WO2015121974A1 - Motor speed control device for rolling mill - Google Patents

Motor speed control device for rolling mill Download PDF

Info

Publication number
WO2015121974A1
WO2015121974A1 PCT/JP2014/053478 JP2014053478W WO2015121974A1 WO 2015121974 A1 WO2015121974 A1 WO 2015121974A1 JP 2014053478 W JP2014053478 W JP 2014053478W WO 2015121974 A1 WO2015121974 A1 WO 2015121974A1
Authority
WO
WIPO (PCT)
Prior art keywords
roll
angular velocity
rolling
rotation shaft
speed
Prior art date
Application number
PCT/JP2014/053478
Other languages
French (fr)
Japanese (ja)
Inventor
宏幸 今成
佐野 光彦
Original Assignee
東芝三菱電機産業システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝三菱電機産業システム株式会社 filed Critical 東芝三菱電機産業システム株式会社
Priority to JP2015562644A priority Critical patent/JP6197890B2/en
Priority to US15/114,730 priority patent/US10232419B2/en
Priority to CN201480075472.1A priority patent/CN105992657B/en
Priority to PCT/JP2014/053478 priority patent/WO2015121974A1/en
Priority to KR1020167025040A priority patent/KR101767863B1/en
Priority to TW103114800A priority patent/TWI554341B/en
Publication of WO2015121974A1 publication Critical patent/WO2015121974A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/46Roll speed or drive motor control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B35/00Drives for metal-rolling mills, e.g. hydraulic drives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2275/00Mill drive parameters
    • B21B2275/02Speed
    • B21B2275/04Roll speed

