WO2015122240A1 - Transmission unit and sonar - Google Patents

Transmission unit and sonar Download PDF

Info

Publication number
WO2015122240A1
WO2015122240A1 PCT/JP2015/051299 JP2015051299W WO2015122240A1 WO 2015122240 A1 WO2015122240 A1 WO 2015122240A1 JP 2015051299 W JP2015051299 W JP 2015051299W WO 2015122240 A1 WO2015122240 A1 WO 2015122240A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
unit
wave
elements
signal
Prior art date
Application number
PCT/JP2015/051299
Other languages
French (fr)
Japanese (ja)
Inventor
山口 武治
Original Assignee
古野電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古野電気株式会社 filed Critical 古野電気株式会社
Priority to JP2015562766A priority Critical patent/JP6281961B2/en
Publication of WO2015122240A1 publication Critical patent/WO2015122240A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/523Details of pulse systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/96Sonar systems specially adapted for specific applications for locating fish
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/521Constructional features

Definitions

  • the present invention relates to a transmission unit capable of transmitting a transmission wave in a desired direction, and a sonar including the transmission unit.
  • a transmission unit capable of transmitting a transmission beam in a predetermined direction by shifting the phases of transmission waves transmitted from each of a plurality of elements arranged based on a predetermined regularity with respect to each other.
  • Patent Document 1 Known (for example, Patent Document 1).
  • the ultrasonic transducers at each stage are grouped into a plurality of groups.
  • a beam that is not rotationally symmetric is formed on the central axis of the cylindrical transducer.
  • the present invention is to solve the above-described problems, and an object of the present invention is to accurately control the direction of a transmission beam while suppressing an increase in the number of transmission signal generation units.
  • a transmission unit includes a transmitter having a plurality of transmission elements each transmitting a transmission wave, and a transmission whose phase is adjusted.
  • a plurality of transmission signal generation units that generate signals; and a circuit unit that combines at least two transmission signals and outputs the resultant signal to at least one first transmission element included in the plurality of transmission elements.
  • the plurality of transmission elements further include a plurality of second transmission elements provided corresponding to the transmission signal generation units, and the circuit unit is generated by the transmission signal generation units.
  • the transmission signal is output to each of the corresponding second transmission elements, and each of the second transmission elements is a transmission wave based on the transmission signal generated by each of the transmission signal generation units corresponding to each of the second transmission elements. Send.
  • the plurality of second transmission elements are arranged along a predetermined direction, and each of the plurality of first transmission elements is between two adjacent second transmission elements in the predetermined direction.
  • the transmission wave transmitted from each of the first transmission elements is generated by the two transmission signal generation units corresponding to each of the two second transmission elements adjacent to the first transmission element. It is a composite wave of the transmission signal.
  • At least a part of the plurality of first transmission elements and at least a part of the plurality of second transmission elements are along a circumferential direction as the predetermined direction.
  • the transmitter is formed in a cylindrical shape by arranging a plurality of the annular arrays along the central axis direction of the annular array.
  • the circuit unit includes a first coil electrically connected to each transmission signal generation unit and a second coil electrically connected to each transmission element. .
  • the transmission wave is an electromagnetic wave or an ultrasonic wave.
  • the sonar which concerns on a certain situation of this invention is the receiving part which receives the reflected wave of the transmission wave transmitted from one of the transmission units mentioned above and the said transmission unit.
  • a signal processing unit that processes a reception signal obtained by the reception unit, and a display unit that displays a video based on the video signal generated by the signal processing unit.
  • FIG. 2A is a schematic diagram for explaining the shake correction performed by the sonar
  • FIG. 2A is a view schematically showing a transmission beam transmitted from a ship that is not shaken
  • FIG. 2B is a diagram schematically showing a transmission beam transmitted from a ship in a state of being shaken, and is a diagram showing a transmission beam of a sonar that does not have a shake correction function
  • FIG. 2C is a diagram schematically showing a transmission beam transmitted from a ship in a state of shaking, and is a diagram showing a transmission beam of a sonar having a shaking correction function.
  • FIG. 4 is a schematic diagram for explaining the shake correction performed in the sonar shown in FIG.
  • FIG. 10 is an image which shows a simulation result
  • FIG.10 (B) is about a roll angle.
  • FIG. 1 is a diagram schematically showing the shape of a transmission beam transmitted from a sonar transducer mounted on the ship S.
  • FIG. FIG. 2 is a schematic diagram for explaining the shake correction performed by the sonar.
  • FIG. 2A is a diagram schematically illustrating a transmission beam transmitted from a ship that is not shaken.
  • FIG. 2B is a diagram schematically showing a transmission beam transmitted from a ship in a state of being shaken, and is a diagram showing a transmission beam of a sonar that does not have a shake correction function.
  • FIG. 2C is a diagram schematically showing a transmission beam transmitted from a ship in a state of shaking, and is a diagram showing a transmission beam of a sonar having a shaking correction function.
  • FIGS. 1 and 2 illustrations of the sonar and the transducer mounted on the ship S are omitted.
  • an umbrella-shaped transmission beam is transmitted at a predetermined tilt angle ⁇ in all directions. Therefore, when the wave is calm and the ship is not shaken, that is, when the horizontal plane of the ship (transmitter / receiver) is not inclined with respect to the horizontal plane of the sea surface (see FIG. 2A), it is transmitted from the transmitter / receiver.
  • the tilt angle of the transmitted beam is uniform with respect to the horizontal surface of the sea surface in all directions.
  • the tilt angle of the transmission beam is adjusted so as to correct the deviation of the transmission beam due to the fluctuation of the ship (see FIG. 2C).
  • the same underwater position can be detected regardless of the movement of the ship, so that the position of the target can be accurately grasped.
  • FIG. 3 is a block diagram showing the configuration of the sonar 1 according to the embodiment of the present invention.
  • the sonar 1 includes a transducer 10 (transmitter), a transmission / reception device 2, a tilt detection unit 3, a signal processing unit 4, and an operation / display device 5.
  • the sonar 1 is provided in a ship such as a fishing boat, and is mainly used for detecting a target such as a fish and a school of fish.
  • the transducer 10 converts an electric signal into an ultrasonic wave, transmits an umbrella-shaped ultrasonic wave as shown in FIG. 1 into the water at every predetermined timing, and converts the received ultrasonic wave into an electric signal.
  • the transducer 10 includes a plurality of ultrasonic transducers TD (transmission elements) arranged with a predetermined regularity, and the phases of ultrasonic waves transmitted from the ultrasonic transducers TD are appropriately set with respect to each other. By being shifted, ultrasonic waves having high intensity are transmitted in a predetermined tilt direction. The specific configuration of the transducer 10 will be described later in detail.
  • the transmission / reception device 2 includes a transmission / reception switching unit 6, a transmission unit 7, and a reception unit 8.
  • the transmission / reception switching unit 6 switches to a connection in which a transmission signal is transmitted from the transmission unit 7 to the transducer 10 at the time of transmission.
  • the transmission / reception switching unit 6 switches to a connection in which an electrical signal converted from an ultrasonic wave by the transducer 10 is transmitted from the transducer 10 to the reception unit 8 at the time of reception.
  • the transmission unit 7 outputs a transmission signal generated based on the conditions set in the operation / display device 5 to the transmitter / receiver 10 via the transmission / reception switching unit 6. Further, the transmission unit 7 adjusts the phase of the transmission signal output to the transducer 10 according to the detection value (the inclination of the ship) detected by the inclination detection unit 3.
  • the specific configuration of the transmission unit 7 will be described in detail later together with the configuration of the transducer 10.
  • the receiving unit 8 includes a detection unit and an A / D conversion unit.
  • the detector detects and amplifies the signal received by the transducer 10 and outputs the amplified received signal to the A / D converter.
  • the A / D conversion unit outputs the reception data obtained by converting the reception signal output from the detection unit into a digital signal, to the signal processing unit 4.
  • the tilt detection unit 3 detects the tilt of the ship with respect to the horizontal plane as a detection value, and notifies the transmission unit 7 of the detection value.
  • the signal processing unit 4 processes the reception data output from the reception unit 8 and generates a target video signal.
  • the operation / display device 5 displays a video (in this embodiment, a PPI image) corresponding to the video signal output from the signal processing unit 4 on the display screen.
  • the user can estimate the underwater state (single fish, presence / absence of a school of fish, etc.) in all directions around the ship by looking at the PPI image.
  • the operation / display device 5 includes input means such as various input keys, and is configured to be able to input various settings or various parameters necessary for ultrasonic transmission / reception, signal processing, or video display. Has been.
  • the sonar 1 includes a transmission unit 12.
  • the transmission unit 12 includes a transducer 10 and a transmission unit 7.
  • FIG. 4 is a perspective view schematically showing the outer shape of the transducer 10.
  • the transducer 10 of the sonar 1 according to the present embodiment includes a casing unit 11 configured in a cylindrical shape and a plurality of ultrasonic transducers TD arranged along the outer peripheral surface of the casing unit 11. Provided as a transducer array.
  • an annular array AR composed of N ultrasonic transducers TD arranged along the circumference of the casing unit 11 has M stages along the central axis direction of the casing unit 11. It is arranged. That is, the transducer 10 has (M ⁇ N) ultrasonic transducers TD.
  • the plurality of ultrasonic transducers TD are arranged in a staggered manner. Specifically, in the transducer 10, the plurality of ultrasonic transducers TD constituting the annular array AR are connected to the respective ultrasonic transducers TD constituting the annular array AR adjacent in the central axis direction of the housing unit 11. On the other hand, they are arranged shifted in the circumferential direction.
  • the ultrasonic transducer may be referred to as an ultrasonic transducer TD mn .
  • the transmission unit 7 has a plurality of transmission circuit groups TM.
  • Each of the plurality of transmission circuit groups TM is provided corresponding to each annular array AR m and transmits ultrasonic waves to the corresponding annular array AR m .
  • FIG. 6 only the m-th annular array AR m and the transmission circuit group TM m corresponding thereto are illustrated, but the relationship between the other-stage annular array and the corresponding transmission circuit group is also illustrated. This is the same as in FIG.
  • one secondary coil L2 is connected in series to the ultrasonic transducers TD m1 , TD m3 , TD m5,.
  • the ultrasonic transducer TD m2, TD m4, TD m6 , ... , the secondary coil L2a, L2b are connected in series.
  • the ultrasonic transducers TD m2 , TD m4 , TD m6 ,... Are provided as first transmission elements, and the ultrasonic transducers TD m1 , TD m3 , TD m5,.
  • a circuit unit 15 for distribution is provided.
  • half of the voltage of the pulse wave generated by a certain transmission signal generation unit (for example, S 1 ) is the primary coil L 1 and the secondary coil. It is distributed to the ultrasonic transducer TD m1 via the side coil L2. Further, a quarter of the voltage is distributed to the ultrasonic transducer TD mN via the primary side coil L1 and the secondary side coil L2b.
  • a quarter of the voltage is distributed to the ultrasonic transducer TD m2 via the primary side coil L1 and the secondary side coil L2a.
  • the number of turns of the secondary coil L2 is one half of the number of turns of the primary coil L1
  • the number of turns of the secondary coils L2a and L2b is the primary side.
  • the number of turns of the coil L1 is 1 ⁇ 4.
  • vibrator TDm4 , TDm6 , ... since it is the same as that of the case mentioned above, the description is abbreviate
  • an umbrella-shaped ultrasonic wave as shown in FIG. 1 is transmitted from the transmitter / receiver 10 at every predetermined timing, and a reflected wave of the transmitted ultrasonic wave is received by the transmitter / receiver. Is done. Then, echo data obtained from the received reflected wave is appropriately processed by the signal processing unit 4 to generate a video signal, and a PPI screen based on the video signal is displayed on the operation / display device 5.
  • FIG. 7A and 7B are schematic diagrams for explaining the shake correction performed in the sonar 1 according to the present embodiment.
  • FIG. 7A is a view showing a state where the ship is not shaken
  • FIG. 7B is a view showing that the ship is shaken. It is a figure which shows the state by which shake correction
  • the inclination detector 3 does not detect the inclination of the ship when the ship is not shaken (see FIG. 7A).
  • the tilt angle with respect to the horizontal plane of the ship S (transmitter / receiver 10) is uniform with respect to the horizontal plane of the sea surface in all directions.
  • the detection unit 3 detects the tilt angle of the ship and notifies the transmission unit 7 of the detected value.
  • Transmission unit 7 receives the detection value, (see FIG. 7 (B)) so as to correct the deviation of the transmission beam by shaking the ship, adjusting the amplitude and phase of each transmission signal generator S p. Accordingly, as shown in FIG. 7B, the transmission direction of the transmission beam with respect to the water can be maintained in a desired direction regardless of the ship's shaking.
  • transmission signals generated by each of the at least two transmission signal generator S p is synthesized, at least one ultrasonic transducer TD m @ 2, TD m4 , TD m6 ,... (First transmission element). Then, it is not necessary to provide a so-called transmission signal generator dedicated to the first transmission element, which corresponds to each ultrasonic transducer TD m2 , TD m4 , TD m6,. Accordingly, the number of transmission signal generation units S 1 , S 3 , S 5 ,... Can be made smaller than the number of ultrasonic transducers TD m1 , TD m2 , TD m3,.
  • Each first transmission element TD m2, TD m4, TD m6 , transmission wave transmitted from ... is the synthetic wave of the transmission signal generated by each of the two transmission signal generating unit. Thereby, the phase of the ultrasonic wave transmitted from each first transmission element TD m2 , TD m4 , TD m6 ,... Can be accurately controlled.
  • the transmission unit 12 can accurately control the direction of the transmission beam while suppressing an increase in the number of transmission signal generation units.
  • each second transmission element TD m1, TD m3, TD m5 pulse wave transmitted from ..., each transmission signal generator S 1, S 3, S 5 ,... Only composed of a pulse wave having a phase generated.
  • the phase of the pulse wave transmitted from each of the second transmitting elements TD m1 , TD m3 , TD m5 ,... can be easily controlled.
  • the transmission unit 12 corresponds to two second transmission elements (TD m1 and TD m3 , TD m3 and TD m5 ,...) Adjacent in a predetermined direction (circumferential direction).
  • Each pulse wave generated by two provided transmission signal generation units (S 1 and S 3 , S 3 and S 5 ,...) Is arranged between two adjacent second transmission elements.
  • S 1 and S 3 , S 3 and S 5 , etc Is arranged between two adjacent second transmission elements.
  • the phase of the pulse wave transmitted from the second transmission elements TD m1 , TD m3 , TD m5 ,... Is gradually shifted along the circumferential direction. Therefore, the phase shift of the pulse wave transmitted from the two second transmission elements (TD m1 and TD m3 , TD m3 and TD m5 ,...) Adjacent in the circumferential direction is relatively small. Therefore, the pulse waves generated from the two transmission signal generation units (S 1 and S 3 , S 3 and S 5 ,%) That generate two pulse waves with relatively small phase shifts in this way are used as the first.
  • the amplitude of the pulse wave transmitted from each first transmission element can be made comparable to the amplitude of the adjacent second transmission element. As a result, the direction of the transmission beam transmitted from the transducer 10 can be easily controlled.
  • the second transmission elements TD m1 , TD m3 , TD m5 ,... are arranged along the circumferential direction, and the first transmission elements TD m2 , TD m4 , TD m6,. the second transmission element TD m1 of two adjacent, TD m3, TD m5, are arranged ... between.
  • the phase and amplitude of the pulse wave transmitted from each transmission element can be easily controlled while reducing the number of transmission elements for the plurality of ultrasonic transducers TD.
  • the phase and amplitude of the pulse wave transmitted from each transmission element can be easily controlled while reducing the number of transmission elements for the ultrasonic transducer TD.
  • the circuit unit 15 is configured by a plurality of coils L1, L2, L2a, and L2b. Thereby, the pulse wave produced
  • the sonar 1 even when the horizontal plane of the ship S (the horizontal plane of the transducer 10) is inclined with respect to the horizontal plane of the sea surface (when the ship is shaken), the fluctuation is accurately measured. It can be corrected. Therefore, it is possible to accurately transmit the transmission beam to the same position in the sea regardless of the sway of the ship.
  • the circuit unit 15 is configured such that the voltage ratio of the pulse wave transmitted from each ultrasonic transducer TDmn is the same, but this is not limitative. Specifically, the voltage ratio of the pulse wave transmitted from each ultrasonic transducer TDmn is set to a different value by appropriately adjusting the number of turns of the first coil and the second coil constituting the circuit unit. You can also.
  • FIG. 8 is a diagram illustrating a configuration of a transmission unit 12a according to a modification, and is a diagram corresponding to FIG.
  • the ultrasonic vibrator TD m1, TD m4, ... are provided as a second transmission element
  • the ultrasonic transducer TD m2, TD m3, TD m5 , ... is TD mN It is provided as a first transmission element.
  • the number of transmission signal generation units can be reduced as compared with the case of the above embodiment.
  • FIG. 9 is a diagram illustrating a configuration of a transmission unit 12b according to a modification, and is a diagram corresponding to FIG.
  • the pulse wave generated by each of the two transmission circuits is distributed to each of the three ultrasonic transducers TD m1 , TD m2 , and TD m3 by the circuit unit 15b, and the three ultrasonic vibrations.
  • Each of the children TD m1 , TD m2 , and TD m3 transmits a combined wave of transmission waves generated by the two transmission circuits. That is, the plurality of ultrasonic transducers TD m1 , TD m2 , TD m3 ,...
  • the phase of the ultrasonic wave transmitted from the ultrasonic transducers TD m1 , TD m2 , TD m3,. can be controlled.
  • the ultrasonic transducers TD mn of the transducer 10 are arranged in a staggered manner, but this is not limiting , and the ultrasonic transducers TD mn are arranged along the circumferential direction and the axial direction. That is, you may arrange in a grid
  • the sonar has been described as an application example of the present invention.
  • the present invention is not limited to this, and the present invention can be applied to other devices including a transmission unit, such as a radar.
  • the radar handles electromagnetic waves as transmission waves.
  • FIG. 10 is a diagram for explaining the simulation result of the transmission beam transmitted by the transmission unit 12 described in the above embodiment.
  • FIG. 10A is an image showing a simulation result indicating the intensity of each direction of the transmission beam transmitted in a predetermined direction by the transmission unit 12.
  • FIG. 10B is a schematic diagram for explaining the roll angle, and is a view of the ship on which the sonar is mounted as viewed from the rear.
  • the simulation result (FIG. 10 (A)) by a present Example was compared with the simulation result (FIG. 11 (B), FIG.12 (B), and FIG.13 (B)) by three comparative examples.
  • the intensity of the transmission beam is shown corresponding to the density of hatching. Specifically, a region where the intensity of the transmission beam is high is indicated by dark hatching, and a region where the intensity of the transmission beam is low is indicated by thin hatching (or no hatching).
  • FIG. 11B shows a simulation result when the transmission beam is transmitted along the horizontal plane of the ship tilted as shown in FIG.
  • the simulation was performed with the interval between the ultrasonic transducers adjacent in the circumferential direction being 0.8 ⁇ and the interval between the ultrasonic transducers adjacent in the vertical direction being 0.5 ⁇ . Note that a Chebyshev weight of ⁇ 30 dB is applied in the vertical direction to suppress side lobes.
  • FIG. 11 is a diagram for explaining the comparative example 1, and is a diagram for explaining a simulation result by a transmission unit that does not have a shake correction function.
  • FIG. 11A is a schematic diagram illustrating a configuration of the transmission unit of Comparative Example 1
  • FIG. 11B is a transmission transmitted from the transmission unit illustrated in FIG. It is a figure which shows the simulation result of a beam.
  • each of the plurality of ultrasonic transducers TD X it is controlled by one transmission signal generator tm X.
  • FIG. 12 is a diagram for explaining the comparative example 2, and is a diagram for explaining a simulation result by a transmission unit having a fluctuation correction function different from that of the above-described embodiment.
  • FIG. 12A is a schematic diagram illustrating a configuration of the transmission unit of Comparative Example 2
  • FIG. 12B is a transmission transmitted from the transmission unit illustrated in FIG. It is a figure which shows the simulation result of a beam.
  • each of the plurality of ultrasonic transducers TD Y is individually controlled by the corresponding transmission circuit tm Y. That is, in the comparative example 2, one ultrasonic transducer TD Y is controlled by one corresponding transmission circuit tm Y.
  • FIG. 13 is a diagram for explaining the comparative example 3.
  • FIG. 13 is a diagram for explaining the simulation result by the transmission unit having the fluctuation correcting function different from the embodiment described above. is there.
  • FIG. 13A is a schematic diagram illustrating a configuration of the transmission unit of Comparative Example 3
  • FIG. 13B is a transmission transmitted from the transmission unit illustrated in FIG. It is a figure which shows the simulation result of a beam.
  • each of the plurality of ultrasonic transducers pairs constituting a plurality of ultrasonic transducers TD Z are controlled by the transmit circuit tm Z corresponding to each . That is, in Comparative Example 3, two ultrasonic transducers TD Z, are controlled by a single transmission circuit tm Z.
  • the simulation result of Comparative Example 1 shows that the azimuth of the transmission beam fluctuates in a range of about ⁇ 15 degrees with respect to the horizontal direction (the direction in which the vertical azimuth is 0 degrees). As a result, the beam transmission direction is shifted. Further, the simulation result of Comparative Example 3 (see FIG. 13B) shows that the transmission beam is slightly spread in the horizontal direction although the direction of the transmission beam is approximately 0 degrees with respect to the horizontal direction. In addition to the horizontal direction, a beam having a relatively high intensity (dark hatching) that is considered to be caused by the side lobe is transmitted.
  • the simulation results of the present embodiment show that the transmission direction of the transmission beam extends over all directions (0 degrees to 360 degrees) in the horizontal direction, regardless of the movement of the ship. It is around 0 degrees (near the horizontal direction). In addition, a strong beam is not transmitted in an angular direction away from the horizontal direction (direction in which the vertical direction is 0 degrees).
  • This simulation result is substantially the same as the simulation result of Comparative Example 2 (see FIG. 12B) in which each of the plurality of ultrasonic transducers is individually controlled.
  • the configuration of the transmission unit according to the above embodiment is a configuration suitable for reducing the number of transmission signal generation units and directing the transmission beam in a desired direction. I was able to confirm.

Abstract

The present invention minimizes increases in the quantity of transmission signal generation units and precisely controls the direction of each orientation of a transmission beam. A transmission unit (12) is provided with: a transmitter (10) that has a plurality of transmission elements (TDm1, TDm2, TDm3, etc.) that each transmit a transmitter pulse; a plurality of transmission signal generation units (S1, S3, S5, etc.) that each generate a transmission signal having an adjusted phase; and a circuit unit (15) that combines at least two of the transmission signals and outputs the result to at least one of first transmission elements (TDm2, TDm4, TDm6, etc.) included among the plurality of transmission elements (TDm1, TDm2, TDm3, etc.).

