WO2015121953A1 - Data communication-use electronic apparatus - Google Patents

Data communication-use electronic apparatus Download PDF

Info

Publication number
WO2015121953A1
WO2015121953A1 PCT/JP2014/053393 JP2014053393W WO2015121953A1 WO 2015121953 A1 WO2015121953 A1 WO 2015121953A1 JP 2014053393 W JP2014053393 W JP 2014053393W WO 2015121953 A1 WO2015121953 A1 WO 2015121953A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
electronic
data communication
control circuit
thermosiphon
Prior art date
Application number
PCT/JP2014/053393
Other languages
French (fr)
Japanese (ja)
Inventor
近藤 義広
孝 船田
真也 浜岸
信宏 玉山
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2014/053393 priority Critical patent/WO2015121953A1/en
Publication of WO2015121953A1 publication Critical patent/WO2015121953A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/20718Forced ventilation of a gaseous coolant
    • H05K7/20727Forced ventilation of a gaseous coolant within server blades for removing heat from heat source

Definitions

  • the present invention relates to an electronic device such as a network device, a server device, and a storage device, and uses a thermosiphon to transfer heat generated from the electronic substrate of the electronic device to the outside of the substrate and perform high-performance communication using a fiber cable. Further, the present invention relates to an electronic device suitable for mounting such a cooling system.
  • optical fiber cables are being installed.
  • the light in the optical fiber cable travels by colliding at a certain angle with respect to the boundary surface and reflecting at a certain angle. For this reason, when the bending angle of the optical fiber cable is increased, leakage in the cladding of the outer layer of the fiber cable is increased, and communication cannot be performed. Similarly, a communication failure such as unstable communication (waveform fluctuation, malfunction) occurs even when the optical fiber cable is shaken by cooling air.
  • the optical connector / fiber cable communicates with other devices, the optical connector / fiber cable is located on the rear side of the housing of the apparatus, and is cooled with cooling air whose air temperature has risen due to heat generated by the control circuit.
  • cooling air in electronic devices, when cooling air is allowed to flow through a substrate, dust or the like adheres to the terminals of the semiconductor element and is electrically short-circuited, resulting in damage to the electronic device.
  • Patent Document 1 the inside of the device casing is constituted by a sealed chamber and a wind tunnel, the wind tunnel is ventilated from above to below by a blower, and the semiconductor element in the sealed chamber is cooled by a heat pipe.
  • Patent Document 2 discloses a boiling cooling device in which condensers are arranged so as to be lined up and down along an air guide path of a wind tunnel, and cooling air is blown to a wind tunnel to cool a semiconductor module.
  • it is the cooling mounting structure of the board
  • a thermosiphon + straight air path structure is used.
  • JP 2006-050742 A Japanese Patent Laid-Open No. 2005-150489 Japanese Patent Laid-Open No. 06-029676 JP 2010-080507 A
  • a control circuit, a power circuit, etc. are mounted on the electronic board on which the optical fiber cable is mounted.
  • Each allowable temperature is different, and particularly the allowable temperature of the optical connector is small.
  • an optical connector having a low allowable temperature cannot be cooled if the conventional thermosiphon + straight air path structure is applied as it is to an optical communication device.
  • the optical connector since the optical connector is linked to the outside, it is installed on the front or back of the rack for handling, and there is no mention that the back side optical connector located on the downstream side is severe in cooling, and no consideration is given. Furthermore, no consideration is given to the electrical short circuit caused by dust, because there is no mention of cooling by flowing cooling air to a place other than the substrate.
  • an electronic device for data communication is provided with an electronic substrate portion and a wind for dissipating heat generated from the electronic substrate portion to the outside.
  • an electronic device for data communication provided with an air passage portion that forms an air passage that passes linearly avoiding the electronic substrate portion, wherein the electronic substrate portion includes a plurality of semiconductor elements,
  • the semiconductor elements of the present invention have different allowable temperatures
  • the air passage portion is equipped with a fan for generating the wind
  • the electronic substrate portion and the air passage portion are thermally connected to each other by a thermosyphon that is a phase change device.
  • a boiling region that is a heat absorption part of the thermosiphon is disposed in the vicinity of the semiconductor element of the electronic substrate part, and a heat dissipation part of the thermosyphon that includes a radiator in the air passage part.
  • the That the condensation zone are arranged, and the boiling region and the condensation region of the thermo siphon, said separately provided for each allowable temperature section of the semiconductor elements, characterized in that a separate closed space.
  • thermosiphon It is the whole conceptual diagram seen from the upper surface of the apparatus which mounts the phase change module using the thermosiphon which becomes one embodiment of this invention. It is the whole structure figure seen from the upper surface of electronic equipments, such as a server carrying the circumference of a phase change module using thermosiphon which becomes one embodiment of the present invention. It is the whole structure figure seen from the upper surface of the electronic equipment for data communications carrying the circumference of the phase change module using the thermosiphon which becomes one embodiment of the present invention. It is AA sectional drawing of the electronic device for data communication of the said FIG. It is BB sectional drawing of the electronic device for data communications of the said FIG.
  • FIG. 1 is a perspective view of a plurality of electronic devices for data communication mounted on a rack as a representative example of an electronic device to which a phase change module using a thermosiphon of the present invention is applied.