Definitions

  • the present invention relates to a rolling roll for rolling a metal material and a motor speed control device for a rolling mill provided with an electric motor for driving the same, and in particular, a motor for a rolling mill that directly detects the speed of the rolling roll to control the speed of the motor.
  • the present invention relates to a speed control device.
  • Rolling includes rolling of steel materials and rolling of non-ferrous metal materials such as aluminum and copper. In addition, there are differences in shape such as rolling of plate materials and rolling of bar wires. Further, there are hot rolling and thick plate rolling in which a material is heated to a high temperature and cold rolling in which a material at room temperature is rolled. Materials are made according to the purpose and purpose.
  • an electric motor is generally used as a power source for driving the rolling roll.
  • the rolling mill includes two parallel rolling rolls for sandwiching the material.
  • Each rolling roll includes a spindle that is a rotating shaft.
  • the rolling mill includes an electric motor.
  • the electric motor includes an electric motor rotating shaft.
  • the spindle and the motor rotating shaft are connected via a gear mechanism, and the power of the motor is transmitted to the spindle.
  • an electric motor speed sensor for detecting the speed is attached to the electric motor rotating shaft.
  • the speed of the motor is controlled based on the comparison value between the actual value and the target value so that the actual speed value detected by the motor speed sensor matches the target value of the motor speed.
  • Patent Document 1 is an apparatus and method for suppressing torsional vibration generated in a shaft connecting a rolling roll and an electric motor.
  • the speed detected by the motor speed sensor is mainly used for speed control, and the speed detected by the roll speed sensor is subordinate.
  • the roll speed sensor is directly installed on the rolling roll.
  • Patent Document 2 is an apparatus and method for suppressing torsional vibration generated in a shaft connecting a rolling roll and an electric motor. Since the speed of the rolling roll cannot be directly detected, a method of estimating from the speed of the electric motor is taken.
  • Patent Document 3 describes a method for directly detecting the speed of a rolling roll. Patent Document 3 aims to protect the rolling mill and does not attempt to improve the speed control accuracy based on the detected speed value.
  • the roll speed sensor is directly installed on the rolling roll.
  • This invention was made in order to solve the above-mentioned subject, and provides the motor speed control apparatus of the rolling mill which can aim at the precision improvement of speed control by directly controlling the speed of a rolling roll. Objective.
  • the first invention provides A rolling roll for rolling a metal material; A roll rotation shaft directly connected to the rolling roll; An electric motor rotating shaft for transmitting power to the roll rotating shaft; An electric motor for driving the electric motor rotating shaft, and a motor speed control device for a rolling mill comprising: A non-contact speed sensor that detects a roll rotation shaft angular velocity that is an angular velocity of the roll rotation shaft, and is arranged at a position close to the rolling roll with a gap from a peripheral surface of the roll rotation shaft, A speed controller that controls the speed of the electric motor based on a comparison value between the actual value and the target angular velocity so that the actual value matches the target angular velocity of the roll rotation axis; The actual value is the roll rotation shaft angular velocity fed back to the speed controller.
  • the second invention is the first invention, wherein
  • the non-contact speed sensor is disposed on a perpendicular line intersecting with the axis of the roll rotation axis and perpendicular to the rolling surface of the metal material,
  • the roll rotation shaft can move on the vertical line independently of the non-contact speed sensor.
  • the third invention is the first or second invention, wherein A waterproof / dustproof wall is further provided between the non-contact speed sensor and the rolling roll.
  • An electric motor speed sensor for detecting an electric motor rotating shaft angular velocity which is an angular velocity of the electric motor rotating shaft;
  • the switch further includes a switch capable of switching the actual value to either the roll rotation shaft angular velocity or the electric motor rotation shaft angular velocity.
  • An electric motor speed sensor for detecting an electric motor rotating shaft angular velocity which is an angular velocity of the electric motor rotating shaft;
  • the actual value is a composite value obtained by combining a value obtained by multiplying the motor rotation shaft angular velocity by a ratio ⁇ (0 ⁇ ⁇ ⁇ 1) and a value obtained by multiplying the roll rotation shaft angular velocity by a ratio 1- ⁇ .
  • the ratio ⁇ is set to be larger than the ratio 1- ⁇ when the rolling roll bites the metal material, and is set to be smaller than the ratio 1- ⁇ with time.
  • the non-contact speed sensor for detecting the roll rotation shaft angular velocity is disposed at a position close to the rolling roll with a gap from the peripheral surface of the roll rotation shaft. Since it is a non-contact type, there is an effect that it is not affected by the exchange of the rolling rolls and is not affected by a large impact on the rolling rolls during sheet feeding.
  • the roll rotation shaft angular velocity at a position close to the rolling roll is detected by the non-contact type velocity sensor.
  • the actual value is regarded as the rolling roll speed and fed back to the speed controller, and the motor speed is controlled so that the actual value matches the target angular speed of the rolling roll. According to the first invention, it is possible to directly control the rolling roll speed and improve the accuracy of speed control.
  • the non-contact type speed sensor can avoid the influence of a large impact applied to the rolling roll during sheet feeding. Moreover, the vertical position of the rolling roll is greatly shifted depending on the thickness of the rolled material, and the detection performance may be deteriorated depending on the position of the speed sensor. However, according to the sensor arrangement in the second invention, it is possible to suppress deterioration in detection performance due to the positional deviation in the vertical direction.
  • the waterproof / dustproof wall is provided between the non-contact type speed sensor and the rolling roll, roll cooling water poured into the rolling roll or iron oxide formed on the surface of the rolled material 12 is provided.
  • the non-contact speed sensor can be protected from dust generated when the coating is pulverized and scattered during rolling.
  • the speed sensor and the control system can be made redundant.
  • the stability of the control system can be achieved by weighting the output of the non-contact type speed sensor and the output of the motor speed sensor and dynamically changing the weight.
  • FIG. 5 is a control block diagram showing the two mass point system shown in FIG. 4 as control blocks. It is a control block diagram showing the control block mounted in the control apparatus 15 in the system which concerns on Embodiment 1 of this invention.
  • control block diagram showing the control block mounted in the control apparatus 15 in the system which concerns on Embodiment 2 of this invention. It is a control block diagram showing the control block mounted in the control apparatus 15 in the system which concerns on Embodiment 3 of this invention. It is a control block diagram showing the control block mounted in the control apparatus of a comparison object.
  • FIG. 1 is a diagram for explaining a system configuration according to Embodiment 1 of the present invention.
  • FIG. 1 is a configuration often seen in a finish rolling mill and a cold rolling mill of a hot sheet rolling mill.
  • the system shown in FIG. 1 includes a rolling mill 1.
  • the rolling mill 1 includes an upper work roll 2a and a lower work roll 2b which are rolling rolls.
  • the upper work roll 2a and the lower work roll 2b are arranged in parallel.
  • the rolled material 12 is a metal material, for example, and is rolled between the upper work roll 2a and the lower work roll 2b.
  • An upper backup roll 3a is provided above the upper work roll 2a in order to suppress the deflection in the width direction of the work roll.
  • a lower backup roll 3b is provided below the lower work roll 2b in order to suppress the deflection in the width direction of the work roll.
  • FIG. 1 shows a four-roll configuration, that is, a so-called 4Hi configuration rolling roll, which is an upper work roll 2a, a lower work roll 2b, an upper backup roll 3a, and a lower backup roll 3b.
  • 4Hi configuration rolling roll which is an upper work roll 2a, a lower work roll 2b, an upper backup roll 3a, and a lower backup roll 3b.
  • the present invention is not limited to the 4Hi configuration, and is applicable to a 2Hi configuration including only the upper work roll 2a and the lower work roll 2b, or a 6Hi configuration in which an intermediate roll is sandwiched between the work roll and the backup roll. Is possible.
  • the upper work roll 2a is directly attached to the spindle 4a which is a roll rotation shaft.
  • the lower work roll 2b is directly attached to the spindle 4b which is a roll rotation axis.
  • the rolling mill 1 includes an electric motor 9 that drives the electric motor rotating shaft 7.
  • a motor speed sensor 10 that detects the angular speed is attached to the motor rotating shaft 7.
  • Each spindle 4a, 4b is connected to the motor rotating shaft 7 through a gear mechanism.
  • the power of the electric motor 9 is transmitted to the spindles 4a and 4b.
  • the respective spindles 4 a and 4 b are connected to the shaft 6 via the pinion gear 5.
  • the shaft 6 is connected to the motor rotating shaft 7 via a reduction gear 8.
  • the spindles 4a and 4b and the motor rotating shaft 7 are connected via a gear mechanism (pinion gear 5, shaft 6 and reduction gear 8), and the power of the motor 9 is transmitted to the spindles 4a and 4b.
  • the non-contact speed sensor 11a is arranged at a position close to the upper work roll 2a with a gap from the peripheral surface of the spindle 4a, and detects a roll rotation shaft angular speed that is an angular speed of the spindle 4a.
  • the non-contact speed sensor 11b is disposed at a position close to the lower work roll 2b with a gap from the peripheral surface of the spindle 4b, and detects a roll rotation shaft angular speed that is an angular speed of the spindle 4b.
  • the system of this embodiment includes a control device 15 having a processor, a memory, and an input / output interface.
  • Non-contact speed sensors 11 a and 11 b are connected to the input interface of the control device 15.
  • the electric motor 9 is connected to the output interface of the control device 15.
  • the control device 15 controls the speed of the electric motor 9 based on the target angular speeds of the spindles 4a and 4b scheduled in advance according to the rolled product and the outputs of the non-contact speed sensors 11a and 11b.
  • FIG. 3 is a view for explaining the attachment positions of the non-contact speed sensors 11a and 11b in the first embodiment of the present invention.
  • FIG. 3A is a front view of the rolling mill 1 as seen from the conveying direction of the rolled material 12.
  • FIG. 3B is a side view of the rolling mill 1.
  • FIG. 3C is a top view of the rolling mill 1.
  • the non-contact speed sensor 11 a is disposed on a perpendicular line 13 that intersects the axis of the spindle 4 a and is perpendicular to the rolling surface of the rolled material 12.
  • the spindle 4a can move on the perpendicular line 13 independently of the non-contact speed sensor 11a.
  • the non-contact speed sensor 11a is disposed at a position X where the spindle 4a is in the field of view from above the spindle 4a.
  • the non-contact speed sensor 11b is disposed at a position Y where the spindle 4b is viewed from below the spindle 4b, or at a position Z where the spindle 4b is viewed from the side of the spindle 4b.
  • the lower work roll 2b is generally set at a constant height on the upper surface of the lower work roll 2b in order to make the pass line constant. Since the work roll is worn, maintenance by polishing is performed, and its diameter gradually decreases. Therefore, the diameter of the work roll changes from the maximum diameter at the time of a new article to the minimum diameter which is a use limit. As described above, when the upper surface of the lower work roll 2b is set at a certain height, the position of the spindle 4b connected to the lower work roll 2b is determined by the work roll maximum diameter at the time of a new article and the work roll minimum diameter which is a use limit. Only up and down by the difference. Therefore, even if the non-contact type speed sensor 11b is installed apart from the spindle 4b, it does not deviate greatly from the field of view of the non-contact type speed sensor 11b.
  • the upper work roll 2 a is largely displaced in the vertical direction depending on the thickness of the rolled material 12. Therefore, the position of the spindle 4a connected to the upper work roll 2a may be greatly shifted. For this reason, the non-contact type speed sensor 11a is installed on the upper part of the spindle 4a to reduce the influence of the vertical displacement.
  • the iron oxide film formed on the surface of the rolled material 12 is pulverized and scattered during rolling, so that a lot of dust is generated. Moreover, roll cooling water is poured into the work rolls 2a and 2b. If dust or cooling water adheres to the non-contact speed sensors 11a and 11b, the sensor is adversely affected.
  • the wall 16 is disposed between the non-contact speed sensor 11a and the upper work roll 2a and between the non-contact speed sensor 11b and the lower work roll 2b. .
  • the wall 16 is a waterproof / dustproof wall.
  • the wall 16 can prevent the roll cooling water and dust from adhering to the sensor, and the non-contact speed sensors 11a and 11b can be arranged at positions closer to the work rolls 2a and 2b.
  • the roll rotational shaft angular velocity can be regarded as the speed of the work rolls 2a and 2b with higher accuracy.
  • the rolling mill 1 is a type of rolling mill in which the upper work roll 2a and the lower work roll 2b are driven by a common electric motor 9.
  • the rolling mill 1a is a type of rolling mill in which the upper work roll 2a and the lower work roll 2b are driven by one electric motor 9a and 9b, respectively. This is a configuration often seen in a rough rolling mill and a thick rolling mill of a hot sheet rolling mill.
  • the arrangement of the non-contact speed sensors 11a and 11b is the same as that in FIGS.
  • non-contact type speed sensors 11a and 11b are simply referred to as non-contact type speed sensors 11 unless otherwise distinguished.
  • FIG. 4 is a diagram showing a two-inertia system of an electric motor and a load (including a rolled material, a work roll, and a backup roll).
  • the shaft that connects the motor and the load is generally a metal and not a rigid body, so the motor and the load are considered to be a two-mass system.
  • the axis also has mass, so it can be considered as a multi-mass system with more mass points, but here it is considered as a two-mass system.
  • FIG. 5 is a control block diagram showing the two mass point system shown in FIG. 4 as control blocks.
  • a block 21 represents the inertia of the motor, and the sum of the torque component from the blocks 23 and 24 and the motor torque T M is time-integrated by the moment of inertia J M of the motor and converted into the motor angular velocity ⁇ M.
  • the block 22 represents the inertia on the load side (rolling roll side), and the sum of the torque component from the blocks 23 and 24 and the load torque T L is time-integrated by the load inertia moment J L to obtain the load (rolling roll). It shows that the angular velocity ⁇ L is converted.
  • Block 23 indicates that the difference between the motor angular velocity ⁇ M and the load angular velocity ⁇ L is converted into torque by the damping d of the shaft (effect of damping the vibration).
  • Block 24 indicates that the difference between the motor angular velocity ⁇ M and the load angular velocity ⁇ L is time integrated and converted to torque by the shaft spring constant k.
  • FIG. 9 is a control block diagram showing control blocks implemented in the control device to be compared.
  • the motor angular speed ⁇ M of the motor 9 (the angular speed of the motor rotating shaft 7 detected by the motor speed sensor 10 (motor rotation)
  • the shaft angular velocity is regarded as the motor angular velocity ⁇ M. )) is fed back to control the speed, and the load angular velocity ⁇ L is not fed back.
  • the speed controller 31 performs PID calculation on the deviation between the command value indicating the target angular speed ⁇ M REF of the electric motor 9 given from the host controller and the electric motor angular speed ⁇ M that is a feedback value. Calculate the command value.
  • control is performed so that the actual current value matches the current command value, but in FIG. 9, the current control system is described in a simplified manner. That is, it regarded as a current control system is represented by first-order lag system having a time constant T CC.
  • Block 27 is a torque constant that converts current into torque, which simulates conversion in the motor 9 rather than processing in the controller.
  • the motor angular velocity ⁇ M that is a feedback value may be a value obtained by passing a value detected by the motor speed sensor 10 through a vibration suppression circuit 32 for suppressing speed fluctuation.
  • the vibration suppression circuit 32 is generally a phase advance / phase delay circuit.
  • K D of the speed controller 31 is the vibration suppressing effect, there is a case where any of the differential term K D or vibration suppression circuit 32 is used.
  • the vibration suppression circuit 32 is inserted in the middle of feeding back the motor angular velocity ⁇ M , or the control parameter is set in the speed controller 31 so as to suppress the vibration.
  • the control device to be compared only suppresses the vibration of the angular velocity on the electric motor 9 side.
  • FIG. 6 is a control block diagram showing control blocks implemented in the control device 15 in the system according to Embodiment 1 of the present invention. 6 shows an example of the speed control by feeding back the load angular velocity omega L.
  • the speed controller 25 may have the same configuration as the speed controller 31 in FIG. 9. However, since the load angular speed ⁇ L may be vibrational, the parameters set in the speed controller 25 may be different from those of the speed controller 31.
  • the load angular velocity ⁇ L that is a feedback value may be a value obtained by passing the detected value by the non-contact type speed sensor 11 through the vibration suppression circuit 28 for suppressing the speed fluctuation.
  • the vibration suppression circuit 28 may have the same configuration as the vibration suppression circuit 32, but the parameters may be different. However, since in differential term K D of the speed controller 25 is the vibration suppressing effect, there is a case where any of the differential term K D or vibration suppression circuit 28 is used.
  • the angular velocity (roll rotational shaft angular velocity) of the spindles 4 a and 4 b detected by the non-contact type velocity sensors 11 a and 11 b is regarded as the load angular velocity ⁇ L and fed back to the velocity controller 25.
  • the angular velocity of the roll rotation shaft directly connected to the rolling roll is detected by the non-contact speed sensor.
  • the speed of the rolling roll can be detected without being affected by the environment.
  • the roll speed can be directly controlled.
  • FIG. 2 System Configuration of Embodiment 2
  • FIG. 7 System Configuration of Embodiment 2
  • FIG. 7 is a control block diagram showing control blocks mounted on the control device 15 in the system according to Embodiment 2 of the present invention. Among the configurations shown in FIG. 7, configurations similar to those in FIG. 6 are assigned the same reference numerals and description thereof is omitted.
  • the control block shown in FIG. 7 includes a changeover switch 29 that can be used by switching between the motor angular velocity ⁇ M and the load angular velocity ⁇ L as an input to the speed controller 25.
  • a changeover switch 29 that can be used by switching between the motor angular velocity ⁇ M and the load angular velocity ⁇ L as an input to the speed controller 25.
  • the state of the motor speed sensor 10 and the non-contact type speed sensor 11 is always monitored and the signal of the non-contact type speed sensor 11 is mainly used, when the sensor deviates from a healthy state, the motor speed The signal from the sensor 10 is immediately switched to use. The reverse is also possible.
  • Embodiment 3 FIG. [System Configuration of Embodiment 3] Next, Embodiment 3 of the present invention will be described with reference to FIG.
  • the system of this embodiment can be realized by mounting the control block of FIG. 8 described later on the control device 15 in the configuration shown in FIGS.
  • the system according to the third embodiment of the present invention includes the motor speed sensor 10 that detects the angular speed of the motor rotating shaft 7, and the actual value fed back to the speed controller 25 is expressed as a ratio ⁇ ( A composite value obtained by combining a value obtained by multiplying 0 ⁇ ⁇ ⁇ 1) and a value obtained by multiplying the roll rotational shaft angular velocity by a ratio 1 ⁇ .
  • the ratio ⁇ is set to be larger than the ratio 1- ⁇ when the work rolls 2a and 2b bit the rolled material 12, and is set to be smaller than the ratio 1- ⁇ with time.
  • FIG. 8 is a control block diagram showing control blocks mounted on the control device 15 in the system according to Embodiment 3 of the present invention.
  • configurations similar to those in FIG. 6 are assigned the same reference numerals and description thereof is omitted.
  • the motor angular velocity ⁇ M and the load angular velocity ⁇ L are weighted as inputs to the speed controller 25, and the synthesized angular velocity signal is used in the weight distribution circuit 30.
  • the weighting in the weight distribution circuit 30 is, for example, as follows.
  • ⁇ ML is a weighted angular velocity.
  • is a weight and generally takes a value between 0 and 1. ⁇ can be changed over time.
  • the load angular velocity ⁇ L having a large variation and the motor angular velocity ⁇ M having a small variation are generally weighted and distributed, so that a signal that suppresses the variation of the load angular velocity ⁇ L is fed back to control the speed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

The purpose of the present invention is to provide a motor speed control device for a rolling mill, said motor speed control device being capable of directly controlling the speed of a rolling roll and thereby improving the precision of speed control. The motor speed control device is for a rolling mill that is provided with a rolling roll that rolls a metal material, a roll rotation shaft that is directly connected to the rolling roll, a motor rotation shaft that transmits power to the roll rotation shaft, and a motor that drives the motor rotation shaft. The motor speed control device is provided with: a non-contact speed sensor that is arranged at a position that is near the rolling roll with a gap between the circumferential surface of the roll rotation shaft and said non-contact speed sensor, and that detects a roll rotation shaft angular velocity that is the angular velocity of the roll rotation shaft; and a speed controller that controls the speed of the motor on the basis of a comparison value for an actual value and a target angular velocity for the roll rotation shaft so that the actual value matches the target angular velocity of the roll rotation shaft. The actual value is the angular velocity of the roll rotation shaft that is fed back to the speed controller.

