CN104113270B - 采用纳米摩擦发电机的风力发电和太阳能发电组合系统 - Google Patents

采用纳米摩擦发电机的风力发电和太阳能发电组合系统 Download PDF

Info

Publication number
CN104113270B
CN104113270B CN201310143714.3A CN201310143714A CN104113270B CN 104113270 B CN104113270 B CN 104113270B CN 201310143714 A CN201310143714 A CN 201310143714A CN 104113270 B CN104113270 B CN 104113270B
Authority
CN
China
Prior art keywords
high molecular
insulating barrier
nano friction
friction generator
molecular polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310143714.3A
Other languages
English (en)
Other versions
CN104113270A (zh
Inventor
徐传毅
张勇平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nano New Energy Tangshan Co Ltd
Original Assignee
Nano New Energy Tangshan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nano New Energy Tangshan Co Ltd filed Critical Nano New Energy Tangshan Co Ltd
Priority to CN201310143714.3A priority Critical patent/CN104113270B/zh
Priority to PCT/CN2013/090766 priority patent/WO2014166286A1/zh
Publication of CN104113270A publication Critical patent/CN104113270A/zh
Application granted granted Critical
Publication of CN104113270B publication Critical patent/CN104113270B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Wind Motors (AREA)

Abstract

本发明公开了一种采用纳米摩擦发电机的风力发电和太阳能发电组合系统,该系统包括:风力发电机、太阳能组件和储能装置;风力发电机包括至少一个纳米摩擦发电机;太阳能组件由多个太阳能电池组成,多个太阳能电池以串联或并联方式连接形成太阳能组件的至少两个输出端,其中每个太阳能电池为由半导体材料所形成的PN结式结构的光电转换单元;储能装置与纳米摩擦发电机的输出端和太阳能组件的至少两个输出端相连,用于对纳米摩擦发电机输出的电能和太阳能组件输出的电能进行存储。本发明提供的系统实现了风能和太阳能的双重收集利用,并且由于纳米摩擦发电机微型化、薄膜化,进而使得整个发电系统重量减小,同时成本得到了极大的降低。

