second embodiment.
  • the structure shown in Fig. 3b is different from the structure shown in Fig. 3a in that a portion facing the first polymer insulating layer 32 is formed at a portion where the bump structure is formed on the second polymer insulating layer 33.
  • each of the convex structures of the second polymer insulating layer 33 has a protruding portion facing the first polymer insulating layer 32, and the shape of the protruding portion may be FIG. 3b.
  • the shape of the cube in the middle may be other shapes such as a hemisphere.
  • each convex structure of the second polymer insulating layer 33 it is preferable to form a solid protrusion inside each convex structure of the second polymer insulating layer 33, or it may be realized by other means, for example, insulating the second polymer.
  • the top of each of the convex structures of the layer 33 is formed into a hollow concave shape, and the specific manufacturing method of the protruding portion of the present invention is not limited.
  • the main function of the protruding portion is to shorten the distance between the inner surface of each of the convex structures of the second polymer insulating layer 33 and the first polymer insulating layer 32, that is, to shorten the upper and lower surfaces of the closed cavity.
  • a plurality of protruding portions may be formed on the second polymer insulating layer 33 inside the respective convex structure.
  • Fig. 3c shows a schematic view of another modified implementation of the friction generator of the second embodiment.
  • the structure shown in Figure 3c differs from the structure shown in Figure 3a in that the first polymer insulating layer A portion of the 32 opposite to each of the convex structures of the second polymer insulating layer 33 has a protruding portion facing the second polymer insulating layer 33.
  • a portion of the first polymer insulating layer 32 opposite to each of the protruding structures has a protruding portion facing the second polymer insulating layer 33, and the shape of the protruding portion may be
  • the shape of the cube in Fig. 3c may be other shapes such as a hemisphere.
  • a solid protrusion may be formed on the first polymer polymer insulating layer 32 at a position opposite to each of the convex structures, or the first polymer insulating layer 32 may be formed on each of The position of the convex structure is oppositely formed in a hollow ridge shape, and the specific manufacturing method of the protruding portion of the present invention is not limited.
  • the main function of the protruding portion is to shorten the distance between the inner surface of each of the convex structures of the second polymer insulating layer 33 and the first polymer insulating layer 32, that is, to shorten the upper and lower surfaces of the closed cavity. The distance between the two makes the contact friction more likely to occur under the action of the wind, thereby increasing the output power of the friction generator.
  • FIGS. 3b and 3c the improvement principle in FIGS. 3b and 3c is the same, and the distance between the upper and lower surfaces of the closed cavity as the friction interface is shortened by making the protruding portion, thereby improving the friction effect.
  • the modification in FIGS. 3b and 3c can also be simultaneously applied to the friction generator shown in FIG. 3a, that is, at the portion where the convex structure is formed on the second polymer insulating layer 33.
  • the protruding portion facing the first polymer insulating layer 32 has a direction on the first polymer insulating layer 32 opposite to each of the protruding structures of the second polymer insulating layer 33
  • the protruding portion of the second polymer insulating layer 33 sets the distance between the two protruding portions according to the flexibility of the material of the friction generator to achieve an optimum friction effect.
  • the friction generator of the second embodiment generates electricity mainly by friction between the polymer (the first polymer insulating layer) and the polymer (the second polymer insulating layer).
  • the friction generator in the third embodiment has a five-layer structure, and the main difference from the second embodiment is that the intermediate film layer is added, and the intervening film layer is located at the Between a high molecular polymer insulating layer and a second high molecular polymer insulating layer.
  • the intermediate film layer belongs to the first electrode layer.
  • the intermediate film layer can be formed into the same flat shape as the first polymer polymer insulating layer.
  • the friction generator comprises: disposed on a wall surface a first electrode, a first polymer insulating layer disposed on the surface of the first electrode, an intermediate film layer disposed on the surface of the first polymer insulating layer, and a second polymer disposed on the surface of the intermediate film layer An insulating layer and a second electrode disposed on a surface of the second polymer insulating layer.
  • the first electrode, the first polymer insulating layer and the intermediate film layer constitute a first electrode layer
  • the second polymer insulating layer and the second electrode constitute a second electrode layer.
  • the first electrode, the first polymer insulating layer and the intermediate film layer may be sequentially laminated together by fixing (such as adhesive) or non-fixed (such as direct placement) to form the first electrode layer.
  • the first electrode layer is a flat electrode layer, and the flat electrode layer can be disposed on the surface of the wall by adhesive bonding or the like. When the specific electrode is disposed, the first electrode is directly in contact with the surface of the wall, and the first height is high.
  • the molecular polymer insulating layer is between the first electrode and the intervening film layer.
  • the second electrode layer composed of the second polymer insulating layer and the second electrode is an electrode layer having a plurality of convex structures.
  • the second polymer insulating layer can be realized by a polymer film, and can be fabricated into the structure shown in FIG. 4. As can be seen from FIG. 4, the second polymer insulating layer is formed.
  • the second polymer insulating layer is disposed on the surface of the intermediate film layer by a plurality of methods such as direct placement or bonding, and between each convex structure on the second polymer insulating layer and the intermediate film layer A closed cavity having a certain pressure is formed.
  • the second electrode is provided on the second polymer insulating layer by magnetron sputtering or coating to form the same structure as the second polymer insulating layer. There is no gap between the second electrode and the second polymer insulating layer 33.
  • the first electrode layer is a three-layer structure composed of an intermediate film layer, a first polymer insulating layer and a first electrode
  • the second electrode layer is composed of a second polymer insulating layer and A two-layer structure composed of two electrodes.
  • the whole friction generator is a five-layer generator composed of a three-layer first electrode layer and a two-layer second electrode layer, wherein the second polymer insulating layer and the intermediate film layer serve as two friction interfaces. Friction with each other to generate a charge between the first electrode and the second electrode, and therefore, the first electrode and the second electrode are the two power output ends of the friction generator.
  • the principle of the power generation of the friction generator in the first mode of the third embodiment is similar to that of the first embodiment, and is not described here again. The only difference is that in the first embodiment, the first electrode and the second polymer insulation layer are passed. As the friction between the two friction interfaces, the first mode of the third embodiment is through the intervening film. The layer and the second polymer insulating layer are rubbed as two friction interfaces, wherein in the first mode of the third embodiment, since the lower surface of the closed cavity is the intermediate film layer, the upper surface of the closed cavity It is a second polymer insulating layer, so it is also substantially rubbed by the upper and lower surfaces of the closed cavity as a frictional interface.
  • the friction generator in the first implementation of the third embodiment can also be modified by referring to the modification in Fig. 3b and/or Fig. 3c of the second embodiment.
  • a protruding portion toward the intermediate film layer may be provided at a portion where the convex structure is formed on the second polymer insulating layer.
  • the shape of the protruding portion may be a square shape in FIG. 3b, or may be a hemisphere or the like. Other shapes.
  • a solid protrusion may be formed inside each convex structure of the second polymer insulating layer, or may be realized by other means, for example, a second polymer insulating layer.
  • the top of each of the protruding structures is formed into a hollow recessed shape, and the specific manufacturing method of the protruding portion of the present invention is not limited.
  • the main function of the protruding portion is to shorten the distance between the inner surface of each convex structure of the second polymer insulating layer and the intermediate film layer, that is, the distance between the upper and lower surfaces of the closed cavity, so that the two The contact friction is more likely to occur under the action of the wind, thereby increasing the output power of the friction generator.
  • a protruding portion facing the second polymer insulating layer may be disposed at a portion of the intermediate film layer opposite to each of the convex structures of the second polymer insulating layer.
  • a portion of the intervening film layer opposite to each of the convex structures has a protruding portion facing the second polymer insulating layer, and the protruding portion may have a shape of a square in FIG. 3c or a hemisphere. Other shapes such as body.
  • a solid protrusion may be formed on the intermediate film layer at a position opposite to each of the convex structures.
  • the main function of the protruding portion is to shorten the distance between the inner surface of each convex structure of the second polymer insulating layer and the intermediate film layer, so that the two are more likely to contact friction under the action of wind, thereby improving friction.
  • the output power of the generator is to shorten the distance between the inner surface of each convex structure of the second polymer insulating layer and the intermediate film layer, so that the two are more likely to contact friction under the action of wind, thereby improving friction.
  • the intermediate film layer belongs to the second electrode layer.
  • the intermediate film layer can be formed into the same shape as the second polymer polymer insulating layer having a plurality of convex structures.
  • the friction generator comprises: a first electrode disposed on a surface of the wall, a first polymer insulating layer disposed on the surface of the first electrode, an intermediate film layer disposed on a surface of the first polymer insulating layer, and a surface disposed on a surface of the intermediate film layer a high molecular polymer insulating layer and a second electrode disposed on the surface of the second polymer insulating layer.
  • the first electrode and the first polymer insulating layer constitute a first electrode layer
  • the intermediate film layer, the second polymer insulating layer and the second electrode constitute a second electrode layer.
  • the first electrode and the first polymer insulating layer may be laminated together to form the first electrode layer by fixing (such as gluing) or non-fixing (such as direct placement).
  • the first electrode layer is a flat electrode layer, and the flat electrode layer can be disposed on the surface of the wall by adhesive bonding or the like. When the specific electrode is disposed, the first electrode is directly in contact with the surface of the wall, and the first height is high.
  • the molecular polymer insulating layer is between the first electrode and the intervening film layer.
  • the second electrode layer composed of the intermediate film layer, the second polymer insulating layer, and the second electrode is an electrode layer having a plurality of convex structures. Similar to the second embodiment, both the intermediate film layer and the second polymer insulating layer can be realized by a polymer film, and both can be fabricated into the structure shown in FIG. 4. As can be seen from FIG. 4, the intermediate film layer can be seen. And the second polymer polymer insulating layer has a plurality of convex structures, each of the convex structures has a square shape, and each of the convex structures is regularly arranged in a matrix form.
  • the intermediate film layer and the second polymer polymer insulating layer have the same shape, the intermediate film layer and the second polymer polymer insulating layer may be laminated together by fixing or non-fixing to form a two-layer polymer film. Then, the second electrode is placed on the second polymer insulating layer by magnetron sputtering or coating to form the same structure as the second polymer insulating layer. There is no gap between the second electrode and the second polymer insulating layer.
  • the intermediate film layer is disposed on the surface of the first polymer insulating layer by a plurality of methods such as direct placement or bonding, and each of the protruding structures on the intermediate film layer and the first polymer insulating layer A closed cavity with a certain pressure is formed between them.
  • the first electrode layer is a two-layer structure composed of a first polymer insulating layer and a first electrode
  • the second electrode layer is composed of an intermediate film layer, a second polymer insulating layer, and A three-layer structure composed of two electrodes.
  • the whole friction generator is a five-layer generator composed of a double-layer first electrode layer and a three-layer second electrode layer, wherein the first polymer insulating layer and the intermediate film layer serve as two friction interfaces. Friction with each other to generate a charge between the first electrode and the second electrode, and therefore, the first electrode and the second electrode are the two power output ends of the friction generator.
  • the power generation principle of the friction generator in the second mode of the third embodiment is similar to that of the first embodiment, and is not described here again. The only difference is that the first electrode and the second polymer insulation layer are used in the first embodiment.
  • the intermediate film layer and the first polymer polymer insulating layer are rubbed as two friction interfaces.
  • the substantially transparent cavity is also passed through the closed cavity. The upper and lower surfaces are rubbed as a frictional interface.
  • a protruding portion facing the first polymer insulating layer may be provided at a portion where the convex structure is formed on the intermediate film layer.
  • a protruding portion facing the first polymer insulating layer there is a protruding portion facing the first polymer insulating layer, and the shape of the protruding portion may be a square shape in FIG. 3b, or may be a hemisphere or the like. Other shapes.
  • the protruding portion it is preferable to form a solid protrusion inside the convex structure of the intermediate film layer, or it may be realized by other means, for example, the top of each convex structure of the intermediate film layer is made as The hollow recessed shape, the specific manufacturing method of the protruding portion of the present invention is not limited.
  • the main function of the protruding portion is to shorten the distance between the inner surface of each convex structure of the intermediate film layer and the first polymer polymer insulating layer, so that the two are more likely to contact friction under the action of wind, thereby improving friction.
  • the output power of the generator is not limited.
  • a protruding portion toward the intermediate film layer may be provided at a portion of the first polymer insulating layer opposite to each of the convex structures of the intermediate film layer.
  • a portion of the first polymer insulating layer opposite to each of the convex structures has a protruding portion facing the intermediate film layer, and the protruding portion may have a shape of a square in FIG. 3c or a hemisphere. Other shapes such as body.
  • a solid protrusion may be formed on the first polymer insulating layer at a position opposite to each of the convex structures.
  • the main function of the protruding portion is to shorten the distance between the inner surface of each convex structure of the intermediate film layer and the first polymer polymer insulating layer, so that the two are more likely to contact friction under the action of wind, thereby improving friction.
  • the output power of the generator is to shorten the distance between the inner surface of each convex structure of the intermediate film layer and the first polymer polymer insulating layer, so that the two are more likely to contact friction under the action of wind, thereby improving friction.
  • the friction generator in the fourth embodiment has a five-layer structure, and the main difference from the second embodiment is that the intervening electrode layer is added, and the intervening electrode layer is located at the Between a high molecular polymer insulating layer and a second high molecular polymer insulating layer.
  • the main difference between the fourth embodiment and the third embodiment is that the insulating intervening film layer is replaced by the electrically conductive intervening electrode layer.
  • the intervening electrode layer and the first electrode and the second electrode together function as a friction generator. Output.
  • the intervening electrode layer belongs to the first electrode layer.
  • the intervening electrode layer can be formed in the same flat shape as the first polymer polymer insulating layer.
  • the friction generator includes: a first electrode disposed on a surface of the wall, a first polymer insulating layer disposed on the surface of the first electrode, and disposed at the first An intervening electrode layer on the surface of the polymer polymer insulating layer, a second polymer insulating layer disposed on the surface of the intervening electrode layer, and a second electrode disposed on the surface of the second polymer insulating layer.
  • the first electrode, the first polymer insulating layer and the intervening electrode layer constitute a first electrode layer
