WO2015122168A1 - Air conditioner outdoor units - Google Patents

Air conditioner outdoor units Download PDF

Info

Publication number
WO2015122168A1
WO2015122168A1 PCT/JP2015/000577 JP2015000577W WO2015122168A1 WO 2015122168 A1 WO2015122168 A1 WO 2015122168A1 JP 2015000577 W JP2015000577 W JP 2015000577W WO 2015122168 A1 WO2015122168 A1 WO 2015122168A1
Authority
WO
WIPO (PCT)
Prior art keywords
driven compressor
engine
compressor
oil
power
Prior art date
Application number
PCT/JP2015/000577
Other languages
French (fr)
Japanese (ja)
Inventor
誠之 飯高
西山 吉継
松井 大
増田 哲也
賢宣 和田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2015122168A1 publication Critical patent/WO2015122168A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/08Compressors specially adapted for separate outdoor units
    • F24F1/10Arrangement or mounting thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/44Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger characterised by the use of internal combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/004Outdoor unit with water as a heat sink or heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0253Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2519On-off valves

Definitions

  • the present invention relates to an outdoor unit of an air conditioner, and more particularly to an outdoor unit of an air conditioner provided with a non-power source driven compressor driven by an engine and a power source driven compressor driven by electric power. .
  • the gas heat pump has a reduced efficiency of the gas engine at the time of partial load, and the operating efficiency of the air conditioner decreases.
  • a power-driven compressor with a smaller displacement volume than a non-power-driven compressor driven by a gas engine is installed side by side.
  • a so-called hybrid outdoor unit of a power source driven compressor and a non-power source driven compressor has been proposed (see, for example, Patent Document 1).
  • a non-power source driven compressor driven by a gas engine has a larger displacement volume than a power source driven compressor, and an element unique to a gas heat pump, such as an exhaust muffler and a cooling water pump, which is not found in an electric heat pump. Parts also need to be installed. Therefore, it is desirable that the outdoor unit of the gas heat pump is used as a base, and the power supply driven compressor is additionally arranged inside the outdoor unit.
  • the conventional gas heat pump has a structure in which the inside of the main body casing is divided into upper and lower two stages by a partition plate (see, for example, Patent Document 2).
  • the first floor is a machine room, which is a gas engine, a non-power source driven compressor driven by the gas engine, an oil separator that separates refrigeration oil from the discharge gas of the non power source driven compressor, an exhaust muffler of the gas engine, and a gas engine Many components such as a cooling water pump for circulating the cooling water and a control board are mounted.
  • the second floor is a heat exchanger room
  • an air heat exchanger for exchanging heat between air and refrigerant is installed on the partition plate so as to form the outer wall of the heat exchanger room. ing.
  • the air heat exchanger chamber almost nothing is installed except for a vent that allows air to move between the machine chamber and the heat exchanger chamber.
  • the air blower which consists of a fan and an air blower outlet is installed in the upper surface of a heat exchanger chamber, and when a fan rotates, the heat exchanger chamber becomes a negative pressure and the outer peripheral part of an air heat exchanger Take air from. Then, the air that has exchanged heat with the refrigerant in the air heat exchanger passes through the heat exchanger chamber and is discharged upward from the air outlet.
  • the present invention solves the above-described problem, and makes it easy to allow engine exhaust heat to flow into a power-driven compressor in an outdoor unit provided with a non-power-driven compressor and a power-driven compressor driven by a gas engine.
  • Refrigerating machine oil in the power-driven compressor which suppresses excessively low temperature of the power-driven compressor, makes it difficult to generate oil forming caused by the low temperature of the power-driven compressor when starting the electric drive compression It aims at providing the outdoor unit of the air conditioner which made it possible to improve the reliability of a power supply drive compressor by ensuring sufficiently.
  • the outdoor unit of the air conditioner includes a power source driven compressor driven by electric power and a non-power source driven compressor driven by a driving source other than electric power.
  • the machine room and the heat exchanger room storing the outdoor heat exchanger and the outdoor blower fan are divided into upper and lower stages by a partition plate, and the machine room is provided in the lower part and the heat exchanger room is provided in the upper part.
  • the non-power source driven compressor unit including the non-power source driven compressor is divided into two regions through a substantially vertical plane including a straight line through the center of the bottom plate provided at the bottom of the machine room. The center and the approximate center of the power supply driven compressor are located in the same region of one of the regions.
  • the power source driven compressor when the power source driven compressor is additionally arranged inside the outdoor unit of the existing gas heat pump, the interval between the non power source driven compressor unit and the power source driven compressor can be narrowed, and the drive source other than electric power can be discharged. Heat can easily flow into the power-driven compressor, and the temperature of the power-driven compressor can be suppressed from becoming excessively low. Therefore, when starting the power-driven compressor, oil forming caused by the low temperature of the power-driven compressor is less likely to occur, and sufficient refrigeration oil in the power-driven compressor can be secured. Can be improved.
  • At least one vent hole is provided in the partition plate so that air inside the outdoor unit can move between the heat exchanger chamber and the machine chamber.
  • the third aspect of the present invention is the outdoor unit for an air conditioner according to claim 1 or 2, wherein an excluded volume of the non-power source driven compressor is larger than an excluded volume of the power source driven compressor.
  • FIG. 1 is a configuration diagram of a refrigeration cycle of an air conditioner according to the present invention.
  • FIG. 2 is a longitudinal sectional view of the outdoor unit 100 of the air conditioner according to Embodiment 1 of the present invention.
  • FIG. 3 is a cross-sectional view of outdoor unit 100 of the air conditioner according to Embodiment 1 of the present invention.
  • FIG. 4 is a longitudinal sectional view of the outdoor unit 100 of the air conditioner according to Embodiment 2 of the present invention.
  • FIG. 5 is a cross-sectional view of the outdoor unit 100 for an air conditioner according to Embodiment 2 of the present invention.
  • FIG. 1 A refrigeration cycle configuration of the air conditioner of the present embodiment is shown in FIG.
  • the air conditioner of FIG. 1 has a so-called twin configuration in which two indoor units are connected to one outdoor unit.
  • the refrigeration cycle configuration is not limited to that shown in FIG.
  • two or more outdoor units and three or more indoor units can be connected in parallel.
  • the outdoor unit 100 is an outdoor unit, and the outdoor unit 100 and the indoor units 200 and 210 are connected by a liquid pipe 50 and a gas pipe 55 through which a refrigerant flows.
  • 111 is an engine using gas as a driving source
  • 112 is an engine-driven compressor (non-power source driven compressor) that obtains driving force from the engine 111 and compresses refrigerant
  • 113 has a built-in motor.
  • This is a power source driven compressor that is driven by electric power such as a commercial power source.
  • the engine driven compressor 112 and the power supply driven compressor 113 are connected in parallel in the refrigeration cycle.
  • the excluded volume of the engine-driven compressor 112 is larger than the excluded volume of the power-driven compressor 113, and the lubricating oil of the engine-driven compressor 112 and the power-driven compressor 113 is the same refrigerating machine oil. .
  • the discharge pipe and the suction pipe of the engine driven compressor 112 are formed thicker than the discharge pipe and the suction pipe of the power supply driven compressor 113. In this way, an increase in pressure loss in the discharge piping and suction piping on the engine-driven compressor 112 side where the refrigerant flow rate is large is suppressed, and the return amount of the refrigeration oil from the refrigeration cycle to the engine-driven compressor 112 is power-driven. More than the amount of refrigeration oil returned to the compressor 113.
  • Reference numeral 114 denotes an accumulator which is connected to a refrigerant pipe extending from a four-way valve 116, which will be described later, to the junction of the suction pipe of the engine-driven compressor 112 and the suction pipe of the power supply-driven compressor 113. Supply refrigerant.
  • the 115a and 115b are oil separators.
  • the oil separator 115a is installed in the discharge pipe of the engine-driven compressor 112, and the oil separator 115b is installed in the discharge pipe of the power supply-driven compressor 113.
  • 113 is separated from the refrigerating machine oil contained in the discharged gas.
  • the refrigerating machine oil separated by the oil separator 115a is returned to the suction pipe of the engine driven compressor 112 by the oil return pipe 115c, and the refrigerating machine oil separated by the oil separator 115b is returned to the suction pipe of the power supply driven compressor 113 by the oil return pipe 115c. It is returned individually by the tube 115d.
  • the oil return pipes 115c and 115d are connected to oil return pipe on / off valves 115e and 115f, respectively, and the communication of the oil return pipes 115c and 115d is controlled by opening and closing the oil return pipe on / off valves 115e and 115f. Is done.
  • the oil separators 115a and 115b may be installed as a single oil separator 115 so as to separate the refrigeration oil contained in the discharge gas of both the compressors 112 and 113 together.
  • the oil separator 115 is installed in the refrigerant pipe on the opposite side of the compressors 112 and 113 from the junction of the discharge pipe of the engine-driven compressor 112 and the discharge pipe of the power supply-driven compressor 113.
  • Reference numeral 118 denotes an engine exhaust heat exchanger that performs heat exchange between the high-temperature coolant used for cooling the engine 111 and the refrigerant, and is used during heating.
  • the engine exhaust heat exchanger 118 is provided with a cooling water pipe (not shown).
  • 119 is an engine exhaust heat exchanger refrigerant flow rate adjustment valve that adjusts the refrigerant flow rate that flows into the engine exhaust heat exchanger 118.
  • 120 is an outdoor fan that supplies air around the outdoor unit 100 to the outdoor heat exchanger 130.
  • 201 is an indoor air heat exchanger
  • 202 is an indoor fan that supplies air around the indoor unit 200 to the indoor air heat exchanger 201
  • 203 is an indoor unit pressure reducing device that expands the refrigerant.
  • 211 is an indoor air heat exchanger
  • 212 is an indoor fan that supplies air around the indoor unit 210 to the indoor air heat exchanger 211
  • 213 is an indoor unit pressure reducing device that expands the refrigerant.
  • FIG. 2 is a longitudinal sectional view of the outdoor unit 100 cut along a vertical plane parallel to the front surface
  • FIG. 3 is a transverse sectional view of the outdoor unit 100 cut along a horizontal plane (XX in the drawing) parallel to the bottom surface.
  • the outdoor unit 100 includes a main body casing 100A configured as a frame, and the inside of the main body casing 100A is divided into two upper and lower stages by a partition plate 103, 101 is a machine room, Reference numeral 102 denotes a heat exchanger chamber.
  • an engine 111 In the machine room 101, an engine 111, an engine driven compressor 112, and a power source driven compressor 113 are further installed.
  • an accumulator 114 In addition to these, an accumulator 114, an oil separator 115, a four-way valve 116, an outdoor unit pressure reducing device 117, an engine exhaust heat heat exchanger 118, and an engine exhaust heat heat exchanger refrigerant flow rate adjustment valve 119, many components such as an exhaust muffler of the engine 111, a cooling water pump for circulating the cooling water of the engine 111, a control board, and a refrigerant pipe are mounted. And the arrangement
  • the air conditioning load is smaller than the minimum capacity of the non-power source driven compressor (first air conditioner) 112
  • the power source driven compressor (second air conditioner) 113 is operated, and the air conditioning load in the air conditioning target space Is not less than the minimum capacity of the non-power source driven compressor (first air conditioner) 112 and smaller than the sum of the minimum capacity of the first air conditioner and the minimum capacity of the second air conditioner
  • Either the first air conditioner (112) or the power source driven compressor (second air conditioner) 113 is replaced with a non-power source driven compressor (first air conditioner) 112 or a power source driven compressor (first unit) provided in the air conditioner.
  • (2 air conditioner) 113 is operated at a lower operating cost or with less energy consumption, and the air conditioning load in the air conditioning target space is the minimum capacity of the first air conditioner and the minimum capacity of the second air conditioner. If the sum of The first air conditioner) 112 and a power driven compressor (operating both the second air conditioner) 113.
  • the outdoor heat exchanger 130 is configured to form an outer wall of the heat exchanger chamber 102, and a power source driven compressor 113 is installed at a substantially central portion of the partition plate 103.
  • the engine is applied to two regions of the bottom plate 122 that are separated by a horizontal straight line that extends through the center of the bottom plate 122 provided in the bottom of the machine room 101 and extends in the depth direction of the machine room 101.
  • 111 and the engine-driven compressor 112 which is approximately the center of the engine compressor unit 123 (point A in the figure) and the center of the power-driven compressor 113 (point B in the figure) Located in the same area.
  • the four-way valve 116 is set so that the refrigerant flows through the solid line (see FIG. 1).
  • the high-temperature and high-pressure refrigerant compressed by the engine-driven compressor 112 and the power-driven compressor 113 flows into the oil separators 115a and 115b, respectively, and separates the refrigeration oil.
  • the high-purity gas refrigerants separated by the oil separators 115a and 115b are merged, then enter the outdoor heat exchanger 130 through the four-way valve 116.
  • the gas refrigerant exchanges heat with the outside air, dissipates heat, condenses, becomes a high-pressure liquid refrigerant, passes through the outdoor unit decompression device 117, passes through the liquid pipe 50, and passes through the indoor unit 200. , 210.
  • the refrigerating machine oil separated by the oil separators 115a and 115b is connected to the intake pipe of the engine driven compressor 112 by opening the oil return pipe opening / closing valve 115e when the engine driven compressor 112 is driven. Returned.
  • the oil return pipe on / off valve 115f is opened to return to the suction pipe of the power supply driven compressor 113.
  • the oil return pipe on / off valve 115e is closed, and when the power source driven compressor 113 is not driven, the oil return pipe on / off valve 115f is closed.
  • the high-pressure liquid refrigerant that has entered the indoor unit 200 is decompressed by the indoor unit decompression device 203, enters a gas-liquid two-phase state, and flows into the indoor heat exchanger 201.
  • the refrigerant in the gas-liquid two-phase state evaporates after exchanging heat with the air in the space to be air-conditioned in the indoor heat exchanger 201 and then flows out from the indoor unit 200 as a gas refrigerant.
  • the indoor unit 210 As in the indoor unit 200, first, the high-pressure liquid refrigerant is decompressed by the indoor unit decompression device 213, enters a gas-liquid two-phase state, and flows into the indoor heat exchanger 211.
  • the refrigerant in the gas-liquid two-phase state evaporates after exchanging heat with the air in the space to be air-conditioned in the indoor heat exchanger 211 and then evaporates to flow out of the indoor unit 210.
  • the indoor unit decompression device 213 When only the indoor unit 200 performs the cooling operation, the indoor unit decompression device 213 is closed, and the refrigerant is not supplied to the indoor heat exchanger 211 of the indoor unit 210. On the other hand, when only the indoor unit 210 performs the cooling operation, the indoor unit decompression device 203 is closed and the refrigerant is not supplied to the indoor heat exchanger 201 of the indoor unit 200.
  • the gas refrigerant flowing out of the indoor units 200 and 210 passes through the gas pipe 55 and returns to the outdoor unit 100 again.
  • the gas refrigerant flowing into the outdoor unit 100 passes through the four-way valve 116 and the accumulator 114 and returns to the engine driven compressor 112 and the power source driven compressor 113.
  • the operation method of the engine-driven compressor 112 and the power supply-driven compressor 113 during the cooling operation is as follows.
  • the engine-driven compressor 112 alone causes intermittent operation. Only the power source driven compressor 113 is operated.
  • the cooling capacity when the cooling load is larger than the minimum cooling load of the engine driven compressor 112 and both the engine driven compressor 112 and the power source driven compressor 113 are operated at the minimum operating frequency (when both compressors are operated). If it is smaller than (minimum cooling capacity), one of the engine-driven compressor 112 and the power-driven compressor 113, for example, the one with the lower operating cost or the lower energy consumption is selected for operation.
  • both the engine-driven compressor 112 and the power-driven compressor 113 are operated so that, for example, the operation cost or the energy consumption is minimized. To do.
  • the operating frequency and operating cost of each compressor or the energy consumption Use the relationship.
  • the ratio of the cooling load that the engine-driven compressor 112 has to the entire cooling load is the maximum cooling capacity when both compressors are operated at the maximum operating frequency (maximum cooling capacity when operating both compressors).
  • the ratio of the cooling capacity when only the engine-driven compressor 112 is operated at the maximum operating frequency is about ⁇ 15%.
  • the four-way valve 116 is set to flow the refrigerant along the dotted line (see FIG. 1).
  • the high-temperature and high-pressure refrigerant compressed by the engine-driven compressor 112 and the power-driven compressor 113 flows into the oil separators 115a and 115b, respectively, and separates the refrigeration oil.
  • the high-purity gas refrigerants separated by the oil separators 115a and 115b merge, pass through the four-way valve 116, pass through the gas pipe 55, exit the outdoor unit 100, and are supplied to the indoor units 200 and 210.
  • the high-temperature and high-pressure gas refrigerant that has entered the indoor unit 200 flows into the indoor heat exchanger 201.
  • the high-temperature and high-pressure gas refrigerant exchanges heat with the air in the space to be air-conditioned in the indoor heat exchanger 201, dissipates the heat, and then condenses into a high-pressure liquid refrigerant that passes through the indoor unit decompression device 203. , Out of the indoor unit 200.
  • the high-temperature and high-pressure gas refrigerant flows into the indoor heat exchanger 211.
  • the high-temperature and high-pressure gas refrigerant exchanges heat with the air in the air-conditioned space, dissipates heat, condenses, and becomes a high-pressure liquid refrigerant that passes through the indoor unit decompression device 213. , Flows out from the indoor unit 210.
  • the indoor unit decompression device 213 is closed and the refrigerant is not supplied to the indoor heat exchanger 211 of the indoor unit 210.
  • the indoor unit decompression device 203 is closed and the refrigerant is not supplied to the indoor heat exchanger 201 of the indoor unit 200.
  • the high-pressure liquid refrigerant that has flowed out of the indoor units 200 and 210 passes through the liquid pipe 50 and returns to the outdoor unit 100 again.
  • the high-pressure liquid refrigerant that has flowed into the outdoor unit 100 is depressurized by the outdoor unit decompression device 117, becomes a gas-liquid two-phase state, and flows into the outdoor heat exchanger 130 and the engine exhaust heat exchanger 118.
  • the refrigerant in a gas-liquid two-phase state evaporates after heat is exchanged with the outside air in the outdoor heat exchanger 130 and heat is exchanged with the high-temperature cooling water used for cooling the engine 111 in the engine exhaust heat exchanger 118.
  • the four-way valve 116 and the accumulator 114 are returned to the engine-driven compressor 112 and the power-driven compressor 113.
  • the operation method of the engine-driven compressor 112 and the power-driven compressor 113 during the heating operation is as follows.
  • the heating load is smaller than the heating capacity when the engine-driven compressor 112 is operated at the minimum operating frequency (the minimum heating capacity of the engine-driven compressor 112), the engine-driven compressor 112 alone will cause intermittent operation. Only the power source driven compressor 113 is operated.
  • Heating capacity when the heating load is larger than the minimum heating load of the engine-driven compressor 112 and both the engine-driven compressor 112 and the power-driven compressor 113 are operated at the minimum operating frequency (during both compressor operations) If it is smaller than (minimum heating capacity), one of the engine driven compressor 112 and the power source driven compressor 113, for example, the one with lower operating cost or lower energy consumption is selected for operation.
  • the operating cost or the energy consumption of both the engine driven compressor 112 and the power source driven compressor 113 is minimized.
  • the operating frequency and operating cost of each of the compressors 112 and 113 are determined, or Use the relationship with energy consumption.
  • the ratio of the heating load that the engine-driven compressor 112 has to the overall heating load is the maximum heating capacity when both the compressors 112 and 113 are operated at the maximum operating frequency (the maximum when both compressors are operating).
  • the ratio of the heating capacity when only the engine-driven compressor 112 is operated at the maximum operating frequency with respect to the heating capacity) is about ⁇ 15%.
  • each compressor 112 is set so that the operation cost or the energy consumption is minimized.
  • 113 is controlled so as to increase the operating frequency of the engine-driven compressor 112 and lower the operating frequency of the power-driven compressor 113.
  • the amount of exhaust heat of the engine 111 is increased, and the amount of cooling water supplied to the engine exhaust heat exchanger 118 is also increased. That is, more refrigerant can be evaporated in the engine exhaust heat exchanger 118, and the amount of refrigerant flowing through the outdoor heat exchanger 130 is reduced, thereby reducing the risk of frost formation.
  • the engine compressor unit 123 composed of the engine 111 and the engine driven compressor 112 driven by the engine, and the power supply driven compression driven by the motor.
  • the machine 113 is installed in the machine room 101, and the positional relationship between the engine compressor unit 123 and the power-driven compressor 113 passes through the center of the bottom plate 118 provided at the bottom of the machine room 101, and the depth direction of the machine room 101
  • the bottom plate 122 is divided into two regions by a horizontal straight line extending in the direction of approximately the center of the engine compressor unit 123 (point A in the figure) and the center of the power drive compressor 113 (point B in the figure).
  • the distance between the engine compressor unit and the power-driven compressor 113 can be reduced, and the engine exhaust heat can be reduced to the power source.
  • the temperature of the power driven compressor 113 can be suppressed from being too low. Therefore, when starting the power-driven compressor 113, oil forming caused by the low temperature of the power-driven compressor 113 is less likely to occur, and sufficient refrigeration oil in the power-driven compressor 113 can be secured. The reliability of the compressor 113 can be improved.
  • the displacement volume of the engine driven compressor 112 is larger than the displacement volume of the power source driven compressor 113, the engine exhaust heat increases and the amount of heat flowing into the power source driven compressor 113 increases. Therefore, more gas engine exhaust heat can be flowed into the power supply driven compressor 113, and it becomes possible to further suppress the temperature of the power supply driven compressor 113 from being excessively lowered. Therefore, when starting the power-driven compressor 113, oil forming caused by the low temperature of the power-driven compressor 113 is less likely to occur, and sufficient refrigeration oil in the power-driven compressor 113 can be secured. The reliability of the compressor 113 can be improved.
  • the inner diameter of the discharge and suction pipes of the engine driven compressor 112 is larger than the inner diameter of the discharge and suction pipes of the power supply driven compressor 113, the pressure loss in the discharge and suction pipes of the engine driven compressor 112 is reduced. It is possible to suppress the increase and prevent a decrease in the operation efficiency of the outdoor unit as a whole. Further, the return amount of the refrigeration oil from the refrigeration cycle to the engine driven compressor 112 is larger than that of the power source driven compressor 113, and the operation reliability of the engine driven compressor 112 can be improved.
  • an engine compressor unit 123 composed of an engine 111, an engine-driven compressor 112 driven by the engine, and a power-driven compressor 113 driven by a motor
  • a machine room. 101 the positional relationship between the engine compressor unit 123 and the power-driven compressor 113 passes through the center of the bottom plate 122 provided at the bottom of the machine room 101, and the bottom plate 122 is formed by a horizontal straight line extending in the depth direction of the machine room 101. Is divided into two regions, and the approximate center (point A in the figure) of the engine compressor unit 123 and the approximate center (point B in the figure) of the power-driven compressor 113 are in one of the same regions.
  • the interval between the engine compressor unit and the power supply compressor 113 can be narrowed, and the refrigerant is branched from the main circuit to supply the power supply compressor 11.
  • the length of the suction pipe for allowing the refrigerant to flow into the suction port and the discharge pipe for joining the refrigerant discharged from the power supply driven compressor 113 to the main circuit is prevented from becoming excessively long, and the cost of such a member is reduced. It becomes possible to suppress.
  • FIGS. 4 is a longitudinal sectional view of the outdoor unit 100 taken along a vertical plane parallel to the front surface
  • FIG. 5 is a transverse sectional view of the outdoor unit 100 taken along a horizontal plane (YY in the figure) parallel to the bottom surface.
  • reference numerals 105 a and 105 b denote vent holes installed in the partition plate 103 in the outdoor unit 100. Ventilation holes 105a and 105b are arranged so as to be substantially symmetrical with respect to a straight line that bisects partition plate 103 in the width direction (lateral direction in FIG. 5). The air inside the outdoor unit 100 can move between the machine room 101 and the heat exchanger room 102 through the vent holes 105a and 105b. In addition, opening adjustment valves (not shown) are installed at the ventilation openings 105a and 105b, and the opening of the ventilation openings 105a and 105b can be adjusted. The oil separator 115 a is installed on the partition plate 103 in the outdoor unit 100.
  • the flow resistance of the oil return pipe 115c connected from the oil separator 115a to the suction pipe of the engine driven compressor 112 is the flow resistance of the oil return pipe 115d connected from the oil separator 115b to the suction pipe of the power supply driven compressor 113. It is set smaller than the road resistance.
  • the setting of the channel resistance is adjusted by, for example, the inner diameter and length of a thin tube (capillary tube) installed in the oil return tube.
  • the operation of the outdoor unit 100 during cooling and heating is the same as in the first embodiment.
  • the operation of the air vents 105a and 105b during the cooling and heating operation and the oil return operation from the oil separators 115a and 115b during the operation to the engine driven compressor 112 and the power supply driven compressor 113 will be described.
  • the operation of the vents 105a and 105b during cooling and heating operations will be described.
  • the engine 111 burns fuel such as gas, so that high-temperature exhaust heat is generated.
  • the engine 111 is cooled by cooling water circulated by a cooling water pump (not shown) installed in the machine room 101.
  • the cooling water that has become hot due to the exhaust heat of the engine 111 is radiated by a radiator (not shown) installed in the heat exchanger chamber 102 and then returned to the engine 111 again.
  • the radiator is installed inside the outdoor heat exchanger 130, and is configured to exchange heat with air that has undergone heat exchange with the refrigerant in the outdoor heat exchanger 130.
  • the exhaust heat of the engine 111 cannot be completely obtained only by the cooling water. Therefore, the opening adjustment valves (not shown) of the vent holes 105a and 105b are opened, the air in the machine room 101 is released to the heat exchanger room 102 by the operation of the outdoor fan 120, and the machine room is discharged by the exhaust heat of the engine 111. 101 is prevented from becoming high temperature.
  • the power supply driven compressor 113 is cooled to a low temperature, so that the opening adjustment valves (not shown) of the vent holes 105a and 105b are closed. Then, since there is no movement of air from the machine room 101 to the heat exchange room 102, the exhaust heat of the engine 111 staying in the machine room 101 increases as compared with the case where the vent holes 105a and 105b are opened, and the power supply is driven. The temperature of the compressor 113 becomes excessively low, and the occurrence of oil forming at the start of the power supply driven compressor 113 can be suppressed. In order to cool a control board (not shown) mounted in the machine room 101, the vent holes 105a and 105b may be partially opened.
  • the opening adjustment valves Close (not shown). Then, since there is no movement of air from the machine room 101 to the heat exchange chamber 102, the amount of air passing through the heat exchanger is increased as compared with the case where the vent holes 105a and 105b are opened, and the efficiency of the entire refrigeration cycle is increased. Will improve. In order to cool a control board (not shown) mounted in the machine room 101, the vent holes 105a and 105b may be partially opened.
  • the refrigerating machine oil separated by the oil separator 115a is returned to the suction pipe of the engine driven compressor 112 by opening the oil return pipe opening / closing valve 115e when the engine driven compressor 112 is driven.
  • the refrigerating machine oil separated by the oil separator 115b is supplied to the suction pipe of the power supply driven compressor 113 by opening the oil return pipe on / off valve 115f when the power supply driven compressor 113 is driven. Returned.
  • the oil return pipe on / off valve 115e is closed, and when the power source driven compressor 113 is not driven, the oil return pipe on / off valve 115f is closed.
  • the displacement volume of the engine drive compressor 112 is set larger than the displacement volume of the power drive compressor 113, and therefore the engine drive compressor
  • the refrigerant flow rate discharged by 112 is larger than the refrigerant flow rate discharged by the power supply driven compressor 113. Therefore, the refrigerating machine oil discharged from the engine driven compressor 112 is more than the refrigerating machine oil discharged from the power supply driven compressor 113.
  • the flow resistance of the oil return pipe 115c is set to be smaller than the flow resistance of the oil return pipe 115d. Therefore, even when both the compressors 112 and 113 are operating simultaneously, the oil separator The amount of refrigerating machine oil returning from 115a to the engine driven compressor 112 is greater than the amount of refrigerating machine oil returning from the oil separator 115b to the power supply driven compressor 113.
  • the oil separator 115 a is installed on the partition plate 103 in the outdoor unit 100, and the oil level of the refrigerating machine oil in the oil separator 115 a and the oil level of the refrigerating machine oil present in the engine drive compressor 112. There is a head difference between On the other hand, the head difference between the oil level of the refrigerating machine oil in the oil separator 115b and the oil level of the refrigerating machine oil present in the power supply compressor 113 is small. Therefore, even when the pressure difference between the high pressure and the low pressure of the refrigeration cycle is small, such as when the load is low, the refrigeration oil returns more easily from the refrigeration oil 115 to the engine driven compressor 112 than the power supply driven compressor 113 due to the head difference. .
  • the opening degree can be adjusted so that the partition plate 103 is substantially symmetrical with respect to a straight line that bisects the width direction (lateral direction in FIG. 5). Mouth 105a, 105c is installed. Therefore, in addition to the effect of the first embodiment, it is possible to secure a ventilation path for discharging the exhaust heat of the engine 111 in the machine room 101 to the outside of the main body housing of the outdoor unit 100 via the heat exchanger room 102. it can.
  • the power source driven compressor 113 when the outside air temperature is low, the power source driven compressor 113 is cooled to a low temperature, so that the vent holes 105a and 105b are closed to block the movement of air from the machine room 101 to the heat exchange room 102.
  • the exhaust heat of the engine 111 staying in the machine room 101 is increased, the temperature of the power-driven compressor 113 is suppressed from becoming excessively low, and the occurrence of oil forming at the start-up of the power-driven compressor 113 can be suppressed.
  • the reliability of the drive compressor 113 can be improved.
  • the flow resistance of the oil return pipe 115c connected from the oil separator 115a to the suction pipe of the engine driven compressor 112 is the flow resistance of the oil return pipe 115d connected from the oil separator 115b to the suction pipe of the power supply driven compressor 113. Since the road resistance is set to be smaller, the amount of refrigerating machine oil returning from the oil separator 115a to the engine-driven compressor 112 is supplied from the oil separator 115b even when both compressors 112 and 113 are operating simultaneously. More than the amount of refrigerating machine oil returning to the drive compressor 113. Therefore, the operation reliability of the engine-driven compressor 112 that has a large discharge amount of refrigeration oil can be improved.
  • the oil separator 115a is installed on the partition plate 103 in the outdoor unit 100, the oil separator 115a is driven from the oil separator 115a even when the pressure difference between the high pressure and the low pressure in the refrigeration cycle is small, such as when the load is low. Refrigerating machine oil easily returns to the drive compressor 112. Therefore, it is possible to further improve the operation reliability of the engine-driven compressor 112 having a large amount of refrigerant oil discharged.
  • the outdoor unit of the air conditioner according to the present invention suppresses the temperature of the power-driven compressor from becoming excessively low when a power-driven compressor driven by a motor is additionally disposed in the machine room, and starts electric drive compression. It is possible to improve the reliability of the power-driven compressor by making it hard to generate oil forming caused by the low temperature of the power-driven compressor and securing sufficient refrigeration oil in the power-driven compressor To do. Therefore, the engine-driven compressor driven by the engine and the power-driven compressor driven by the motor are suitable for use in an outdoor unit provided in the machine room.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

