WO2015122181A4 - Manufacturing method for strontium titanate fine particles, and strontium titanate fine particles - Google Patents

Manufacturing method for strontium titanate fine particles, and strontium titanate fine particles Download PDF

Info

Publication number
WO2015122181A4
WO2015122181A4 PCT/JP2015/000618 JP2015000618W WO2015122181A4 WO 2015122181 A4 WO2015122181 A4 WO 2015122181A4 JP 2015000618 W JP2015000618 W JP 2015000618W WO 2015122181 A4 WO2015122181 A4 WO 2015122181A4
Authority
WO
WIPO (PCT)
Prior art keywords
strontium titanate
fine particles
reaction
aqueous solution
containing aqueous
Prior art date
Application number
PCT/JP2015/000618
Other languages
French (fr)
Japanese (ja)
Other versions
WO2015122181A1 (en
Inventor
佐々木 勉
田中 淳
鈴木 真之
阿尻 雅文
Original Assignee
富士フイルム株式会社
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社, 国立大学法人東北大学 filed Critical 富士フイルム株式会社
Publication of WO2015122181A1 publication Critical patent/WO2015122181A1/en
Publication of WO2015122181A4 publication Critical patent/WO2015122181A4/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/006Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/38Particle morphology extending in three dimensions cube-like
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Definitions