  • the second polymer insulating layer and the second electrode constitute a second electrode layer.
  • the first electrode, the first polymer insulating layer, and the intervening electrode layer may be sequentially laminated together to form the first electrode layer by means of fixing (such as gluing) or non-fixing (such as direct placement).
  • the first electrode layer is a flat electrode layer, and the flat electrode layer can be disposed on the surface of the wall by adhesive bonding or the like. When the specific electrode is disposed, the first electrode is directly in contact with the surface of the wall, and the first height is high.
  • the molecular polymer insulating layer is between the first electrode and the intervening electrode layer.
  • the second electrode layer composed of the second polymer insulating layer and the second electrode is an electrode layer having a plurality of convex structures.
  • the second polymer insulating layer can be realized by a polymer film, and can be fabricated into the structure shown in FIG. 4. As can be seen from FIG. 4, the second polymer insulating layer is formed.
  • the second polymer insulating layer is disposed on the surface of the intervening electrode layer by a plurality of methods such as direct placement or lamination, and between each of the convex structures on the second polymer insulating layer and the intervening electrode layer A closed cavity having a certain pressure is formed.
  • the second electrode is provided on the second polymer insulating layer by magnetron sputtering or coating to form the same structure as the second polymer insulating layer. There is no gap between the second electrode and the second polymer insulating layer.
  • the first electrode layer is a three-layer structure composed of an intermediate electrode layer, a first polymer insulating layer and a first electrode
  • the second electrode layer is composed of a second polymer insulating layer and a first electrode layer.
  • a two-layer structure composed of two electrodes.
  • the whole friction generator is a five-layer generator composed of a three-layer first electrode layer and a two-layer second electrode layer, wherein the second polymer insulating layer and the intervening electrode layer serve as two friction interfaces.
  • the electric energy output end in which the two output ends can be connected in series and the third output end together as the positive and negative output ends of a set of friction generators; or, the intermediate output end can be
  • the electrode layer and the first electrode serve as positive and negative output terminals of a group of friction generators, and the intermediate electrode layer and the second electrode are used as positive and negative output terminals of another group of friction generators.
  • the principle of the power generation of the friction generator in the first mode of the fourth embodiment is similar to that of the first embodiment, and is not described here again.
  • first electrode and the second polymer insulation layer are used in the first embodiment.
  • the interfacial electrode layer and the second polymer polymer insulating layer are rubbed as two friction interfaces.
  • the lower surface of the closed cavity is the intermediate electrode layer
  • the upper surface of the closed cavity is the second polymer insulating layer
  • it is substantially through the closed cavity
  • the upper and lower surfaces are rubbed as a frictional interface.
  • the friction generator in the first implementation of the fourth embodiment can also be modified by referring to the modification in Fig. 3b of the second embodiment.
  • a protruding portion toward the intermediate electrode layer may be provided at a portion where the convex structure is formed on the second polymer insulating layer.
  • the shape of the protruding portion may be a square shape in FIG. 3b, or may be a hemisphere or the like. Other shapes.
  • a solid protrusion may be formed inside each convex structure of the second polymer insulating layer, or may be realized by other means, for example, a second polymer insulating layer.
  • the top of each of the protruding structures is formed into a hollow recessed shape, and the specific manufacturing method of the protruding portion of the present invention is not limited.
  • the main function of the protruding portion is to shorten the distance between the inner surface of each convex structure of the second polymer insulating layer and the intervening electrode layer, so that the two are more susceptible to contact friction under the action of wind, thereby improving friction.
  • the output power of the generator is to shorten the distance between the inner surface of each convex structure of the second polymer insulating layer and the intervening electrode layer, so that the two are more susceptible to contact friction under the action of wind, thereby improving friction.
  • the intervening electrode layer belongs to the second electrode layer.
  • the intervening electrode layer can be formed into the same shape as the second polymer polymer insulating layer having a plurality of convex structures.
  • the friction generator includes: a first electrode disposed on a surface of the wall, a first polymer insulating layer disposed on the surface of the first electrode, and disposed at the first An intervening electrode layer on the surface of the polymer polymer insulating layer, a second polymer insulating layer disposed on the surface of the intervening electrode layer, and a second electrode disposed on the surface of the second polymer insulating layer.
  • the first electrode and the first polymer insulating layer constitute a first electrode layer
  • the intermediate electrode layer, the second polymer insulating layer and the second electrode constitute a second electrode layer.
  • the first electrode and the first polymer insulating layer may be laminated together to form the first electrode layer by fixing (such as gluing) or non-fixing (such as direct placement).
  • the first electrode layer is a flat electrode layer, and the flat electrode layer can be disposed on the surface of the wall by adhesive bonding or the like. When the specific electrode is disposed, the first electrode is directly in contact with the surface of the wall, and the first height is high.
  • the molecular polymer insulating layer is between the first electrode and the intervening electrode layer.
  • the second electrode layer composed of the intermediate electrode layer, the second polymer insulating layer, and the second electrode is an electrode layer having a plurality of convex structures.
  • the intervening electrode layer can be made of a material capable of forming an electrode
  • the second polymer insulating layer can be realized by a polymer film
  • the intervening electrode layer and the second polymer insulating layer can be fabricated as shown in FIG. Structure, as can be seen from FIG. 4, the intermediate electrode layer and the second polymer insulating layer have a plurality of convex structures, each of which has a square shape, and each of the convex structures is arranged in a matrix form. cloth.
  • the intermediate electrode layer can be disposed by magnetron sputtering or coating after the second polymer insulating layer is formed.
  • One side of the two polymer polymer insulating layer is formed into the same structure as the second polymer polymer insulating layer; and then the second electrode is disposed on the second polymer by magnetron sputtering or coating
  • the other side of the insulating layer also has the same structure as the second polymer insulating layer.
  • the intervening electrode layer is disposed on the surface of the first polymer insulating layer by a plurality of methods such as direct placement or bonding, and each of the protruding structures on the intervening electrode layer and the first polymer insulating layer A closed cavity with a certain pressure is formed between them.
  • the first electrode layer is a two-layer structure composed of a first polymer insulating layer and a first electrode
  • the second electrode layer is an intermediate electrode layer and a second polymer insulating layer.
  • a three-layer structure composed of the second electrode.
  • the whole friction generator is a five-layer generator composed of a double-layer first electrode layer and a three-layer second electrode layer, wherein the first polymer insulating layer and the intervening electrode layer serve as two friction interfaces.
  • the electric energy output end in which the two output ends can be connected in series and the third output end together as the positive and negative output ends of a set of friction generators; or, the intermediate output end can be
  • the electrode layer and the first electrode serve as positive and negative output terminals of a group of friction generators, and the intermediate electrode layer and the second electrode are used as positive and negative output terminals of another group of friction generators.
  • the power generation principle of the friction generator in the second mode of the fourth embodiment is similar to that of the first embodiment, and is not described here again.
  • the first electrode and the second polymer insulation layer are passed.
  • the interfacial electrode layer and the first polymer polymer insulating layer are rubbed as two friction interfaces.
  • the substantially transparent cavity is also passed through the closed cavity. The upper and lower surfaces are rubbed as a frictional interface.
  • a protruding portion toward the intermediate electrode layer may be provided at a portion of the first polymer insulating layer opposite to each of the convex structures of the intermediate electrode layer.
  • a portion of the first polymer insulating layer opposite to each of the protruding structures has a protruding portion facing the intermediate electrode layer, and the protruding portion may have a shape of a square in FIG. 3c or a hemisphere. Other shapes such as body.
  • a solid protrusion may be formed on the first polymer insulating layer at a position opposite to each of the convex structures.
  • the main function of the protruding portion is to shorten the distance between the inner surface of each convex structure of the intermediate electrode layer and the first polymer insulating layer, so that the two are more likely to contact friction under the action of wind, thereby improving friction.
  • the output power of the generator is to shorten the distance between the inner surface of each convex structure of the intermediate electrode layer and the first polymer insulating layer, so that the two are more likely to contact friction under the action of wind, thereby improving friction.
  • micro-nano structure can take two possible implementations as follows: In the first way, the micro-nano structure is a very small concave-convex structure of micron or nano-scale.
  • the embossed structure can increase the friction Rub the resistance to improve power generation efficiency.
  • the uneven structure can be formed directly at the time of film preparation, and the surface of the polymer polymer insulating layer can be formed into an irregular uneven structure by a grinding method.
  • the uneven structure may be a concave-convex structure of a shape such as a hemisphere, a stripe shape, a cube, a quadrangular pyramid, or a cylinder.
  • the micro/nano structure is a nano-scale pore structure
  • the material used for the high-molecular polymer insulating layer as the friction interface is preferably polyvinylidene fluoride (PVDF), and the thickness thereof is 0.5-1.2 mm ( Preferably, 1.0 mm) is provided with a plurality of nanopores on the face of the other friction surface.
  • PVDF polyvinylidene fluoride
  • each nanopore that is, the width and the depth
  • the preferred size of the nanopore is: a width of 10-100 nm and a depth of 4-50 ⁇ m.
  • the number of nanopores can be adjusted according to the required output current value and voltage value.
  • these nanopores are uniformly distributed with a pore spacing of 2-30 ⁇ m, and more preferably a uniform distribution of average pore spacing of 9 ⁇ m.
  • the materials used for the first polymer polymer insulating layer, the second polymer polymer insulating layer and the intermediate film layer in each embodiment may be selected from the group consisting of polyimide film, aniline formaldehyde resin film, polyoxymethylene film, and B.
  • the second polymer polymer insulation layer can flexibly use any of the above materials.
  • the materials of the first polymer insulating layer and the second polymer insulating layer may be the same.
  • the amount of charge that causes the triboelectric charging is small, and therefore, preferably, the first polymer insulating layer is insulated from the second polymer.
  • the layers are made of different materials.
  • the materials of the first polymer polymer insulating layer, the second polymer polymer insulating layer and the intermediate film layer may be the same or different, if the above three layers of materials The same, the amount of charge that causes the triboelectric charge is small, so preferably, the first polymer polymer insulating layer and/or the second polymer polymer insulating layer are different from the material of the intermediate film layer, and the first polymer is polymerized.
  • the material of the insulating layer and the second polymer insulating layer are preferably the same, which can reduce the kind of materials and make the production of the present invention more convenient.
  • the materials used for the first electrode, the second electrode and the intervening electrode layer in each embodiment may each be selected from the group consisting of indium tin oxide, graphene, silver nanowire film, metal or alloy; wherein the metal is gold, silver, platinum, Palladium, aluminum, nickel, copper, titanium, chromium, tin, iron, manganese, molybdenum, tungsten or vanadium; alloys are aluminum alloys, titanium alloys, magnesium alloys, niobium alloys, copper alloys, zinc alloys, manganese alloys, nickel alloys, Lead alloy, tin alloy, cadmium alloy, niobium alloy, indium alloy, gallium alloy, tungsten alloy, molybdenum alloy, niobium alloy or niobium alloy.
  • the metal is more likely to lose electrons due to friction with the polymer. Therefore, the friction between the metal electrode and the polymer can also increase the energy output.
  • the first electrode in the first embodiment is preferably implemented by using the above metal or alloy, instead of indium tin oxide, graphene, silver nanowire film, thereby being able to pass the metal (first electrode) and the polymer ( The friction between the second polymer insulating layer) generates an electrical signal, mainly utilizing the characteristic that the metal easily loses electrons, and an induced electric field is formed between the first electrode and the second polymer insulating layer, thereby generating a voltage. Or current.
  • each of the layers in the second electrode layer is made of a flexible, soft material to improve the friction effect.
  • each of the convex structures since the surface of the second electrode layer has a plurality of convex structures, each of the convex structures has a gap between each other, and therefore, the wind is easily blown into the gap, thereby causing deformation of each of the convex structures. Thereby achieving the effect of frictional power generation. Therefore, the second electrode layer is provided in a shape having a plurality of convex structures as compared with the flat electrode layer, and the second electrode layer and the first electrode layer can be more easily subjected to contact friction, thereby improving power output.
  • the friction generator described in the above four embodiments can be used for both collecting wind energy and other natural energy such as rainwater energy.
  • the structure of the friction generator can also be modified so that the friction generator can be caused to generate more electric charge by simultaneously utilizing the principle of electrostatic induction.
  • the third polymer insulating layer may be further provided in the second electrode layer.
  • the third polymer insulation layer is disposed on the outermost side of the entire friction generator, that is, the third polymer insulation layer is disposed on the surface of the second electrode for rubbing against the rain water and inducing on the second electrode Inductive charge opposite to the polarity of the charge carried by the rain.
  • FIG. 5a and 5b show the connection relationship between the first electrode 11 and the second electrode 13 when the friction generator shown in Fig. 1 is further provided with the third polymer insulating layer 18.
  • the second electrode 13 can be directly connected to the first electrode 11 through a wire and a resistor, that is, the first electrode 11 and the second electrode 13 together serve as two power output ends of the friction generator, thereby forming a group External circuit.
  • the first electrode 11 and the second electrode 13 may be grounded respectively through a load (not shown). At this time, the first electrode 11 and the second electrode 13 are respectively used as the power output end of the friction generator.
  • two sets of external circuits can be constructed.
  • Fig. 6a the connection mode of Fig. 5b is taken as an example to show the principle that water droplets (raindrops) induce charges on the surface of the second electrode (metal).
  • polymer means a third polymer insulating layer
  • metal means a second electrode grounded by a resistor.
  • the water droplets are charged during the landing in the air due to friction with the air or other reasons, assuming that the polarity of the charge carried by the water droplets is positive.
  • the water droplets drip onto the surface of the third polymer insulating layer, as shown in FIG.
  • the friction generator is enhanced.
  • the power is discharged.
  • the enhanced current can be obtained by using the circuit shown in Fig. 5a.
  • the output of the friction generator is weakened by the mutual cancellation of the charges.
  • the second electrode and the first electrode are respectively grounded through the load, and the above influence can be avoided.
  • the power generation device can utilize the natural energy stored around the wall of the building, and the power generation device has the advantages of simple structure, convenient preparation (simple preparation process), low price and light weight. Easy to install and many other advantages, suitable for large-scale use.
  • the power generation device can play a decorative role on the exterior wall of the building, on the other hand, it can be self-powered, make full use of urban resources, and can be used indoors or outdoors to save energy and reduce energy consumption.