  • the phase change module according to the present invention and the electronic device on which the phase change module is mounted have a structure in which a grease or an elastomer is interposed under the boiling region of the thermosyphon. Moreover, it is the structure which divides
  • the phase change module and the electronic device on which the phase change module is mounted can be cooled below the allowable temperature of the semiconductor element, the optical connector, and the like. Furthermore, it can be made less susceptible to the rise in air temperature of the upstream control LSI or the like. Further, since the cooling air does not flow in the substrate, the dust is less likely to stay in the semiconductor element, and an electrical short circuit at the node portion of the semiconductor element can be prevented.
  • FIG. 1 is an overall conceptual diagram seen from the upper surface of an apparatus equipped with a phase change module using a thermosiphon.
  • Semiconductor elements 161, 162, and 163 are mounted on the electronic substrate 10 and generate heat.
  • Semiconductor elements 161, 162, and 163 differ in shape, heat generation, and allowable case temperature.
  • the heat is transferred to the radiator 82 by the thermosiphon 80 that is a phase change device, and is transported by the cooling air 22 by the fan 21.
  • Semiconductor elements 161, 162, and 163 having different shapes, calorific values, and allowable case temperatures are thermally connected to the thermosiphon 80.
  • a partition wall 100 is provided inside the thermosiphon 80.
  • the three chambers A, 801, B 802, and C 803 are provided. It has become. Phase change of the refrigerant is performed individually in the three rooms, and the heat of each of the semiconductor elements 161, 162, 163 is transported from the individual radiator 82 to the cooling air 22.
  • the air passage 20 of the radiator 82 has a fin structure of the radiator 82 such that each of the A chamber 801, the B chamber 802, and the C chamber 803 is independent. That is, by using parallel plate fins for the radiator 82, the radiator 82 in one room does not affect the radiator 82 in another room. As described above, the cooling air whose temperature has not risen can be supplied to the radiator 82 in the downstream C chamber 803.
  • FIG. 2 is a top view when the electronic device 500 such as a server is mounted on the rack 1. It is the figure which removed the cover of the upper surface in order to describe a component clearly.
  • Various types of semiconductor elements 164, 165, 166, an input / output terminal 120 for inputting / outputting electric signals to / from the outside, and a backboard 140 for supplying electric power to the electronic substrate 10 are attached to the end of the electronic substrate 10. Yes.
  • These terminals are male and can be inserted into the female terminals of the backboard 140 attached to the rack to easily supply power within the electronic device 500.
  • the cooling air 22 disposed adjacent to the electronic substrate 10 and for releasing the heat generated from the electronic substrate 10 to the outside forms an air passage 20 that passes straight through the electronic substrate 10.
  • thermosiphon 80 that is a phase change device.
  • the fan 21 is attached to the rack 1, and the fan 21 remains in the rack 1 even when the electronic device 500 is removed.
  • thermosiphon 80 has a boiling region 81 of a heat absorption part of the thermosiphon 80 in the vicinity of at least one of the semiconductor elements 164, 165, 166 of the electronic substrate 10.
  • thermosiphon 80 has a condensing region 83 including a radiator 82 of a heat radiating portion in the air passage 20.
  • thermosiphon 80 a refrigerant is enclosed in the thermosiphon 80, and heat can be transferred from the boiling region 81 to the condensation region 83 by the phase change of the refrigerant.
  • thermosiphon 80 heat generated in the semiconductor elements 164, 165, 166 of the electronic substrate 10 can be transmitted to the radiator 82, transferred to the cooling air 22 by the fan 21, and released to the outside of the rack 1.
  • the cooling air 22 does not flow through the electronic substrate 10, and the electronic device 500 can be prevented from being damaged due to short-circuiting of the semiconductor elements 164, 165, and 166 due to dust.
  • the electronic substrate 10 can be cooled using the thermosiphon 80 and the air passage 20.
  • the allowable temperatures of the semiconductor elements 164, 165, and 166 which are heating elements of the electronic substrate 10, are different. Therefore, it is necessary to change the vapor temperature of the refrigerant of the thermosiphon 80 for each allowable temperature of the semiconductor elements 164, 165, 166. Therefore, the partition wall 100 is provided inside the thermosiphon 80, and the boiling region 81 and the condensation region 83 are separated into an A chamber 801, a B chamber 802, and a C chamber 803. In FIG. 2, the boiling region 81 and the condensing region 83 are provided separately for each allowable temperature section, and are divided into three separate sealed spaces (rooms) by the partition wall 100.
  • the radiator 82 is not positioned in the condensing region 83 of another room on the upstream side, and no radiator is mounted.
  • fresh cooling air 22 can be supplied on the downstream side without being affected by an increase in air temperature due to heat generation from the upstream side.
  • the vapor temperature of the refrigerant in each room is controlled, and the semiconductor elements 164, 165, and 166 having different allowable temperatures can be individually cooled, and can be made lower than the allowable temperature.
  • FIG. 3 is a top view when the data communication electronic device 5 that performs data communication using an optical signal is mounted on the rack 1. It is the figure which removed the cover of the upper surface in order to describe a component clearly.
  • the electronic board 10 has an optical input / output terminal 30 for inputting / outputting optical signals to / from the outside, an electric input / output terminal 120 for inputting / outputting electric signals to / from the outside, and a power supply terminal 140 for supplying electric power to the electronic board 10. It is attached to the part.
  • These terminals are male and can be inserted into the female terminals of the backboard 140 attached to the rack, so that signal input / output and power supply can be easily performed in the data communication electronic device 5.