  • the present invention relates to a method for producing shape-controlled strontium titanate fine particles suitable as a mother catalyst for dielectric materials and photocatalysts.
  • Strontium titanate is a composite oxide that is expected to be developed into various applications as functional materials, such as dielectric properties, thermoelectric properties, photocatalytic ability, and high refractive index properties. Photocatalytic activity has attracted attention from the viewpoints of energy and environmental problems in recent years, and strontium titanate produces hydrogen using only sunlight because of its high stability under light irradiation and the strength of photoreduction power. The expectation is growing as a photocatalyst that enables it.
  • Patent Document 3 discloses high-temperature, high-pressure water in the coexistence of an organic substance as a method for producing ceria, which is known as an exhaust gas purification catalyst material, as cube-shaped nanocrystal particles having a high proportion of crystal faces with high catalytic activity. Methods have been proposed which are produced by thermal synthesis, preferably by supercritical synthesis.
  • Patent Documents 4 and 5 describe a method for producing titanium oxide fine particles or fine powder by high temperature, high pressure hydrothermal synthesis, and in an aqueous solution which is a hydrothermal synthesis or a subcritical / supercritical reaction site. It has been reported that nano-sized highly crystalline particles can be produced by suppressing aggregation by reacting fine particles synthesized while performing a synthesis reaction with an organic modifier. However, these documents do not describe controlling the shape so as to have a specific crystal face as in Patent Document 3, and an example actually manufactured is only a simple oxide, and a perovskite oxide There is no example about complex oxides, such as a thing. Even for the same titanium oxide, the synthesis reaction mechanism is different between the simple oxide and the complex oxide, and it is usually difficult to apply the manufacturing method of the simple oxide to the complex oxide as it is.
  • Patent Document 6 discloses that strontium hydroxide and a water-soluble titanium compound such as ammonium titanium peroxolactate are strong at 200 ° C. in the presence of an amphiphilic compound such as oleic acid and a metal element-free basic compound such as hydrazine. It is described that by hydrothermal synthesis under alkaline conditions, it is possible to produce strontium titanate nanoparticles with controlled crystal shape without aggregation.
  • Patent Document 7 discloses a method of aligning cubic strontium titanate nanocrystals on a substrate and a method of producing a film composed of nanocrystals, and in paragraph [0015], nano particles of strontium titanate are disclosed.
  • crystal growth proceeds with molecules of an organic carboxylic acid such as oleic acid adhering to the (111) plane, so crystal growth on the (111) plane proceeds without being interrupted by organic carboxylic acid molecules. It is described that the growth of all eight (111) planes proceeds to form a vertex and tends to have a cubic shape as a whole.
  • Patent Document 6 and Patent Document 7 although it is possible to control the strontium titanate fine particles into a cubic shape and manufacture, the method of Patent Document 6 makes the hydrothermal reaction at 200 ° C. for 24 hours, and for Patent Document 7 It is necessary to carry out the hydrothermal reaction at 200 ° C. for 72 hours, and all have problems that the synthesis time is long and the productivity is very bad.
  • the present invention has been made in view of the above circumstances, and is a method of producing strontium titanate fine particles whose shape is controlled in a cube (or rectangular parallelepiped) shape having a specific crystal plane with high productivity, and obtained using the same. It is an object of the present invention to provide shape-controlled strontium titanate fine particles.
  • the first production method of the strontium titanate fine particles of the present invention is Preparing a Sr-containing aqueous solution and a Ti-containing aqueous solution respectively; Preparing the mixed solution by mixing the prepared Sr-containing aqueous solution with the Ti-containing aqueous solution, B1; A basic compound is added to the mixed solution to adjust the mixed solution to be basic to prepare a reaction solution C1; A subcritical reaction or supercritical reaction of the reaction solution D1; Prior to carrying out step D1, step E1 of adding an organic basic compound containing no metal element and an amphiphilic compound having a carboxyl group to an Sr-containing aqueous solution, a Ti-containing aqueous solution, a mixed solution or a reaction solution is The pH value of the reaction solution used in step D1 is more than 10.
  • step E1 “before performing the step D1” means all the steps and all the steps existing before the step D1 is performed. That is, it means between each process of process A1 to process C1 or between processes A1 to process D1. Step E1 may be performed only once or may be performed multiple times.
  • reacting the reaction solution means reacting one or more components contained in the reaction solution.
  • fine particles means particles having an average particle size of less than 1 ⁇ m, preferably nanoparticles.
  • the nanoparticles may generally refer to those having an average particle size of 200 nm or less, preferably 200 nm or less. In some cases, the nanoparticles may be of a size with an average particle size of 100 nm or less, and in other cases with a size of 50 nm or less.
  • the nanoparticles are of a size whose average particle size is 20 nm or less, and in other cases whose average particle size is 10 nm or less or 5 nm or less You may Also, in a preferred case, the particle size of the nanoparticles is preferably uniform, but in some cases, it may be preferable to mix particles having different particle sizes at a certain ratio.
  • the average particle size can be measured by a method known in the art, and can be measured by, for example, an electron microscope (TEM, SEM), an adsorption method, a light scattering method, X-ray small angle scattering (SAXS) or the like.
  • TEM electron microscope
  • SEM electron microscope
  • SAXS X-ray small angle scattering
  • water above the critical point of water (temperature 374 ° C., pressure 22 MPa) is supercritical water, and water at a temperature near 350 ° C. near critical point is subcritical water
  • the reaction in supercritical water is a supercritical reaction
  • the reaction in subcritical water is a subcritical reaction.
  • the pH of the reaction solution used in step D1 is preferably 11 or more.
  • the second production method of the strontium titanate fine particles of the present invention is Preparing a Sr-containing aqueous solution and a Ti-containing aqueous solution respectively; Preparing the mixed solution by mixing the prepared Sr-containing aqueous solution with the Ti-containing aqueous solution, B1; A basic compound is added to the mixed solution to adjust the mixed solution to be basic to prepare a reaction solution C1; A subcritical reaction or supercritical reaction of the reaction solution D1; Prior to carrying out step D1, step E1 of adding an organic basic compound containing no metal element and an amphiphilic compound having a carboxyl group to an Sr-containing aqueous solution, a Ti-containing aqueous solution, a mixed solution or a reaction solution is Have, In the step C1, the ionization degree of the basic compound is 0.8 or more, The concentration of the basic compound in the reaction solution used in step D1 is 0.60 mol / L or more.
  • the concentration of the basic compound in the reaction solution used in step D1 is preferably 0.70 mol / L or more.
  • the amphiphilic compound is preferably an organic acid having 2 to 20 carbon atoms, and is an organic acid having 10 to 20 carbon atoms. Is more preferred.
  • Such amphiphilic compounds include at least one of oleic acid, decanoic acid, lauric acid, undecenoic acid, linoleic acid, and linolenic acid.
  • the organic basic compound is preferably at least one of an amine compound, ammonia, hydrazine, and derivatives thereof, and is at least one of hydrazine, hydrazine monohydrate, oleylamine, and hydrazine derivatives. Is more preferred.
  • the combination of an amphiphilic compound and an organic basic compound is preferably a combination of oleic acid and hydrazine.
  • the number of moles of Ti X, the number of moles of amphiphilic compound Y, and the number of moles of organic basic compound Z are 0 ⁇ Y / X ⁇ 6 and 0 ⁇ Z / X. It is preferable to satisfy ⁇ 8, more preferably 1 ⁇ Y / X ⁇ 4, and most preferably 0 ⁇ Z / X ⁇ 4.
  • the concentration of the Ti component is preferably 0.1 mmol / L or more and 20 mol / L or less.
  • a solution obtained by dissolving strontium acetate, hydroxide or nitrate in water is preferable. It is preferable that it is a titanium aqueous solution.
  • the Ti-containing aqueous solution used in step B1 of preparing the mixed solution is preferably one not containing TiO 2 as a main component of the Ti component, and in particular, rutile TiO 2 It is preferable not to contain 2 .
  • the "main component” means a component having a content of 50% by mass or more.
  • step B1 it is preferable to prepare a mixed solution so that the molar ratio Sr / Ti of Sr and Ti is 1 or more.
  • step B1 it is preferable to use the Ti-containing aqueous solution not containing the rutile type TiO 2 as the main component of a Ti component.
  • the basic compound is preferably sodium hydroxide or potassium hydroxide. Moreover, it is preferable to grind
  • the reaction solution used in step D1 is preferably a reaction solution containing Ti (OH) 4 and / or HTiO 3 ⁇ ions as the main component of the Ti component.
  • the retention time of the reaction temperature in the subcritical reaction or supercritical reaction can be 10 minutes or less.
  • the strontium titanate fine particles of the present invention are produced by the method for producing strontium titanate fine particles of the present invention described above, and are cubic or rectangular in shape.
  • the “cubate or cuboid strontium titanate fine particle” also includes an incomplete shape in which the apex of the cube or cuboid is chamfered. At this time, the chamfering ratio is within 20% of the area in each face of a cube or a rectangular parallelepiped. The chamfer was defined from the length of the side. In the method, particles were observed directly by TEM, and the length of one side of the cubic particle and the length of the chamfer were measured, and the ratio to one side was calculated.
  • 85% or more of the crystal plane exposed on the surface of the cube or rectangular parallelepiped is preferably a ⁇ 100 ⁇ plane.
  • the length of one side of a cube or a rectangular solid is preferably 10 nm or more and 500 nm or less.
  • the method for producing strontium titanate fine particles according to the present invention comprises a reaction liquid containing a basic compound having a pH of 10 or more and an ionization degree of 0.8 or more containing Sr-containing aqueous solution and Ti-containing aqueous solution of 0.60 mol / L or more.
  • a subcritical or supercritical reaction method comprising the steps of adding an organic basic compound containing no metal element and an amphiphilic compound having a carboxyl group to a basic reaction solution before the reaction. ing.
  • this configuration by preferentially growing the (111) plane of the strontium titanate crystal, it is possible to manufacture strontium titanate fine particles whose shape is controlled so that the surface has a ⁇ 100 ⁇ plane with high productivity. .
  • FIG. 1 shows a flow diagram of the method for producing strontium titanate fine particles of the present embodiment.
  • Patent Document 4 As described above, as a method of controlling the strontium titanate fine particles into a cubic shape, a method of carrying out a hydrothermal reaction at 200 ° C. for 24 hours or more as in Patent Document 6 and Patent Document 7 is mentioned.
  • Patent Document 4 As described in Patent Document 4 and the like, it is described that titanium dioxide fine particles, which are simple oxides, can be obtained without aggregation of fine crystalline particles by a subcritical or supercritical reaction.
  • ceria fine particles, which are simple oxides are manufactured to be controlled into a cubic shape by a high temperature / high pressure hydrothermal synthesis method, preferably supercritical synthesis, in the coexistence of an organic substance.
  • Patent Document 3 the ratio of cubic ceria fine particles having a (001) plane and a plane equivalent thereto in the produced fine particles by changing the reaction field from the hydrothermal reaction at 200 ° C. to supercritical. Is stated to rise from 70% to 80%.
  • the reaction time is not changed between the hydrothermal reaction site and the supercritical reaction site, and it is neither described nor suggested that the reaction time can be shortened by the difference in the reaction site.
  • strontium titanate is a complex oxide, its crystal structure is complicated compared to simple oxides such as ceria and titanium dioxide, so the reaction does not proceed by the same mechanism as simple oxides, and is the same. Even in a supercritical reaction site, more severe conditions are considered to be required as production conditions for shape control of particles.
  • Patent Documents 6 and 7 the inventors of the present invention are considered to cause the solubility of the material to rapidly decrease when the water of the reaction solution exceeds the critical point, and the formation of crystal nuclei and the growth thereof rapidly proceed.
  • the particle synthesis was attempted with the reaction field as supercritical, and it was confirmed whether production of strontium titanate fine particles whose shape was controlled to a cubic shape (including a rectangular shape) in a short time was possible (Comparative Examples 4 and 5 described later). As a result, the obtained particles were indeterminate, and it was not possible to control the shape or to reduce the synthesis time.
  • Patent Document 6 and Patent Document 7 manufacture of strontium titanate fine particles was tried using a titanium compound which is not a complex such as titanium tetrachloride as a titanium source.
  • the reaction field was made subcritical or supercritical, and it succeeded in manufacturing strontium titanate fine particles whose shape is controlled to a cubic shape (including a rectangular solid shape).
  • the reaction time was as short as about 10 minutes, and a significant reduction in reaction time was realized as compared with the case where 24 hours was required in Patent Document 6.
  • step D1 Preparing a Sr-containing aqueous solution and a Ti-containing aqueous solution respectively; Preparing the mixed solution by mixing the prepared Sr-containing aqueous solution with the Ti-containing aqueous solution, B1; A basic compound is added to the mixed solution to adjust the mixed solution to be basic to prepare a reaction solution C1; A subcritical reaction or supercritical reaction of the reaction solution D1; Prior to carrying out step D1, step E1 of adding an organic basic compound containing no metal element and an amphiphilic compound having a carboxyl group to an Sr-containing aqueous solution, a Ti-containing aqueous solution, a mixed solution or a reaction solution is The pH value of the reaction solution used in step D1 is more than 10.
  • a second method of producing strontium titanate fine particles of the present invention Preparing a Sr-containing aqueous solution and a Ti-containing aqueous solution respectively; Preparing the mixed solution by mixing the prepared Sr-containing aqueous solution with the Ti-containing aqueous solution, B1; A basic compound is added to the mixed solution to adjust the mixed solution to be basic to prepare a reaction solution C1; A subcritical reaction or supercritical reaction of the reaction solution D1; Prior to carrying out step D1, step E1 of adding an organic basic compound containing no metal element and an amphiphilic compound having a carboxyl group to an Sr-containing aqueous solution, a Ti-containing aqueous solution, a mixed solution or a reaction solution is Have, In the step C1, the ionization degree of the basic compound is 0.8 or more, The concentration of the basic compound in the reaction solution used in step D1 is 0.60 mol / L or more.
  • the first production method and the second production method are the same except that the definition of the basic compound used in step C1 and the definition of the basicity of the reaction liquid used in step D1 are different.
  • the basic compound used in the step C1 is not particularly limited, but it is preferable to use a basic compound having an ionization degree of 0.8 or more as in the second production method. Each step will be described below with reference to FIG.
  • Step A1 is a step of preparing an Sr-containing aqueous solution and a Ti-containing aqueous solution, respectively.
  • the aqueous solution containing Sr is not particularly limited, but hydroxides of Sr, oxides, chlorides, fluorides, halides such as iodide, inorganic salts such as nitrates, carbonates, sulfates, acetates, oxalic acid A salt, an organic acid salt such as a lactic acid salt, etc. may be dissolved in water, and an acetate, a hydroxide or a nitrate may be dissolved in water.
  • the method for preparing the Sr-containing aqueous solution is not particularly limited, and any known method depending on the substance can be adopted as appropriate.
  • the aqueous solution containing Ti is not particularly limited, but hydroxides of Ti, oxides, chlorides, fluorides, halides such as iodide, inorganic salts such as nitrates, carbonates, sulfates, acetates, oxalic acid A salt, an organic acid salt such as lactic acid salt and the like dissolved in water may be mentioned, and titanium tetrachloride which is a chloride is preferable.
  • the method for preparing the Ti-containing aqueous solution is not particularly limited, and any known method depending on the substance can be appropriately adopted.
  • the Ti-containing aqueous solution is preferably used in the next step because the aqueous solution maintaining the state immediately after the preparation is used.
  • the Ti-containing aqueous solution maintaining the state immediately after the preparation is used.
  • Step B1 is a step of mixing the Sr-containing aqueous solution prepared in step A1 and the Ti-containing aqueous solution.
  • the method of mixing is not particularly limited, but the Ti-containing aqueous solution to be mixed with the Sr-containing aqueous solution in step B1 is preferably one that does not contain TiO 2 as a main component of the Ti component.
  • the inventors of the present invention suppress the precipitation of titanium dioxide, which is an intermediate product, to produce strontium titanate fine particles with good crystallinity. I thought it was important to move forward.
  • the inventors focused on the instability of the Ti-containing aqueous solution and focused on the potential-pH diagram of Ti.
  • Ti is not in the ion dissociation state but in the hydrate of titanium dioxide (TiO 2 ⁇ H 2 O) in a weak acid to a weak alkaline environment of less than pH 12. From the stability, it is considered that, at room temperature, the conversion to the titanium dioxide hydrate is initiated soon after preparation of the Ti-containing aqueous solution when in a weak acid to a weak alkaline environment of less than pH 12.
  • Ti is considered to be in the form of Ti hydroxide (Ti (OH) 4 ) or HTiO 3 ⁇ from the potential-pH diagram. Therefore, in a strong alkaline environment, it is considered that the aqueous solution state can be maintained without precipitation of titanium dioxide.
  • the present inventors have found that, as a reaction site for hydrothermal synthesis, subcritical water or the like in which the synthesis rate becomes faster by using a reaction liquid in which Ti in the reaction liquid maintains Ti (OH) 4 or HTiO 3 - ion state. It was considered that even in supercritical water, perovskite-type oxides having good crystallinity can be produced. Then, it was considered that by adding conditions that allow shape control to such a reaction liquid, it is possible to manufacture strontium titanate fine particles whose shape is controlled in a cubic shape (rectangular shape) with high productivity. The conditions under which the shape can be controlled will be described in detail in the item of step E1 described later.
  • the present inventors start to change to titanium dioxide hydrate due to temporal changes such as ultraviolet light and temperature conditions after the Ti ion in the aqueous solution, and then white crystals of titanium dioxide start to precipitate. Have confirmed that. Then, the crystal structure of titanium dioxide formed at this stage is mainly rutile type, and once crystals of rutile type nonuniform and large in particle diameter are precipitated, production of strontium titanate fine particles with uniform crystallinity is good. Confirmed that it was difficult. Accordingly, in step B1, it is preferable to use the Ti-containing aqueous solution not containing the rutile type TiO 2 as the main component of a Ti component.
  • the inventors prepared a Ti-containing aqueous solution by setting the pH of the reaction solution to be subjected to a hydrothermal reaction to more than 10 (or, the concentration of an alkaline compound having an ionization degree of 0.8 or more in the reaction solution is 0.6 mmol or more).
  • a hydrothermal reaction to more than 10 (or, the concentration of an alkaline compound having an ionization degree of 0.8 or more in the reaction solution is 0.6 mmol or more).
  • the Ti-containing aqueous solution is considered to cause a change to the hydrate of titanium dioxide soon after preparation under conditions other than a strong alkaline environment of pH 12 or more at room temperature. Under other conditions of temperature and pH, the presence or absence and the rate of the change are considered to be different, so under the conditions where it is difficult to change titanium dioxide into hydrate, the mixed solution of the next step is not necessarily immediately after preparation. Although it is not necessary to carry out the preparation, if the mixed solution of the next step is prepared immediately after the preparation of the Ti-containing aqueous solution, the temperature condition and the pH condition can be achieved by carrying out the later steps. Regardless, highly crystalline strontium titanate fine particles can be formed. Therefore, it is preferable to carry out step B1 immediately after preparation of the Ti-containing aqueous solution, or otherwise, using a Ti-containing aqueous solution stored immediately after preparation and protected from light by light and refrigerated or frozen.
  • step B1 it is preferable to prepare a mixed solution so that the molar ratio Sr / Ti of Sr to Ti in the reaction liquid is 1 or more.
  • the Ti-containing aqueous solution is kept in the state immediately after preparation and mixed with the Sr-containing aqueous solution.
  • the supercritical reaction is preferably performed in a Sr-rich state in which the amount of Sr in the reaction solution is larger than the number of moles of the amount of Ti.
  • the molar ratio Sr / Ti of the Sr component and the Ti component in the mixed solution is preferably 1.3 or more, and more preferably 1.3 or more and 1.7 or less.
  • the ions are destabilized because the water is in a nonpolar gas state, and the equilibrium of the metal salt aqueous solution is from the ion dissociation state to the hydroxide side and further to the oxide side. Shift very fast.
  • strontium titanate is more stable than oxides and Sr than hydroxides, and hydrothermal reaction is caused by forming an Sr-rich environment in the reaction liquid. Can be rapidly produced to produce fine crystalline strontium titanate fine particles with less heterophase.
  • step B1 in view of suppressing the formation of precipitates in the mixed solution as much as possible during the preparation of the mixed solution, it is preferable to well stir during the step B1. Moreover, it is more preferable to implement stirring until immediately before performing the next step C1.
  • Steps C1, E1 and F1 are reactions in which reaction is performed in step D1 so that strontium titanate fine particles whose shape is controlled to a cubic shape (rectangular shape) can be obtained in step D1 by a subcritical reaction or a supercritical reaction.
  • step E1 and the step F1 are steps which may be performed any time before the step D1 is carried out, but the basic substance or the acidic substance is added to the Sr containing aqueous solution, the Ti containing aqueous solution, the mixed solution or the reaction solution Since the process F1 is a process of adjusting the final basicity of the reaction liquid which implements the process D1, it is preferable to carry out just before performing the process D1.
  • the basic substance used in step F1 include aqueous potassium hydroxide solution and aqueous sodium hydroxide solution, and examples of the acidic substance include nitric acid, hydrochloric acid and the like.
  • step E1 is preferably performed in the middle of step C1, and is preferably performed immediately after the addition of the basic compound in step C1. Step E1 and step F1 may be carried out only once or plural times, respectively.
  • the reaction liquid to be reacted in step D1 has a basicity of more than 10 when it is expressed by pH, and 0.60 mol / L or more when it is expressed by the molar concentration of the basic substance (the basic substance has an ionization degree of 0.
  • the reaction solution is adjusted to 8 or more), preferably 11 or more when expressed by pH, or 0.70 mol / L or more when expressed by molar concentration of basic substance (basic substance is ionized In the case of a degree of 0.8 or more).
  • the reaction temperature is likely to be higher, so that it is possible to produce perovskite-type strontium titanate fine particles even under low alkaline conditions.
  • the upper limit of the basicity of the reaction solution is not particularly limited as long as the reaction container storing the reaction solution is not corroded.
  • alkali resistance is essential for the reaction vessel.
  • a reaction container having alkali resistance ones made of Teflon (registered trademark) or those made of Hastelloy (registered trademark) are known, however, those made of Teflon (registered trademark) have limited heat resistance, so the reaction temperature is There is a limit and there is a problem that the product made of Hastelloy (registered trademark) is very expensive, resulting in high equipment cost.
  • reaction container made of SUS etc. which is excellent in heat resistance, is highly versatile and inexpensive, can be used as a reaction container, and for that purpose It is preferable to be able to manufacture on conditions.
  • the reaction liquid to be reacted in step D1 includes, before carrying out step D1, an organic basic compound containing no metal element and an amphiphilic compound having a carboxyl group up to before the steps A1 to B1.
  • the step E1 is carried out by adding the Sr-containing aqueous solution or the Ti-containing aqueous solution to the mixed solution up to the completion of the steps B1 to C1 and adding it to the reaction solution after the completion of the step C1.
  • the Sr-containing aqueous solution, the Ti-containing aqueous solution, the mixed solution, and the reaction liquid in which the step E1 and the step F1 are performed are collectively referred to as a liquid to be added.
  • step E1 is preferably performed in the middle of step C1, and is preferably performed immediately after the addition of the basic compound in step C1.
  • step E1 the order of addition of the amphiphilic compound having a carboxyl group to be added to the liquid to be added and the basic compound containing no metal is not particularly limited.
  • the aqueous layer and the amphiphilic compound layer having a basic compound or a carboxyl group may be separated, but in such a case, it is preferable to stir well.
  • the same method as in the case where a precipitate is generated in Step C1 described later can be used.
  • any known compound can be used without particular limitation as long as it exhibits basicity in an aqueous solution, for example, quaternary ammonium
  • quaternary ammonium examples thereof include basic organic compounds having no metal element such as compounds, amine compounds, ammonia, pyridine and derivatives thereof, and hydrazine and derivatives thereof.
  • hydrazine derivatives such as hydrazine, 1-monomethylhydrazine, 1,1-dimethylhydrazine, 1-ethyl-2-methylhydrazine and the like; primary amines such as methylamine, ethylamine, n-propylamine and ethanolamine; Examples include secondary amines such as dimethylamine and diethylamine; and tertiary amines such as trimethylamine and triethylamine.
  • hydrazine, hydrazine monohydrate, oleylamine, and the like are relatively easy to handle and have a remarkable effect on shape control because they do not contain metal impurities that adversely affect the performance of the strontium titanate fine particles obtained.
  • At least one of the hydrazine derivatives is preferred, with hydrazine being most preferred.
  • hydrazine also has a function as a strong reducing agent, it is speculated that it also has a role of preventing oxidation or the like of an amphiphilic compound having a carboxyl group.
  • Two or more types of basic compounds not containing these metal elements can be used in combination, but using hydrazine or a derivative thereof as one of them can control the shape of the resulting composite oxide nanoparticles into a cube.
  • hydrazine or a derivative thereof as one of them can control the shape of the resulting composite oxide nanoparticles into a cube.
  • amphiphilic compound having a carboxyl group As the amphiphilic compound having a carboxyl group (hereinafter referred to as an amphiphilic compound) added to the liquid to be added in step E1, the compound has a carboxyl group (hydrophilic group) and a hydrophobic group.
  • known compounds can be used without particular limitation.
  • Such compounds include saturated fatty acids such as propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, capric acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, arachidic acid, behenic acid, lignoceric acid, etc.
  • Examples include unsaturated fatty acids such as linolenic acid, stearidonic acid, eicosapentaenoic acid, docosahexaenoic acid, linoleic acid, ⁇ -linolenic acid, dihomo- ⁇ -linolenic acid, arachidonic acid, oleic acid, elaidic acid, erucic acid, nervonic acid, etc.
  • unsaturated fatty acids such as linolenic acid, stearidonic acid, eicosapentaenoic acid, docosahexaenoic acid, linoleic acid, ⁇ -linolenic acid, dihomo- ⁇ -linolenic acid, arachidonic acid, oleic acid, elaidic acid, erucic acid, nervonic acid, etc.
  • organic acids having 2 to 20 carbon atoms are preferable, and organic acids having 10 to 20 carbon atoms are more preferable. Therefore, oleic acid, decanoic acid, lauric acid, undecenoic acid, linoleic acid, and At least one of the linolenic acids is preferred, with oleic acid being most preferred.
  • Strontium titanate is presumed to be synthesized as a minute amorphous form including various plane orientations at the initial stage of growth.
  • organic amphiphilic compounds such as oleic acid
  • carboxyl groups are easily adsorbed to the (100) plane. Therefore, when crystal growth proceeds in the presence of an organic amphiphilic compound, crystals grow in a state in which the amphiphilic compound is adsorbed to the (100) plane, so crystal growth on the (111) plane preferentially proceeds. become. As a result, the growth of all (111) planes proceeds to form a vertex, and a strontium titanate fine particle whose shape is controlled to a cubic shape as a whole is synthesized.
  • the combination of an amphiphilic compound and an organic basic compound is preferably a combination of oleic acid and hydrazine.
  • the blending amount of the amphiphilic compound and the basic compound not containing a metal element is not particularly limited, but if the blending amount is too small, the particle diameter of the obtained fine particles becomes large, and if too large, the target substance is obtained It disappears.
  • FIG. 2 shows the content of the amphiphilic compound on the horizontal axis, and the content of the basic compound not containing metal on the vertical axis, where the content of the Ti component is 100 in the reaction liquid to be reacted in step D1. It is the figure which described the-plot in the place where the strontium titanate by which shape control was carried out in cube shape (or rectangular parallelepiped shape) was obtained in the example mentioned below in the figure which carried out. As illustrated, in the reaction liquid used in step D1, the number of moles X of Ti, the number Y of moles of the amphiphilic compound, and the number Z of moles of the organic basic compound containing no metal are 0 ⁇ Y /.
  • the concentration of the Ti component is preferably 0.1 mmol / L or more and 20 mol / L or less.
  • step C1 and step F1 are steps for adjusting the basicity of the reaction solution to be reacted in the step D1.
  • adjustment of the basicity is usually sufficient only in the step C1, when fine adjustment of the basicity is required, such as when the step E1 is performed after the execution of the step C1, the step F1 is preferably performed.
  • the step F1 is a step of adjusting the final basicity of the reaction solution in which the step D1 is performed, it is preferably performed immediately before the step D1.
  • the basic substance used in step F1 include aqueous potassium hydroxide solution and aqueous sodium hydroxide solution, and examples of the acidic substance include nitric acid, hydrochloric acid and the like.
  • the basic aqueous solution used in the step C1 is not particularly limited, but an aqueous solution of a basic compound having an ionization degree of 0.8 or more is desirable, and an aqueous solution of a strongly basic compound near 1 is preferably used.
  • a basic compound sodium hydroxide or potassium hydroxide is preferably exemplified.
  • the dropwise addition of the basic aqueous solution is preferably carefully added drop by drop.
  • a gel-like precipitate is generated.
  • the means for stirring or pulverizing is not particularly limited, and may be carried out manually using a stirring rod or the like, or may be dispersed by a stirrer or ultrasonic treatment.
  • the basicity is more than 10 when expressed in pH, or 0.60 mol / L or more in the molar concentration of the basic substance (the basic substance has an ionization degree of 0.8 or more)
  • the holding time of the reaction temperature is not particularly limited, but in the case of supercritical conditions, as described in the examples, the shape was controlled to a cubic shape (cuboid shape) with a holding time of 10 minutes or less. Strontium titanate fine particles can be produced.
  • step D1 is a subcritical reaction or supercritical reaction
  • the reaction container storing the reaction liquid is installed in a closed heating apparatus such as an autoclave (hereinafter referred to as an autoclave), and the subcritical condition and the supercritical condition It carries out by heating so that it may become.
  • an autoclave an autoclave
  • the reaction vessel may be gradually heated after being placed in the autoclave at room temperature, it is better to place the autoclave in an environment previously controlled to a temperature atmosphere of subcritical condition or supercritical condition, It is preferable because the heating rate is fast and the progress of the hydrothermal reaction can be suppressed as much as possible.
  • strontium titanate fine particles can be obtained.
  • Strontium titanate fine particles According to the method for producing strontium titanate fine particles of the present invention, strontium titanate fine particles having a cube or rectangular parallelepiped shape can be produced with high productivity (see Example 3 described later).
  • strontium titanate the most stable crystal structure is a cubic crystal, and in the case of a cubic crystal, the original crystal shape is a cube, and the crystal plane exposed on the surface is a ⁇ 100 ⁇ plane.
  • Example 1 FIG. 3, FIGS. 5A and 5B
  • Strontium titanate fine particles having a ⁇ 100 ⁇ plane can be produced.
  • the length of one side of the cubic or rectangular solid particle is 10 nm or more and 500 nm or less.
  • the method for producing strontium titanate fine particles according to the present invention comprises a reaction liquid containing a basic compound having a pH of 10 or more and an ionization degree of 0.8 or more containing Sr-containing aqueous solution and Ti-containing aqueous solution of 0.60 mol / L or more.
  • a subcritical or supercritical reaction method comprising the steps of adding an organic basic compound containing no metal element and an amphiphilic compound having a carboxyl group to a basic reaction solution before the reaction. ing.
  • this configuration by preferentially growing the (111) plane of the strontium titanate crystal, it is possible to manufacture strontium titanate fine particles whose shape is controlled so that the surface has a ⁇ 100 ⁇ plane with high productivity. .
  • Strontium titanate is a perovskite-type oxide that exhibits photocatalytic activity by sunlight irradiation, as described in the background art.
  • Strontium titanate is a fine particle formed by supporting a metal promoter such as Pt, Rh, Cu, etc. on the surface as described in Patent Document 1 and Patent Document 2 as an embodiment giving more efficient photocatalytic ability. It is known to be preferred.
  • Strontium titanate fine particles supporting a metal promoter suppress electron recombination with holes because electrons excited in the strontium titanate by light irradiation move rapidly to the surface due to the presence of the metal promoter on the surface. And enable highly efficient reduction reaction. Hydrogen can be efficiently generated because the reduction reaction is efficiently performed.
  • a method of supporting a metal promoter a method of supporting a water-soluble metal salt by an impregnation method, an optical electrodeposition method or the like, and then reducing and attaching a metal ion is generally used. These metals tend to cause electron trapping between the mother catalyst strontium titanate (interface).
  • the strontium titanate fine particles have a crystal face that is as lattice-matched as possible with the supported metal.
  • the lattice constant of cubic strontium titanate whose shape is controlled as described above is 0.3905 nm.
  • the lattice constant of this lattice constant and the lattice constant of the supported metal, Pt, Ir, Pd, Rh, Ru, Cu, Ni, Co, has a mismatch rate of 10% or less, and Ir, Rh is 5% or less, Pt, Pd Is less than 0.5%, it is possible to realize a highly efficient photocatalyst with few electron traps at the interface with the supported metal by using cubic strontium titanate fine particles with a high ⁇ 100 ⁇ surface fraction of the surface . Furthermore, such cubic shaped strontium titanate fine particles have a cubic shape that is the original shape of cubic crystal particles, as described also in Patent Document 6 and Patent Document 7 other than for photocatalyst application. It has various advantages such as being easy to form, forming a dense film, and so on.
  • Strontium titanate fine particles were produced under the conditions described in Table 1 as follows. First, a required amount of purified water was collected as an Sr-containing aqueous solution, and strontium nitrate was weighed to prepare a strontium nitrate aqueous solution. Moreover, titanium tetrachloride aqueous solution was prepared as Ti containing aqueous solution. Ampoule-like TiCl 4 is slowly added dropwise to purified water. At that time, it is carried out with stirring and cooling, and immediately after adjustment to the designated concentration, it is shielded from light and stored refrigerated. As a solvent water, purified water was used unless otherwise stated.
  • the aqueous solution of titanium tetrachloride was shielded from light, and immediately after preparation, it was stored in a refrigerator to maintain the state immediately after preparation, and then mixed with an aqueous solution of strontium nitrate to obtain a mixed solution.
  • the molar ratio Sr / Ti of the Sr component to the Ti component in the mixed solution was mixed so as to be 1.
  • the mixed solution is stored in a beaker, potassium hydroxide aqueous solution (15 mol / L) is dropped dropwise into the mixed solution, and then hydrazine is further dropped into the mixed solution, followed by oleic acid. It dripped. Immediately after the addition of the aqueous potassium hydroxide solution, a gel-like white precipitate was produced, so while stirring and crushing the precipitate, the aqueous potassium hydroxide solution and hydrazine, oleic acid were added dropwise, and finally the mixed solution The reaction mixture was adjusted to have a pH of 12.
  • the resulting reaction solution was charged into a reaction vessel, and the autoclave was charged into a 400 ° C. atmosphere to carry out a supercritical reaction.
  • the synthesis of strontium titanate fine particles was carried out.
  • the reaction conditions are shown in Table 1. According to each temperature, the reaction solution is put into a designated volume of Hastelloy (registered trademark) container (made by AKICO) having an inner volume of about 5 cm 3 , and it is sealed in a stainless steel pressure container.
  • the reaction was carried out for 10 minutes under the temperature conditions described in Table 1 and a pressure of 30 MPa, and then quenched.
  • FIG. 3 shows a micrograph of the microparticles obtained in Example 1
  • FIG. 4 shows a micrograph of the microparticles obtained in Comparative Example 1.
  • FIG. 2 shows the relationship between the number of moles of amphiphilic compound contained in the reaction liquid and the ratio of the organic basic compound to the number of Ti moles and whether or not the shape controlled strontium titanate fine particles can be produced Is shown.
  • FIG. 5A is an enlarged electron micrograph of the strontium titanate fine particles obtained in Example 1
  • FIG. 5B is an electron micrograph showing an analysis result of the crystal plane of the strontium titanate fine particles.
  • the present invention can be applied to the production of photocatalysts, functional materials for electronic parts such as thermoelectric materials and dielectric materials, and fine particles of strontium titanate fine particles suitable as lens materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