Abstract

一种用于墙体表面的发电装置,用于解决现有的发电装置无法对建筑物的墙体周围所蕴藏的自然能源加以利用的问题。该发电装置包括摩擦发电机,摩擦发电机进一步包括:设置在墙体表面的第一电极层,以及设置在第一电极层表面的第二电极层,其中,第一电极层为平板状电极层,其包括设置在墙体表面的第一电极(11);第二电极层为具有多个凸起结构的电极层,每个凸起结构与第一电极层之间形成一个密闭空腔;其中,第二电极层包括层叠设置的第二高分子聚合物绝缘层(12)以及第二电极(13),第二高分子聚合物绝缘层(12)位于第一电极层和第二电极(13)之间,其中,第一电极(11)和第二电极(13)为摩擦发电机的电能输出端。

Description

用于墙体表面的发电装置 技术领域
本发明涉及发电领域,具体涉及一种用于墙体表面的发电装置。
背景技术
目前,在城市的街道两侧存在大量的建筑物。在街道中,以及两幢大楼之间,就像山区中的风口一样,流线密集,风速加大,甚至可以在本无大风的情况下制造出局地大风来。另外,在一幢高层建筑物的周围也能出现大风区,即高楼前的涡流区和绕大楼两侧的角流区,这就是所谓的“城市风”。上述地方的风速都要比平地风速大30%左右。
由此可见,在建筑物的墙体周围,蕴藏着大量的风能,如果能将这些风能用于发电,势必会节约大量的传统能源。但是,现有技术中还没有能够对建筑物的墙体周围所蕴藏的风能加以利用的发电装置。
另外,在建筑物的墙体周围,除了蕴藏着大量的风能之外,在阴雨天气或冰雹天气还蕴藏着各种各样的自然能源,例如,雨水产生的能量以及冰雹产生的能量等。现有技术中同样没有对这些自然能源加以利用的发电装置。
发明内容
本发明提供一种用于墙体表面的发电装置,用于解决现有的发电装置无法对建筑物的墙体周围所蕴藏的自然能源加以利用的问题。
本发明提供的用于墙体表面的发电装置,包括摩擦发电机,所述摩擦发电机进一步包括:设置在所述墙体表面的第一电极层,以及设置在所述第一电极层表面的第二电极层,其中,所述第一电极层为平板状电极层,其包括设置在所述墙体表面的第一电极;所述第二电极层为具有多个凸起结构的电极层,每个凸起结构与所述第一电极层之间形成一个密闭空腔,所述密闭空腔的上表面和所述密闭空腔的下表面在受到压力时能够接触并作为摩擦界面相互摩擦;其中,所述第二电极层包括层叠设置的第二高分子聚合物绝缘 层以及第二电极,所述第二高分子聚合物绝缘层位于所述第一电极层和所述第二电极之间,其中,所述第一电极和所述第二电极为所述摩擦发电机的电能输出端。
在本发明提供的发电装置中,由设置在墙体表面的第一电极层以及设置在第一电极层表面的第二电极层来构成摩擦发电机,其中,第一电极层为平板状电极层,第二电极层为具有多个凸起结构的电极层,其中,第二电极层上的每个凸起结构与第一电极层之间形成一个密闭空腔,该密闭空腔内具有一定的气压。当墙体表面受到自然力(如风力、雨水击打力等)作用时,第二电极层在自然力作用下受到挤压,使凸起结构的形状发生改变,进而与第一电极层相互接触;当自然力作用消失或减弱时,由于密闭空腔内的气压作用导致凸起结构恢复原状,进而与第一电极层相互分离,通过第二电极层与第一电极层之间的反复接触和分离,就会在第一电极和第二电极之间产生交变的电信号,实现自然能源向电能的转换。因此,通过本发明提供的发电装置,能够对建筑物的墙体周围所蕴藏的自然能源加以利用,且该发电装置同时具有结构简单,制备方便,价格低廉,轻便易安装等诸多优点,适合大规模使用。
附图概述
图1示出了本发明提供的用于墙体表面的发电装置的剖面结构示意图;
图2a示出了本发明实施例一提供的发电装置中的摩擦发电机的剖面结构示意图;
图2b示出了实施例一中的摩擦发电机的一种改进实现方式的示意图;
图3a示出了本发明实施例二提供的发电装置中的摩擦发电机的剖面结构示意图;
图3b示出了实施例二中的摩擦发电机的一种改进实现方式的示意图;
图3c示出了实施例二中的摩擦发电机的另一种改进实现方式的示意图;
图4示出了第二电极层上的凸起结构的示意图;
图5a和图5b分别示出了当设置有第三高分子聚合物绝缘层时,第一电 极和第二电极之间的连接关系的两种示意图;以及
图6a至图6c示出了雨滴在第二电极表面感应电荷的原理示意图。
本发明的较佳实施方式
为充分了解本发明之目的、特征及功效,借由下述具体的实施方式,对本发明做详细说明,但本发明并不仅仅限于此。
为了解决现有的发电装置无法对建筑物的墙体周围所蕴藏的自然能源加以利用的问题,本发明提供了一种用于墙体表面的发电装置。
图1示出了本发明提供的用于墙体表面的发电装置的剖面结构示意图,如图1所示,该发电装置包括摩擦发电机,该摩擦发电机进一步包括:设置在墙体表面的第一电极层,以及设置在第一电极层表面的第二电极层。其中,第一电极层为平板状电极层,其包括设置在墙体表面的第一电极11;第二电极层为具有多个凸起结构的电极层,每个凸起结构与第一电极层之间形成一个密闭空腔,该密闭空腔的上表面和下表面在受到压力时能够接触并作为摩擦界面相互摩擦(具体地,第二电极层上的凸起结构作为密闭空腔的上表面,第一电极层上与凸起结构相对的部位作为密闭空腔的下表面,这里的上表面和下表面是相对于密闭空腔本身而言的,与摩擦发电机的放置角度无关)。其中,第二电极层包括层叠设置的第二高分子聚合物绝缘层12以及第二电极13,第二高分子聚合物绝缘层12位于第一电极层和第二电极13之间,其中,第一电极11和第二电极13为该摩擦发电机的电能输出端。
在图1所示的发电装置中,由设置在墙体表面的第一电极层以及设置在第一电极层表面的第二电极层来构成摩擦发电机,其中,第一电极层为平板状电极层,第二电极层为具有多个凸起结构的电极层,其中,第二电极层上的每个凸起结构与第一电极层之间形成一个密闭空腔,该密闭空腔内具有一定的气压。当墙体表面受到自然力(如风力、雨水击打力)作用时,第二电极层在自然力作用下受到挤压,使凸起结构的形状发生改变,进而与第一电极层相互接触;当自然力作用消失或减弱时,由于密闭空腔内的气压作用导致凸起结构恢复原状,进而与第一电极层相互分离,通过第二电极层与第一电极层之间的反复接触和分离,就会在第一电极和第二电极之间产生交变的 电信号,实现自然能源向电能的转换。
在具体实施时,上述的摩擦发电机既可以设置在建筑物的外部墙体的表面,也可以设置在建筑物的内部墙体的表面。当设置在建筑物的外部墙体的表面时,可以充分利用背景技术中提到的“城市风”和雨水能量来实现摩擦发电;当设置在建筑物的内部墙体的表面时,可以利用走廊内的微风、行人的按压来发电。优选地,将上述的摩擦发电机设置在建筑物的外部墙体的表面。
另外,为了对摩擦发电机发出的电量加以利用,本发明中的发电装置还可以进一步包括蓄电部件和用电部件。其中,蓄电部件的输入端与摩擦发电机的输出端相连,用于对摩擦发电机产生的电能进行存储,具体可通过电池(如锂电池、镍氢电池)、超级电容器等储能元件来实现。用电部件与蓄电部件的输出端相连,具体地,根据实际需求,用电部件可以是设置在建筑物走廊内壁的LED灯、USB接口和/或报警装置等任何小功率器件。这样,当建筑物内的住户在夜间行走时,可以通过LED灯实现照明,且无需耗费传统的电能。而且,走廊内壁的USB接口可以为用户提供随时充电等便利服务,走廊内壁的报警装置可以方便用户迅速报警。本领域技术人员还可以根据实际需求来设定用电部件的类型,以满足用户的各类需求。
另外,由于摩擦发电机所产生的电能通常为交流电能,因此,上述的蓄电部件进一步包括:与储能元件相连的交直流转换器,用于将摩擦发电机输出的交流电信号转换为直流电信号,并提供给储能元件存储。其中,上述的交直流转换器进一步包括:与摩擦发电机相连的、将所述摩擦发电机输出的交流电信号进行整流的整流器;与所述整流器相连的、将所述整流器输出的单向脉动的直流信号中剩余的交流分量进行滤波的滤波器;与所述滤波器相连的、将所述滤波器输出的单向脉动的直流信号进行稳压处理得到恒定的电信号的稳压器。
而且,本发明提供的发电装置还可以结合太阳能电池进行发电,实现风能和太阳能的双重利用。此时,为了方便设置,优选薄膜太阳能电池,以提高整体发电装置的输出电能。
优选地,还可以在本发明的摩擦发电机的外表面设置防水层,以适应各 种使用环境。
由于摩擦发电机是本发明中的核心部件,因此,下面将通过几个具体实施例详细介绍一下本发明提供的发电装置中的摩擦发电机的结构。
实施例一、
图2a示出了本发明实施例一提供的发电装置中的摩擦发电机的剖面结构示意图。如图2a所示,该摩擦发电机包括:设置在墙体表面的第一电极21、设置在第一电极21表面的第二高分子聚合物绝缘层22、以及设置在第二高分子聚合物绝缘层22表面的第二电极23。上述的第一电极21构成第一电极层;上述的第二高分子聚合物绝缘层22和第二电极23构成第二电极层。
通过图2a可以看出,由第一电极21构成的第一电极层为平板状电极层,其直接通过贴合固定方式(例如胶粘等)设置在墙体的表面。由第二高分子聚合物绝缘层22和第二电极23构成的第二电极层为具有多个凸起结构的电极层。其中,第二高分子聚合物绝缘层22可以通过聚合物薄膜来实现,并且可以制作为图4所示的结构,从图4中可以看出,第二高分子聚合物绝缘层上具有若干个凸起结构,每个凸起结构呈正方体形状,且各个凸起结构按照矩阵形式规则排布。在实际情况中,本领域技术人员也可以对凸起结构的形状和排布方式进行灵活调整,例如,可以将凸起结构设置为球体、半球体、锥体等多种形状,排布方式也可以根据局部风力的强弱来调整凸起结构的排布密度,例如,将风力强的区域的凸起结构的密度排布得较大,而将风力弱的区域的凸起结构的密度排布得较小。上述的第二高分子聚合物绝缘层22通过直接放置或贴合固定等多种方式设置在第一电极21的表面,第二高分子聚合物绝缘层22上的每个凸起结构与第一电极21之间形成一个具有一定气压的密闭空腔,该密闭空腔的上表面为第二高分子聚合物绝缘层,下表面为第一电极(这里的上表面和下表面是相对于空腔而言的,与摩擦发电机本身的放置角度无关)。第二电极23通过磁控溅射或涂布等方式设置于第二高分子聚合物绝缘层22上,形成与第二高分子聚合物绝缘层22相同的结构。第二电极23与第二高分子聚合物绝缘层22之间没有空隙。由此可见,第二电极层是由第二高分子聚合物绝缘层22以及第二电极23构成的双层结构。整个摩擦发电机是由单层的第一电极层和双层的第二电极层所构成的三层 结构的发电机,其中,第二高分子聚合物绝缘层22位于第一电极21和第二电极23之间,用于与第一电极21相互摩擦,从而在第一电极21和第二电极23之间产生电荷,因此,第一电极21和第二电极23是该摩擦发电机的两个电能输出端。
下面具体介绍一下上述摩擦发电机的工作原理:当风力(或其他外力)作用于该摩擦发电机时,将导致第二电极层中的各个凸起结构受到挤压而发生形变,从而使密闭空腔的上表面(即:第二高分子聚合物绝缘层22)与密闭空腔的下表面(即:第一电极21)之间相互摩擦产生静电荷,该静电荷的产生会使第一电极21和第二电极23之间的电容发生改变,从而导致第一电极21和第二电极23之间出现电势差。由于第一电极21和第二电极23之间的电势差的存在,自由电子将通过外电路(例如可以通过导线连接第一电极和第二电极的方式来构成该外电路)由电势低的一侧电极流向电势高的一侧电极,从而在外电路中形成电流。当风力减弱或消失时,第二电极层中的各个凸起结构因其内部气压的存在而迅速恢复到原来的凸起状态,这时形成在第一电极和第二电极之间的内电势消失,由于摩擦发电机的第一电极和第二电极之间的第二高分子聚合物绝缘层为绝缘结构,该绝缘结构可以防止自由电子在摩擦发电机内部中和,此时已平衡的第一电极和第二电极之间将再次产生反向的电势差,从而在外电路中形成反向电流。由此可见,在风力的吹动下,摩擦发电机中的凸起结构不断地发生形变,又不断地恢复原状,从而产生出交流的电信号。