  • the electronic substrate 10 includes a plurality of optical interconnectors 31 that distribute optical signals from the outside, a first control circuit 40 that is a plurality of programmable semiconductor elements (FPGAs), and a user individually uses the optical signals.
  • a plurality of client optical modules 150 that can communicate data, a second control circuit 50 that is a control board circuit that controls the transmission and reception of light and electrical signals, and a power supply circuit 60 that can supply them with necessary voltages and currents are mounted. Has been.
  • the optical interconnector 31 receives the optical signal input from the optical input / output terminal 30 and transmits it to the electronic substrate 10, and receives the optical signal in the electronic substrate 10 and supplies it to the optical input / output terminal 30. Perform one of the actions to send.
  • the first control circuit 40 controls the operations received and transmitted by the respective optical interconnectors 31.
  • the client optical module 150 has the same function as the optical interconnector 31, but the user can individually connect to the client optical module 150 according to the application.
  • first optical fiber cables 70 are provided to connect each optical interconnector 31 and each first control circuit 40 so as to be capable of optical communication with each other.
  • a plurality of second optical fiber cables 71 are provided for connecting each optical interconnector 31 and the optical input / output terminal 50 so as to be capable of optical communication with each other.
  • the cooling air 22 disposed adjacent to the electronic substrate 10 and for releasing the heat generated from the electronic substrate 10 to the outside forms an air passage 20 that passes straight through the electronic substrate 10.
  • thermosiphon 80 that is a phase change device.
  • the fan 21 is attached to the rack 1, and the fan 21 remains in the rack 1 even when the data communication electronic device 5 is removed.
  • thermosiphon 80 is located near at least one of the optical interconnector 31, the first control circuit 40, the second control circuit 50, and the power supply circuit 60 of the electronic substrate 10. There is a boiling region 81.
  • thermosiphon 80 has a condensing region 83 including a radiator 82 of a heat radiating portion in the air passage 20.
  • thermosiphon 80 a refrigerant is enclosed in the thermosiphon 80, and heat can be transferred from the boiling region 81 to the condensation region 83 by the phase change of the refrigerant.
  • the thermosiphon 80 transmits heat generated in the optical interconnector 31, the first control circuit 40, the second control circuit 50, and the power supply circuit 60 of the electronic substrate 10 to the radiator 82, and the cooling air 22 generated by the fan 21 is transmitted to the cooling air 22. Heat can be transferred and discharged out of the rack 1.
  • the cooling air 22 does not flow through the plurality of first optical fiber cables 70 and the plurality of second optical fiber cables 71, and the malfunction and delay of the optical signal due to the shaking of the optical fiber cable can be prevented.
  • the terminal of the optical module 150 for clients is exposed when the optical fiber cable is not inserted.
  • dust or the like enters the terminal, causing a malfunction of the node portion or a node failure.
  • the same thing can occur with a semiconductor element or device mounted on the electronic substrate 10.
  • the cooling air 22 flows through the air path 20 outside the electronic substrate 10
  • the cooling air does not flow through the terminals into which the optical fiber cable is not inserted, the semiconductor element mounted on the electronic substrate 10, or the device. For this reason, it is possible to prevent a malfunction of the node portion due to dust or the like and a node failure.
  • the electronic substrate 10 can be cooled using the thermosiphon 80 and the air passage 20.
  • the cooling air that can cool the electronic substrate 10 is supplied directly to the electronic substrate 10, the optical signal conduction in the first optical fiber cable 70 and the second optical fiber cable 71 is obstructed, resulting in malfunction. Invite.
  • the allowable temperatures of the optical interconnector 31, which is a heating element of the electronic substrate 10, the first control circuit 40, the second control circuit 50, the power supply circuit 60, and the client optical module 150 are different. Since the optical interconnector 31 and the optical module for client 150 incorporate optical elements, the allowable temperature is lower than the allowable temperatures of the other first control circuit 40 and power supply circuit 60. Therefore, it is necessary to keep the vapor temperature of the refrigerant in the thermosiphon 80 lower than the vaporization temperature of the refrigerant in the other first control circuit 40 and the power supply circuit 60 in the optical interconnector 31 and the optical module 150 for clients.
  • the partition wall 100 is provided inside the thermosiphon 80, and the boiling region 81 and the condensing region 83 are separated.
  • the boiling region 81 and the condensing region 83 are provided separately for each allowable temperature section, and are divided into three separate sealed spaces (rooms) by the partition wall 100.
  • the radiators 82 provided in the condensing regions 83 of the three rooms separated by the partition wall 100, the radiator 82 for heat dissipation of the downstream optical interconnector 31 is located in the condensing region 83 of another room on the upstream side. Without a radiator.
  • the downstream optical interconnector 31 is not affected by the rise in air temperature due to heat generated from the upstream first control circuit 40, second control circuit 50, power supply circuit 60, and client optical module 150.
  • the fresh cooling air 22 can be supplied.
  • the vapor temperature of the refrigerant in each room is controlled, and the allowable temperature is different, the optical interconnector 31, the first control circuit 40, the second control circuit 50, the power supply circuit 60, and the client optical module 150,
  • the optical interconnector 31 and the client optical module 150 whose permissible temperature is lower than that of the first control circuit 40 and the power supply circuit 60 can be made below the permissible temperature.
  • FIG. 4 shows an AA cross section passing through the second control circuit 50 and the client optical module 150 of the data communication electronic device 5 of FIG.
  • the data communication electronic device 5 is mounted with the client optical module 150, the second control circuit 50, and the power supply circuit 60.