 Air conditioner outdoor units provided with a non-electrically-driven compressor and an electrically-driven compressor suffer from the problem of reduced reliability of the air conditioner outdoor unit because when the electrically-driven compressor is started at a low temperature, oil-foaming, in which refrigerant dissolved in a refrigerant oil produces foam, occurs, and the oil is discharged into the circuit through a discharge opening causing the refrigerant oil in the electrically-driven compressor to be insufficient. A bottom plate (122) is divided into two regions by a straight horizontal line extending in the depth direction of a machine chamber (101) through the center of the bottom plate (122) of the machine chamber (101). The approximate center of an engine compressor unit (123) comprising an engine (111) and the non-electrically driven compressor (112) and the approximate center of the electrically-driven compressor (113) are both located in one of said two regions.

Description

空気調和機の室外ユニットAir conditioner outdoor unit
 本発明は、空気調和機の室外ユニットに係り、特に、エンジンにより駆動される非電源駆動圧縮機と、電力により駆動される電源駆動圧縮機とを併設した空気調和機の室外ユニットに関するものである。 The present invention relates to an outdoor unit of an air conditioner, and more particularly to an outdoor unit of an air conditioner provided with a non-power source driven compressor driven by an engine and a power source driven compressor driven by electric power. .
 ガスヒートポンプは、部分負荷時には、ガスエンジンの熱効率が低下し、空気調和機としての運転効率が低下する。これを回避するため、ガスエンジンにより駆動される非電源駆動圧縮機よりも排除容積が小さい電源駆動圧縮機を併設し、部分負荷時は電源駆動圧縮機を主体に運転し、高負荷時にはガスエンジンを主体に運転する、いわゆる、電源駆動圧縮機と非電源駆動圧縮機とのハイブリッド室外ユニットが提案されている(例えば、特許文献1参照)。 The gas heat pump has a reduced efficiency of the gas engine at the time of partial load, and the operating efficiency of the air conditioner decreases. In order to avoid this, a power-driven compressor with a smaller displacement volume than a non-power-driven compressor driven by a gas engine is installed side by side. A so-called hybrid outdoor unit of a power source driven compressor and a non-power source driven compressor has been proposed (see, for example, Patent Document 1).
 ハイブリッド室外ユニットでは、ガスエンジンにより駆動される非電源駆動圧縮機は電源駆動圧縮機よりも排除容積が大きく、また、排気マフラー、冷却水ポンプなど、電気式ヒートポンプにはない、ガスヒートポンプ固有の要素部品も設置する必要がある。したがって、ガスヒートポンプの室外ユニットをベースとし、電源駆動圧縮機を当該室外ユニットの内部に追加配置することが望ましい。 In a hybrid outdoor unit, a non-power source driven compressor driven by a gas engine has a larger displacement volume than a power source driven compressor, and an element unique to a gas heat pump, such as an exhaust muffler and a cooling water pump, which is not found in an electric heat pump. Parts also need to be installed. Therefore, it is desirable that the outdoor unit of the gas heat pump is used as a base, and the power supply driven compressor is additionally arranged inside the outdoor unit.
 ところで、従来のガスヒートポンプは、本体筐体内部が仕切り板により上下二段に分割された構造となっている(例えば、特許文献2参照)。 Incidentally, the conventional gas heat pump has a structure in which the inside of the main body casing is divided into upper and lower two stages by a partition plate (see, for example, Patent Document 2).
 1階部分は機械室であり、ガスエンジン、ガスエンジンにより駆動される非電源駆動圧縮機、非電源駆動圧縮機の吐出ガスから冷凍機油を分離する油分離器、ガスエンジンの排気マフラー、ガスエンジンの冷却水を循環させる冷却水ポンプ、制御基板など、多くの部品が搭載されている。 The first floor is a machine room, which is a gas engine, a non-power source driven compressor driven by the gas engine, an oil separator that separates refrigeration oil from the discharge gas of the non power source driven compressor, an exhaust muffler of the gas engine, and a gas engine Many components such as a cooling water pump for circulating the cooling water and a control board are mounted.
 一方、2階部分は熱交換器室となっており、仕切り板上には、空気と冷媒とが熱交換するための空気熱交換器が、熱交換器室の外壁を形成するように設置されている。この空気熱交換器室の内部には、機械室と熱交換器室との間の空気の移動を可能とする通気口以外は、ほとんど何も設置されていない。 On the other hand, the second floor is a heat exchanger room, and an air heat exchanger for exchanging heat between air and refrigerant is installed on the partition plate so as to form the outer wall of the heat exchanger room. ing. In the air heat exchanger chamber, almost nothing is installed except for a vent that allows air to move between the machine chamber and the heat exchanger chamber.
 なお、熱交換器室の上面には、ファンと空気吹き出し口からなる送風機が設置されており、ファンが回転することで、熱交換器室内は負圧となって、空気熱交換器の外周部から空気を取り込む。そして、空気熱交換器において冷媒と熱交換した空気は、熱交換器室内を通って空気吹き出し口から筐体上方に排出される。 In addition, the air blower which consists of a fan and an air blower outlet is installed in the upper surface of a heat exchanger chamber, and when a fan rotates, the heat exchanger chamber becomes a negative pressure and the outer peripheral part of an air heat exchanger Take air from. Then, the air that has exchanged heat with the refrigerant in the air heat exchanger passes through the heat exchanger chamber and is discharged upward from the air outlet.
特開2003-056931号公報JP 2003-056331 A 特開2009-068750号公報JP 2009-068750 A
 しかしながら、ガスヒートポンプの室外ユニットをベースとした室外ユニットの内部に、電源駆動圧縮機を追加設置する場合、電源駆動圧縮機の温度が低いときに電源駆動圧縮機を起動すると、冷凍機油に溶解している冷媒が発砲する所謂オイルフォーミングが発生し、電源駆動圧縮機内の冷凍機油が吐出口を経由して回路内へ排出されることで電源駆動圧縮機内の冷凍機油が不足し、電源駆動圧縮機の信頼性が低下するという課題を有していた。 However, when a power-driven compressor is additionally installed inside the outdoor unit based on the outdoor unit of the gas heat pump, if the power-driven compressor is started when the temperature of the power-driven compressor is low, it will dissolve in the refrigeration oil. The so-called oil forming occurs in which the refrigerant is fired, and the refrigerating machine oil in the power supply driven compressor is discharged into the circuit via the discharge port, resulting in a shortage of refrigerating machine oil in the power supply driven compressor. The problem was that the reliability of the system would decrease.
 本発明は、前記課題を解決するものであり、ガスエンジンにより駆動される非電源駆動圧縮機と電源駆動圧縮機とを併設する室外ユニットにおいて、エンジン排熱を電源駆動圧縮機へ流入させやすくし、電源駆動圧縮機の温度が過度に低くなるのを抑え、電動駆動圧縮を起動する際に電源駆動圧縮機の温度が低いことによって生じるオイルフォーミングを発生しにくくし、電源駆動圧縮機内の冷凍機油を十分に確保することで、電源駆動圧縮機の信頼性を向上させることを可能とした空気調和機の室外ユニットを提供することを目的とする。 The present invention solves the above-described problem, and makes it easy to allow engine exhaust heat to flow into a power-driven compressor in an outdoor unit provided with a non-power-driven compressor and a power-driven compressor driven by a gas engine. Refrigerating machine oil in the power-driven compressor, which suppresses excessively low temperature of the power-driven compressor, makes it difficult to generate oil forming caused by the low temperature of the power-driven compressor when starting the electric drive compression It aims at providing the outdoor unit of the air conditioner which made it possible to improve the reliability of a power supply drive compressor by ensuring sufficiently.
 この明細書には、2014年2月14日に出願された日本国特許出願・特願2014-026757の全ての内容が含まれる。 This specification includes all the contents of the Japanese patent application / Japanese Patent Application No. 2014-026757 filed on Feb. 14, 2014.
 前記課題を解決するために、第1の発明に係る空気調和機の室外ユニットは、電力により駆動する電源駆動圧縮機と、電力以外の駆動源により駆動する非電源駆動圧縮機とが配置された機械室と、室外熱交換器および室外送風ファンを格納した熱交換器室とを、仕切り板で上下二段に分割し、前記機械室を下段部分に、前記熱交換器室を上段部分に備え、前記機械室の底部に設けられる底板の中心を通り、直線を含む略鉛直方向の平面で前記底板を2つの領域に分割し、前記非電源駆動圧縮機を含む非電源駆動圧縮機ユニットの略中心と前記電源駆動圧縮機の略中心とが、前記領域のどちらか一方の同じ領域に位置することを特徴とする。 In order to solve the above-described problem, the outdoor unit of the air conditioner according to the first aspect includes a power source driven compressor driven by electric power and a non-power source driven compressor driven by a driving source other than electric power. The machine room and the heat exchanger room storing the outdoor heat exchanger and the outdoor blower fan are divided into upper and lower stages by a partition plate, and the machine room is provided in the lower part and the heat exchanger room is provided in the upper part. The non-power source driven compressor unit including the non-power source driven compressor is divided into two regions through a substantially vertical plane including a straight line through the center of the bottom plate provided at the bottom of the machine room. The center and the approximate center of the power supply driven compressor are located in the same region of one of the regions.
 これにより、電源駆動圧縮機を既存のガスヒートポンプの室外ユニット内部に追加配置する際に、非電源駆動圧縮機ユニットと電源駆動圧縮機の間隔を狭くすることができ、電力以外の駆動源の排熱を電源駆動圧縮機へ流入させやすく、電源駆動圧縮機の温度が過度に低くなるのを抑えることが可能となる。よって、電源駆動圧縮機を起動する際に電源駆動圧縮機の温度が低いことによって生じるオイルフォーミングが発生しにくくなり、電源駆動圧縮機内の冷凍機油を十分に確保できるため、電源駆動圧縮機の信頼性を向上させることができる。 As a result, when the power source driven compressor is additionally arranged inside the outdoor unit of the existing gas heat pump, the interval between the non power source driven compressor unit and the power source driven compressor can be narrowed, and the drive source other than electric power can be discharged. Heat can easily flow into the power-driven compressor, and the temperature of the power-driven compressor can be suppressed from becoming excessively low. Therefore, when starting the power-driven compressor, oil forming caused by the low temperature of the power-driven compressor is less likely to occur, and sufficient refrigeration oil in the power-driven compressor can be secured. Can be improved.
 第2の発明は、第1の発明の空気調和機の室外ユニットにおいて、仕切り板に、前記室外ユニット内部の空気が前記熱交換器室と前記機械室とを移動できる通気口を少なくとも1つ設置し、電源駆動圧縮機の起動前に前記通気口の通風抵抗を大きくすることを特徴とした請求項1記載の空気調和機の室外ユニットである。 According to a second aspect of the present invention, in the outdoor unit of the air conditioner according to the first aspect of the present invention, at least one vent hole is provided in the partition plate so that air inside the outdoor unit can move between the heat exchanger chamber and the machine chamber. 2. The air conditioner outdoor unit according to claim 1, wherein the ventilation resistance of the vent is increased before the power supply driven compressor is started.
 これにより、電力以外の駆動源の排熱が機械室(1階)から熱交換器室(2階)に移動する空気量を減らすことができる。よって、本発明では、第1の発明の効果に加え、電力以外の駆動源の排熱を機械室(1階)に留めることで電源駆動圧縮機の温度が過度に低くなるのをさらに抑えることが可能となる。よって、電源駆動圧縮機を起動する際に電源駆動圧縮機の温度が低いことによって生じるオイルフォーミングが発生しにくくなり、電源駆動圧縮機内の冷凍機油を十分に確保できるため、電源駆動圧縮機の信頼性を向上させることができる。 This makes it possible to reduce the amount of air transferred from the machine room (first floor) to the heat exchanger room (second floor) by exhaust heat from drive sources other than electric power. Therefore, in the present invention, in addition to the effect of the first invention, the exhaust heat of the driving source other than electric power is kept in the machine room (first floor) to further suppress the temperature of the power supply driven compressor from being excessively lowered. Is possible. Therefore, when starting the power-driven compressor, oil forming caused by the low temperature of the power-driven compressor is less likely to occur, and sufficient refrigeration oil in the power-driven compressor can be secured. Can be improved.
 第3の発明は、前記非電源駆動圧縮機の排除容積は、前記電源駆動圧縮機の排除容積よりも大きいことを特徴とする請求項1から2に記載の空気調和機の室外ユニットである。 The third aspect of the present invention is the outdoor unit for an air conditioner according to claim 1 or 2, wherein an excluded volume of the non-power source driven compressor is larger than an excluded volume of the power source driven compressor.
 これにより、非電源駆動圧縮機の排除容積を大きくすることで、電力以外の駆動源の排熱が多くなり電源駆動圧縮機に流入する熱量が増える。よって、本発明では、第1から第2の発明の効果に加え、より多くの電力以外の駆動源の排熱を電源駆動圧縮機に流入させることができ、電源駆動圧縮機の温度が過度に低くなるのをさらに抑えることが可能となる。よって、電源駆動圧縮機を起動する際に電源駆動圧縮機の温度が低いことによって生じるオイルフォーミングが発生しにくくなり、電源駆動圧縮機内の冷凍機油を十分に確保できるため、電源駆動圧縮機の信頼性を向上させることができる。 ∙ By increasing the excluded volume of the non-power source driven compressor, the exhaust heat of the driving source other than electric power increases, and the amount of heat flowing into the power source driven compressor increases. Therefore, in the present invention, in addition to the effects of the first and second inventions, more exhaust heat of the driving source other than electric power can be caused to flow into the power source driven compressor, and the temperature of the power source driven compressor is excessively high. It becomes possible to further suppress the lowering. Therefore, when starting the power-driven compressor, oil forming caused by the low temperature of the power-driven compressor is less likely to occur, and sufficient refrigeration oil in the power-driven compressor can be secured. Can be improved.