由此可见,在图2a所示的摩擦发电机中,由于第二电极层具有多个凸起结构,从而与第一电极层之间形成内有一定气压的密闭空腔,能够在受到挤压并发生摩擦之后迅速恢复原状,因而能够促使由第一电极和第二高分子聚合物绝缘层构成的两个摩擦界面迅速分离,以便为两个摩擦界面之间的下次摩擦做好准备。这种设置方式避免了由于摩擦发电机各层结构老化而导致的两个摩擦界面无论是否受力都相互贴合在一起,无法分离,从而影响发电效果的问题。为了更好地实现密闭空腔的上述作用,可以控制密闭空腔内充入气体的压强,以实现最佳的发电效果。发明人通过研究发现,当密闭空腔内充入的气体的压强大于一个大气压时,密闭空腔完全膨胀,导致密闭空腔 的上下表面无法接触摩擦;而当密闭空腔内充入的气体的压强小于一个大气压时,密闭空腔完全被压缩,其上下表面相互贴合,从而无法实现摩擦界面的分离。因此,当密闭空腔内的气体压强为一个大气压时,可以实现最佳的摩擦发电效果。
另外,除了控制密闭空腔内的压强之外,还需要控制密闭空腔内充入的气体量,具体地,在保证密闭空腔内大气压强为一个大气压的前提下,密闭空腔内所能填充的最多气体量为nmax,而当密闭空腔的上下表面几乎贴近时所填充的最少气体量为nmin,nmin可近似为零,上述两种极限情况都不能实现最佳摩擦效果,例如,当气体量为nmax时,上下表面无法很好地接触摩擦,而当气体量为nmin,上下表面无法有效分离,因此,密闭空腔内的最佳充气量应该介于nmin与nmax之间。
由于nmin与nmax之间的波动范围较大,因此,为了更准确地限定密闭空腔内的最佳充气量,下面给出一种更为具体的限定方式:首先,本发明中的摩擦发电机靠风力或雨滴的自然力来驱动,因此该发电机的外层聚合物(第二高分子聚合物绝缘层)选用柔性轻薄的材料。因此,当本发明中的摩擦发电机制作完成后,每个密闭空腔的最大体积也就是柔性的第二高分子聚合物绝缘层完全撑开时所对应的体积,假设该体积为Vmax,当密闭空腔的体积为Vmax时,腔内充入的气体量导致腔内压强等于大气压强;而当腔内充入的气体量较少时,由于外界大气压强的作用,再加上发电机的第二高分子聚合物绝缘层为柔性的特性,导致此时空腔的体积小于Vmax,若忽略重力影响,此时腔体内部压强等于大气压强。因此由理想气体状态方程PV=nRT,(RT为定值)可知,只要充入气体的量小于nmax=P Vmax/RT,空腔的体积就会小于Vmax,此时腔内压强约等于大气压强,此时充入的气体量n的范围如下:0<n≤nmax,优选地,充入的气体量在nmax的10%-60%之间。换句话说,在上述方式中,首先,定义了一个nmax,即最大充气量,这个充气量是保证密闭空腔刚好充满,且不受外力时与外界气压平衡状态时的充气量,这个状况下可以实现接触分离。然后,充气量小于nmax时,由于空腔壁为柔性的,所以在外界大气压压迫下,空腔体积会自然缩小,以保持平衡,所以,内部气压会与外部气压平衡,这个时候,空腔中还会有空隙,以保证接触分离。因此, 充气量的变化会有一个范围,优选地,该范围在nmax的10%-60%之间。综上所述,在本发明中,通过控制密闭空腔内填充的气体量,使所述密闭空腔内的气压等于一个大气压强,并且,使所述密闭空腔的上表面和下表面在不受外力时相互分离,且在受到外力时能够相互接触。
图2b示出了实施例一中的摩擦发电机的一种改进实现方式的示意图。图2b所示结构与图2a所示结构不同之处在于:在第二高分子聚合物绝缘层22上形成凸起结构的部位处具有朝向第一电极21的突起部分。如图2b所示,在第二高分子聚合物绝缘层22的每个凸起结构的内部都具有一个朝向第一电极21的突起部分,该突起部分的形状可以是图2b中的一个正方体形状,也可以是半球体等其他形状。为了实现该突起部分,可以在第二高分子聚合物绝缘层22的每个凸起结构的内部制作一个实心的突起,或者也可以在第二高分子聚合物绝缘层22的每个凸起结构的内部制作一个空心的凹陷,本发明对该突起部分的具体制作方式不做限定。该突起部分的主要作用在于缩短第二高分子聚合物绝缘层22的每个凸起结构的内表面与第一电极21之间的距离(即密闭空腔的上下表面之间的距离),使二者在风力作用下更容易发生接触摩擦,从而提高摩擦发电机的输出功率。另外,除了图2b所示的方式之外,也可以在每个凸起结构的内部的第二高分子聚合物绝缘层22上制作多个突起部分。
根据发明人的研究发现,金属与高分子聚合物摩擦,金属更易失去电子,因此,在实施例一中,采用金属制成的第一电极与第二高分子聚合物绝缘层摩擦能够提高能量输出。因此,实施例一中的摩擦发电机主要通过金属(第一电极)与聚合物(第二高分子聚合物绝缘层)之间的摩擦来产生电信号,主要利用了金属容易失去电子的特性,使第一电极与第二高分子聚合物绝缘层之间形成感应电场,从而产生电压或电流。
实施例二、
与实施例一中的三层结构的摩擦发电机不同,实施例二中的摩擦发电机为四层结构,其与实施例一的主要区别在于:增加了第一高分子聚合物绝缘层。
图3a示出了本发明实施例二提供的发电装置中的摩擦发电机的剖面结 构示意图。如图3a所示,该摩擦发电机包括:设置在墙体表面的第一电极31、设置在第一电极31表面的第一高分子聚合物绝缘层32、设置在第一高分子聚合物绝缘层32表面的第二高分子聚合物绝缘层33、以及设置在第二高分子聚合物绝缘层33表面的第二电极34。上述的第一电极31和第一高分子聚合物绝缘层32构成第一电极层;上述的第二高分子聚合物绝缘层33和第二电极34构成第二电极层。
具体地,第一电极31和第一高分子聚合物绝缘层32可以通过固定(如胶粘)或非固定(如直接放置)等方式层叠在一起构成第一电极层。该第一电极层为平板状电极层,该平板状电极层可以通过胶粘等贴合固定方式设置在墙体的表面,具体设置时,使第一电极31与墙体表面直接接触。
由第二高分子聚合物绝缘层33和第二电极34构成的第二电极层是具有多个凸起结构的电极层。与实施例一类似,第二高分子聚合物绝缘层33可以通过聚合物薄膜来实现,并且可以制作为图4所示的结构,从图4中可以看出,第二高分子聚合物绝缘层33上具有若干个凸起结构,每个凸起结构呈正方体形状,且各个凸起结构按照矩阵形式规则排布。上述的第二高分子聚合物绝缘层33通过直接放置或贴合固定等多种方式设置在第一高分子聚合物绝缘层32的表面,第二高分子聚合物绝缘层33上的每个凸起结构与第一高分子聚合物绝缘层32之间形成一个具有一定气压的密闭空腔,该密闭空腔的上表面为第二高分子聚合物绝缘层,下表面为第一高分子聚合物绝缘层。第二电极34通过磁控溅射或涂布等方式设置于第二高分子聚合物绝缘层33上,形成与第二高分子聚合物绝缘层33相同的结构。第二电极34与第二高分子聚合物绝缘层33之间没有空隙。
由此可见,上述的第一电极层是由第一高分子聚合物绝缘层32以及第一电极31构成的双层结构,第二电极层是由第二高分子聚合物绝缘层33以及第二电极34构成的双层结构。整个摩擦发电机是由双层的第一电极层和双层的第二电极层所构成的四层结构的发电机,其中,第二高分子聚合物绝缘层和第一高分子聚合物绝缘层位于第一电极和第二电极之间,用于作为两个摩擦界面相互摩擦,从而在第一电极和第二电极之间产生电荷,因此,第一电极和第二电极是该摩擦发电机的两个电能输出端。实施例二中的摩擦发 电机的发电原理与实施例类似,此处不再赘述,区别仅在于:实施例一中是通过第一电极和第二高分子聚合物绝缘层作为两个摩擦界面进行摩擦的,实施例二中是通过第一高分子聚合物绝缘层和第二高分子聚合物绝缘层作为两个摩擦界面进行摩擦的,但实质上都是通过密闭空腔的上下表面进行摩擦。
在图3a所示的摩擦发电机中,由于第二电极层具有多个凸起结构,从而与第一电极层之间形成内有一定气压的密闭空腔,能够在受到挤压并发生摩擦之后迅速恢复原状,因而能够促使由第一高分子聚合物绝缘层和第二高分子聚合物绝缘层构成的两个摩擦界面迅速分离,以便为两个摩擦界面之间的下次摩擦做好准备。这种设置方式避免了由于摩擦发电机各层结构老化而导致的两个摩擦界面无论是否受力都相互贴合在一起,无法分离,从而影响发电效果的问题。
图3b示出了实施例二中的摩擦发电机的一种改进实现方式的示意图。图3b所示结构与图3a所示结构不同之处在于:在第二高分子聚合物绝缘层33上形成凸起结构的部位处具有朝向第一高分子聚合物绝缘层32的突起部分。如图3b所示,在第二高分子聚合物绝缘层33的每个凸起结构的内部都具有一个朝向第一高分子聚合物绝缘层32的突起部分,该突起部分的形状可以是图3b中的正方体形状,也可以是半球体等其他形状。为了实现该突起部分,优选地可以在第二高分子聚合物绝缘层33的每个凸起结构的内部制作一个实心的突起,或者也可以通过其他方式实现,例如将第二高分子聚合物绝缘层33的每个凸起结构的顶部制作为空心的凹陷状,本发明对该突起部分的具体制作方式不做限定。该突起部分的主要作用在于缩短第二高分子聚合物绝缘层33的每个凸起结构的内表面与第一高分子聚合物绝缘层32之间的距离,即缩短密闭空腔的上下表面之间的距离,使二者在风力作用下更容易发生接触摩擦,从而提高摩擦发电机的输出功率。另外,除了图3b所示的方式之外,也可以在每个凸起结构的内部的第二高分子聚合物绝缘层33上制作多个突起部分。
图3c示出了实施例二中的摩擦发电机的另一种改进实现方式的示意图。图3c所示结构与图3a所示结构不同之处在于:在第一高分子聚合物绝缘层 32上与第二高分子聚合物绝缘层33的每个凸起结构相对的部位处具有朝向第二高分子聚合物绝缘层33的突起部分。如图3c所示,在第一高分子聚合物绝缘层32上与每个凸起结构相对的部位都具有一个朝向第二高分子聚合物绝缘层33的突起部分,该突起部分的形状可以是图3c中的正方体形状,也可以是半球体等其他形状。为了实现该突起部分,可以在第一高分子聚合物绝缘层32上与每个凸起结构相对的位置制作一个实心的突起,或者也可以将第一高分子聚合物绝缘层32上与每个凸起结构相对的位置制作为空心的隆起状,本发明对该突起部分的具体制作方式不做限定。该突起部分的主要作用在于缩短第二高分子聚合物绝缘层33的每个凸起结构的内表面与第一高分子聚合物绝缘层32之间的距离,即缩短密闭空腔的上下表面之间的距离,使二者在风力作用下更容易发生接触摩擦,从而提高摩擦发电机的输出功率。
由此可见,图3b和图3c中的改进原理相同,都是通过制作突起部分来缩短作为摩擦界面的密闭空腔的上下表面之间的距离,从而改善摩擦效果。在实际情况中,也可以将图3b和图3c中的改进方式同时应用到图3a所示的摩擦发电机中,即:在第二高分子聚合物绝缘层33上形成凸起结构的部位处具有朝向第一高分子聚合物绝缘层32的突起部分,且在第一高分子聚合物绝缘层32上与第二高分子聚合物绝缘层33的每个凸起结构相对的部位处也具有朝向第二高分子聚合物绝缘层33的突起部分,根据摩擦发电机的材质的柔韧程度来设定两个突起部分之间的距离,以达到最佳的摩擦效果。
总的来说,实施例二中的摩擦发电机主要是通过聚合物(第一高分子聚合物绝缘层)与聚合物(第二高分子聚合物绝缘层)之间的摩擦进行发电的。
实施例三、
与实施例二中的四层结构的摩擦发电机不同,实施例三中的摩擦发电机为五层结构,其与实施例二的主要区别在于:增加了居间薄膜层,该居间薄膜层位于第一高分子聚合物绝缘层和第二高分子聚合物绝缘层之间。
在实施例三的第一种实现方式中,居间薄膜层属于第一电极层,此时,可以将居间薄膜层制作成与第一高分子聚合物绝缘层相同的平板状。相应地,在实施例三的第一种实现方式中,该摩擦发电机包括:设置在墙体表面 的第一电极、设置在第一电极表面的第一高分子聚合物绝缘层、设置在第一高分子聚合物绝缘层表面的居间薄膜层、设置在居间薄膜层表面的第二高分子聚合物绝缘层、以及设置在第二高分子聚合物绝缘层表面的第二电极。上述的第一电极、第一高分子聚合物绝缘层和居间薄膜层构成第一电极层;上述的第二高分子聚合物绝缘层和第二电极构成第二电极层。
具体地,第一电极、第一高分子聚合物绝缘层和居间薄膜层之间可以通过固定(如胶粘)或非固定(如直接放置)等方式依次层叠在一起构成第一电极层。该第一电极层为平板状电极层,该平板状电极层可以通过胶粘等贴合固定方式设置在墙体的表面,具体设置时,使第一电极与墙体表面直接接触,第一高分子聚合物绝缘层位于第一电极和居间薄膜层之间。