Description

圧延機の電動機速度制御装置Electric motor speed control device for rolling mill
 本発明は、金属材料を圧延する圧延ロールおよびそれを駆動する電動機を備える圧延機の電動機速度制御装置に係り、特に、圧延ロールの速度を直接検出して電動機の速度を制御する圧延機の電動機速度制御装置に関する。 The present invention relates to a rolling roll for rolling a metal material and a motor speed control device for a rolling mill provided with an electric motor for driving the same, and in particular, a motor for a rolling mill that directly detects the speed of the rolling roll to control the speed of the motor. The present invention relates to a speed control device.
 圧延には、鉄鋼材料の圧延、アルミや銅など非鉄金属材料の圧延がある。また、板材の圧延、棒線材の圧延など形状の違いがある。また、材料を高温に熱して圧延する熱間圧延や厚板圧延、室温の材料を圧延する冷間圧延などがある。材料は用途や目的によって作り分けられる。 Rolling includes rolling of steel materials and rolling of non-ferrous metal materials such as aluminum and copper. In addition, there are differences in shape such as rolling of plate materials and rolling of bar wires. Further, there are hot rolling and thick plate rolling in which a material is heated to a high temperature and cold rolling in which a material at room temperature is rolled. Materials are made according to the purpose and purpose.
 いずれの圧延においても、材料を圧延ロールで挟んで薄くしたり、細長くしたりすることが必要である。そのため、圧延ロールを駆動する動力源として、電動機が一般に用いられている。 In any rolling, it is necessary to make the material thin or thin by sandwiching the material between rolling rolls. Therefore, an electric motor is generally used as a power source for driving the rolling roll.
 圧延機の一般的な構成について説明する。圧延機は、材料を挟み込むための平行な2つの圧延ロールを備える。各圧延ロールは、回転軸であるスピンドルを備える。また、圧延機は、電動機を備える。電動機は、電動機回転軸を備える。スピンドルと電動機回転軸とは、ギア機構を介して接続され、電動機の動力がスピンドルに伝達される。また、電動機回転軸には、その速度を検出する電動機速度センサが取り付けられている。 The general configuration of the rolling mill will be described. The rolling mill includes two parallel rolling rolls for sandwiching the material. Each rolling roll includes a spindle that is a rotating shaft. The rolling mill includes an electric motor. The electric motor includes an electric motor rotating shaft. The spindle and the motor rotating shaft are connected via a gear mechanism, and the power of the motor is transmitted to the spindle. Further, an electric motor speed sensor for detecting the speed is attached to the electric motor rotating shaft.
 このような構成において、電動機速度センサにより検出される速度の実績値が、電動機の速度の目標値と一致するように、実績値と目標値との比較値に基づいて電動機の速度が制御される。 In such a configuration, the speed of the motor is controlled based on the comparison value between the actual value and the target value so that the actual speed value detected by the motor speed sensor matches the target value of the motor speed. .
 尚、出願人は、本発明に関連するものとして、以下に記載する文献を認識している。 Note that the applicant has recognized the following documents as related to the present invention.
日本特開平8-206718号公報Japanese Unexamined Patent Publication No. Hei 8-206718 日本特開2011-115825号公報Japanese Unexamined Patent Publication No. 2011-115825 日本特開平10-71409号公報Japanese Patent Laid-Open No. 10-71409
 しかしながら、圧延製品に大きな影響を及ぼすのは、圧延ロールの速度である。そのため、本当に制御したいのは、電動機の速度ではなく、圧延ロールの速度である。 However, it is the speed of the rolling roll that has a great influence on the rolled product. Therefore, what we really want to control is not the speed of the motor but the speed of the rolling roll.
 しかし、従来から、圧延ロールの速度を直接検出する手法は用いられてこなかった。その理由は、次の通りである。
(A)圧延ロール側は、高温材料からロールに伝わる熱によりロールが傷むのを防ぐために、ロール冷却水を注ぐことが普通である。そのため、ロール速度センサを直接圧延ロールに取り付けられない。取りつけても水が入るなどして、故障しやすい。
(B)圧延ロールは摩耗すると研磨のために取り外され、別のロールに入れ替えられる。そのため、ロール速度センサをそのたびに取り外し、取り付けなければならない。
(C)熱間圧延機や厚板圧延機では、通板時に圧延ロールに大きなインパクトが加わる。そのため、ロール速度センサを直接ロールに取りつけても、そのインパクトでロール速度センサが故障しやすい。
However, conventionally, a method for directly detecting the speed of the rolling roll has not been used. The reason is as follows.
(A) It is common to pour roll cooling water on the rolling roll side in order to prevent the roll from being damaged by heat transferred from the high temperature material to the roll. Therefore, the roll speed sensor cannot be directly attached to the rolling roll. Even if it is installed, it will easily break down due to water.
(B) When the rolling roll is worn, it is removed for polishing and replaced with another roll. Therefore, the roll speed sensor must be removed and attached each time.
(C) In a hot rolling mill and a thick plate rolling mill, a large impact is applied to the rolling roll during sheet feeding. Therefore, even if the roll speed sensor is directly attached to the roll, the roll speed sensor is likely to break down due to the impact.
 特許文献1は、圧延ロールと電動機を結ぶ軸に発生するねじり振動を抑えるための装置および方法である。電動機速度センサで検出された速度が主として速度制御に用いられ、ロール速度センサで検出された速度は従である。また、ロール速度センサは、圧延ロールに直接設置されている。 Patent Document 1 is an apparatus and method for suppressing torsional vibration generated in a shaft connecting a rolling roll and an electric motor. The speed detected by the motor speed sensor is mainly used for speed control, and the speed detected by the roll speed sensor is subordinate. The roll speed sensor is directly installed on the rolling roll.
 特許文献2は、圧延ロールと電動機を結ぶ軸に発生するねじり振動を抑えるための装置および方法である。圧延ロールの速度を直接検出できないため、電動機の速度から推定する方法が取られている。 Patent Document 2 is an apparatus and method for suppressing torsional vibration generated in a shaft connecting a rolling roll and an electric motor. Since the speed of the rolling roll cannot be directly detected, a method of estimating from the speed of the electric motor is taken.
 特許文献3は、圧延ロールの速度を直接検出する方法が記載されている。特許文献3は、圧延機の保護を目的としており、速度検出値に基づいて速度制御精度の向上を図るものではない。また、ロール速度センサは、圧延ロールに直接設置されている。 Patent Document 3 describes a method for directly detecting the speed of a rolling roll. Patent Document 3 aims to protect the rolling mill and does not attempt to improve the speed control accuracy based on the detected speed value. The roll speed sensor is directly installed on the rolling roll.
 この発明は、上述のような課題を解決するためになされたもので、圧延ロールの速度を直接制御して速度制御の精度向上を図ることのできる圧延機の電動機速度制御装置を提供することを目的とする。 This invention was made in order to solve the above-mentioned subject, and provides the motor speed control apparatus of the rolling mill which can aim at the precision improvement of speed control by directly controlling the speed of a rolling roll. Objective.
 第1の発明は、上記の目的を達成するため、
 金属材料を圧延する圧延ロールと、
 前記圧延ロールに直接接続されたロール回転軸と、
 前記ロール回転軸に動力を伝達する電動機回転軸と、
 前記電動機回転軸を駆動する電動機と、を備える圧延機の電動機速度制御装置であって、
 前記圧延ロールに近接した位置に、前記ロール回転軸の周面と隙間を空けて配置され、前記ロール回転軸の角速度であるロール回転軸角速度を検出する非接触式速度センサと、
 実績値が前記ロール回転軸の目標角速度と一致するように、該実績値と該目標角速度との比較値に基づいて、前記電動機の速度を制御する速度制御器と、を備え、
 前記実績値は、前記速度制御器にフィードバックされる前記ロール回転軸角速度であること、を特徴とする。
In order to achieve the above object, the first invention provides
A rolling roll for rolling a metal material;
A roll rotation shaft directly connected to the rolling roll;
An electric motor rotating shaft for transmitting power to the roll rotating shaft;
An electric motor for driving the electric motor rotating shaft, and a motor speed control device for a rolling mill comprising:
A non-contact speed sensor that detects a roll rotation shaft angular velocity that is an angular velocity of the roll rotation shaft, and is arranged at a position close to the rolling roll with a gap from a peripheral surface of the roll rotation shaft,
A speed controller that controls the speed of the electric motor based on a comparison value between the actual value and the target angular velocity so that the actual value matches the target angular velocity of the roll rotation axis;
The actual value is the roll rotation shaft angular velocity fed back to the speed controller.
 また、第2の発明は、第1の発明において、
 前記非接触式速度センサは、前記ロール回転軸の軸心と交わりかつ前記金属材料の圧延面に垂直な垂線上に配置され、
 前記ロール回転軸は、前記非接触式速度センサとは独立して前記垂線上を移動可能であること、を特徴とする。
The second invention is the first invention, wherein
The non-contact speed sensor is disposed on a perpendicular line intersecting with the axis of the roll rotation axis and perpendicular to the rolling surface of the metal material,
The roll rotation shaft can move on the vertical line independently of the non-contact speed sensor.
 また、第3の発明は、第1又は第2の発明において、
 前記非接触式速度センサと前記圧延ロールとの間に防水・防塵壁をさらに備えること、を特徴とする。
The third invention is the first or second invention, wherein
A waterproof / dustproof wall is further provided between the non-contact speed sensor and the rolling roll.
 また、第4の発明は、第1乃至第3の発明のいずれかにおいて、
 前記電動機回転軸の角速度である電動機回転軸角速度を検出する電動機速度センサと、
 前記実績値を、前記ロール回転軸角速度と前記電動機回転軸角速度のいずれかに切り替え可能なスイッチと、をさらに備えることを特徴とする。
According to a fourth invention, in any one of the first to third inventions,
An electric motor speed sensor for detecting an electric motor rotating shaft angular velocity which is an angular velocity of the electric motor rotating shaft;
The switch further includes a switch capable of switching the actual value to either the roll rotation shaft angular velocity or the electric motor rotation shaft angular velocity.
 また、第5の発明は、第1乃至第3の発明のいずれかにおいて、
 前記電動機回転軸の角速度である電動機回転軸角速度を検出する電動機速度センサをさらに備え、
 前記実績値は、前記電動機回転軸角速度に割合α(0≦α≦1)を乗じた値と、前記ロール回転軸角速度に割合1-αを乗じた値とを合成した合成値であり、
 前記割合αは、前記圧延ロールが金属材料を噛み込む時に、割合1-αよりも大きく設定され、時間経過とともに割合1-αよりも小さく設定されること、を特徴とする。
According to a fifth invention, in any one of the first to third inventions,
An electric motor speed sensor for detecting an electric motor rotating shaft angular velocity which is an angular velocity of the electric motor rotating shaft;
The actual value is a composite value obtained by combining a value obtained by multiplying the motor rotation shaft angular velocity by a ratio α (0 ≦ α ≦ 1) and a value obtained by multiplying the roll rotation shaft angular velocity by a ratio 1-α.
The ratio α is set to be larger than the ratio 1-α when the rolling roll bites the metal material, and is set to be smaller than the ratio 1-α with time.
 第1の発明によれば、ロール回転軸角速度を検出する非接触式速度センサを、圧延ロールに近接した位置に前記ロール回転軸の周面と隙間を空けて配置する。非接触式であるため、圧延ロールの交換の際に影響を受けない、通板時の圧延ロールへの大きなインパクトの影響を受けないといった効果がある。 According to the first invention, the non-contact speed sensor for detecting the roll rotation shaft angular velocity is disposed at a position close to the rolling roll with a gap from the peripheral surface of the roll rotation shaft. Since it is a non-contact type, there is an effect that it is not affected by the exchange of the rolling rolls and is not affected by a large impact on the rolling rolls during sheet feeding.
 また、第1の発明によれば、圧延ロールに近接する位置におけるロール回転軸角速度を非接触式速度センサにより検出する。この実績値を圧延ロール速度とみなして速度制御器にフィードバックし、実績値が圧延ロールの目標角速度と一致するように電動機の速度を制御する。第1の発明によれば、圧延ロール速度を直接制御し、速度制御の精度向上を図ることができる。 Further, according to the first invention, the roll rotation shaft angular velocity at a position close to the rolling roll is detected by the non-contact type velocity sensor. The actual value is regarded as the rolling roll speed and fed back to the speed controller, and the motor speed is controlled so that the actual value matches the target angular speed of the rolling roll. According to the first invention, it is possible to directly control the rolling roll speed and improve the accuracy of speed control.