Description

采用纳米摩擦发电机的风力发电和太阳能发电组合系统
技术领域
本发明涉及纳米技术领域,更具体地说,涉及一种采用纳米摩擦发电机的风力发电和太阳能发电组合系统。
背景技术
在日常生活中,人们利用风力发电或太阳能发电为较常见的方法。其中,风力发电的原理是利用风力带动风车叶片旋转,再通过增速机将旋转的速度提升,来促使发电机发电。依据目前的风车技术,大约是每秒三米的微风速度(微风的程度),便可以开始发电。风力发电正在世界上形成一股热潮,因为风力发电不需要使用燃料,也不会产生辐射或空气污染。但是,传统的风力发电机体积庞大,成本高昂,同时在运输和安装的过程中,给用户带来了极大的不便。太阳能发电将太阳能直接转换成电能,此方法能量转化率高,但应用时间范围小,晚上或阴雨天气不能使用。而使用风力发电机发电时,其时间局限性较强,在多天无风的情况下则无法进行正常发电,以致影响生活用电的稳定。介于上述情况,采用太阳能发电与风力发电机两者结合发电则能互补其中的不足,但是目前同时使用两种设备发电时,需要人工切换,不仅繁琐而且达不到良好的效果。
发明内容
本发明的发明目的是针对现有技术的缺陷,提出一种采用纳米摩擦发电机的风力发电和太阳能发电组合系统,用以解决现有技术中风力发电机体积庞大、成本高昂、运输和安装困难的问题。
本发明提供了一种采用纳米摩擦发电机的风力发电和太阳能发电组合系统,包括:风力发电机、太阳能组件和储能装置;所述风力发电机包括用于将机械能转化为电能的至少一个纳米摩擦发电机;所述太阳能组件由多个太阳能电池组成,所述多个太阳能电池以串联或并联方式连接形成太阳能组件的至少两个输出端,其中每个太阳能电池为由半导体材料所形成的PN结式结构的光电转换单元;所述储能装置与所述纳米摩擦发电机的输出端和所述太阳能组件的至少两个输出端相连,用于对所述纳米摩擦发电机输出的电能和所述太阳能组件输出的电能进行存储。
本发明提供的采用纳米摩擦发电机的风力发电与太阳能发电组合的发电系统实现了风能和太阳能的双重收集利用,这不仅节约了能源,而且清洁环保,保护了环境。对于采用纳米摩擦发电机的风力发电机,由于纳米摩擦发电机本身的发电效率很高,而使整个风力发电机有很高的发电效率,再加上高效的设计结构,实现了一个最佳的发电效率;同时,该风力发电机的核心部件生产便捷,而且形状、尺寸不仅可以加工至微小化,实现风力发电系统的微型化;也可以加工至较大尺寸,实现高功率发电。另外,由于纳米摩擦发电机微型化、薄膜化,进而使得整个发电系统重量减小,同时成本得到了极大的降低。
附图说明
图1a和图1b为本发明提供的风力发电和太阳能发电组合系统中风力发电机的示例一的两种不同截面的结构示意图;
图2a和图2b为本发明提供的风力发电和太阳能发电组合系统中风力发电机的示例二的两种不同截面的结构示意图;
图3a为本发明提供的风力发电和太阳能发电组合系统中风力发电机的示例三的立体结构示意图;
图3b和图3c为本发明提供的风力发电和太阳能发电组合系统中风力发电机示例三中纳米摩擦发电机的一种设置方式的示意图;
图4为本发明提供的风力发电和太阳能发电组合系统的一实施例的电路原理示意图;
图5为本发明提供的风力发电和太阳能发电组合系统的又一实施例的电路原理示意图;
图6a和图6b分别示出了纳米摩擦发电机的第一种结构的立体结构示意图和剖面结构示意图;
图7a至图7b分别示出了纳米摩擦发电机的第二种结构的立体结构示意图和剖面结构示意图;
图7c示出了纳米摩擦发电机的第二种结构的具有弹性部件作为支撑臂的立体结构示意图;
图8a和图8b分别示出了纳米摩擦发电机的第三种结构的立体结构示意图和剖面结构示意图;
图9a和图9b分别示出了纳米摩擦发电机的第四种结构的立体结构示意图和剖面结构示意图。
具体实施方式
为充分了解本发明之目的、特征及功效,借由下述具体的实施方式,对本发明做详细说明,但本发明并不仅仅限于此。
针对现有技术中风力发电机体积庞大、成本高昂、运输和安装困难的问题,本发明提供了一种采用纳米摩擦发电机作为核心部件的风力发电机与太阳能发电系统组合形成的发电系统。该发电系统具体包括风力发电机、太阳能组件和储能装置。其中风力发电机包括用于将机械能转化为电能的至少一个纳米摩擦发电机;太阳能组件由多个太阳能电池组成,这些太阳能电池以串联或并联的方式连接形成太阳能组件的至少两个输出端,每个太阳能电池为由半导体材料所形成的PN结式结构的光电转换单元;储能装置与纳米摩擦发电机的输出端和太阳能组件的至少两个输出端相连,用于对纳米摩擦发电机输出的电能和太阳能组件输出的电能进行存储。该发电系统的工作原理是:当风吹动纳米摩擦发电机时,纳米摩擦发电机会产生机械形变,从而产生交流脉冲电信号,储能装置将此交流脉冲电信号进行适当的变换后进行存储;并且,在适合的条件下,太阳能组件能够将光能转换为电能,存储在储能装置中,以备外部用电设备的使用。
在本发明提供的风力发电和太阳能发电组合系统中,太阳能组件是利用太阳能来发电的装置。具体地,太阳能组件由多个太阳能电池组成,这些太阳能电池以串联或并联的方式连接,并且形成太阳能组件的至少两个输出端。其中,太阳能电池是一种光电半导体薄片,它只要被光照到,瞬间即可输出电压及电流。具体地,太阳能电池为由半导体材料所形成的PN结式结构的光电转换单元,当太阳光照到半导体PN结上时,形成新的空穴-电子对,在PN结电场的作用下,光生空穴流向P区,光生电子流向N区,接通电路后就形成电流。由于单个太阳能电池的输出的电流很小,不能直接作为电源使用,故将多个太阳能电池经过串联或并联后即可向外电路输出满足蓄电要求的电流。可选地,上述PN结是由掺杂半导体材料所形成的结构,或者,上述PN结是半导体薄膜或其它薄膜材料的结构。本发明中,太阳能电池可为晶体硅太阳能电池或薄膜太阳能电池。晶体硅太阳能电池的生产设备成本相对较低,但设备能耗及电池成本较高,光电转换效率很高,适于室外阳光下发电;薄膜太阳能电池的生产设备成本较高,但设备能耗和电池成本很低,光电转化效率低于晶体硅太阳能电池,但弱光效应非常好,在普通灯光下也可发电。
上述多个太阳能电池串联或并联在一起所形成的是太阳能电池板,为了保护太阳能电池板不受外界环境的影响,太阳能组件还可以包括保护体。对于一般的太阳能电池,保护体可为保护板,对于薄膜太阳能电池,保护体可为保护膜。以保护板为钢化玻璃为例,通过粘结剂太阳能电池被粘结固定在钢化玻璃上,粘结剂可选为EVA(乙烯-醋酸乙烯共聚物),再通过粘结剂将背板与太阳能电池封装在一起构成太阳能组件,其中背板的作用是密封、绝缘和防水。
上述太阳能组件的输出端与储能装置连接,太阳能组件能够将光能转换为电能,存储在储能装置中,以备外部用电设备的使用。
在本发明提供的风力发电和太阳能发电组合系统中,风力发电机是利用风能发电的装置。具体地,风力发电机包括:用于将机械能转化为电能的至少一个纳米摩擦发电机及容纳至少一个纳米摩擦发电机的壳体,纳米摩擦发电机与壳体的内壁连接或者纳米摩擦发电机固设在所述壳体的内壁上。上述太阳能组件可固设在风力发电机的壳体的外壁上,也可以单独设置,由此组成一个风力发电和太阳能发电组合的发电系统。
下面通过几个具体的示例对风力发电机的结构和工作原理进行详细介绍。
示例一
图1a和图1b为本发明提供的风力发电和太阳能发电组合系统中风力发电机的示例一的两种不同截面的结构示意图。如图1a和图1b所示,风力发电机包括4个纳米摩擦发电机10、容纳这些纳米摩擦发电机10的壳体14和固定轴11。本发明对纳米摩擦发电机的个数不作限制,纳米摩擦发电机的具体结构将在后面详细描述。固定轴11的一部分位于壳体14外部,另一部分穿过壳体14的底壁15伸入到壳体14内部。本示例中,第一弹性部件和第二弹性部件均为弹簧,每个纳米摩擦发电机10通过一个弹簧12与壳体14的内侧壁连接,同时通过一个弹簧13与固定轴11连接。壳体14的内侧壁上固设有至少一个固定部件16,每个纳米摩擦发电机10通过弹簧12与对应的固定部件16连接。固定部件16为可选部件,如果没有固定部件16,每个纳米摩擦发电机10通过弹簧12直接与壳体14的内侧壁连接。