由第二高分子聚合物绝缘层和第二电极构成的第二电极层是具有多个凸起结构的电极层。与实施例二类似,第二高分子聚合物绝缘层可以通过聚合物薄膜来实现,并且可以制作为图4所示的结构,从图4中可以看出,第二高分子聚合物绝缘层上具有若干个凸起结构,每个凸起结构呈正方体形状,且各个凸起结构按照矩阵形式规则排布。上述的第二高分子聚合物绝缘层通过直接放置或贴合固定等多种方式设置在居间薄膜层的表面,第二高分子聚合物绝缘层上的每个凸起结构与居间薄膜层之间形成一个具有一定气压的密闭空腔。第二电极通过磁控溅射或涂布等方式设置于第二高分子聚合物绝缘层上,形成与第二高分子聚合物绝缘层相同的结构。第二电极与第二高分子聚合物绝缘层33之间没有空隙。
由此可见,上述的第一电极层是由居间薄膜层、第一高分子聚合物绝缘层以及第一电极构成的三层结构,第二电极层是由第二高分子聚合物绝缘层以及第二电极构成的双层结构。整个摩擦发电机是由三层的第一电极层和双层的第二电极层所构成的五层结构的发电机,其中,第二高分子聚合物绝缘层和居间薄膜层作为两个摩擦界面相互摩擦,从而在第一电极和第二电极之间产生电荷,因此,第一电极和第二电极是该摩擦发电机的两个电能输出端。实施例三的第一种方式中的摩擦发电机的发电原理与实施例一类似,此处不再赘述,区别仅在于:实施例一中是通过第一电极和第二高分子聚合物绝缘层作为两个摩擦界面进行摩擦的,实施例三的第一种方式中是通过居间薄膜 层和第二高分子聚合物绝缘层作为两个摩擦界面进行摩擦的,其中,在实施例三的第一种方式中,由于密闭空腔的下表面为居间薄膜层,密闭空腔的上表面为第二高分子聚合物绝缘层,因此其实质上也是通过密闭空腔的上下表面作为摩擦界面进行摩擦的。
在实施例三的第一种实现方式中的摩擦发电机同样可以参照实施例二的图3b和/或图3c中的改进方式加以改进。具体地,当参照图3b中的改进方式进行改进时,可以在第二高分子聚合物绝缘层上形成凸起结构的部位处设置朝向居间薄膜层的突起部分。例如,在第二高分子聚合物绝缘层的每个凸起结构的内部都具有一个朝向居间薄膜层的突起部分,该突起部分的形状可以是图3b中的正方体形状,也可以是半球体等其他形状。为了实现该突起部分,优选地可以在第二高分子聚合物绝缘层的每个凸起结构的内部制作一个实心的突起,或者也可以通过其他方式实现,例如将第二高分子聚合物绝缘层的每个凸起结构的顶部制作为空心的凹陷状,本发明对该突起部分的具体制作方式不做限定。该突起部分的主要作用在于缩短第二高分子聚合物绝缘层的每个凸起结构的内表面与居间薄膜层之间的距离,即密闭空腔的上下表面之间的距离,使二者在风力作用下更容易发生接触摩擦,从而提高摩擦发电机的输出功率。
当参照图3c中的改进方式进行改进时,可以在居间薄膜层上与第二高分子聚合物绝缘层的每个凸起结构相对的部位处设置朝向第二高分子聚合物绝缘层的突起部分。例如,在居间薄膜层上与每个凸起结构相对的部位都具有一个朝向第二高分子聚合物绝缘层的突起部分,该突起部分的形状可以是图3c中的正方体形状,也可以是半球体等其他形状。为了实现该突起部分,可以在居间薄膜层上与每个凸起结构相对的位置制作一个实心的突起。该突起部分的主要作用在于缩短第二高分子聚合物绝缘层的每个凸起结构的内表面与居间薄膜层之间的距离,使二者在风力作用下更容易发生接触摩擦,从而提高摩擦发电机的输出功率。
在实施例三的第二种实现方式中,居间薄膜层属于第二电极层,此时,可以将居间薄膜层制作成与第二高分子聚合物绝缘层相同的具有多个凸起结构的形状。相应地,在实施例三的第二种实现方式中,该摩擦发电机包括: 设置在墙体表面的第一电极、设置在第一电极表面的第一高分子聚合物绝缘层、设置在第一高分子聚合物绝缘层表面的居间薄膜层、设置在居间薄膜层表面的第二高分子聚合物绝缘层、以及设置在第二高分子聚合物绝缘层表面的第二电极。上述的第一电极、第一高分子聚合物绝缘层构成第一电极层;上述的居间薄膜层、第二高分子聚合物绝缘层和第二电极构成第二电极层。
具体地,第一电极、第一高分子聚合物绝缘层之间可以通过固定(如胶粘)或非固定(如直接放置)等方式层叠在一起构成第一电极层。该第一电极层为平板状电极层,该平板状电极层可以通过胶粘等贴合固定方式设置在墙体的表面,具体设置时,使第一电极与墙体表面直接接触,第一高分子聚合物绝缘层位于第一电极和居间薄膜层之间。
由居间薄膜层、第二高分子聚合物绝缘层和第二电极构成的第二电极层是具有多个凸起结构的电极层。与实施例二类似,居间薄膜层和第二高分子聚合物绝缘层都可以通过聚合物薄膜来实现,并且均可以制作为图4所示的结构,从图4中可以看出,居间薄膜层和第二高分子聚合物绝缘层上都具有若干个凸起结构,每个凸起结构呈正方体形状,且各个凸起结构按照矩阵形式规则排布。由于居间薄膜层和第二高分子聚合物绝缘层的形状相同,因此,可以将居间薄膜层和第二高分子聚合物绝缘层通过固定或非固定等方式层叠在一起构成双层聚合物薄膜,然后再将第二电极通过磁控溅射或涂布等方式设置于第二高分子聚合物绝缘层上,形成与第二高分子聚合物绝缘层相同的结构。第二电极与第二高分子聚合物绝缘层之间没有空隙。另外,上述的居间薄膜层通过直接放置或贴合固定等多种方式设置在第一高分子聚合物绝缘层的表面,居间薄膜层上的每个凸起结构与第一高分子聚合物绝缘层之间形成一个具有一定气压的密闭空腔。
由此可见,上述的第一电极层是由第一高分子聚合物绝缘层以及第一电极构成的双层结构,第二电极层是由居间薄膜层、第二高分子聚合物绝缘层以及第二电极构成的三层结构。整个摩擦发电机是由双层的第一电极层和三层的第二电极层所构成的五层结构的发电机,其中,第一高分子聚合物绝缘层和居间薄膜层作为两个摩擦界面相互摩擦,从而在第一电极和第二电极之间产生电荷,因此,第一电极和第二电极是该摩擦发电机的两个电能输出端。 实施例三的第二种方式中的摩擦发电机的发电原理与实施例一类似,此处不再赘述,区别仅在于:实施例一中是通过第一电极和第二高分子聚合物绝缘层作为两个摩擦界面进行摩擦的,实施例三的第二种方式中是通过居间薄膜层和第一高分子聚合物绝缘层作为两个摩擦界面进行摩擦的。其中,在实施例三的第二种方式中,由于密闭空腔的下表面为第一高分子聚合物绝缘层,密闭空腔的上表面为居间薄膜层,因此其实质上也是通过密闭空腔的上下表面作为摩擦界面进行摩擦的。
在实施例三的第二种实现方式中的摩擦发电机同样可以参照实施例二的图3b和/或图3c中的改进方式加以改进。具体地,当参照图3b中的改进方式进行改进时,可以在居间薄膜层上形成凸起结构的部位处设置朝向第一高分子聚合物绝缘层的突起部分。例如,在居间薄膜层的每个凸起结构的内部都具有一个朝向第一高分子聚合物绝缘层的突起部分,该突起部分的形状可以是图3b中的正方体形状,也可以是半球体等其他形状。为了实现该突起部分,优选地可以在居间薄膜层的每个凸起结构的内部制作一个实心的突起,或者也可以通过其他方式实现,例如将居间薄膜层的每个凸起结构的顶部制作为空心的凹陷状,本发明对该突起部分的具体制作方式不做限定。该突起部分的主要作用在于缩短居间薄膜层的每个凸起结构的内表面与第一高分子聚合物绝缘层之间的距离,使二者在风力作用下更容易发生接触摩擦,从而提高摩擦发电机的输出功率。
当参照图3c中的改进方式进行改进时,可以在第一高分子聚合物绝缘层上与居间薄膜层的每个凸起结构相对的部位处设置朝向居间薄膜层的突起部分。例如,在第一高分子聚合物绝缘层上与每个凸起结构相对的部位都具有一个朝向居间薄膜层的突起部分,该突起部分的形状可以是图3c中的正方体形状,也可以是半球体等其他形状。为了实现该突起部分,可以在第一高分子聚合物绝缘层上与每个凸起结构相对的位置制作一个实心的突起。该突起部分的主要作用在于缩短居间薄膜层的每个凸起结构的内表面与第一高分子聚合物绝缘层之间的距离,使二者在风力作用下更容易发生接触摩擦,从而提高摩擦发电机的输出功率。
实施例四、
与实施例二中的四层结构的摩擦发电机不同,实施例四中的摩擦发电机为五层结构,其与实施例二的主要区别在于:增加了居间电极层,该居间电极层位于第一高分子聚合物绝缘层和第二高分子聚合物绝缘层之间。换言之,实施例四与实施例三的主要区别在于:用能够导电的居间电极层替换了绝缘的居间薄膜层,此时,居间电极层与第一电极和第二电极共同作为摩擦发电机的电能输出端。
在实施例四的第一种实现方式中,居间电极层属于第一电极层,此时,可以将居间电极层制作成与第一高分子聚合物绝缘层相同的平板状。相应地,在实施例四的第一种实现方式中,该摩擦发电机包括:设置在墙体表面的第一电极、设置在第一电极表面的第一高分子聚合物绝缘层、设置在第一高分子聚合物绝缘层表面的居间电极层、设置在居间电极层表面的第二高分子聚合物绝缘层、以及设置在第二高分子聚合物绝缘层表面的第二电极。上述的第一电极、第一高分子聚合物绝缘层和居间电极层构成第一电极层;上述的第二高分子聚合物绝缘层和第二电极构成第二电极层。
具体地,第一电极、第一高分子聚合物绝缘层和居间电极层之间可以通过固定(如胶粘)或非固定(如直接放置)等方式依次层叠在一起构成第一电极层。该第一电极层为平板状电极层,该平板状电极层可以通过胶粘等贴合固定方式设置在墙体的表面,具体设置时,使第一电极与墙体表面直接接触,第一高分子聚合物绝缘层位于第一电极和居间电极层之间。
由第二高分子聚合物绝缘层和第二电极构成的第二电极层是具有多个凸起结构的电极层。与实施例二类似,第二高分子聚合物绝缘层可以通过聚合物薄膜来实现,并且可以制作为图4所示的结构,从图4中可以看出,第二高分子聚合物绝缘层上具有若干个凸起结构,每个凸起结构呈正方体形状,且各个凸起结构按照矩阵形式规则排布。上述的第二高分子聚合物绝缘层通过直接放置或贴合固定等多种方式设置在居间电极层的表面,第二高分子聚合物绝缘层上的每个凸起结构与居间电极层之间形成一个具有一定气压的密闭空腔。第二电极通过磁控溅射或涂布等方式设置于第二高分子聚合物绝缘层上,形成与第二高分子聚合物绝缘层相同的结构。第二电极与第二高分子聚合物绝缘层之间没有空隙。
由此可见,上述的第一电极层是由居间电极层、第一高分子聚合物绝缘层以及第一电极构成的三层结构,第二电极层是由第二高分子聚合物绝缘层以及第二电极构成的双层结构。整个摩擦发电机是由三层的第一电极层和双层的第二电极层所构成的五层结构的发电机,其中,第二高分子聚合物绝缘层和居间电极层作为两个摩擦界面相互摩擦,从而在第一电极和第二电极之间产生电荷,另外,由于居间电极层上也会产生电荷变化,因此,由居间电极层、第一电极和第二电极共同作为该摩擦发电机的电能输出端,在这三个电能输出端中,可以将其中的两个输出端串联后与第三个输出端共同作为一组摩擦发电机的正负极输出端;或者,也可以将居间电极层与第一电极作为一组摩擦发电机的正负极输出端,将居间电极层与第二电极作为另一组摩擦发电机的正负极输出端。实施例四的第一种方式中的摩擦发电机的发电原理与实施例一类似,此处不再赘述,区别仅在于:实施例一中是通过第一电极和第二高分子聚合物绝缘层作为两个摩擦界面进行摩擦的,实施例四的第一种方式中是通过居间电极层和第二高分子聚合物绝缘层作为两个摩擦界面进行摩擦的。其中,在实施例四的第一种方式中,由于密闭空腔的下表面为居间电极层,密闭空腔的上表面为第二高分子聚合物绝缘层,因此其实质上也是通过密闭空腔的上下表面作为摩擦界面进行摩擦的。
在实施例四的第一种实现方式中的摩擦发电机同样可以参照实施例二的图3b中的改进方式加以改进。具体地,当参照图3b中的改进方式进行改进时,可以在第二高分子聚合物绝缘层上形成凸起结构的部位处设置朝向居间电极层的突起部分。例如,在第二高分子聚合物绝缘层的每个凸起结构的内部都具有一个朝向居间电极层的突起部分,该突起部分的形状可以是图3b中的正方体形状,也可以是半球体等其他形状。为了实现该突起部分,优选地可以在第二高分子聚合物绝缘层的每个凸起结构的内部制作一个实心的突起,或者也可以通过其他方式实现,例如将第二高分子聚合物绝缘层的每个凸起结构的顶部制作为空心的凹陷状,本发明对该突起部分的具体制作方式不做限定。该突起部分的主要作用在于缩短第二高分子聚合物绝缘层的每个凸起结构的内表面与居间电极层之间的距离,使二者在风力作用下更容易发生接触摩擦,从而提高摩擦发电机的输出功率。