[Problem] To provide: a manufacturing method for strontium titanate fine particles which enables the high yield manufacture of strontium titanate fine particles having a controlled shape; and strontium titanate fine particles. [Solution] A manufacturing method for strontium titanate fine particles comprising: step A1, in which an Sr-containing aqueous solution and a Ti-containing aqueous solution are prepared; step B1, in which the Sr-containing aqueous solution and the Ti-containing aqueous solution are mixed to prepare a mixed solution; step C1, in which a basic compound is added to the mixed solution to adjust the mixed solution so as to be basic, and a reaction solution is prepared; a step D1, in which the reaction solution is subjected to a sub-critical or super-critical reaction; and a step E1, in which, prior to the implementation of step D1, an amphipathic compound, which has a carboxyl group, and an organic basic compound, which does not contain a metallic element, are added to the Sr-containing aqueous solution, the Ti-containing aqueous solution, the mixed solution, or the reaction solution. The pH of the reaction solution used in step D1 is greater than 10.

Description

チタン酸ストロンチウム微粒子の製造方法およびチタン酸ストロンチウム微粒子Method of producing strontium titanate fine particles and strontium titanate fine particles
 本発明は、誘電材料や光触媒の母触媒として好適な形状制御されたチタン酸ストロンチウム微粒子を製造する方法に関する。 The present invention relates to a method for producing shape-controlled strontium titanate fine particles suitable as a mother catalyst for dielectric materials and photocatalysts.
 チタン酸ストロンチウム(SrTiO)は、誘電特性、熱電特性、光触媒能、高屈折率性など、機能性材料として様々な用途への展開が期待される複合酸化物である。近年のエネルギー問題、環境問題の観点から,光触媒能が注目されており、チタン酸ストロンチウムは、光照射下での高い安定性や光還元力の強さから、太陽光のみを利用した水素製造を可能にする光触媒として期待が高まっている。 Strontium titanate (SrTiO 3 ) is a composite oxide that is expected to be developed into various applications as functional materials, such as dielectric properties, thermoelectric properties, photocatalytic ability, and high refractive index properties. Photocatalytic activity has attracted attention from the viewpoints of energy and environmental problems in recent years, and strontium titanate produces hydrogen using only sunlight because of its high stability under light irradiation and the strength of photoreduction power. The expectation is growing as a photocatalyst that enables it.
 水素生成光触媒としては、太陽光の多くの割合を占める可視光に対して活性を有することが好ましい。可視光活性を有する高効率な水素生成を可能なチタン酸ストロンチウム光触媒として、Pt,Rh,Cu等の金属を助触媒として担持させてなるチタン酸ストロンチウムや、更に、RhやIrをドープしたチタン酸ストロンチウム等が提案されている(特許文献1,特許文献2等)。 As a hydrogen generation photocatalyst, it is preferable to have activity with respect to visible light which occupies a large proportion of sunlight. Strontium titanate with a metal such as Pt, Rh, or Cu supported as a co-catalyst as a strontium titanate photocatalyst capable of highly efficient hydrogen generation with visible light activity, and further, titanium oxide doped with Rh or Ir Strontium etc. are proposed (patent document 1, patent document 2 grade | etc.,).
 一方、様々な機能性材料において、微粒子(ナノ粒子)材料は、特有の優れた特性・機能を発現しうることから、製品の高精度化及び小型化、軽量化を実現できるものとして期待されており、金属酸化物材料においてもナノ粒子化技術が検討されている。特許文献3には、排ガス浄化触媒材料として知られているセリアを、触媒活性の高い結晶面の比率の多い立方体形状のナノ結晶粒子として製造する方法として、有機物質の共存下における高温高圧の水熱合成法、好ましくは超臨界合成により製造する方法が提案されている。 On the other hand, among various functional materials, fine particle (nano particle) materials are expected to be capable of realizing high precision, miniaturization, and weight reduction of products because they can exhibit unique excellent properties and functions. Also, in the case of metal oxide materials, nanoparticulate technology is being studied. Patent Document 3 discloses high-temperature, high-pressure water in the coexistence of an organic substance as a method for producing ceria, which is known as an exhaust gas purification catalyst material, as cube-shaped nanocrystal particles having a high proportion of crystal faces with high catalytic activity. Methods have been proposed which are produced by thermal synthesis, preferably by supercritical synthesis.
 特許文献4,5には、チタン酸化物微粒子又は微粉末を、高温、高圧の水熱合成により製造する方法が記載されており、水熱合成又は亜臨界・超臨界の反応場である水溶液中において合成反応を実施しつつ合成される微粒子と有機修飾剤と反応させることにより、ナノサイズの結晶性の高い粒子を、凝集を抑制して製造できることが報告されている。しかしながら、これらの文献には、特許文献3のように特定の結晶面を有するように形状制御することについては記載されておらず、実際に製造した例は単純酸化物のみであり、ペロブスカイト型酸化物などの複合酸化物については実施例がない。
 同じチタン酸化物であっても、単純酸化物と複合酸化物とでは合成反応メカニズムが異なり、単純酸化物の製造方法を複合酸化物にそのまま適用することは通常難しい。
Patent Documents 4 and 5 describe a method for producing titanium oxide fine particles or fine powder by high temperature, high pressure hydrothermal synthesis, and in an aqueous solution which is a hydrothermal synthesis or a subcritical / supercritical reaction site. It has been reported that nano-sized highly crystalline particles can be produced by suppressing aggregation by reacting fine particles synthesized while performing a synthesis reaction with an organic modifier. However, these documents do not describe controlling the shape so as to have a specific crystal face as in Patent Document 3, and an example actually manufactured is only a simple oxide, and a perovskite oxide There is no example about complex oxides, such as a thing.
Even for the same titanium oxide, the synthesis reaction mechanism is different between the simple oxide and the complex oxide, and it is usually difficult to apply the manufacturing method of the simple oxide to the complex oxide as it is.
 チタン酸ストロンチウムの微粒子の製造方法は、固相法、フラックス法、ゾルゲル法、水熱合成法等があるが、特許文献3~5と同様、水熱合成法は、ナノオーダーの微粒子も合成することができる手法であることが知られている(特許文献6~7)。 There are solid phase method, flux method, sol-gel method, hydrothermal synthesis method etc. as the manufacturing method of the fine particles of strontium titanate, but similar to the patent documents 3-5, hydrothermal synthetic method also synthesizes nano order fine particles It is known that the method can be performed (Patent Documents 6 to 7).
 特許文献6には、水酸化ストロンチウムとチタンペルオキソ乳酸アンモニウム等の水溶性チタン化合物とを、オレイン酸等の両親媒性化合物及びヒドラジン等の金属元素非含有塩基性化合物存在下で、200℃、強アルカリ条件で水熱合成することにより、結晶形状が制御されたチタン酸ストロンチウムナノ粒子を凝集させることなく製造可能であることが記載されている。 Patent Document 6 discloses that strontium hydroxide and a water-soluble titanium compound such as ammonium titanium peroxolactate are strong at 200 ° C. in the presence of an amphiphilic compound such as oleic acid and a metal element-free basic compound such as hydrazine. It is described that by hydrothermal synthesis under alkaline conditions, it is possible to produce strontium titanate nanoparticles with controlled crystal shape without aggregation.
 また、特許文献7には、キュービック状チタン酸ストロンチウムナノ結晶を基板上に整列させる方法、及びナノ結晶からなる膜を作製する方法が開示されており、段落[0015]に、チタン酸ストロンチウムのナノ結晶の合成において、オレイン酸等の有機カルボン酸の分子が(111)面に付着した状態で結晶成長が進行するため、(111)面の結晶成長が有機カルボン酸分子に邪魔されずに進んで8個全ての(111)面の成長が進んで頂点を形成し、全体として立方形状になりやすいことが記載されている。 Further, Patent Document 7 discloses a method of aligning cubic strontium titanate nanocrystals on a substrate and a method of producing a film composed of nanocrystals, and in paragraph [0015], nano particles of strontium titanate are disclosed. In crystal synthesis, crystal growth proceeds with molecules of an organic carboxylic acid such as oleic acid adhering to the (111) plane, so crystal growth on the (111) plane proceeds without being interrupted by organic carboxylic acid molecules. It is described that the growth of all eight (111) planes proceeds to form a vertex and tends to have a cubic shape as a whole.
特許4076793号公報Patent No. 4076793 特許3440295号公報Patent No. 3440295 特開2007―217265号公報JP 2007-217265 A 特許第3925932号号公報Patent No. 3925932 gazette 特許第4336856号号公報Patent No. 4336856 gazette 特開2011-68500号公報JP 2011-68500 A 特開2012-188335号公報JP 2012-188335 A 特許第2709222号号公報Patent No. 2709222 特公平3-39016号公報Japanese Examined Patent Publication 3-39016
 特許文献6及び特許文献7によれば、チタン酸ストロンチウム微粒子を立方体形状に制御して製造可能であるが、特許文献6の方法では、200℃における水熱反応を24時間、特許文献7については、200℃における水熱反応を72時間実施する必要があり、いずれも合成時間が長時間であり生産性が非常に悪いという問題がある。 According to Patent Document 6 and Patent Document 7, although it is possible to control the strontium titanate fine particles into a cubic shape and manufacture, the method of Patent Document 6 makes the hydrothermal reaction at 200 ° C. for 24 hours, and for Patent Document 7 It is necessary to carry out the hydrothermal reaction at 200 ° C. for 72 hours, and all have problems that the synthesis time is long and the productivity is very bad.
 水熱合成法以外においても、チタン酸ストロンチウムのナノ粒子化についての報告はあるが、特定の結晶面を有する立方体(又は直方体)形状に形状制御する方法については記載も示唆もされていない(特許文献8、特許文献9)。 Although there is a report on the formation of nanoparticles of strontium titanate other than the hydrothermal synthesis method, there is no description or suggestion about a method of controlling the shape to a cubic (or rectangular parallelepiped) shape having a specific crystal face (patented) Literature 8, Patent Literature 9).
 本発明は上記事情に鑑みてなされたものであり、特定の結晶面を有する立方体(又は直方体)形状に形状制御されたチタン酸ストロンチウム微粒子を生産性良く製造する方法、及び、それを用いて得られる形状制御されたチタン酸ストロンチウム微粒子を提供することを目的とするものである。 The present invention has been made in view of the above circumstances, and is a method of producing strontium titanate fine particles whose shape is controlled in a cube (or rectangular parallelepiped) shape having a specific crystal plane with high productivity, and obtained using the same. It is an object of the present invention to provide shape-controlled strontium titanate fine particles.
 本発明のチタン酸ストロンチウム微粒子の第1の製造方法は、
 Sr含有水溶液とTi含有水溶液をそれぞれ調製する工程A1と、
 調製したSr含有水溶液と、Ti含有水溶液とを混合して混合溶液を調製する工程B1と、
 この混合溶液中に塩基性化合物を加えて混合溶液を塩基性に調整して反応液を調製する工程C1と、
 この反応液を亜臨界反応又は超臨界反応させる工程D1と、
 工程D1を実施する前に、金属元素を含まない有機塩基性化合物と、カルボキシル基を有する両親媒性化合物とを,Sr含有水溶液,Ti含有水溶液,混合溶液,又は反応液に加える工程E1とを有しており、工程D1で用いる反応液のpHが10超となっている。
The first production method of the strontium titanate fine particles of the present invention is
Preparing a Sr-containing aqueous solution and a Ti-containing aqueous solution respectively;
Preparing the mixed solution by mixing the prepared Sr-containing aqueous solution with the Ti-containing aqueous solution, B1;
A basic compound is added to the mixed solution to adjust the mixed solution to be basic to prepare a reaction solution C1;
A subcritical reaction or supercritical reaction of the reaction solution D1;
Prior to carrying out step D1, step E1 of adding an organic basic compound containing no metal element and an amphiphilic compound having a carboxyl group to an Sr-containing aqueous solution, a Ti-containing aqueous solution, a mixed solution or a reaction solution is The pH value of the reaction solution used in step D1 is more than 10.
 工程E1において、「工程D1を実施する前」とは、工程D1を実施する前に存在する、工程全て及び工程間の全てを意味する。すなわち、工程A1から工程C1の各工程中または工程A1から工程D1の各工程間を意味するものとする。工程E1は1回だけ実施してもよいし、複数回実施してもよい。 In the step E1, “before performing the step D1” means all the steps and all the steps existing before the step D1 is performed. That is, it means between each process of process A1 to process C1 or between processes A1 to process D1. Step E1 may be performed only once or may be performed multiple times.
 本明細書において、「反応液を反応させる」とは、反応液中に含まれる単数又は複数の成分を反応させることを意味する。 As used herein, "reacting the reaction solution" means reacting one or more components contained in the reaction solution.
 また、本明細書中、用語「微粒子」とは、その平均粒子径が1μm未満のサイズのものを意味するものとし、好ましくはナノ粒子である。該ナノ粒子は、一般的にはその平均粒子径が200nm以下のサイズのものを指していてよいが, 好ましくは200nm以下のサイズのものが挙げられる。ある場合には、該ナノ粒子は、その平均粒子径が100nm以下のサイズのもの、また別の場合にはその平均粒子径が50nm以下のサイズのものであってよい。また好適な場合には、該ナノ粒子は、その平均粒子径が20nm以下のサイズのもの、また別の場合にはその平均粒子径が10nm以下のサイズのものあるいは5nm以下のサイズのものであってよい。また好適な場合には、該ナノ粒子の粒子サイズは均一なものが好ましいが、一定の割合でその粒子サイズの異なるものの混合しているものが好ましい場合もある。 Further, in the present specification, the term "fine particles" means particles having an average particle size of less than 1 μm, preferably nanoparticles. The nanoparticles may generally refer to those having an average particle size of 200 nm or less, preferably 200 nm or less. In some cases, the nanoparticles may be of a size with an average particle size of 100 nm or less, and in other cases with a size of 50 nm or less. Also preferably, the nanoparticles are of a size whose average particle size is 20 nm or less, and in other cases whose average particle size is 10 nm or less or 5 nm or less You may Also, in a preferred case, the particle size of the nanoparticles is preferably uniform, but in some cases, it may be preferable to mix particles having different particle sizes at a certain ratio.
 平均粒子径の測定は当該分野で知られた方法によりそれを行うことができ、例えば、電子顕微鏡(TEM、SEM)、吸着法、光散乱法、X線小角散乱(SAXS)などにより測定できる。電子顕微鏡観察において、粒子径分布が広い場合には、視野内に入った粒子が全粒子を代表しているか否かに注意を払う必要がある。 The average particle size can be measured by a method known in the art, and can be measured by, for example, an electron microscope (TEM, SEM), an adsorption method, a light scattering method, X-ray small angle scattering (SAXS) or the like. In electron microscopy, when the particle size distribution is wide, it is necessary to pay attention to whether or not the particles within the field of view represent all particles.
 また、本明細書において、水の臨界点(温度374℃、圧力22MPa)より上の温度、圧力の領域の水を超臨界水、温度350℃付近の臨界点近傍の領域の水を亜臨界水とし、超臨界水中の反応を超臨界反応、亜臨界水中の反応を亜臨界反応とする。 In the present specification, water above the critical point of water (temperature 374 ° C., pressure 22 MPa) is supercritical water, and water at a temperature near 350 ° C. near critical point is subcritical water The reaction in supercritical water is a supercritical reaction, and the reaction in subcritical water is a subcritical reaction.
 また、工程D1を実施する前に、塩基性物質又酸性物質をSr含有水溶液,Ti含有水溶液,混合溶液,又は反応液に加える工程F1を有していてもよい。 Moreover, you may have the process F1 which adds a basic substance or an acidic substance to Sr containing aqueous solution, Ti containing aqueous solution, mixed solution, or a reaction liquid, before implementing the process D1.
 工程D1で用いる反応液のpHは11以上であることが好ましい。 The pH of the reaction solution used in step D1 is preferably 11 or more.
 本発明のチタン酸ストロンチウム微粒子の第2の製造方法は、
 Sr含有水溶液とTi含有水溶液をそれぞれ調製する工程A1と、
 調製したSr含有水溶液と、Ti含有水溶液とを混合して混合溶液を調製する工程B1と、
 この混合溶液中に塩基性化合物を加えて混合溶液を塩基性に調整して反応液を調製する工程C1と、
 この反応液を亜臨界反応又は超臨界反応させる工程D1と、
 工程D1を実施する前に、金属元素を含まない有機塩基性化合物と、カルボキシル基を有する両親媒性化合物とを,Sr含有水溶液,Ti含有水溶液,混合溶液,又は反応液に加える工程E1とを有しており、
 工程C1において、塩基性化合物の電離度が0.8以上であり、
 工程D1で用いる反応液の塩基性化合物の濃度が0.60mol/L以上となっている。
The second production method of the strontium titanate fine particles of the present invention is
Preparing a Sr-containing aqueous solution and a Ti-containing aqueous solution respectively;
Preparing the mixed solution by mixing the prepared Sr-containing aqueous solution with the Ti-containing aqueous solution, B1;
A basic compound is added to the mixed solution to adjust the mixed solution to be basic to prepare a reaction solution C1;
A subcritical reaction or supercritical reaction of the reaction solution D1;
Prior to carrying out step D1, step E1 of adding an organic basic compound containing no metal element and an amphiphilic compound having a carboxyl group to an Sr-containing aqueous solution, a Ti-containing aqueous solution, a mixed solution or a reaction solution is Have,
In the step C1, the ionization degree of the basic compound is 0.8 or more,
The concentration of the basic compound in the reaction solution used in step D1 is 0.60 mol / L or more.
 第2の製造方法において、工程D1で用いる反応液の塩基性化合物の濃度は0.70mol/L以上であることが好ましい。 In the second production method, the concentration of the basic compound in the reaction solution used in step D1 is preferably 0.70 mol / L or more.
 本発明のチタン酸ストロンチウム微粒子の第1及び第2の製造方法において、両親媒性化合物は炭素数2以上20以下の有機酸であることが好ましく、炭素数10以上20以下の有機酸であることがより好ましい。かかる両親媒性化合物としては、オレイン酸,デカン酸,ラウリン酸,ウンデセン酸,リノール酸、及びリノレン酸のうち少なくとも1種が挙げられる。 In the first and second production methods of the strontium titanate fine particles of the present invention, the amphiphilic compound is preferably an organic acid having 2 to 20 carbon atoms, and is an organic acid having 10 to 20 carbon atoms. Is more preferred. Such amphiphilic compounds include at least one of oleic acid, decanoic acid, lauric acid, undecenoic acid, linoleic acid, and linolenic acid.
 また、有機塩基性化合物は、アミン化合物,アンモニア,ヒドラジン,及びこれらの誘導体のうち少なくとも1種であることが好ましく、ヒドラジン,ヒドラジン1水和物,オレイルアミン,及びヒドラジン誘導体のうち少なくとも1種であることがより好ましい。 The organic basic compound is preferably at least one of an amine compound, ammonia, hydrazine, and derivatives thereof, and is at least one of hydrazine, hydrazine monohydrate, oleylamine, and hydrazine derivatives. Is more preferred.
 両親媒性化合物と有機塩基性化合物の組み合わせは、オレイン酸とヒドラジンの組み合わせが好ましい。 The combination of an amphiphilic compound and an organic basic compound is preferably a combination of oleic acid and hydrazine.
 工程D1で用いる反応液中において、前記Tiのモル数Xと、両親媒性化合物のモル数Yと、有機塩基性化合物のモル数Zは、0<Y/X≦6及び0≦Z/X≦8を満足することが好ましく、1≦Y/X≦4を更に満足することがより好ましく、0≦Z/X≦4を更に満足することが最も好ましい。 In the reaction liquid used in step D1, the number of moles of Ti X, the number of moles of amphiphilic compound Y, and the number of moles of organic basic compound Z are 0 <Y / X ≦ 6 and 0 ≦ Z / X. It is preferable to satisfy ≦ 8, more preferably 1 ≦ Y / X ≦ 4, and most preferably 0 ≦ Z / X ≦ 4.
 工程D1で用いる反応液中において、Ti成分の濃度は0.1mmol/L以上20mol/L以下であることが好ましい。 In the reaction liquid used in step D1, the concentration of the Ti component is preferably 0.1 mmol / L or more and 20 mol / L or less.
 Sr含有水溶液とTi含有水溶液を調製する工程A1において、Sr含有水溶液としては、ストロンチウムの酢酸塩、又は水酸化物もしくは硝酸塩を水に溶解させてなるものが好ましく、Ti含有水溶液としては、四塩化チタン水溶液であることが好ましい。 In the step A1 of preparing the Sr-containing aqueous solution and the Ti-containing aqueous solution, as the Sr-containing aqueous solution, a solution obtained by dissolving strontium acetate, hydroxide or nitrate in water is preferable. It is preferable that it is a titanium aqueous solution.
 第1の製造方法及び第2の製造方法において、混合溶液を調製する工程B1で用いるTi含有水溶液は、Ti成分の主成分として、TiOを含まないものであることが好ましく、とりわけルチル型TiOを含んでいないことが好ましい。
 本明細書において、「主成分」とは、含量50質量%以上の成分を意味する。
In the first production method and the second production method, the Ti-containing aqueous solution used in step B1 of preparing the mixed solution is preferably one not containing TiO 2 as a main component of the Ti component, and in particular, rutile TiO 2 It is preferable not to contain 2 .
In the present specification, the "main component" means a component having a content of 50% by mass or more.