在图1a和图1b所示的结构中,壳体14为圆柱形结构,但本发明对此不做限制,壳体14可以为其它任意的柱形结构。为了能使风从纳米摩擦发电机的正表面吹过,壳体14可以为一槽体,即壳体14没有顶壁,风可以直接灌入到壳体14内部;或者,壳体14具有顶壁,但顶壁上具有多个通孔,风可以从通孔吹进壳体14内部。上述太阳能组件可固设在风力发电机的壳体的外壁上,也可以单独设置,由此组成一个风力发电和太阳能发电组合的发电系统。
图1a和图1b所示的发电装置的工作原理是:当风从纳米摩擦发电机10的正表面方向吹过时,一部分风能带动纳米摩擦发电机10产生机械形变,从而产生电能;另一部分风能带动弹簧12和13产生形变,从而使得这部分风能转化为弹簧12和13的弹性势能,而后带动纳米摩擦发电机10持续振动发电,从而提高了风力发电机的发电效率。
需要说明的是,本发明对上述弹簧12和13的个数不做限制,即每个纳米摩擦发电机可通过多个弹簧与壳体的内侧壁(或固定部件)连接,也可通过多个弹簧与固定轴连接。
示例二
图2a和图2b为本发明提供的风力发电和太阳能发电组合系统中风力发电机的示例二的两种不同截面的结构示意图。如图2a和图2b所示,风力发电机包括多个纳米摩擦发电机10、容纳这些纳米摩擦发电机10的壳体20、转动轴21、多个凸轮22以及扇叶23。本发明对纳米摩擦发电机的个数不作限制,纳米摩擦发电机的具体结构将在后面详细描述。
本发明中,壳体20为柱形结构。图2a和图2b所示的壳体20为一正四棱柱结构。多个纳米摩擦发电机10均匀分布在壳体20的4个侧壁上。
转动轴21的一部分位于壳体20外部,这部分转动轴的端部固设有扇叶23。转动轴21的另一部分位于壳体20内部,这部分转动轴的端部抵至壳体20的底壁。
如图2b所示,位于壳体内部的转动轴21上固设有多个凸轮22,多个凸轮22间隔设置,每个凸轮用来挤压与其对应的4个纳米摩擦发电机。具体地,每个凸轮具有多个凸起部,如图2a所示,凸轮22具有3个凸起部24,该凸起部24的顶端到转动轴21的距离略大于纳米摩擦发电机10到转动轴21的距离,这样在凸轮22转动过程中,凸轮22的凸起部24的端部就会接触并挤压纳米摩擦发电机10。在图2b中,凸轮22的凸起部没有接触到纳米摩擦发电机10,此时凸轮22的凸起部的端部还未到达这两个侧壁上的纳米摩擦发电机。
上述壳体20可以为一槽体,即壳体20没有顶壁,这样一部分风可以直接灌入到壳体20内部,这部分风吹过纳米摩擦发电机也能带动纳米摩擦发电机产生一定的机械形变,从而产生电能。或者,壳体20具有顶壁,转动轴21的另一部分穿过壳体20的顶壁伸入到壳体20内部。上述太阳能组件可固设在风力发电机的壳体的外壁上,也可以单独设置,由此组成一个风力发电和太阳能发电组合的发电系统。
图2a和图2b所示的风力发电机的工作原理是:当风吹过时,会使扇叶23转动,扇叶23带动转动轴21转动,进一步的转动轴21带动多个凸轮22转动,凸轮22在转动过程中其凸起部的端部挤压纳米摩擦发电机10,使纳米摩擦发电机10产生机械形变,从而产生电能。
示例三
图3a为本发明提供的风力发电和太阳能发电组合系统中风力发电机的示例三的立体结构示意图。如图3a所示,风力发电机包括上夹壁25、下夹壁26、设置在上夹壁25和下夹壁26之间的多个支撑臂27、固设在上夹壁25和下夹壁26上的至少一个纳米摩擦发电机。由于纳米摩擦发电机固设在上夹壁25和下夹壁26的内侧表面上,因此图3a中并未示出。上夹壁和下夹壁以及两者之间的支撑臂构成风力发电机的壳体。
如图3a所示,多个支撑臂27沿着上夹壁25和下夹壁26的两个相对的长边缘而设置,相邻的两个支撑臂之间形成通风口。其中,沿着上夹壁25和下夹壁26的每一个长边缘而设置的相邻的支撑臂之间形成的是出风口28,在图3a中沿着上夹壁25和下夹壁26的短边缘并未设置支撑臂,因而上夹壁25和下夹壁26的短边缘之间形成进风口29。图3a未示出的风力发电机的另一个长边缘和短边缘的结构与示出的结构是对称相同的。需要说明的是,图3a仅为一具体的例子,本发明不仅限于此,所述支撑臂可以灵活设置,其目的是为了形成通风口。
图3b和图3c为本发明提供的风力发电和太阳能发电组合系统中风力发电机示例三中纳米摩擦发电机的一种设置方式的示意图。如图3b和图3c所示,上夹壁25上固设有1个纳米摩擦发电机101,下夹壁26上固设有1个纳米摩擦发电机102,纳米摩擦发电机101和102相对设置,纳米摩擦发电机101和102都呈向内拱起的拱形结构。当风吹过纳米摩擦发电机时,这样的拱形结构更易于使纳米摩擦发电机发生变形,从而提高发电效率。
本发明对固设在上夹壁和下夹壁上的纳米摩擦发电机的个数不做限制。固设在上夹壁上的纳米摩擦发电机可为多个,固设在下夹壁上的纳米摩擦发电机可为多个,固设在上夹壁上的纳米摩擦发电机与固设在下夹壁上的纳米摩擦发电机一一相对设置。
上述太阳能组件可固设在风力发电机的上夹壁或下夹壁的外壁上,也可以单独设置,由此组成一个风力发电和太阳能发电组合的发电系统。
上述风力发电机的工作原理是:当风从通风口吹入上夹壁和下夹壁之间时,纳米摩擦发电机会因风的吹动受到挤压而产生机械形变,从而产生电能,纳米摩擦发电机可以为拱形结构,进一步提高了风力发电机的发电效率。
基于上述太阳能组件和风力发电机的任意一种结构,下面将进一步介绍整个发电系统的结构和工作原理。
图4为本发明提供的风力发电和太阳能发电组合系统的一实施例的电路原理示意图。如图4所示,储能装置包括:整流电路30、第一开关控制电路31、第一直流/直流控制电路32、储能电路33以及第二开关控制电路41和第二直流/直流控制电路42。
其中,整流电路30与纳米摩擦发电机10的输出端相连,整流电路30接收纳米摩擦发电机10输出的交流脉冲电信号,对该交流脉冲电信号进行整流处理得到直流电压U1;第一开关控制电路31与整流电路30、第一直流/直流控制电路32和储能电路33相连,第一开关控制电路31接收整流电路30输出的直流电压U1和储能电路33反馈的瞬时充电电压U2,根据该直流电压U1和瞬时充电电压U2得到第一控制信号S1,将第一控制信号S1输出给第一直流/直流控制电路32;第一直流/直流控制电路32与整流电路30、第一开关控制电路31和储能电路33相连,第一直流/直流控制电路32根据第一开关控制电路31输出的第一控制信号S1对整流电路30输出的直流电压U1进行转换处理输出给储能电路33充电,得到瞬时充电电压U2。
第二开关控制电路41与太阳能组件40的输出端、第二直流/直流控制电路42和储能电路33相连,第二开关控制电路41接收太阳能组件40输出的直流电压U3和储能电路33反馈的瞬时充电电压U2,根据直流电压U3和瞬时充电电压U2得到第二控制信号S2,将第二控制信号S2输出给第二直流/直流控制电路42。第二直流/直流控制电路42与太阳能组件40的输出端、第二开关控制电路41和储能电路33相连,第二直流/直流控制电路42根据第二开关控制电路41输出的第二控制信号S2对太阳能组件40输出的直流电压U3进行转换处理输出给储能电路33充电,得到瞬时充电电压U2。