在实施例四的第二种实现方式中,居间电极层属于第二电极层,此时,可以将居间电极层制作成与第二高分子聚合物绝缘层相同的具有多个凸起结构的形状。相应地,在实施例四的第二种实现方式中,该摩擦发电机包括:设置在墙体表面的第一电极、设置在第一电极表面的第一高分子聚合物绝缘层、设置在第一高分子聚合物绝缘层表面的居间电极层、设置在居间电极层表面的第二高分子聚合物绝缘层、以及设置在第二高分子聚合物绝缘层表面的第二电极。上述的第一电极、第一高分子聚合物绝缘层构成第一电极层;上述的居间电极层、第二高分子聚合物绝缘层和第二电极构成第二电极层。
具体地,第一电极、第一高分子聚合物绝缘层之间可以通过固定(如胶粘)或非固定(如直接放置)等方式层叠在一起构成第一电极层。该第一电极层为平板状电极层,该平板状电极层可以通过胶粘等贴合固定方式设置在墙体的表面,具体设置时,使第一电极与墙体表面直接接触,第一高分子聚合物绝缘层位于第一电极和居间电极层之间。
由居间电极层、第二高分子聚合物绝缘层和第二电极构成的第二电极层是具有多个凸起结构的电极层。居间电极层可以通过能够制作电极的材料制作,第二高分子聚合物绝缘层可以通过聚合物薄膜来实现,并且居间电极层和第二高分子聚合物绝缘层均可以制作为图4所示的结构,从图4中可以看出,居间电极层和第二高分子聚合物绝缘层上都具有若干个凸起结构,每个凸起结构呈正方体形状,且各个凸起结构按照矩阵形式规则排布。由于居间电极层和第二高分子聚合物绝缘层的形状相同,因此,可以在制作好第二高分子聚合物绝缘层之后,通过磁控溅射或涂布等方式将居间电极层设置在第二高分子聚合物绝缘层的一侧,形成与第二高分子聚合物绝缘层相同的结构;然后,再将第二电极通过磁控溅射或涂布等方式设置于第二高分子聚合物绝缘层的另一侧,也形成与第二高分子聚合物绝缘层相同的结构。另外,上述的居间电极层通过直接放置或贴合固定等多种方式设置在第一高分子聚合物绝缘层的表面,居间电极层上的每个凸起结构与第一高分子聚合物绝缘层之间形成一个具有一定气压的密闭空腔。
由此可见,上述的第一电极层是由第一高分子聚合物绝缘层以及第一电极构成的双层结构,第二电极层是由居间电极层、第二高分子聚合物绝缘层 以及第二电极构成的三层结构。整个摩擦发电机是由双层的第一电极层和三层的第二电极层所构成的五层结构的发电机,其中,第一高分子聚合物绝缘层和居间电极层作为两个摩擦界面相互摩擦,从而在第一电极和第二电极之间产生电荷,另外,由于居间电极层上也会产生电荷变化,因此,由居间电极层、第一电极和第二电极共同作为该摩擦发电机的电能输出端,在这三个电能输出端中,可以将其中的两个输出端串联后与第三个输出端共同作为一组摩擦发电机的正负极输出端;或者,也可以将居间电极层与第一电极作为一组摩擦发电机的正负极输出端,将居间电极层与第二电极作为另一组摩擦发电机的正负极输出端。实施例四的第二种方式中的摩擦发电机的发电原理与实施例一类似,此处不再赘述,区别仅在于:实施例一中是通过第一电极和第二高分子聚合物绝缘层作为两个摩擦界面进行摩擦的,实施例四的第二种方式中是通过居间电极层和第一高分子聚合物绝缘层作为两个摩擦界面进行摩擦的。其中,在实施例四的第二种方式中,由于密闭空腔的下表面为第一高分子聚合物绝缘层,密闭空腔的上表面为居间电极层,因此其实质上也是通过密闭空腔的上下表面作为摩擦界面进行摩擦的。
在实施例四的第二种实现方式中的摩擦发电机可以参照实施例二的图3c中的改进方式加以改进。具体地,当参照图3c中的改进方式进行改进时,可以在第一高分子聚合物绝缘层上与居间电极层的每个凸起结构相对的部位处设置朝向居间电极层的突起部分。例如,在第一高分子聚合物绝缘层上与每个凸起结构相对的部位都具有一个朝向居间电极层的突起部分,该突起部分的形状可以是图3c中的正方体形状,也可以是半球体等其他形状。为了实现该突起部分,可以在第一高分子聚合物绝缘层上与每个凸起结构相对的位置制作一个实心的突起。该突起部分的主要作用在于缩短居间电极层的每个凸起结构的内表面与第一高分子聚合物绝缘层之间的距离,使二者在风力作用下更容易发生接触摩擦,从而提高摩擦发电机的输出功率。
另外,为了进一步提高摩擦界面的摩擦效果,在上述的四个实施例中,还可以进一步在密闭空腔的上表面和/或下表面上设置微纳结构,以使摩擦更加充分。该微纳结构具体可以采取如下两种可能的实现方式:第一种方式为,该微纳结构是微米级或纳米级的非常小的凹凸结构。该凹凸结构能够增加摩 擦阻力,提高发电效率。所述凹凸结构能够在薄膜制备时直接形成,也能够用打磨的方法使高分子聚合物绝缘层的表面形成不规则的凹凸结构。具体地,该凹凸结构可以是半球体、条纹状、立方体、四棱锥、或圆柱体等形状的凹凸结构。第二种方式为,该微纳结构是纳米级孔状结构,此时作为摩擦界面的一个高分子聚合物绝缘层所用材料优选为聚偏氟乙烯(PVDF),其厚度为0.5-1.2mm(优选1.0mm),且其相对另一摩擦面的面上设有多个纳米孔。其中,每个纳米孔的尺寸,即宽度和深度,可以根据应用的需要进行选择,优选的纳米孔的尺寸为:宽度为10-100nm以及深度为4-50μm。纳米孔的数量可以根据需要的输出电流值和电压值进行调整,优选的这些纳米孔是孔间距为2-30μm的均匀分布,更优选的平均孔间距为9μm的均匀分布。
介绍完摩擦发电机的各种实现方式之后,集中介绍一下上述实施例一至实施例四中的各层所用的材质:
各个实施例中的第一高分子聚合物绝缘层、第二高分子聚合物绝缘层和居间薄膜层所用的材质均可以分别选自聚酰亚胺薄膜、苯胺甲醛树脂薄膜、聚甲醛薄膜、乙基纤维素薄膜、聚酰胺薄膜、三聚氰胺甲醛薄膜、聚乙二醇丁二酸酯薄膜、纤维素薄膜、纤维素乙酸酯薄膜、聚己二酸乙二醇酯薄膜、聚邻苯二甲酸二烯丙酯薄膜、再生海绵薄膜、纤维素海绵薄膜、聚氨酯弹性体薄膜、苯乙烯丙烯共聚物薄膜、苯乙烯丁二烯共聚物薄膜、人造纤维薄膜、聚甲基薄膜,甲基丙烯酸酯薄膜、聚乙烯醇薄膜、聚乙烯醇薄膜、聚酯薄膜、聚异丁烯薄膜、聚氨酯柔性海绵薄膜、聚对苯二甲酸乙二醇酯薄膜、聚乙烯醇缩丁醛薄膜、甲醛苯酚薄膜、氯丁橡胶薄膜、丁二烯丙烯共聚物薄膜、天然橡胶薄膜、聚丙烯腈薄膜、丙烯腈氯乙烯薄膜和聚乙烯丙二酚碳酸盐薄膜中的任一种。
其中,对于实施例一中的三层结构的摩擦发电机来说,第二高分子聚合物绝缘层可灵活选用上述的任一材料。对于实施例二中的四层结构的摩擦发电机以及实施例四中的五层结构的摩擦发电机来说,第一高分子聚合物绝缘层和第二高分子聚合物绝缘层的材质可以相同,也可以不同,如果两层高分子聚合物绝缘层的材质都相同,会导致摩擦起电的电荷量很小,因此优选地,第一高分子聚合物绝缘层与第二高分子聚合物绝缘层的材质不同。对于实施 例三中的五层结构的摩擦发电机来说,第一高分子聚合物绝缘层、第二高分子聚合物绝缘层和居间薄膜层的材质可以相同,也可以不同,如果上述三层的材质都相同,会导致摩擦起电的电荷量很小,因此优选地,第一高分子聚合物绝缘层和/或第二高分子聚合物绝缘层与居间薄膜层的材质不同,第一高分子聚合物绝缘层与第二高分子聚合物绝缘层的材质优选相同,这样能减少材料种类,使本发明的制作更加方便。
各个实施例中的第一电极、第二电极和居间电极层所用材料均可以分别选自铟锡氧化物、石墨烯、银纳米线膜、金属或合金;其中,金属是金、银、铂、钯、铝、镍、铜、钛、铬、锡、铁、锰、钼、钨或钒;合金是铝合金、钛合金、镁合金、铍合金、铜合金、锌合金、锰合金、镍合金、铅合金、锡合金、镉合金、铋合金、铟合金、镓合金、钨合金、钼合金、铌合金或钽合金。
其中,对于实施例一中的三层结构的摩擦发电机来说,由于第一电极需要作为摩擦电极来使用,而根据发明人的研究发现,金属与高分子聚合物摩擦,金属更易失去电子,因此采用金属电极与高分子聚合物摩擦也能提高能量输出。所以,实施例一中的第一电极优选地采用上述的金属或合金来实现,而不选用铟锡氧化物、石墨烯、银纳米线膜,从而能够通过金属(第一电极)与聚合物(第二高分子聚合物绝缘层)之间的摩擦来产生电信号,主要利用了金属容易失去电子的特性,使第一电极与第二高分子聚合物绝缘层之间形成感应电场,从而产生电压或电流。对于其他实施例中的各个电极来说,都可以灵活选用上文提到的各种材料来制作。
另外,优选地,第二电极层中的各层都选用柔性的、软质的材料来制作,以此来提高摩擦效果。并且,在本发明中,由于第二电极层的表面具有多个凸起结构,各个凸起结构彼此之间存在空隙,因而,风力很容易吹入该空隙内,进而促使各个凸起结构发生变形,从而实现摩擦发电的效果。因此,与平板状的电极层相比,将第二电极层设置为具有多个凸起结构的形状,能够使第二电极层与第一电极层更容易发生接触摩擦,从而提高电能输出。
上述四个实施例中描述的摩擦发电机既可以用于收集风能,也可以用于收集雨水能量等其他自然能量。另外,由于雨水在降落过程中本身会带有一 定量的电荷,因此,在上述的四个实施例中,还可以对摩擦发电机的结构加以改进,以便能够同时利用静电感应原理而促使摩擦发电机产生更多的电荷。
下面对摩擦发电机的改进结构及其工作原理加以详细阐述:
在上述的四个实施例中,还可以在第二电极层中进一步设置第三高分子聚合物绝缘层。该第三高分子聚合物绝缘层设置在整个摩擦发电机的最外侧,即:第三高分子聚合物绝缘层设置在第二电极的表面,用于与雨水摩擦并在第二电极上感应出与雨水所带电荷的极性相反的感应电荷。
图5a和图5b示出了当图1所示的摩擦发电机进一步设置有第三高分子聚合物绝缘层18时,第一电极11和第二电极13之间的连接关系。在图5a中,可以直接通过导线和电阻将第二电极13与第一电极11连通,即第一电极11和第二电极13共同作为摩擦发电机的两个电能输出端,由此构成一组外电路。在图5b中,可以将第一电极11和第二电极13分别通过负载(图中未示出)接地,此时,第一电极11和第二电极13分别单独作为摩擦发电机的电能输出端,由此能够构成两组外电路。
下面详细介绍一下上述改进结构中产生静电感应现象的原理:在图6a中,以图5b中的连接方式为例,示出了水滴(雨滴)在第二电极(金属)表面感应电荷的原理。在图6a中,“聚合物”表示第三高分子聚合物绝缘层,金属表示通过电阻接地的第二电极。如图6a所示,水滴在空中降落的过程中由于与空气摩擦或其他原因而带有电荷,假设水滴带有的电荷极性为正。当水滴滴落到第三高分子聚合物绝缘层表面后,如图6b所示,由于静电感应原理,自由电子将从大地流向第二电极,在第二电极上感应出极性相反的电荷(负电荷),使第二电极中有电流通过。当水滴因重力作用而从第三高分子聚合物绝缘层的表面滴落后,如图6c所示,电荷感应作用消失,导致自由电子从第二电极流回大地,使第二电极中有反向电流通过。由此可见,在雨水不断地击打第三高分子聚合物绝缘层,又不断地从第三高分子聚合物绝缘层上滴落的整个过程中,第二电极上将会由于静电感应原理而产生持续的交变电流。假设该交变电流的方向与摩擦发电机因摩擦界面的摩擦而在第一电极和第二电极上感应出的电流方向相同,则会增强摩擦发电机的输 出电量,此时,采用图5a所示的电路即可获得增强后的电流。但是,如果该交变电流的方向与摩擦发电机因摩擦界面的摩擦而在第一电极和第二电极上感应出的电流方向相反,则会因电荷的相互抵消而削弱摩擦发电机的输出电量,此时,采用图5b所示的电路,将第二电极和第一电极分别通过负载接地,可以避免上述影响。
综上所述,通过本发明提供的发电装置,能够对建筑物的墙体周围所蕴藏的自然能源加以利用,且该发电装置同时具有结构简单,制备方便(制备工艺简单),价格低廉,轻便易安装等诸多优点,适合大规模使用。该发电装置一方面可对建筑外墙起到装饰性作用,另一方面可进行自供电,充分利用城市资源,可用于室内或者室外,起到节约能源、降低能耗的作用。
本领域技术人员可以理解,附图或实施例中所示的装置结构仅仅是示意性的,表示逻辑结构。其中作为分离部件显示的模块可能是或者可能不是物理上分开的,作为模块显示的部件可能是或者可能不是物理模块。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (15)

