JP6222493B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP6222493B2
JP6222493B2 JP2015562733A JP2015562733A JP6222493B2 JP 6222493 B2 JP6222493 B2 JP 6222493B2 JP 2015562733 A JP2015562733 A JP 2015562733A JP 2015562733 A JP2015562733 A JP 2015562733A JP 6222493 B2 JP6222493 B2 JP 6222493B2
Authority
JP
Japan
Prior art keywords
driven compressor
power
engine
driven
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015562733A
Other languages
Japanese (ja)
Other versions
JPWO2015122169A1 (en
Inventor
誠之 飯高
誠之 飯高
松井 大
大 松井
増田 哲也
哲也 増田
西山 吉継
吉継 西山
雅章 長井
雅章 長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Publication of JPWO2015122169A1 publication Critical patent/JPWO2015122169A1/en
Application granted granted Critical
Publication of JP6222493B2 publication Critical patent/JP6222493B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/08Compressors specially adapted for separate outdoor units
    • F24F1/10Arrangement or mounting thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/44Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger characterised by the use of internal combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/60Arrangement or mounting of the outdoor unit
    • F24F1/68Arrangement of multiple separate outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/02Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for separating lubricants from the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0253Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2327/00Refrigeration system using an engine for driving a compressor
    • F25B2327/001Refrigeration system using an engine for driving a compressor of the internal combustion type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size

Description

本発明は、空気調和機に係り、特に、エンジンにより駆動される非電源駆動圧縮機と、電力により駆動される電源駆動圧縮機とを併設した空気調和機に関するものである。   The present invention relates to an air conditioner, and more particularly to an air conditioner provided with a non-power source driven compressor driven by an engine and a power source driven compressor driven by electric power.

一般に、複数台の室外ユニット群と複数台の室内ユニット群とを配管で接続し、空調負荷に応じて室外ユニットの運転台数を制御するマルチ型空気調和機が知られており、前記室外ユニット群として電源駆動圧縮機を内蔵する電動駆動室外ユニットと、非電源駆動圧縮機を内蔵する非電源駆動室外ユニットで構成することで、電源容量に余裕のない場合でも増設が可能で、電力使用量の平準化を図ることのできる、いわゆるハイブリッド空気調和機が提案されている。(例えば、特許文献1参照)。   Generally, a multi-type air conditioner is known in which a plurality of outdoor unit groups and a plurality of indoor unit groups are connected by piping, and the number of outdoor units operated is controlled according to the air conditioning load. As an electric drive outdoor unit with a built-in power-driven compressor and a non-power-drive outdoor unit with a built-in non-power-driven compressor, it can be expanded even when there is not enough power capacity. A so-called hybrid air conditioner that can achieve leveling has been proposed. (For example, refer to Patent Document 1).

また、ガスヒートポンプは、部分負荷時には、ガスエンジンの熱効率が低下し、空気調和機としての運転効率が低下する。これを回避するため、ガスエンジンにより駆動される非電源駆動圧縮機の排除容積を電源駆動圧縮機よりも大きくし、部分負荷時は電源駆動圧縮機を主体に運転し、高負荷時にはガスエンジンを主体に運転する制御手法も提案されている(例えば、特許文献2参照)。   Further, in the gas heat pump, at the time of partial load, the thermal efficiency of the gas engine decreases, and the operation efficiency as an air conditioner decreases. In order to avoid this, the displacement volume of the non-power source driven compressor driven by the gas engine is made larger than that of the power source driven compressor, the power source driven compressor is mainly operated during partial load, and the gas engine is operated at high load. A control method for driving the main body has also been proposed (see, for example, Patent Document 2).

特開平05−340624号公報JP 05-340624 A 特開2003−056931号公報JP 2003-069931 A

しかしながら、電源駆動圧縮機を内蔵する電源駆動室外ユニットと、上記電源駆動圧縮機よりも大きい排除容積を持つ非電源駆動圧縮機を内蔵する非電源駆動室外ユニットとを組合せて使用する場合(例えば、非電源駆動圧縮機の能力を20HP、電源駆動圧縮機の能力を10HPの合計30HPとする場合)、非電源駆動圧縮機の冷凍機油吐出量は電源駆動圧縮機よりも多く、非電源駆動圧縮機の冷凍機油が不足気味になり、運転信頼性が損なわれる課題があった。   However, when using a combination of a power-driven outdoor unit incorporating a power-driven compressor and a non-power-driven outdoor unit incorporating a non-power-driven compressor having a larger displacement volume than the power-driven compressor (for example, (When the capacity of the non-power source driven compressor is 20 HP and the capacity of the power source driven compressor is 10 HP in total 30 HP), the non-power source driven compressor discharges more refrigeration oil than the power source driven compressor. There was a problem that the refrigerating machine oil became deficient and the operation reliability was impaired.

本発明は、前記課題を解決するものであり、電源駆動室外ユニットと非電源駆動室外ユニットとを組み合わせて使用する場合においても、非電源駆動室外ユニットに内蔵された非電源駆動圧縮機の冷凍機油を十分に確保し、非電源駆動圧縮機の運転信頼性を向上させることができる空気調和機を提供することを目的とする。   The present invention solves the above-mentioned problem, and in the case of using a combination of a power-driven outdoor unit and a non-power-driven outdoor unit, the refrigerator oil of the non-power-driven compressor built in the non-power-driven outdoor unit An object of the present invention is to provide an air conditioner that can sufficiently secure the above and improve the operation reliability of a non-power source driven compressor.

この明細書には、2014年2月14日に出願された日本国特許出願・特願2014−026758の全ての内容が含まれる。   This specification includes all the contents of the Japanese patent application and Japanese Patent Application No. 2014-026758 filed on February 14, 2014.

前記課題を解決するために、第1の発明に係る空気調和機は、電力により駆動する電源駆動圧縮機が搭載された電源駆動室外ユニットと、電力以外の駆動源により駆動する非電源駆動圧縮機が搭載された非電源駆動室外ユニットとを少なくとも1台の室内ユニットから延びるユニット間配管に並列に接続した空気調和機において、前記非電源駆動圧縮機の吸入口位置が前記電源駆動圧縮機の吸入口位置よりも鉛直方向となるように、前記電源駆動室外ユニットと前記非電源駆動室外ユニットとが設置されたことを特徴とする。 In order to solve the above-described problems, an air conditioner according to a first aspect of the present invention includes a power source driving outdoor unit on which a power source driving compressor driven by electric power is mounted, and a non-power source driving compressor driven by a driving source other than electric power. In an air conditioner in which a non-power-driven outdoor unit on which is mounted is connected in parallel to an inter-unit pipe extending from at least one indoor unit, the inlet position of the non-power-driven compressor is the suction position of the power-driven compressor. as a vertically lower side than the mouth position, characterized in that said power supply driving the outdoor unit and the non-power driving the outdoor unit is installed.