图4所示的电路的工作原理是:当风力作用于纳米摩擦发电机10时,会使纳米摩擦发电机10发生机械形变,从而产生交流脉冲电信号。整流电路30接收到该交流脉冲电信号后,对其进行整流处理,得到单向脉动的直流电压U1。第一开关控制电路31接收整流电路30输出的直流电压U1和储能电路33反馈的瞬时充电电压U2后,将直流电压U1和瞬时充电电压U2分别与储能电路33的充满电压U0进行比较,如果直流电压U1高于充满电压U0且瞬时充电电压U2低于充满电压U0,此时第一开关控制电路31输出第一控制信号S1,控制第一直流/直流控制电路32将整流电路30输出的直流电压U1进行降压处理,输出给储能电路33进行充电,得到瞬时充电电压U2;如果直流电压U1低于等于充满电压U0且瞬时充电电压U2低于充满电压U0,此时第一开关控制电路31输出第一控制信号S1,控制第一直流/直流控制电路32将整流电路30输出的直流电压U1进行升压处理,输出给储能电路33进行充电,得到瞬时充电电压U2;又如果瞬时充电电压U2等于或短时高于充满电压U0,不管直流电压U1高于或低于充满电压U0,此时第一开关控制电路31输出第一控制信号S1,控制第一直流/直流控制电路32使其停止为储能电路33充电。当太阳光照射到太阳能组件40上时,太阳能组件40会将光能转换为直流电能,输出直流电压U3。第二开关控制电路41接收太阳能组件40输出的直流电压U3和储能电路33反馈的瞬时充电电压U2后,将直流电压U3和瞬时充电电压U2分别与储能电路33的充满电压U0进行比较,如果直流电压U3高于充满电压U0且瞬时充电电压U2低于充满电压U0,此时第二开关控制电路41输出第二控制信号S2,控制第二直流/直流控制电路42将太阳能组件40输出的直流电压U3进行降压处理,输出给储能电路33进行充电,得到瞬时充电电压U2;如果直流电压U3低于等于充满电压U0且瞬时充电电压U2低于充满电压U0,此时第二开关控制电路41输出第二控制信号S2,控制第二直流/直流控制电路42将太阳能组件40输出的直流电压U3进行升压处理,输出给储能电路33进行充电,得到瞬时充电电压U2;又如果瞬时充电电压U2等于或短时高于充满电压U0,不管直流电压U3高于或低于充满电压U0,此时第二开关控制电路41输出第二控制信号S2,控制第二直流/直流控制电路42使其停止为储能电路33充电。上述控制方式仅为一个具体的例子,本发明对此不做限制,也可采用其他的控制方式为储能电路充电。
可选地,储能电路33可以为锂离子电池、镍氢电池、铅酸电池或超级电容器等储能元件。
图4所示的发电系统的特点是采用太阳能组件和纳米摩擦发电机同时为储能电路进行充电,其中纳米摩擦发电机收集风能,太阳能组件收集太阳能,这两个高效率的系统叠加在一起,使整个系统的效率得以大幅度的提升。纳米摩擦发电机作为风力发电机的核心部件能够将风能转化为电能,由于纳米摩擦发电机本身的发电效率很高,使整个风力发电机有很高的发电效率,再加上高效的设计结构,实现了一个最佳的发电效率。同时,该发电系统的核心部件生产便捷,而且形状、尺寸不仅可以加工至微小化,实现发电系统的微型化;也可以加工至较大尺寸,实现高功率发电。另外,由于纳米摩擦发电机微型化、薄膜化,进而使得整个发电系统重量减小,同时成本得到了极大的降低。
图5为本发明提供的风力发电和太阳能发电组合系统的又一实施例的电路原理示意图。如图5所示,储能装置包括:第一开关控制电路51、整流电路52、开关电路53、第二开关控制电路54、直流/直流控制电路55和储能电路56。
其中第一开关控制电路51与太阳能组件50的输出端、纳米摩擦发电机10相连,第一开关控制电路51接收太阳能组件50输出的直流电压U4,根据直流电压U4向纳米摩擦发电机10输出用于控制纳米摩擦发电机是否工作的控制信号S3。整流电路52与纳米摩擦发电机10的输出端相连,整流电路52接收纳米摩擦发电机10输出的交流脉冲电信号,对该交流脉冲电信号进行整流处理得到直流电压U5。开关电路53的控制端与太阳能组件50的输出端相连,根据太阳能组件50输出的直流电压U4控制开关电路53的输入/输出端与太阳能组件50的输出端或整流电路52连通。如果开关电路53的输入/输出端与太阳能组件50的输出端连通,那么开关电路53的输入/输出端输出的直流电压U6等于U4;如果开关电路53的输入/输出端与整流电路52连通,那么开关电路53的输入/输出端输出的直流电压U6等于U5。第二开关控制电路54与开关电路53的输入/输出端、直流/直流控制电路55和储能电路56相连,第二开关控制电路54接收开关电路53的输入/输出端输出的直流电压U6和储能电路56反馈的瞬时充电电压U7,根据直流电压U6和瞬时充电电压U7得到控制信号S4,将控制信号S4输出给直流/直流控制电路55。直流/直流控制电路55与开关电路53的输入/输出端、第二开关控制电路54和储能电路56相连,根据第二开关控制电路54输出的控制信号S4对开关电路53的输入/输出端输出的直流电压U6进行转换处理输出给储能电路56充电,得到瞬时充电电压U7。
图5所示的电路的工作原理是:当太阳光照射到太阳能组件50上时,太阳能组件50会将光能转换为直流电能,输出直流电压U4。开关电路53的控制端和第一开关控制电路51会同时接收到该直流电压U4,将直流电压U4与预先配置在开关电路53和第一开关控制电路51中的工作电压U’进行比较,如果U4大于或等于U’,开关电路53控制其输入/输出端与太阳能组件50的输出端连通,与此同时第一开关控制电路51向纳米摩擦发电机10输出用于控制纳米摩擦发电机10停止工作的控制信号S3;如果U4小于U’,第一开关控制电路51向纳米摩擦发电机10输出用于控制纳米摩擦发电机10继续工作的控制信号S3,与此同时开关电路53控制其输入/输出端与整流电路52连通。第二开关控制电路54接收开关电路53的输入/输出端输出的直流电压U6和储能电路56反馈的瞬时充电电压U7后,将直流电压U6和瞬时充电电压U7分别与储能电路56的充满电压U0进行比较,如果直流电压U6高于充满电压U0且瞬时充电电压U7低于充满电压U0,此时第二开关控制电路54输出控制信号S4,控制直流/直流控制电路55将开关电路53的输入/输出端输出的直流电压U6进行降压处理,输出给储能电路56进行充电,得到瞬时充电电压U7;如果直流电压U6低于等于充满电压U0且瞬时充电电压U7低于充满电压U0,此时第二开关控制电路54输出控制信号S4,控制直流/直流控制电路55将直流电压U6进行升压处理,输出给储能电路56进行充电,得到瞬时充电电压U7;又如果瞬时充电电压U7等于或短时高于充满电压U0,不管直流电压U6高于或低于充满电压U0,此时第二开关控制电路54输出控制信号S4,控制直流/直流控制电路55使其停止为储能电路56充电。上述控制方式仅为一个具体的例子,本发明对此不做限制,也可采用其他的控制方式为储能电路充电。
可选地,储能电路56可以为锂离子电池、镍氢电池、铅酸电池或超级电容器等储能元件。
图5所示的发电系统的特点是采用太阳能组件和纳米摩擦发电机交替为储能电路进行充电,其中纳米摩擦发电机收集风能,太阳能组件收集太阳能。这种电路设计灵活,能够根据实际情况自动切换,在太阳能充足的情况下,采用太阳能组件为储能电路进行充电,并且使纳米摩擦发电机停止工作,延长了纳米摩擦发电机及整流电路的使用寿命;在太阳能不足的情况下,采用纳米摩擦发电机为储能电路进行充电,大大提高了整个系统的发电效率。
下面将详细介绍自充电超级电容器中的纳米摩擦发电机的结构和工作原理。
纳米摩擦发电机的第一种结构如图6a和图6b所示。图6a和图6b分别示出了纳米摩擦发电机的第一种结构的立体结构示意图和剖面结构示意图。该纳米摩擦发电机包括:依次层叠设置的第一电极61,第一高分子聚合物绝缘层62,以及第二电极63。具体地,第一电极61设置在第一高分子聚合物绝缘层62的第一侧表面上;且第一高分子聚合物绝缘层62的第二侧表面与第二电极63的表面接触摩擦并在第二电极63和第一电极61处感应出电荷。因此,上述的第一电极61和第二电极63构成纳米摩擦发电机的两个输出端。
为了提高纳米摩擦发电机的发电能力,在第一高分子聚合物绝缘层62的第二侧表面(即相对第二电极63的面上)进一步设有微纳结构64。因此,当纳米摩擦发电机受到挤压时,第一高分子聚合物绝缘层62与第二电极63的相对表面能够更好地接触摩擦,并在第一电极61和第二电极63处感应出较多的电荷。由于上述的第二电极63主要用于与第一高分子聚合物绝缘层62摩擦,因此,第二电极63也可以称之为摩擦电极。