  1. 一种用于墙体表面的发电装置,其特征在于,所述发电装置包括摩擦发电机,所述摩擦发电机进一步包括:设置在所述墙体表面的第一电极层,以及设置在所述第一电极层表面的第二电极层,其中,
    所述第一电极层为平板状电极层,其包括设置在所述墙体表面的第一电极;所述第二电极层为具有多个凸起结构的电极层,每个凸起结构与所述第一电极层之间形成一个密闭空腔,所述密闭空腔的上表面和所述密闭空腔的下表面在受到压力时能够接触并作为摩擦界面相互摩擦;
    其中,所述第二电极层包括层叠设置的第二高分子聚合物绝缘层以及第二电极,所述第二高分子聚合物绝缘层位于所述第一电极层和所述第二电极之间,其中,所述第一电极和所述第二电极为所述摩擦发电机的电能输出端。
  2. 如权利要求1所述的发电装置,其特征在于,在所述第二高分子聚合物绝缘层上形成所述凸起结构的部位处具有朝向所述第一电极层的突起部分。
  3. 如权利要求1所述的发电装置,其特征在于,所述第一电极层进一步包括:设置在所述第一电极表面的第一高分子聚合物绝缘层,所述第一高分子聚合物绝缘层位于所述第一电极和所述第二高分子聚合物绝缘层之间。
  4. 如权利要求3所述的发电装置,其特征在于,在所述第二高分子聚合物绝缘层上形成所述凸起结构的部位处具有朝向所述第一电极层的突起部分;和/或,
    在所述第一高分子聚合物绝缘层上与所述第二电极层的每个凸起结构相对的部位处具有朝向所述第二电极层的突起部分。
  5. 如权利要求3所述的发电装置,其特征在于,所述第一电极层进一步包括:设置在所述第一高分子聚合物绝缘层表面的居间薄膜层;
    其中,所述居间薄膜层位于所述第一高分子聚合物绝缘层和所述第二高分子聚合物绝缘层之间,且所述第二高分子聚合物绝缘层上形成的凸起结构与所述居间薄膜层之间形成密闭空腔。
  6. 如权利要求5所述的发电装置,其特征在于,在所述第二高分子聚 合物绝缘层上形成所述凸起结构的部位处具有朝向所述第一电极层的突起部分;和/或,
    在所述居间薄膜层上与所述第二电极层的每个凸起结构相对的部位处具有朝向所述第二电极层的突起部分。
  7. 如权利要求3所述的发电装置,其特征在于,所述第二电极层进一步包括:设置在所述第一高分子聚合物绝缘层表面的居间薄膜层;
    其中,所述居间薄膜层位于所述第一高分子聚合物绝缘层和所述第二高分子聚合物绝缘层之间,且所述居间薄膜层上形成的凸起结构与所述第一高分子聚合物绝缘层之间形成密闭空腔。
  8. 如权利要求7所述的发电装置,其特征在于,在所述居间薄膜层上形成所述凸起结构的部位处具有朝向所述第一电极层的突起部分;和/或,
    在所述第一高分子聚合物绝缘层上与所述第二电极层的每个凸起结构相对的部位处具有朝向所述第二电极层的突起部分。
  9. 如权利要求3所述的发电装置,其特征在于,所述第一电极层进一步包括:设置在所述第一高分子聚合物绝缘层表面的居间电极层;
    其中,所述居间电极层位于所述第一高分子聚合物绝缘层和所述第二高分子聚合物绝缘层之间,且所述第二高分子聚合物绝缘层上形成的凸起结构与所述居间电极层之间形成密闭空腔,所述居间电极层与所述第一电极和第二电极共同作为所述摩擦发电机的电能输出端。
  10. 如权利要求9所述的发电装置,其特征在于,在所述第二高分子聚合物绝缘层上形成所述凸起结构的部位处具有朝向所述第一电极层的突起部分。
  11. 如权利要求3所述的发电装置,其特征在于,所述第二电极层进一步包括:设置在所述第一高分子聚合物绝缘层表面的居间电极层;
    其中,所述居间电极层位于所述第一高分子聚合物绝缘层和所述第二高分子聚合物绝缘层之间,且所述居间电极层上形成的凸起结构与所述第一高分子聚合物绝缘层之间形成密闭空腔,所述居间电极层与所述第一电极和第二电极共同作为所述摩擦发电机的电能输出端。
  12. 如权利要求11所述的发电装置,其特征在于,在所述第一高分子聚合物绝缘层上与所述第二电极层的每个凸起结构相对的部位处具有朝向所述第二电极层的突起部分。
  13. 如权利要求1所述的发电装置,其特征在于,进一步包括:与所述摩擦发电机的电能输出端相连的蓄电部件,以及与所述蓄电部件的输出端相连的用电部件。
  14. 如权利要求1-13任一所述的发电装置,其特征在于,所述第二电极层进一步包括:设置在所述第二电极表面的第三高分子聚合物绝缘层,用于与雨水摩擦并在所述第二电极上感应出与所述雨水所带电荷的极性相反的感应电荷。
  15. 如权利要求1所述的发电装置,其特征在于,所述密闭空腔内填充的气体量为使所述密闭空腔内的气压等于一个大气压强时最大充气量的10%-60%。
PCT/CN2015/072951 2014-02-21 2015-02-12 用于墙体表面的发电装置 WO2015124085A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410059896.0 2014-02-21
CN201410059896.0A CN104868779B (zh) 2014-02-21 2014-02-21 用于墙体表面的发电装置