これにより、非電源駆動圧縮機の吸入口位置が、電源駆動圧縮機の吸入口位置よりも下にあるために、冷媒よりも比重が重い冷凍機油が、非電源駆動圧縮機に戻りやすくなり、非電源駆動圧縮機の冷凍機油を枯渇させることなく、非電源駆動圧縮機の運転信頼性を向上させることができる。   As a result, since the suction port position of the non-power source driven compressor is below the suction port position of the power source drive compressor, the refrigeration oil whose specific gravity is heavier than the refrigerant easily returns to the non-power source drive compressor. The operation reliability of the non-power source driven compressor can be improved without depleting the refrigeration oil of the non-power source drive compressor.

第2の発明は、第1の発明の空気調和機において、非電源駆動圧縮機が吐出した冷媒から冷凍機油を分離する非電源駆動圧縮機油分離器と、電源駆動圧縮機が吐出した冷媒から冷凍機油を分離する電源駆動圧縮機油分離器とを備え、非電源駆動圧縮機油分離器から非電源駆動圧縮機の吸入配管に冷凍機油を流す配管の流路抵抗を、電源駆動圧縮機油分離器から電源駆動圧縮機の吸入配管に冷凍機油を流す配管の流路抵抗よりも小さくすることを特徴とする。   According to a second aspect of the present invention, in the air conditioner of the first aspect, a non-power source driven compressor oil separator that separates refrigeration oil from the refrigerant discharged from the non-power source driven compressor, and a refrigerant refrigerated from the refrigerant discharged from the power source driven compressor Power supply driven compressor oil separator that separates machine oil, the flow resistance of the pipe that flows refrigeration oil from the non-power supply driven compressor oil separator to the suction pipe of the non-power supply driven compressor, the power supply from the power supply driven compressor oil separator It is characterized by being made smaller than the flow path resistance of the pipe through which the refrigeration oil flows into the suction pipe of the drive compressor.

これにより、非電源駆動圧縮機の油分離器から非電源駆動圧縮機に戻る冷凍機油の量は、電源駆動圧縮機油分離器から電源駆動圧縮機に戻る冷凍機油の量よりも多くなる。よって、本発明では、第1の発明の効果に加え、特に、低外気温下で非電源駆動圧縮機の起動時や、負荷変動に伴って非電源駆動圧縮機の運転周波数を増大させる時などにおいて、非電源駆動圧縮機からの冷凍機油吐出量が増大する場合にも、非電源駆動圧縮機内の冷凍機油量を十分に保つことができ、非電源駆動圧縮機の運転信頼性をさらに高めることができる。   Thereby, the amount of refrigerating machine oil returning from the oil separator of the non-power source driven compressor to the non-power source driven compressor is larger than the amount of refrigerating machine oil returning from the power source driven compressor oil separator to the power source driven compressor. Therefore, in the present invention, in addition to the effect of the first invention, in particular, when the non-power supply driven compressor is started at a low outside temperature, or when the operating frequency of the non-power supply drive compressor is increased due to load fluctuation, etc. Therefore, even when the amount of refrigeration oil discharged from the non-power source driven compressor increases, the amount of refrigeration oil in the non-power source driven compressor can be sufficiently maintained, and the operation reliability of the non-power source driven compressor is further increased. Can do.

本発明の空気調和機では、非電源駆動室外ユニットと電源駆動室外ユニットとを組み合わせて使用する場合においても、冷凍機油が非電源駆動室外ユニットに内蔵された非電源駆動圧縮機に戻りやすくなり、冷凍機油吐出量が比較的多い非電源駆動圧縮機の冷凍機油を枯渇させることなく、非電源駆動圧縮機の運転信頼性を向上させることができる。   In the air conditioner of the present invention, even when the non-power-driven outdoor unit and the power-driven outdoor unit are used in combination, the refrigeration oil easily returns to the non-power-driven compressor incorporated in the non-power-driven outdoor unit, The operation reliability of the non-power source driven compressor can be improved without depleting the refrigerating machine oil of the non-power source driven compressor having a relatively large amount of refrigeration oil discharge.

図1は、本発明の実施の形態1における空気調和機の冷凍サイクル構成図である。FIG. 1 is a configuration diagram of a refrigeration cycle of an air conditioner according to Embodiment 1 of the present invention. 図2は、本発明の実施の形態1における空気調和機の設置状態を示す説明図である。FIG. 2 is an explanatory diagram showing an installation state of the air conditioner according to Embodiment 1 of the present invention.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施形態によって、本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, this invention is not limited by this embodiment.

(実施の形態1)
本実施の形態の空気調和機の冷凍サイクル構成を図1に示す。図1の空気調和機は、室外ユニットとして電源駆動圧縮機111を搭載した電源駆動室外ユニット100と、電力以外の駆動源であるエンジンにより駆動するエンジン駆動圧縮機(非電源駆動圧縮機)211を搭載したエンジン駆動室外ユニット200の計2台に対し、室内ユニットを2台接続した、いわゆるマルチ型空気調和機の構成となっている。なお、冷凍サイクル構成に関しては、図1に示したものに限定されない。例えば、室外ユニットは3台以上、室内ユニットも3台以上、並列に接続可能である。
(Embodiment 1)
A refrigeration cycle configuration of the air conditioner of the present embodiment is shown in FIG. The air conditioner of FIG. 1 includes a power-driven outdoor unit 100 equipped with a power-driven compressor 111 as an outdoor unit, and an engine-driven compressor (non-power-driven compressor) 211 driven by an engine that is a drive source other than electric power. This is a so-called multi-type air conditioner in which two indoor units are connected to a total of two engine drive outdoor units 200 mounted. The refrigeration cycle configuration is not limited to that shown in FIG. For example, three or more outdoor units and three or more indoor units can be connected in parallel.

電源駆動室外ユニット100、エンジン駆動室外ユニット200と、室内ユニット300、310とは、冷媒が流通する配管で連結されている。   The power drive outdoor unit 100, the engine drive outdoor unit 200, and the indoor units 300 and 310 are connected by piping through which a refrigerant flows.

電源駆動室外ユニット100において、111は商用電源など電力により駆動する電源駆動圧縮機であり、111aは電源駆動圧縮機111の吸入口である。112はアキュムレータであり、電源駆動圧縮機111の吸入配管に接続され、電動駆動圧縮機111にガス冷媒を供給する。113は油分離器であり、電源駆動圧縮機111の吐出配管に設置されており、電動駆動圧縮機111の吐出ガスに含まれる冷凍機油を分離する。油分離器113で分離された冷凍機油は、油戻し管113aにより電源駆動圧縮機111の吸入配管に戻される。また、油戻し管113aには、それぞれ、油戻し管開閉弁113bが接続されており、この油戻し管開閉弁113b開閉により、油戻し管113aの連通が制御される。   In the power-driven outdoor unit 100, 111 is a power-driven compressor that is driven by electric power such as commercial power, and 111 a is a suction port of the power-driven compressor 111. An accumulator 112 is connected to a suction pipe of the power supply driven compressor 111 and supplies a gas refrigerant to the electrically driven compressor 111. An oil separator 113 is installed in the discharge pipe of the power supply driven compressor 111 and separates refrigeration oil contained in the discharge gas of the electric drive compressor 111. The refrigerating machine oil separated by the oil separator 113 is returned to the suction pipe of the power supply driven compressor 111 by the oil return pipe 113a. The oil return pipe 113a is connected to an oil return pipe on / off valve 113b, and the opening and closing of the oil return pipe on / off valve 113b controls the communication of the oil return pipe 113a.