  • the client-side optical module 150 and the power supply circuit 60 are provided with a thermosiphon 80 via an elastomer 90.
  • a boiling region 81 is provided inside the thermosiphon 80.
  • the boiling region 81 is called a boiling heat transfer surface, and is provided with a heat transfer surface that improves boiling heat transfer.
  • the shape of the boiling heat transfer surface varies depending on the refrigerant, and has a fine fin shape that promotes the formation of boiling nuclei.
  • the partition wall 100 is provided so that the optical module 150 for clients, the second control circuit 50, and the thermosiphon 80 of the power supply circuit 60 are in different rooms.
  • the condensation region 83 is a condensation heat transfer surface, and is provided with, for example, flat plate-shaped fins in order to improve the condensation performance.
  • the radiator 82 directly below the condensing region 83 is for heat dissipation of the second control circuit 50 and the optical module 150 for clients.
  • the radiator 82 without the condensing region 83 is for heat dissipation of the optical interconnector located on the downstream side.
  • the amount of the coolant 110 that is a refrigerant varies depending on the amount of heat transported in each room of the thermosiphon 80. For example, in the room of the power supply circuit 60 having a high amount of heat, the amount of the refrigerant liquid 110 is large and the liquid level is high. On the other hand, in the second control circuit 50 and the client optical module 150 having a relatively small amount of heat, the liquid level of the refrigerant liquid is low.
  • thermosiphon 80 and the air passage 20 are used to transfer heat of the electronic substrate 10, particularly the second control circuit 50, and the optical module 150 for clients to the outside of the electronic substrate 10, and the second control circuit 50,
  • the optical module 150 for clients can be cooled.
  • FIG. 5 shows a BB cross section passing through the first control circuit 40 and the power supply circuit 600 of the data communication electronic device 5 of FIG.
  • the first optical fiber cable 70 that connects the optical signal between the first control circuit 40 and the optical interconnector is visible.
  • the first electronic control circuit 40 and the power supply circuit 60 are mounted on the data communication electronic device 5.
  • a thermosiphon 80 is attached to the power supply circuit 60 via an elastomer 90.
  • a boiling region 81 is provided inside the thermosiphon 80.
  • This boiling region 81 is called a boiling heat transfer surface, and is provided with a heat transfer surface that improves boiling heat transfer as in the case of FIG.
  • the shape of the boiling heat transfer surface varies depending on the refrigerant, and has a fine fin shape that promotes the formation of boiling nuclei.
  • the thermosiphon 80 of the first control circuit 40 and the power supply circuit 60 are in the same room, but the partition 100 can be seen for partitioning from the room of the optical interconnector 31 in the back.
  • the condensation region 83 is a condensation heat transfer surface, and is provided with, for example, flat plate-shaped fins in order to improve the condensation performance.
  • the radiator 82 directly below the condensation region 83 is for heat dissipation of the first control circuit 40 and the power supply circuit 60.
  • the radiator 82 without the condensing region 83 is for heat dissipation of the optical interconnector located on the downstream side.
  • the amount of the coolant 110 that is a refrigerant varies depending on the amount of heat transported in each room of the thermosiphon 80. Since it is the same room in FIG. 5, the liquid level of the refrigerant liquid 110 is substantially the same.
  • thermosiphon 80 and the air passage 20 are used to transfer the heat of the electronic substrate 10, particularly the first control circuit 40 and the power supply circuit 60, to the outside of the electronic substrate 10. 60 can be cooled.
  • FIG. 6 shows a CC cross section passing through the optical interconnector 31 of the data communication electronic device 5 of FIG.
  • the optical interconnector 31 and the power supply circuit 60 are mounted.
  • the second optical fiber cable 71 for connecting the optical signal between the optical input / output terminal 30 and the optical interconnector 31, and the electrical input / output terminal 120 on the back side are visible.
  • thermosiphon 80 is attached to the optical interconnector 31 and the power supply circuit 60 via an elastomer 90.
  • a boiling region 81 is provided in the thermosiphon 80 on the optical interconnector 31 and the power supply circuit 60.
  • the boiling region 81 is called a boiling heat transfer surface, and is provided with a heat transfer surface that improves boiling heat transfer.
  • the shape of the boiling heat transfer surface varies depending on the refrigerant, and has a fine fin shape that promotes the formation of boiling nuclei.
  • a partition wall 100 is provided so that the optical interconnector 31 and the thermosiphon 80 of the power supply circuit 60 are in different rooms.
  • the condensation region 83 is a condensation heat transfer surface, and is provided with, for example, flat plate-shaped fins in order to improve the condensation performance.
  • the radiator 82 directly under the condensation region 83 is for heat dissipation of the optical interconnector 31.
  • the air passage 20 can be partitioned by providing the radiator 82 with a flat plate shape.
  • the amount of the coolant 110 that is a refrigerant varies depending on the amount of heat transported in each room of the thermosiphon 80.
  • the amount of the refrigerant liquid 110 is large and the liquid level is high.
  • the liquid level of the refrigerant liquid is low.
  • thermosiphon 80 and the air passage 20 the heat of the electronic substrate 10, particularly the optical interconnector 31, can be transferred to the outside of the electronic substrate 10, and the optical interconnector 31 can be cooled.
  • FIG. 7 shows an overall structural view of an electronic device 500 such as a server in which the fan 21 according to an embodiment of the present invention is provided on the front surface and the back surface of the radiator 82 as viewed from above.