Publications (1)

Publication Number Publication Date
WO2015124085A1 true WO2015124085A1 (zh) 2015-08-27

Family

ID=53877635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/072951 WO2015124085A1 (zh) 2014-02-21 2015-02-12 用于墙体表面的发电装置

Country Status (2)

Country Link
CN (1) CN104868779B (zh)
WO (1) WO2015124085A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109194186B (zh) * 2018-10-26 2020-01-10 京东方科技集团股份有限公司 摩擦发电装置及可穿戴设备
CN112994510A (zh) * 2021-03-19 2021-06-18 东华大学 一种柔性连通型全封闭摩擦纳米发电机阵列

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001057785A (ja) * 1999-08-16 2001-02-27 Kansai Electric Power Co Inc:The 静電気発電装置
CN203057022U (zh) * 2012-12-27 2013-07-10 纳米新能源(唐山)有限责任公司 纳米摩擦发电机
US8536760B1 (en) * 2013-01-23 2013-09-17 K-Technology Usa, Inc. Ball-electric power generator
CN203377814U (zh) * 2013-04-22 2014-01-01 纳米新能源(唐山)有限责任公司 采用纳米摩擦发电机的风力发电和太阳能发电组合系统
CN203431696U (zh) * 2013-08-27 2014-02-12 国家纳米科学中心 自供电照明系统
CN203722513U (zh) * 2014-02-21 2014-07-16 纳米新能源(唐山)有限责任公司 用于墙体表面的发电装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202949379U (zh) * 2012-12-07 2013-05-22 纳米新能源(唐山)有限责任公司 高功率纳米摩擦发电机
CN203086374U (zh) * 2013-02-06 2013-07-24 纳米新能源(唐山)有限责任公司 纳米发电机封装件
CN203374433U (zh) * 2013-07-23 2014-01-01 苏州大学 一种风力发电幕墙

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001057785A (ja) * 1999-08-16 2001-02-27 Kansai Electric Power Co Inc:The 静電気発電装置
CN203057022U (zh) * 2012-12-27 2013-07-10 纳米新能源(唐山)有限责任公司 纳米摩擦发电机
US8536760B1 (en) * 2013-01-23 2013-09-17 K-Technology Usa, Inc. Ball-electric power generator
CN203377814U (zh) * 2013-04-22 2014-01-01 纳米新能源(唐山)有限责任公司 采用纳米摩擦发电机的风力发电和太阳能发电组合系统
CN203431696U (zh) * 2013-08-27 2014-02-12 国家纳米科学中心 自供电照明系统
CN203722513U (zh) * 2014-02-21 2014-07-16 纳米新能源(唐山)有限责任公司 用于墙体表面的发电装置

Also Published As

Publication number Publication date
CN104868779A (zh) 2015-08-26
CN104868779B (zh) 2017-04-19

Similar Documents

Publication Publication Date Title
CN103368450B (zh) 利用摩擦电纳米发电机的鞋垫
CN104993773B (zh) 一种复合能源电池装置及其制备方法
Zhang et al. Structure design and performance of hybridized nanogenerators
CN104124887B (zh) 风力发电机
CN104113270B (zh) 采用纳米摩擦发电机的风力发电和太阳能发电组合系统
CN105337560B (zh) 一种复合能源装置和发电方法
CN104348381B (zh) 基于摩擦发电机的风力发电装置及系统
CN104113268B (zh) 采用纳米摩擦发电机的海洋能发电和太阳能发电组合系统
CN104104122B (zh) 发电系统
CN104104262B (zh) 发电系统
CN112865589A (zh) 一种基于杠杆原理及摩擦纳米发电的道路俘能装置
WO2015124085A1 (zh) 用于墙体表面的发电装置
CN105958858A (zh) 一种双层波浪形杂化纳米发电机
CN203554326U (zh) 一种摩擦发电机
CN104124888B (zh) 发电系统
WO2014166286A1 (zh) 采用纳米摩擦发电机的发电系统
CN105515437A (zh) 摩擦发电机和应用该摩擦发电机发电的方法
CN203377814U (zh) 采用纳米摩擦发电机的风力发电和太阳能发电组合系统
CN203722513U (zh) 用于墙体表面的发电装置
CN203377809U (zh) 风力发电机
CN203218932U (zh) 发电系统
CN104539191B (zh) 一种基于海浪发电的供电系统
CN202366453U (zh) 太阳能多媒体秋千
CN207460029U (zh) 水面发电装置
CN108429524A (zh) 便携组合式太阳能光伏组件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15752821

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15752821

Country of ref document: EP

Kind code of ref document: A1