114は冷房と暖房で冷凍サイクルを切り替える四方弁、115は冷媒を膨張させる室外ユニット減圧装置である。また、120は、室外熱交換器130に電動駆動圧縮機を搭載した室外ユニット100周囲の空気を供給する室外送風ファンである。   Reference numeral 114 denotes a four-way valve that switches between refrigeration cycles by cooling and heating, and 115 is an outdoor unit pressure reducing device that expands the refrigerant. Reference numeral 120 denotes an outdoor fan that supplies air around the outdoor unit 100 in which an electric drive compressor is mounted on the outdoor heat exchanger 130.

エンジン駆動室外ユニット200において、210は、例えば、ガスを駆動源とするエンジン、211はエンジン210より駆動力を得て冷媒を圧縮するエンジン駆動圧縮機(非電源駆動圧縮機)であり、211aはエンジン駆動圧縮機211の吸入口である。212はアキュムレータであり、エンジン駆動圧縮機211の吸入配管に接続され、エンジン駆動圧縮機211にガス冷媒を供給する。213は油分離器であり、エンジン駆動圧縮機211の吐出配管に設置されており、エンジン駆動圧縮機211の吐出ガスに含まれる冷凍機油を分離する。油分離器213で分離された冷凍機油は、油戻し管213aによりエンジン駆動圧縮機211の吸入配管に戻される。また、油戻し管213aには、それぞれ、油戻し管開閉弁213bが接続されており、この油戻し管開閉弁213b開閉により、油戻し管213aの連通が制御される。   In the engine driving outdoor unit 200, 210 is an engine using, for example, gas as a driving source, 211 is an engine driving compressor (non-power source driving compressor) that compresses refrigerant by obtaining driving force from the engine 210, and 211a This is a suction port of the engine driven compressor 211. An accumulator 212 is connected to a suction pipe of the engine driven compressor 211 and supplies a gas refrigerant to the engine driven compressor 211. Reference numeral 213 denotes an oil separator, which is installed in the discharge pipe of the engine-driven compressor 211 and separates refrigeration oil contained in the discharge gas of the engine-driven compressor 211. The refrigerating machine oil separated by the oil separator 213 is returned to the suction pipe of the engine-driven compressor 211 through the oil return pipe 213a. An oil return pipe on / off valve 213b is connected to the oil return pipe 213a, and the communication of the oil return pipe 213a is controlled by opening and closing the oil return pipe on / off valve 213b.

214は冷房と暖房で冷凍サイクルを切り替える四方弁、215は冷媒を膨張させる室外ユニット減圧装置である。また、216は、エンジン210の冷却に用いた高温の冷却水と冷媒との熱交換を行うエンジン排熱熱交換器であり、暖房時に利用する。217はエンジン排熱熱交換器216に流入する冷媒流量を調整するエンジン排熱熱交換器用冷媒流量調整弁である。220は、室外熱交換器230にエンジン駆動圧縮機211を搭載した室外ユニット200周囲の空気を供給する室外送風ファンである。   Reference numeral 214 denotes a four-way valve that switches the refrigeration cycle between cooling and heating, and 215 is an outdoor unit pressure reducing device that expands the refrigerant. Reference numeral 216 denotes an engine exhaust heat exchanger that performs heat exchange between the high-temperature coolant used for cooling the engine 210 and the refrigerant, and is used during heating. Reference numeral 217 denotes a refrigerant flow rate adjustment valve for the engine exhaust heat heat exchanger that adjusts the flow rate of the refrigerant flowing into the engine exhaust heat heat exchanger 216. Reference numeral 220 denotes an outdoor fan that supplies air around the outdoor unit 200 in which the engine-driven compressor 211 is mounted on the outdoor heat exchanger 230.

ここで、電源駆動圧縮機111とエンジン駆動圧縮機211は、冷凍サイクル内で並列に接続されている。また、エンジン駆動圧縮機211の吸入口211a位置は、電源駆動圧縮機111の吸入口111a位置よりも下になるように設置されている。具体的には、図2に示すように、電源駆動圧縮機111の吸入口111a位置とエンジン駆動圧縮機211の吸入口211a位置との高低差をHとしたときに、現行のマルチ型空気調和機における許容高低差として、0<H<5メートルの範囲にあることが望ましい。   Here, the power supply driven compressor 111 and the engine driven compressor 211 are connected in parallel in the refrigeration cycle. Further, the position of the suction port 211 a of the engine driven compressor 211 is set to be lower than the position of the suction port 111 a of the power supply driven compressor 111. Specifically, as shown in FIG. 2, when the difference in height between the position of the suction port 111a of the power supply driven compressor 111 and the position of the suction port 211a of the engine driven compressor 211 is H, the current multi-type air conditioning The allowable height difference in the machine is preferably in the range of 0 <H <5 meters.

なお、本実施の形態においては、エンジン駆動圧縮機211の吸入口211a位置を、電源駆動圧縮機111の吸入口111a位置よりも下になるように設置する場合には、図2に示すように、高低差のある床面の上段に電源駆動圧縮機111を設置するとともに、床面の下段にエンジン駆動圧縮機211に設置するようにしている。ただし、これに限定されるものではなく、例えば、同一高さの床面に対して、電源駆動圧縮機111をスペーサを介して設置するようにしてもよいし、電源駆動圧縮機111の底板を上げ底とし、実質的に、エンジン駆動圧縮機211の吸入口211a位置が、電源駆動圧縮機111の吸入口111a位置よりも下になるように設置するようにしてもよい。   In the present embodiment, when the suction port 211a position of the engine driven compressor 211 is set to be lower than the suction port 111a position of the power supply driven compressor 111, as shown in FIG. The power-driven compressor 111 is installed on the upper stage of the floor surface with a difference in height, and the engine-driven compressor 211 is installed on the lower stage of the floor surface. However, the present invention is not limited to this. For example, the power-driven compressor 111 may be installed on a floor surface having the same height via a spacer, or the bottom plate of the power-driven compressor 111 may be installed. The raised bottom may be installed so that the position of the suction port 211a of the engine driven compressor 211 is substantially lower than the position of the suction port 111a of the power source driven compressor 111.