 工程B1において、SrとTiのモル比Sr/Tiが1以上となるように混合溶液を調製することが好ましい。また、工程B1において、Ti成分の主成分としてルチル型TiOを含んでいないTi含有水溶液を用いることが好ましい。 In step B1, it is preferable to prepare a mixed solution so that the molar ratio Sr / Ti of Sr and Ti is 1 or more. In the step B1, it is preferable to use the Ti-containing aqueous solution not containing the rutile type TiO 2 as the main component of a Ti component.
 工程C1において、塩基性化合物は、水酸化ナトリウム又は水酸化カリウムが好ましい。また、工程C1において反応液を塩基性に調整する間に発生する固形物は粉砕することが好ましい。 In the step C1, the basic compound is preferably sodium hydroxide or potassium hydroxide. Moreover, it is preferable to grind | pulverize the solid substance generate | occur | produced while adjusting a reaction liquid in process C1 to basicity.
 工程D1で用いる反応液は、Ti(OH)及び/又はHTiO イオンをTi成分の主成分として含んでなる反応液であることが好ましい。
 また、工程D1において、亜臨界反応又は超臨界反応における反応温度の保持時間は10分以内とすることができる。
The reaction solution used in step D1 is preferably a reaction solution containing Ti (OH) 4 and / or HTiO 3 ions as the main component of the Ti component.
In addition, in step D1, the retention time of the reaction temperature in the subcritical reaction or supercritical reaction can be 10 minutes or less.
 本発明のチタン酸ストロンチウム微粒子は、上記本発明のチタン酸ストロンチウム微粒子の製造方法により製造されてなり、形状が立方体若しくは直方体である。
 本明細書において、「立方体若しくは直方体であるチタン酸ストロンチウム微粒子」とは、立方体又は直方体の頂点が面取りされた不完全な形状のものも含むこととする。このとき、面取りの割合は、立方体若しくは直方体の各面において、面積の20%以内とする。面取り部は、辺の長さから定義した。その方法は、TEMによって粒子を直接観察し、立方体状の粒子の一辺の長さと、面取り部の長さを測定し、一辺に対する割合を算出した。かかるチタン酸ストロンチウム微粒子は、この立方体若しくは直方体の表面に露出されている結晶面の85%以上が{100}面であることが好ましい。また、立方体若しくは直方体の1辺の長さが、10nm以上500nm以下であることが好ましい。
The strontium titanate fine particles of the present invention are produced by the method for producing strontium titanate fine particles of the present invention described above, and are cubic or rectangular in shape.
In the present specification, the “cubate or cuboid strontium titanate fine particle” also includes an incomplete shape in which the apex of the cube or cuboid is chamfered. At this time, the chamfering ratio is within 20% of the area in each face of a cube or a rectangular parallelepiped. The chamfer was defined from the length of the side. In the method, particles were observed directly by TEM, and the length of one side of the cubic particle and the length of the chamfer were measured, and the ratio to one side was calculated. In such strontium titanate fine particles, 85% or more of the crystal plane exposed on the surface of the cube or rectangular parallelepiped is preferably a {100} plane. The length of one side of a cube or a rectangular solid is preferably 10 nm or more and 500 nm or less.
 本発明のチタン酸ストロンチウム微粒子の製造方法は、Sr含有水溶液とTi含有水溶液とを含むpH10超、若しくは、電離度0.8以上の塩基性化合物を0.60mol/L以上含んでなる反応液を亜臨界又は超臨界反応させる方法であって、反応前に、塩基性の反応液中に、金属元素を含まない有機塩基性化合物と、カルボキシル基を有する両親媒性化合物とを加える工程を有している。かかる構成によれば、チタン酸ストロンチウム結晶の(111)面を優先的に成長させて、表面が{100}面を有するように形状制御されたチタン酸ストロンチウム微粒子を生産性良く製造することができる。 The method for producing strontium titanate fine particles according to the present invention comprises a reaction liquid containing a basic compound having a pH of 10 or more and an ionization degree of 0.8 or more containing Sr-containing aqueous solution and Ti-containing aqueous solution of 0.60 mol / L or more. A subcritical or supercritical reaction method comprising the steps of adding an organic basic compound containing no metal element and an amphiphilic compound having a carboxyl group to a basic reaction solution before the reaction. ing. According to this configuration, by preferentially growing the (111) plane of the strontium titanate crystal, it is possible to manufacture strontium titanate fine particles whose shape is controlled so that the surface has a {100} plane with high productivity. .
本発明のチタン酸ストロンチウム微粒子の製造方法のフロー図Flow chart of the method for producing strontium titanate fine particles of the present invention 反応液中に含まれる両親媒性化合物のモル数及び有機塩基性化合物のTiモル数に対する割合と形状制御されたチタン酸ストロンチウム微粒子の製造可否の関係を示す図。The figure which shows the relationship between the number-of-moles of the amphiphilic compound contained in a reaction liquid, the ratio with respect to Ti mole number of an organic basic compound, and the manufacture availability of shape-controlled strontium titanate microparticles | fine-particles. 実施例1で得られたチタン酸ストロンチウム微粒子の電子顕微鏡写真Electron micrograph of the strontium titanate fine particles obtained in Example 1 比較例1で得られた不定形チタン酸ストロンチウム微粒子の電子顕微鏡写真Electron micrograph of amorphous strontium titanate fine particles obtained in Comparative Example 1 実施例1で得られたチタン酸ストロンチウム微粒子の拡大電子顕微鏡写真Magnified electron micrograph of the strontium titanate fine particles obtained in Example 1 実施例1で得られたチタン酸ストロンチウム微粒子の結晶面の解析結果を示す電子顕微鏡写真Electron micrograph showing analysis results of crystal face of strontium titanate fine particles obtained in Example 1
「チタン酸ストロンチウム微粒子の製造方法」
 図面を参照して、本発明にかかる一実施形態のチタン酸ストロンチウム微粒子の製造方法について説明する。図1は本実施形態のチタン酸ストロンチウム微粒子の製造方法のフロー図を示したものである。
"Production method of strontium titanate fine particles"
With reference to the drawings, a method of manufacturing strontium titanate particles according to an embodiment of the present invention will be described. FIG. 1 shows a flow diagram of the method for producing strontium titanate fine particles of the present embodiment.
 既に述べたように、チタン酸ストロンチウム微粒子を立方体形状に制御する方法として、特許文献6や特許文献7のように、200℃における水熱反応を24時間以上実施する方法が挙げられている。
 一方で、特許文献4等のように、単純酸化物である二酸化チタン微粒子を亜臨界又は超臨界反応により、結晶性のよい微粒子を凝集させることなく得られることが記載されている。
 特許文献3では、単純酸化物であるセリア微粒子を、有機物質の共存下における高温高圧の水熱合成法、好ましくは超臨界合成により立方体形状に制御して製造している。
As described above, as a method of controlling the strontium titanate fine particles into a cubic shape, a method of carrying out a hydrothermal reaction at 200 ° C. for 24 hours or more as in Patent Document 6 and Patent Document 7 is mentioned.
On the other hand, as described in Patent Document 4 and the like, it is described that titanium dioxide fine particles, which are simple oxides, can be obtained without aggregation of fine crystalline particles by a subcritical or supercritical reaction.
In Patent Document 3, ceria fine particles, which are simple oxides, are manufactured to be controlled into a cubic shape by a high temperature / high pressure hydrothermal synthesis method, preferably supercritical synthesis, in the coexistence of an organic substance.
 特許文献3には、反応場を200℃の水熱反応から、超臨界に変化させることにより、製造された微粒子中における、(001)面及びそれと等価な面からなる立方体状のセリア微粒子の割合が、70%から80%に上昇することが記載されている。一方で、水熱反応場と超臨界反応場とは反応時間は変化させておらず、この反応場の違いにより反応時間を短縮させられるということは記載も示唆もされていない。また、チタン酸ストロンチウムは、複合酸化物であることから、結晶構造がセリアや二酸化チタン等の単純酸化物に比して複雑であるため、単純酸化物と同じメカニズムで反応は進行せず、同じ超臨界反応場であっても、粒子の形状制御の製造条件としてはより厳しい条件が求められると考えられる。 In Patent Document 3, the ratio of cubic ceria fine particles having a (001) plane and a plane equivalent thereto in the produced fine particles by changing the reaction field from the hydrothermal reaction at 200 ° C. to supercritical. Is stated to rise from 70% to 80%. On the other hand, the reaction time is not changed between the hydrothermal reaction site and the supercritical reaction site, and it is neither described nor suggested that the reaction time can be shortened by the difference in the reaction site. In addition, since strontium titanate is a complex oxide, its crystal structure is complicated compared to simple oxides such as ceria and titanium dioxide, so the reaction does not proceed by the same mechanism as simple oxides, and is the same. Even in a supercritical reaction site, more severe conditions are considered to be required as production conditions for shape control of particles.
 発明者らは、反応液の水が臨界点を超えると物質の溶解度が急激に低下し、結晶核の生成及びその成長が急速に進むと考えられることから、特許文献6及び特許文献7において、反応場を超臨界として粒子合成を試み、より短時間で立方体形状(直方体形状も含む)に形状制御されたチタン酸ストロンチウム微粒子を製造可能かどうか確認した(後記比較例4,5)。その結果、得られた粒子は不定形であり、合成時間の短縮はおろか形状制御をすることすらできなかった。 In Patent Documents 6 and 7, the inventors of the present invention are considered to cause the solubility of the material to rapidly decrease when the water of the reaction solution exceeds the critical point, and the formation of crystal nuclei and the growth thereof rapidly proceed. The particle synthesis was attempted with the reaction field as supercritical, and it was confirmed whether production of strontium titanate fine particles whose shape was controlled to a cubic shape (including a rectangular shape) in a short time was possible (Comparative Examples 4 and 5 described later). As a result, the obtained particles were indeterminate, and it was not possible to control the shape or to reduce the synthesis time.
 発明者らが、比較例4,5において形状制御ができなかった理由について鋭意検討した結果、Ti源として用いているTi錯体は、Ti原子が周りを大きな錯体配位子により強固に囲われてなる形で存在しているため、錯体配位子によりTiが保護されて、速い合成速度について行けず、複合酸化物を良好に形成できないためであると推察した。 As a result of intensive investigations by the inventors about the reason why shape control could not be performed in Comparative Examples 4 and 5, the Ti complex used as a Ti source is surrounded by a large complex ligand and a Ti atom is tightly enclosed. Since it exists in the following form, Ti is protected by the complex ligand, and it can not keep up with a high synthesis rate, and it is presumed that the complex oxide can not be formed well.
 そこで、特許文献6や特許文献7において、チタン源として四塩化チタン等の錯体ではないチタン化合物を用い、チタン酸ストロンチウム微粒子の製造を試みた。その結果、実施例に記載されているように、反応場を亜臨界又は超臨界として、立方体形状(直方体形状も含む)に形状制御されたチタン酸ストロンチウム微粒子を製造することに成功した。また、その反応時間は10分程度と短く、特許文献6では24時間を要していたのに比して大幅な反応時間の短縮を実現した。 Therefore, in Patent Document 6 and Patent Document 7, manufacture of strontium titanate fine particles was tried using a titanium compound which is not a complex such as titanium tetrachloride as a titanium source. As a result, as described in the examples, the reaction field was made subcritical or supercritical, and it succeeded in manufacturing strontium titanate fine particles whose shape is controlled to a cubic shape (including a rectangular solid shape). In addition, the reaction time was as short as about 10 minutes, and a significant reduction in reaction time was realized as compared with the case where 24 hours was required in Patent Document 6.
 すなわち、本発明にかかるチタン酸ストロンチウム微粒子の第1の製造方法は、
 Sr含有水溶液とTi含有水溶液をそれぞれ調製する工程A1と、
 調製したSr含有水溶液と、Ti含有水溶液とを混合して混合溶液を調製する工程B1と、
 この混合溶液中に塩基性化合物を加えて混合溶液を塩基性に調整して反応液を調製する工程C1と、
 この反応液を亜臨界反応又は超臨界反応させる工程D1と、
 工程D1を実施する前に、金属元素を含まない有機塩基性化合物と、カルボキシル基を有する両親媒性化合物とを,Sr含有水溶液,Ti含有水溶液,混合溶液,又は反応液に加える工程E1とを有しており、工程D1で用いる反応液のpHが10超となっている。
That is, according to the first method for producing strontium titanate fine particles of the present invention,
Preparing a Sr-containing aqueous solution and a Ti-containing aqueous solution respectively;
Preparing the mixed solution by mixing the prepared Sr-containing aqueous solution with the Ti-containing aqueous solution, B1;
A basic compound is added to the mixed solution to adjust the mixed solution to be basic to prepare a reaction solution C1;
A subcritical reaction or supercritical reaction of the reaction solution D1;
Prior to carrying out step D1, step E1 of adding an organic basic compound containing no metal element and an amphiphilic compound having a carboxyl group to an Sr-containing aqueous solution, a Ti-containing aqueous solution, a mixed solution or a reaction solution is The pH value of the reaction solution used in step D1 is more than 10.
 また、本発明にかかるチタン酸ストロンチウム微粒子の第2の製造方法は、
 Sr含有水溶液とTi含有水溶液をそれぞれ調製する工程A1と、
 調製したSr含有水溶液と、Ti含有水溶液とを混合して混合溶液を調製する工程B1と、
 この混合溶液中に塩基性化合物を加えて混合溶液を塩基性に調整して反応液を調製する工程C1と、
 この反応液を亜臨界反応又は超臨界反応させる工程D1と、
 工程D1を実施する前に、金属元素を含まない有機塩基性化合物と、カルボキシル基を有する両親媒性化合物とを,Sr含有水溶液,Ti含有水溶液,混合溶液,又は反応液に加える工程E1とを有しており、
 工程C1において、塩基性化合物の電離度が0.8以上であり、
 工程D1で用いる反応液の前記塩基性化合物の濃度が0.60mol/L以上となっている。
Further, according to a second method of producing strontium titanate fine particles of the present invention,
Preparing a Sr-containing aqueous solution and a Ti-containing aqueous solution respectively;
Preparing the mixed solution by mixing the prepared Sr-containing aqueous solution with the Ti-containing aqueous solution, B1;
A basic compound is added to the mixed solution to adjust the mixed solution to be basic to prepare a reaction solution C1;
A subcritical reaction or supercritical reaction of the reaction solution D1;
Prior to carrying out step D1, step E1 of adding an organic basic compound containing no metal element and an amphiphilic compound having a carboxyl group to an Sr-containing aqueous solution, a Ti-containing aqueous solution, a mixed solution or a reaction solution is Have,
In the step C1, the ionization degree of the basic compound is 0.8 or more,
The concentration of the basic compound in the reaction solution used in step D1 is 0.60 mol / L or more.
 第1の製造方法と第2の製造方法とは、工程C1において用いる塩基性化合物についての規定と、工程D1で用いる反応液の塩基性度の規定のしかたが異なっている以外は同様である。第1の製造方法において、工程C1において用いる塩基性化合物の限定は特にされていないが、第2の製造方法と同様に、電離度が0.8以上の塩基性化合物を用いることが好ましい。
 以下、各工程について、図1を参照して説明する。
The first production method and the second production method are the same except that the definition of the basic compound used in step C1 and the definition of the basicity of the reaction liquid used in step D1 are different. In the first production method, the basic compound used in the step C1 is not particularly limited, but it is preferable to use a basic compound having an ionization degree of 0.8 or more as in the second production method.
Each step will be described below with reference to FIG.
 <工程(A1)>
 工程A1は、Sr含有水溶液とTi含有水溶液をそれぞれ調製する工程である。
 Sr含有水溶液としては特に制限されないが、Srの水酸化物、酸化物、塩化物,フッ化物,ヨウ化物等のハロゲン化物、硝酸塩,炭酸塩,硫酸塩等の無機酸塩、酢酸塩,シュウ酸塩,乳酸塩等の有機酸塩等を水に溶解させてなるものが挙げられるが、酢酸塩、又は水酸化物もしくは硝酸塩のいずれかを水に溶解させてなるものが好ましい。
<Step (A1)>
Step A1 is a step of preparing an Sr-containing aqueous solution and a Ti-containing aqueous solution, respectively.
The aqueous solution containing Sr is not particularly limited, but hydroxides of Sr, oxides, chlorides, fluorides, halides such as iodide, inorganic salts such as nitrates, carbonates, sulfates, acetates, oxalic acid A salt, an organic acid salt such as a lactic acid salt, etc. may be dissolved in water, and an acetate, a hydroxide or a nitrate may be dissolved in water.
 Sr含有水溶液の調製方法は特に制限されず、物質に応じた公知の方法を適宜採用することができる。 The method for preparing the Sr-containing aqueous solution is not particularly limited, and any known method depending on the substance can be adopted as appropriate.
 Ti含有水溶液としては特に制限されないが、Tiの水酸化物、酸化物、塩化物,フッ化物,ヨウ化物等のハロゲン化物、硝酸塩,炭酸塩,硫酸塩等の無機酸塩、酢酸塩,シュウ酸塩,乳酸塩等の有機酸塩等を水に溶解させてなるものが挙げられるが、塩化物である四塩化チタンが好ましい。
 Ti含有水溶液の調製方法は特に制限されず、物質に応じた公知の方法を適宜採用することができる。
The aqueous solution containing Ti is not particularly limited, but hydroxides of Ti, oxides, chlorides, fluorides, halides such as iodide, inorganic salts such as nitrates, carbonates, sulfates, acetates, oxalic acid A salt, an organic acid salt such as lactic acid salt and the like dissolved in water may be mentioned, and titanium tetrachloride which is a chloride is preferable.
The method for preparing the Ti-containing aqueous solution is not particularly limited, and any known method depending on the substance can be appropriately adopted.
 また、詳細は次工程の説明にて記載するが、Ti含有水溶液は、調製直後の状態を維持した水溶液を次工程において用いることが好ましいため、調製後ただちに次工程B1を実施しない場合は、調製直後の状態を維持するために、調製後、直ちに遮光し冷蔵又は冷凍して保存する。 Further, although the details will be described in the description of the next step, the Ti-containing aqueous solution is preferably used in the next step because the aqueous solution maintaining the state immediately after the preparation is used. In order to maintain the state immediately after, immediately after preparation, store the product in a light-shielded, refrigerated or frozen state.
 <工程(B1)>
 工程B1は、工程A1で調製したSr含有水溶液とTi含有水溶液を混合する工程である。混合する方法については特に制限されないが、工程B1において、Sr含有水溶液と混合するTi含有水溶液は、TiOをTi成分の主成分として含まないものであることが好ましい。
<Step (B1)>
Step B1 is a step of mixing the Sr-containing aqueous solution prepared in step A1 and the Ti-containing aqueous solution. The method of mixing is not particularly limited, but the Ti-containing aqueous solution to be mixed with the Sr-containing aqueous solution in step B1 is preferably one that does not contain TiO 2 as a main component of the Ti component.
 本発明者らは、亜臨界合成又は超臨界合成によるチタン酸ストロンチウム微粒子の合成において、結晶性の良いチタン酸ストロンチウム微粒子を製造するには、中間生成物である二酸化チタンの析出を抑制して合成を進めることが重要だと考えた。 In the synthesis of strontium titanate fine particles by subcritical synthesis or supercritical synthesis, the inventors of the present invention suppress the precipitation of titanium dioxide, which is an intermediate product, to produce strontium titanate fine particles with good crystallinity. I thought it was important to move forward.
 本発明者は、Ti含有水溶液の不安定性に着目し、Tiの電位―pH図に注目した。Tiの電位―pH図によれば、室温(25℃)において、弱酸~pH12未満の弱アルカリ環境下において、Tiはイオン解離状態ではなく二酸化チタンの水和物(TiO・HO)が安定であることから、室温では、弱酸~pH12未満の弱アルカリ環境下である場合にTi含有水溶液の調製後まもなく二酸化チタン水和物への変化が開始されると考えられる。
 一方、pH12以上のアルカリ環境下では、電位―pH図から、Tiは、Ti水酸化物(Ti(OH))又はHTiO イオン状態となると考えられる。従って、強アルカリ環境下では、二酸化チタンが析出せずに水溶液状態を保つことができていると考えられる。
The inventors focused on the instability of the Ti-containing aqueous solution and focused on the potential-pH diagram of Ti. According to the potential-pH diagram of Ti, at room temperature (25 ° C.), Ti is not in the ion dissociation state but in the hydrate of titanium dioxide (TiO 2 · H 2 O) in a weak acid to a weak alkaline environment of less than pH 12. From the stability, it is considered that, at room temperature, the conversion to the titanium dioxide hydrate is initiated soon after preparation of the Ti-containing aqueous solution when in a weak acid to a weak alkaline environment of less than pH 12.
On the other hand, in an alkaline environment at a pH of 12 or more, Ti is considered to be in the form of Ti hydroxide (Ti (OH) 4 ) or HTiO 3 from the potential-pH diagram. Therefore, in a strong alkaline environment, it is considered that the aqueous solution state can be maintained without precipitation of titanium dioxide.