  • the fan 21 By installing the fan 21 in parallel with the push and pull, the wind pressure of the cooling air 22 can be increased, the clearance between the fins of the radiator 82 can be narrowed, and high performance can be achieved. Further, even when one of the front and rear fans 21 is out of order, the number of operations can be increased without shutting down the electronic device 500 by rotating the other fan 21 at a high speed.
  • FIG. 8 is an external perspective view showing a plurality of data communication electronic devices 5 equipped with optical input / output equipped with thermosiphons using the phase change according to the present invention.
  • a rack 1 includes a housing 2 and lids 3 and 4 (3 is a front door and 4 is a back door), and a plurality of units formed in a predetermined shape and size are provided inside the rack 1.
  • a data communication electronic device 5 is detachably provided.
  • a fan is attached to the rack 1 on the back side as described with reference to FIG.
  • Data communication is performed between a plurality of data communication electronic devices 5, or communication is performed with data communication electronic devices in other racks. By providing optical communication, data transfer can be performed at high speed.
  • partition wall 110 ... refrigerant liquid 120 ... Electric signal input / output terminal, 130 ... Power supply terminal, 140 ... Backboard, 150 ... Optical module for clients, 161, 162, 163, 164, 165, 166 ... Semiconductor element.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

In order to prevent electrical properties of a data communication-use electronic apparatus from being affected by dirt and dust generated when cooling air is caused to flow within a substrate of the electronic apparatus, this data communication-use electronic apparatus has a structure in which grease or elastomer is interposed below a boiling area of a thermosiphon, and has a configuration in which the phase-change module is divided into sections of heating elements having approximately the same allowable temperature and a condensation area is divided by air paths, for example, a configuration in which end-portion fins of parallel plate fins partition an air path.

Description

データ通信用電子機器Electronic equipment for data communication
 本発明は、ネットワーク機器、サーバ機器、ストレージ機器等の電子機器に関し、サーモサイフォンを利用して電子機器の電子基板の発熱を基板外へ伝熱し、ファイバケーブルでの通信を高性能で行うことのできる冷却システム、更には、かかる冷却システムを搭載するに適した電子機器に関する。 The present invention relates to an electronic device such as a network device, a server device, and a storage device, and uses a thermosiphon to transfer heat generated from the electronic substrate of the electronic device to the outside of the substrate and perform high-performance communication using a fiber cable. Further, the present invention relates to an electronic device suitable for mounting such a cooling system.
 近年、ネットワーク機器などに代表される電子装置においては、高速伝送用として光入出力端子を有し、光コネクタ/ファイバケーブルが搭載されつつある。光ファイバケーブル内の光は、境界面に対して光が一定の角度でぶつかり、一定の角度で反射して進行する。そのため、光ファイバケーブルの曲げの角度が大きくなると、ファイバケーブル外層のクラッドでの漏えいが増し、通信できなくなる。同様に通信が安定しない(波形揺れ、誤動作)という通信不良が、冷却風により光ファイバケーブルが揺れた場合でも、生じる。また、光コネクタ/ファイバケーブルは他の機器との通信を行う為、装置の筺体背面側に位置し、制御回路の発熱により風温上昇した冷却風で冷却するため、冷却が厳しい現状がある。また、ネットワーク機器に限らず、電子装置では冷却風を基板内に流す際に、埃等が半導体素子の端子に付着し、電気的に短絡し、電子装置が破損する。 In recent years, electronic devices such as network devices have optical input / output terminals for high-speed transmission, and optical connectors / fiber cables are being installed. The light in the optical fiber cable travels by colliding at a certain angle with respect to the boundary surface and reflecting at a certain angle. For this reason, when the bending angle of the optical fiber cable is increased, leakage in the cladding of the outer layer of the fiber cable is increased, and communication cannot be performed. Similarly, a communication failure such as unstable communication (waveform fluctuation, malfunction) occurs even when the optical fiber cable is shaken by cooling air. In addition, since the optical connector / fiber cable communicates with other devices, the optical connector / fiber cable is located on the rear side of the housing of the apparatus, and is cooled with cooling air whose air temperature has risen due to heat generated by the control circuit. In addition to network devices, in electronic devices, when cooling air is allowed to flow through a substrate, dust or the like adheres to the terminals of the semiconductor element and is electrically short-circuited, resulting in damage to the electronic device.
 このような背景に対して、下記特許文献1では、装置筐体内が密閉室と風洞により構成され、風洞は送風機により上方から下方に通風され、密閉室内の半導体素子をヒートパイプにより冷却されている。特許文献2では、凝縮器を風洞の導風路に沿って前後に並ぶように配置し、風胴に冷却空気を送風して半導体モジュールを冷却するようにした沸騰冷却装置である。特許文献3では、光コネクタ、光ワイヤー等を実装した基板の冷却実装構造である。また、特許文献4では、サーバの技術分野においてはサーモサイフォン+直進風路構造である。 Against such a background, in Patent Document 1 below, the inside of the device casing is constituted by a sealed chamber and a wind tunnel, the wind tunnel is ventilated from above to below by a blower, and the semiconductor element in the sealed chamber is cooled by a heat pipe. . Patent Document 2 discloses a boiling cooling device in which condensers are arranged so as to be lined up and down along an air guide path of a wind tunnel, and cooling air is blown to a wind tunnel to cool a semiconductor module. In patent document 3, it is the cooling mounting structure of the board | substrate which mounted the optical connector, the optical wire, etc. In Patent Document 4, in the technical field of servers, a thermosiphon + straight air path structure is used.