また、エンジン駆動圧縮機211の排除容積は、電源駆動圧縮機111の排除容積よりも大きい。また、電源駆動圧縮機111、エンジン駆動圧縮機211の潤滑油は同じ冷凍機油とする。また、エンジン駆動圧縮機211の吐出および吸入配管は、電源駆動圧縮機111の吐出および吸入配管よりも太い。なお、油分離器213で分離された冷凍機油を電源駆動圧縮機211の吸入配管に流す油戻し管213aの流路抵抗は、油分離器113で分離された冷凍機油を電源駆動圧縮機111の吸入配管に流す油戻し管113aの流路抵抗よりも小さくしてある。   Further, the displacement volume of the engine driven compressor 211 is larger than the displacement volume of the power supply driven compressor 111. The lubricating oil for the power source driven compressor 111 and the engine driven compressor 211 is the same refrigerating machine oil. Further, the discharge and suction piping of the engine driven compressor 211 is thicker than the discharge and suction piping of the power supply driven compressor 111. Note that the flow resistance of the oil return pipe 213 a that flows the refrigerating machine oil separated by the oil separator 213 to the suction pipe of the power supply driven compressor 211 is the same as that of the refrigerating machine oil separated by the oil separator 113. The flow path resistance of the oil return pipe 113a flowing through the suction pipe is made smaller.

室内ユニット300において、301は室内熱交換器、302は室内熱交換器301に室内ユニット300周囲の空気を供給する室内送風ファン、303は冷媒を膨張させる室内ユニット減圧装置である。同様に、室内ユニット310において、311は室内熱交換器、312は室内熱交換器311に室内ユニット310周囲の空気を供給する室内送風ファン、313は冷媒を膨張させる室内ユニット減圧装置である。   In the indoor unit 300, 301 is an indoor heat exchanger, 302 is an indoor fan that supplies air around the indoor unit 300 to the indoor heat exchanger 301, and 303 is an indoor unit pressure reducing device that expands the refrigerant. Similarly, in the indoor unit 310, 311 is an indoor heat exchanger, 312 is an indoor blower fan that supplies air around the indoor unit 310 to the indoor heat exchanger 311, and 313 is an indoor unit pressure reducing device that expands the refrigerant.

次に、電動駆動室外ユニット100、非電動駆動室外ユニット200と、室内ユニット300、310の動作を説明する。   Next, operations of the electric drive outdoor unit 100, the non-electric drive outdoor unit 200, and the indoor units 300 and 310 will be described.

冷房運転時、四方弁114、214は実線に冷媒を流すよう設定される(図1参照)。電源駆動圧縮機111とエンジン駆動圧縮機211とでそれぞれ圧縮された高温高圧の冷媒は、油分離器113、213に流入する。油分離器113、213にて冷凍機油を分離された純度の高いガス冷媒は四方弁114、214を通り、室外熱交換器130、230に入る。ガス冷媒は、室外熱交換器130、230にて、外気と熱交換して放熱したのち凝縮し、高圧の液冷媒となり、室外ユニット減圧装置115、215を通ってから合流し、室内ユニット300、310に供給される。   During the cooling operation, the four-way valves 114 and 214 are set so that the refrigerant flows through the solid line (see FIG. 1). The high-temperature and high-pressure refrigerant compressed by the power supply driven compressor 111 and the engine driven compressor 211 flows into the oil separators 113 and 213, respectively. The high-purity gas refrigerant from which the refrigeration oil is separated by the oil separators 113 and 213 passes through the four-way valves 114 and 214 and enters the outdoor heat exchangers 130 and 230. In the outdoor heat exchangers 130 and 230, the gas refrigerants exchange heat with the outside air, dissipate heat, condense, become high-pressure liquid refrigerant, merge after passing through the outdoor unit decompression devices 115 and 215, 310.

なお、油分離器113で分離された冷凍機油は、電源駆動圧縮機111が駆動していない場合は油戻し管開閉弁113bは閉、電源駆動圧縮機111が駆動している場合は油戻し管開閉弁113bを開とすることで、電源駆動圧縮機111の吸入配管に戻される。同様に、油分離器213で分離された冷凍機油は、エンジン駆動圧縮機211が駆動していない場合は油戻し管開閉弁213bは閉、エンジン駆動圧縮機211が駆動している場合は油戻し管開閉弁213bを開とすることで、エンジン駆動圧縮機211の吸入配管に戻される。   The refrigerating machine oil separated by the oil separator 113 closes the oil return pipe on / off valve 113b when the power supply driven compressor 111 is not driven, and the oil return pipe when the power supply driven compressor 111 is driven. By opening the on-off valve 113b, it is returned to the suction pipe of the power supply driven compressor 111. Similarly, the refrigeration oil separated by the oil separator 213 is closed when the engine-driven compressor 211 is not driven and the oil return pipe on / off valve 213b is closed, and when the engine-driven compressor 211 is driven, the oil return is returned. By opening the pipe opening / closing valve 213b, the pipe is returned to the suction pipe of the engine driven compressor 211.

室内ユニット300に入った高圧の液冷媒は、室内ユニット減圧装置303にて減圧され、気液二相状態となって、室内熱交換器301に流入する。気液二相状態の冷媒は、室内熱交換器301にて、空調対象となっている空間の空気と熱交換して吸熱したのち蒸発し、ガス冷媒となって室内ユニット300から流出する。   The high-pressure liquid refrigerant that has entered the indoor unit 300 is decompressed by the indoor unit decompression device 303, enters a gas-liquid two-phase state, and flows into the indoor heat exchanger 301. The refrigerant in the gas-liquid two-phase state evaporates after exchanging heat with the air in the space to be air-conditioned in the indoor heat exchanger 301 and then evaporates to flow out of the indoor unit 300.

室内ユニット310においても、室内ユニット300と同様に、まず、高圧の液冷媒は、室内ユニット減圧装置313にて減圧され、気液二相状態となって、室内熱交換器311に流入する。気液二相状態の冷媒は、室内熱交換器311にて、空調対象となっている空間の空気と熱交換して吸熱したのち蒸発し、ガス冷媒となって室内ユニット310から流出する。   Also in the indoor unit 310, similarly to the indoor unit 300, first, the high-pressure liquid refrigerant is decompressed by the indoor unit decompression device 313, becomes a gas-liquid two-phase state, and flows into the indoor heat exchanger 311. In the indoor heat exchanger 311, the refrigerant in the gas-liquid two-phase state exchanges heat with the air in the space to be air-conditioned, absorbs heat, evaporates, and flows out from the indoor unit 310 as a gas refrigerant.

なお、室内ユニット300のみ冷房運転を行う場合は、室内ユニット減圧装置313を閉じ、室内ユニット310の室内熱交換器311には冷媒の供給を行わない。一方、室内ユニット310のみ冷房運転を行う場合は、室内ユニット減圧装置303を閉じ、室内ユニット300の室内熱交換器301には冷媒の供給を行わない。   When only the indoor unit 300 performs the cooling operation, the indoor unit pressure reducing device 313 is closed and the refrigerant is not supplied to the indoor heat exchanger 311 of the indoor unit 310. On the other hand, when only the indoor unit 310 performs the cooling operation, the indoor unit decompression device 303 is closed and the refrigerant is not supplied to the indoor heat exchanger 301 of the indoor unit 300.