 第2の発明によれば、非接触式速度センサは、通板時に圧延ロールに加わる大きなインパクトの影響を回避できる。また、圧延ロールは、圧延材の厚みによって上下方向の位置が大きくずれ、速度センサの位置によっては検知性能が悪化するおそれがある。しかし、第2の発明におけるセンサ配置によれば、上下方向の位置ずれによる検出性能の悪化を抑制できる。 According to the second invention, the non-contact type speed sensor can avoid the influence of a large impact applied to the rolling roll during sheet feeding. Moreover, the vertical position of the rolling roll is greatly shifted depending on the thickness of the rolled material, and the detection performance may be deteriorated depending on the position of the speed sensor. However, according to the sensor arrangement in the second invention, it is possible to suppress deterioration in detection performance due to the positional deviation in the vertical direction.
 第3の発明によれば、非接触式速度センサと圧延ロールとの間に防水・防塵壁を備えるため、圧延ロールに注水されるロール冷却水や、圧延材12の表面に形成される酸化鉄被膜が圧延時に粉砕されて飛び散ることで生じる粉塵から、非接触式速度センサを守ることができる。 According to the third aspect of the invention, since the waterproof / dustproof wall is provided between the non-contact type speed sensor and the rolling roll, roll cooling water poured into the rolling roll or iron oxide formed on the surface of the rolled material 12 is provided. The non-contact speed sensor can be protected from dust generated when the coating is pulverized and scattered during rolling.
 第4の発明によれば、切り替えスイッチにより、非接触式速度センサの出力と電動機速度センサの出力とを切り替えて使用できるため、速度センサおよび制御系に冗長性を持たせることができる。 According to the fourth invention, since the output of the non-contact speed sensor and the output of the motor speed sensor can be switched and used by the changeover switch, the speed sensor and the control system can be made redundant.
 第5の発明によれば、非接触式速度センサの出力と電動機速度センサの出力とに重みづけし、重みを動的に変化させることで、制御系の安定性を図ることができる。 According to the fifth invention, the stability of the control system can be achieved by weighting the output of the non-contact type speed sensor and the output of the motor speed sensor and dynamically changing the weight.
本発明の実施の形態1に係るシステム構成を説明するための図である。It is a figure for demonstrating the system configuration | structure which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る他のシステム構成を説明するための図である。It is a figure for demonstrating the other system configuration | structure which concerns on Embodiment 1 of this invention. 本発明の実施の形態1における非接触式速度センサ11a、11bの取り付け位置を説明するための図である。It is a figure for demonstrating the attachment position of the non-contact-type speed sensors 11a and 11b in Embodiment 1 of this invention. 電動機と負荷の2慣性系を示す図である。It is a figure which shows the two-inertia system of an electric motor and load. 図4に示す2質点系を制御ブロックで表した制御ブロック図である。FIG. 5 is a control block diagram showing the two mass point system shown in FIG. 4 as control blocks. 本発明の実施の形態1に係るシステムにおいて制御装置15に実装される制御ブロックを表した制御ブロック図である。It is a control block diagram showing the control block mounted in the control apparatus 15 in the system which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係るシステムにおいて制御装置15に実装される制御ブロックを表した制御ブロック図である。It is a control block diagram showing the control block mounted in the control apparatus 15 in the system which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係るシステムにおいて制御装置15に実装される制御ブロックを表した制御ブロック図である。It is a control block diagram showing the control block mounted in the control apparatus 15 in the system which concerns on Embodiment 3 of this invention. 比較対象の制御装置に実装される制御ブロックを表した制御ブロック図である。It is a control block diagram showing the control block mounted in the control apparatus of a comparison object.
 以下、図面を参照して本発明の実施の形態について詳細に説明する。尚、各図において共通する要素には、同一の符号を付して重複する説明を省略する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, the same code | symbol is attached | subjected to the element which is common in each figure, and the overlapping description is abbreviate | omitted.
実施の形態1.
[実施の形態1のシステム構成]
 図1は、本発明の実施の形態1に係るシステム構成を説明するための図である。図1は、熱間薄板圧延機の仕上圧延機や冷間圧延機によく見られる構成である。図1に示すシステムは圧延機1を備える。圧延機1は、圧延ロールである上ワークロール2aと、下ワークロール2bを備える。上ワークロール2aと下ワークロール2bは平行に配置される。圧延材12は、例えば金属材料であり、上ワークロール2aと下ワークロール2bとに挟まれて圧延される。
Embodiment 1 FIG.
[System Configuration of Embodiment 1]
FIG. 1 is a diagram for explaining a system configuration according to Embodiment 1 of the present invention. FIG. 1 is a configuration often seen in a finish rolling mill and a cold rolling mill of a hot sheet rolling mill. The system shown in FIG. 1 includes a rolling mill 1. The rolling mill 1 includes an upper work roll 2a and a lower work roll 2b which are rolling rolls. The upper work roll 2a and the lower work roll 2b are arranged in parallel. The rolled material 12 is a metal material, for example, and is rolled between the upper work roll 2a and the lower work roll 2b.
 上ワークロール2aの上方には、ワークロールの幅方向のたわみを抑えるための上バックアップロール3aが設けられる。下ワークロール2bの下方には、ワークロールの幅方向のたわみを抑えるための下バックアップロール3bが設けられる。 An upper backup roll 3a is provided above the upper work roll 2a in order to suppress the deflection in the width direction of the work roll. A lower backup roll 3b is provided below the lower work roll 2b in order to suppress the deflection in the width direction of the work roll.
 図1では、上ワークロール2a、下ワークロール2b、上バックアップロール3a、下バックアップロール3bの4本構成、いわゆる4Hi構成の圧延ロールを示している。しかしながら、本発明は4Hi構成に限定されるものではなく、上ワークロール2aと下ワークロール2bのみの2Hi構成や、ワークロールとバックアップロールとの間に中間ロールを挟んだ6Hi構成などにも適用可能である。 FIG. 1 shows a four-roll configuration, that is, a so-called 4Hi configuration rolling roll, which is an upper work roll 2a, a lower work roll 2b, an upper backup roll 3a, and a lower backup roll 3b. However, the present invention is not limited to the 4Hi configuration, and is applicable to a 2Hi configuration including only the upper work roll 2a and the lower work roll 2b, or a 6Hi configuration in which an intermediate roll is sandwiched between the work roll and the backup roll. Is possible.
 上ワークロール2aは、ロール回転軸であるスピンドル4aに直接取り付けられる。下ワークロール2bは、ロール回転軸であるスピンドル4bに直接取り付けられる。 The upper work roll 2a is directly attached to the spindle 4a which is a roll rotation shaft. The lower work roll 2b is directly attached to the spindle 4b which is a roll rotation axis.
 また、圧延機1は、電動機回転軸7を駆動する電動機9を備える。電動機回転軸7には、その角速度を検出する電動機速度センサ10が取り付けられる。 Further, the rolling mill 1 includes an electric motor 9 that drives the electric motor rotating shaft 7. A motor speed sensor 10 that detects the angular speed is attached to the motor rotating shaft 7.
 各スピンドル4a、4bは、ギア機構を介して電動機回転軸7に接続される。電動機9の動力はスピンドル4a、4bに伝達される。図1に示す例では、各スピンドル4a、4bは、ピニオンギア5を介して軸6に接続される。軸6は減速ギア8を介して電動機回転軸7に接続される。スピンドル4a、4bと電動機回転軸7とは、ギア機構(ピニオンギア5、軸6、減速ギア8)を介して接続され、電動機9の動力がスピンドル4a、4bに伝達される。 Each spindle 4a, 4b is connected to the motor rotating shaft 7 through a gear mechanism. The power of the electric motor 9 is transmitted to the spindles 4a and 4b. In the example shown in FIG. 1, the respective spindles 4 a and 4 b are connected to the shaft 6 via the pinion gear 5. The shaft 6 is connected to the motor rotating shaft 7 via a reduction gear 8. The spindles 4a and 4b and the motor rotating shaft 7 are connected via a gear mechanism (pinion gear 5, shaft 6 and reduction gear 8), and the power of the motor 9 is transmitted to the spindles 4a and 4b.
 図1に示すシステムの特徴的構成について説明する。非接触式速度センサ11aは、上ワークロール2aに近接した位置に、スピンドル4aの周面と隙間を空けて配置され、スピンドル4aの角速度であるロール回転軸角速度を検出する。同様に、非接触式速度センサ11bは、下ワークロール2bに近接した位置に、スピンドル4bの周面と隙間を空けて配置され、スピンドル4bの角速度であるロール回転軸角速度を検出する。 The characteristic configuration of the system shown in FIG. 1 will be described. The non-contact speed sensor 11a is arranged at a position close to the upper work roll 2a with a gap from the peripheral surface of the spindle 4a, and detects a roll rotation shaft angular speed that is an angular speed of the spindle 4a. Similarly, the non-contact speed sensor 11b is disposed at a position close to the lower work roll 2b with a gap from the peripheral surface of the spindle 4b, and detects a roll rotation shaft angular speed that is an angular speed of the spindle 4b.
 本実施形態のシステムは、プロセッサ、メモリ、入出力インタフェースを有する制御装置15を備える。制御装置15の入力インタフェースには、非接触式速度センサ11a、11bが接続される。制御装置15の出力インタフェースには、電動機9が接続される。制御装置15は、圧延製品に応じて予めスケジュールされたスピンドル4a、4bの目標角速度と非接触式速度センサ11a、11bの出力とに基づいて、電動機9の速度を制御する。 The system of this embodiment includes a control device 15 having a processor, a memory, and an input / output interface. Non-contact speed sensors 11 a and 11 b are connected to the input interface of the control device 15. The electric motor 9 is connected to the output interface of the control device 15. The control device 15 controls the speed of the electric motor 9 based on the target angular speeds of the spindles 4a and 4b scheduled in advance according to the rolled product and the outputs of the non-contact speed sensors 11a and 11b.
 図3は、本発明の実施の形態1における非接触式速度センサ11a、11bの取り付け位置を説明するための図である。図3の(A)は、圧延機1を圧延材12の搬送方向から見た正面図である。図3の(B)は、圧延機1の側面図である。図3(C)は、圧延機1の上面図である。 FIG. 3 is a view for explaining the attachment positions of the non-contact speed sensors 11a and 11b in the first embodiment of the present invention. FIG. 3A is a front view of the rolling mill 1 as seen from the conveying direction of the rolled material 12. FIG. 3B is a side view of the rolling mill 1. FIG. 3C is a top view of the rolling mill 1.
 図3に示すように、非接触式速度センサ11aは、スピンドル4aの軸心と交わりかつ圧延材12の圧延面に垂直な垂線13上に配置される。スピンドル4aは、垂線13上を非接触式速度センサ11aとは独立して移動可能である。 As shown in FIG. 3, the non-contact speed sensor 11 a is disposed on a perpendicular line 13 that intersects the axis of the spindle 4 a and is perpendicular to the rolling surface of the rolled material 12. The spindle 4a can move on the perpendicular line 13 independently of the non-contact speed sensor 11a.
 図3に示す例では、非接触式速度センサ11aは、スピンドル4aの上方からスピンドル4aを視野に入れた位置Xに配置される。また、非接触式速度センサ11bは、スピンドル4bの下方からスピンドル4bを視野に入れた位置Y、または、スピンドル4bの横方からスピンドル4bを視野に入れた位置Zに配置される。 In the example shown in FIG. 3, the non-contact speed sensor 11a is disposed at a position X where the spindle 4a is in the field of view from above the spindle 4a. The non-contact speed sensor 11b is disposed at a position Y where the spindle 4b is viewed from below the spindle 4b, or at a position Z where the spindle 4b is viewed from the side of the spindle 4b.