特開2006-050742公報JP 2006-050742 A 特開2005-150489公報Japanese Patent Laid-Open No. 2005-150489 特開平06-029676公報Japanese Patent Laid-Open No. 06-029676 特開2010-080507公報JP 2010-080507 A
 光ファイバケーブルを搭載する電子基板に光コネクタ以外に、制御回路、電源回路などが実装される。それぞれの許容温度が異なり、特に光コネクタの許容温度が小さい。上述の従来技術に対して、サーバの技術分野においては従来あったサーモサイフォン+直進風路構造を光通信装置にそのまま適用しようとすると許容温度の低い光コネクタを冷却できないという課題がある。また、光コネクタは外部と連携するために、取り扱い上、ラック正面または背面に設置され、下流側に位置する背面側光コネクタが冷却上厳しいことへの言及はなく、何ら配慮されていない。さらに、塵埃による電気的短絡に関して、基板以外の箇所に冷却風を流して冷却することへの言及がなく、何ら配慮されていない。 In addition to the optical connector, a control circuit, a power circuit, etc. are mounted on the electronic board on which the optical fiber cable is mounted. Each allowable temperature is different, and particularly the allowable temperature of the optical connector is small. In contrast to the above-described conventional technology, in the technical field of servers, there is a problem that an optical connector having a low allowable temperature cannot be cooled if the conventional thermosiphon + straight air path structure is applied as it is to an optical communication device. Further, since the optical connector is linked to the outside, it is installed on the front or back of the rack for handling, and there is no mention that the back side optical connector located on the downstream side is severe in cooling, and no consideration is given. Furthermore, no consideration is given to the electrical short circuit caused by dust, because there is no mention of cooling by flowing cooling air to a place other than the substrate.
 上記課題を解決するために、本発明のデータ通信用電子機器は、電子基板部と、前記電子基板部に隣接して配置され、前記電子基板部から発生した熱を外部に放出するための風が前記電子基板部を避けて直線的に通過する風路を形成する風路部とを備えたデータ通信用電子機器であって、前記電子基板部は、複数の半導体素子を搭載し、前記複数の半導体素子は許容温度が互いに異なり、前記風路部は、前記風を生成するためのファンを搭載し、前記電子基板部と前記風路部とは相変化デバイスであるサーモサイフォンによって互いに熱的に接続され、前記電子基板部の前記半導体素子の近傍には前記サーモサイフォンの吸熱部である沸騰領域が配置され、前記風路部には前記サーモサイフォンの放熱部であってラジエータを含んで構成される凝縮領域が配置され、前記サーモサイフォンの前記沸騰領域と前記凝縮領域とが、前記半導体素子の許容温度区分毎に別々に設けられ、別々の密閉空間となることを特徴とする。 In order to solve the above-described problems, an electronic device for data communication according to the present invention is provided with an electronic substrate portion and a wind for dissipating heat generated from the electronic substrate portion to the outside. Is an electronic device for data communication provided with an air passage portion that forms an air passage that passes linearly avoiding the electronic substrate portion, wherein the electronic substrate portion includes a plurality of semiconductor elements, The semiconductor elements of the present invention have different allowable temperatures, the air passage portion is equipped with a fan for generating the wind, and the electronic substrate portion and the air passage portion are thermally connected to each other by a thermosyphon that is a phase change device. A boiling region that is a heat absorption part of the thermosiphon is disposed in the vicinity of the semiconductor element of the electronic substrate part, and a heat dissipation part of the thermosyphon that includes a radiator in the air passage part. The That the condensation zone are arranged, and the boiling region and the condensation region of the thermo siphon, said separately provided for each allowable temperature section of the semiconductor elements, characterized in that a separate closed space.
 本発明によれば、データ通信用電子機器に搭載された半導体素子、光コネクタ、その他の部品を許容温度以下で冷却することが可能となる。 According to the present invention, it is possible to cool a semiconductor element, an optical connector, and other components mounted on a data communication electronic device at or below an allowable temperature.
本発明の一実施の形態になるサーモサイフォンを利用した相変化モジュールを搭載した装置の上面から見た全体概念図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the whole conceptual diagram seen from the upper surface of the apparatus which mounts the phase change module using the thermosiphon which becomes one embodiment of this invention. 本発明の一実施の形態になるサーモサイフォンを利用した相変化モジュール周りを搭載したサーバ等の電子機器の上面から見た全体構造図である。It is the whole structure figure seen from the upper surface of electronic equipments, such as a server carrying the circumference of a phase change module using thermosiphon which becomes one embodiment of the present invention. 本発明の一実施の形態になるサーモサイフォンを利用した相変化モジュール周りを搭載したデータ通信用電子機器の上面から見た全体構造図である。It is the whole structure figure seen from the upper surface of the electronic equipment for data communications carrying the circumference of the phase change module using the thermosiphon which becomes one embodiment of the present invention. 上記図1のデータ通信用電子機器のA-A断面図である。It is AA sectional drawing of the electronic device for data communication of the said FIG. 上記図1のデータ通信用電子機器のB-B断面図である。It is BB sectional drawing of the electronic device for data communications of the said FIG. 上記図1のデータ通信用電子機器のC-C断面図である。It is CC sectional drawing of the electronic device for data communications of the said FIG. 本発明の図2のファンをラジエータの前面、背面に設けたサーバ等の電子機器を上面から見た全体構造図である。It is the whole structural view which looked at electronic equipments, such as a server which provided the fan of Drawing 2 of the present invention on the front and back of a radiator from the upper surface. 本発明のサーモサイフォンを利用した相変化モジュールが適用される電子装置の代表例として、データ通信用電子機器をラックに複数台搭載した斜視図である。1 is a perspective view of a plurality of electronic devices for data communication mounted on a rack as a representative example of an electronic device to which a phase change module using a thermosiphon of the present invention is applied.