室内ユニット300、310から流出したガス冷媒は、合流したのち、再度、電動駆動圧縮機111を搭載した室外ユニット100とエンジン駆動圧縮機211を搭載した室外ユニット200に戻る。電動駆動圧縮機111を搭載した室外ユニット100に流入したガス冷媒は、四方弁114、アキュムレータ112を通って、電動駆動圧縮機111に戻る。同様に、エンジン駆動圧縮機211を搭載した室外ユニット200に流入したガス冷媒は、四方弁214、アキュムレータ212を通って、エンジン駆動圧縮機211に戻る。   The gas refrigerant that has flowed out of the indoor units 300 and 310 merges, and then returns to the outdoor unit 100 on which the electrically driven compressor 111 is mounted and the outdoor unit 200 on which the engine driven compressor 211 is mounted. The gas refrigerant flowing into the outdoor unit 100 on which the electric drive compressor 111 is mounted returns to the electric drive compressor 111 through the four-way valve 114 and the accumulator 112. Similarly, the gas refrigerant that has flowed into the outdoor unit 200 on which the engine-driven compressor 211 is mounted returns to the engine-driven compressor 211 through the four-way valve 214 and the accumulator 212.

冷房運転時における、電源駆動圧縮機111とエンジン駆動圧縮機211の運転方法は、例えば、下記のようにする。   The operation method of the power supply driven compressor 111 and the engine driven compressor 211 during the cooling operation is, for example, as follows.

冷房負荷が、エンジン駆動圧縮機211が最低運転周波数で運転した時の冷房能力(エンジン駆動圧縮機211の最小冷房能力)よりも小さい場合には、エンジン駆動圧縮機211のみでは断続運転に陥るため、電源駆動圧縮機111のみを運転する。   If the cooling load is smaller than the cooling capacity when the engine-driven compressor 211 is operated at the minimum operating frequency (the minimum cooling capacity of the engine-driven compressor 211), the engine-driven compressor 211 alone will cause intermittent operation. Only the power supply driven compressor 111 is operated.

冷房負荷が、エンジン駆動圧縮機211の最小冷房負荷よりも大きく、かつ、エンジン駆動圧縮機211と電源駆動圧縮機111とがともに最低運転周波数で運転した場合の冷房能力(両圧縮機運転時の最小冷房能力)よりも小さい場合は、エンジン駆動圧縮機211と電源駆動圧縮機111のどちらか一方、例えば、運転コストが安い、もしくは、消費エネルギーが小さい方を選択して運転する。   The cooling capacity when the cooling load is larger than the minimum cooling load of the engine driven compressor 211 and both the engine driven compressor 211 and the power source driven compressor 111 are operated at the minimum operating frequency (when both compressors are operated). If it is smaller than (minimum cooling capacity), one of the engine driven compressor 211 and the power source driven compressor 111, for example, the one with the lower operating cost or the lower energy consumption is selected for operation.

冷房負荷が、両圧縮機運転時の最小冷房能力よりも大きい場合は、エンジン駆動圧縮機211と電源駆動圧縮機111の両方を、例えば、運転コスト、もしくは、消費エネルギーが最小となるように運転する。この場合、運転コスト、もしくは、消費エネルギーを最小とするためのエンジン駆動圧縮機211と電源駆動圧縮機111の運転周波数の決定には、各圧縮機の運転周波数と運転コスト、もしくは、消費エネルギーとの関係を利用する。   When the cooling load is larger than the minimum cooling capacity during operation of both compressors, both the engine-driven compressor 211 and the power-driven compressor 111 are operated so that, for example, the operation cost or the energy consumption is minimized. To do. In this case, in determining the operating frequency of the engine driven compressor 211 and the power source driven compressor 111 for minimizing the operating cost or energy consumption, the operating frequency and operating cost of each compressor or the energy consumption Use the relationship.

実際には、冷房負荷全体に対してエンジン駆動圧縮機211が受け持つ冷房負荷の割合は、両圧縮機をともに最高運転周波数で運転した場合の最大冷房能力(両圧縮機運転時の最大冷房能力)に対する、エンジン駆動圧縮機211のみを最高運転周波数で運転したときの冷房能力の割合±15%程度である。   Actually, the ratio of the cooling load that the engine-driven compressor 211 has to the overall cooling load is the maximum cooling capacity when both compressors are operated at the maximum operating frequency (maximum cooling capacity when both compressors are operating). On the other hand, the ratio of the cooling capacity when only the engine driven compressor 211 is operated at the maximum operating frequency is about ± 15%.

次に、暖房運転時では、四方弁114、214は点線に冷媒を流すよう設定される(図1参照)。電源駆動圧縮機111とエンジン駆動圧縮機211とで圧縮された高温高圧の冷媒は、それぞれ油分離器113、213に流入する。油分離器113、213にて、冷凍機油を分離された純度の高いガス冷媒は、それぞれ四方弁114、214を通り、電動駆動圧縮機111を搭載した室外ユニット100、エンジン駆動圧縮機211を搭載した室外ユニット200を出てから合流し、室内ユニット300、310に供給される。   Next, at the time of heating operation, the four-way valves 114 and 214 are set so that the refrigerant flows along the dotted line (see FIG. 1). The high-temperature and high-pressure refrigerant compressed by the power supply driven compressor 111 and the engine driven compressor 211 flows into the oil separators 113 and 213, respectively. The high-purity gas refrigerant from which the refrigeration oil is separated by the oil separators 113 and 213 passes through the four-way valves 114 and 214, respectively, and is equipped with the outdoor unit 100 equipped with the electrically driven compressor 111 and the engine driven compressor 211. After exiting the outdoor unit 200, they join together and are supplied to the indoor units 300 and 310.

室内ユニット300に入った高温高圧のガス冷媒は、室内熱交換器301に流入する。高温高圧のガス冷媒は、室内熱交換器301にて、空調対象となっている空間の空気と熱交換して放熱したのち凝縮し、高圧の液冷媒となって、室内ユニット減圧装置303を通り、室内ユニット300から流出する。   The high-temperature and high-pressure gas refrigerant that has entered the indoor unit 300 flows into the indoor heat exchanger 301. In the indoor heat exchanger 301, the high-temperature and high-pressure gas refrigerant exchanges heat with the air in the air-conditioned space, dissipates the heat, condenses into a high-pressure liquid refrigerant, and passes through the indoor unit decompression device 303. , Out of the indoor unit 300.

室内ユニット310においても、室内ユニット300と同様に、まず、高温高圧のガス冷媒は、室内熱交換器311に流入する。高温高圧のガス冷媒は、室内熱交換器311にて、空調対象となっている空間の空気と熱交換して放熱した後凝縮し、高圧の液冷媒となって、室内ユニット減圧装置313を通り、室内ユニット310から流出する。   Also in the indoor unit 310, similarly to the indoor unit 300, first, the high-temperature and high-pressure gas refrigerant flows into the indoor heat exchanger 311. In the indoor heat exchanger 311, the high-temperature and high-pressure gas refrigerant exchanges heat with the air in the air-conditioned space, dissipates heat, condenses, becomes high-pressure liquid refrigerant, and passes through the indoor unit decompression device 313. , Flows out from the indoor unit 310.