Description

送波ユニット及びソナーTransmission unit and sonar
 本発明は、所望の方向に送信波を送信可能な送波ユニット、及び送波ユニットを備えたソナーに関する。 The present invention relates to a transmission unit capable of transmitting a transmission wave in a desired direction, and a sonar including the transmission unit.
 従来より、所定の規則性に基づいて配列された複数の素子のそれぞれから送信される送信波の位相を互いに対してずらすことで、所定方向に送信ビームを送信することが可能な送波ユニットが知られている(例えば、特許文献1)。この特許文献1に開示される送波器としてのトランスデューサでは、段落0017及び図1等に示すように、各段の超音波振動子を複数グループにグループ分けし、同じ段であっても各グループ毎に異なる位相制御をすることにより、円筒形トランスデューサの中心軸に回転対称でないビームを形成している。 Conventionally, there is a transmission unit capable of transmitting a transmission beam in a predetermined direction by shifting the phases of transmission waves transmitted from each of a plurality of elements arranged based on a predetermined regularity with respect to each other. Known (for example, Patent Document 1). In the transducer as a transmitter disclosed in Patent Document 1, as shown in paragraph 0017 and FIG. 1 and the like, the ultrasonic transducers at each stage are grouped into a plurality of groups. By performing phase control different for each, a beam that is not rotationally symmetric is formed on the central axis of the cylindrical transducer.
特許第4798826号公報Japanese Patent No. 4798826
 しかし、上述のように同じ段の超音波振動子においてグループ毎に異なる位相制御を行っても、同じグループに属する超音波振動子からは同じ位相の超音波が送信されるため、送信ビームの向きを正確に制御することができない。 However, even if different phase control is performed for each group in the ultrasonic transducers at the same stage as described above, ultrasonic waves having the same phase are transmitted from the ultrasonic transducers belonging to the same group. Cannot be controlled accurately.
 一方、複数の超音波振動子のそれぞれに対応する送信信号生成部を設け、超音波振動子毎に個別に位相制御を行うことにより、送信ビームの向きを正確に制御することも考えられる。しかし、そうすると、多数の送信信号生成部を設ける必要が生じるため、送信信号生成部のコストが増加してしまう。 On the other hand, it is also conceivable to accurately control the direction of the transmission beam by providing a transmission signal generation unit corresponding to each of the plurality of ultrasonic transducers and individually performing phase control for each ultrasonic transducer. However, if it does so, since it will be necessary to provide many transmission signal generation parts, the cost of a transmission signal generation part will increase.
 本発明は、上記課題を解決するためのものであり、その目的は、送信信号生成部の数量の増加を抑制しつつ、送信ビームの向きを正確に制御することである。 The present invention is to solve the above-described problems, and an object of the present invention is to accurately control the direction of a transmission beam while suppressing an increase in the number of transmission signal generation units.
 (1)上記課題を解決するため、本発明のある局面に係る送波ユニットは、それぞれが送信波を送信する複数の送信素子、を有する送波器と、それぞれが、位相の調整された送信信号を生成する複数の送信信号生成部と、少なくとも2つの前記送信信号を合成して、前記複数の送信素子に含まれる少なくとも1つの第1送信素子に出力する回路部と、を備えている。 (1) In order to solve the above-described problem, a transmission unit according to an aspect of the present invention includes a transmitter having a plurality of transmission elements each transmitting a transmission wave, and a transmission whose phase is adjusted. A plurality of transmission signal generation units that generate signals; and a circuit unit that combines at least two transmission signals and outputs the resultant signal to at least one first transmission element included in the plurality of transmission elements.
 (2)好ましくは、前記複数の送信素子は、各前記送信信号生成部に対応して設けられる複数の第2送信素子を更に含み、前記回路部は、各前記送信信号生成部で生成される前記送信信号を、対応する各前記第2送信素子に出力し、各前記第2送信素子は、各該第2送信素子に対応する各前記送信信号生成部で生成された送信信号に基づく送信波を送信する。 (2) Preferably, the plurality of transmission elements further include a plurality of second transmission elements provided corresponding to the transmission signal generation units, and the circuit unit is generated by the transmission signal generation units. The transmission signal is output to each of the corresponding second transmission elements, and each of the second transmission elements is a transmission wave based on the transmission signal generated by each of the transmission signal generation units corresponding to each of the second transmission elements. Send.
 (3)更に好ましくは、前記複数の第2送信素子は、所定方向に沿って配列され、複数の前記第1送信素子は、それぞれ、前記所定方向において隣接する2つの前記第2送信素子の間に配置され、各前記第1送信素子から送信される送信波は、各該第1送信素子に隣
接する2つの前記第2送信素子のそれぞれに対応する2つの前記送信信号生成部で生成された送信信号の合成波である。
(3) More preferably, the plurality of second transmission elements are arranged along a predetermined direction, and each of the plurality of first transmission elements is between two adjacent second transmission elements in the predetermined direction. The transmission wave transmitted from each of the first transmission elements is generated by the two transmission signal generation units corresponding to each of the two second transmission elements adjacent to the first transmission element. It is a composite wave of the transmission signal.
 (4)更に好ましくは、前記送波ユニットは、複数の前記第1送信素子の少なくとも一部、及び前記複数の第2送信素子の少なくとも一部が、前記所定方向としての円周方向に沿って配列された環状アレイ、を更に備えている。 (4) More preferably, in the transmission unit, at least a part of the plurality of first transmission elements and at least a part of the plurality of second transmission elements are along a circumferential direction as the predetermined direction. An arranged annular array.
 (5)更に好ましくは、前記送波器は、前記環状アレイの中心軸方向に沿って複数の該環状アレイが配列されることにより、円筒状に形成されている。 (5) More preferably, the transmitter is formed in a cylindrical shape by arranging a plurality of the annular arrays along the central axis direction of the annular array.
 (6)好ましくは、前記回路部は、各前記送信信号生成部と電気的に接続された第1コイルと、各前記送信素子と電気的に接続された第2コイルと、を有している。 (6) Preferably, the circuit unit includes a first coil electrically connected to each transmission signal generation unit and a second coil electrically connected to each transmission element. .
 (7)好ましくは、前記送信波は、電磁波又は超音波である。 (7) Preferably, the transmission wave is an electromagnetic wave or an ultrasonic wave.
 (8)また、上記課題を解決するため、本発明のある局面に係るソナーは、上述したいずれかの送波ユニットと、前記送波ユニットから送信された送信波の反射波を受信する受信部と、前記受信部で得られた受信信号を処理する信号処理部と、前記信号処理部で生成される映像信号に基づく映像を表示する表示部と、を備えている。 (8) Moreover, in order to solve the said subject, the sonar which concerns on a certain situation of this invention is the receiving part which receives the reflected wave of the transmission wave transmitted from one of the transmission units mentioned above and the said transmission unit. A signal processing unit that processes a reception signal obtained by the reception unit, and a display unit that displays a video based on the video signal generated by the signal processing unit.
 本発明によれば、送信信号生成部の数量の増加を抑制しつつ、送信ビームの向きを方位毎に正確に制御できる。 According to the present invention, it is possible to accurately control the direction of the transmission beam for each azimuth while suppressing an increase in the number of transmission signal generation units.
船に搭載されたソナーの送波器から送信される送信ビームの形状について模式的に示す図である。It is a figure which shows typically about the shape of the transmission beam transmitted from the sonar transmitter mounted on the ship. ソナーで行われる動揺補正について説明するための模式図であり、図2(A)は、動揺していない状態の船から送信される送信ビームを模式的に示す図である。また、図2(B)は、動揺している状態の船から送信される送信ビームを模式的に示す図であって、動揺補正機能を有さないソナーの送信ビームを示す図である。また、図2(C)は、動揺している状態の船から送信される送信ビームを模式的に示す図であって、動揺補正機能を有するソナーの送信ビームを示す図である。FIG. 2A is a schematic diagram for explaining the shake correction performed by the sonar, and FIG. 2A is a view schematically showing a transmission beam transmitted from a ship that is not shaken. FIG. 2B is a diagram schematically showing a transmission beam transmitted from a ship in a state of being shaken, and is a diagram showing a transmission beam of a sonar that does not have a shake correction function. FIG. 2C is a diagram schematically showing a transmission beam transmitted from a ship in a state of shaking, and is a diagram showing a transmission beam of a sonar having a shaking correction function. 本発明の実施形態に係るソナーの構成を示すブロック図である。It is a block diagram which shows the structure of the sonar which concerns on embodiment of this invention. 図3に示す送受波器の形状を模式的に示す斜視図である。It is a perspective view which shows typically the shape of the transducer shown in FIG. 送信部の構成を、送受波器の各環状アレイと関連付けて示すブロック図である。It is a block diagram which shows the structure of a transmission part in association with each cyclic | annular array of a transducer. 送波ユニットの一部の構成を示す図であり、環状アレイを構成する複数の超音波振動子と、送信回路群を構成する複数の送信回路との対応関係を説明するための模式図である。It is a figure which shows the structure of a part of transmission unit, and is a schematic diagram for demonstrating the correspondence of the some ultrasonic transducer | vibrator which comprises a cyclic | annular array, and the some transmission circuit which comprises a transmission circuit group. . 図3に示すソナーにおいて行われる動揺補正について説明するための模式図であり、(A)は、船が動揺していない状態を示す図、(B)は、船が動揺して動揺補正が行われた状態を示す図である。FIG. 4 is a schematic diagram for explaining the shake correction performed in the sonar shown in FIG. 3, (A) is a diagram showing a state in which the ship is not shaken, and (B) is a figure in which the ship is shaken and shake correction is performed. It is a figure which shows the broken state. 変形例に係る送波ユニットの構成を示す図であり、図6に対応させて示す図である。It is a figure which shows the structure of the transmission unit which concerns on a modification, and is a figure shown corresponding to FIG. 変形例に係る送波ユニットの構成を示す図であり、図6に対応させて示す図である。It is a figure which shows the structure of the transmission unit which concerns on a modification, and is a figure shown corresponding to FIG. 実施形態で説明した送波ユニットによって送信される送信ビームのシミュレーション結果を説明するための図であって、図10(A)は、シミュレーション結果を示す画像、図10(B)は、ロール角度について説明するための模式図であって、ソナーが搭載された船を後方から視た図である。It is a figure for demonstrating the simulation result of the transmission beam transmitted by the transmission unit demonstrated in embodiment, Comprising: FIG. 10 (A) is an image which shows a simulation result, FIG.10 (B) is about a roll angle. It is the model for demonstrating, Comprising: It is the figure which looked at the ship carrying the sonar from back. 比較例1を説明するための図であって、動揺補正機能を有さない送波ユニットによるシミュレーション結果を説明するための図である。It is a figure for demonstrating the comparative example 1, Comprising: It is a figure for demonstrating the simulation result by the transmission unit which does not have a fluctuation correction function. 比較例2を説明するための図であって、実施形態とは異なる動揺補正機能を有する送波ユニットによるシミュレーション結果を説明するための図である。It is a figure for demonstrating the comparative example 2, Comprising: It is a figure for demonstrating the simulation result by the transmission unit which has a fluctuation correction function different from embodiment. 比較例3を説明するための図であって、実施形態とは異なる動揺補正機能を有する送波ユニットによるシミュレーション結果を説明するための図である。It is a figure for demonstrating the comparative example 3, Comprising: It is a figure for demonstrating the simulation result by the transmission unit which has a fluctuation correction function different from embodiment.