 本発明における相変化モジュール及びそれを搭載した電子機器は、サーモサイフォンの沸騰領域下部にグリース、またはエラストマを介する構造とする。また、許容温度がほぼ同じ発熱体ごとに相変化モジュールを分け、凝縮領域を風路で分割する構成、例えば平行平板フィンの端部フィンが風路分割する構成である。さらに、半導体素子の熱を基板以外の箇所までサーモサイフォンで熱を輸送し、この基板外の箇所にラジエータを設け、外気へ放熱する構成である。 The phase change module according to the present invention and the electronic device on which the phase change module is mounted have a structure in which a grease or an elastomer is interposed under the boiling region of the thermosyphon. Moreover, it is the structure which divides | segments a phase change module for every heating element with substantially the same permissible temperature, and divides | segments a condensation area | region with an air path, for example, the structure which the edge part fin of a parallel plate fin divides an air path. Furthermore, the heat of the semiconductor element is transported to a place other than the substrate by a thermosiphon, and a radiator is provided at a place outside the substrate to radiate heat to the outside air.
 上記本発明の構成によって、相変化モジュール及びそれを搭載した電子機器装置は、半導体素子、光コネクタ他の許容温度以下で冷却することができる。さらに、上流側制御LSI等の風温上昇の影響を受けにくくできる。さらに、基板内に冷却風が流れないため、塵埃が半導体素子に停滞しにくくなり、半導体素子の節点部の電気的短絡を防止することができる。 With the configuration of the present invention described above, the phase change module and the electronic device on which the phase change module is mounted can be cooled below the allowable temperature of the semiconductor element, the optical connector, and the like. Furthermore, it can be made less susceptible to the rise in air temperature of the upstream control LSI or the like. Further, since the cooling air does not flow in the substrate, the dust is less likely to stay in the semiconductor element, and an electrical short circuit at the node portion of the semiconductor element can be prevented.
 以下、本発明における実施形態について、図面を用いて詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 図1は、サーモサイフォンを利用した相変化モジュールを搭載した装置の上面から見た全体概念図である。電子基板10に半導体素子161、162、163が実装され、発熱している。半導体素子161、162、163は形状や発熱量、許容ケース温度が異なります。これらの熱を相変化デバイスであるサーモサイフォン80により、ラジエータ82まで伝熱し、ファン21により冷却風22で輸送する。形状や発熱量、許容ケース温度が異なる半導体素子161、162、163はサーモサイフォン80に熱的に接続されている。サーモサイフォン80の内部には隔壁100が設けられ、半導体素子161、162、163の夫々を個別に冷却し、熱を輸送するために、A室801、B室802、C室803の3部屋となっている。3部屋で個別に冷媒の相変化が行なわれ、半導体素子161、162、163の夫々の熱を個別のラジエータ82から冷却風22へ輸送される。このラジエータ82の風路20はA室801、B室802、C室803の夫々が単独になるようなラジエータ82のフィン構造となっている。すなわち、ラジエータ82に平行平板フィンを用いることで、1つの部屋のラジエータ82が他の部屋のラジエータ82に影響を与えない構造となっている。以上により、下流側のC室803のラジエータ82にも温度上昇していない冷却風を供給することができる。 FIG. 1 is an overall conceptual diagram seen from the upper surface of an apparatus equipped with a phase change module using a thermosiphon. Semiconductor elements 161, 162, and 163 are mounted on the electronic substrate 10 and generate heat. Semiconductor elements 161, 162, and 163 differ in shape, heat generation, and allowable case temperature. The heat is transferred to the radiator 82 by the thermosiphon 80 that is a phase change device, and is transported by the cooling air 22 by the fan 21. Semiconductor elements 161, 162, and 163 having different shapes, calorific values, and allowable case temperatures are thermally connected to the thermosiphon 80. A partition wall 100 is provided inside the thermosiphon 80. In order to individually cool the semiconductor elements 161, 162, and 163 and transport heat, the three chambers A, 801, B 802, and C 803 are provided. It has become. Phase change of the refrigerant is performed individually in the three rooms, and the heat of each of the semiconductor elements 161, 162, 163 is transported from the individual radiator 82 to the cooling air 22. The air passage 20 of the radiator 82 has a fin structure of the radiator 82 such that each of the A chamber 801, the B chamber 802, and the C chamber 803 is independent. That is, by using parallel plate fins for the radiator 82, the radiator 82 in one room does not affect the radiator 82 in another room. As described above, the cooling air whose temperature has not risen can be supplied to the radiator 82 in the downstream C chamber 803.