なお、冷房時と同様に、室内ユニット300のみ暖房運転を行う場合は、室内ユニット減圧装置313を閉じ、室内ユニット310の室内熱交換器311には冷媒の供給を行わない。一方、室内ユニット310のみ暖房運転を行う場合は、室内ユニット減圧装置303を閉じ、室内ユニット300の室内熱交換器301には冷媒の供給を行わない。   As in the case of cooling, when only the indoor unit 300 performs the heating operation, the indoor unit decompression device 313 is closed and the refrigerant is not supplied to the indoor heat exchanger 311 of the indoor unit 310. On the other hand, when only the indoor unit 310 performs the heating operation, the indoor unit pressure reducing device 303 is closed and the refrigerant is not supplied to the indoor heat exchanger 301 of the indoor unit 300.

室内ユニット300、310から流出した高圧の液冷媒は、合流したのち、再度、電動駆動圧縮機111を搭載した室外ユニット100と非電動駆動圧縮機を搭載した室外ユニット200に戻る。電動駆動圧縮機111を搭載した室外ユニット100に流入した高圧の液冷媒は、室外ユニット減圧装置115にて減圧され、気液二相状態となって、室外熱交換器130に流入する。気液二相状態の冷媒は、室外熱交換器130では外気と熱交換して吸熱したのち蒸発し、四方弁114、アキュムレータ112を通って、電源駆動圧縮機111に戻る。同様に、エンジン駆動圧縮機211を搭載した室外ユニット200に流入した高圧の液冷媒は、室外ユニット減圧装置215とエンジン排熱熱交換器用冷媒流量調整弁217にて減圧され、気液二相状態となって、それぞれ室外熱交換器230とエンジン排熱熱交換器216に流入する。気液二相状態の冷媒は、室外熱交換器230では外気と、また、エンジン排熱熱交換器216では、エンジン210の冷却に用いた高温の冷却水と熱交換して吸熱したのち蒸発し、四方弁214、アキュムレータ212を通って、エンジン駆動圧縮機211に戻る。   After the high-pressure liquid refrigerant flowing out of the indoor units 300 and 310 merges, the high-pressure liquid refrigerant returns to the outdoor unit 100 equipped with the electrically driven compressor 111 and the outdoor unit 200 equipped with the non-electrically driven compressor again. The high-pressure liquid refrigerant that has flowed into the outdoor unit 100 on which the electric drive compressor 111 is mounted is depressurized by the outdoor unit pressure reducing device 115, becomes a gas-liquid two-phase state, and flows into the outdoor heat exchanger 130. The refrigerant in the gas-liquid two-phase state evaporates after exchanging heat with the outside air in the outdoor heat exchanger 130 and then returns to the power supply driven compressor 111 through the four-way valve 114 and the accumulator 112. Similarly, the high-pressure liquid refrigerant that has flowed into the outdoor unit 200 on which the engine-driven compressor 211 is mounted is decompressed by the outdoor unit decompression device 215 and the engine exhaust heat heat exchanger refrigerant flow rate adjustment valve 217, and is in a gas-liquid two-phase state. And flows into the outdoor heat exchanger 230 and the engine exhaust heat exchanger 216, respectively. The refrigerant in a gas-liquid two-phase state absorbs heat by exchanging heat with the outside air in the outdoor heat exchanger 230 and with the high-temperature cooling water used for cooling the engine 210 in the engine exhaust heat exchanger 216 and then evaporates. , Through the four-way valve 214 and the accumulator 212, and return to the engine-driven compressor 211.

暖房運転時における、電源駆動圧縮機111とエンジン駆動圧縮機211の運転方法は、例えば、下記のようにする。   The operation method of the power supply driven compressor 111 and the engine driven compressor 211 during the heating operation is, for example, as follows.

暖房負荷が、エンジン駆動圧縮機211が最低運転周波数で運転した時の暖房能力(エンジン駆動圧縮機211の最小暖房能力)よりも小さい場合には、エンジン駆動圧縮機211のみでは断続運転に陥るため、電源駆動圧縮機111のみを運転する。   If the heating load is smaller than the heating capacity when the engine-driven compressor 211 is operated at the minimum operating frequency (the minimum heating capacity of the engine-driven compressor 211), the engine-driven compressor 211 alone will cause intermittent operation. Only the power supply driven compressor 111 is operated.

暖房負荷が、エンジン駆動圧縮機211の最小暖房負荷よりも大きく、かつ、エンジン駆動圧縮機211と電源駆動圧縮機111とがともに最低運転周波数で運転した場合の暖房能力(両圧縮機運転時の最小暖房能力)よりも小さい場合は、エンジン駆動圧縮機211と電源駆動圧縮機111のどちらか一方、例えば、運転コストが安い、もしくは、消費エネルギーが小さい方を選択して運転する。   Heating capacity when the heating load is larger than the minimum heating load of the engine-driven compressor 211 and both the engine-driven compressor 211 and the power-driven compressor 111 are operated at the minimum operating frequency (during both compressor operations) If it is smaller than (minimum heating capacity), one of the engine driven compressor 211 and the power source driven compressor 111, for example, the one with lower operating cost or lower energy consumption is selected for operation.

暖房負荷が、両圧縮機運転時の最小暖房能力よりも大きい場合は、エンジン駆動圧縮機211と電源駆動圧縮機111の両方を、例えば、運転コスト、もしくは、消費エネルギーが最小となるように運転する。この場合、運転コスト、もしくは、消費エネルギーを最小とするためのエンジン駆動圧縮機211と電源駆動圧縮機111の運転周波数の決定には、各圧縮機の運転周波数と運転コスト、もしくは、消費エネルギーとの関係を利用する。   When the heating load is larger than the minimum heating capacity during the operation of both compressors, both the engine-driven compressor 211 and the power-driven compressor 111 are operated so that, for example, the operating cost or energy consumption is minimized. To do. In this case, in determining the operating frequency of the engine driven compressor 211 and the power source driven compressor 111 for minimizing the operating cost or energy consumption, the operating frequency and operating cost of each compressor or the energy consumption Use the relationship.

実際には、暖房負荷全体に対してエンジン駆動圧縮機211が受け持つ暖房負荷の割合は、両圧縮機をともに最高運転周波数で運転した場合の最大暖房能力(両圧縮機運転時の最大暖房能力)に対する、エンジン駆動圧縮機211のみを最高運転周波数で運転したときの暖房能力の割合±15%程度である。   Actually, the ratio of the heating load that the engine-driven compressor 211 has to the overall heating load is the maximum heating capacity when both compressors are operated at the maximum operating frequency (maximum heating capacity when operating both compressors). On the other hand, the ratio of the heating capacity when only the engine-driven compressor 211 is operated at the maximum operating frequency is about ± 15%.