 以下、本発明に係る送波器及びこれを用いたソナーの実施形態について図面を参照しつつ説明する。以下では、まず、ソナーで行われる動揺補正について説明し、その後、本実施形態に係るソナー1の構成について説明する。 Hereinafter, embodiments of a transmitter according to the present invention and a sonar using the transmitter will be described with reference to the drawings. In the following, first, the vibration correction performed by the sonar will be described, and then the configuration of the sonar 1 according to the present embodiment will be described.
 図1は、船Sに搭載されたソナーの送受波器から送信される送信ビームの形状について模式的に示す図である。また、図2は、ソナーで行われる動揺補正について説明するための模式図である。具体的には、図2(A)は、動揺していない状態の船から送信される送信ビームを模式的に示す図である。また、図2(B)は、動揺している状態の船から送信される送信ビームを模式的に示す図であって、動揺補正機能を有さないソナーの送信ビームを示す図である。また、図2(C)は、動揺している状態の船から送信される送信ビームを模式的に示す図であって、動揺補正機能を有するソナーの送信ビームを示す図である。なお、図1及び図2では、船Sに搭載されているソナー及び送受波器の図示を省略している。 FIG. 1 is a diagram schematically showing the shape of a transmission beam transmitted from a sonar transducer mounted on the ship S. FIG. FIG. 2 is a schematic diagram for explaining the shake correction performed by the sonar. Specifically, FIG. 2A is a diagram schematically illustrating a transmission beam transmitted from a ship that is not shaken. FIG. 2B is a diagram schematically showing a transmission beam transmitted from a ship in a state of being shaken, and is a diagram showing a transmission beam of a sonar that does not have a shake correction function. FIG. 2C is a diagram schematically showing a transmission beam transmitted from a ship in a state of shaking, and is a diagram showing a transmission beam of a sonar having a shaking correction function. In FIGS. 1 and 2, illustrations of the sonar and the transducer mounted on the ship S are omitted.
 図1に示すように、ソナーでは、傘状の送信ビームが全方位へ向けて所定のチルト角θで送信される。よって、波が穏やかで船が動揺していない場合、すなわち、船(送受波器)の水平面が海面の水平面に対して傾いていない場合(図2(A)参照)、送受波器から送信される送信ビームのチルト角は、全方位に亘って、海面の水平面に対して一様となる。 As shown in FIG. 1, in sonar, an umbrella-shaped transmission beam is transmitted at a predetermined tilt angle θ in all directions. Therefore, when the wave is calm and the ship is not shaken, that is, when the horizontal plane of the ship (transmitter / receiver) is not inclined with respect to the horizontal plane of the sea surface (see FIG. 2A), it is transmitted from the transmitter / receiver. The tilt angle of the transmitted beam is uniform with respect to the horizontal surface of the sea surface in all directions.
 動揺補正機能を有さないソナーの場合、図2(B)に示すように、波が大きくなって船が動揺すると、海面の水平面に対する送信ビームの角度が変化してしまう。よって、動揺補正機能を有さないソナーでは、船が動揺することにより、水中に対する送信ビームの送信位置が変化してしまう。その結果、船が動揺する度に異なる水中位置を探知していることとなり、物標の位置を正確に把握することができない。 In the case of a sonar that does not have a shake correction function, as shown in FIG. 2 (B), when the wave becomes large and the ship shakes, the angle of the transmission beam with respect to the horizontal surface of the sea surface changes. Therefore, in the sonar that does not have the fluctuation correction function, the transmission position of the transmission beam with respect to the water changes when the ship shakes. As a result, every time the ship is shaken, a different underwater position is detected, and the position of the target cannot be accurately grasped.
 これに対して、動揺補正機能を有するソナーでは、船の動揺による送信ビームのずれを補正するように送信ビームのチルト角が調整される(図2(C)参照)。これにより、船の動揺に関わらず同じ水中位置を探知できるため、物標の位置を正確に把握することができる。 On the other hand, in the sonar having the fluctuation correction function, the tilt angle of the transmission beam is adjusted so as to correct the deviation of the transmission beam due to the fluctuation of the ship (see FIG. 2C). As a result, the same underwater position can be detected regardless of the movement of the ship, so that the position of the target can be accurately grasped.
 [全体構成]
 図3は、本発明の実施形態に係るソナー1の構成を示すブロック図である。ソナー1は、図3に示すように、送受波器10(送波器)と、送受信装置2と、傾き検出部3と、信号処理部4と、操作・表示装置5とを備えている。このソナー1は、例えば、漁船などの船舶に備えられ、主に魚及び魚群等の物標の探知に用いられる。
[overall structure]
FIG. 3 is a block diagram showing the configuration of the sonar 1 according to the embodiment of the present invention. As shown in FIG. 3, the sonar 1 includes a transducer 10 (transmitter), a transmission / reception device 2, a tilt detection unit 3, a signal processing unit 4, and an operation / display device 5. The sonar 1 is provided in a ship such as a fishing boat, and is mainly used for detecting a target such as a fish and a school of fish.
 送受波器10は、電気信号を超音波に変換して、所定のタイミング毎に水中へ図1に示すような傘状の超音波を送信するとともに、受信した超音波を電気信号に変換する。送受波器10は、所定の規則性で配列された複数の超音波振動子TD(送信素子)を有しており、各超音波振動子TDから送信される超音波の位相が互いに対して適宜、ずらされるこ
とにより、所定のチルト方向に向かって強度の高い超音波を送信する。送受波器10の具体的な構成については、詳しくは後述する。
The transducer 10 converts an electric signal into an ultrasonic wave, transmits an umbrella-shaped ultrasonic wave as shown in FIG. 1 into the water at every predetermined timing, and converts the received ultrasonic wave into an electric signal. The transducer 10 includes a plurality of ultrasonic transducers TD (transmission elements) arranged with a predetermined regularity, and the phases of ultrasonic waves transmitted from the ultrasonic transducers TD are appropriately set with respect to each other. By being shifted, ultrasonic waves having high intensity are transmitted in a predetermined tilt direction. The specific configuration of the transducer 10 will be described later in detail.
 送受信装置2は、送受切替部6と、送信部7と、受信部8とを備えている。送受切替部6は、送信時には、送信部7から送受波器10に送信信号が送られる接続に切り替える。また、送受切替部6は、受信時には、送受波器10によって超音波から変換された電気信号が送受波器10から受信部8に送られる接続に切り替える。 The transmission / reception device 2 includes a transmission / reception switching unit 6, a transmission unit 7, and a reception unit 8. The transmission / reception switching unit 6 switches to a connection in which a transmission signal is transmitted from the transmission unit 7 to the transducer 10 at the time of transmission. The transmission / reception switching unit 6 switches to a connection in which an electrical signal converted from an ultrasonic wave by the transducer 10 is transmitted from the transducer 10 to the reception unit 8 at the time of reception.
 送信部7は、操作・表示装置5において設定された条件に基づいて生成した送信信号を、送受切替部6を介して送受波器10に対して出力する。また、送信部7は、傾き検出部3で検出された検出値(自船の傾き)に応じて、送受波器10に出力する送信信号の位相を調整する。送信部7の具体的な構成については、送受波器10の構成と併せて、詳しくは後述する。 The transmission unit 7 outputs a transmission signal generated based on the conditions set in the operation / display device 5 to the transmitter / receiver 10 via the transmission / reception switching unit 6. Further, the transmission unit 7 adjusts the phase of the transmission signal output to the transducer 10 according to the detection value (the inclination of the ship) detected by the inclination detection unit 3. The specific configuration of the transmission unit 7 will be described in detail later together with the configuration of the transducer 10.
 受信部8は、検波部と、A/D変換部とを備えている。検波部は、送受波器10が受信した信号を検波して増幅し、増幅した受信信号をA/D変換部に出力する。A/D変換部は、検波部から出力される受信信号をデジタル信号に変換した受信データを、信号処理部4に対して出力する。 The receiving unit 8 includes a detection unit and an A / D conversion unit. The detector detects and amplifies the signal received by the transducer 10 and outputs the amplified received signal to the A / D converter. The A / D conversion unit outputs the reception data obtained by converting the reception signal output from the detection unit into a digital signal, to the signal processing unit 4.
 傾き検出部3は、水平面に対する自船の傾きを検出値として検出し、当該検出値を送信部7に通知する。 The tilt detection unit 3 detects the tilt of the ship with respect to the horizontal plane as a detection value, and notifies the transmission unit 7 of the detection value.
 信号処理部4は、受信部8から出力される受信データを処理し、物標の映像信号を生成する処理を行う。 The signal processing unit 4 processes the reception data output from the reception unit 8 and generates a target video signal.
 操作・表示装置5は、信号処理部4から出力された映像信号に応じた映像(本実施形態では、PPI画像)を表示画面に表示する。ユーザは、当該PPI画像を見て、自船を中心とした全方位における海中の状態(単体魚、魚群の有無等)を推測することができる。また、操作・表示装置5は、種々の入力キー等の入力手段を備えており、超音波の送受信、信号処理、又は映像表示に必要な種々の設定又は種々のパラメータ等を入力できるように構成されている。 The operation / display device 5 displays a video (in this embodiment, a PPI image) corresponding to the video signal output from the signal processing unit 4 on the display screen. The user can estimate the underwater state (single fish, presence / absence of a school of fish, etc.) in all directions around the ship by looking at the PPI image. Further, the operation / display device 5 includes input means such as various input keys, and is configured to be able to input various settings or various parameters necessary for ultrasonic transmission / reception, signal processing, or video display. Has been.
 [送波ユニットの構成]
 本実施形態に係るソナー1は、送波ユニット12を備えている。送波ユニット12は、送受波器10及び送信部7を有している。
[Configuration of wave transmission unit]
The sonar 1 according to the present embodiment includes a transmission unit 12. The transmission unit 12 includes a transducer 10 and a transmission unit 7.
 [送受波器の構成]
 図4は、送受波器10の外形を模式的に示す斜視図である。本実施形態に係るソナー1の送受波器10は、円筒状に構成された筐体部11と、筐体部11の外周面に沿って配列された複数の超音波振動子TDと、を備えたトランスデューサアレイとして設けられている。
[Configuration of transducer]
FIG. 4 is a perspective view schematically showing the outer shape of the transducer 10. The transducer 10 of the sonar 1 according to the present embodiment includes a casing unit 11 configured in a cylindrical shape and a plurality of ultrasonic transducers TD arranged along the outer peripheral surface of the casing unit 11. Provided as a transducer array.
 送受波器10では、筐体部11の円周に沿って配列されたN個の超音波振動子TDで構成された環状アレイARが、筐体部11の中心軸方向に沿ってM段、配列されている。すなわち、送受波器10は、(M×N)個の超音波振動子TDを有している。本実施形態の送受波器10は、例えば一例として、240個(M=12、N=20)の超音波振動子TDを有している。 In the transducer 10, an annular array AR composed of N ultrasonic transducers TD arranged along the circumference of the casing unit 11 has M stages along the central axis direction of the casing unit 11. It is arranged. That is, the transducer 10 has (M × N) ultrasonic transducers TD. For example, the transducer 10 of the present embodiment includes 240 (M = 12, N = 20) ultrasonic transducers TD as an example.
 また、送受波器10では、複数の超音波振動子TDは、千鳥状に配列されている。具体的には、送受波器10では、環状アレイARを構成する複数の超音波振動子TDは、筐体
部11の中心軸方向に隣接する環状アレイARを構成する各超音波振動子TDに対して、円周方向にずらして配置されている。