 図3に示すように、下ワークロール2bは、パスラインを一定にするために、下ワークロール2bの上面を一定の高さに設定することが一般的である。ワークロールは磨耗するため、研磨によるメンテナンスが施され、次第にその径が小さくなる。よって、ワークロールの径は、新品時の最大径から使用限界である最小径まで変化する。上述したように下ワークロール2bの上面を一定の高さに設定する場合、下ワークロール2bにつながるスピンドル4bの位置は、新品時のワークロール最大径と使用限界であるワークロール最小径との差程度しか上下しない。そのため、非接触式速度センサ11bをスピンドル4bと離して設置したとしても、非接触式速度センサ11bの視野から大きくずれない。 As shown in FIG. 3, the lower work roll 2b is generally set at a constant height on the upper surface of the lower work roll 2b in order to make the pass line constant. Since the work roll is worn, maintenance by polishing is performed, and its diameter gradually decreases. Therefore, the diameter of the work roll changes from the maximum diameter at the time of a new article to the minimum diameter which is a use limit. As described above, when the upper surface of the lower work roll 2b is set at a certain height, the position of the spindle 4b connected to the lower work roll 2b is determined by the work roll maximum diameter at the time of a new article and the work roll minimum diameter which is a use limit. Only up and down by the difference. Therefore, even if the non-contact type speed sensor 11b is installed apart from the spindle 4b, it does not deviate greatly from the field of view of the non-contact type speed sensor 11b.
 一方、上ワークロール2aは、圧延材12の厚みによって、上下方向の位置が大きくずれる。そのため、上ワークロール2aにつながるスピンドル4aの位置は大きくずれることがある。このため、非接触式速度センサ11aをスピンドル4aの上部に設置して、上下方向の位置ずれの影響を小さくする。 On the other hand, the upper work roll 2 a is largely displaced in the vertical direction depending on the thickness of the rolled material 12. Therefore, the position of the spindle 4a connected to the upper work roll 2a may be greatly shifted. For this reason, the non-contact type speed sensor 11a is installed on the upper part of the spindle 4a to reduce the influence of the vertical displacement.
 また、圧延材12の表面に形成される酸化鉄被膜が圧延時に粉砕されて、飛び散ることで、粉塵が多く発生する。また、ワークロール2a、2bにはロール冷却水が注水される。粉塵や冷却水が非接触式速度センサ11a、11bに付着すれば、センサに悪影響を及ぼす。 Also, the iron oxide film formed on the surface of the rolled material 12 is pulverized and scattered during rolling, so that a lot of dust is generated. Moreover, roll cooling water is poured into the work rolls 2a and 2b. If dust or cooling water adheres to the non-contact speed sensors 11a and 11b, the sensor is adversely affected.
 そこで、本発明の実施の形態1のシステムでは、非接触式速度センサ11aと上ワークロール2aとの間、および、非接触式速度センサ11bと下ワークロール2bとの間に壁16を配置する。壁16は、防水・防塵壁である。壁16により、ロール冷却水や粉塵がセンサに付着することを防止できると共に、非接触式速度センサ11a、11bを、よりワークロール2a、2bに近接した位置に配置できる。よりワークロール2a、2bに近接した位置においてスピンドル4a、4bの角速度(ロール回転軸角速度)を検出することで、より精度高くロール回転軸角速度をワークロール2a、2bの速度とみなすことができる。 Therefore, in the system according to the first embodiment of the present invention, the wall 16 is disposed between the non-contact speed sensor 11a and the upper work roll 2a and between the non-contact speed sensor 11b and the lower work roll 2b. . The wall 16 is a waterproof / dustproof wall. The wall 16 can prevent the roll cooling water and dust from adhering to the sensor, and the non-contact speed sensors 11a and 11b can be arranged at positions closer to the work rolls 2a and 2b. By detecting the angular velocity (roll rotational shaft angular velocity) of the spindles 4a and 4b at a position closer to the work rolls 2a and 2b, the roll rotational shaft angular velocity can be regarded as the speed of the work rolls 2a and 2b with higher accuracy.
 ところで、上述した実施の形態1のシステムにおいて、圧延機1は、上ワークロール2aおよび下ワークロール2bを共通の電動機9で駆動するタイプの圧延機である。しかしながら、本発明は図2に示す圧延機1aにおいても適用可能である。圧延機1aは、上ワークロール2aと下ワークロール2bをそれぞれ1台の電動機9a、9bで駆動するタイプの圧延機である。これは、熱間薄板圧延機の粗圧延機や厚板圧延機によく見られる構成である。図2においても、非接触式速度センサ11a、11bの配置は、図1および図3と同様であるため説明は省略する。 By the way, in the system of Embodiment 1 described above, the rolling mill 1 is a type of rolling mill in which the upper work roll 2a and the lower work roll 2b are driven by a common electric motor 9. However, the present invention can also be applied to the rolling mill 1a shown in FIG. The rolling mill 1a is a type of rolling mill in which the upper work roll 2a and the lower work roll 2b are driven by one electric motor 9a and 9b, respectively. This is a configuration often seen in a rough rolling mill and a thick rolling mill of a hot sheet rolling mill. Also in FIG. 2, the arrangement of the non-contact speed sensors 11a and 11b is the same as that in FIGS.
 以下の説明において、非接触式速度センサ11aと11bを特段区別しない場合には単に非接触式速度センサ11と記載する。 In the following description, the non-contact type speed sensors 11a and 11b are simply referred to as non-contact type speed sensors 11 unless otherwise distinguished.
[実施の形態1における特徴的制御]
 図4は、電動機と負荷(圧延材、ワークロール、バックアップロールを含む)の2慣性系を示す図である。
[Characteristic Control in Embodiment 1]
FIG. 4 is a diagram showing a two-inertia system of an electric motor and a load (including a rolled material, a work roll, and a backup roll).
 電動機と負荷をつなぐ軸は一般に金属であり、剛体ではないので、電動機と負荷は2質点系と考えられる。もちろん軸も質量を持つので、より多くの質点を持つ多質点系とも考えられるが、ここでは2質点系と考える。 The shaft that connects the motor and the load is generally a metal and not a rigid body, so the motor and the load are considered to be a two-mass system. Of course, the axis also has mass, so it can be considered as a multi-mass system with more mass points, but here it is considered as a two-mass system.
 図5は、図4に示す2質点系を制御ブロックで表した制御ブロック図である。図5において、ブロック21は電動機の慣性を表し、電動機の慣性モーメントJMにより、ブロック23、24からのトルク成分と電動機トルクTMとの和が時間積分されて、電動機角速度ωMに変換されることを示す。ブロック22は負荷側(圧延ロール側)の慣性を表し、負荷の慣性モーメントJLにより、ブロック23、24からのトルク成分と負荷トルクTLとの和が時間積分されて、負荷(圧延ロール)角速度ωLに変換されることを示す。ブロック23は、電動機角速度ωMと負荷角速度ωLの差が軸のダンピングd(振動を減衰させる効果)により、トルクに変換されることを示す。ブロック24は、電動機角速度ωMと負荷角速度ωLの差が時間積分されて、軸のばね定数kにより、トルクに変換されることを示す。 FIG. 5 is a control block diagram showing the two mass point system shown in FIG. 4 as control blocks. In FIG. 5, a block 21 represents the inertia of the motor, and the sum of the torque component from the blocks 23 and 24 and the motor torque T M is time-integrated by the moment of inertia J M of the motor and converted into the motor angular velocity ω M. Indicates that The block 22 represents the inertia on the load side (rolling roll side), and the sum of the torque component from the blocks 23 and 24 and the load torque T L is time-integrated by the load inertia moment J L to obtain the load (rolling roll). It shows that the angular velocity ω L is converted. Block 23 indicates that the difference between the motor angular velocity ω M and the load angular velocity ω L is converted into torque by the damping d of the shaft (effect of damping the vibration). Block 24 indicates that the difference between the motor angular velocity ω M and the load angular velocity ω L is time integrated and converted to torque by the shaft spring constant k.
 本実施形態のシステムにおける特徴的制御を説明するに先立ち、比較対象の制御装置について説明する。図9は、比較対象の制御装置に実装される制御ブロックを表した制御ブロック図である。 Prior to describing characteristic control in the system of the present embodiment, a control device to be compared will be described. FIG. 9 is a control block diagram showing control blocks implemented in the control device to be compared.
 図5の2質点系のモデルに基づき、比較対象の制御装置では、図9に示すように、電動機9の電動機角速度ωM(電動機速度センサ10により検出される電動機回転軸7の角速度(電動機回転軸角速度)を電動機角速度ωMとみなす。)をフィードバックして速度制御を実施しており、負荷角速度ωLをフィードバックしていない。 Based on the two-mass system model of FIG. 5, in the control device to be compared, as shown in FIG. 9, the motor angular speed ω M of the motor 9 (the angular speed of the motor rotating shaft 7 detected by the motor speed sensor 10 (motor rotation) The shaft angular velocity) is regarded as the motor angular velocity ω M. )) is fed back to control the speed, and the load angular velocity ω L is not fed back.
 図9において、速度制御器31は、上位コントローラから与えられる電動機9の目標角速度ωM REFを示す指令値と、フィードバック値である電動機角速度ωMとの偏差に対して、PID演算を行い、電流指令値を演算する。電流制御系26では、電流実績値を電流指令値に一致させるように制御するが、図9では電流制御系を簡略化して記述している。すなわち、電流制御系が時定数TCCを持った一次遅れ系であらわされるとみなしている。ブロック27は電流をトルクに変換するトルク定数で、これは制御器内での処理ではなく電動機9内での変換を模擬している。フィードバック値である電動機角速度ωMは、電動機速度センサ10による検出値を速度変動抑制のための振動抑制回路32に通した値とする場合がある。振動抑制回路32は、一般的には位相進み・位相遅れ回路が用いられる。ただし、速度制御器31の微分項KDにも振動抑制効果があるため、微分項KDまたは振動抑制回路32のいずれかが用いられる場合もある。 In FIG. 9, the speed controller 31 performs PID calculation on the deviation between the command value indicating the target angular speed ω M REF of the electric motor 9 given from the host controller and the electric motor angular speed ω M that is a feedback value. Calculate the command value. In the current control system 26, control is performed so that the actual current value matches the current command value, but in FIG. 9, the current control system is described in a simplified manner. That is, it regarded as a current control system is represented by first-order lag system having a time constant T CC. Block 27 is a torque constant that converts current into torque, which simulates conversion in the motor 9 rather than processing in the controller. The motor angular velocity ω M that is a feedback value may be a value obtained by passing a value detected by the motor speed sensor 10 through a vibration suppression circuit 32 for suppressing speed fluctuation. The vibration suppression circuit 32 is generally a phase advance / phase delay circuit. However, since in differential term K D of the speed controller 31 is the vibration suppressing effect, there is a case where any of the differential term K D or vibration suppression circuit 32 is used.
 このように、比較対象の制御装置では、電動機角速度ωMをフィードバックする途中に振動抑制回路32を挿入するか、または、速度制御器31に振動を抑制するように制御パラメータを設定する。しかしながら、比較対象の制御装置は、あくまで電動機9側の角速度の振動を抑制するものである。 Thus, in the control device to be compared, the vibration suppression circuit 32 is inserted in the middle of feeding back the motor angular velocity ω M , or the control parameter is set in the speed controller 31 so as to suppress the vibration. However, the control device to be compared only suppresses the vibration of the angular velocity on the electric motor 9 side.
 しかしながら、圧延製品に大きな影響を及ぼすのは、負荷角速度ωLである。そのため、本当に制御したいのは、電動機角速度ωMではなく、負荷角速度ωLである。 However, the load angular velocity ω L has a great influence on the rolled product. Therefore, what is really desired to be controlled is not the motor angular velocity ω M but the load angular velocity ω L.
 図6は、本発明の実施の形態1に係るシステムにおいて制御装置15に実装される制御ブロックを表した制御ブロック図である。図6では、負荷角速度ωLをフィードバックして速度制御を行う例を示している。図6において、速度制御器25は、図9における速度制御器31と同じ構成でかまわない。ただし、負荷角速度ωLは振動的になる場合もあるので、速度制御器25の中に設定するパラメータは、速度制御器31と異なる場合がある。 FIG. 6 is a control block diagram showing control blocks implemented in the control device 15 in the system according to Embodiment 1 of the present invention. 6 shows an example of the speed control by feeding back the load angular velocity omega L. In FIG. 6, the speed controller 25 may have the same configuration as the speed controller 31 in FIG. 9. However, since the load angular speed ω L may be vibrational, the parameters set in the speed controller 25 may be different from those of the speed controller 31.
 また、フィードバック値である負荷角速度ωLは、非接触式速度センサ11による検出値を速度変動抑制のための振動抑制回路28に通した値とする場合がある。振動抑制回路28は振動抑制回路32と同じ構成でかまわないが、パラメータは異なる場合がある。ただし、速度制御器25の微分項KDにも振動抑制効果があるため、微分項KDまたは振動抑制回路28のいずれかが用いられる場合もある。 Further, the load angular velocity ω L that is a feedback value may be a value obtained by passing the detected value by the non-contact type speed sensor 11 through the vibration suppression circuit 28 for suppressing the speed fluctuation. The vibration suppression circuit 28 may have the same configuration as the vibration suppression circuit 32, but the parameters may be different. However, since in differential term K D of the speed controller 25 is the vibration suppressing effect, there is a case where any of the differential term K D or vibration suppression circuit 28 is used.
 図6に示す制御ブロックによれば、非接触式速度センサ11a、11bにより検出されるスピンドル4a、4bの角速度(ロール回転軸角速度)を負荷角速度ωLとみなして、速度制御器25にフィードバックすることで、圧延ロールの速度を直接制御し、速度制御の精度向上を図ることが出来る。 According to the control block shown in FIG. 6, the angular velocity (roll rotational shaft angular velocity) of the spindles 4 a and 4 b detected by the non-contact type velocity sensors 11 a and 11 b is regarded as the load angular velocity ω L and fed back to the velocity controller 25. Thus, it is possible to directly control the speed of the rolling roll and improve the accuracy of speed control.
 以上説明したように、本発明の実施の形態1に係るシステムによれば、金属材料を圧延する圧延機において、圧延ロールに直接接続されたロール回転軸の角速度を非接触式速度センサで検出することにより、環境の影響を受けずに圧延ロールの速度を検出することができる。この速度を用いて電動機の速度を制御することにより、ロール速度を直接制御することが可能となる。また、ロールの速度制御に最適なパラメータを設定することができ、速度制御の精度を向上させることができる。 As described above, according to the system according to the first embodiment of the present invention, in the rolling mill that rolls a metal material, the angular velocity of the roll rotation shaft directly connected to the rolling roll is detected by the non-contact speed sensor. Thus, the speed of the rolling roll can be detected without being affected by the environment. By controlling the speed of the electric motor using this speed, the roll speed can be directly controlled. In addition, it is possible to set optimum parameters for the speed control of the roll, and it is possible to improve the accuracy of the speed control.
実施の形態2.
[実施の形態2のシステム構成]
 次に、図7を参照して本発明の実施の形態2について説明する。本実施形態のシステムは図1~図3に示す構成において、制御装置15に後述する図7の制御ブロックを実装することで実現することができる。
Embodiment 2. FIG.
[System Configuration of Embodiment 2]
Next, a second embodiment of the present invention will be described with reference to FIG. The system of this embodiment can be realized by mounting the control block of FIG. 7 described later on the control device 15 in the configuration shown in FIGS.
 実施の形態1のシステムでは、非接触式速度センサ11により検出されるロール回転軸角速度を負荷角速度ωLとみなし、負荷角速度ωLのみを速度制御器25にフィードバックする。しかしながら、非接触式速度センサ11が健全な状態から逸脱する可能性もある。 In the system of the first embodiment, considers a roll rotation axis angular velocity detected by the noncontact speed sensor 11 and the load angular velocity omega L, feeds back only the load angular velocity omega L in the speed controller 25. However, the non-contact speed sensor 11 may deviate from a healthy state.
[実施の形態2における特徴的制御]
 そこで、本発明の実施の形態2に係るシステムでは、ロール回転軸角速度を検出する非接触式速度センサ11に加えて、電動機回転軸7の角速度である電動機回転軸角速度を検出する電動機速度センサ10を備え、速度制御器25にフィードバックされる実績値をロール回転軸角速度と電動機回転軸角速度のいずれかに切り替え可能なスイッチを備えることとする。
[Characteristic Control in Embodiment 2]
Therefore, in the system according to Embodiment 2 of the present invention, in addition to the non-contact type speed sensor 11 that detects the roll rotation shaft angular velocity, the motor speed sensor 10 that detects the motor rotation shaft angular velocity that is the angular velocity of the motor rotation shaft 7. And a switch capable of switching the actual value fed back to the speed controller 25 to either the roll rotation shaft angular velocity or the motor rotation shaft angular velocity.
 図7は、本発明の実施の形態2に係るシステムにおいて制御装置15に実装される制御ブロックを表した制御ブロック図である。図7に示す構成のうち、図6と同様の構成については同一の符号を付して説明を省略する。 FIG. 7 is a control block diagram showing control blocks mounted on the control device 15 in the system according to Embodiment 2 of the present invention. Among the configurations shown in FIG. 7, configurations similar to those in FIG. 6 are assigned the same reference numerals and description thereof is omitted.
 図7に示す制御ブロックは、速度制御器25の入力として、電動機角速度ωMと負荷角速度ωLとを切り替えて使用可能な切り替えスイッチ29を備える。例えば、電動機速度センサ10および非接触式速度センサ11の状態を常にモニターしておき、主に非接触式速度センサ11の信号を使用するものの、センサが健全な状態から逸脱したときは、電動機速度センサ10からの信号に即座に切り替えて使用する。その逆も当然可能である。 The control block shown in FIG. 7 includes a changeover switch 29 that can be used by switching between the motor angular velocity ω M and the load angular velocity ω L as an input to the speed controller 25. For example, although the state of the motor speed sensor 10 and the non-contact type speed sensor 11 is always monitored and the signal of the non-contact type speed sensor 11 is mainly used, when the sensor deviates from a healthy state, the motor speed The signal from the sensor 10 is immediately switched to use. The reverse is also possible.
 このとき、負荷角速度ωLを使用するか、電動機角速度ωMを使用するかによって、速度制御器25の中のパラメータ、振動抑制回路28の中のパラメータを切り替える必要がある場合もある。切り替えスイッチ29から、速度制御器25および振動抑制回路28へ伸びる破線は、これを意味している。 At this time, it may be necessary to switch the parameter in the speed controller 25 and the parameter in the vibration suppression circuit 28 depending on whether the load angular speed ω L or the motor angular speed ω M is used. A broken line extending from the changeover switch 29 to the speed controller 25 and the vibration suppression circuit 28 signifies this.
 このように速度センサを切り替えて使用できることで、速度センサおよび制御系に冗長性を持たせることができる。 ¡By switching the speed sensor in this way, the speed sensor and the control system can be made redundant.
実施の形態3.
[実施の形態3のシステム構成]
 次に、図8を参照して本発明の実施の形態3について説明する。本実施形態のシステムは図1~図3に示す構成において、制御装置15に後述する図8の制御ブロックを実装することで実現することができる。
Embodiment 3 FIG.
[System Configuration of Embodiment 3]
Next, Embodiment 3 of the present invention will be described with reference to FIG. The system of this embodiment can be realized by mounting the control block of FIG. 8 described later on the control device 15 in the configuration shown in FIGS.
 実施の形態1のシステムでは、非接触式速度センサ11により検出されるロール回転軸角速度を負荷角速度ωLとみなし、負荷角速度ωLのみを速度制御器25にフィードバックする。しかしながら、熱間圧延機における噛み込み時には、大きなトルクが圧延ロールに加わり、負荷角速度ωLは振動的になり、これをそのまま速度制御器25に入力すると、制御が不安定になることもある。 In the system of the first embodiment, considers a roll rotation axis angular velocity detected by the noncontact speed sensor 11 and the load angular velocity omega L, feeds back only the load angular velocity omega L in the speed controller 25. However, when biting in the hot rolling mill, a large torque is applied to the rolling roll, and the load angular velocity ω L becomes oscillating. If this is input to the speed controller 25 as it is, the control may become unstable.
[実施の形態3における特徴的制御]
 そこで、本発明の実施の形態3に係るシステムでは、電動機回転軸7の角速度を検出する電動機速度センサ10を備え、速度制御器25にフィードバックされる実績値を、電動機回転軸角速度に割合α(0≦α≦1)を乗じた値と、前記ロール回転軸角速度に割合1-αを乗じた値とを合成した合成値とする。ここで、割合αは、ワークロール2a、2bが圧延材12を噛み込む時に、割合1-αよりも大きく設定され、時間経過とともに割合1-αよりも小さく設定される。
[Characteristic Control in Embodiment 3]
Therefore, the system according to the third embodiment of the present invention includes the motor speed sensor 10 that detects the angular speed of the motor rotating shaft 7, and the actual value fed back to the speed controller 25 is expressed as a ratio α ( A composite value obtained by combining a value obtained by multiplying 0 ≦ α ≦ 1) and a value obtained by multiplying the roll rotational shaft angular velocity by a ratio 1−α. Here, the ratio α is set to be larger than the ratio 1-α when the work rolls 2a and 2b bit the rolled material 12, and is set to be smaller than the ratio 1-α with time.
 図8は、本発明の実施の形態3に係るシステムにおいて制御装置15に実装される制御ブロックを表した制御ブロック図である。図8に示す構成のうち、図6と同様の構成については同一の符号を付して説明を省略する。 FIG. 8 is a control block diagram showing control blocks mounted on the control device 15 in the system according to Embodiment 3 of the present invention. Of the configurations shown in FIG. 8, configurations similar to those in FIG. 6 are assigned the same reference numerals and description thereof is omitted.
 図8においては、速度制御器25の入力として、電動機角速度ωMと負荷角速度ωLにそれぞれ重みづけし、重みづけ配分回路30において、合成した角速度信号を用いる。重みづけ配分回路30における重みづけは、たとえば、以下とする。 In FIG. 8, the motor angular velocity ω M and the load angular velocity ω L are weighted as inputs to the speed controller 25, and the synthesized angular velocity signal is used in the weight distribution circuit 30. The weighting in the weight distribution circuit 30 is, for example, as follows.
Figure JPOXMLDOC01-appb-I000001
Figure JPOXMLDOC01-appb-I000001
 ここで、ωMLは重みづけされた角速度である。αは重みであり、一般には0から1の間の値をとる。αは時間変化させることも可能である。 Here, ω ML is a weighted angular velocity. α is a weight and generally takes a value between 0 and 1. α can be changed over time.
 (1)式を使用すると、一般に変動が大きい負荷角速度ωLと、変動が小さい電動機角速度ωMとの重みづけ配分になるので、負荷角速度ωLの変動を抑制した信号をフィードバックし、速度制御に使用することができる。たとえば、熱間圧延機における噛み込み時には、大きなトルクが圧延ロールに加わり、負荷角速度ωLは振動的になり、これをそのまま速度制御器25に入力すると、制御が不安定になることもある。このとき、噛み込み時にαを大きくし、時間の経過とともに小さくしていくことで、制御系の安定性を図ることができる。 When the equation (1) is used, the load angular velocity ω L having a large variation and the motor angular velocity ω M having a small variation are generally weighted and distributed, so that a signal that suppresses the variation of the load angular velocity ω L is fed back to control the speed. Can be used for For example, when biting in a hot rolling mill, a large torque is applied to the rolling roll, and the load angular velocity ω L becomes oscillating. If this is input to the speed controller 25 as it is, the control may become unstable. At this time, the stability of the control system can be improved by increasing α at the time of biting and decreasing it over time.
ωL 負荷角速度(ロール回転軸角速度)
ωM 電動機角速度(電動機回転軸角速度)
ωM REF 電動機の目標角速度
ωL REF 圧延ロールの目標角速度
1、1a 圧延機
2a 上ワークロール
2b 下ワークロール
3a 上バックアップロール
3b 下バックアップロール
4a、4b スピンドル
5 ピニオンギア
6 軸
7 電動機回転軸
8 減速ギア
9、9a、9b 電動機
10 電動機速度センサ
11、11a、11b 非接触式速度センサ
12 圧延材
13 垂線
15 制御装置
16 壁
25、31 速度制御器
26 電流制御系
28、32 振動抑制回路
29 切り替えスイッチ
30 重みづけ配分回路
d ダンピング
JL 負荷慣性モーメント
JM 電動機慣性モーメント
k ばね定数
KD 微分項
TCC 時定数
TL 負荷トルク
TM 電動機トルク
ω L Load angular velocity (Roll rotation shaft angular velocity)
ω M motor angular velocity (motor rotational shaft angular velocity)
ω M REF motor target angular velocity ω L REF rolling roll target angular velocity 1, 1a rolling mill 2a upper work roll 2b lower work roll 3a upper backup roll 3b lower backup roll 4a, 4b spindle 5 pinion gear 6 shaft 7 motor rotating shaft 8 Reduction gear 9, 9a, 9b Motor 10 Motor speed sensor 11, 11a, 11b Non-contact speed sensor 12 Rolled material 13 Vertical line 15 Control device 16 Wall 25, 31 Speed controller 26 Current control system 28, 32 Vibration suppression circuit 29 Switching Switch 30 weight distribution circuit
d Damping
J L Load moment of inertia
J M Motor moment of inertia
k Spring constant
K D derivative term
T CC time constant
T L Load torque
TM Motor torque