ただし、暖房運転時は、常時室外熱交換器130、230の着霜状態を監視しており、着霜の危険性がある場合は、運転コスト、もしくは、消費エネルギーが最小となるように各圧縮機111,211の運転周波数を設定していても、エンジン駆動圧縮機211の運転周波数を上げ、電源駆動圧縮機111の運転周波数を下げる制御を行う。   However, during the heating operation, the frost formation state of the outdoor heat exchangers 130 and 230 is constantly monitored. If there is a risk of frost formation, each compression is performed so that the operation cost or the energy consumption is minimized. Even if the operating frequencies of the machines 111 and 211 are set, control is performed to increase the operating frequency of the engine-driven compressor 211 and to decrease the operating frequency of the power supply-driven compressor 111.

エンジン駆動圧縮機211の運転周波数を上げると、エンジン210の排熱量が増加し、エンジン排熱熱交換器216に供給される冷却水熱量も増加する。すなわち、エンジン排熱熱交換器216にて、より多くの冷媒を蒸発させることができ、室外熱交換器130、230に流す冷媒量を減らして、着霜の危険性を低減する。   When the operating frequency of the engine-driven compressor 211 is increased, the amount of exhaust heat of the engine 210 is increased, and the amount of heat of cooling water supplied to the engine exhaust heat heat exchanger 216 is also increased. That is, more refrigerant can be evaporated in the engine exhaust heat exchanger 216, and the amount of refrigerant flowing to the outdoor heat exchangers 130 and 230 is reduced, thereby reducing the risk of frost formation.

以上の説明から明らかなように、本実施の形態においては、エンジン駆動圧縮機211の位置が、電源駆動圧縮機111よりも下にあるために、冷媒よりも比重が重い冷凍機油が、エンジン駆動圧縮機211に戻りやすくなり、エンジン駆動圧縮機211の冷凍機油を枯渇させることなく、エンジン駆動圧縮機211の運転信頼性を向上させることができる。   As is clear from the above description, in this embodiment, since the position of the engine driven compressor 211 is below the power supply driven compressor 111, the refrigeration oil having a higher specific gravity than the refrigerant is driven by the engine. It becomes easy to return to the compressor 211, and the operation reliability of the engine-driven compressor 211 can be improved without depleting the refrigeration oil of the engine-driven compressor 211.

また、油分離器213で分離された冷凍機油を電源駆動圧縮機211の吸入配管に流す油戻し管213aの流路抵抗は、油分離器113で分離された冷凍機油を電源駆動圧縮機111の吸入配管に流す油戻し管113aの流路抵抗よりも小さくしてある。これにより、エンジン駆動圧縮機211の吐出配管に設置された油分離器213からエンジン駆動圧縮機211に戻る冷凍機油の量は、電源駆動圧縮機111の吐出配管に設置された油分離器113から電源駆動圧縮機111に戻る冷凍機油の量よりも多くなり、エンジン駆動圧縮機211の運転信頼性をさらに高めることができる。   In addition, the flow resistance of the oil return pipe 213 a that flows the refrigerating machine oil separated by the oil separator 213 to the suction pipe of the power supply driven compressor 211 is the same as that of the refrigerating machine oil separated by the oil separator 113. The flow path resistance of the oil return pipe 113a flowing through the suction pipe is made smaller. As a result, the amount of refrigerating machine oil returning from the oil separator 213 installed in the discharge pipe of the engine-driven compressor 211 to the engine-driven compressor 211 is from the oil separator 113 installed in the discharge pipe of the power supply-driven compressor 111. The amount of refrigeration oil returning to the power supply driven compressor 111 is increased, and the operation reliability of the engine driven compressor 211 can be further increased.

また、エンジン駆動圧縮機211の排除容積は、電源駆動圧縮機111の排除容積よりも大きい。これにより、エンジン駆動圧縮機211のみでは断続的にしか空調運転できないような低負荷時には、効率の良い電源駆動圧縮機111のみを稼働し、中〜高負荷時は両者を最も効率の良い負荷分担配分で稼働することができ、室外ユニット全体としての運転効率を上げることができる。   Further, the displacement volume of the engine driven compressor 211 is larger than the displacement volume of the power supply driven compressor 111. As a result, only the efficient power-driven compressor 111 is operated at the time of a low load that can only be intermittently operated by the engine-driven compressor 211 alone, and the most efficient load sharing between the middle and the high load. It is possible to operate with distribution, and the operation efficiency of the outdoor unit as a whole can be increased.

また、エンジン駆動圧縮機211の吐出および吸入配管は、電源駆動圧縮機111の吐出および吸入配管よりも太い。こうすることで、冷媒流量が多いエンジン駆動圧縮機側の吐出および吸入配管における圧力損失の増大を抑えるとともに、冷凍サイクルからのエンジン駆動圧縮機211への冷凍機油の戻り量が、電源駆動圧縮機111よりも多くなり、エンジン駆動圧縮機211の冷凍機油を枯渇させることなく、エンジン駆動圧縮機211の運転信頼性を向上させることができる。   Further, the discharge and suction piping of the engine driven compressor 211 is thicker than the discharge and suction piping of the power supply driven compressor 111. In this way, an increase in pressure loss in the discharge and suction pipes on the engine-driven compressor side where the refrigerant flow is large is suppressed, and the return amount of the refrigeration oil from the refrigeration cycle to the engine-driven compressor 211 is reduced by the power-driven compressor. The operating reliability of the engine driven compressor 211 can be improved without depleting the refrigeration oil of the engine driven compressor 211.

なお、エンジン駆動室外ユニット200と電動駆動室外ユニット100とがそれぞれ独立した構造を成しているため、例えば、既に設置してあるエンジン駆動室外ユニット200からなるシステムに、新たに電動駆動室外ユニット100を増設する場合、既存設備の冷媒配管部品などを、そのまま流用することができ、施工期間を短縮し、室外ユニットの増設コストを抑えることができる。同様に、既に設置してある電動駆動室外ユニット100からなるシステムに、新たに非電動駆動室外ユニット200を増設する場合、既存設備の冷媒配管部品などを、そのまま流用することができ、施工期間を短縮し、室外ユニットの増設コストを抑えることができる。   Since the engine driving outdoor unit 200 and the electric driving outdoor unit 100 have independent structures, for example, the electric driving outdoor unit 100 is newly added to a system including the engine driving outdoor unit 200 that has already been installed. In the case of adding an additional unit, the refrigerant piping parts of the existing equipment can be used as they are, the construction period can be shortened, and the cost of adding an outdoor unit can be suppressed. Similarly, when a new non-electrically driven outdoor unit 200 is newly added to the system including the electric driven outdoor unit 100 that has already been installed, the refrigerant piping parts and the like of the existing equipment can be used as they are, and the construction period can be reduced. This shortens the cost and increases the cost of adding outdoor units.

本発明は、エンジン駆動圧縮機と電源駆動圧縮機を組み合わせて使用する、いわゆるハイブリッド空調機において、圧縮機への冷凍機油の戻り量を十分に確保することが可能となり、圧縮機の運転信頼性を向上させることができ、信頼性の高い空気調和機として好適に利用することができる。   The present invention is a so-called hybrid air conditioner that uses a combination of an engine-driven compressor and a power-driven compressor, so that a sufficient amount of refrigeration oil can be returned to the compressor, and the operation reliability of the compressor can be ensured. Can be improved, and can be suitably used as a highly reliable air conditioner.

100 電動駆動室外ユニット
111 電動駆動圧縮機
111a 吸入口
112 アキュムレータ
113 油分離器
113a 油戻し管
113b 油戻し管開閉弁
114 四方弁
115 室外ユニット減圧装置
120 室外送風ファン
130 室外熱交換器
200 エンジン駆動室外ユニット
210 エンジン
211 エンジン駆動圧縮機
211a 吸入口
212 アキュムレータ
213 油分離器
213a 油戻し管
213b 油戻し管開閉弁
214 四方弁
215 室外ユニット減圧装置
216 エンジン排熱熱交換器
217 エンジン排熱熱交換器用冷媒流量調整弁
220 室外送風ファン
230 室外熱交換器
300 室内ユニット
301 室内熱交換器
302 室内送風ファン
303 室内ユニット減圧装置
310 室内ユニット
311 室内熱交換器
312 室内送風ファン
313 室内ユニット減圧装置
DESCRIPTION OF SYMBOLS 100 Electric drive outdoor unit 111 Electric drive compressor 111a Inlet 112 Accumulator 113 Oil separator 113a Oil return pipe 113b Oil return pipe open / close valve 114 Four-way valve 115 Outdoor unit decompression device 120 Outdoor fan 130 Outdoor heat exchanger 200 Outside engine drive room Unit 210 Engine 211 Engine-driven compressor 211a Suction port 212 Accumulator 213 Oil separator 213a Oil return pipe 213b Oil return pipe on-off valve 214 Four-way valve 215 Outdoor unit pressure reducing device 216 Engine exhaust heat exchanger 217 Refrigerant for engine exhaust heat exchanger Flow control valve 220 Outdoor blower fan 230 Outdoor heat exchanger 300 Indoor unit 301 Indoor heat exchanger 302 Indoor blower fan 303 Indoor unit decompression device 310 Indoor unit 311 Indoor heat exchanger 12 indoor blower fan 313 indoor unit decompressor

Claims (2)

電力により駆動する電源駆動圧縮機が搭載された電源駆動室外ユニットと、電力以外の駆動源により駆動する非電源駆動圧縮機が搭載された非電源駆動室外ユニットとを少なくとも1台の室内ユニットから延びるユニット間配管に並列に接続した空気調和機であって、
前記空気調和機の設置状態において、前記非電源駆動圧縮機の吸入口位置が前記電源駆動圧縮機の吸入口位置よりも鉛直方向となるように、前記電源駆動室外ユニットと前記非電源駆動室外ユニットとが設置された空気調和機。
A power-driven outdoor unit equipped with a power-driven compressor driven by electric power and a non-power-driven outdoor unit equipped with a non-power-driven compressor driven by a driving source other than electric power extend from at least one indoor unit. An air conditioner connected in parallel to the inter-unit piping ,
In the installed state of the air conditioner, the so inlet position of non-power driven compressor is vertically lower side than the inlet position of the power driven compressor, the said power supply driving the outdoor unit non-power driven an air conditioner outdoor unit is installed.
前記非電源駆動圧縮機が吐出した冷媒から冷凍機油を分離する非電源駆動圧縮機油分離器と、前記電源駆動圧縮機が吐出した冷媒から冷凍機油を分離する電源駆動圧縮機油分離器とを備え、前記非電源駆動圧縮機油分離器から前記非電源駆動圧縮機の吸入配管に冷凍機油を流す配管の流路抵抗を、前記電源駆動圧縮機油分離器から前記電源駆動圧縮機の吸入配管に冷凍機油を流す配管の流路抵抗よりも小さくすることを特徴とする請求項1に記載の空気調和機。   A non-power-driven compressor oil separator that separates refrigerating machine oil from the refrigerant discharged from the non-power-driven compressor, and a power-driven compressor oil separator that separates refrigerating machine oil from the refrigerant discharged from the power-driven compressor, Flow resistance of a pipe for flowing refrigeration oil from the non-power-driven compressor oil separator to the suction pipe of the non-power-driven compressor, and refrigeration oil from the power-driven compressor oil separator to the suction pipe of the power-driven compressor The air conditioner according to claim 1, wherein the air conditioner is smaller than the flow path resistance of the flowing pipe.
JP2015562733A 2014-02-14 2015-02-09 Air conditioner Active JP6222493B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014026758 2014-02-14
JP2014026758 2014-02-14
PCT/JP2015/000578 WO2015122169A1 (en) 2014-02-14 2015-02-09 Air conditioner

Publications (2)

Publication Number Publication Date
JPWO2015122169A1 JPWO2015122169A1 (en) 2017-03-30
JP6222493B2 true JP6222493B2 (en) 2017-11-01

Family

ID=53799920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015562733A Active JP6222493B2 (en) 2014-02-14 2015-02-09 Air conditioner

Country Status (2)

Country Link
JP (1) JP6222493B2 (en)
WO (1) WO2015122169A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107218741B (en) * 2017-05-11 2020-08-18 青岛海尔空调电子有限公司 Oil return control method for multi-split air conditioning system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5001730B2 (en) * 2007-06-29 2012-08-15 三菱重工業株式会社 Refrigeration equipment
JP5276499B2 (en) * 2009-03-31 2013-08-28 三菱重工業株式会社 Refrigeration equipment

Also Published As

Publication number Publication date
WO2015122169A1 (en) 2015-08-20
JPWO2015122169A1 (en) 2017-03-30

Similar Documents

Publication Publication Date Title
JP6678332B2 (en) Outdoor unit and control method for air conditioner
WO2013099047A1 (en) Air conditioner
JP5596745B2 (en) Air conditioner
EP1655555A2 (en) Air conditioner
CA2567304A1 (en) Air conditioner with refrigerant quantity judging mode
KR102165351B1 (en) A heat-pump system and a method controlling the same
KR20130031090A (en) Air conditioner and controlling method of the same
JP6283815B2 (en) Air conditioner
CN104848433B (en) The outdoor unit of air conditioner
KR101288745B1 (en) Air conditioner
KR102080836B1 (en) An air conditioning system
JP6222493B2 (en) Air conditioner
WO2015122170A1 (en) Air conditioner
JP6315375B2 (en) Air conditioner outdoor unit
JP6229159B2 (en) Air conditioner
KR20090021593A (en) Multi air conditioner improved air heating efficiency
JP2015152241A (en) Outdoor unit of air conditioner
WO2000055551A1 (en) Air conditioner and outdoor equipment used for it
JP6634590B2 (en) Air conditioner
KR101418155B1 (en) An air conditioner
WO2015122167A1 (en) Air conditioner
JP6569081B2 (en) Air conditioner
JP2021021508A (en) Air-conditioning apparatus
JP6643632B2 (en) Air conditioner
CN104848434B (en) The outdoor unit of air conditioner

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170919

R151 Written notification of patent or utility model registration

Ref document number: 6222493

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151