上述的微纳结构64具体可以采取如下两种可能的实现方式:第一种方式为,该微纳结构是微米级或纳米级的非常小的凹凸结构。该凹凸结构能够增加摩擦阻力,提高发电效率。所述凹凸结构能够在薄膜制备时直接形成,也能够用打磨的方法使第一高分子聚合物绝缘层的表面形成不规则的凹凸结构。具体地,该凹凸结构可以是半圆形、条纹状、立方体型、四棱锥型、或圆柱形等形状的凹凸结构。第二种方式为,该微纳结构是纳米级孔状结构,此时第一高分子聚合物绝缘层所用材料优选为聚偏氟乙烯(PVDF),其厚度为0.5-1.2mm(优选1.0mm),且其相对第二电极的面上设有多个纳米孔。其中,每个纳米孔的尺寸,即宽度和深度,可以根据应用的需要进行选择,优选的纳米孔的尺寸为:宽度为10-100nm以及深度为4-50μm。纳米孔的数量可以根据需要的输出电流值和电压值进行调整,优选的这些纳米孔是孔间距为2-30μm的均匀分布,更优选的平均孔间距为9μm的均匀分布。
下面具体介绍一下图6a和图6b所示的纳米摩擦发电机的工作原理。当该纳米摩擦发电机的各层受到挤压时,纳米摩擦发电机中的第二电极63与第一高分子聚合物绝缘层62表面相互摩擦产生静电荷,静电荷的产生会使第一电极61和第二电极63之间的电容发生改变,从而导致第一电极61和第二电极63之间出现电势差。由于第一电极61和第二电极63作为纳米摩擦发电机的输出端与储能装置连接,储能装置构成纳米摩擦发电机的外电路,纳米摩擦发电机的两个输出端之间相当于被外电路连通。当该纳米摩擦发电机的各层恢复到原来状态时,这时形成在第一电极和第二电极之间的内电势消失,此时已平衡的第一电极和第二电极之间将再次产生反向的电势差。通过反复摩擦和恢复,就可以在外电路中形成周期性的交流脉冲电信号。
根据发明人的研究发现,金属与高分子聚合物摩擦,金属更易失去电子,因此采用金属电极与高分子聚合物摩擦能够提高能量输出。因此,相应地,在图6a和图6b所示的纳米摩擦发电机中,第二电极由于需要作为摩擦电极(即金属)与第一高分子聚合物进行摩擦,因此其材料可以选自金属或合金,其中金属可以是金、银、铂、钯、铝、镍、铜、钛、铬、硒、铁、锰、钼、钨或钒;合金可以是铝合金、钛合金、镁合金、铍合金、铜合金、锌合金、锰合金、镍合金、铅合金、锡合金、镉合金、铋合金、铟合金、镓合金、钨合金、钼合金、铌合金或钽合金。第一电极由于不需要进行摩擦,因此,除了可以选用上述罗列的第二电极的材料之外,其他能够制作电极的材料也可以应用,也就是说,第一电极除了可以选自金属或合金,其中金属可以是金、银、铂、钯、铝、镍、铜、钛、铬、硒、铁、锰、钼、钨或钒;合金可以是铝合金、钛合金、镁合金、铍合金、铜合金、锌合金、锰合金、镍合金、铅合金、锡合金、镉合金、铋合金、铟合金、镓合金、钨合金、钼合金、铌合金或钽合金之外,还可以选自铟锡氧化物、石墨烯、银纳米线膜等非金属材料。
在图6a所示的结构中,第一高分子聚合物绝缘层与第二电极是正对贴合,并通过外侧边缘的胶布粘贴在一起的,但本发明不仅限于此。第一高分子聚合物绝缘层与第二电极之间可以设置有多个弹性部件,例如弹簧,这些弹簧分布在第一高分子聚合物绝缘层与第二电极的外侧边缘,用于形成第一高分子聚合物绝缘层与第二电极之间的弹性支撑臂。当外力作用于纳米摩擦发电机时,纳米摩擦发电机受到挤压,弹簧被压缩,使得第一高分子聚合物绝缘层与第二电极接触形成摩擦界面;当外力消失时,弹簧弹起,使得第一高分子聚合物绝缘层与第二电极分离,纳米摩擦发电机恢复到原来的状态。
纳米摩擦发电机的第二种结构如图7a和图7b所示。图7a和图7b分别示出了纳米摩擦发电机的第二种结构的立体结构示意图和剖面结构示意图。该纳米摩擦发电机包括:依次层叠设置的第一电极71,第一高分子聚合物绝缘层72,第二高分子聚合物绝缘层74以及第二电极73。具体地,第一电极71设置在第一高分子聚合物绝缘层72的第一侧表面上;第二电极73设置在第二高分子聚合物绝缘层74的第一侧表面上;其中,第一高分子聚合物绝缘层72的第二侧表面与第二高分子聚合物绝缘层74的第二侧表面接触摩擦并在第一电极71和第二电极73处感应出电荷。其中,第一电极71和第二电极73构成纳米摩擦发电机的两个输出端。
为了提高纳米摩擦发电机的发电能力,第一高分子聚合物绝缘层72和第二高分子聚合物绝缘层74相对设置的两个面中的至少一个面上设有微纳结构。在图7b中,第一高分子聚合物绝缘层72的面上设有微纳结构75。因此,当纳米摩擦发电机受到挤压时,第一高分子聚合物绝缘层72与第二高分子聚合物绝缘层74的相对表面能够更好地接触摩擦,并在第一电极71和第二电极73处感应出较多的电荷。上述的微纳结构可参照上文的描述,此处不再赘述。
图7a和图7b所示的纳米摩擦发电机的工作原理与图6a和图6b所示的纳米摩擦发电机的工作原理类似。区别仅在于,当图7a和图7b所示的纳米摩擦发电机的各层受到挤压时,是由第一高分子聚合物绝缘层72与第二高分子聚合物绝缘层74的表面相互摩擦来产生静电荷的。因此,关于图7a和图7b所示的纳米摩擦发电机的工作原理此处不再赘述。
图7a和图7b所示的纳米摩擦发电机主要通过聚合物(第一高分子聚合物绝缘层)与聚合物(第二高分子聚合物绝缘层)之间的摩擦来产生电信号。
在这种结构中,第一电极和第二电极所用材料可以是铟锡氧化物、石墨烯、银纳米线膜、金属或合金,其中金属可以是金、银、铂、钯、铝、镍、铜、钛、铬、硒、铁、锰、钼、钨或钒;合金可以是铝合金、钛合金、镁合金、铍合金、铜合金、锌合金、锰合金、镍合金、铅合金、锡合金、镉合金、铋合金、铟合金、镓合金、钨合金、钼合金、铌合金或钽合金。上述两种结构中,第一高分子聚合物绝缘层和第二高分子聚合物绝缘层分别选自聚酰亚胺薄膜、苯胺甲醛树脂薄膜、聚甲醛薄膜、乙基纤维素薄膜、聚酰胺薄膜、三聚氰胺甲醛薄膜、聚乙二醇丁二酸酯薄膜、纤维素薄膜、纤维素乙酸酯薄膜、聚己二酸乙二醇酯薄膜、聚邻苯二甲酸二烯丙酯薄膜、纤维(再生)海绵薄膜、聚氨酯弹性体薄膜、苯乙烯丙烯共聚物薄膜、苯乙烯丁二烯共聚物薄膜、人造纤维薄膜、聚甲基薄膜,甲基丙烯酸酯薄膜、聚乙烯醇薄膜、聚乙烯醇薄膜、聚酯薄膜、聚异丁烯薄膜、聚氨酯柔性海绵薄膜、聚对苯二甲酸乙二醇酯薄膜、聚乙烯醇缩丁醛薄膜、甲醛苯酚薄膜、氯丁橡胶薄膜、丁二烯丙烯共聚物薄膜、天然橡胶薄膜、聚丙烯腈薄膜、丙烯腈氯乙烯薄膜和聚乙烯丙二酚碳酸盐薄膜中的一种。其中,在第二种结构中,原则上第一高分子聚合物绝缘层和第二高分子聚合物绝缘层的材质可以相同,也可以不同。但是,如果两层高分子聚合物绝缘层的材质都相同,会导致摩擦起电的电荷量很小。因此优选地,第一高分子聚合物绝缘层与第二高分子聚合物绝缘层的材质不同。
在图7a所示的结构中,第一高分子聚合物绝缘层72与第二高分子聚合物绝缘层74是正对贴合,并通过外侧边缘的胶布粘贴在一起的,但本发明不仅限于此。第一高分子聚合物绝缘层72与第二高分子聚合物绝缘层74之间可以设置有多个弹性部件,图7c示出了纳米摩擦发电机的第二种结构的具有弹性部件作为支撑臂的立体结构示意图,如图7c所示,弹性部件可选为弹簧70,这些弹簧70分布在第一高分子聚合物绝缘层72与第二高分子聚合物绝缘层74的外侧边缘,用于形成第一高分子聚合物绝缘层72与第二高分子聚合物绝缘层74之间的弹性支撑臂。当外力作用于纳米摩擦发电机时,纳米摩擦发电机受到挤压,弹簧70被压缩,使得第一高分子聚合物绝缘层72与第二高分子聚合物绝缘层74接触形成摩擦界面;当外力消失时,弹簧70弹起,使得第一高分子聚合物绝缘层72与第二高分子聚合物绝缘层74分离,纳米摩擦发电机恢复到原来的状态。
除了上述两种结构外,纳米摩擦发电机还可以采用第三种结构实现,如图8a和图8b所示。图8a和图8b分别示出了纳米摩擦发电机的第三种结构的立体结构示意图和剖面结构示意图。从图中可以看出,第三种结构在第二种结构的基础上增加了一个居间薄膜层,即:第三种结构的纳米摩擦发电机包括依次层叠设置的第一电极81、第一高分子聚合物绝缘层82、居间薄膜层80、第二高分子聚合物绝缘层84以及第二电极83。具体地,第一电极81设置在第一高分子聚合物绝缘层82的第一侧表面上;第二电极83设置在第二高分子聚合物绝缘层84的第一侧表面上,且居间薄膜层80设置在第一高分子聚合物绝缘层82的第二侧表面和第二高分子聚合物绝缘层84的第二侧表面之间。其中,所述居间薄膜层80和第一高分子聚合物绝缘层82相对设置的两个面中的至少一个面上设有微纳结构85,和/或所述居间薄膜层80和第二高分子聚合物绝缘层84相对设置的两个面中的至少一个面上设有微纳结构85,关于微纳结构85的具体设置方式可参照上文描述,此处不再赘述。