Claims (5)

  1.  金属材料を圧延する圧延ロールと、
     前記圧延ロールに直接接続されたロール回転軸と、
     前記ロール回転軸に動力を伝達する電動機回転軸と、
     前記電動機回転軸を駆動する電動機と、を備える圧延機の電動機速度制御装置であって、
     前記圧延ロールに近接した位置に、前記ロール回転軸の周面と隙間を空けて配置され、前記ロール回転軸の角速度であるロール回転軸角速度を検出する非接触式速度センサと、
     実績値が前記圧延ロールの目標角速度と一致するように、該実績値と該目標角速度との比較値に基づいて、前記電動機の速度を制御する速度制御器と、を備え、
     前記実績値は、前記速度制御器にフィードバックされる前記ロール回転軸角速度であること、
     を特徴とする圧延機の電動機速度制御装置。
    A rolling roll for rolling a metal material;
    A roll rotation shaft directly connected to the rolling roll;
    An electric motor rotating shaft for transmitting power to the roll rotating shaft;
    An electric motor for driving the electric motor rotating shaft, and a motor speed control device for a rolling mill comprising:
    A non-contact speed sensor that detects a roll rotation shaft angular velocity that is an angular velocity of the roll rotation shaft, and is arranged at a position close to the rolling roll with a gap from a peripheral surface of the roll rotation shaft,
    A speed controller that controls the speed of the electric motor based on a comparison value between the actual value and the target angular velocity so that the actual value matches the target angular velocity of the rolling roll;
    The actual value is the roll rotation shaft angular velocity fed back to the speed controller;
    An electric motor speed control device for a rolling mill.
  2.  前記非接触式速度センサは、前記ロール回転軸の軸心と交わりかつ前記金属材料の圧延面に垂直な垂線上に配置され、
     前記ロール回転軸は、前記非接触式速度センサとは独立して前記垂線上を移動可能であること、
     を特徴とする請求項1記載の圧延機の電動機速度制御装置。
    The non-contact speed sensor is disposed on a perpendicular line intersecting with the axis of the roll rotation axis and perpendicular to the rolling surface of the metal material,
    The roll rotation axis is movable on the perpendicular independently of the non-contact speed sensor;
    The motor speed control device for a rolling mill according to claim 1.
  3.  前記非接触式速度センサと前記圧延ロールとの間に防水・防塵壁をさらに備えること、を特徴とする請求項1又は2記載の圧延機の電動機速度制御装置。 The motor speed control device for a rolling mill according to claim 1 or 2, further comprising a waterproof / dustproof wall between the non-contact speed sensor and the rolling roll.
  4.  前記電動機回転軸の角速度である電動機回転軸角速度を検出する電動機速度センサと、
     前記実績値を、前記ロール回転軸角速度と前記電動機回転軸角速度のいずれかに切り替え可能なスイッチと、
     をさらに備えることを特徴とする請求項1乃至3のいずれか1項に記載の圧延機の電動機速度制御装置。
    An electric motor speed sensor for detecting an electric motor rotating shaft angular velocity which is an angular velocity of the electric motor rotating shaft;
    A switch capable of switching the actual value to either the roll rotation shaft angular velocity or the motor rotation shaft angular velocity;
    The motor speed control device for a rolling mill according to any one of claims 1 to 3, further comprising:
  5.  前記電動機回転軸の角速度である電動機回転軸角速度を検出する電動機速度センサをさらに備え、
     前記実績値は、前記電動機回転軸角速度に割合α(0≦α≦1)を乗じた値と、前記ロール回転軸角速度に割合1-αを乗じた値とを合成した合成値であり、
     前記割合αは、前記圧延ロールが金属材料を噛み込む時に、割合1-αよりも大きく設定され、時間経過とともに割合1-αよりも小さく設定されること、
     を特徴とする請求項1乃至3のいずれか1項に記載の圧延機の電動機速度制御装置。
    An electric motor speed sensor for detecting an electric motor rotating shaft angular velocity which is an angular velocity of the electric motor rotating shaft;
    The actual value is a composite value obtained by combining a value obtained by multiplying the motor rotation shaft angular velocity by a ratio α (0 ≦ α ≦ 1) and a value obtained by multiplying the roll rotation shaft angular velocity by a ratio 1-α.
    The ratio α is set larger than the ratio 1-α when the rolling roll bites the metal material, and is set smaller than the ratio 1-α with time.
    The motor speed control device for a rolling mill according to any one of claims 1 to 3.
PCT/JP2014/053478 2014-02-14 2014-02-14 Motor speed control device for rolling mill WO2015121974A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2015562644A JP6197890B2 (en) 2014-02-14 2014-02-14 Electric motor speed control device for rolling mill
US15/114,730 US10232419B2 (en) 2014-02-14 2014-02-14 Motor speed control device for rolling mill
CN201480075472.1A CN105992657B (en) 2014-02-14 2014-02-14 The motor speed controlling device of milling train
PCT/JP2014/053478 WO2015121974A1 (en) 2014-02-14 2014-02-14 Motor speed control device for rolling mill
KR1020167025040A KR101767863B1 (en) 2014-02-14 2014-02-14 Motor speed control device for rolling mill
TW103114800A TWI554341B (en) 2014-02-14 2014-04-24 Motor speed control system for rolling mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/053478 WO2015121974A1 (en) 2014-02-14 2014-02-14 Motor speed control device for rolling mill