 本発明者は、水熱合成の反応場として、反応液中のTiが、Ti(OH)又はHTiO イオン状態を維持した反応液を用いることにより、合成速度が速くなる亜臨界水や超臨界水においても、結晶性の良好なペロブスカイト型酸化物を製造できると考えた。そして、かかる反応液に形状制御可能な条件を加えることにより、立方体形状(直方体形状)に形状制御されたチタン酸ストロンチウム微粒子を生産性良く製造できると考えた。形状制御可能な条件については、後記工程E1の項目にて詳述する。 The present inventors have found that, as a reaction site for hydrothermal synthesis, subcritical water or the like in which the synthesis rate becomes faster by using a reaction liquid in which Ti in the reaction liquid maintains Ti (OH) 4 or HTiO 3 - ion state. It was considered that even in supercritical water, perovskite-type oxides having good crystallinity can be produced. Then, it was considered that by adding conditions that allow shape control to such a reaction liquid, it is possible to manufacture strontium titanate fine particles whose shape is controlled in a cubic shape (rectangular shape) with high productivity. The conditions under which the shape can be controlled will be described in detail in the item of step E1 described later.
 また、本発明者は、Ti含有水溶液調製後、水溶液中のTiイオンは紫外線や温度条件など経時変化により、二酸化チタン水和物への変化を開始し、次いで二酸化チタンの白色結晶が析出しはじめることを確認している。そして、この段階で形成される二酸化チタンの結晶構造は主にルチル型であり、一旦ルチル型の不均一で粒径の大きな結晶が析出すると、均一で結晶性の良好なチタン酸ストロンチウム微粒子の製造が難しいことを確認した。従って、工程B1では、Ti成分の主成分としてルチル型TiOを含んでいないTi含有水溶液を用いることが好ましい。 In addition, after preparing the Ti-containing aqueous solution, the present inventors start to change to titanium dioxide hydrate due to temporal changes such as ultraviolet light and temperature conditions after the Ti ion in the aqueous solution, and then white crystals of titanium dioxide start to precipitate. Have confirmed that. Then, the crystal structure of titanium dioxide formed at this stage is mainly rutile type, and once crystals of rutile type nonuniform and large in particle diameter are precipitated, production of strontium titanate fine particles with uniform crystallinity is good. Confirmed that it was difficult. Accordingly, in step B1, it is preferable to use the Ti-containing aqueous solution not containing the rutile type TiO 2 as the main component of a Ti component.
 かかる結果は、ストロンチウム含有水溶液と、チタン含有水溶液とを混合させる段階で、サイズの大きな二酸化チタンの骨格形成又は析出を最小限に抑制することができれば、結晶性の良好なチタン酸ストロンチウムを製造可能であることを示唆している。 As a result, it is possible to produce strontium titanate having good crystallinity if the formation of skeleton or precipitation of large size titanium dioxide can be minimized at the stage of mixing the strontium-containing aqueous solution with the titanium-containing aqueous solution. Suggests that.
 本発明者は、水熱反応させる反応液のpHを10超(あるいは、反応液中の電離度0.8以上のアルカリ性化合物の濃度を0.6mmol以上)とすることにより、Ti含有水溶液を調製直後の状態を保ってSr含有水溶液と混合させることで、混合溶液中においてサイズの大きな二酸化チタンの骨格形成又は析出をほぼ抑制可能とし、その後の亜臨界反応、又は超臨界反応により結晶性の高いチタン酸ストロンチウムを合成可能であると考えている。 The inventors prepared a Ti-containing aqueous solution by setting the pH of the reaction solution to be subjected to a hydrothermal reaction to more than 10 (or, the concentration of an alkaline compound having an ionization degree of 0.8 or more in the reaction solution is 0.6 mmol or more). By mixing with the Sr-containing aqueous solution while keeping the state immediately after, it becomes possible to almost suppress the formation or precipitation of the framework of large size titanium dioxide in the mixed solution, and the crystallinity is high by the subsequent subcritical reaction or supercritical reaction. We believe that strontium titanate can be synthesized.
 既に述べたように、Ti含有水溶液は、室温において、pH12以上の強アルカリ環境以外の状態では、調製後まもなく二酸化チタンの水和物への変化を生じると考えられる。その他の温度、pHの条件では、その変化の有無やその速度は異なると考えられるので、二酸化チタンの水和物への変化が起こりにくい条件では、必ずしも調製直後の状態で次工程の混合溶液の調製を実施しなければならないわけではないが、Ti含有水溶液の調製直後の状態で、次工程の混合溶液の調製を行えば、後工程を後記する方法で実施することにより、温度条件やpH条件に関わらず、結晶性の高いチタン酸ストロンチウム微粒子を形成することができる。
 従って、工程B1は、Ti含有水溶液調製後直ちに実施するか、そうでない場合は、調製後、直ちに遮光し冷蔵又は冷凍して保存したTi含有水溶液を用いて実施することが好ましい。
As described above, the Ti-containing aqueous solution is considered to cause a change to the hydrate of titanium dioxide soon after preparation under conditions other than a strong alkaline environment of pH 12 or more at room temperature. Under other conditions of temperature and pH, the presence or absence and the rate of the change are considered to be different, so under the conditions where it is difficult to change titanium dioxide into hydrate, the mixed solution of the next step is not necessarily immediately after preparation. Although it is not necessary to carry out the preparation, if the mixed solution of the next step is prepared immediately after the preparation of the Ti-containing aqueous solution, the temperature condition and the pH condition can be achieved by carrying out the later steps. Regardless, highly crystalline strontium titanate fine particles can be formed.
Therefore, it is preferable to carry out step B1 immediately after preparation of the Ti-containing aqueous solution, or otherwise, using a Ti-containing aqueous solution stored immediately after preparation and protected from light by light and refrigerated or frozen.
 工程B1において、反応液中のSrとTiのモル比Sr/Tiは1以上となるように混合溶液を調製することが好ましい。二酸化チタンの水和物の安定性が高い、より中性に近いpH10超12未満の条件とする場合は、Ti含有水溶液を調製直後の状態を保ってSr含有水溶液と混合させることに加えて、反応液中のSr量をTi量のモル数よりも多くしたSrリッチな状態で、超臨界反応させることが好ましい。混合溶液中におけるSr成分とTi成分のモル比Sr/Tiは、好ましくは1.3以上であり、更に好ましくは1.3以上1.7以下である。 In step B1, it is preferable to prepare a mixed solution so that the molar ratio Sr / Ti of Sr to Ti in the reaction liquid is 1 or more. In the case where the stability of the hydrate of titanium dioxide is high and the pH is adjusted to more than neutral pH 10 to less than 12, the Ti-containing aqueous solution is kept in the state immediately after preparation and mixed with the Sr-containing aqueous solution. The supercritical reaction is preferably performed in a Sr-rich state in which the amount of Sr in the reaction solution is larger than the number of moles of the amount of Ti. The molar ratio Sr / Ti of the Sr component and the Ti component in the mixed solution is preferably 1.3 or more, and more preferably 1.3 or more and 1.7 or less.
 臨界点をこえた、超臨界反応では、水が非極性のガス状となることからイオンが不安定化し、金属塩水溶液の平衡がイオン解離状態から、水酸化物側、更には酸化物側に極めて高速にシフトする。また、Tiイオンの存在下では、Srは、水酸化物よりも、酸化物よりもチタン酸ストロンチウムが安定であることが推測され、Srリッチ環境を反応液中で形成することにより、水熱反応を急速に進行させて、異相の少ない結晶性の良好なチタン酸ストロンチウム微粒子を製造することができる。 In the supercritical reaction beyond the critical point, the ions are destabilized because the water is in a nonpolar gas state, and the equilibrium of the metal salt aqueous solution is from the ion dissociation state to the hydroxide side and further to the oxide side. Shift very fast. In addition, in the presence of Ti ions, it is speculated that strontium titanate is more stable than oxides and Sr than hydroxides, and hydrothermal reaction is caused by forming an Sr-rich environment in the reaction liquid. Can be rapidly produced to produce fine crystalline strontium titanate fine particles with less heterophase.
 工程B1において、混合溶液調製中に混合溶液中に析出物を生じることを極力抑制する観点で、工程B1中は、よく攪拌を行うことが好ましい。また、攪拌は、次工程C1を実施する直前まで実施することがより好ましい。 In the step B1, in view of suppressing the formation of precipitates in the mixed solution as much as possible during the preparation of the mixed solution, it is preferable to well stir during the step B1. Moreover, it is more preferable to implement stirring until immediately before performing the next step C1.
<工程C1,工程D1,工程E1,工程F1>
 工程C1,E1,F1は、工程D1において、立方体形状(直方体形状)に形状制御されたチタン酸ストロンチウム微粒子を、亜臨界反応又は超臨界反応により得ることができるように、工程D1で反応させる反応液の塩基性度の調整する工程(C1,F1)及び形状制御に必要な反応を実施する工程(E1)である。
<Step C1, Step D1, Step E1, Step F1>
Steps C1, E1 and F1 are reactions in which reaction is performed in step D1 so that strontium titanate fine particles whose shape is controlled to a cubic shape (rectangular shape) can be obtained in step D1 by a subcritical reaction or a supercritical reaction. The steps (C1, F1) of adjusting the basicity of the solution and the step (E1) of performing the reaction necessary for shape control.
 工程E1と工程F1は、工程D1を実施する前であればいつ実施されてもよい工程であるが、塩基性物質又酸性物質をSr含有水溶液,Ti含有水溶液,混合溶液,又は反応液に加える工程F1は、工程D1を実施する反応液の最終的な塩基性度の調整を行う工程であるので、工程D1の実施直前に行うことが好ましい。工程F1において使用する塩基性物質としては、水酸化カリウム水溶液や水酸化ナトリウム水溶液、酸性物質としては、硝酸、塩酸などが挙げられる。
 一方、工程E1は、工程C1の途中で実施することが好ましく、工程C1において塩基性化合物の添加直後から実施することが好ましい。工程E1及び工程F1はそれぞれ1回だけ実施してもよいし、複数回実施してもよい。
The step E1 and the step F1 are steps which may be performed any time before the step D1 is carried out, but the basic substance or the acidic substance is added to the Sr containing aqueous solution, the Ti containing aqueous solution, the mixed solution or the reaction solution Since the process F1 is a process of adjusting the final basicity of the reaction liquid which implements the process D1, it is preferable to carry out just before performing the process D1. Examples of the basic substance used in step F1 include aqueous potassium hydroxide solution and aqueous sodium hydroxide solution, and examples of the acidic substance include nitric acid, hydrochloric acid and the like.
On the other hand, step E1 is preferably performed in the middle of step C1, and is preferably performed immediately after the addition of the basic compound in step C1. Step E1 and step F1 may be carried out only once or plural times, respectively.
 工程D1で反応させる反応液は、塩基性度が、pHで表した場合は10超、塩基性物質のモル濃度で表した場合は、0.60mol/L以上(塩基性物質が電離度0.8以上の場合)に調整された反応液であり、好ましくは、pHで表した場合は11以上、塩基性物質のモル濃度で表した場合は、0.70mol/L以上(塩基性物質が電離度0.8以上の場合)に調整された反応液である。 The reaction liquid to be reacted in step D1 has a basicity of more than 10 when it is expressed by pH, and 0.60 mol / L or more when it is expressed by the molar concentration of the basic substance (the basic substance has an ionization degree of 0. The reaction solution is adjusted to 8 or more), preferably 11 or more when expressed by pH, or 0.70 mol / L or more when expressed by molar concentration of basic substance (basic substance is ionized In the case of a degree of 0.8 or more).
 工程D1で反応させる反応液の塩基性度は、反応温度が高いほど低アルカリ条件であってもペロブスカイト型のチタン酸ストロンチウム微粒子を製造することが可能となりやすい。 As the basicity of the reaction solution to be reacted in the step D1 is higher, the reaction temperature is likely to be higher, so that it is possible to produce perovskite-type strontium titanate fine particles even under low alkaline conditions.
 反応液の塩基性度の上限は、反応液を貯留させる反応容器が腐食されなければ特に限定されない。pH13.5を超えるような強アルカリ条件にて亜臨界合成,又は超臨界合成を行うためには、反応容器に耐アルカリ性が必須である。耐アルカリ性を有する反応容器としては、テフロン(登録商標)製やハステロイ(登録商標)製のものが知られているが、テフロン(登録商標)製のものは耐熱性に限りがあるため反応温度に限界があり、またハステロイ(登録商標)製のものは非常に高価であるため、装置コストが高くなってしまうという問題がある。耐熱性、装置コストの観点からは、反応容器としては、耐熱性に優れ、汎用性が高く安価であるSUS製等の反応容器を使用できることが好ましく、そのためには、できるだけ中性よりの低アルカリ条件にて製造できることが好ましい。 The upper limit of the basicity of the reaction solution is not particularly limited as long as the reaction container storing the reaction solution is not corroded. In order to perform subcritical synthesis or supercritical synthesis under strongly alkaline conditions such as exceeding pH 13.5, alkali resistance is essential for the reaction vessel. As a reaction container having alkali resistance, ones made of Teflon (registered trademark) or those made of Hastelloy (registered trademark) are known, however, those made of Teflon (registered trademark) have limited heat resistance, so the reaction temperature is There is a limit and there is a problem that the product made of Hastelloy (registered trademark) is very expensive, resulting in high equipment cost. From the viewpoints of heat resistance and equipment cost, it is preferable that a reaction container made of SUS etc., which is excellent in heat resistance, is highly versatile and inexpensive, can be used as a reaction container, and for that purpose It is preferable to be able to manufacture on conditions.
 また、工程D1で反応させる反応液は、工程D1を実施する前に、金属元素を含まない有機塩基性化合物と、カルボキシル基を有する両親媒性化合物とを、工程A1~工程B1の実施前までにおいてはSr含有水溶液又はTi含有水溶液に、工程B1~工程C1完了前までは混合溶液に,工程C1完了後は反応液に加える工程E1が実施されたものである。以下、わかりやすくするため、工程E1及び工程F1が実施されるSr含有水溶液,Ti含有水溶液,混合溶液,反応液を総称して被添加液とする。 In addition, the reaction liquid to be reacted in step D1 includes, before carrying out step D1, an organic basic compound containing no metal element and an amphiphilic compound having a carboxyl group up to before the steps A1 to B1. In the above, the step E1 is carried out by adding the Sr-containing aqueous solution or the Ti-containing aqueous solution to the mixed solution up to the completion of the steps B1 to C1 and adding it to the reaction solution after the completion of the step C1. Hereinafter, in order to make it easy to understand, the Sr-containing aqueous solution, the Ti-containing aqueous solution, the mixed solution, and the reaction liquid in which the step E1 and the step F1 are performed are collectively referred to as a liquid to be added.
 まず、形状制御に必要な反応を実施する工程(E1)について説明する。
既に述べたように、工程E1は、工程C1の途中で実施することが好ましく、工程C1において塩基性化合物の添加直後から実施することが好ましい。工程E1において、被添加液に加えられるカルボキシル基を有する両親媒性化合物と、金属を含まない塩基性化合物の添加順序は特に制限されない。水層と塩基性化合物もしくはカルボキシル基を有する両親媒性化合物層とが分離することがあるが、その場合はよく攪拌することが好ましい。攪拌については、後記する工程C1において析出物が発生した場合と同様の方法を用いることができる。
First, the step (E1) of carrying out the reaction necessary for shape control will be described.
As described above, step E1 is preferably performed in the middle of step C1, and is preferably performed immediately after the addition of the basic compound in step C1. In step E1, the order of addition of the amphiphilic compound having a carboxyl group to be added to the liquid to be added and the basic compound containing no metal is not particularly limited. In some cases, the aqueous layer and the amphiphilic compound layer having a basic compound or a carboxyl group may be separated, but in such a case, it is preferable to stir well. For the stirring, the same method as in the case where a precipitate is generated in Step C1 described later can be used.
 工程E1において、被添加液に加えられる金属元素を含まない塩基性化合物としては、水溶液中で塩基性を示すものであれば特に限定されず公知の化合物を使用可能であり、例えば、4級アンモニウム化合物、アミン化合物、アンモニア、ピリジン及びその誘導体等の金属元素を有さない塩基性有機化合物並びにヒドラジン及びその誘導体等が挙げられる。 In the step E1, as a basic compound which does not contain a metal element to be added to the solution to be added, any known compound can be used without particular limitation as long as it exhibits basicity in an aqueous solution, for example, quaternary ammonium Examples thereof include basic organic compounds having no metal element such as compounds, amine compounds, ammonia, pyridine and derivatives thereof, and hydrazine and derivatives thereof.
 具体的には、ヒドラジン、1-モノメチルヒドラジン、1,1-ジメチルヒドラジン、1-エチル-2-メチルヒドラジン等のヒドラジン誘導体;メチルアミン、エチルアミン、n-プロピルアミン、エタノールアミン等の1級アミン;ジメチルアミン、ジエチルアミン等の2級アミン;トリメチルアミン、トリエチルアミン等の3級アミン等を挙げることができる。中でも、得られるチタン酸ストロンチウム微粒子の性能に悪影響を及ぼす金属不純物を含まず、扱いが比較的容易であり、形状制御に対する効果がより顕著である点からヒドラジン,ヒドラジン1水和物,オレイルアミン,及びヒドラジン誘導体のうち少なくとも1種が好ましく、ヒドラジンが最も好ましい。
特にヒドラジンは、強い還元剤としての機能も併せ持つため、カルボキシル基を有する両親媒性化合物の酸化などを防止する役目もあると推測している。
Specifically, hydrazine derivatives such as hydrazine, 1-monomethylhydrazine, 1,1-dimethylhydrazine, 1-ethyl-2-methylhydrazine and the like; primary amines such as methylamine, ethylamine, n-propylamine and ethanolamine; Examples include secondary amines such as dimethylamine and diethylamine; and tertiary amines such as trimethylamine and triethylamine. Above all, hydrazine, hydrazine monohydrate, oleylamine, and the like are relatively easy to handle and have a remarkable effect on shape control because they do not contain metal impurities that adversely affect the performance of the strontium titanate fine particles obtained. At least one of the hydrazine derivatives is preferred, with hydrazine being most preferred.
In particular, since hydrazine also has a function as a strong reducing agent, it is speculated that it also has a role of preventing oxidation or the like of an amphiphilic compound having a carboxyl group.
 これらの金属元素を含まない塩基性化合物は2種以上併用することもできるが、そのうちの1種としてヒドラジン又はその誘導体を使用することが、得られる複合酸化物ナノ粒子の形状を立方体に制御できるために好ましい。 Two or more types of basic compounds not containing these metal elements can be used in combination, but using hydrazine or a derivative thereof as one of them can control the shape of the resulting composite oxide nanoparticles into a cube. Preferred for
 工程E1において、被添加液に加えられるカルボキシル基を有する両親媒性化合物(以下、両親媒性化合物とする)としては、化合物中にカルボキシル基(親水性基)及び疎水性基を有していれば特に制限されず公知の化合物を用いることができる。かかる化合物としては、プロピオン酸、酪酸、吉草酸、カプロン酸、カプリル酸、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、アラキジン酸、ベヘン酸、リグノセリン酸等の飽和脂肪酸類、α-リノレン酸、ステアリドン酸、エイコサペンタエン酸、ドコサヘキサエン酸、リノール酸、γ-リノレン酸、ジホモ-γ-リノレン酸、アラキドン酸、オレイン酸、エライジン酸、エルカ酸、ネルボン酸等の不飽和脂肪酸等が挙げられる。 As the amphiphilic compound having a carboxyl group (hereinafter referred to as an amphiphilic compound) added to the liquid to be added in step E1, the compound has a carboxyl group (hydrophilic group) and a hydrophobic group. For example, known compounds can be used without particular limitation. Such compounds include saturated fatty acids such as propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, capric acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, arachidic acid, behenic acid, lignoceric acid, etc. Examples include unsaturated fatty acids such as linolenic acid, stearidonic acid, eicosapentaenoic acid, docosahexaenoic acid, linoleic acid, γ-linolenic acid, dihomo-γ-linolenic acid, arachidonic acid, oleic acid, elaidic acid, erucic acid, nervonic acid, etc. Be
 中でも炭素数2以上20以下の有機酸であることが好ましく、炭素数10以上20以下の有機酸であることがより好ましいことから、オレイン酸,デカン酸,ラウリン酸,ウンデセン酸,リノール酸、及びリノレン酸のうち少なくとも1種が好ましく、オレイン酸が最も好ましい。 Among them, organic acids having 2 to 20 carbon atoms are preferable, and organic acids having 10 to 20 carbon atoms are more preferable. Therefore, oleic acid, decanoic acid, lauric acid, undecenoic acid, linoleic acid, and At least one of the linolenic acids is preferred, with oleic acid being most preferred.
 チタン酸ストロンチウムは、成長初期においては、各種面方位を含む、微小な不定形として合成されていると推測される。オレイン酸等の有機両親媒性化合物は、カルボキシル基が(100)面に吸着しやすい。そのため、有機両親媒性化合物存在下で結晶成長が進む場合は、(100)面に両親媒性化合物が吸着した状態で結晶が成長するため、(111)面の結晶成長が優先的に進むことになる。その結果、全ての(111)面の成長が進んで頂点を形成し、全体として立方体形状に形状制御されたチタン酸ストロンチウム微粒子が合成される。 Strontium titanate is presumed to be synthesized as a minute amorphous form including various plane orientations at the initial stage of growth. In organic amphiphilic compounds such as oleic acid, carboxyl groups are easily adsorbed to the (100) plane. Therefore, when crystal growth proceeds in the presence of an organic amphiphilic compound, crystals grow in a state in which the amphiphilic compound is adsorbed to the (100) plane, so crystal growth on the (111) plane preferentially proceeds. become. As a result, the growth of all (111) planes proceeds to form a vertex, and a strontium titanate fine particle whose shape is controlled to a cubic shape as a whole is synthesized.