图8a和图8b所示的纳米摩擦发电机的材质可以参照前述的第二种结构的纳米摩擦发电机的材质进行选择。其中,居间薄膜层也可以选自透明高聚物聚对苯二甲酸乙二醇酯(PET)、聚二甲基硅氧烷(PDMS)、聚苯乙烯(PS)、聚甲基丙烯酸甲酯(PMMA)、聚碳酸酯(PC)和液晶高分子聚合物(LCP)中的任意一种。其中,所述第一高分子聚合物绝缘层与第二高分子聚合物绝缘层的材料优选透明高聚物聚对苯二甲酸乙二醇酯(PET);其中,所述居间薄膜层的材料优选聚二甲基硅氧烷(PDMS)。上述的第一高分子聚合物绝缘层、第二高分子聚合物绝缘层、居间薄膜层的材质可以相同,也可以不同。但是,如果三层高分子聚合物绝缘层的材质都相同,会导致摩擦起电的电荷量很小,因此,为了提高摩擦效果,居间薄膜层的材质不同于第一高分子聚合物绝缘层和第二高分子聚合物绝缘层,而第一高分子聚合物绝缘层与第二高分子聚合物绝缘层的材质则优选相同,这样,能减少材料种类,使本发明的制作更加方便。
在图8a和图8b所示的实现方式中,居间薄膜层80是一层聚合物膜,因此实质上与图7a和图7b所示的实现方式类似,仍然是通过聚合物(居间薄膜层)和聚合物(第二高分子聚合物绝缘层)之间的摩擦来发电的。其中,居间薄膜层容易制备且性能稳定。
如果在居间薄膜层和第一高分子聚合物绝缘层相对设置的两个面中的至少一个面上设有微纳结构,在图8a所示的结构中,第一高分子聚合物绝缘层与居间薄膜层是正对贴合,并通过外侧边缘的胶布粘贴在一起的,但本发明不仅限于此。第一高分子聚合物绝缘层与居间薄膜层之间可以设置有多个弹性部件,例如弹簧,这些弹簧分布在第一高分子聚合物绝缘层与居间薄膜层的外侧边缘,用于形成第一高分子聚合物绝缘层与居间薄膜层之间的弹性支撑臂。当外力作用于纳米摩擦发电机时,纳米摩擦发电机受到挤压,弹簧被压缩,使得第一高分子聚合物绝缘层与居间薄膜层接触形成摩擦界面;当外力消失时,弹簧弹起,使得第一高分子聚合物绝缘层与居间薄膜层分离,纳米摩擦发电机恢复到原来的状态。
如果在居间薄膜层和第二高分子聚合物绝缘层相对设置的两个面中的至少一个面上设有微纳结构,在图8a所示的结构中,第二高分子聚合物绝缘层与居间薄膜层是正对贴合,并通过外侧边缘的胶布粘贴在一起的,但本发明不仅限于此。第二高分子聚合物绝缘层与居间薄膜层之间可以设置有多个弹性部件,例如弹簧,这些弹簧分布在第二高分子聚合物绝缘层与居间薄膜层的外侧边缘,用于形成第二高分子聚合物绝缘层与居间薄膜层之间的弹性支撑臂。当外力作用于纳米摩擦发电机时,纳米摩擦发电机受到挤压,弹簧被压缩,使得第二高分子聚合物绝缘层与居间薄膜层接触形成摩擦界面;当外力消失时,弹簧弹起,使得第二高分子聚合物绝缘层与居间薄膜层分离,纳米摩擦发电机恢复到原来的状态。
可选地,弹性部件可以同时设置在居间薄膜层与第一高分子聚合物绝缘层、居间薄膜层与第二高分子聚合物绝缘层之间。
另外,纳米摩擦发电机还可以采用第四种结构来实现,如图9a和图9b所示,包括:依次层叠设置的第一电极91,第一高分子聚合物绝缘层92,居间电极层90,第二高分子聚合物绝缘层94和第二电极93;其中,第一电极91设置在第一高分子聚合物绝缘层92的第一侧表面上;第二电极93设置在第二高分子聚合物绝缘层94的第一侧表面上,居间电极层90设置在第一高分子聚合物绝缘层92的第二侧表面与第二高分子聚合物绝缘层94的第二侧表面之间。其中,第一高分子聚合物绝缘层92相对居间电极层90的面和居间电极层90相对第一高分子聚合物绝缘层92的面中的至少一个面上设置有微纳结构(图未示);和/或,第二高分子聚合物绝缘层94相对居间电极层90的面和居间电极层90相对第二高分子聚合物绝缘层94的面中的至少一个面上设置有微纳结构(图未示)。在这种方式中,通过居间电极层90与第一高分子聚合物绝缘层92和第二高分子聚合物绝缘层94之间摩擦产生静电荷,由此将在居间电极层90与第一电极91和第二电极93之间产生电势差,此时,第一电极91和第二电极93串联为纳米摩擦发电机的一个输出端;居间电极层90为纳米摩擦发电机的另一个输出端。
在图9a和图9b所示的结构中,第一高分子聚合物绝缘层、第二高分子聚合物绝缘层、第一电极和第二电极的材质可以参照前述的第二种结构的纳米摩擦发电机的材质进行选择。居间电极层可以选择导电薄膜、导电高分子、金属材料,金属材料包括纯金属和合金,纯金属选自金、银、铂、钯、铝、镍、铜、钛、铬、硒、铁、锰、钼、钨、钒等,合金可以选自轻合金(铝合金、钛合金、镁合金、铍合金等)、重有色合金(铜合金、锌合金、锰合金、镍合金等)、低熔点合金(铅、锡、镉、铋、铟、镓及其合金)、难熔合金(钨合金、钼合金、铌合金、钽合金等)。居间电极层的厚度优选100μm-500μm,更优选200μm。
如果第一高分子聚合物绝缘层相对居间电极层的面和居间电极层相对第一高分子聚合物绝缘层的面中的至少一个面上设置有微纳结构,在图9a所示的结构中,第一高分子聚合物绝缘层与居间电极层是正对贴合,并通过外侧边缘的胶布粘贴在一起的,但本发明不仅限于此。第一高分子聚合物绝缘层与居间电极层之间可以设置有多个弹性部件,例如弹簧,这些弹簧分布在第一高分子聚合物绝缘层与居间电极层的外侧边缘,用于形成第一高分子聚合物绝缘层与居间电极层之间的弹性支撑臂。当外力作用于纳米摩擦发电机时,纳米摩擦发电机受到挤压,弹簧被压缩,使得第一高分子聚合物绝缘层与居间电极层接触形成摩擦界面;当外力消失时,弹簧弹起,使得第一高分子聚合物绝缘层与居间电极层分离,纳米摩擦发电机恢复到原来的状态。
如果第二高分子聚合物绝缘层相对居间电极层的面和居间电极层相对第二高分子聚合物绝缘层的面中的至少一个面上设置有微纳结构,在图9a所示的结构中,第二高分子聚合物绝缘层与居间电极层是正对贴合,并通过外侧边缘的胶布粘贴在一起的,但本发明不仅限于此。第二高分子聚合物绝缘层与居间电极层之间可以设置有多个弹性部件,例如弹簧,这些弹簧分布在第二高分子聚合物绝缘层与居间电极层的外侧边缘,用于形成第二高分子聚合物绝缘层与居间电极层之间的弹性支撑臂。当外力作用于纳米摩擦发电机时,纳米摩擦发电机受到挤压,弹簧被压缩,使得第二高分子聚合物绝缘层与居间电极层接触形成摩擦界面;当外力消失时,弹簧弹起,使得第二高分子聚合物绝缘层与居间电极层分离,纳米摩擦发电机恢复到原来的状态。
可选地,弹性部件可以同时设置在居间电极层与第一高分子聚合物绝缘层、居间电极层与第二高分子聚合物绝缘层之间。
本发明提供的采用纳米摩擦发电机的风力发电与太阳能发电组合的发电系统实现了风能和太阳能的双重收集利用,这不仅节约了能源,而且清洁环保,保护了环境。对于采用纳米摩擦发电机的风力发电机,由于纳米摩擦发电机本身的发电效率很高,而使整个风力发电机有很高的发电效率,再加上高效的设计结构,实现了一个最佳的发电效率。
本发明的采用纳米摩擦发电机的风力发电机的结构可以设计成多种形式,可以根据应用场所的不同选择不同的结构设计,扩大了风力发电机的应用范围。
本发明提供的发电系统实现了纳米摩擦发电机收集风能发电与太阳能发电的结合,两个高效率的子系统的叠加,使整个系统的效率得到大幅度的提高。另外还提供了一种储能装置,该储能装置设计灵活,能自动进行切换,不仅可以同时储存纳米摩擦发电机收集风能所发的电与太阳能发的电,还可以交替储存纳米摩擦发电机收集风能所发的电与太阳能发的电,操作简单。
最后,需要注意的是:以上列举的仅是本发明的具体实施例子,当然本领域的技术人员可以对本发明进行改动和变型,倘若这些修改和变型属于本发明权利要求及其等同技术的范围之内,均应认为是本发明的保护范围。