In the transducer 10, the plurality of ultrasonic transducers TD are arranged in a staggered manner. Specifically, in the transducer 10, the plurality of ultrasonic transducers TD constituting the annular array AR are connected to the respective ultrasonic transducers TD constituting the annular array AR adjacent in the central axis direction of the housing unit 11. On the other hand, they are arranged shifted in the circumferential direction.
 なお、以下では説明の便宜上、図4に示すように、第m段目の環状アレイを環状アレイAR(m=1,2,…,M)と表記する場合もある。また、図4に示すように、第m段目の環状アレイARにおいて、円周方向において基準となる超音波振動子から矢印A方向においてn番目(n=1,2,…,N)の超音波振動子を、超音波振動子TDmn、と表記する場合もある。 In the following, for convenience of explanation, as shown in FIG. 4, the m-th annular array may be expressed as an annular array AR m (m = 1, 2,..., M). Further, as shown in FIG. 4, in the m-th annular array AR m , the nth (n = 1, 2,..., N) in the direction of arrow A from the reference ultrasonic transducer in the circumferential direction. The ultrasonic transducer may be referred to as an ultrasonic transducer TD mn .
 [送信部の構成]
 図5は、送信部7の構成を、送受波器10における各環状アレイAR(m=1,2,…,M)と関連付けて示すブロック図である。送信部7は、複数の送信回路群TMを有している。複数の送信回路群TMのそれぞれは、各環状アレイARに対応して設けられ、対応する環状アレイARに超音波を送信させる。なお、以下では説明の便宜上、図5に示すように、各環状アレイAR(m=1,2,…,M)に対応する各送信回路群を、送信回路群TM(m=1,2,…,M)と表記する場合もある。
[Configuration of transmitter]
FIG. 5 is a block diagram showing the configuration of the transmission unit 7 in association with each annular array AR m (m = 1, 2,..., M) in the transducer 10. The transmission unit 7 has a plurality of transmission circuit groups TM. Each of the plurality of transmission circuit groups TM is provided corresponding to each annular array AR m and transmits ultrasonic waves to the corresponding annular array AR m . In the following, for convenience of explanation, as shown in FIG. 5, each transmission circuit group corresponding to each annular array AR m (m = 1, 2,..., M) is referred to as a transmission circuit group TM m (m = 1, 2, ..., M).
 図6は、送波ユニット12の一部の構成を示す図であり、図4におけるm段目の環状アレイARを構成する複数の超音波振動子TDmn(n=1,2,…,N)と、環状アレイARに対応する送信回路群TMを構成する複数の送信回路tm(p=1,3,5,…)との対応関係を説明するための模式図である。図6に示すように、送信回路群TMは、複数の超音波振動子TDよりも数が少ない(具体的には、複数の超音波振動子TDの数の半分の)、複数の送信回路tm(p=1,3,5,…)を備えている。なお、図6では、m段目の環状アレイARと、それに対応する送信回路群TMのみを図示しているが、他の段の環状アレイとそれに対応する送信回路群との関係についても、図6の場合と同様である。 FIG. 6 is a diagram showing a partial configuration of the transmission unit 12, and a plurality of ultrasonic transducers TD mn (n = 1, 2,...) Constituting the m-th annular array AR m in FIG. N) is a schematic diagram for explaining a correspondence relationship between a plurality of transmission circuits tm p (p = 1, 3, 5,...) Constituting the transmission circuit group TM m corresponding to the annular array AR m . As shown in FIG. 6, the transmission circuit group TM m (specifically, half the number of the plurality of ultrasonic transducers TD) fewer than the plurality of ultrasonic transducers TD, a plurality of transmission circuits tm p (p = 1, 3, 5,...). In FIG. 6, only the m-th annular array AR m and the transmission circuit group TM m corresponding thereto are illustrated, but the relationship between the other-stage annular array and the corresponding transmission circuit group is also illustrated. This is the same as in FIG.
 各送信回路tm(p=1,3,5,…)は、直列に接続された送信信号生成部S及び1次側コイルL1を有している。送信信号生成部Sで生成されたパルス波は、1次側コイルL1及び後述する2次側コイルを介して、各超音波振動子TDmnに伝達される。複数の送信信号生成部Sは、互いに異なる位相のパルス波を送信することができる。 Each transmission circuit tm p (p = 1, 3, 5,...) Has a transmission signal generation unit Sp and a primary coil L1 connected in series. Pulse wave generated by the transmission signal generation unit S p via the primary secondary coils coil L1 and will be described later, is transmitted to each of the ultrasonic transducers TD mn. A plurality of transmission signal generating unit S p can transmit different phases of the pulse wave to each other.
 環状アレイARを構成する各超音波振動子TDmn(n=1,2,…,N)には、2次側コイルL2,L2a,L2bが接続されている。具体的には、図6を参照して、超音波振動子TDm1,TDm3,TDm5,…には、2次側コイルL2が1つ、直列に接続されている。一方、超音波振動子TDm2,TDm4,TDm6,…には、2次側コイルL2a,L2bが、直列に接続されている。超音波振動子TDm2,TDm4,TDm6,…は、第1送信素子として設けられ、超音波振動子TDm1,TDm3,TDm5,…は、第2送信素子として設けられている。 Annular array AR each of the ultrasonic transducers constituting the m TD mn (n = 1,2, ..., N) , the secondary coil L2, L2a, L2b are connected. Specifically, referring to FIG. 6, one secondary coil L2 is connected in series to the ultrasonic transducers TD m1 , TD m3 , TD m5,. On the other hand, the ultrasonic transducer TD m2, TD m4, TD m6 , ... , the secondary coil L2a, L2b are connected in series. The ultrasonic transducers TD m2 , TD m4 , TD m6 ,... Are provided as first transmission elements, and the ultrasonic transducers TD m1 , TD m3 , TD m5,.
 上述した複数の1次側コイルL1及び複数の2次側コイルL2,L2a,L2bは、送信信号生成部Sで生成されたパルス波の電圧を所定の比率で各超音波振動子TDmnに分配する回路部15として設けられている。例えば一例として、回路部15では、図6を参照して、或る送信信号生成部(例えばS)で生成されたパルス波の電圧の2分の1が、1次側コイルL1及び2次側コイルL2を介して超音波振動子TDm1に分配される。また、電圧の4分の1が、1次側コイルL1及び2次側コイルL2bを介して超音波振動子TDmNに分配される。また、電圧の4分の1が、1次側コイルL1及び2次側コイルL2aを介して超音波振動子TDm2に分配される。回路部15では、例えば、2次側コイルL2の巻き数は、1次側コイルL1の巻き数の2分の1となっており、2次側コイルL2a,L2bの巻き数は、1次側コイルL1の巻き数の4分の1となっている。これに
より、各超音波振動子TDmnから送信されるパルス波の電圧を同じにすることができる。なお、送信信号生成部S以外の送信信号生成部で生成されるパルス波の電圧の分配については、上述した場合と同様であるため、その説明を省略する。
A plurality of the primary coil L1 and a plurality of secondary coil mentioned above L2, L2a, L2b the voltage of the pulse wave generated by the transmission signal generation unit S p at a predetermined ratio to each of the ultrasonic transducers TD mn A circuit unit 15 for distribution is provided. For example, as an example, in the circuit unit 15, referring to FIG. 6, half of the voltage of the pulse wave generated by a certain transmission signal generation unit (for example, S 1 ) is the primary coil L 1 and the secondary coil. It is distributed to the ultrasonic transducer TD m1 via the side coil L2. Further, a quarter of the voltage is distributed to the ultrasonic transducer TD mN via the primary side coil L1 and the secondary side coil L2b. Further, a quarter of the voltage is distributed to the ultrasonic transducer TD m2 via the primary side coil L1 and the secondary side coil L2a. In the circuit unit 15, for example, the number of turns of the secondary coil L2 is one half of the number of turns of the primary coil L1, and the number of turns of the secondary coils L2a and L2b is the primary side. The number of turns of the coil L1 is ¼. Thereby, the voltage of the pulse wave transmitted from each ultrasonic transducer TDmn can be made the same. Since the distribution of the pulse wave of the voltage signal generated by the transmission signal generating unit other than the transmission signal generating unit S 1 is the same as that described above, description thereof will be omitted.
 [各超音波振動子から送信されるパルス波の位相及び振幅について]
 送信信号生成部S及び超音波振動子TDmnを、図6に示すように回路部15で接続することで、各超音波振動子TDmnから送信されるパルス波の位相は、以下に示すようになる。具体的には、第2送信素子としての超音波振動子TDm1,TDm3,TDm5,…から送信されるパルス波の位相は、これらに対応して設けられる送信信号生成部S,S,S,…で生成されるパルス波の位相と同じ位相になる。
[Phase and amplitude of pulse wave transmitted from each ultrasonic transducer]
The transmission signal generator S p and the ultrasonic vibrator TD mn, by connecting the circuit unit 15 as shown in FIG. 6, a pulse wave of phase transmitted from each of the ultrasonic transducers TD mn is shown below It becomes like this. Specifically, the phases of the pulse waves transmitted from the ultrasonic transducers TD m1 , TD m3 , TD m5 ,... As the second transmission elements are transmitted signal generation units S 1 , S provided corresponding to them. 3 , S 5 ,... Have the same phase as that of the pulse wave generated.
 一方、第1送信素子としての超音波振動子TDm2,TDm4,TDm6,…から送信されるパルス波の位相は、以下のようになる。具体的には、超音波振動子TDm2から送信されるパルス波の位相は、送信信号生成部Sで生成されるパルス波の位相と、送信信号生成部Sで生成されるパルス波の位相との間の値になる。なお、超音波振動子TDm4,TDm6,…から送信されるパルス波の位相については、上述した場合と同様であるため、その説明を省略する。 On the other hand, the phase of the pulse wave transmitted from the ultrasonic transducers TD m2 , TD m4 , TD m6 ,... As the first transmitting element is as follows. Specifically, the pulse wave transmitted from the ultrasonic transducer TD m @ 2 phase, and pulse wave phase generated by the transmission signal generation unit S 1, the pulse wave generated by the transmission signal generator S 3 A value between the phase. In addition, about the phase of the pulse wave transmitted from ultrasonic transducer | vibrator TDm4 , TDm6 , ..., since it is the same as that of the case mentioned above, the description is abbreviate | omitted.
 また、本実施形態では、周方向に隣接する送信信号生成部(S及びS、S及びS、…)から送信されるパルス波の位相差は、比較的小さい。よって、超音波振動子TDm2,TDm4,TDm6,…から送信されるパルス波の振幅は、各超音波振動子TDm2,TDm4,TDm6,…に隣接する2つの超音波振動子から送信されるパルス波の振幅とほぼ同じ値になる。 Further, in the present embodiment, the phase difference of the peripheral transmission signal generation portion adjacent to the direction (S 1 and S 3, S 3 and S 5, ...) pulse wave transmitted from the relatively small. Therefore, the ultrasonic transducer TD m2, TD m4, TD m6 , the amplitude of the pulse wave transmitted from ..., each ultrasonic transducer TD m2, TD m4, TD m6 , 2 one ultrasonic transducer adjacent to ... It becomes almost the same value as the amplitude of the pulse wave transmitted from.
 [ソナーの基本動作]
 本実施形態に係るソナー1では、送受波器10から所定のタイミング毎に図1に示すような傘状の超音波が送信されるとともに、送信された超音波の反射波が送受波器によって受信される。そして、受信された反射波から得られるエコーデータが信号処理部4によって適宜処理されて映像信号が生成され、当該映像信号に基づくPPI画面が、操作・表示装置5に表示される。
[Basic sonar operation]
In the sonar 1 according to the present embodiment, an umbrella-shaped ultrasonic wave as shown in FIG. 1 is transmitted from the transmitter / receiver 10 at every predetermined timing, and a reflected wave of the transmitted ultrasonic wave is received by the transmitter / receiver. Is done. Then, echo data obtained from the received reflected wave is appropriately processed by the signal processing unit 4 to generate a video signal, and a PPI screen based on the video signal is displayed on the operation / display device 5.
 [船が動揺した場合におけるソナーの動作]
 図7は、本実施形態に係るソナー1において行われる動揺補正について説明するための模式図であり、(A)は、船が動揺していない状態を示す図、(B)は、船が動揺して動揺補正が行われた状態を示す図、である。
[Sonar action when the ship is shaken]
7A and 7B are schematic diagrams for explaining the shake correction performed in the sonar 1 according to the present embodiment. FIG. 7A is a view showing a state where the ship is not shaken, and FIG. 7B is a view showing that the ship is shaken. It is a figure which shows the state by which shake correction | amendment was performed.
 本実施形態に係るソナー1では、船が動揺していない状態では(図7(A)参照)、傾き検出部3が船の傾きを検出しない。この場合、船S(送受波器10)の水平面に対するチルト角は、全方位に亘って、海面の水平面に対して一様となる。 In the sonar 1 according to the present embodiment, the inclination detector 3 does not detect the inclination of the ship when the ship is not shaken (see FIG. 7A). In this case, the tilt angle with respect to the horizontal plane of the ship S (transmitter / receiver 10) is uniform with respect to the horizontal plane of the sea surface in all directions.
 一方、船Sが動揺した場合、検出部3が船の傾き角度を検出し、当該検出値を送信部7に通知する。送信部7は、当該検出値を受けて、船の動揺による送信ビームのずれを補正するように(図7(B)参照)、各送信信号生成部Sの振幅及び位相を調整する。これにより、図7(B)に示すように、船の動揺に関わらず、水中に対する送信ビームの送信方向を所望の方向に維持することができる。 On the other hand, when the ship S is shaken, the detection unit 3 detects the tilt angle of the ship and notifies the transmission unit 7 of the detected value. Transmission unit 7 receives the detection value, (see FIG. 7 (B)) so as to correct the deviation of the transmission beam by shaking the ship, adjusting the amplitude and phase of each transmission signal generator S p. Accordingly, as shown in FIG. 7B, the transmission direction of the transmission beam with respect to the water can be maintained in a desired direction regardless of the ship's shaking.
 [効果]
 以上のように、本実施形態に係る送波ユニット12では、少なくとも2つの送信信号生成部Sのそれぞれで生成された送信信号が合成されて、少なくとも1つの超音波振動子TDm2,TDm4,TDm6,…(第1送信素子)に出力される。そうすると、第1送
信素子としての各超音波振動子TDm2,TDm4,TDm6,…に1対1で対応する、いわば第1送信素子専用の送信信号生成部、を設ける必要がなくなる。これにより、送信信号生成部S,S,S,…の数を、超音波振動子の数TDm1,TDm2,TDm3,…の数よりも少なくすることができる。そして、各第1送信素子TDm2,TDm4,TDm6,…から送信される送信波は、上記2つの送信信号生成部のそれぞれで生成された送信信号の合成波である。これにより、各第1送信素子TDm2,TDm4,TDm6,…から送信される超音波の位相を正確に制御できる。
[effect]
As described above, in the transmitting unit 12 according to the present embodiment, transmission signals generated by each of the at least two transmission signal generator S p is synthesized, at least one ultrasonic transducer TD m @ 2, TD m4 , TD m6 ,... (First transmission element). Then, it is not necessary to provide a so-called transmission signal generator dedicated to the first transmission element, which corresponds to each ultrasonic transducer TD m2 , TD m4 , TD m6,. Accordingly, the number of transmission signal generation units S 1 , S 3 , S 5 ,... Can be made smaller than the number of ultrasonic transducers TD m1 , TD m2 , TD m3,. Each first transmission element TD m2, TD m4, TD m6 , transmission wave transmitted from ... is the synthetic wave of the transmission signal generated by each of the two transmission signal generating unit. Thereby, the phase of the ultrasonic wave transmitted from each first transmission element TD m2 , TD m4 , TD m6 ,... Can be accurately controlled.
 従って、送波ユニット12では、送信信号生成部の数量の増加を抑制しつつ、送信ビームの向きを正確に制御できる。 Therefore, the transmission unit 12 can accurately control the direction of the transmission beam while suppressing an increase in the number of transmission signal generation units.
 また、送波ユニット12では、図6を参照して、各第2送信素子TDm1,TDm3,TDm5,…から送信されるパルス波は、各送信信号生成部S,S,S,…で生成された位相のパルス波のみで構成される。これにより、各第2送信素子TDm1,TDm3,TDm5,…から送信されるパルス波の位相を、容易に制御することができる。 Further, the transmitting unit 12, with reference to FIG. 6, each second transmission element TD m1, TD m3, TD m5 , pulse wave transmitted from ..., each transmission signal generator S 1, S 3, S 5 ,... Only composed of a pulse wave having a phase generated. Thereby, the phase of the pulse wave transmitted from each of the second transmitting elements TD m1 , TD m3 , TD m5 ,... Can be easily controlled.
 また、送波ユニット12では、図6を参照して、所定方向(円周方向)に隣接する2つの第2送信素子(TDm1及びTDm3、TDm3及びTDm5、…)に対応して設けられた2つの送信信号生成部(S及びS、S及びS、…)で生成されたパルス波が、隣接する2つの第2送信素子の間に配置された各第1送信素子TDm2,TDm4,TDm6,…に分配されている。 Further, in the transmission unit 12, referring to FIG. 6, it corresponds to two second transmission elements (TD m1 and TD m3 , TD m3 and TD m5 ,...) Adjacent in a predetermined direction (circumferential direction). Each pulse wave generated by two provided transmission signal generation units (S 1 and S 3 , S 3 and S 5 ,...) Is arranged between two adjacent second transmission elements. Are distributed to the elements TD m2 , TD m4 , TD m6,.
 本実施形態では、第2送信素子TDm1,TDm3,TDm5,…から送信されるパルス波の位相は、円周方向に沿って徐々にずれている。よって、円周方向に隣接する2つの第2送信素子(TDm1及びTDm3、TDm3及びTDm5、…)から送信されるパルス波の位相のずれは、比較的小さい。よって、このように比較的位相のずれが小さい2つのパルス波を生成する2つの送信信号生成部(S及びS、S及びS、…)から生成されるパルス波を各第1送信素子TDm2,TDm4,TDm6,…に分配して合成することにより、各第1送信素子から送信されるパルス波の振幅を、隣接する第2送信素子の振幅と同程度にできる。その結果、送受波器10から送信される送信ビームの方位を制御しやすくなる。 In the present embodiment, the phase of the pulse wave transmitted from the second transmission elements TD m1 , TD m3 , TD m5 ,... Is gradually shifted along the circumferential direction. Therefore, the phase shift of the pulse wave transmitted from the two second transmission elements (TD m1 and TD m3 , TD m3 and TD m5 ,...) Adjacent in the circumferential direction is relatively small. Therefore, the pulse waves generated from the two transmission signal generation units (S 1 and S 3 , S 3 and S 5 ,...) That generate two pulse waves with relatively small phase shifts in this way are used as the first. By distributing and synthesizing to the transmission elements TD m2 , TD m4 , TD m6 ,..., The amplitude of the pulse wave transmitted from each first transmission element can be made comparable to the amplitude of the adjacent second transmission element. As a result, the direction of the transmission beam transmitted from the transducer 10 can be easily controlled.
 また、送波ユニット12では、第2送信素子TDm1,TDm3,TDm5,…を円周方向に沿って配列するとともに、各第1送信素子TDm2,TDm4,TDm6,…を、隣接する2つの第2送信素子TDm1,TDm3,TDm5,…の間に配置している。これにより、環状アレイARにおいて、複数の超音波振動子TDに対する送信素子の数を少なくしつつ、各送信素子から送信されるパルス波の位相及び振幅を容易に制御できる。 Further, in the transmission unit 12, the second transmission elements TD m1 , TD m3 , TD m5 ,... Are arranged along the circumferential direction, and the first transmission elements TD m2 , TD m4 , TD m6,. the second transmission element TD m1 of two adjacent, TD m3, TD m5, are arranged ... between. Thereby, in the annular array AR, the phase and amplitude of the pulse wave transmitted from each transmission element can be easily controlled while reducing the number of transmission elements for the plurality of ultrasonic transducers TD.
 また、送波ユニット12では、環状アレイARの中心軸に沿って配列された複数の環状アレイAR(m=1,2,…M)によって形成された円筒状の送受波器10において、複数の超音波振動子TDに対する送信素子の数を少なくしつつ、各送信素子から送信されるパルス波の位相及び振幅を容易に制御できる。 Further, in the transmission unit 12, in the cylindrical transducer 10 formed by a plurality of annular arrays AR m (m = 1, 2,... M) arranged along the central axis of the annular array AR, The phase and amplitude of the pulse wave transmitted from each transmission element can be easily controlled while reducing the number of transmission elements for the ultrasonic transducer TD.
 また、送波ユニット12では、回路部15を、複数のコイルL1,L2,L2a,L2bによって構成している。これにより、各送信信号生成部Sで生成されたパルス波を、各送信素子に適切に分配することができる。 In the transmission unit 12, the circuit unit 15 is configured by a plurality of coils L1, L2, L2a, and L2b. Thereby, the pulse wave produced | generated by each transmission signal production | generation part Sp can be appropriately distributed to each transmission element.
 また、本実施形態に係るソナー1では、船Sの水平面(送受波器10の水平面)が海面の水平面に対して傾いた場合(船が動揺した場合)であっても、その動揺を正確に補正することができる。従って、船の動揺に関わらず、海中の同じ位置に、正確に送信ビームを
送信することができる。
Further, in the sonar 1 according to the present embodiment, even when the horizontal plane of the ship S (the horizontal plane of the transducer 10) is inclined with respect to the horizontal plane of the sea surface (when the ship is shaken), the fluctuation is accurately measured. It can be corrected. Therefore, it is possible to accurately transmit the transmission beam to the same position in the sea regardless of the sway of the ship.
 [変形例]
 以上、本発明の実施形態について説明したが、本発明はこれらに限定されるものではなく、本発明の趣旨を逸脱しない限りにおいて種々の変更が可能である。
[Modification]
As mentioned above, although embodiment of this invention was described, this invention is not limited to these, A various change is possible unless it deviates from the meaning of this invention.
 (1)上記実施形態では、各超音波振動子TDmnから送信されるパルス波の電圧比が同じになるように回路部15を構成したが、これに限らない。具体的には、回路部を構成する第1コイル及び第2コイルの巻き数を適宜、調整することにより、各超音波振動子TDmnから送信されるパルス波の電圧比を互いに異なる値にすることもできる。 (1) In the above embodiment, the circuit unit 15 is configured such that the voltage ratio of the pulse wave transmitted from each ultrasonic transducer TDmn is the same, but this is not limitative. Specifically, the voltage ratio of the pulse wave transmitted from each ultrasonic transducer TDmn is set to a different value by appropriately adjusting the number of turns of the first coil and the second coil constituting the circuit unit. You can also.
 (2)上記実施形態では、本発明の適用例として、円筒状の送受波器を例に挙げて説明したが、これに限らず、本発明は、環状の送受波器、平面型の送波器、又はリニア型の送受波器に対しても適用することができる。 (2) In the above-described embodiment, a cylindrical transducer was described as an example of application of the present invention. However, the present invention is not limited to this, and the present invention is not limited to this. The present invention can also be applied to a transmitter or a linear transducer.
 (3)図8は、変形例に係る送波ユニット12aの構成を示す図であり、図6に対応させて示す図である。本変形例では、図8に示すように、超音波振動子TDm1,TDm4,…が第2送信素子として設けられ、超音波振動子TDm2,TDm3,TDm5,…,TDmNが第1送信素子として設けられている。本変形例によれば、図8に示すように、上記実施形態の場合よりも、送信信号生成部の数を少なくすることができる。 (3) FIG. 8 is a diagram illustrating a configuration of a transmission unit 12a according to a modification, and is a diagram corresponding to FIG. In this modification, as shown in FIG. 8, the ultrasonic vibrator TD m1, TD m4, ... are provided as a second transmission element, the ultrasonic transducer TD m2, TD m3, TD m5 , ..., is TD mN It is provided as a first transmission element. According to this modification, as shown in FIG. 8, the number of transmission signal generation units can be reduced as compared with the case of the above embodiment.
 (4)図9は、変形例に係る送波ユニット12bの構成を示す図であり、図6に対応させて示す図である。図9では、2つの送信回路のそれぞれで生成されたパルス波が、回路部15bによって、3つの超音波振動子TDm1,TDm2,TDm3のそれぞれに分配されるとともに、3つの超音波振動子TDm1,TDm2,TDm3は、それぞれ、2つの送信回路のそれぞれで生成された送信波の合成波を送信する。すなわち、本変形例における複数の超音波振動子TDm1,TDm2,TDm3,…には、第2送信素子が含まれず、複数の第1送信素子のみが含まれている。このような構成であっても、送信信号生成部の数を少なくしつつ、第1送信素子としての超音波振動子TDm1,TDm2,TDm3,…から送信される超音波の位相を正確に制御できる。 (4) FIG. 9 is a diagram illustrating a configuration of a transmission unit 12b according to a modification, and is a diagram corresponding to FIG. In FIG. 9, the pulse wave generated by each of the two transmission circuits is distributed to each of the three ultrasonic transducers TD m1 , TD m2 , and TD m3 by the circuit unit 15b, and the three ultrasonic vibrations. Each of the children TD m1 , TD m2 , and TD m3 transmits a combined wave of transmission waves generated by the two transmission circuits. That is, the plurality of ultrasonic transducers TD m1 , TD m2 , TD m3 ,... In the present modification do not include the second transmission element, but include only the plurality of first transmission elements. Even with such a configuration, the phase of the ultrasonic wave transmitted from the ultrasonic transducers TD m1 , TD m2 , TD m3,. Can be controlled.
 (5)上記実施形態では、送受波器10の超音波振動子TDmnを千鳥状に配列したが、この限りでなく、超音波振動子TDmnを、円周方向及び軸方向に沿って、すなわち格子状に配列してもよい。 (5) In the above embodiment, the ultrasonic transducers TD mn of the transducer 10 are arranged in a staggered manner, but this is not limiting , and the ultrasonic transducers TD mn are arranged along the circumferential direction and the axial direction. That is, you may arrange in a grid | lattice form.
 (6)上記実施形態では、本発明の適用例として、ソナーを挙げて説明したが、これに限らず、送波ユニットを備えたその他の装置、例えばレーダ等に適用することもできる。この場合、レーダは、送信波として電磁波を取り扱う。 (6) In the above embodiment, the sonar has been described as an application example of the present invention. However, the present invention is not limited to this, and the present invention can be applied to other devices including a transmission unit, such as a radar. In this case, the radar handles electromagnetic waves as transmission waves.
 [実施例]
 本実施例では、上記実施形態で説明した送波ユニット12によって送信される送信ビームのシミュレーションを行った。図10は、上記実施形態で説明した送波ユニット12によって送信される送信ビームのシミュレーション結果を説明するための図である。具体的には、図10(A)は、送波ユニット12によって所定方向に向かって送信される送信ビームの方位毎の強度を示すシミュレーション結果を示す画像である。また、図10(B)は、ロール角度について説明するための模式図であって、ソナーが搭載された船を後方から視た図である。以下では、本実施例によるシミュレーション結果(図10(A))と、3つの比較例によるシミュレーション結果(図11(B)、図12(B)、及び図13(B))とを比較した。各図では、送信ビームの強度を、ハッチングの濃さに対応させて示している。具体的には、送信ビームの強度が高い領域を濃いハッチングで示し、送信ビー
ムの強度が低い領域を薄いハッチング(またはハッチングなし)で示している。
[Example]
In this example, the transmission beam transmitted by the transmission unit 12 described in the above embodiment was simulated. FIG. 10 is a diagram for explaining the simulation result of the transmission beam transmitted by the transmission unit 12 described in the above embodiment. Specifically, FIG. 10A is an image showing a simulation result indicating the intensity of each direction of the transmission beam transmitted in a predetermined direction by the transmission unit 12. FIG. 10B is a schematic diagram for explaining the roll angle, and is a view of the ship on which the sonar is mounted as viewed from the rear. Below, the simulation result (FIG. 10 (A)) by a present Example was compared with the simulation result (FIG. 11 (B), FIG.12 (B), and FIG.13 (B)) by three comparative examples. In each figure, the intensity of the transmission beam is shown corresponding to the density of hatching. Specifically, a region where the intensity of the transmission beam is high is indicated by dark hatching, and a region where the intensity of the transmission beam is low is indicated by thin hatching (or no hatching).
 各図におけるシミュレーション結果は、ソナーが搭載されている船が、後方から視て右方向に15度傾いている場合(図10(B)参照)において、送信ビームが水平面に沿うように送信された場合における、送信ビームの強度特性を示している。但し、詳しくは後述するが、図11(B)(比較例1)に示すシミュレーション結果では、船の動揺補正が行われていない。すなわち、図11(B)は、図10(B)のように傾いた状態の船の水平面に沿うように送信ビームが送信された場合におけるシミュレーション結果を示している。また、本実施例及び比較例の送波ユニットの送受波器の構成は、図4に示す構成とした(垂直方向に12素子×円周方向に20素子=240素子の千鳥配列)。また、円周方向において隣接する超音波振動子同士の間隔を0.8λ、垂直方向において隣接する超音波振動子同士の間隔を0.5λ、としてシミュレーションを行った。なお、サイドローブを抑圧するため、垂直方向に-30dBのチェビシェフウェイトを印加している。 The simulation results in each figure show that the transmission beam is transmitted along the horizontal plane when the ship on which the sonar is mounted is tilted 15 degrees to the right as viewed from behind (see FIG. 10B). The intensity characteristic of the transmission beam in the case is shown. However, as will be described in detail later, in the simulation results shown in FIG. 11B (Comparative Example 1), the ship shake correction is not performed. That is, FIG. 11B shows a simulation result when the transmission beam is transmitted along the horizontal plane of the ship tilted as shown in FIG. Moreover, the structure of the transmitter / receiver of the transmission unit of a present Example and a comparative example was taken as the structure shown in FIG. 4 (12 elements in the vertical direction x 20 elements = 240 elements in the circumferential direction). In addition, the simulation was performed with the interval between the ultrasonic transducers adjacent in the circumferential direction being 0.8λ and the interval between the ultrasonic transducers adjacent in the vertical direction being 0.5λ. Note that a Chebyshev weight of −30 dB is applied in the vertical direction to suppress side lobes.
 図11は、比較例1を説明するための図であって、動揺補正機能を有さない送波ユニットによるシミュレーション結果を説明するための図である。具体的には、図11(A)は、比較例1の送波ユニットの構成を示す模式図であり、図11(B)は、図11(A)に示す送波ユニットから送信される送信ビームのシミュレーション結果を示す図である。図11(A)に示すように、比較例1では、複数の超音波振動子TDのそれぞれが、1つの送信信号生成部tmによって制御されている。 FIG. 11 is a diagram for explaining the comparative example 1, and is a diagram for explaining a simulation result by a transmission unit that does not have a shake correction function. Specifically, FIG. 11A is a schematic diagram illustrating a configuration of the transmission unit of Comparative Example 1, and FIG. 11B is a transmission transmitted from the transmission unit illustrated in FIG. It is a figure which shows the simulation result of a beam. As shown in FIG. 11 (A), in Comparative Example 1, each of the plurality of ultrasonic transducers TD X, it is controlled by one transmission signal generator tm X.
 図12は、比較例2を説明するための図であって、上述した実施形態とは異なる動揺補正機能を有する送波ユニットによるシミュレーション結果を説明するための図である。具体的には、図12(A)は、比較例2の送波ユニットの構成を示す模式図であり、図12(B)は、図12(A)に示す送波ユニットから送信される送信ビームのシミュレーション結果を示す図である。図12(A)に示すように、比較例2では、複数の超音波振動子TDのそれぞれが、それぞれに対応する送信回路tmによって、個別に制御されている。すなわち、比較例2では、1つの超音波振動子TDが、対応する1つの送信回路tmによって制御されている。 FIG. 12 is a diagram for explaining the comparative example 2, and is a diagram for explaining a simulation result by a transmission unit having a fluctuation correction function different from that of the above-described embodiment. Specifically, FIG. 12A is a schematic diagram illustrating a configuration of the transmission unit of Comparative Example 2, and FIG. 12B is a transmission transmitted from the transmission unit illustrated in FIG. It is a figure which shows the simulation result of a beam. As shown in FIG. 12A, in the comparative example 2, each of the plurality of ultrasonic transducers TD Y is individually controlled by the corresponding transmission circuit tm Y. That is, in the comparative example 2, one ultrasonic transducer TD Y is controlled by one corresponding transmission circuit tm Y.
 図13は、比較例3を説明するための図であって、比較例2の場合と同様、上述した実施形態とは異なる動揺補正機能を有する送波ユニットによるシミュレーション結果を説明するための図である。具体的には、図13(A)は、比較例3の送波ユニットの構成を示す模式図であり、図13(B)は、図13(A)に示す送波ユニットから送信される送信ビームのシミュレーション結果を示す図である。図13(A)に示すように、比較例3では、複数の超音波振動子TDを構成する複数の超音波振動子対のそれぞれが、それぞれに対応する送信回路tmによって制御されている。すなわち、比較例3では、2つの超音波振動子TDが、1つの送信回路tmによって制御されている。 FIG. 13 is a diagram for explaining the comparative example 3. As in the comparative example 2, FIG. 13 is a diagram for explaining the simulation result by the transmission unit having the fluctuation correcting function different from the embodiment described above. is there. Specifically, FIG. 13A is a schematic diagram illustrating a configuration of the transmission unit of Comparative Example 3, and FIG. 13B is a transmission transmitted from the transmission unit illustrated in FIG. It is a figure which shows the simulation result of a beam. As shown in FIG. 13 (A), in the Comparative Example 3, each of the plurality of ultrasonic transducers pairs constituting a plurality of ultrasonic transducers TD Z, are controlled by the transmit circuit tm Z corresponding to each . That is, in Comparative Example 3, two ultrasonic transducers TD Z, are controlled by a single transmission circuit tm Z.
 比較例1のシミュレーション結果(図11(B)参照)は、送信ビームの方位が水平方向(垂直方位が0度の方向)に対して±15度程度の範囲で変動しており、水中に対する送信ビームの送信方向がずれる結果となっている。また、比較例3のシミュレーション結果(図13(B)参照)は、送信ビームの方位は、水平方向に対して概ね0度程度となっているものの、送信ビームが水平方向に対してやや広がる結果となっており、また水平方向以外にも、サイドローブに起因すると考えられる比較的強度の高い(ハッチングの濃い)ビームが送信される結果となっている。 The simulation result of Comparative Example 1 (see FIG. 11B) shows that the azimuth of the transmission beam fluctuates in a range of about ± 15 degrees with respect to the horizontal direction (the direction in which the vertical azimuth is 0 degrees). As a result, the beam transmission direction is shifted. Further, the simulation result of Comparative Example 3 (see FIG. 13B) shows that the transmission beam is slightly spread in the horizontal direction although the direction of the transmission beam is approximately 0 degrees with respect to the horizontal direction. In addition to the horizontal direction, a beam having a relatively high intensity (dark hatching) that is considered to be caused by the side lobe is transmitted.
 これらに対して、本実施例のシミュレーション結果(図10(A)参照)は、船の動揺によらず、送信ビームの送信方向が、水平方位における全方位(0度~360度)に亘って0度付近(水平方向付近)となっている。また、水平方向(垂直方位が0度の方向)に
対して離れた角度方向には、強度の強いビームは送信されていない。このシミュレーション結果は、複数の超音波振動子のそれぞれを個別に制御している比較例2(図12(B)参照)のシミュレーション結果と概ね同じ結果となっている。
On the other hand, the simulation results of the present embodiment (see FIG. 10A) show that the transmission direction of the transmission beam extends over all directions (0 degrees to 360 degrees) in the horizontal direction, regardless of the movement of the ship. It is around 0 degrees (near the horizontal direction). In addition, a strong beam is not transmitted in an angular direction away from the horizontal direction (direction in which the vertical direction is 0 degrees). This simulation result is substantially the same as the simulation result of Comparative Example 2 (see FIG. 12B) in which each of the plurality of ultrasonic transducers is individually controlled.
 以上のように、本実施例及び比較例によって、上記実施形態に係る送波ユニットの構成が、送信信号生成部の数を少なくでき且つ送信ビームを所望の方向に向けるのに適した構成であることが確認できた。 As described above, according to the present example and the comparative example, the configuration of the transmission unit according to the above embodiment is a configuration suitable for reducing the number of transmission signal generation units and directing the transmission beam in a desired direction. I was able to confirm.
 10                  送波器
 12,12a,12b          送波ユニット
 15,15a,15b          回路部
 S                   送信信号生成部
 TD                  超音波振動子(送信素子)
DESCRIPTION OF SYMBOLS 10 Transmitter 12, 12a, 12b Transmission unit 15, 15a, 15b Circuit part S Transmission signal generation part TD Ultrasonic transducer (transmission element)

Claims (8)

  1.  それぞれが送信波を送信する複数の送信素子、を有する送波器と、
     それぞれが、位相の調整された送信信号を生成する複数の送信信号生成部と、
     少なくとも2つの前記送信信号を合成して、前記複数の送信素子に含まれる少なくとも1つの第1送信素子に出力する回路部と、
     を備えていることを特徴とする、送波ユニット。
    A transmitter having a plurality of transmission elements each transmitting a transmission wave;
    A plurality of transmission signal generators each generating a phase-adjusted transmission signal;
    A circuit unit that synthesizes at least two transmission signals and outputs the synthesized signal to at least one first transmission element included in the plurality of transmission elements;
    A wave transmission unit comprising:
  2.  請求項1に記載の送波ユニットにおいて、
     前記複数の送信素子は、各前記送信信号生成部に対応して設けられる複数の第2送信素子を更に含み、
     前記回路部は、各前記送信信号生成部で生成される前記送信信号を、対応する各前記第2送信素子に出力し、
     各前記第2送信素子は、各該第2送信素子に対応する各前記送信信号生成部で生成された送信信号に基づく送信波を送信することを特徴とする、送波ユニット。
    The transmission unit according to claim 1, wherein
    The plurality of transmission elements further include a plurality of second transmission elements provided corresponding to each of the transmission signal generation units,
    The circuit unit outputs the transmission signals generated by the transmission signal generation units to the corresponding second transmission elements,
    Each said 2nd transmission element transmits the transmission wave based on the transmission signal produced | generated by each said transmission signal production | generation part corresponding to each said 2nd transmission element, The transmission unit characterized by the above-mentioned.
  3.  請求項2に記載の送波ユニットにおいて、
     前記複数の第2送信素子は、所定方向に沿って配列され、
     複数の前記第1送信素子は、それぞれ、前記所定方向において隣接する2つの前記第2送信素子の間に配置され、
     各前記第1送信素子から送信される送信波は、各該第1送信素子に隣接する2つの前記第2送信素子のそれぞれに対応する2つの前記送信信号生成部で生成された送信信号の合成波であることを特徴とする、送波ユニット。
    The transmission unit according to claim 2,
    The plurality of second transmission elements are arranged along a predetermined direction,
    Each of the plurality of first transmission elements is disposed between two second transmission elements adjacent in the predetermined direction,
    The transmission wave transmitted from each of the first transmission elements is a combination of transmission signals generated by the two transmission signal generation units corresponding to the two second transmission elements adjacent to the first transmission element. A wave transmission unit characterized by being a wave.
  4.  請求項3に記載の送波ユニットにおいて、
     複数の前記第1送信素子の少なくとも一部、及び前記複数の第2送信素子の少なくとも一部が、前記所定方向としての円周方向に沿って配列された環状アレイ、を更に備えていることを特徴とする、送波ユニット。
    The transmission unit according to claim 3,
    An annular array in which at least a part of the plurality of first transmission elements and at least a part of the plurality of second transmission elements are arranged along a circumferential direction as the predetermined direction are further provided. A feature of the transmission unit.
  5.  請求項4に記載の送波ユニットにおいて、
     前記送波器は、前記環状アレイの中心軸方向に沿って複数の該環状アレイが配列されることにより、円筒状に形成されていることを特徴とする、送波ユニット。
    The transmission unit according to claim 4,
    The wave transmission unit according to claim 1, wherein the wave transmitter is formed in a cylindrical shape by arranging a plurality of the ring arrays along a central axis direction of the ring array.
  6.  請求項1から請求項5に記載の送波ユニットにおいて、
     前記回路部は、各前記送信信号生成部と電気的に接続された第1コイルと、各前記送信素子と電気的に接続された第2コイルと、を有していることを特徴とする、送波ユニット。
    The transmission unit according to any one of claims 1 to 5,
    The circuit unit includes a first coil electrically connected to each transmission signal generation unit and a second coil electrically connected to each transmission element. Transmission unit.
  7.  請求項1から請求項6に記載の送波ユニットにおいて、
     前記送信波は、電磁波又は超音波であることを特徴とする、送波ユニット。
    The transmission unit according to any one of claims 1 to 6,
    The wave transmission unit, wherein the transmission wave is an electromagnetic wave or an ultrasonic wave.
  8.  請求項1から請求項7のいずれか1項に記載の送波ユニットと、
     前記送波ユニットから送信された送信波の反射波を受信する受信部と、
     前記受信部で得られた受信信号を処理する信号処理部と、
     前記信号処理部で生成される映像信号に基づく映像を表示する表示部と、
     を備えていることを特徴とする、ソナー。
    The transmission unit according to any one of claims 1 to 7,
    A receiving unit that receives a reflected wave of a transmission wave transmitted from the transmission unit;
    A signal processing unit for processing a received signal obtained by the receiving unit;
    A display unit for displaying video based on the video signal generated by the signal processing unit;
    Sonar, characterized by comprising
PCT/JP2015/051299 2014-02-13 2015-01-20 Transmission unit and sonar WO2015122240A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015562766A JP6281961B2 (en) 2014-02-13 2015-01-20 Transmission unit and sonar

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-025280 2014-02-13
JP2014025280 2014-02-13

Publications (1)

Publication Number Publication Date
WO2015122240A1 true WO2015122240A1 (en) 2015-08-20

Family

ID=53799988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/051299 WO2015122240A1 (en) 2014-02-13 2015-01-20 Transmission unit and sonar

Country Status (2)

Country Link
JP (1) JP6281961B2 (en)
WO (1) WO2015122240A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2033086A (en) * 2021-09-26 2023-03-31 Fishery Machinery & Instrument Res Inst Cafs Scanning transmission method and system for detection signals transmitted by omnidirectional multi-beam fish finder
GB2620480A (en) * 2022-05-04 2024-01-10 Ultra Electronics Ltd A hull-mounted sonar assembly

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5511557U (en) * 1978-07-07 1980-01-24
JPS57204481A (en) * 1981-06-11 1982-12-15 Furuno Electric Co Ltd Wide range underwater detecting device
JPH085728A (en) * 1994-06-22 1996-01-12 Tech Res & Dev Inst Of Japan Def Agency Underwater picture sonar
JP2003202370A (en) * 2001-12-28 2003-07-18 Furuno Electric Co Ltd Ultrasonic transmitter-receiver apparatus and scanning sonar
JP2009222445A (en) * 2008-03-13 2009-10-01 Univ Of Yamanashi Ultrasonic distance sensor system, and ultrasonic distance sensor using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5511557U (en) * 1978-07-07 1980-01-24
JPS57204481A (en) * 1981-06-11 1982-12-15 Furuno Electric Co Ltd Wide range underwater detecting device
JPH085728A (en) * 1994-06-22 1996-01-12 Tech Res & Dev Inst Of Japan Def Agency Underwater picture sonar
JP2003202370A (en) * 2001-12-28 2003-07-18 Furuno Electric Co Ltd Ultrasonic transmitter-receiver apparatus and scanning sonar
JP2009222445A (en) * 2008-03-13 2009-10-01 Univ Of Yamanashi Ultrasonic distance sensor system, and ultrasonic distance sensor using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2033086A (en) * 2021-09-26 2023-03-31 Fishery Machinery & Instrument Res Inst Cafs Scanning transmission method and system for detection signals transmitted by omnidirectional multi-beam fish finder
GB2620480A (en) * 2022-05-04 2024-01-10 Ultra Electronics Ltd A hull-mounted sonar assembly

Also Published As

Publication number Publication date
JP6281961B2 (en) 2018-02-21
JPWO2015122240A1 (en) 2017-03-30

Similar Documents

Publication Publication Date Title
US11204416B2 (en) Marine multibeam sonar device
JP5683788B2 (en) Sonar system, sonar transmission / reception module, and method of transmitting / receiving in a sonar system
US9812118B2 (en) Marine multibeam sonar device
US20220060818A1 (en) Microphone arrays
JP6281961B2 (en) Transmission unit and sonar
JP2006064524A (en) Sonar method and underwater image sonar
JP6339446B2 (en) Detection device, detection method, and program
JP6179973B2 (en) Signal processing device, underwater detection device, signal processing method, and program
JP5600464B2 (en) Radar apparatus and computer program
WO2018181201A1 (en) Transmission device, reception device, transmission method, and reception method
JP5405225B2 (en) Ultrasonic diagnostic equipment
JP2021089180A (en) Target detection device and target detection method
JP5982953B2 (en) Acoustic target, transmission signal generation method and program
JP2015152433A (en) Radar apparatus, radar signal processing apparatus, and radar signal processing method
JP5603355B2 (en) Ultrasonic measuring device
JP2023101250A (en) Sonar device, method, and program
JP7447513B2 (en) Sonar device and target direction calculation method and program
JP2007096975A (en) Cylindrical antenna assembly
JP4940818B2 (en) Synthetic aperture sonar system and transducer length control method
JP4694442B2 (en) Ultrasonic transmitter and ultrasonic device
JP2001343450A (en) Underwater detecting device
JP6425640B2 (en) Radar equipment
JP2009229141A (en) Underwater detector
JP2577333B2 (en) Scanning sonar receiver
JPH07253793A (en) Directional beam stabilizing under water transmitting equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15748602

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015562766

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15748602

Country of ref document: EP

Kind code of ref document: A1