 両親媒性化合物と有機塩基性化合物の組み合わせは、オレイン酸とヒドラジンの組み合わせが好ましい。 The combination of an amphiphilic compound and an organic basic compound is preferably a combination of oleic acid and hydrazine.
 両親媒性化合物、及び、金属元素を含まない塩基性化合物の配合量は特に限定されないが、配合量が少なすぎると得られる微粒子の粒子径が大きくなり、多過ぎると目的とする物質が得られなくなる。 The blending amount of the amphiphilic compound and the basic compound not containing a metal element is not particularly limited, but if the blending amount is too small, the particle diameter of the obtained fine particles becomes large, and if too large, the target substance is obtained It disappears.
 図2は、工程D1で反応させる反応液において、Ti成分の含有量を100とした時の、両親媒性化合物の含有量を横軸、金属を含まない塩基性化合物の配合量を縦軸とした図において、後記する実施例において立方体形状(又は直方体形状)に形状制御されたチタン酸ストロンチウムが得られた条件の所に●プロットを記した図である。
 図示されるように、工程D1で用いる反応液中において、Tiのモル数Xと、両親媒性化合物のモル数Yと、金属を含まない有機塩基性化合物のモル数Zは、0<Y/X≦6及び0≦Z/X≦8を満足することが好ましく、1≦Y/X≦4を更に満足することがより好ましく、0≦Z/X≦4を更に満足することが最も好ましい。
 工程D1で用いる反応液中において、Ti成分の濃度は0.1mmol/L以上20mol/L以下であることが好ましい。
FIG. 2 shows the content of the amphiphilic compound on the horizontal axis, and the content of the basic compound not containing metal on the vertical axis, where the content of the Ti component is 100 in the reaction liquid to be reacted in step D1. It is the figure which described the-plot in the place where the strontium titanate by which shape control was carried out in cube shape (or rectangular parallelepiped shape) was obtained in the example mentioned below in the figure which carried out.
As illustrated, in the reaction liquid used in step D1, the number of moles X of Ti, the number Y of moles of the amphiphilic compound, and the number Z of moles of the organic basic compound containing no metal are 0 <Y /. It is preferable to satisfy X ≦ 6 and 0 ≦ Z / X ≦ 8, more preferably 1 ≦ Y / X ≦ 4, and most preferably 0 ≦ Z / X ≦ 4.
In the reaction liquid used in step D1, the concentration of the Ti component is preferably 0.1 mmol / L or more and 20 mol / L or less.
 次に工程C1及び工程F1について説明する。工程C1と工程F1は、工程D1で反応させる反応液の塩基性度の調整する工程である。塩基性度の調整は、通常工程C1のみで足りるが、工程E1を工程C1の実施後に行う場合等、塩基性度の微調整が必要となる場合は、工程F1を実施することが好ましい。既に述べたように、工程F1は、工程D1を実施する反応液の最終的な塩基性度の調整を行う工程であるので、工程D1の実施直前に行うことが好ましい。工程F1において使用する塩基性物質としては、水酸化カリウム水溶液や水酸化ナトリウム水溶液、酸性物質としては、硝酸、塩酸などが挙げられる。 Next, step C1 and step F1 will be described. The step C1 and the step F1 are steps for adjusting the basicity of the reaction solution to be reacted in the step D1. Although adjustment of the basicity is usually sufficient only in the step C1, when fine adjustment of the basicity is required, such as when the step E1 is performed after the execution of the step C1, the step F1 is preferably performed. As described above, since the step F1 is a step of adjusting the final basicity of the reaction solution in which the step D1 is performed, it is preferably performed immediately before the step D1. Examples of the basic substance used in step F1 include aqueous potassium hydroxide solution and aqueous sodium hydroxide solution, and examples of the acidic substance include nitric acid, hydrochloric acid and the like.
 工程C1で用いる塩基性水溶液としては特に制限されないが、電離度が0.8以上の塩基性化合物の水溶液が望ましく、1近傍の強塩基性化合物の水溶液を用いることが好ましい。かかる塩基性化合物としては、水酸化ナトリウム又は水酸化カリウムが好ましく例示される。 The basic aqueous solution used in the step C1 is not particularly limited, but an aqueous solution of a basic compound having an ionization degree of 0.8 or more is desirable, and an aqueous solution of a strongly basic compound near 1 is preferably used. As such a basic compound, sodium hydroxide or potassium hydroxide is preferably exemplified.
 塩基性水溶液の滴下は、1滴ずつ慎重に滴下していくことが好ましい。工程C1において塩基性化合物の添加直後から、ゲル状の析出物が発生する。かかる析出物を生じること自体に問題はないが、析出物の大きさのばらつきが大きい場合や、ばらつきは小さくとも析出物自体がミリ単位以上の大きなものとなると、次工程終了時に結晶性の良好なチタン酸ストロンチウムの収率が低くなりやすいことが推測される。従って、析出物を生じた場合は、できるだけ細かくなるように、攪拌又は粉砕を行うことが好ましい。攪拌や粉砕の手段は特に制限されず、手動で攪拌棒等を用いて実施してもよいし、スターラーや超音波処理により分散させる手法も用いることができる。 The dropwise addition of the basic aqueous solution is preferably carefully added drop by drop. Immediately after the addition of the basic compound in step C1, a gel-like precipitate is generated. There is no problem in producing such precipitates, but if the variation in the size of the precipitates is large or if the precipitates themselves are large in units of milli units or more even if the variation is small, the crystallinity is good at the end of the next step It is presumed that the yield of strontium titanate is likely to be low. Therefore, when a precipitate is produced, it is preferable to carry out stirring or grinding so as to be as fine as possible. The means for stirring or pulverizing is not particularly limited, and may be carried out manually using a stirring rod or the like, or may be dispersed by a stirrer or ultrasonic treatment.
 既に述べたように、工程D1は、塩基性度が、pHで表した場合は10超、または塩基性物質のモル濃度では、0.60mol/L以上(塩基性物質が電離度0.8以上の場合)に調整された反応液を亜臨界反応、又は超臨界反応させる工程である。 As already described, in step D1, the basicity is more than 10 when expressed in pH, or 0.60 mol / L or more in the molar concentration of the basic substance (the basic substance has an ionization degree of 0.8 or more) Subcritical reaction or supercritical reaction of the reaction solution prepared in
 工程D1において、反応温度の保持時間は特に制限されないが、超臨界条件であれば、実施例に記載されているように、10分以内の保持時間で立方体形状(直方体形状)に形状制御されたチタン酸ストロンチウム微粒子を製造することができる。 In step D1, the holding time of the reaction temperature is not particularly limited, but in the case of supercritical conditions, as described in the examples, the shape was controlled to a cubic shape (cuboid shape) with a holding time of 10 minutes or less. Strontium titanate fine particles can be produced.
 工程D1は、亜臨界反応・又は超臨界反応であるので、反応液を貯留させた反応容器をオートクレーブ等の密閉加熱装置内(以下、オートクレーブとする)に設置し、亜臨界条件、超臨界条件となるように加熱することにより実施される。このとき、室温状態のオートクレーブ内に反応容器を設置した後に徐々に加熱してもよいが、オートクレーブを、あらかじめ亜臨界条件又は超臨界条件の温度雰囲気に調節された環境中に設置する方が、昇温速度が速く、水熱反応の進行をできるだけ抑制することができるので好ましい。
 以上のようにして、チタン酸ストロンチウム微粒子を得ることができる。
Since step D1 is a subcritical reaction or supercritical reaction, the reaction container storing the reaction liquid is installed in a closed heating apparatus such as an autoclave (hereinafter referred to as an autoclave), and the subcritical condition and the supercritical condition It carries out by heating so that it may become. At this time, although the reaction vessel may be gradually heated after being placed in the autoclave at room temperature, it is better to place the autoclave in an environment previously controlled to a temperature atmosphere of subcritical condition or supercritical condition, It is preferable because the heating rate is fast and the progress of the hydrothermal reaction can be suppressed as much as possible.
As described above, strontium titanate fine particles can be obtained.
 「チタン酸ストロンチウム微粒子」
 上記本発明のチタン酸ストロンチウム微粒子の製造方法によれば、形状が立方体又は直方体であるチタン酸ストロンチウム微粒子を生産性良く製造することができる(後記実施例図3を参照)。
Strontium titanate fine particles
According to the method for producing strontium titanate fine particles of the present invention, strontium titanate fine particles having a cube or rectangular parallelepiped shape can be produced with high productivity (see Example 3 described later).
 チタン酸ストロンチウムは、最も安定な結晶構造が立方晶であり、立方晶の場合、本来の結晶形状は立方体であり、表面に露出されている結晶面は{100}面となる。後記実施例1(図3,図5A,B)に示されるように、上記本発明のチタン酸ストロンチウム微粒子の製造方法によれば、立方体若しくは直方体の表面に露出されている結晶面の85%以上が{100}面であるチタン酸ストロンチウム微粒子を製造することができる。 In strontium titanate, the most stable crystal structure is a cubic crystal, and in the case of a cubic crystal, the original crystal shape is a cube, and the crystal plane exposed on the surface is a {100} plane. As shown in Example 1 (FIG. 3, FIGS. 5A and 5B), according to the method for producing strontium titanate fine particles of the present invention, 85% or more of the crystal plane exposed on the surface of a cube or a rectangular solid is obtained. Strontium titanate fine particles having a {100} plane can be produced.
 また、立方体若しくは直方体形状の粒子の1辺の長さが、10nm以上500nm以下であることが好ましい。 In addition, it is preferable that the length of one side of the cubic or rectangular solid particle is 10 nm or more and 500 nm or less.
 本発明のチタン酸ストロンチウム微粒子の製造方法は、Sr含有水溶液とTi含有水溶液とを含むpH10超、若しくは、電離度0.8以上の塩基性化合物を0.60mol/L以上含んでなる反応液を亜臨界又は超臨界反応させる方法であって、反応前に、塩基性の反応液中に、金属元素を含まない有機塩基性化合物と、カルボキシル基を有する両親媒性化合物とを加える工程を有している。かかる構成によれば、チタン酸ストロンチウム結晶の(111)面を優先的に成長させて、表面が{100}面を有するように形状制御されたチタン酸ストロンチウム微粒子を生産性良く製造することができる。 The method for producing strontium titanate fine particles according to the present invention comprises a reaction liquid containing a basic compound having a pH of 10 or more and an ionization degree of 0.8 or more containing Sr-containing aqueous solution and Ti-containing aqueous solution of 0.60 mol / L or more. A subcritical or supercritical reaction method comprising the steps of adding an organic basic compound containing no metal element and an amphiphilic compound having a carboxyl group to a basic reaction solution before the reaction. ing. According to this configuration, by preferentially growing the (111) plane of the strontium titanate crystal, it is possible to manufacture strontium titanate fine particles whose shape is controlled so that the surface has a {100} plane with high productivity. .
 チタン酸ストロンチウムは、背景技術において述べたように、太陽光照射によって光触媒活性を発現するペロブスカイト型酸化物である。チタン酸ストロンチウムは、より高効率な光触媒能を与える態様として、特許文献1や特許文献2に記載されているような、表面にPt,Rh,Cu等の金属助触媒を担持してなる微粒子が好ましいことが知られている。 Strontium titanate is a perovskite-type oxide that exhibits photocatalytic activity by sunlight irradiation, as described in the background art. Strontium titanate is a fine particle formed by supporting a metal promoter such as Pt, Rh, Cu, etc. on the surface as described in Patent Document 1 and Patent Document 2 as an embodiment giving more efficient photocatalytic ability. It is known to be preferred.
 金属助触媒を担持したチタン酸ストロンチウム微粒子は、光照射によってチタン酸ストロンチウム内で励起された電子が、表面の金属助触媒の存在により表面に速やかに移動するため、正孔との再結合の抑制と高効率な還元反応を可能にする。抑制し、且つ、効率良く還元反応を起こすため、効率良く水素を生成することができる。 Strontium titanate fine particles supporting a metal promoter suppress electron recombination with holes because electrons excited in the strontium titanate by light irradiation move rapidly to the surface due to the presence of the metal promoter on the surface. And enable highly efficient reduction reaction. Hydrogen can be efficiently generated because the reduction reaction is efficiently performed.
 しかしながら、金属助触媒を担持させる方法は、含浸法や光電着法等で水溶性金属塩を担持させてから金属イオンを還元して付着させる方法が一般的であり、このような方法によって付着させられた金属は、母触媒であるチタン酸ストロンチウムとの間(界面)に電子のトラップを生じやすい。 However, as a method of supporting a metal promoter, a method of supporting a water-soluble metal salt by an impregnation method, an optical electrodeposition method or the like, and then reducing and attaching a metal ion is generally used. These metals tend to cause electron trapping between the mother catalyst strontium titanate (interface).
 電子トラップを生じにくくするためには、チタン酸ストロンチウム微粒子は、できるだけ担持金属と格子整合性の良い結晶面を有することが好ましい。上記のようにして形状制御された、立方晶チタン酸ストロンチウムの格子定数は0.3905nmである。かかる格子定数と担持金属である、Pt,Ir,Pd,Rh,Ru,Cu,Ni,Coの格子定数とは不整合率が10%以下であり、Ir,Rhは5%以下,Pt,Pdは0.5%以下であることから,表面の{100}面率の高い立方体形状のチタン酸ストロンチウム微粒子とすることにより、担持金属との界面の電子トラップの少ない高効率な光触媒を実現しうる。更に、かかる立方体形状のチタン酸ストロンチウム微粒子は、光触媒用途以外においても、特許文献6,特許文献7にも記載されているように、立方体形状は立方晶粒子本来の形状であること、また、配列させやすいこと、緻密膜を形成しやすいこと、等様々な利点を有している。 In order to make the electron trap difficult to occur, it is preferable that the strontium titanate fine particles have a crystal face that is as lattice-matched as possible with the supported metal. The lattice constant of cubic strontium titanate whose shape is controlled as described above is 0.3905 nm. The lattice constant of this lattice constant and the lattice constant of the supported metal, Pt, Ir, Pd, Rh, Ru, Cu, Ni, Co, has a mismatch rate of 10% or less, and Ir, Rh is 5% or less, Pt, Pd Is less than 0.5%, it is possible to realize a highly efficient photocatalyst with few electron traps at the interface with the supported metal by using cubic strontium titanate fine particles with a high {100} surface fraction of the surface . Furthermore, such cubic shaped strontium titanate fine particles have a cubic shape that is the original shape of cubic crystal particles, as described also in Patent Document 6 and Patent Document 7 other than for photocatalyst application. It has various advantages such as being easy to form, forming a dense film, and so on.
 「設計変更」
 本発明は上記実施形態に限定されず、本発明の主旨を逸脱しない範囲において、適宜変更可能である。
"Design changes"
The present invention is not limited to the above embodiment, and can be appropriately modified without departing from the scope of the present invention.
 (実施例1~実施例7)
 表1に記載の条件で、以下のようにしてチタン酸ストロンチウム微粒子を作製した。
 まず、Sr含有水溶液として、必要量の精製水を採取し、硝酸ストロンチウムを秤量し、硝酸ストロンチウム水溶液を調製した。また、Ti含有水溶液として、四塩化チタン水溶液を調製した。アンプル状のTiClを1滴ずつゆっくりと精製水に滴下する。その際、攪拌し冷却しながら行い、指定濃度に調整後すぐに遮光し冷蔵保存する。特に記載がない限り、溶媒の水は精製水を用いた。
 四塩化チタン水溶液は、遮光し、調製後直ちに冷蔵庫で保管して調整直後の状態を維持した状態で、硝酸ストロンチウム水溶液と混合し、混合溶液を得た。混合の際、混合溶液中のSr成分とTi成分とのモル比Sr/Tiは1となるように混合した。
(Examples 1 to 7)
Strontium titanate fine particles were produced under the conditions described in Table 1 as follows.
First, a required amount of purified water was collected as an Sr-containing aqueous solution, and strontium nitrate was weighed to prepare a strontium nitrate aqueous solution. Moreover, titanium tetrachloride aqueous solution was prepared as Ti containing aqueous solution. Ampoule-like TiCl 4 is slowly added dropwise to purified water. At that time, it is carried out with stirring and cooling, and immediately after adjustment to the designated concentration, it is shielded from light and stored refrigerated. As a solvent water, purified water was used unless otherwise stated.
The aqueous solution of titanium tetrachloride was shielded from light, and immediately after preparation, it was stored in a refrigerator to maintain the state immediately after preparation, and then mixed with an aqueous solution of strontium nitrate to obtain a mixed solution. At the time of mixing, the molar ratio Sr / Ti of the Sr component to the Ti component in the mixed solution was mixed so as to be 1.
 次に、混合溶液をビーカー内に貯留させ、その混合溶液中に、水酸化カリウム水溶液(15mol/L)を1滴ずつ滴下し、その後、更にヒドラジンを混合溶液中に滴下し、オレイン酸を引き続き滴下した。水酸化カリウム水溶液を滴下直後より、ゲル状の白色析出物を生じたため、攪拌してその析出物を粉砕しながら、水酸化カリウム水溶液及びヒドラジン、オレイン酸の滴下を実施し、最終的に混合溶液のpHが12となるように調整し、反応液を調製した。 Next, the mixed solution is stored in a beaker, potassium hydroxide aqueous solution (15 mol / L) is dropped dropwise into the mixed solution, and then hydrazine is further dropped into the mixed solution, followed by oleic acid. It dripped. Immediately after the addition of the aqueous potassium hydroxide solution, a gel-like white precipitate was produced, so while stirring and crushing the precipitate, the aqueous potassium hydroxide solution and hydrazine, oleic acid were added dropwise, and finally the mixed solution The reaction mixture was adjusted to have a pH of 12.
 得られた反応液を反応容器に入れ、オートクレーブを400℃雰囲気に投入して超臨界反応を実施した。チタン酸ストロンチウム微粒子の合成を実施した。反応条件を表1に示す。
 合成は、反応液を各温度に応じて内容積約5cmのハステロイ(登録商標)製容器(AKICO社製)内に指定量投入し、それをステンレス製の耐圧容器内に入れて密封し、表1に記載の温度条件、及び圧力30MPaにて10分間反応させ、その後急冷した。
The resulting reaction solution was charged into a reaction vessel, and the autoclave was charged into a 400 ° C. atmosphere to carry out a supercritical reaction. The synthesis of strontium titanate fine particles was carried out. The reaction conditions are shown in Table 1.
According to each temperature, the reaction solution is put into a designated volume of Hastelloy (registered trademark) container (made by AKICO) having an inner volume of about 5 cm 3 , and it is sealed in a stainless steel pressure container. The reaction was carried out for 10 minutes under the temperature conditions described in Table 1 and a pressure of 30 MPa, and then quenched.
 得られたチタン酸ストロンチウム微粒子の形状はいずれも立方体形状であった。図3に、実施例1で得られた微粒子の顕微鏡写真を、また、図4に、比較例1で得られた微粒子の顕微鏡写真を示す。 The shape of the obtained strontium titanate fine particles was all cubic. FIG. 3 shows a micrograph of the microparticles obtained in Example 1, and FIG. 4 shows a micrograph of the microparticles obtained in Comparative Example 1.
 また、既に述べたように、図2は、反応液中に含まれる両親媒性化合物のモル数及び有機塩基性化合物のTiモル数に対する割合と形状制御されたチタン酸ストロンチウム微粒子の製造可否の関係を示したものである。 Also, as described above, FIG. 2 shows the relationship between the number of moles of amphiphilic compound contained in the reaction liquid and the ratio of the organic basic compound to the number of Ti moles and whether or not the shape controlled strontium titanate fine particles can be produced Is shown.
 また、図5Aは実施例1で得られたチタン酸ストロンチウム微粒子の拡大電子顕微鏡写真であり、図5Bは、そのチタン酸ストロンチウム微粒子の結晶面の解析結果を示す電子顕微鏡写真である。図5Bに示されるように、えられた粒子の{100}面でない部分は、1辺の一端において2.2nmであり、1辺の長さが37.6nmであることから計算すると、2.2×2/37.6=0.116となる。従って得られた粒子の{100}率は、88.4%であることが確認された。 5A is an enlarged electron micrograph of the strontium titanate fine particles obtained in Example 1, and FIG. 5B is an electron micrograph showing an analysis result of the crystal plane of the strontium titanate fine particles. As shown in FIG. 5B, the non- {100} -plane portion of the obtained particle is 2.2 nm at one end of one side, and calculated from the fact that the length of one side is 37.6 nm, It will be 2x2 / 37.6 = 0.116. Therefore, the {100} rate of the obtained particles was confirmed to be 88.4%.
 (比較例1~5)
 表1に示されるように、実施例と条件を変化させてチタン酸ストロンチウム微粒子を製造した。比較例1,3,4,5においてはいずれも立方体形状の微粒子は得られなかった。比較例2では、立方体形状の微粒子は得られたものの反応時間が24時間と長時間であった。
(Comparative Examples 1 to 5)
As shown in Table 1, the strontium titanate fine particles were manufactured by changing the conditions of the example. In each of Comparative Examples 1, 3, 4 and 5, cubic particles were not obtained. In Comparative Example 2, although cubic-shaped fine particles were obtained, the reaction time was as long as 24 hours.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明は、光触媒や、熱電材料や誘電材料などの電子部品用機能性材料、また、レンズ材料として好適なチタン酸ストロンチウム微粒子の製造に適用することができる。 The present invention can be applied to the production of photocatalysts, functional materials for electronic parts such as thermoelectric materials and dielectric materials, and fine particles of strontium titanate fine particles suitable as lens materials.