Claims (32)

1.一种采用纳米摩擦发电机的风力发电和太阳能发电组合系统,其特征在于,包括:风力发电机、太阳能组件和储能装置;
所述风力发电机包括用于将机械能转化为电能的至少一个纳米摩擦发电机;所述风力发电机还包括容纳至少一个纳米摩擦发电机的壳体,所述至少一个纳米摩擦发电机与所述壳体的内壁连接或者所述至少一个纳米摩擦发电机固设在所述壳体的内壁上;
所述太阳能组件由多个太阳能电池组成,所述多个太阳能电池以串联或并联方式连接形成太阳能组件的至少两个输出端,其中每个太阳能电池为由半导体材料所形成的PN结式结构的光电转换单元;
所述储能装置与所述纳米摩擦发电机的输出端和所述太阳能组件的至少两个输出端相连,用于对所述纳米摩擦发电机输出的电能和所述太阳能组件输出的电能进行存储。
2.根据权利要求1所述的系统,其特征在于,所述PN结是由掺杂半导体材料所形成的结构;或者,所述PN结是半导体薄膜的结构。
3.根据权利要求1所述的系统,其特征在于,所述太阳能组件还包括保护体。
4.根据权利要求3所述的系统,其特征在于,所述保护体为保护板或保护膜。
5.根据权利要求1所述的系统,其特征在于,所述风力发电机还包括:固定轴;所述固定轴的一部分位于所述壳体外部,所述固定轴的另一部分穿过所述壳体的底壁伸入到所述壳体内部;每个纳米摩擦发电机通过至少一个第一弹性部件与所述壳体的内侧壁连接,且通过至少一个第二弹性部件与所述固定轴连接。
6.根据权利要求5所述的系统,其特征在于,所述壳体的内侧壁上固设有至少一个固定部件,所述每个纳米摩擦发电机通过至少一个第一弹性部件与对应的固定部件连接。
7.根据权利要求5或6所述的系统,其特征在于,所述壳体为一槽体。
8.根据权利要求5或6所述的系统,其特征在于,所述壳体具有顶壁,且所述顶壁上具有多个通孔。
9.根据权利要求5或6所述的系统,其特征在于,所述第一弹性部件和第二弹性部件均为弹簧。
10.根据权利要求1所述的系统,其特征在于,所述风力发电机还包括:转动轴、至少一个凸轮以及扇叶;其中,所述至少一个纳米摩擦发电机固设在所述壳体的内壁上;所述转动轴的一部分位于所述壳体外部,所述转动轴的另一部分伸入到所述壳体内部;所述至少一个凸轮固设在位于所述壳体内部的所述转动轴上;所述扇叶固设在位于所述壳体外部的所述转动轴的端部。
11.根据权利要求10所述的系统,其特征在于,每个凸轮具有多个凸起部,在所述扇叶通过所述转动轴带动所述凸轮转动时,所述多个凸起部的端部挤压所述纳米摩擦发电机。
12.根据权利要求10或11所述的系统,其特征在于,所述壳体为一槽体。
13.根据权利要求10或11所述的系统,其特征在于,所述壳体具有顶壁,所述转动轴的另一部分穿过所述壳体的顶壁伸入到所述壳体内部。
14.根据权利要求5或10所述的系统,其特征在于,所述壳体为柱形结构。
15.根据权利要求1所述的系统,其特征在于,所述壳体包括:上夹壁和下夹壁、设置在所述上夹壁和下夹壁之间的多个支撑臂;所述至少一个纳米摩擦发电机固设在所述上夹壁和/或下夹壁上;所述多个支撑臂沿着所述上夹壁和下夹壁的两个相对的边缘而设置,相邻的两个支撑臂之间形成通风口。
16.根据权利要求15所述的系统,其特征在于,所述纳米摩擦发电机呈向内拱起的拱形结构。
17.根据权利要求15所述的系统,其特征在于,所述多个支撑臂沿着所述上夹壁和下夹壁的两个相对的长边缘而设置。
18.根据权利要求15或16或17所述的系统,其特征在于,固设在所述上夹壁上的纳米摩擦发电机为一个,固设在所述下夹壁上的纳米摩擦发电机为一个,这两个纳米摩擦发电机相对设置。
19.根据权利要求15或16或17所述的系统,其特征在于,固设在所述上夹壁上的纳米摩擦发电机为多个,固设在所述下夹壁上的纳米摩擦发电机为多个,固设在所述上夹壁上的纳米摩擦发电机与固设在所述下夹壁上的纳米摩擦发电机一一相对设置。
20.根据权利要求1所述的系统,其特征在于,所述储能装置包括:整流电路、第一开关控制电路、第一直流/直流控制电路、第二开关控制电路、第二直流/直流控制电路以及储能电路;
所述整流电路与所述至少一个纳米摩擦发电机的输出端相连,接收所述至少一个纳米摩擦发电机输出的交流脉冲电信号并对所述交流脉冲电信号进行整流处理得到直流电压;
所述第一开关控制电路与所述整流电路、所述第一直流/直流控制电路和所述储能电路相连,接收所述整流电路输出的直流电压和所述储能电路反馈的瞬时充电电压,根据所述整流电路输出的直流电压和所述储能电路反馈的瞬时充电电压得到第一控制信号,将所述第一控制信号输出给所述第一直流/直流控制电路;
所述第一直流/直流控制电路与所述整流电路、所述第一开关控制电路和所述储能电路相连,根据所述第一开关控制电路输出的第一控制信号对所述整流电路输出的直流电压进行转换处理输出给所述储能电路充电,得到瞬时充电电压;
所述第二开关控制电路与所述太阳能组件的至少两个输出端、所述第二直流/直流控制电路和所述储能电路相连,接收所述太阳能组件输出的直流电压和所述储能电路反馈的瞬时充电电压,根据所述太阳能组件输出的直流电压和所述储能电路反馈的瞬时充电电压得到第二控制信号,将所述第二控制信号输出给所述第二直流/直流控制电路;
所述第二直流/直流控制电路与所述太阳能组件的至少两个输出端、所述第二开关控制电路和所述储能电路相连,根据所述第二开关控制电路输出的第二控制信号对所述太阳能组件输出的直流电压进行转换处理输出给所述储能电路充电,得到瞬时充电电压。
21.根据权利要求1所述的系统,其特征在于,所述储能装置包括:第一开关控制电路、整流电路、开关电路、第二开关控制电路、直流/直流控制电路和储能电路;
所述第一开关控制电路与所述太阳能组件的至少两个输出端和所述至少一个纳米摩擦发电机相连,接收所述太阳能组件输出的直流电压,根据所述太阳能组件输出的直流电压向所述至少一个纳米摩擦发电机输出用于控制纳米摩擦发电机是否工作的控制信号;
所述整流电路与所述至少一个纳米摩擦发电机的输出端相连,接收所述至少一个纳米摩擦发电机输出的交流脉冲电信号并对所述交流脉冲信号进行整流处理得到直流电压;
所述开关电路的控制端与所述太阳能组件的输出端相连,根据所述太阳能组件输出的直流电压控制所述开关电路的输入/输出端与所述太阳能组件的至少两个输出端或所述整流电路连通;
所述第二开关控制电路与所述开关电路的输入/输出端、所述直流/直流控制电路和所述储能电路相连,接收所述开关电路的输入/输出端输出的直流电压和所述储能电路反馈的瞬时充电电压,根据所述开关电路的输入/输出端输出的直流电压和所述储能电路反馈的瞬时充电电压得到控制信号,将所述控制信号输出给所述直流/直流控制电路;
所述直流/直流控制电路与所述开关电路的输入/输出端、所述第二开关控制电路和所述储能电路相连,根据所述第二开关控制电路输出的控制信号对所述开关电路的输入/输出端输出的直流电压进行转换处理输出给所述储能电路充电,得到瞬时充电电压。
22.根据权利要求20或21所述的系统,其特征在于,所述储能电路为锂离子电池、镍氢电池、铅酸电池或超级电容器。
23.根据权利要求1所述的系统,其特征在于,所述纳米摩擦发电机包括:依次层叠设置的第一电极,第一高分子聚合物绝缘层,以及第二电极;其中,所述第一电极设置在所述第一高分子聚合物绝缘层的第一侧表面上;且所述第一高分子聚合物绝缘层的第二侧表面朝向所述第二电极设置,所述第一电极和第二电极构成所述纳米摩擦发电机的输出端。
24.根据权利要求23所述的系统,其特征在于,所述第一高分子聚合物绝缘层的第二侧表面上设有微纳结构。
25.根据权利要求24所述的系统,其特征在于,所述第一高分子聚合物绝缘层与所述第二电极之间设置有多个弹性部件,所述弹性部件用于在外力的作用下控制所述第一高分子聚合物绝缘层与所述第二电极接触和分离。
26.根据权利要求25所述的系统,其特征在于,所述纳米摩擦发电机进一步包括:设置在所述第二电极和所述第一高分子聚合物绝缘层之间的第二高分子聚合物绝缘层,所述第二电极设置在所述第二高分子聚合物绝缘层的第一侧表面上;且所述第二高分子聚合物绝缘层的第二侧表面与所述第一高分子聚合物绝缘层的第二侧表面相对设置。
27.根据权利要求26所述的系统,其特征在于,所述第一高分子聚合物绝缘层和第二高分子聚合物绝缘层相对设置的两个面中的至少一个面上设有微纳结构。
28.根据权利要求27所述的系统,其特征在于,所述第一高分子聚合物绝缘层与所述第二高分子聚合物绝缘层之间设置有多个弹性部件,所述弹性部件用于在外力的作用下控制所述第一高分子聚合物绝缘层与所述第二高分子聚合物绝缘层接触和分离。
29.根据权利要求26所述的系统,其特征在于,所述纳米摩擦发电机进一步包括:设置在所述第一高分子聚合物绝缘层和所述第二高分子聚合物绝缘层之间的居间薄膜层,其中,所述居间薄膜层为聚合物薄膜层,且所述第一高分子聚合物绝缘层相对所述居间薄膜层的面和居间薄膜层相对于第一高分子聚合物绝缘层的面中的至少一个面上和/或所述第二高分子聚合物绝缘层相对所述居间薄膜层的面和居间薄膜层相对第二高分子聚合物绝缘层的面中的至少一个面上设有微纳结构。
30.根据权利要求29所述的系统,其特征在于,所述第一高分子聚合物绝缘层和所述居间薄膜层之间设置有多个弹性部件,该弹性部件用于在外力的作用下控制所述第一高分子聚合物绝缘层和所述居间薄膜层接触和分离;
和/或,所述第二高分子聚合物绝缘层和所述居间薄膜层之间设置有多个弹性部件,该弹性部件用于在外力的作用下控制所述第二高分子聚合物绝缘层和所述居间薄膜层接触和分离。
31.根据权利要求1所述的系统,其特征在于,所述纳米摩擦发电机包括:依次层叠设置的第一电极,第一高分子聚合物绝缘层,居间电极层,第二高分子聚合物绝缘层以及第二电极;其中,所述第一电极设置在所述第一高分子聚合物绝缘层的第一侧表面上;所述第二电极设置在所述第二高分子聚合物绝缘层的第一侧表面上,所述居间电极层设置在所述第一高分子聚合物绝缘层的第二侧表面与所述第二高分子聚合物绝缘层的第二侧表面之间,且所述第一高分子聚合物绝缘层相对所述居间电极层的面和居间电极层相对于第一高分子聚合物绝缘层的面中的至少一个面上和/或所述第二高分子聚合物绝缘层相对所述居间电极层的面和居间电极层相对第二高分子聚合物绝缘层的面中的至少一个面上设有微纳结构,所述第一电极和第二电极相连后与所述居间电极层构成所述纳米摩擦发电机的输出端。
32.根据权利要求31所述的系统,其特征在于,所述第一高分子聚合物绝缘层和所述居间电极层之间设置有多个弹性部件,该弹性部件用于在外力的作用下控制所述第一高分子聚合物绝缘层和所述居间电极层接触和分离;
和/或,所述第二高分子聚合物绝缘层和所述居间电极层之间设置有多个弹性部件,该弹性部件用于在外力的作用下控制所述第二高分子聚合物绝缘层和所述居间电极层接触和分离。
CN201310143714.3A 2013-04-12 2013-04-22 采用纳米摩擦发电机的风力发电和太阳能发电组合系统 Active CN104113270B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201310143714.3A CN104113270B (zh) 2013-04-22 2013-04-22 采用纳米摩擦发电机的风力发电和太阳能发电组合系统
PCT/CN2013/090766 WO2014166286A1 (zh) 2013-04-12 2013-12-27 采用纳米摩擦发电机的发电系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310143714.3A CN104113270B (zh) 2013-04-22 2013-04-22 采用纳米摩擦发电机的风力发电和太阳能发电组合系统