Publications (1)

Publication Number Publication Date
WO2015121974A1 true WO2015121974A1 (en) 2015-08-20

Family

ID=53799740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053478 WO2015121974A1 (en) 2014-02-14 2014-02-14 Motor speed control device for rolling mill

Country Status (6)

Country Link
US (1) US10232419B2 (en)
JP (1) JP6197890B2 (en)
KR (1) KR101767863B1 (en)
CN (1) CN105992657B (en)
TW (1) TWI554341B (en)
WO (1) WO2015121974A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018134965A1 (en) * 2017-01-20 2018-07-26 東芝三菱電機産業システム株式会社 Insulation monitoring device for rolled-stock conveyance parts
EP3766595A1 (en) * 2019-07-17 2021-01-20 Primetals Technologies Austria GmbH Cold rolling of rolled material
EP4049770A1 (en) * 2021-02-26 2022-08-31 Fagor Arrasate, S.Coop. Control method of a levelling machine and levelling machine
CN114833194A (en) * 2022-05-19 2022-08-02 河北纵航机械制造有限公司 Full-automatic cotton gin

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04182030A (en) * 1990-11-14 1992-06-29 Nkk Corp Device for alarming generation of scratch on thin steel strip
JPH06122007A (en) * 1992-10-12 1994-05-06 Nkk Corp Device for monitoring shear pin
JPH0775362A (en) * 1993-09-03 1995-03-17 Nippon Steel Corp Roll driver
JP2009505277A (en) * 2005-08-17 2009-02-05 エックステック インコーポレイティッド Data collection system for system monitoring

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4727927A (en) * 1987-01-20 1988-03-01 Hunter Engineering Company, Inc. Casting machine control
JPH057910A (en) 1991-06-28 1993-01-19 Aichi Steel Works Ltd Rolling roll outlet stock vertical swing preventing device
JPH06190417A (en) 1992-12-24 1994-07-12 Nippon Steel Corp Method for controlling looper
JPH06277724A (en) 1993-03-26 1994-10-04 Nippon Steel Corp Pair cross rolling mill having cross pin type spindle and rolling method therefor
JPH07214131A (en) 1994-02-07 1995-08-15 Nippon Steel Corp Rolling controller
JPH08206718A (en) 1995-02-02 1996-08-13 Toshiba Corp Speed controller of motor for rolling mill
JP3307551B2 (en) 1996-07-02 2002-07-24 株式会社日立製作所 Drive for rolling mill, rolling mill and rolling method
IT1310575B1 (en) 1999-06-18 2002-02-19 Danieli Off Mecc ENGINE CONTROL PROCEDURE IN A DILAMINATION CAGE AND RELATED DEVICE
JP2003145209A (en) * 2001-11-09 2003-05-20 Hitachi Cable Ltd Rolling mill and method for manufacturing clad material using the same
DE102006017727A1 (en) * 2006-04-15 2007-10-25 Daimlerchrysler Ag Contactless sensor device for determining shaft characteristic, has field and sensor coils arranged in equilateral triangle corners such that measurement of torque, number of revolutions or torque and axial position of shaft is feasible
JP4773903B2 (en) * 2006-07-05 2011-09-14 富士通株式会社 A method to evaluate pessimistic errors in statistical timing analysis
US7812558B2 (en) * 2006-08-03 2010-10-12 Toshiba Mitsubishi-Electric Industrial Systgems Corporation Driving apparatus of electric motor for reduction roll
JP4538088B2 (en) * 2007-11-02 2010-09-08 新日本製鐵株式会社 Plate rolling machine and control method thereof
JP5459604B2 (en) 2009-12-04 2014-04-02 新日鐵住金株式会社 Control method for suppressing torsional vibration of rolling mill

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04182030A (en) * 1990-11-14 1992-06-29 Nkk Corp Device for alarming generation of scratch on thin steel strip
JPH06122007A (en) * 1992-10-12 1994-05-06 Nkk Corp Device for monitoring shear pin
JPH0775362A (en) * 1993-09-03 1995-03-17 Nippon Steel Corp Roll driver
JP2009505277A (en) * 2005-08-17 2009-02-05 エックステック インコーポレイティッド Data collection system for system monitoring

Also Published As

Publication number Publication date
CN105992657B (en) 2018-10-30
TW201531345A (en) 2015-08-16
KR101767863B1 (en) 2017-08-11
CN105992657A (en) 2016-10-05
US10232419B2 (en) 2019-03-19
KR20160122207A (en) 2016-10-21
JP6197890B2 (en) 2017-09-20
JPWO2015121974A1 (en) 2017-03-30
US20160339492A1 (en) 2016-11-24
TWI554341B (en) 2016-10-21

Similar Documents

Publication Publication Date Title
JP6197890B2 (en) Electric motor speed control device for rolling mill
US8720242B2 (en) Rolling mill for a plate or a sheet and its control technique
US7812558B2 (en) Driving apparatus of electric motor for reduction roll
CN104104280B (en) Motor control assembly
CN102114610A (en) Polishing wheel diameter and polishing force detection method and polishing wheel wear compensating method
JP5534113B1 (en) Metal plate rolling equipment
CN101773942A (en) Rolling mill control apparatus and control method
US20170050188A1 (en) Roller mill and method for controlling a roller mill
JP4733553B2 (en) Tension control method for continuous rolling mill
JP6793582B2 (en) Rolling machine and rolling method
JP5831386B2 (en) Tandem rolling mill operation control method and operation control apparatus, and hot rolled steel sheet manufacturing method and manufacturing apparatus
JP5578892B2 (en) Multi-stage rolling mill
JP2011218377A (en) Operation control method of tandem rolling mill, and method for producing hot-rolled steel sheet using the same
JP6939996B2 (en) Rolling machine and setting method of rolling mill
KR101575144B1 (en) Apparatus for energy savings numerical control
JP5278150B2 (en) Plate rolling machine and control method thereof
EP2159660B1 (en) Machine control device
JP6625957B2 (en) Numerical control equipment for machine tools
JP6303993B2 (en) Rolling mill control device
JPH0347613A (en) Thickness control device for cold tandem mill
JP5218258B2 (en) Sheet rolling mill and control method thereof
JP2002292402A (en) Rolling method
JP2909498B2 (en) Motor control device
WO2000078476A1 (en) Method to control the vibrations in a rolling stand and relative device
JP2020015431A (en) Steering control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14882508

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015562644

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15114730

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167025040

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14882508

Country of ref document: EP

Kind code of ref document: A1