Claims (26)

  1.  Sr含有水溶液とTi含有水溶液をそれぞれ調製する工程A1と、
     前記Sr含有水溶液と、前記Ti含有水溶液とを混合して混合溶液を調製する工程B1と、
     該混合溶液中に塩基性化合物を加えて前記混合溶液を塩基性に調整して反応液を調製する工程C1と、
     該反応液を亜臨界反応又は超臨界反応させる工程D1と、
     該工程D1を実施する前に、金属元素を含まない有機塩基性化合物と、カルボキシル基を有する両親媒性化合物とを前記Sr含有水溶液,前記Ti含有水溶液,前記混合溶液,又は前記反応液に加える工程E1とを有し、
     該工程D1で用いる前記反応液のpHが10超であるチタン酸ストロンチウム微粒子の製造方法。
    Preparing a Sr-containing aqueous solution and a Ti-containing aqueous solution respectively;
    Preparing a mixed solution by mixing the Sr-containing aqueous solution and the Ti-containing aqueous solution;
    Preparing a reaction solution by adding a basic compound to the mixed solution to adjust the mixed solution to be basic, and C1.
    A subcritical reaction or a supercritical reaction of the reaction solution D1;
    Before carrying out the step D1, an organic basic compound containing no metal element and an amphiphilic compound having a carboxyl group are added to the Sr-containing aqueous solution, the Ti-containing aqueous solution, the mixed solution, or the reaction solution And step E1;
    The method for producing strontium titanate fine particles, wherein the pH of the reaction solution used in step D1 is more than 10.
  2.  前記工程D1を実施する前に塩基性物質又酸性物質を前記Sr含有水溶液,前記Ti含有水溶液,前記混合溶液,又は前記反応液に加える工程F1を有する請求項1記載のチタン酸ストロンチウム微粒子の製造方法。 The process for producing strontium titanate fine particles according to claim 1, comprising the step F1 of adding a basic substance or an acidic substance to the Sr-containing aqueous solution, the Ti-containing aqueous solution, the mixed solution, or the reaction solution before carrying out the step D1. Method.
  3.  前記工程D1で用いる前記反応液のpHが11以上である請求項1記載のチタン酸ストロンチウム微粒子の製造方法。 The method for producing strontium titanate fine particles according to claim 1, wherein the pH of the reaction solution used in the step D1 is 11 or more.
  4.  Sr含有水溶液とTi含有水溶液をそれぞれ調製する工程A1と、
     前記Sr含有水溶液と、前記Ti含有水溶液とを混合して混合溶液を調製する工程B1と、
     該混合溶液中に塩基性化合物を加えて前記混合溶液を塩基性に調整して反応液を調製する工程C1と、
     該反応液を亜臨界反応又は超臨界反応させる工程D1と、
     該工程D1を実施する前に、金属元素を含まない有機塩基性化合物と、カルボキシル基を有する両親媒性化合物とを前記Sr含有水溶液,前記Ti含有水溶液,前記混合溶液,又は前記反応液に加える工程E1とを有し、
     前記工程C1において、前記塩基性化合物の電離度が0.8以上であり、
     前記工程D1で用いる前記反応液の前記塩基性化合物の濃度が0.60mol/L以上であるチタン酸ストロンチウム微粒子の製造方法。
    Preparing a Sr-containing aqueous solution and a Ti-containing aqueous solution respectively;
    Preparing a mixed solution by mixing the Sr-containing aqueous solution and the Ti-containing aqueous solution;
    Preparing a reaction solution by adding a basic compound to the mixed solution to adjust the mixed solution to be basic, and C1.
    A subcritical reaction or a supercritical reaction of the reaction solution D1;
    Before carrying out the step D1, an organic basic compound containing no metal element and an amphiphilic compound having a carboxyl group are added to the Sr-containing aqueous solution, the Ti-containing aqueous solution, the mixed solution, or the reaction solution And step E1;
    In the step C1, the ionization degree of the basic compound is 0.8 or more,
    The manufacturing method of strontium titanate microparticles | fine-particles whose density | concentrations of the said basic compound of the said reaction liquid used at the said process D1 are 0.60 mol / L or more.
  5.  前記工程D1で用いる前記反応液の前記塩基性化合物の濃度が0.70mol/L以上である請求項4記載のチタン酸ストロンチウム微粒子の製造方法。 The method for producing strontium titanate fine particles according to claim 4, wherein the concentration of the basic compound in the reaction liquid used in the step D1 is 0.70 mol / L or more.
  6.  前記両親媒性化合物が炭素数2以上20以下の有機酸である請求項1~5いずれか1項記載のチタン酸ストロンチウム微粒子の製造方法。 The method for producing strontium titanate fine particles according to any one of claims 1 to 5, wherein the amphiphilic compound is an organic acid having 2 to 20 carbon atoms.
  7.  前記両親媒性化合物が炭素数10以上20以下の有機酸である請求項6記載のチタン酸ストロンチウム微粒子の製造方法。 The method for producing strontium titanate fine particles according to claim 6, wherein the amphiphilic compound is an organic acid having 10 to 20 carbon atoms.
  8.  前記両親媒性化合物が、オレイン酸,デカン酸,ラウリン酸,ウンデセン酸,リノール酸、及びリノレン酸のうち少なくとも1種である請求項7記載のチタン酸ストロンチウム微粒子の製造方法。 The method for producing strontium titanate fine particles according to claim 7, wherein the amphiphilic compound is at least one of oleic acid, decanoic acid, lauric acid, undecenoic acid, linoleic acid and linolenic acid.
  9.  前記有機塩基性化合物が、アミン化合物,アンモニア,ヒドラジン,及びこれらの誘導体のうち少なくとも1種である請求項1~8いずれか1項記載のチタン酸ストロンチウム微粒子の製造方法。 The method for producing strontium titanate fine particles according to any one of claims 1 to 8, wherein the organic basic compound is at least one of an amine compound, ammonia, hydrazine and derivatives thereof.
  10.  前記有機塩基性化合物が、ヒドラジン,ヒドラジン1水和物,オレイルアミン,及びヒドラジン誘導体のうち少なくとも1種である請求項9記載のチタン酸ストロンチウム微粒子の製造方法。 10. The method for producing strontium titanate fine particles according to claim 9, wherein the organic basic compound is at least one of hydrazine, hydrazine monohydrate, oleylamine, and hydrazine derivatives.
  11.  前記両親媒性化合物が、オレイン酸であり、前記有機塩基性化合物が、ヒドラジンである請求項1~8いずれか1項記載のチタン酸ストロンチウム微粒子の製造方法。 The method for producing strontium titanate fine particles according to any one of claims 1 to 8, wherein the amphiphilic compound is oleic acid and the organic basic compound is hydrazine.
  12.  前記工程D1で用いる前記反応液中において、前記Tiのモル数Xと、前記両親媒性化合物のモル数Yと、前記有機塩基性化合物のモル数Zが、
    0<Y/X≦6及び0≦Z/X≦8を満足する請求項1~11いずれか1項記載のチタン酸ストロンチウム微粒子の製造方法。
    In the reaction liquid used in the step D1, the number of moles X of Ti, the number Y of moles of the amphiphilic compound, and the number Z of moles of the organic basic compound are
    The method for producing strontium titanate fine particles according to any one of claims 1 to 11, wherein 0 <Y / X ≦ 6 and 0 ≦ Z / X ≦ 8 are satisfied.
  13.  前記Xと前記Yと前記Zが、1≦Y/X≦4を更に満足する請求項12記載のチタン酸ストロンチウム微粒子の製造方法。 The method according to claim 12, wherein the X, the Y and the Z further satisfy 1 前 記 Y / X ≦ 4.
  14.  前記Xと前記Yと前記Zが、0≦Z/X≦4を更に満足する請求項13記載のチタン酸ストロンチウム微粒子の製造方法。 The method according to claim 13, wherein the X, the Y and the Z further satisfy 0 前 記 Z / X04.
  15.  前記工程D1で用いる前記反応液中において、Ti成分の濃度が0.1mmol/L以上20mol/L以下である請求項1~14いずれか1項記載のチタン酸ストロンチウム微粒子の製造方法。 The method for producing strontium titanate fine particles according to any one of claims 1 to 14, wherein the concentration of the Ti component in the reaction liquid used in the step D1 is 0.1 mmol / L or more and 20 mol / L or less.
  16.  前記工程B1において、SrとTiのモル比Sr/Tiが1以上となるように前記混合溶液を調製する請求項1~15いずれか1項記載のチタン酸ストロンチウム微粒子の製造方法。 The method for producing strontium titanate fine particles according to any one of claims 1 to 15, wherein the mixed solution is prepared such that the molar ratio Sr / Ti of Sr and Ti is 1 or more in the step B1.
  17.  前記工程B1において、Ti成分の主成分としてルチル型TiOを含んでいない前記Ti含有水溶液を用いる請求項1~16いずれか1項記載のチタン酸ストロンチウム粒子の製造方法。 The method for producing strontium titanate particles according to any one of claims 1 to 16, wherein the Ti-containing aqueous solution containing no rutile TiO 2 as a main component of the Ti component is used in the step B1.
  18.  前記工程A1において、前記Sr含有水溶液が、ストロンチウムの酢酸塩、又は水酸化物もしくは硝酸塩を水に溶解させてなるものである請求項1~17いずれか1項記載のチタン酸ストロンチウム微粒子の製造方法。 The method for producing strontium titanate fine particles according to any one of claims 1 to 17, wherein in the step A1, the Sr-containing aqueous solution is obtained by dissolving an acetate, hydroxide or nitrate of strontium in water. .
  19.  前記工程D1で用いる前記反応液は、Ti(OH)及び/又はHTiO イオンをTi成分の主成分として含んでなる請求項1~18いずれか1項記載のチタン酸ストロンチウム微粒子の製造方法。 The method for producing strontium titanate fine particles according to any one of claims 1 to 18, wherein the reaction liquid used in the step D1 contains Ti (OH) 4 and / or HTiO 3 - ions as a main component of the Ti component. .
  20.  前記工程A1において、前記Ti含有水溶液として四塩化チタン水溶液を調製する請求項1~19いずれか1項記載のチタン酸ストロンチウム微粒子の製造方法。 The method for producing strontium titanate fine particles according to any one of claims 1 to 19, wherein an aqueous titanium tetrachloride solution is prepared as the Ti-containing aqueous solution in the step A1.
  21.  前記工程C1において、前記塩基性化合物が、水酸化ナトリウム又は水酸化カリウムである請求項1~20いずれか1項記載のチタン酸ストロンチウム微粒子の製造方法。 The method for producing strontium titanate particles according to any one of claims 1 to 20, wherein in the step C1, the basic compound is sodium hydroxide or potassium hydroxide.
  22.  前記工程C1において、前記調整中に発生する固形物を粉砕する請求項1~21いずれか1項記載のチタン酸ストロンチウム微粒子の製造方法。 The method for producing strontium titanate fine particles according to any one of claims 1 to 21, wherein solid matter generated during the preparation is pulverized in the step C1.
  23.  前記工程D1において、前記亜臨界反応又は前記超臨界反応における反応温度の保持時間が10分以内である請求項1~22いずれか1項記載のチタン酸ストロンチウム微粒子の製造方法。 The method for producing strontium titanate fine particles according to any one of claims 1 to 22, wherein the holding time of the reaction temperature in the subcritical reaction or the supercritical reaction in the step D1 is within 10 minutes.
  24.  請求項1~23いずれか1項記載のチタン酸ストロンチウム微粒子の製造方法により製造されてなり、形状が立方体若しくは直方体であるチタン酸ストロンチウム微粒子。 A strontium titanate particle manufactured by the method for manufacturing a strontium titanate particle according to any one of claims 1 to 23, and having a cube or rectangular parallelepiped shape.
  25.  前記立方体若しくは直方体の表面に露出されている結晶面は、85%以上が{100}面である請求項24記載のチタン酸ストロンチウム微粒子。 25. The strontium titanate particles according to claim 24, wherein 85% or more of the crystal faces exposed on the surface of the cube or rectangular solid are {100} faces.
  26.  前記立方体若しくは直方体の1辺の長さが、10nm以上500nm以下である請求項24又は25いずれか1項記載のチタン酸ストロンチウム微粒子。 The strontium titanate particles according to any one of claims 24 or 25, wherein a length of one side of the cube or rectangular solid is 10 nm or more and 500 nm or less.
PCT/JP2015/000618 2014-02-14 2015-02-10 Manufacturing method for strontium titanate fine particles, and strontium titanate fine particles WO2015122181A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014026628A JP6081936B2 (en) 2014-02-14 2014-02-14 Method for producing cubic or cuboid crystal of strontium titanate and strontium titanate fine particles
JP2014-026628 2014-02-14

Publications (2)

Publication Number Publication Date
WO2015122181A1 WO2015122181A1 (en) 2015-08-20
WO2015122181A4 true WO2015122181A4 (en) 2015-10-01

Family

ID=53799932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/000618 WO2015122181A1 (en) 2014-02-14 2015-02-10 Manufacturing method for strontium titanate fine particles, and strontium titanate fine particles

Country Status (2)

Country Link
JP (1) JP6081936B2 (en)
WO (1) WO2015122181A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106925248B (en) * 2017-03-15 2019-06-25 天津大学 The oxygen-containing vacancy strontium titanates catalysis material of hydroxyl modified and its preparation and application
JP7336010B2 (en) * 2018-03-01 2023-08-30 チタン工業株式会社 Method for producing strontium titanate
CN112079379B (en) * 2020-09-16 2022-11-29 黄山学院 ZnTiO compound 3 Material and method for producing same
WO2022070784A1 (en) * 2020-09-30 2022-04-07 サカタインクス株式会社 Method for producing strontium titanate microparticles
KR20230075394A (en) * 2020-09-30 2023-05-31 사카타 인쿠스 가부시키가이샤 Strontium Titanate Particulate
KR20240039155A (en) 2021-07-30 2024-03-26 도다 고교 가부시끼가이샤 Strontium titanate fine particle powder and method for producing the same, dispersion and resin composition
JP7343074B1 (en) 2021-10-15 2023-09-12 戸田工業株式会社 Strontium titanate fine particle powder and dispersion, resin composition
CN115893483B (en) * 2023-01-03 2024-02-13 优美特(北京)环境材料科技股份公司 Hollow cage-shaped eighteen-surface SrTiO 3 Preparation method and application thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010014854A (en) * 2008-07-02 2010-01-21 Canon Inc Magnetic carrier and image forming method using the same
JP5448673B2 (en) * 2009-09-24 2014-03-19 株式会社トクヤマ Method for producing composite oxide nanoparticles
JP5618087B2 (en) * 2011-03-14 2014-11-05 独立行政法人産業技術総合研究所 Nanocrystal array method, nanocrystal film manufacturing method, nanocrystal film-coated substrate, and manufacturing method thereof

Also Published As

Publication number Publication date
JP6081936B2 (en) 2017-02-15
WO2015122181A1 (en) 2015-08-20
JP2015151304A (en) 2015-08-24

Similar Documents

Publication Publication Date Title
WO2015122181A4 (en) Manufacturing method for strontium titanate fine particles, and strontium titanate fine particles
Sun et al. Highly symmetric polyhedral Cu 2 O crystals with controllable-index planes
Samadipakchin et al. ZnO nanotubes: Preparation and photocatalytic performance evaluation
Khorasani-Motlagh et al. Chemical synthesis and characterization of perovskite NdFeO3 nanocrystals via a co-precipitation method
Pandey et al. Green synthesis of highly stable gold nanoparticles using Momordica charantia as nano fabricator
Gnanam et al. Luminescence properties of EG-assisted SnO2 nanoparticles by sol-gel process
Djerdj et al. Nonaqueous synthesis of metal oxide nanoparticles: short review and doped titanium dioxide as case study for the preparation of transition metal-doped oxide nanoparticles
Carbó-Argibay et al. Chemical sharpening of gold nanorods: the rod-to-octahedron transition
Cai et al. Organic additive-free synthesis of mesocrystalline hematite nanoplates via two-dimensional oriented attachment
Pang et al. Glycine-assisted double-solvothermal approach for various cuprous oxide structures with good catalytic activities
JP7398689B2 (en) Method for manufacturing composite tungsten oxide particles
Suwanboon et al. Physical and chemical properties of multifunctional ZnO nanostructures prepared by precipitation and hydrothermal methods
JP2010280551A (en) Tungsten oxide fine particle and method for producing the same
Li et al. Synthesis and visible light photocatalytic property of polyhedron-shaped AgNbO 3
JP5448673B2 (en) Method for producing composite oxide nanoparticles
Gatemala et al. 3D AgCl microstructures selectively fabricated via Cl−-induced precipitation from [Ag (NH 3) 2]+
US9957168B2 (en) Method for synthesis of ruthenium nanoparticles with face-centered cubic and hexagonal close-packed structures
Brewster et al. Role of aliphatic ligands and solvent composition in the solvothermal synthesis of iron oxide nanocrystals
Xia et al. Controllable synthesis and evolution mechanism of monodispersed Sub-10 nm ZrO2 nanocrystals
Kovalenko et al. Formation of single-crystalline BaTiO3 nanorods from glycolate by tuning the supersaturation conditions
US20150059818A1 (en) METHOD OF PRODUCING FILM OF SURFACE Nb-CONTAINING La-STO CUBIC CRYSTAL PARTICLES
Okeil et al. Synthesis of Anisotropic Metal Oxide Nanoparticles via Non-Aqueous and Non-Hydrolytic Routes
Pal et al. Dipentaerythritol: a novel additive for the precipitation of dispersed Ni particles in polyols
JP6065286B2 (en) Method for producing strontium titanate fine particles
Ramos-Docampo et al. Thermodynamically driven oxidation-induced Kirkendall effect in octahedron-shaped cobalt oxide nanocrystals

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15749062

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15749062

Country of ref document: EP

Kind code of ref document: A1