Publications (2)

Publication Number Publication Date
CN104113270A CN104113270A (zh) 2014-10-22
CN104113270B true CN104113270B (zh) 2016-12-28

Family

ID=51709928

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310143714.3A Active CN104113270B (zh) 2013-04-12 2013-04-22 采用纳米摩擦发电机的风力发电和太阳能发电组合系统

Country Status (1)

Country Link
CN (1) CN104113270B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107276495B (zh) * 2016-04-08 2020-02-11 北京纳米能源与系统研究所 基于风能和太阳能的复合发电机和复合发电系统
CN108750107A (zh) * 2018-03-26 2018-11-06 深圳光柔科技有限公司 一种全天候不间断自供电能源系统及其应用
CN109103289A (zh) * 2018-10-16 2018-12-28 苏州英鹏新能源有限公司 一种新型太阳能组件
CN110572073A (zh) * 2019-09-16 2019-12-13 华中科技大学 一种混合型摩擦纳米发电机
CN111711379B (zh) * 2020-05-26 2021-04-20 西安交通大学 一种基于摩擦电效应的雨水能量收集系统及收集方法
CN112253392B (zh) * 2020-10-15 2023-06-13 重庆大学 一种面向能源互联网的复合微纳能源自驱动系统
CN113266524A (zh) * 2021-05-14 2021-08-17 母志长 运行气流发电机
CN113783471B (zh) * 2021-07-16 2023-12-08 浙江大学 一种薄膜动态半导体-聚合物半导体异质结直流发电机及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203377814U (zh) * 2013-04-22 2014-01-01 纳米新能源(唐山)有限责任公司 采用纳米摩擦发电机的风力发电和太阳能发电组合系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201723377U (zh) * 2010-06-24 2011-01-26 上海市晋元高级中学 风力发电装置
CN101938230B (zh) * 2010-09-06 2012-09-26 扬州大学 波浪振动压电发电与太阳能组合发电方法及其发电系统
KR101172624B1 (ko) * 2010-11-29 2012-08-08 오상복 발전장치
CN202818150U (zh) * 2012-09-20 2013-03-20 纳米新能源(唐山)有限责任公司 纳米摩擦发电机

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203377814U (zh) * 2013-04-22 2014-01-01 纳米新能源(唐山)有限责任公司 采用纳米摩擦发电机的风力发电和太阳能发电组合系统

Also Published As

Publication number Publication date
CN104113270A (zh) 2014-10-22

Similar Documents

Publication Publication Date Title
CN104113270B (zh) 采用纳米摩擦发电机的风力发电和太阳能发电组合系统
CN203219203U (zh) 发电系统
CN104214056B (zh) 风力发电装置及风力发电系统
CN104104122B (zh) 发电系统
CN104348381B (zh) 基于摩擦发电机的风力发电装置及系统
CN104734565B (zh) 一种收集流动液体能量的发电机及发电方法
CN104113268B (zh) 采用纳米摩擦发电机的海洋能发电和太阳能发电组合系统
CN104993773B (zh) 一种复合能源电池装置及其制备方法
CN104124887B (zh) 风力发电机
CN104104262B (zh) 发电系统
CN203532171U (zh) 风力发电装置及风力发电系统
CN104595120B (zh) 风力发电装置
CN104343637B (zh) 风力发电装置
CN112253392B (zh) 一种面向能源互联网的复合微纳能源自驱动系统
CN203377814U (zh) 采用纳米摩擦发电机的风力发电和太阳能发电组合系统
CN104124888B (zh) 发电系统
WO2014166286A1 (zh) 采用纳米摩擦发电机的发电系统
CN104104260B (zh) 发电系统
CN107612150A (zh) 水面能量集能系统
CN203218932U (zh) 发电系统
CN203218931U (zh) 发电系统
CN104179637B (zh) 风能发电系统
CN104104261B (zh) 发电系统
CN203377809U (zh) 风力发电机
WO2011115325A1 (ko) 압전소자를 이용한 친환경 발전장치

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant