JP4694442B2 - Ultrasonic transmitter and ultrasonic device - Google Patents

Ultrasonic transmitter and ultrasonic device Download PDF

Info

Publication number
JP4694442B2
JP4694442B2 JP2006218523A JP2006218523A JP4694442B2 JP 4694442 B2 JP4694442 B2 JP 4694442B2 JP 2006218523 A JP2006218523 A JP 2006218523A JP 2006218523 A JP2006218523 A JP 2006218523A JP 4694442 B2 JP4694442 B2 JP 4694442B2
Authority
JP
Japan
Prior art keywords
ultrasonic
transmitter
transmitting
element array
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006218523A
Other languages
Japanese (ja)
Other versions
JP2008042856A (en
Inventor
研 菊池
明久 深見
和伸 篠田
聡 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2006218523A priority Critical patent/JP4694442B2/en
Publication of JP2008042856A publication Critical patent/JP2008042856A/en
Application granted granted Critical
Publication of JP4694442B2 publication Critical patent/JP4694442B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、超音波の送信を行う超音波送波器および超音波装置に関し、特に複数の送波素子を円弧または部分球面状に配列して構成する超音波送波器および超音波装置に関する。   The present invention relates to an ultrasonic transmitter and an ultrasonic device that transmit ultrasonic waves, and more particularly to an ultrasonic transmitter and an ultrasonic device that are configured by arranging a plurality of transmitting elements in an arc or a partial spherical shape.

超音波を海中に送信し、目標からの反響音を受信して、水中の目標物を検出する超音波装置において、目標が海底付近に存在する場合は、目標からの反響音が海底からの残響に埋もれて検出が困難となる。このように、目標の検出を阻害する主たる要因が残響である場合、広帯域信号を送受信することにより、受信信号に対する相関処理により得られる信号処理利得により信号対残響比を向上させて、目標の検出を容易にすることができる。   In an ultrasonic device that transmits ultrasonic waves into the sea, receives echoes from the target, and detects targets in the water, if the target is near the seabed, the echo from the target will reverberate from the seabed. Detection becomes difficult because of being buried. In this way, when reverberation is the main factor that hinders target detection, target signal detection is achieved by transmitting and receiving broadband signals to improve the signal to reverberation ratio by the signal processing gain obtained by correlation processing on the received signal. Can be made easier.

広帯域信号の送信は、特許文献1に示される方式を用いた送波素子により実現することができる。従来、広帯域信号を送信する超音波装置の超音波送波器は、送波素子を平面状に配置していた。しかし、小型で広い視野角を得るため、送波素子を水平面内で円弧状に配列することを検討したところ、指向性にリプルが発生し、リプルの山および谷に該当する方位は周波数に依存して変化することを見出した。この現象は、比較的狭帯域の信号を用いる超音波装置では問題にならないが、広帯域信号を用いる場合は、方位毎に送信信号の周波数特性が異なり、方位によっては前述の相関処理による信号処理利得が十分得られないことも分かった。これを、図1および図2を参照して説明する。   Transmission of a wideband signal can be realized by a transmission element using a method disclosed in Patent Document 1. Conventionally, in an ultrasonic transmitter of an ultrasonic device that transmits a broadband signal, the transmitting elements are arranged in a planar shape. However, in order to obtain a small and wide viewing angle, it was considered to arrange the transmitting elements in an arc shape in the horizontal plane. And found that it changed. This phenomenon is not a problem with ultrasonic devices that use relatively narrowband signals. However, when using wideband signals, the frequency characteristics of the transmitted signal differ for each direction, and depending on the direction, the signal processing gain due to the correlation processing described above. It was also found that was not enough. This will be described with reference to FIG. 1 and FIG.

図1は、水平方向に送波素子数をN個円弧状に配列し、これを2M段に重ねた送波器の送波水平指向性を説明する図である。図1において、横軸は方位(°)、縦軸は送波レベル(dB)である。パラメータは周波数であり、荒い破線は周波数(f0−18)kHz、細かい破線は周波数f0kHz、実線は周波数(f0+18)kHzにおける送波水平指向性である。各周波数の送波水平指向性には、リプルがあり、リプルの状態は周波数に依存して変化することがわかる。   FIG. 1 is a diagram for explaining the horizontal transmission directivity of a transmitter in which N transmission elements are arranged in an arc shape in the horizontal direction and are stacked in 2M stages. In FIG. 1, the horizontal axis represents the azimuth (°), and the vertical axis represents the transmission level (dB). The parameter is the frequency, the rough broken line is the frequency (f0-18) kHz, the fine broken line is the frequency f0 kHz, and the solid line is the transmitted horizontal directivity at the frequency (f0 + 18) kHz. It can be seen that there is a ripple in the transmission horizontal directivity of each frequency, and the ripple state changes depending on the frequency.

図2は特定方位での周波数特性を説明する図である。図2において、横軸は周波数(kHz)、縦軸は送波レベル(dB)である。パラメータは方位であり、図1の方位φと方位θにおける周波数特性を示す。周波数毎にリプルの状況が異なるため、周波数特性は方位毎に大きく異なる。   FIG. 2 is a diagram for explaining frequency characteristics in a specific direction. In FIG. 2, the horizontal axis represents frequency (kHz), and the vertical axis represents transmission level (dB). The parameter is an azimuth, and shows frequency characteristics in the azimuth φ and the azimuth θ in FIG. Since the ripple condition differs for each frequency, the frequency characteristics vary greatly for each direction.

この改善策としては、円弧配列の曲率半径を大きくし、配列する素子数を増加させることにより、リプルを低減し平坦な指向性及び均一な周波数特性を実現する方法が考えられる。しかし、当初の目的である小型化に反する。また、送波器の大型化に伴いコストも増大する。   As an improvement measure, a method of reducing ripples and realizing flat directivity and uniform frequency characteristics by increasing the radius of curvature of the arc arrangement and increasing the number of elements arranged can be considered. However, it is contrary to the miniaturization that was the original purpose. In addition, the cost increases as the size of the transmitter increases.

特開平8-340597号公報JP-A-8-340597

複数の送波素子を円弧または部分球面状に配列した送波器により、広帯域信号を広範囲に送信する場合に、方位によって周波数特性が変化してしまい、均一な周波数特性を実現できない。   When a wideband signal is transmitted over a wide range by a transmitter in which a plurality of transmission elements are arranged in an arc or a partial spherical shape, the frequency characteristics change depending on the direction, and uniform frequency characteristics cannot be realized.

本発明は、送波指向性のリプルを低減し、各方位において均一な周波数特性を実現するため、複数の送波素子を、円弧または部分球面状に配列して構成する超音波送波器において、ある列の配列素子数で形成される指向性のリプルの山谷が、他の列の素子配列数で形成される指向性のリプルの山谷によって互いに打ち消されるように、一列の素子配列数を列毎に変えて配列することにより、リプルの少ない送波指向性を有する超音波送波器および超音波装置を得る。   The present invention provides an ultrasonic transmitter in which a plurality of transmission elements are arranged in an arc or a partial spherical shape in order to reduce transmission directivity ripple and achieve uniform frequency characteristics in each direction. The directional ripple peaks and valleys formed by the number of array elements in one column are canceled out by the directional ripple peaks and valleys formed by the number of element arrays in another column. By changing the arrangement every time, an ultrasonic transmitter and an ultrasonic device having a transmission directivity with less ripples are obtained.

本発明に拠れば、複数の送波素子を、円弧または部分球面状に配列して構成する超音波送波器および超音波装置において、リプルの少ない指向性を比較的小型の超音波送波器および超音波装置で実現できる。   According to the present invention, in an ultrasonic wave transmitter and an ultrasonic device in which a plurality of wave transmitting elements are arranged in an arc or a partial spherical shape, a relatively small ultrasonic wave transmitter with less ripple directivity And can be realized with an ultrasonic device.

以下本発明の実施の形態について、実施例を用い図3ないし図7を参照して説明する。ここで、図3は送波器の正面図である。図4は特定周波数における送波器の送波水平指向性を説明する図である。図5は周波数をパラメータとした送波器の送波水平指向性を説明する図である。図6は特定方位での周波数特性を説明する図である。図7は超音波装置のブロック図である。   Hereinafter, embodiments of the present invention will be described with reference to FIGS. Here, FIG. 3 is a front view of the transmitter. FIG. 4 is a diagram for explaining the transmission horizontal directivity of the transmitter at a specific frequency. FIG. 5 is a diagram for explaining the transmission horizontal directivity of the transmitter using the frequency as a parameter. FIG. 6 is a diagram for explaining frequency characteristics in a specific direction. FIG. 7 is a block diagram of the ultrasonic apparatus.

図3において、超音波送波器10は、奇数段の水平方向の送波素子1を(N−4)個、偶数段の水平方向の送波素子1をN個として円弧状に中心あわせで配置し、2M段重ねて配列することにより構成されている。超音波装置の超音波送波器の規模は、超音波装置の規模で決まり、本実施例では、送波素子数N×2Mである。奇数段の送波素子数は、偶数段の送波素子数に比べ、4個少ないが、この値はシミュレーションで求めたものである。すなわち、N×Mの送波器のリプルのある送波水平指向性を求め、これとは逆のリプルの送波水平指向性となる(N−n)×Mの送波器を求めた結果、n=4であった訳である。   In FIG. 3, the ultrasonic transmitter 10 is centered in an arc with (N−4) odd-numbered horizontal transmitting elements 1 and N even-numbered horizontal transmitting elements 1. It is configured by arranging and arranging 2M layers. The scale of the ultrasonic transmitter of the ultrasonic apparatus is determined by the scale of the ultrasonic apparatus, and in this embodiment, the number of transmitting elements is N × 2M. Although the number of transmitting elements in odd stages is four less than the number of transmitting elements in even stages, this value is obtained by simulation. That is, the horizontal transmission directivity with ripples of the N × M transmitter is obtained, and the (N−n) × M transmitter having the reverse transmission horizontal directivity of ripples is obtained. N = 4.

なお、図3は正面図なので、水平面内で円弧状に配列した左右端の送波素子の形状が縦長になる。しかし、図示の簡便のため、それは表現していない。また、図3は、上下に伸びた円柱の一部であるが、球の一部であっても良い。球の一部のとき、水平方向の素子数を段毎に変えるだけでなく、垂直方向の素子数(段数)を水平方向の並び毎に変えてもよい。これは、本明細書を理解した当業者にとって、容易推考である。さらに、本明細書において、列とは縦列と横列とを含む、並びである。   Since FIG. 3 is a front view, the shape of the left and right wave transmitting elements arranged in an arc shape in the horizontal plane is vertically long. However, it is not expressed for the convenience of illustration. Moreover, although FIG. 3 is a part of the cylinder extended up and down, it may be a part of a sphere. In the case of a part of a sphere, not only the number of horizontal elements may be changed for each stage, but the number of vertical elements (the number of stages) may be changed for each horizontal arrangement. This is an easy assumption for those skilled in the art who understand this specification. Furthermore, in this specification, a column is an array including a column and a row.

図4において、横軸は方位(°)、縦軸は送波レベル(dB)である。細かい破線であるEVENはN個の素子による周波数f0の送波水平指向性であり、荒い破線であるODDは(N−4)個の素子による周波数f0の送波水平指向性である。EVENの指向性のリプルとODDの指向性のリプルは互いに山谷の位置が逆になっており、各素子から送波された音波が合成されることにより、EVENおよびODDの指向性を合成した指向性SUMが送波器の指向性として得られる。図4は、図3で説明したf=f0でのシミュレーション結果とも言える。   In FIG. 4, the horizontal axis represents the azimuth (°), and the vertical axis represents the transmission level (dB). EVEN, which is a fine broken line, is a transmission horizontal directivity of frequency f0 by N elements, and ODD, which is a rough broken line, is a transmission horizontal directivity of frequency f0 by (N-4) elements. The EVEN directivity ripple and the ODD directivity ripple are opposite to each other in the positions of the peaks and valleys. SUM is obtained as the directivity of the transmitter. FIG. 4 can be said to be the simulation result at f = f0 described in FIG.

図5において、横軸は方位(°)、縦軸は送波レベル(dB)である。パラメータは周波数であり、荒い破線は周波数(f0−18)kHz、細かい破線は周波数f0kHz、実線は周波数(f0+18)kHzにおける送波水平指向性である。図1と比較すれば、各周波数においてリプルが低減されていることが分かる。   In FIG. 5, the horizontal axis represents the azimuth (°), and the vertical axis represents the transmission level (dB). The parameter is the frequency, the rough broken line is the frequency (f0-18) kHz, the fine broken line is the frequency f0 kHz, and the solid line is the transmitted horizontal directivity at the frequency (f0 + 18) kHz. Compared with FIG. 1, it can be seen that the ripple is reduced at each frequency.

図6において、横軸は周波数(kHz)、縦軸は送波レベル(dB)である。パラメータは方位であり、図1の方位φと方位θにおける周波数特性を示す。図2と比較すれば、特性変化の山谷が小さくなっていることが分かる。また、この程度の周波数特性ならば、超音波受波器の待ちうけレプリカでフラットな特性とすることができる。さらに、送波素子の特性を変えて周波数特性を更にフラットにすることができる。   In FIG. 6, the horizontal axis represents frequency (kHz), and the vertical axis represents transmission level (dB). The parameter is an azimuth, and shows frequency characteristics in the azimuth φ and the azimuth θ in FIG. Compared to FIG. 2, it can be seen that the peaks and valleys of the characteristic change are small. In addition, with such a frequency characteristic, it is possible to obtain a flat characteristic with a waiting replica of the ultrasonic receiver. Further, the frequency characteristics can be further flattened by changing the characteristics of the transmission element.

上述した実施例に拠れば、超音波送波器の規模を増大させること無く、水平方向の視野角を広げ、リプルの少ない送波指向性及び均一な周波数特性を実現する超音波送波器を得ることができる。   According to the above-described embodiment, an ultrasonic wave transmitter that widens the viewing angle in the horizontal direction without increasing the size of the ultrasonic wave transmitter, and realizes transmission directivity and uniform frequency characteristics with less ripples. Obtainable.

図7において、超音波装置100は、送信器30に接続された超音波送波器10と、受信器40に接続された超音波受波器20と、受信器40に接続された信号処理器50と、制御指示器60とから構成される。送信器30は、超音波送波器10を制御し、超音波送波器10は送信器30から入力される送信電力を電気音響変換し、超音波を送出する。超音波受波器20は、受信した音響を音響電気変換し、電気信号を受信器40に送出する。信号処理器50は、受信器40から受信した電気信号を検波積分処理、相関処理、表示処理し、制御指示器60に送出する。制御指示器60は、信号処理器50からの受信信号を表示すると共に、超音波装置100の全体制御を行う。   In FIG. 7, an ultrasonic device 100 includes an ultrasonic transmitter 10 connected to a transmitter 30, an ultrasonic receiver 20 connected to a receiver 40, and a signal processor connected to the receiver 40. 50 and a control indicator 60. The transmitter 30 controls the ultrasonic transmitter 10, and the ultrasonic transmitter 10 performs electroacoustic conversion on transmission power input from the transmitter 30 and transmits ultrasonic waves. The ultrasonic receiver 20 performs acoustoelectric conversion on the received sound and sends an electric signal to the receiver 40. The signal processor 50 performs detection integration processing, correlation processing, and display processing on the electrical signal received from the receiver 40, and sends it to the control indicator 60. The control indicator 60 displays the received signal from the signal processor 50 and performs overall control of the ultrasonic apparatus 100.

超音波送波器10は、水平面内に於いて円周上に送波素子をN個配置し、2M段積み重ねた構成である。なお、超音波送波器10は、送波素子を2N×M個実装しているが、1段おきにN個配置の端部n個を駆動していない。この結果、超音波送波器の規模を増大させること無く、水平方向の視野角を広げ、リプルの少ない送波指向性および均一な周波数特性を実現する超音波装置を得ることができる。また、広帯域信号を送信する超音波装置においては、低リプルの指向特性により各方位において均一な周波数特性が実現できるため、相関処理により所望の信号処理利得を得ることができる。   The ultrasonic wave transmitter 10 has a configuration in which N wave transmitting elements are arranged on a circumference in a horizontal plane and are stacked in 2M stages. Note that the ultrasonic transmitter 10 has 2N × M transmitting elements mounted thereon, but does not drive n end portions arranged at every other stage. As a result, it is possible to obtain an ultrasonic apparatus that widens the viewing angle in the horizontal direction and realizes transmission directivity and uniform frequency characteristics with less ripples without increasing the scale of the ultrasonic transmitter. In addition, in an ultrasonic device that transmits a wideband signal, a uniform frequency characteristic can be realized in each direction due to a low ripple directivity characteristic, so that a desired signal processing gain can be obtained by correlation processing.

水平方向に送波素子数をN個円弧状配列し、これを2M段重ねた超音波送波器の送波水平指向性を説明する図である。It is a figure explaining the transmission horizontal directivity of the ultrasonic wave transmitter which arranged N number of wave transmission elements in the horizontal direction, and piled this up 2M steps. 特定方位での周波数特性を説明する図である。It is a figure explaining the frequency characteristic in a specific direction. 超音波送波器の正面図である。It is a front view of an ultrasonic transmitter. 特定周波数における超音波送波器の送波水平指向性を説明する図である。It is a figure explaining the transmission horizontal directivity of the ultrasonic transmitter in a specific frequency. 周波数をパラメータとした超音波送波器の送波水平指向性を説明する図である。It is a figure explaining the transmission horizontal directivity of the ultrasonic transmitter which used the frequency as a parameter. 特定方位での周波数特性を説明する図である。It is a figure explaining the frequency characteristic in a specific direction. 超音波装置のブロック図である。It is a block diagram of an ultrasonic device.

符号の説明Explanation of symbols

1…送波素子、10…超音波送波器、20…超音波受波器、30…送信器、40…受信器、50…信号処理器、60…制御指示器、100…超音波装置。   DESCRIPTION OF SYMBOLS 1 ... Transmitting element, 10 ... Ultrasonic transmitter, 20 ... Ultrasonic receiver, 30 ... Transmitter, 40 ... Receiver, 50 ... Signal processor, 60 ... Control indicator, 100 ... Ultrasonic apparatus.

Claims (2)

複数の送波素子を、円弧または部分球面状に配列して構成する超音波送波器において、
第1の送波素子列の第1の送波素子数で形成される指向性のリプルの山に相当する方位が、第2の送波素子列の第2の送波素子数で形成される指向性ではリプルの谷に相当するように、前記第1の送波素子数より少ない前記第2の送波素子数をシミュレーションで決定し、前記第1の送波素子列と前記第2の送波素子列との相互作用によって指向性のリプルを低減することを特徴とする超音波送波器。
In an ultrasonic transmitter configured by arranging a plurality of transmitting elements in an arc or a partial spherical shape,
An orientation corresponding to a directional ripple peak formed by the first number of transmitting elements in the first transmitting element array is formed by the second number of transmitting elements in the second transmitting element array. In order to correspond to the ripple valley in the directivity, the number of the second transmission elements, which is smaller than the number of the first transmission elements, is determined by simulation, and the first transmission element array and the second transmission element are determined. An ultrasonic transmitter characterized in that directivity ripple is reduced by interaction with a wave element array .
送信器と、この送信器から入力される送信電力を電気音響変換し超音波を送出する超音波送波器と、受信した音響を音響電気変換し電気信号を受信器に送出する超音波受波器と、前記受信器に接続され、前記受信器から受信した電気信号を検波積分処理、相関処理、表示処理し、制御指示器に送出する信号処理器と、信号処理器からの受信信号を表示し、全体制御を行う制御指示器とから構成された超音波装置において、
前記超音波送波器は、複数の送波素子を、円弧または部分球面状に配列して構成され、第1の逆波素子列の第1の送波素子数で形成される指向性のリプルの山に相当する方位が、第2の逆波素子列の第2の送波素子数で形成される指向性ではリプルの谷に相当するように、前記第1の送波素子数より少ない前記第2の送波素子数をシミュレーションで決定し、前記第1の送波素子列と前記第2の送波素子列との相互作用によって指向性のリプルを低減することを特徴とする超音波装置。
A transmitter, an ultrasonic transmitter that converts the transmission power input from the transmitter into an electroacoustic signal and sends out an ultrasonic wave, and an ultrasonic wave reception device that converts the received sound into an electric signal and sends an electric signal to the receiver And a signal processor connected to the receiver for detecting and integrating electric signals received from the receiver, performing correlation processing and display processing, and sending them to a control indicator, and displaying a received signal from the signal processor In an ultrasonic device composed of a control indicator that performs overall control,
The ultrasonic transmitter includes a plurality of transmitting elements arranged in a circular arc or a partial spherical shape, and a directional ripple formed by the first number of transmitting elements in the first inverse wave element array. The azimuth corresponding to the crest is less than the first transmitting element number so that the directivity formed by the second transmitting element number of the second inverse wave element array corresponds to a ripple valley. An ultrasonic device characterized in that a second number of transmitting elements is determined by simulation, and directivity ripple is reduced by an interaction between the first transmitting element array and the second transmitting element array. .
JP2006218523A 2006-08-10 2006-08-10 Ultrasonic transmitter and ultrasonic device Active JP4694442B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006218523A JP4694442B2 (en) 2006-08-10 2006-08-10 Ultrasonic transmitter and ultrasonic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006218523A JP4694442B2 (en) 2006-08-10 2006-08-10 Ultrasonic transmitter and ultrasonic device

Publications (2)

Publication Number Publication Date
JP2008042856A JP2008042856A (en) 2008-02-21
JP4694442B2 true JP4694442B2 (en) 2011-06-08

Family

ID=39177331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006218523A Active JP4694442B2 (en) 2006-08-10 2006-08-10 Ultrasonic transmitter and ultrasonic device

Country Status (1)

Country Link
JP (1) JP4694442B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006208107A (en) * 2005-01-26 2006-08-10 Furuno Electric Co Ltd Ultrasonic handset and underwater detector

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006208107A (en) * 2005-01-26 2006-08-10 Furuno Electric Co Ltd Ultrasonic handset and underwater detector

Also Published As

Publication number Publication date
JP2008042856A (en) 2008-02-21

Similar Documents

Publication Publication Date Title
US9113242B2 (en) Sound source signal processing apparatus and method
CN108828603B (en) Cross-based sparse optimization method for three-dimensional imaging sonar array
US11832051B2 (en) Microphone arrays
US8009513B2 (en) Transducer array arrangement and operation for sodar application
JP3866829B2 (en) Phased array with logarithmic spiral curve shape
JP2006208107A (en) Ultrasonic handset and underwater detector
US5530683A (en) Steerable acoustic transducer
US20140092709A1 (en) Pvdf sonar transducer system
EP2846168A1 (en) Ultrasonic imaging apparatus, and ultrasonic imaging method
US3182284A (en) Interleaved electroacoustical transducer
JP2006064524A (en) Sonar method and underwater image sonar
JP6179973B2 (en) Signal processing device, underwater detection device, signal processing method, and program
JP4694442B2 (en) Ultrasonic transmitter and ultrasonic device
CN109040913A (en) The beam-forming method of window function weighting electroacoustic transducer emission array
CN111060915A (en) Multi-beam sonar system for fishing with double-transducer array combined for receiving and transmitting
US20190257930A1 (en) Multi frequency piston transducer
WO2018181201A1 (en) Transmission device, reception device, transmission method, and reception method
JP7238516B2 (en) Sonar device and target detection method using the same
US6046961A (en) Multi-layer tiled array
WO2015122240A1 (en) Transmission unit and sonar
JP4993331B2 (en) Acoustic target transducer
JP5493821B2 (en) Acoustic wave measurement sensor
CN211905685U (en) Multi-beam sonar system for fishing with double-transducer array combined for receiving and transmitting
JP5603355B2 (en) Ultrasonic measuring device
JP4771575B2 (en) Underwater detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110223

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4694442

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150