 本発明の空気調和機の室外ユニットでは、電源駆動圧縮を起動する際に電源駆動圧縮機の温度が低いことによって生じるオイルフォーミングが発生しにくくなり、電源駆動圧縮機内の冷凍機油を十分に確保できるため、電源駆動圧縮機の信頼性を向上させることができる。 In the outdoor unit of the air conditioner according to the present invention, when the power-driven compression is started, oil forming caused by the low temperature of the power-driven compressor is less likely to occur, and sufficient refrigeration oil in the power-driven compressor can be secured. Therefore, the reliability of the power source driven compressor can be improved.
図1は、本発明の空気調和機の冷凍サイクル構成図である。FIG. 1 is a configuration diagram of a refrigeration cycle of an air conditioner according to the present invention. 図2は、本発明の実施の形態1における空気調和機の室外ユニット100の縦断面図である。FIG. 2 is a longitudinal sectional view of the outdoor unit 100 of the air conditioner according to Embodiment 1 of the present invention. 図3は、本発明の実施の形態1における空気調和機の室外ユニット100の横断面図である。FIG. 3 is a cross-sectional view of outdoor unit 100 of the air conditioner according to Embodiment 1 of the present invention. 図4は、本発明の実施の形態2における空気調和機の室外ユニット100の縦断面図である。FIG. 4 is a longitudinal sectional view of the outdoor unit 100 of the air conditioner according to Embodiment 2 of the present invention. 図5は、本発明の実施の形態2における空気調和機の室外ユニット100の横断面図である。FIG. 5 is a cross-sectional view of the outdoor unit 100 for an air conditioner according to Embodiment 2 of the present invention.
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施形態によって、本発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, this invention is not limited by this embodiment.
(実施の形態1)
 本実施の形態の空気調和機の冷凍サイクル構成を図1に示す。図1の空気調和機は、室外ユニット1台に対し、室内ユニットを2台接続した、いわゆるツイン構成となっている。なお、冷凍サイクル構成に関しては、図1に示したものに限定されない。例えば、室外ユニットは2台以上、室内ユニットも3台以上、並列に接続可能である。
(Embodiment 1)
A refrigeration cycle configuration of the air conditioner of the present embodiment is shown in FIG. The air conditioner of FIG. 1 has a so-called twin configuration in which two indoor units are connected to one outdoor unit. The refrigeration cycle configuration is not limited to that shown in FIG. For example, two or more outdoor units and three or more indoor units can be connected in parallel.
 100は室外ユニットであり、室外ユニット100と室内ユニット200、210とは、冷媒が流通する液管50、ガス管55で連結されている。室外ユニット100において、111は、例えば、ガスを駆動源とするエンジン、112はエンジン111より駆動力を得て冷媒を圧縮するエンジン駆動圧縮機(非電源駆動圧縮機)、113はモータを内蔵し商用電源など電力により駆動する電源駆動圧縮機である。エンジン駆動圧縮機112と電源駆動圧縮機113は、冷凍サイクル内で並列に接続されている。エンジン駆動圧縮機112の排除容積は、電源駆動圧縮機113の排除容積よりも大きくなっており、また、エンジン駆動圧縮機112、電源駆動圧縮機113の潤滑油は、同じ冷凍機油とされている。 100 is an outdoor unit, and the outdoor unit 100 and the indoor units 200 and 210 are connected by a liquid pipe 50 and a gas pipe 55 through which a refrigerant flows. In the outdoor unit 100, for example, 111 is an engine using gas as a driving source, 112 is an engine-driven compressor (non-power source driven compressor) that obtains driving force from the engine 111 and compresses refrigerant, and 113 has a built-in motor. This is a power source driven compressor that is driven by electric power such as a commercial power source. The engine driven compressor 112 and the power supply driven compressor 113 are connected in parallel in the refrigeration cycle. The excluded volume of the engine-driven compressor 112 is larger than the excluded volume of the power-driven compressor 113, and the lubricating oil of the engine-driven compressor 112 and the power-driven compressor 113 is the same refrigerating machine oil. .
 また、エンジン駆動圧縮機112の吐出配管および吸入配管は、電源駆動圧縮機113の吐出配管および吸入配管よりも太く形成されている。こうすることで、冷媒流量が多いエンジン駆動圧縮機112側の吐出配管および吸入配管における圧力損失の増大を抑えるとともに、冷凍サイクルからのエンジン駆動圧縮機112への冷凍機油の戻り量が、電源駆動圧縮機113への冷凍機油の戻り量よりも多くなる。 Further, the discharge pipe and the suction pipe of the engine driven compressor 112 are formed thicker than the discharge pipe and the suction pipe of the power supply driven compressor 113. In this way, an increase in pressure loss in the discharge piping and suction piping on the engine-driven compressor 112 side where the refrigerant flow rate is large is suppressed, and the return amount of the refrigeration oil from the refrigeration cycle to the engine-driven compressor 112 is power-driven. More than the amount of refrigeration oil returned to the compressor 113.
 114はアキュムレータであり、後述する四方弁116から、エンジン駆動圧縮機112の吸入配管と電源駆動圧縮機113の吸入配管との合流点に至る冷媒配管に接続され、両圧縮機112,113にガス冷媒を供給する。 Reference numeral 114 denotes an accumulator which is connected to a refrigerant pipe extending from a four-way valve 116, which will be described later, to the junction of the suction pipe of the engine-driven compressor 112 and the suction pipe of the power supply-driven compressor 113. Supply refrigerant.
 115a、115bは油分離器であり、油分離器115aはエンジン駆動圧縮機112の吐出配管に設置され、油分離器115bは電源駆動圧縮機113の吐出配管に設置されており、各圧縮機112,113の吐出ガスに含まれる冷凍機油を分離する。油分離器115aで分離された冷凍機油は、エンジン駆動圧縮機112の吸入配管に油戻し管115cで、油分離器115bで分離された冷凍機油は、電源駆動圧縮機113の吸入配管に油戻し管115dにより個別に戻される。また、油戻し管115c、115dには、それぞれ、油戻し管開閉弁115e、115fが接続されており、この油戻し管開閉弁115e、115fの開閉により、油戻し管115c、115dの連通が制御される。 115a and 115b are oil separators. The oil separator 115a is installed in the discharge pipe of the engine-driven compressor 112, and the oil separator 115b is installed in the discharge pipe of the power supply-driven compressor 113. , 113 is separated from the refrigerating machine oil contained in the discharged gas. The refrigerating machine oil separated by the oil separator 115a is returned to the suction pipe of the engine driven compressor 112 by the oil return pipe 115c, and the refrigerating machine oil separated by the oil separator 115b is returned to the suction pipe of the power supply driven compressor 113 by the oil return pipe 115c. It is returned individually by the tube 115d. The oil return pipes 115c and 115d are connected to oil return pipe on / off valves 115e and 115f, respectively, and the communication of the oil return pipes 115c and 115d is controlled by opening and closing the oil return pipe on / off valves 115e and 115f. Is done.
 なお、油分離器115a、115bは、両圧縮機112,113の吐出ガスに含まれる冷凍機油をまとめて分離するように単一の油分離器115として設置されても良い。この場合、油分離器115は、エンジン駆動圧縮機112の吐出配管と電源駆動圧縮機113の吐出配管との合流点より、両圧縮機112,113とは反対側の冷媒配管に設置される。 Note that the oil separators 115a and 115b may be installed as a single oil separator 115 so as to separate the refrigeration oil contained in the discharge gas of both the compressors 112 and 113 together. In this case, the oil separator 115 is installed in the refrigerant pipe on the opposite side of the compressors 112 and 113 from the junction of the discharge pipe of the engine-driven compressor 112 and the discharge pipe of the power supply-driven compressor 113.
 116は冷房と暖房で冷凍サイクルを切り替える四方弁、117は冷媒を膨張させる室外ユニット減圧装置である。また、118は、エンジン111の冷却に用いた高温の冷却水と冷媒との熱交換を行うエンジン排熱熱交換器であり、暖房時に利用する。エンジン排熱熱交換器118には、冷却水配管(不図示)が敷設されている。
 119はエンジン排熱熱交換器118に流入する冷媒流量を調整するエンジン排熱熱交換器用冷媒流量調整弁である。120は室外熱交換器130に室外ユニット100周囲の空気を供給する室外送風ファンである。
116 is a four-way valve for switching the refrigeration cycle between cooling and heating, and 117 is an outdoor unit pressure reducing device for expanding the refrigerant. Reference numeral 118 denotes an engine exhaust heat exchanger that performs heat exchange between the high-temperature coolant used for cooling the engine 111 and the refrigerant, and is used during heating. The engine exhaust heat exchanger 118 is provided with a cooling water pipe (not shown).
119 is an engine exhaust heat exchanger refrigerant flow rate adjustment valve that adjusts the refrigerant flow rate that flows into the engine exhaust heat exchanger 118. 120 is an outdoor fan that supplies air around the outdoor unit 100 to the outdoor heat exchanger 130.
 室内ユニット200において、201は室内空気熱交換器、202は室内空気熱交換器201に室内ユニット200周囲の空気を供給する室内送風ファン、203は冷媒を膨張させる室内ユニット減圧装置である。
 同様に、室内ユニット210において、211は室内空気熱交換器、212は室内空気熱交換器211に室内ユニット210周囲の空気を供給する室内送風ファン、213は冷媒を膨張させる室内ユニット減圧装置である。
In the indoor unit 200, 201 is an indoor air heat exchanger, 202 is an indoor fan that supplies air around the indoor unit 200 to the indoor air heat exchanger 201, and 203 is an indoor unit pressure reducing device that expands the refrigerant.
Similarly, in the indoor unit 210, 211 is an indoor air heat exchanger, 212 is an indoor fan that supplies air around the indoor unit 210 to the indoor air heat exchanger 211, and 213 is an indoor unit pressure reducing device that expands the refrigerant. .
 次に、本実施の形態における空気調和機の室外ユニット100の内部構造を図2、図3に示す。図2は室外ユニット100を前面に平行な鉛直平面で切った縦断面図、図3は室外ユニット100を底面に平行な水平平面(図中、X-X)で切った横断面図である。
 図2に示すように、室外ユニット100は、フレーム構成された本体筐体100Aを備え、この本体筐体100Aの内部が、仕切り板103により上下二段に分割されており、101は機械室、102は熱交換器室である。
Next, the internal structure of the outdoor unit 100 of the air conditioner in the present embodiment is shown in FIGS. FIG. 2 is a longitudinal sectional view of the outdoor unit 100 cut along a vertical plane parallel to the front surface, and FIG. 3 is a transverse sectional view of the outdoor unit 100 cut along a horizontal plane (XX in the drawing) parallel to the bottom surface.
As shown in FIG. 2, the outdoor unit 100 includes a main body casing 100A configured as a frame, and the inside of the main body casing 100A is divided into two upper and lower stages by a partition plate 103, 101 is a machine room, Reference numeral 102 denotes a heat exchanger chamber.
 機械室101には、エンジン111、エンジン駆動圧縮機112が設置され、さらに電源駆動圧縮機113が設置されている。図2には示さないが、これらの他にも、アキュムレータ114、油分離器115、四方弁116、室外ユニット減圧装置117、エンジン排熱熱交換器118、エンジン排熱熱交換器用冷媒流量調整弁119、エンジン111の排気マフラー、エンジン111の冷却水を循環させる冷却水ポンプ、制御基板、冷媒配管など、多くの部品が搭載されている。そして、これらの部品の配置は、既存のガスヒートポンプの部品の配置をそのまま流用している。 In the machine room 101, an engine 111, an engine driven compressor 112, and a power source driven compressor 113 are further installed. Although not shown in FIG. 2, in addition to these, an accumulator 114, an oil separator 115, a four-way valve 116, an outdoor unit pressure reducing device 117, an engine exhaust heat heat exchanger 118, and an engine exhaust heat heat exchanger refrigerant flow rate adjustment valve 119, many components such as an exhaust muffler of the engine 111, a cooling water pump for circulating the cooling water of the engine 111, a control board, and a refrigerant pipe are mounted. And the arrangement | positioning of these components has diverted the arrangement | positioning of the components of the existing gas heat pump as it is.
 そして、例えば空調負荷が、非電源駆動圧縮機(第1空調機)112の最小能力よりも小さい場合は、電源駆動圧縮機(第2空調機)113のみを運転し、空調対象空間の空調負荷が、非電源駆動圧縮機(第1空調機)112の最小能力以上で、第1空調機の最小能力と第2空調機の最小能力との和よりも小さい場合は、非電源駆動圧縮機(第1空調機)112または電源駆動圧縮機(第2空調機)113のどちらか一方を、これら空調機に設けられた非電源駆動圧縮機(第1空調機)112または電源駆動圧縮機(第2空調機)113の運転コストが安い、もしくは、消費エネルギーの小さい方を任意に選択して運転し、空調対象空間の空調負荷が、第1空調機の最小能力と第2空調機の最小能力との和以上の場合は、非電源駆動圧縮機(第1空調機)112と電源駆動圧縮機(第2空調機)113の双方を運転する。 For example, when the air conditioning load is smaller than the minimum capacity of the non-power source driven compressor (first air conditioner) 112, only the power source driven compressor (second air conditioner) 113 is operated, and the air conditioning load in the air conditioning target space Is not less than the minimum capacity of the non-power source driven compressor (first air conditioner) 112 and smaller than the sum of the minimum capacity of the first air conditioner and the minimum capacity of the second air conditioner, Either the first air conditioner (112) or the power source driven compressor (second air conditioner) 113 is replaced with a non-power source driven compressor (first air conditioner) 112 or a power source driven compressor (first unit) provided in the air conditioner. (2 air conditioner) 113 is operated at a lower operating cost or with less energy consumption, and the air conditioning load in the air conditioning target space is the minimum capacity of the first air conditioner and the minimum capacity of the second air conditioner. If the sum of The first air conditioner) 112 and a power driven compressor (operating both the second air conditioner) 113.
 熱交換器室102において、室外熱交換器130は熱交換器室102の外壁を形成するように構成されており、仕切り板103の略中央部に電源駆動圧縮機113が設置されている。 In the heat exchanger chamber 102, the outdoor heat exchanger 130 is configured to form an outer wall of the heat exchanger chamber 102, and a power source driven compressor 113 is installed at a substantially central portion of the partition plate 103.
 図2、図3に示すように、機械室101の底部に設けられる底板122の中心を通り、機械室101の奥行き方向に延びる水平直線によって区分される底板122の2つの領域に対して、エンジン111とエンジン駆動圧縮機112とで構成されるエンジン圧縮機ユニット123の略中心(図中、点A)と、電源駆動圧縮機113の略中心(図中、点B)とがどちらか一方の同じ領域に位置する。 As shown in FIGS. 2 and 3, the engine is applied to two regions of the bottom plate 122 that are separated by a horizontal straight line that extends through the center of the bottom plate 122 provided in the bottom of the machine room 101 and extends in the depth direction of the machine room 101. 111 and the engine-driven compressor 112, which is approximately the center of the engine compressor unit 123 (point A in the figure) and the center of the power-driven compressor 113 (point B in the figure) Located in the same area.
 次に、室外ユニット100と室内ユニット200、210の動作を説明する。 Next, the operation of the outdoor unit 100 and the indoor units 200 and 210 will be described.
 冷房運転時、四方弁116は実線に冷媒を流すよう設定される(図1参照)。エンジン駆動圧縮機112と電源駆動圧縮機113とで圧縮された高温高圧の冷媒は、それぞれ、油分離器115a、115bに流入し、冷凍機油を分離する。それぞれの油分離器115a、115bで分離された純度の高いガス冷媒は合流後、四方弁116を通り、室外熱交換器130に入る。ガス冷媒は、室外熱交換器130にて、外気と熱交換して放熱したのち凝縮し、高圧の液冷媒となって室外ユニット減圧装置117を通り、液管50内を通って、室内ユニット200、210に供給される。 During the cooling operation, the four-way valve 116 is set so that the refrigerant flows through the solid line (see FIG. 1). The high-temperature and high-pressure refrigerant compressed by the engine-driven compressor 112 and the power-driven compressor 113 flows into the oil separators 115a and 115b, respectively, and separates the refrigeration oil. The high-purity gas refrigerants separated by the oil separators 115a and 115b are merged, then enter the outdoor heat exchanger 130 through the four-way valve 116. In the outdoor heat exchanger 130, the gas refrigerant exchanges heat with the outside air, dissipates heat, condenses, becomes a high-pressure liquid refrigerant, passes through the outdoor unit decompression device 117, passes through the liquid pipe 50, and passes through the indoor unit 200. , 210.
 なお、油分離器115a、115bで分離された冷凍機油は、エンジン駆動圧縮機112が駆動している場合は油戻し管開閉弁115eを開とすることで、エンジン駆動圧縮機112の吸入配管に戻される。同様に、電源駆動圧縮機113が駆動している場合は油戻し管開閉弁115fを開とすることで、電源駆動圧縮機113の吸入配管に戻される。エンジン駆動圧縮機112が駆動していない場合は油戻し管開閉弁115eは閉、電源駆動圧縮機113が駆動していない場合は油戻し管開閉弁115fは閉となる。 The refrigerating machine oil separated by the oil separators 115a and 115b is connected to the intake pipe of the engine driven compressor 112 by opening the oil return pipe opening / closing valve 115e when the engine driven compressor 112 is driven. Returned. Similarly, when the power supply driven compressor 113 is driven, the oil return pipe on / off valve 115f is opened to return to the suction pipe of the power supply driven compressor 113. When the engine driven compressor 112 is not driven, the oil return pipe on / off valve 115e is closed, and when the power source driven compressor 113 is not driven, the oil return pipe on / off valve 115f is closed.
 室内ユニット200に入った高圧の液冷媒は、室内ユニット減圧装置203にて減圧され、気液二相状態となって、室内熱交換器201に流入する。気液二相状態の冷媒は、室内熱交換器201にて、空調対象となっている空間の空気と熱交換して吸熱したのち蒸発し、ガス冷媒となって室内ユニット200から流出する。 The high-pressure liquid refrigerant that has entered the indoor unit 200 is decompressed by the indoor unit decompression device 203, enters a gas-liquid two-phase state, and flows into the indoor heat exchanger 201. The refrigerant in the gas-liquid two-phase state evaporates after exchanging heat with the air in the space to be air-conditioned in the indoor heat exchanger 201 and then flows out from the indoor unit 200 as a gas refrigerant.
 室内ユニット210においても、室内ユニット200と同様に、まず、高圧の液冷媒は、室内ユニット減圧装置213にて減圧され、気液二相状態となって、室内熱交換器211に流入する。気液二相状態の冷媒は、室内熱交換器211にて、空調対象となっている空間の空気と熱交換して吸熱したのち蒸発し、ガス冷媒となって室内ユニット210から流出する。 Also in the indoor unit 210, as in the indoor unit 200, first, the high-pressure liquid refrigerant is decompressed by the indoor unit decompression device 213, enters a gas-liquid two-phase state, and flows into the indoor heat exchanger 211. The refrigerant in the gas-liquid two-phase state evaporates after exchanging heat with the air in the space to be air-conditioned in the indoor heat exchanger 211 and then evaporates to flow out of the indoor unit 210.
 なお、室内ユニット200のみ冷房運転を行う場合は、室内ユニット減圧装置213を閉じ、室内ユニット210の室内熱交換器211には冷媒の供給を行わない。一方、室内ユニット210のみ冷房運転を行う場合は、室内ユニット減圧装置203を閉じ、室内ユニット200の室内熱交換器201には冷媒の供給を行わない。 When only the indoor unit 200 performs the cooling operation, the indoor unit decompression device 213 is closed, and the refrigerant is not supplied to the indoor heat exchanger 211 of the indoor unit 210. On the other hand, when only the indoor unit 210 performs the cooling operation, the indoor unit decompression device 203 is closed and the refrigerant is not supplied to the indoor heat exchanger 201 of the indoor unit 200.
 室内ユニット200、210から流出したガス冷媒は、ガス管55内を通って、再度室外ユニット100に戻る。室外ユニット100に流入したガス冷媒は、四方弁116、アキュムレータ114を通って、エンジン駆動圧縮機112、および、電源駆動圧縮機113に戻る。 The gas refrigerant flowing out of the indoor units 200 and 210 passes through the gas pipe 55 and returns to the outdoor unit 100 again. The gas refrigerant flowing into the outdoor unit 100 passes through the four-way valve 116 and the accumulator 114 and returns to the engine driven compressor 112 and the power source driven compressor 113.
 冷房運転時における、エンジン駆動圧縮機112および電源駆動圧縮機113の運転方法は、例えば、下記のようにする。 For example, the operation method of the engine-driven compressor 112 and the power supply-driven compressor 113 during the cooling operation is as follows.
 冷房負荷が、エンジン駆動圧縮機112が最低運転周波数で運転した時の冷房能力(エンジン駆動圧縮機112の最小冷房能力)よりも小さい場合には、エンジン駆動圧縮機112のみでは断続運転に陥るため、電源駆動圧縮機113のみを運転する。 If the cooling load is smaller than the cooling capacity when the engine-driven compressor 112 is operated at the minimum operating frequency (the minimum cooling capacity of the engine-driven compressor 112), the engine-driven compressor 112 alone causes intermittent operation. Only the power source driven compressor 113 is operated.
 冷房負荷が、エンジン駆動圧縮機112の最小冷房負荷よりも大きく、かつ、エンジン駆動圧縮機112と電源駆動圧縮機113とがともに最低運転周波数で運転した場合の冷房能力(両圧縮機運転時の最小冷房能力)よりも小さい場合は、エンジン駆動圧縮機112と電源駆動圧縮機113のどちらか一方、例えば、運転コストが安い、もしくは、消費エネルギーが小さい方を選択して運転する。 The cooling capacity when the cooling load is larger than the minimum cooling load of the engine driven compressor 112 and both the engine driven compressor 112 and the power source driven compressor 113 are operated at the minimum operating frequency (when both compressors are operated). If it is smaller than (minimum cooling capacity), one of the engine-driven compressor 112 and the power-driven compressor 113, for example, the one with the lower operating cost or the lower energy consumption is selected for operation.
 冷房負荷が、両圧縮機運転時の最小冷房能力よりも大きい場合は、エンジン駆動圧縮機112と電源駆動圧縮機113の両方を、例えば、運転コスト、もしくは、消費エネルギーが最小となるように運転する。 When the cooling load is larger than the minimum cooling capacity during operation of both compressors, both the engine-driven compressor 112 and the power-driven compressor 113 are operated so that, for example, the operation cost or the energy consumption is minimized. To do.
 この場合、運転コスト、もしくは、消費エネルギーを最小とするためのエンジン駆動圧縮機112と電源駆動圧縮機113の運転周波数の決定には、各圧縮機の運転周波数と運転コストト、もしくは、消費エネルギーとの関係を利用する。 In this case, in determining the operating frequency of the engine driven compressor 112 and the power source driven compressor 113 for minimizing the operating cost or energy consumption, the operating frequency and operating cost of each compressor or the energy consumption Use the relationship.
 実際には、冷房負荷全体に対してエンジン駆動圧縮機112が受け持つ冷房負荷の割合は、両圧縮機をともに最高運転周波数で運転した場合の最大冷房能力(両圧縮機運転時の最大冷房能力)に対する、エンジン駆動圧縮機112のみを最高運転周波数で運転したときの冷房能力の割合±15%程度である。 Actually, the ratio of the cooling load that the engine-driven compressor 112 has to the entire cooling load is the maximum cooling capacity when both compressors are operated at the maximum operating frequency (maximum cooling capacity when operating both compressors). In contrast, the ratio of the cooling capacity when only the engine-driven compressor 112 is operated at the maximum operating frequency is about ± 15%.
 次に、暖房運転時では、四方弁116は点線に冷媒を流すよう設定される(図1参照)。エンジン駆動圧縮機112と電源駆動圧縮機113とで圧縮された高温高圧の冷媒は、それぞれ油分離器115a、115bに流入し、冷凍機油を分離する。それぞれの油分離器115a、115bで分離された純度の高いガス冷媒は合流後、四方弁116を通り、ガス管55内を通って、室外ユニット100を出て、室内ユニット200、210に供給される。 Next, at the time of heating operation, the four-way valve 116 is set to flow the refrigerant along the dotted line (see FIG. 1). The high-temperature and high-pressure refrigerant compressed by the engine-driven compressor 112 and the power-driven compressor 113 flows into the oil separators 115a and 115b, respectively, and separates the refrigeration oil. The high-purity gas refrigerants separated by the oil separators 115a and 115b merge, pass through the four-way valve 116, pass through the gas pipe 55, exit the outdoor unit 100, and are supplied to the indoor units 200 and 210. The
 室内ユニット200に入った高温高圧のガス冷媒は、室内熱交換器201に流入する。高温高圧のガス冷媒は、室内熱交換器201にて、空調対象となっている空間の空気と熱交換して放熱したのち凝縮し、高圧の液冷媒となって、室内ユニット減圧装置203を通り、室内ユニット200から流出する。 The high-temperature and high-pressure gas refrigerant that has entered the indoor unit 200 flows into the indoor heat exchanger 201. The high-temperature and high-pressure gas refrigerant exchanges heat with the air in the space to be air-conditioned in the indoor heat exchanger 201, dissipates the heat, and then condenses into a high-pressure liquid refrigerant that passes through the indoor unit decompression device 203. , Out of the indoor unit 200.
 室内ユニット210においても、室内ユニット200と同様に、まず、高温高圧のガス冷媒は、室内熱交換器211に流入する。高温高圧のガス冷媒は、室内熱交換器211にて、空調対象となっている空間の空気と熱交換して放熱した後凝縮し、高圧の液冷媒となって、室内ユニット減圧装置213を通り、室内ユニット210から流出する。 Also in the indoor unit 210, as in the indoor unit 200, first, the high-temperature and high-pressure gas refrigerant flows into the indoor heat exchanger 211. In the indoor heat exchanger 211, the high-temperature and high-pressure gas refrigerant exchanges heat with the air in the air-conditioned space, dissipates heat, condenses, and becomes a high-pressure liquid refrigerant that passes through the indoor unit decompression device 213. , Flows out from the indoor unit 210.
 なお、冷房時と同様に、室内ユニット200のみ暖房運転を行う場合は、室内ユニット減圧装置213を閉じ、室内ユニット210の室内熱交換器211には冷媒の供給を行わない。一方、室内ユニット210のみ暖房運転を行う場合は、室内ユニット減圧装置203を閉じ、室内ユニット200の室内熱交換器201には冷媒の供給を行わない。 As in the case of cooling, when only the indoor unit 200 performs the heating operation, the indoor unit decompression device 213 is closed and the refrigerant is not supplied to the indoor heat exchanger 211 of the indoor unit 210. On the other hand, when only the indoor unit 210 performs the heating operation, the indoor unit decompression device 203 is closed and the refrigerant is not supplied to the indoor heat exchanger 201 of the indoor unit 200.
 室内ユニット200、210から流出した高圧の液冷媒は、液管50内を通って、再度室外ユニット100に戻る。室外ユニット100に流入した高圧の液冷媒は、室外ユニット減圧装置117にて減圧され、気液二相状態となって、室外熱交換器130とエンジン排熱熱交換器118に流入する。気液二相状態の冷媒は、室外熱交換器130では外気と、また、エンジン排熱熱交換器118では、エンジン111の冷却に用いた高温の冷却水と熱交換して吸熱したのち蒸発し、四方弁116、アキュムレータ114を通って、エンジン駆動圧縮機112、および、電源駆動圧縮機113に戻る。 The high-pressure liquid refrigerant that has flowed out of the indoor units 200 and 210 passes through the liquid pipe 50 and returns to the outdoor unit 100 again. The high-pressure liquid refrigerant that has flowed into the outdoor unit 100 is depressurized by the outdoor unit decompression device 117, becomes a gas-liquid two-phase state, and flows into the outdoor heat exchanger 130 and the engine exhaust heat exchanger 118. The refrigerant in a gas-liquid two-phase state evaporates after heat is exchanged with the outside air in the outdoor heat exchanger 130 and heat is exchanged with the high-temperature cooling water used for cooling the engine 111 in the engine exhaust heat exchanger 118. The four-way valve 116 and the accumulator 114 are returned to the engine-driven compressor 112 and the power-driven compressor 113.
 暖房運転時における、エンジン駆動圧縮機112と電源駆動圧縮機113の運転方法は、例えば、下記のようにする。 For example, the operation method of the engine-driven compressor 112 and the power-driven compressor 113 during the heating operation is as follows.
 暖房負荷が、エンジン駆動圧縮機112が最低運転周波数で運転した時の暖房能力(エンジン駆動圧縮機112の最小暖房能力)よりも小さい場合には、エンジン駆動圧縮機112のみでは断続運転に陥るため、電源駆動圧縮機113のみを運転する。 If the heating load is smaller than the heating capacity when the engine-driven compressor 112 is operated at the minimum operating frequency (the minimum heating capacity of the engine-driven compressor 112), the engine-driven compressor 112 alone will cause intermittent operation. Only the power source driven compressor 113 is operated.
 暖房負荷が、エンジン駆動圧縮機112の最小暖房負荷よりも大きく、かつ、エンジン駆動圧縮機112と電源駆動圧縮機113とがともに最低運転周波数で運転した場合の暖房能力(両圧縮機運転時の最小暖房能力)よりも小さい場合は、エンジン駆動圧縮機112と電源駆動圧縮機113のどちらか一方、例えば、運転コストが安い、もしくは、消費エネルギーが小さい方を選択して運転する。 Heating capacity when the heating load is larger than the minimum heating load of the engine-driven compressor 112 and both the engine-driven compressor 112 and the power-driven compressor 113 are operated at the minimum operating frequency (during both compressor operations) If it is smaller than (minimum heating capacity), one of the engine driven compressor 112 and the power source driven compressor 113, for example, the one with lower operating cost or lower energy consumption is selected for operation.
 暖房負荷が、両圧縮機112,113運転時の最小暖房能力よりも大きい場合は、エンジン駆動圧縮機112と電源駆動圧縮機113の両方を、例えば、運転コスト、もしくは、消費エネルギーが最小となるように運転する。
 この場合、運転コスト、もしくは、消費エネルギーを最小とするためのエンジン駆動圧縮機112と電源駆動圧縮機113の運転周波数の決定には、各圧縮機112,113の運転周波数と運転コスト、もしくは、消費エネルギーとの関係を利用する。
When the heating load is larger than the minimum heating capacity during operation of both the compressors 112 and 113, for example, the operating cost or the energy consumption of both the engine driven compressor 112 and the power source driven compressor 113 is minimized. To drive.
In this case, in order to determine the operating frequency of the engine driven compressor 112 and the power source driven compressor 113 for minimizing the operating cost or energy consumption, the operating frequency and operating cost of each of the compressors 112 and 113, or Use the relationship with energy consumption.
 実際には、暖房負荷全体に対してエンジン駆動圧縮機112が受け持つ暖房負荷の割合は、両圧縮機112,113をともに最高運転周波数で運転した場合の最大暖房能力(両圧縮機運転時の最大暖房能力)に対する、エンジン駆動圧縮機112のみを最高運転周波数で運転したときの暖房能力の割合±15%程度である。 In practice, the ratio of the heating load that the engine-driven compressor 112 has to the overall heating load is the maximum heating capacity when both the compressors 112 and 113 are operated at the maximum operating frequency (the maximum when both compressors are operating). The ratio of the heating capacity when only the engine-driven compressor 112 is operated at the maximum operating frequency with respect to the heating capacity) is about ± 15%.
 ただし、暖房運転時は、常時室外熱交換器130の着霜状態を監視しており、着霜の危険性がある場合は、運転コスト、もしくは、消費エネルギーが最小となるように各圧縮機112,113の運転周波数を設定していても、エンジン駆動圧縮機112の運転周波数を上げ、電源駆動圧縮機113の運転周波数を下げる制御をおこなう。 However, during the heating operation, the frost formation state of the outdoor heat exchanger 130 is constantly monitored, and when there is a risk of frost formation, each compressor 112 is set so that the operation cost or the energy consumption is minimized. , 113 is controlled so as to increase the operating frequency of the engine-driven compressor 112 and lower the operating frequency of the power-driven compressor 113.
 エンジン駆動圧縮機112の運転周波数を上げると、エンジン111の排熱量が増加し、エンジン排熱熱交換器118に供給される冷却水熱量も増加する。すなわち、エンジン排熱熱交換器118にて、より多くの冷媒を蒸発させることができ、室外熱交換器130に流す冷媒量を減らして、着霜の危険性を低減する。 When the operating frequency of the engine-driven compressor 112 is increased, the amount of exhaust heat of the engine 111 is increased, and the amount of cooling water supplied to the engine exhaust heat exchanger 118 is also increased. That is, more refrigerant can be evaporated in the engine exhaust heat exchanger 118, and the amount of refrigerant flowing through the outdoor heat exchanger 130 is reduced, thereby reducing the risk of frost formation.
 以上の説明から明らかなように、本実施の形態においては、エンジン111と、前記エンジンで駆動されるエンジン駆動圧縮機112とで構成されるエンジン圧縮機ユニット123、モータで駆動される電源駆動圧縮機113とが、機械室101に設置され、エンジン圧縮機ユニット123と電源駆動圧縮機113との位置関係が、機械室101の底部に設けられる底板118の中心を通り、機械室101の奥行方向に延びる水平直線によって底板122を2つの領域に区分し、エンジン圧縮機ユニット123の略中心(図中、点A)と、電源駆動圧縮機113の略中心(図中、点B)とが、どちらか一方の同じ領域に位置することで、エンジン圧縮機ユニットと電源駆動圧縮機113の間隔を狭くすることができ、エンジン排熱を電源駆動圧縮機113へ流入させやすく、電源駆動圧縮機113の温度が過度に低くなるのを抑えることが可能となる。よって、電源駆動圧縮機113を起動する際に電源駆動圧縮機113の温度が低いことによって生じるオイルフォーミングが発生しにくくなり、電源駆動圧縮機113内の冷凍機油を十分に確保できるため、電源駆動圧縮機113の信頼性を向上させることができる。 As is apparent from the above description, in the present embodiment, the engine compressor unit 123 composed of the engine 111 and the engine driven compressor 112 driven by the engine, and the power supply driven compression driven by the motor. The machine 113 is installed in the machine room 101, and the positional relationship between the engine compressor unit 123 and the power-driven compressor 113 passes through the center of the bottom plate 118 provided at the bottom of the machine room 101, and the depth direction of the machine room 101 The bottom plate 122 is divided into two regions by a horizontal straight line extending in the direction of approximately the center of the engine compressor unit 123 (point A in the figure) and the center of the power drive compressor 113 (point B in the figure). By being located in the same region of either one, the distance between the engine compressor unit and the power-driven compressor 113 can be reduced, and the engine exhaust heat can be reduced to the power source. Easy to flow into the compressor 113, the temperature of the power driven compressor 113 can be suppressed from being too low. Therefore, when starting the power-driven compressor 113, oil forming caused by the low temperature of the power-driven compressor 113 is less likely to occur, and sufficient refrigeration oil in the power-driven compressor 113 can be secured. The reliability of the compressor 113 can be improved.
 また、本実施の形態においては、エンジン駆動圧縮機112の排除容積は、電源駆動圧縮機113の排除容積よりも大きいため、エンジン排熱が多くなり電源駆動圧縮機113に流入する熱量が増える。よって、より多くのガスエンジン排熱を電源駆動圧縮機113に流入させることができ、電源駆動圧縮機113の温度が過度に低くなるのをさらに抑えることが可能となる。よって、電源駆動圧縮機113を起動する際に電源駆動圧縮機113の温度が低いことによって生じるオイルフォーミングが発生しにくくなり、電源駆動圧縮機113内の冷凍機油を十分に確保できるため、電源駆動圧縮機113の信頼性を向上させることができる。 Further, in the present embodiment, since the displacement volume of the engine driven compressor 112 is larger than the displacement volume of the power source driven compressor 113, the engine exhaust heat increases and the amount of heat flowing into the power source driven compressor 113 increases. Therefore, more gas engine exhaust heat can be flowed into the power supply driven compressor 113, and it becomes possible to further suppress the temperature of the power supply driven compressor 113 from being excessively lowered. Therefore, when starting the power-driven compressor 113, oil forming caused by the low temperature of the power-driven compressor 113 is less likely to occur, and sufficient refrigeration oil in the power-driven compressor 113 can be secured. The reliability of the compressor 113 can be improved.
 また、エンジン駆動圧縮機112の吐出および吸入配管の内径は、電源駆動圧縮機113の吐出および吸入配管の内径よりも太くしているため、エンジン駆動圧縮機112における吐出および吸入配管における圧力損失の増大を抑え、室外ユニット全体としての運転効率の低下を防止することができる。また、冷凍サイクルからのエンジン駆動圧縮機112への冷凍機油の戻り量が電源駆動圧縮機113に比べて多くなり、エンジン駆動圧縮機112の運転信頼性を向上させることができる。 Further, since the inner diameter of the discharge and suction pipes of the engine driven compressor 112 is larger than the inner diameter of the discharge and suction pipes of the power supply driven compressor 113, the pressure loss in the discharge and suction pipes of the engine driven compressor 112 is reduced. It is possible to suppress the increase and prevent a decrease in the operation efficiency of the outdoor unit as a whole. Further, the return amount of the refrigeration oil from the refrigeration cycle to the engine driven compressor 112 is larger than that of the power source driven compressor 113, and the operation reliability of the engine driven compressor 112 can be improved.
 なお、本実施の形態においては、エンジン111と、前記エンジンで駆動されるエンジン駆動圧縮機112とで構成されるエンジン圧縮機ユニット123、モータで駆動される電源駆動圧縮機113とが、機械室101に設置され、エンジン圧縮機ユニット123と電源駆動圧縮機113との位置関係が、機械室101の底部に設けられる底板122の中心を通り、機械室101の奥行方向に延びる水平直線によって底板122を2つの領域に区分し、エンジン圧縮機ユニット123の略中心(図中、点A)と、電源駆動圧縮機113の略中心(図中、点B)とが、どちらか一方の同じ領域に位置することで、エンジン圧縮機ユニットと電源駆動圧縮機113の間隔を狭くすることができ、主回路から冷媒を分岐させて電源駆動圧縮機113の吸込口に冷媒を流入させる吸入管と、電源駆動圧縮機113から吐出した冷媒を主回路に合流させるための吐出管と、の長さが過度に長くなることを抑え、係る部材のコストを抑えることが可能となる。 In the present embodiment, an engine compressor unit 123 composed of an engine 111, an engine-driven compressor 112 driven by the engine, and a power-driven compressor 113 driven by a motor include a machine room. 101, the positional relationship between the engine compressor unit 123 and the power-driven compressor 113 passes through the center of the bottom plate 122 provided at the bottom of the machine room 101, and the bottom plate 122 is formed by a horizontal straight line extending in the depth direction of the machine room 101. Is divided into two regions, and the approximate center (point A in the figure) of the engine compressor unit 123 and the approximate center (point B in the figure) of the power-driven compressor 113 are in one of the same regions. By being located, the interval between the engine compressor unit and the power supply compressor 113 can be narrowed, and the refrigerant is branched from the main circuit to supply the power supply compressor 11. The length of the suction pipe for allowing the refrigerant to flow into the suction port and the discharge pipe for joining the refrigerant discharged from the power supply driven compressor 113 to the main circuit is prevented from becoming excessively long, and the cost of such a member is reduced. It becomes possible to suppress.
(実施の形態2)
 本実施の形態における空気調和機の室外ユニット100の内部構造を図4、図5に示す。図4は室外ユニット100を前面に平行な鉛直平面で切った縦断面図、図5は室外ユニット100を底面に平行な水平平面(図中、Y-Y)で切った横断面図である。
(Embodiment 2)
The internal structure of the outdoor unit 100 of the air conditioner in the present embodiment is shown in FIGS. 4 is a longitudinal sectional view of the outdoor unit 100 taken along a vertical plane parallel to the front surface, and FIG. 5 is a transverse sectional view of the outdoor unit 100 taken along a horizontal plane (YY in the figure) parallel to the bottom surface.
 図4、図5において、105a、105bは、室外ユニット100内の仕切り板103に設置された通風口である。通風口105a、105bは、仕切り板103を幅方向(図5における横方向)に2分する直線に対して、ほぼ対称となるように配置されている。通風口105a、105bを通じて、室外ユニット100の内部の空気が機械室101と熱交換器室102との間を移動できる。また、通風口105a、105bには、開度調整弁(不図示)が設置され、通風口105a、105bの開度は調節可能となっている。油分離器115aは、室外ユニット100内の仕切り板103の上に設置されている。 4 and 5, reference numerals 105 a and 105 b denote vent holes installed in the partition plate 103 in the outdoor unit 100. Ventilation holes 105a and 105b are arranged so as to be substantially symmetrical with respect to a straight line that bisects partition plate 103 in the width direction (lateral direction in FIG. 5). The air inside the outdoor unit 100 can move between the machine room 101 and the heat exchanger room 102 through the vent holes 105a and 105b. In addition, opening adjustment valves (not shown) are installed at the ventilation openings 105a and 105b, and the opening of the ventilation openings 105a and 105b can be adjusted. The oil separator 115 a is installed on the partition plate 103 in the outdoor unit 100.
 また、油分離器115aからエンジン駆動圧縮機112の吸入配管に接続した油戻し管115cの流路抵抗は、油分離器115bから電源駆動圧縮機113の吸入配管に接続した油戻し管115dの流路抵抗よりも小さく設定されている。流路抵抗の設定は、例えば、油戻し管に設置された細管(キャピラリーチューブ)の内径と長さによって調整する。 The flow resistance of the oil return pipe 115c connected from the oil separator 115a to the suction pipe of the engine driven compressor 112 is the flow resistance of the oil return pipe 115d connected from the oil separator 115b to the suction pipe of the power supply driven compressor 113. It is set smaller than the road resistance. The setting of the channel resistance is adjusted by, for example, the inner diameter and length of a thin tube (capillary tube) installed in the oil return tube.
 その他の構成は、実施の形態1と同じなので、それらの説明は省略する。 Other configurations are the same as those in the first embodiment, and thus description thereof is omitted.
 室外ユニット100の冷房、暖房時の運転動作は実施の形態1と同様である。ここでは、冷房、暖房運転時の通風口105a、105bの動作と、運転時の油分離器115a、115bから、エンジン駆動圧縮機112と電源駆動圧縮機113への油戻し動作について説明する。 The operation of the outdoor unit 100 during cooling and heating is the same as in the first embodiment. Here, the operation of the air vents 105a and 105b during the cooling and heating operation and the oil return operation from the oil separators 115a and 115b during the operation to the engine driven compressor 112 and the power supply driven compressor 113 will be described.
 まず、冷房、暖房運転時の通風口105a、105bの動作について説明する。エンジン111とエンジン駆動圧縮機112とが稼働している場合、エンジン111ではガスなどの燃料を燃焼させるため、高温の排熱が発生する。エンジン111は、機械室101に設置された冷却水ポンプ(図示せず)により循環する冷却水で冷却される。 First, the operation of the vents 105a and 105b during cooling and heating operations will be described. When the engine 111 and the engine-driven compressor 112 are operating, the engine 111 burns fuel such as gas, so that high-temperature exhaust heat is generated. The engine 111 is cooled by cooling water circulated by a cooling water pump (not shown) installed in the machine room 101.
 なお、エンジン111の排熱を受けて高温になった冷却水は、熱交換器室102に設置されたラジエータ(図示せず)で放熱したのち、再びエンジン111に戻される。ラジエータは、熱交換器室102において、室外熱交換器130の内側に設置され、室外熱交換器130にて冷媒と熱交換を終えた空気と熱交換する構成となっている。 Note that the cooling water that has become hot due to the exhaust heat of the engine 111 is radiated by a radiator (not shown) installed in the heat exchanger chamber 102 and then returned to the engine 111 again. In the heat exchanger chamber 102, the radiator is installed inside the outdoor heat exchanger 130, and is configured to exchange heat with air that has undergone heat exchange with the refrigerant in the outdoor heat exchanger 130.
 エンジン111の排熱は前記冷却水だけでは完全には取れない。そこで、通風口105a、105bの開度調整弁(不図示)を開とし、室外送風ファン120の動作により機械室101内の空気を熱交換器室102に逃がし、エンジン111の排熱により機械室101が高温になることを防止する。 The exhaust heat of the engine 111 cannot be completely obtained only by the cooling water. Therefore, the opening adjustment valves (not shown) of the vent holes 105a and 105b are opened, the air in the machine room 101 is released to the heat exchanger room 102 by the operation of the outdoor fan 120, and the machine room is discharged by the exhaust heat of the engine 111. 101 is prevented from becoming high temperature.
 一方、外気温度が低い場合などにおいて、電源駆動圧縮機113が低温に冷やされるため、通風口105a、105bの開度調整弁(不図示)を閉とする。すると、機械室101から熱交換室102への空気の移動がなくなるため、通風口105a、105bを開としていた場合と比較して、機械室101に留まるエンジン111の排熱が増加し、電源駆動圧縮機113の温度が過度に低くなり、電源駆動圧縮機113の起動時にオイルフォーミングが発生するのを抑えられる。なお、機械室101に搭載されている制御基板(図示せず)の冷却のため、通風口105a、105bの一部を開とするように制御してもよい。 On the other hand, when the outside air temperature is low, the power supply driven compressor 113 is cooled to a low temperature, so that the opening adjustment valves (not shown) of the vent holes 105a and 105b are closed. Then, since there is no movement of air from the machine room 101 to the heat exchange room 102, the exhaust heat of the engine 111 staying in the machine room 101 increases as compared with the case where the vent holes 105a and 105b are opened, and the power supply is driven. The temperature of the compressor 113 becomes excessively low, and the occurrence of oil forming at the start of the power supply driven compressor 113 can be suppressed. In order to cool a control board (not shown) mounted in the machine room 101, the vent holes 105a and 105b may be partially opened.
 また、エンジン111とエンジン駆動圧縮機112とが稼働せず、電源駆動圧縮機113のみが稼働している場合、エンジン111の排熱は発生しないため、通風口105a、105bの開度調整弁(不図示)を閉とする。すると、機械室101から熱交換室102への空気の移動がなくなるため、通風口105a、105bを開としていた場合と比較して、熱交換器を通過する風量が増加し、冷凍サイクル全体の効率が向上する。なお、機械室101に搭載されている制御基板(図示せず)の冷却のため、通風口105a、105bの一部を開とするように制御してもよい。 Further, when the engine 111 and the engine-driven compressor 112 are not operated and only the power-driven compressor 113 is operated, exhaust heat of the engine 111 is not generated, so that the opening adjustment valves ( Close (not shown). Then, since there is no movement of air from the machine room 101 to the heat exchange chamber 102, the amount of air passing through the heat exchanger is increased as compared with the case where the vent holes 105a and 105b are opened, and the efficiency of the entire refrigeration cycle is increased. Will improve. In order to cool a control board (not shown) mounted in the machine room 101, the vent holes 105a and 105b may be partially opened.
 次に、運転時の油分離器115a、115bから、エンジン駆動圧縮機112と電源駆動圧縮機113への油戻し動作について説明する。 Next, the operation of returning oil from the oil separators 115a and 115b during operation to the engine driven compressor 112 and the power source driven compressor 113 will be described.
 油分離器115aで分離された冷凍機油は、エンジン駆動圧縮機112が駆動している場合は、油戻し管開閉弁115eを開とすることで、エンジン駆動圧縮機112の吸入配管に戻される。同様に、油分離器115bで分離された冷凍機油は、電源駆動圧縮機113が駆動している場合は、油戻し管開閉弁115fを開とすることで、電源駆動圧縮機113の吸入配管に戻される。エンジン駆動圧縮機112が駆動していない場合は油戻し管開閉弁115eは閉、電源駆動圧縮機113が駆動していない場合は、油戻し管開閉弁115fは閉となる。 The refrigerating machine oil separated by the oil separator 115a is returned to the suction pipe of the engine driven compressor 112 by opening the oil return pipe opening / closing valve 115e when the engine driven compressor 112 is driven. Similarly, the refrigerating machine oil separated by the oil separator 115b is supplied to the suction pipe of the power supply driven compressor 113 by opening the oil return pipe on / off valve 115f when the power supply driven compressor 113 is driven. Returned. When the engine driven compressor 112 is not driven, the oil return pipe on / off valve 115e is closed, and when the power source driven compressor 113 is not driven, the oil return pipe on / off valve 115f is closed.
 エンジン圧縮機112と電源駆動圧縮機113とが同時に稼働している場合、エンジン駆動圧縮機112の排除容積は、電源駆動圧縮機113の排除容積よりも大きく設定されているため、エンジン駆動圧縮機112が吐出する冷媒流量は、電源駆動圧縮機113が吐出する冷媒流量よりも多い。よって、エンジン駆動圧縮機112が吐出する冷凍機油は、電源駆動圧縮機113が吐出する冷凍機油よりも多い。 When the engine compressor 112 and the power drive compressor 113 are operating simultaneously, the displacement volume of the engine drive compressor 112 is set larger than the displacement volume of the power drive compressor 113, and therefore the engine drive compressor The refrigerant flow rate discharged by 112 is larger than the refrigerant flow rate discharged by the power supply driven compressor 113. Therefore, the refrigerating machine oil discharged from the engine driven compressor 112 is more than the refrigerating machine oil discharged from the power supply driven compressor 113.
 本実施の形態では、油戻し管115cの流路抵抗は油戻し管115dの流路抵抗よりも小さく設定されているため、両圧縮機112,113が同時に稼働している場合でも、油分離器115aからエンジン駆動圧縮機112に戻る冷凍機油の量は、油分離器115bから電源駆動圧縮機113に戻る冷凍機油の量よりも多くなる。 In the present embodiment, the flow resistance of the oil return pipe 115c is set to be smaller than the flow resistance of the oil return pipe 115d. Therefore, even when both the compressors 112 and 113 are operating simultaneously, the oil separator The amount of refrigerating machine oil returning from 115a to the engine driven compressor 112 is greater than the amount of refrigerating machine oil returning from the oil separator 115b to the power supply driven compressor 113.
 また、油分離器115aは、室外ユニット100内の仕切り板103の上に設置されており、油分離器115a内の冷凍機油の油面と、エンジン駆動圧縮機112に存在する冷凍機油の油面との間にはヘッド差がある。一方で、油分離器115b内の冷凍機油の油面と、電源駆動圧縮機113に存在する冷凍機油の油面との間のヘッド差は小さい。したがって、低負荷時など、冷凍サイクルの高圧と低圧の圧力差が小さい場合でも、前記ヘッド差により、冷凍機油115からエンジン駆動圧縮機112には、電源駆動圧縮機113よりも冷凍機油が戻りやすい。 The oil separator 115 a is installed on the partition plate 103 in the outdoor unit 100, and the oil level of the refrigerating machine oil in the oil separator 115 a and the oil level of the refrigerating machine oil present in the engine drive compressor 112. There is a head difference between On the other hand, the head difference between the oil level of the refrigerating machine oil in the oil separator 115b and the oil level of the refrigerating machine oil present in the power supply compressor 113 is small. Therefore, even when the pressure difference between the high pressure and the low pressure of the refrigeration cycle is small, such as when the load is low, the refrigeration oil returns more easily from the refrigeration oil 115 to the engine driven compressor 112 than the power supply driven compressor 113 due to the head difference. .
 以上の説明から明らかなように、本実施形態においては、仕切り板103を幅方向(図5における横方向)に2分する直線に対して略対称となるように開度の調節が可能な通気口105a、105cを設置する。よって、実施の形態1の効果に加え、機械室101のエンジン111の排熱を、熱交換器室102を経由して室外ユニット100の本体筐体外に排出するための通風経路を確保することができる。 As is clear from the above description, in the present embodiment, the opening degree can be adjusted so that the partition plate 103 is substantially symmetrical with respect to a straight line that bisects the width direction (lateral direction in FIG. 5). Mouth 105a, 105c is installed. Therefore, in addition to the effect of the first embodiment, it is possible to secure a ventilation path for discharging the exhaust heat of the engine 111 in the machine room 101 to the outside of the main body housing of the outdoor unit 100 via the heat exchanger room 102. it can.
 また、外気温度が低い場合などにおいては、電源駆動圧縮機113が低温に冷やされるため、通風口105a、105bを閉として、機械室101から熱交換室102への空気の移動を遮断するため、機械室101に留まるエンジン111の排熱が増加し、電源駆動圧縮機113の温度が過度に低くなることを抑え、電源駆動圧縮機113の起動時にオイルフォーミングが発生するのを抑えられることで電源駆動圧縮機113の信頼性を向上させることができる。 In addition, when the outside air temperature is low, the power source driven compressor 113 is cooled to a low temperature, so that the vent holes 105a and 105b are closed to block the movement of air from the machine room 101 to the heat exchange room 102. The exhaust heat of the engine 111 staying in the machine room 101 is increased, the temperature of the power-driven compressor 113 is suppressed from becoming excessively low, and the occurrence of oil forming at the start-up of the power-driven compressor 113 can be suppressed. The reliability of the drive compressor 113 can be improved.
 また、エンジン111とエンジン駆動圧縮機112とが稼働せず、電源駆動圧縮機113のみが稼働する場合は、通風口105a、105cを閉として、機械室101から熱交換室102への空気の移動を遮断するため、熱交換器を通過する風量が増加し、冷凍サイクル効率を向上させることができる。 When the engine 111 and the engine-driven compressor 112 are not operated and only the power-driven compressor 113 is operated, the ventilation holes 105a and 105c are closed, and the air moves from the machine room 101 to the heat exchange chamber 102. Therefore, the amount of air passing through the heat exchanger is increased, and the refrigeration cycle efficiency can be improved.
 また、油分離器115aからエンジン駆動圧縮機112の吸入配管に接続した油戻し管115cの流路抵抗は、油分離器115bから電源駆動圧縮機113の吸入配管に接続した油戻し管115dの流路抵抗よりも小さく設定されているため、両圧縮機112,113が同時に稼働している場合でも、油分離器115aからエンジン駆動圧縮機112に戻る冷凍機油の量は、油分離器115bから電源駆動圧縮機113に戻る冷凍機油の量よりも多くなる。よって、冷凍機油の吐出量が多いエンジン駆動圧縮機112の運転信頼性を高めることができる。 The flow resistance of the oil return pipe 115c connected from the oil separator 115a to the suction pipe of the engine driven compressor 112 is the flow resistance of the oil return pipe 115d connected from the oil separator 115b to the suction pipe of the power supply driven compressor 113. Since the road resistance is set to be smaller, the amount of refrigerating machine oil returning from the oil separator 115a to the engine-driven compressor 112 is supplied from the oil separator 115b even when both compressors 112 and 113 are operating simultaneously. More than the amount of refrigerating machine oil returning to the drive compressor 113. Therefore, the operation reliability of the engine-driven compressor 112 that has a large discharge amount of refrigeration oil can be improved.
 また、油分離器115aは、室外ユニット100内の仕切り板103の上に設置されているため、低負荷時など、冷凍サイクルの高圧と低圧の圧力差が小さい場合でも、油分離器115aからエンジン駆動圧縮機112には冷凍機油が戻りやすい。よって、冷凍機油の吐出量が多いエンジン駆動圧縮機112の運転信頼性をさらに高めることができる。 In addition, since the oil separator 115a is installed on the partition plate 103 in the outdoor unit 100, the oil separator 115a is driven from the oil separator 115a even when the pressure difference between the high pressure and the low pressure in the refrigeration cycle is small, such as when the load is low. Refrigerating machine oil easily returns to the drive compressor 112. Therefore, it is possible to further improve the operation reliability of the engine-driven compressor 112 having a large amount of refrigerant oil discharged.
 本発明に係る空気調和機の室外ユニットは、モータで駆動する電源駆動圧縮機を機械室に追加配置した時に、電源駆動圧縮機の温度が過度に低くなるのを抑え、電動駆動圧縮を起動する際に電源駆動圧縮機の温度が低いことによって生じるオイルフォーミングを発生しにくくし、電源駆動圧縮機内の冷凍機油を十分に確保することで、電源駆動圧縮機の信頼性を向上させることを可能とする。よってエンジンにより駆動されるエンジン駆動圧縮機とモータで駆動する電源駆動圧縮機とを機械室に併設する室外ユニットに用いるのに好適である。 The outdoor unit of the air conditioner according to the present invention suppresses the temperature of the power-driven compressor from becoming excessively low when a power-driven compressor driven by a motor is additionally disposed in the machine room, and starts electric drive compression. It is possible to improve the reliability of the power-driven compressor by making it hard to generate oil forming caused by the low temperature of the power-driven compressor and securing sufficient refrigeration oil in the power-driven compressor To do. Therefore, the engine-driven compressor driven by the engine and the power-driven compressor driven by the motor are suitable for use in an outdoor unit provided in the machine room.
 100 空気調和機の室外ユニット
 101 機械室
 102 熱交換器室
 103 仕切り板
 105a、105b 通風口
 111 エンジン
 112 エンジン駆動圧縮機
 113 電源駆動圧縮機
 114 アキュムレータ
 115a、115b 油分離器
 115c、115d 油戻し管
 115e、115f 油戻し管開閉弁
 116 四方弁
 117 室外ユニット減圧装置
 118 エンジン排熱熱交換器
 119 エンジン排熱熱交換器用冷媒流量調整弁
 120 室外送風ファン
 121 室外送風ファンモータ
 122 底板
 123 エンジン圧縮機ユニット
 130 室外熱交換器
 200 室内ユニット
 201 室内熱交換器
 202 室内送風ファン
 203 室内ユニット減圧装置
 210 室内ユニット
 211 室内熱交換器
 212 室内送風ファン
 213 室内ユニット減圧装置
DESCRIPTION OF SYMBOLS 100 Outdoor unit of air conditioner 101 Machine room 102 Heat exchanger room 103 Partition plate 105a, 105b Ventilation port 111 Engine 112 Engine drive compressor 113 Power supply drive compressor 114 Accumulator 115a, 115b Oil separator 115c, 115d Oil return pipe 115e 115f Oil return pipe on / off valve 116 Four-way valve 117 Outdoor unit pressure reducing device 118 Engine exhaust heat exchanger 119 Refrigerant flow rate adjustment valve for engine exhaust heat exchanger 120 Outdoor fan 121 Outdoor fan fan motor 122 Bottom plate 123 Engine compressor unit 130 Outdoor heat exchanger 200 Indoor unit 201 Indoor heat exchanger 202 Indoor fan fan 203 Indoor unit pressure reducing device 210 Indoor unit 211 Indoor heat exchanger 212 Indoor fan fan 213 Indoor unit pressure reducing device

Claims (3)

  1.  電力により駆動する電源駆動圧縮機と、電力以外の駆動源により駆動する非電源駆動圧縮機とが配置された機械室と、室外熱交換器および室外送風ファンを格納した熱交換器室とを、仕切り板で上下二段に分割し、前記機械室を下段部分に、前記熱交換器室を上段部分に備え、前記機械室の底部に設けられる底板の中心を通り、直線を含む略鉛直方向の平面で前記底板を2つの領域に分割し、前記非電源駆動圧縮機を含む非電源駆動圧縮機ユニットの略中心と前記電源駆動圧縮機の略中心とが、前記領域のどちらか一方の同じ領域に位置することを特徴とする空気調和機の室外ユニット。 A machine room in which a power source driven compressor driven by electric power, a non-power source driven compressor driven by a driving source other than electric power are disposed, and a heat exchanger room storing an outdoor heat exchanger and an outdoor fan. Divided into two upper and lower stages by a partition plate, the machine room is provided in the lower part, the heat exchanger room is provided in the upper part, passes through the center of the bottom plate provided at the bottom of the machine room, and includes a substantially vertical direction including a straight line. The bottom plate is divided into two regions in a plane, and the approximate center of the non-power source driven compressor unit including the non-power source driven compressor and the approximate center of the power source driven compressor are the same region in either one of the regions An outdoor unit of an air conditioner characterized by being located in
  2.  前記仕切り板に、室外ユニット内部の空気が前記熱交換器室と前記機械室とを移動できる通気口を少なくとも1つ設置し、前記電源駆動圧縮機の起動前に前記通気口の通風抵抗を大きくすることを特徴とする請求項1に記載の空気調和機の室外ユニット。 The partition plate is provided with at least one vent hole through which air inside the outdoor unit can move between the heat exchanger chamber and the machine chamber, and increases the ventilation resistance of the vent port before the power-driven compressor is started. The outdoor unit of an air conditioner according to claim 1, wherein the outdoor unit is an air conditioner.
  3.  前記非電源駆動圧縮機の排除容積は、前記電源駆動圧縮機の排除容積よりも大きいことを特徴とする請求項1または請求項2に記載の空気調和機の室外ユニット。 The outdoor unit of an air conditioner according to claim 1 or 2, wherein an excluded volume of the non-power source driven compressor is larger than an excluded volume of the power source driven compressor.
PCT/JP2015/000577 2014-02-14 2015-02-09 Air conditioner outdoor units WO2015122168A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-026757 2014-02-14
JP2014026757A JP6315375B2 (en) 2014-02-14 2014-02-14 Air conditioner outdoor unit

Publications (1)

Publication Number Publication Date
WO2015122168A1 true WO2015122168A1 (en) 2015-08-20

Family

ID=53799919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/000577 WO2015122168A1 (en) 2014-02-14 2015-02-09 Air conditioner outdoor units

Country Status (2)

Country Link
JP (1) JP6315375B2 (en)
WO (1) WO2015122168A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3211333A1 (en) * 2016-02-29 2017-08-30 Fujitsu General Limited Outdoor unit of air conditioner
EP3211332A1 (en) * 2016-02-29 2017-08-30 Fujitsu General Limited Outdoor unit of air conditioner
EP3425309A1 (en) * 2017-07-05 2019-01-09 Panasonic Intellectual Property Management Co., Ltd. Air conditioning apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002323270A (en) * 2001-04-24 2002-11-08 Denso Corp Engine-driven apparatus
JP2005315431A (en) * 2004-04-26 2005-11-10 Aisin Seiki Co Ltd Composite power source heat pump type air conditioner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002323270A (en) * 2001-04-24 2002-11-08 Denso Corp Engine-driven apparatus
JP2005315431A (en) * 2004-04-26 2005-11-10 Aisin Seiki Co Ltd Composite power source heat pump type air conditioner

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3211333A1 (en) * 2016-02-29 2017-08-30 Fujitsu General Limited Outdoor unit of air conditioner
EP3211332A1 (en) * 2016-02-29 2017-08-30 Fujitsu General Limited Outdoor unit of air conditioner
CN107131579A (en) * 2016-02-29 2017-09-05 富士通将军股份有限公司 The outdoor unit of air-conditioning equipment
EP3425309A1 (en) * 2017-07-05 2019-01-09 Panasonic Intellectual Property Management Co., Ltd. Air conditioning apparatus

Also Published As

Publication number Publication date
JP2015152243A (en) 2015-08-24
JP6315375B2 (en) 2018-04-25

Similar Documents

Publication Publication Date Title
US11204180B2 (en) Integrated air conditioner
JP6284077B2 (en) Air conditioner outdoor unit
KR102033934B1 (en) Refrigerator
JP6283815B2 (en) Air conditioner
JP6315375B2 (en) Air conditioner outdoor unit
JP6653443B2 (en) Outdoor unit of air conditioner
KR102181352B1 (en) Air conditioning module and system for battery
JP2015152241A (en) Outdoor unit of air conditioner
JP4963971B2 (en) Heat pump type equipment
JP2007263391A (en) Refrigerating cycle device
JP5971633B2 (en) Refrigeration cycle equipment
WO2000055551A1 (en) Air conditioner and outdoor equipment used for it
JP6292469B2 (en) Air conditioner outdoor unit
JP6497582B2 (en) Refrigerator unit
EP2772706B1 (en) Refrigeration system having a dual suction port compressor
KR101418155B1 (en) An air conditioner
JP6222493B2 (en) Air conditioner
KR20090069994A (en) Cassette type heat-pump air conditioner with stabilized refrigerant-cycle
JP2005114312A (en) Refrigerator
KR20140059007A (en) A combined refrigerating and air conditioning system
JP2012237494A (en) Refrigerating device
JP5176874B2 (en) Refrigeration equipment
JP2017110821A (en) Air conditioner
KR100441084B1 (en) A air-conditioner installed separator
JP2004156852A (en) Engine-driven heat pump device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15748716

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15748716

Country of ref document: EP

Kind code of ref document: A1