 図2は、サーバ等の電子機器500をラック1に搭載した場合の上面図である。構成要素をわかりやすく記載するため、上面のカバーを外した図である。電子基板10には種々の形状の半導体素子164、165,166、外部との電気信号の入出力を電気入出力端子120、電力を電子基板10に供給するバックボード140が端部に取り付けられている。これらの端子は雄型であり、ラックに取り付けられたバックボード140の雌型の端子に挿入し、電力供給を電子機器500内で容易に行うことができる。 FIG. 2 is a top view when the electronic device 500 such as a server is mounted on the rack 1. It is the figure which removed the cover of the upper surface in order to describe a component clearly. Various types of semiconductor elements 164, 165, 166, an input / output terminal 120 for inputting / outputting electric signals to / from the outside, and a backboard 140 for supplying electric power to the electronic substrate 10 are attached to the end of the electronic substrate 10. Yes. These terminals are male and can be inserted into the female terminals of the backboard 140 attached to the rack to easily supply power within the electronic device 500.
 次に、風路20の構成を説明する。電子基板10に隣接して配置され、電子基板10から発生した熱を外部に放出するための冷却風22が電子基板10を避けて直線的に通過する風路20を形成する。 Next, the configuration of the air passage 20 will be described. The cooling air 22 disposed adjacent to the electronic substrate 10 and for releasing the heat generated from the electronic substrate 10 to the outside forms an air passage 20 that passes straight through the electronic substrate 10.
 また、風路20には冷却風22を生成するためのファン21が搭載され、電子基板10と風路20とは相変化デバイスであるサーモサイフォン80によって互いに熱的に接続されている。 In addition, a fan 21 for generating cooling air 22 is mounted on the air passage 20, and the electronic substrate 10 and the air passage 20 are thermally connected to each other by a thermosiphon 80 that is a phase change device.
 ファン21はラック1に取り付けられており、電子機器500を取り外した場合でも、ファン21はラック1にそのまま残る。 The fan 21 is attached to the rack 1, and the fan 21 remains in the rack 1 even when the electronic device 500 is removed.
 また、サーモサイフォン80は、電子基板10の半導体素子164、165,166の少なくともいずれか1つの近傍にはサーモサイフォン80の吸熱部の沸騰領域81がある。 Further, the thermosiphon 80 has a boiling region 81 of a heat absorption part of the thermosiphon 80 in the vicinity of at least one of the semiconductor elements 164, 165, 166 of the electronic substrate 10.
 さらに、サーモサイフォン80は、風路20に放熱部のラジエータ82を含む凝縮領域83がある。 Furthermore, the thermosiphon 80 has a condensing region 83 including a radiator 82 of a heat radiating portion in the air passage 20.
 また、サーモサイフォン80には冷媒が封入され、その冷媒の相変化で沸騰領域81から凝縮領域83へ熱を移動させることができる。このサーモサイフォン80によって、電子基板10の半導体素子164、165,166で生じた熱をラジエータ82まで伝え、ファン21による冷却風22に伝熱し、ラック1の外へ放出させることができる。 Further, a refrigerant is enclosed in the thermosiphon 80, and heat can be transferred from the boiling region 81 to the condensation region 83 by the phase change of the refrigerant. With this thermosiphon 80, heat generated in the semiconductor elements 164, 165, 166 of the electronic substrate 10 can be transmitted to the radiator 82, transferred to the cooling air 22 by the fan 21, and released to the outside of the rack 1.
 これにより、電子基板10に冷却風22が流れずに、塵埃による半導体素子164、165,166の節点短絡による電子機器500の故障を防ぐことができる。 Thus, the cooling air 22 does not flow through the electronic substrate 10, and the electronic device 500 can be prevented from being damaged due to short-circuiting of the semiconductor elements 164, 165, and 166 due to dust.
 以上より、サーモサイフォン80および風路20を用いて、電子基板10を冷却することができる。 As described above, the electronic substrate 10 can be cooled using the thermosiphon 80 and the air passage 20.
 一方、電子基板10の発熱体である半導体素子164、165,166の許容温度は異なる。そのため、サーモサイフォン80の冷媒の蒸気温度を半導体素子164、165,166の許容温度ごとに変える必要がある。そのため、サーモサイフォン80の内部には隔壁100が設けられ、沸騰領域81と凝縮領域83が分離され、A室801、B室802、C室803になっている。図2では沸騰領域81と凝縮領域83が許容温度区分毎に別々に設けられ、隔壁100により、3つの別々の密閉空間(部屋)に分かれている。隔壁100で分離された3つの部屋の凝縮領域83に設けたラジエータ82のうち、ラジエータ82は、その上流側には他の部屋の凝縮領域83に位置せず、ラジエータも搭載されない。これにより、下流側では上流側からの発熱による風温上昇の影響を受けず、新鮮な冷却風22を供給できる。 On the other hand, the allowable temperatures of the semiconductor elements 164, 165, and 166, which are heating elements of the electronic substrate 10, are different. Therefore, it is necessary to change the vapor temperature of the refrigerant of the thermosiphon 80 for each allowable temperature of the semiconductor elements 164, 165, 166. Therefore, the partition wall 100 is provided inside the thermosiphon 80, and the boiling region 81 and the condensation region 83 are separated into an A chamber 801, a B chamber 802, and a C chamber 803. In FIG. 2, the boiling region 81 and the condensing region 83 are provided separately for each allowable temperature section, and are divided into three separate sealed spaces (rooms) by the partition wall 100. Of the radiators 82 provided in the condensing regions 83 of the three rooms separated by the partition wall 100, the radiator 82 is not positioned in the condensing region 83 of another room on the upstream side, and no radiator is mounted. As a result, fresh cooling air 22 can be supplied on the downstream side without being affected by an increase in air temperature due to heat generation from the upstream side.
 これにより、各部屋の冷媒の蒸気温度を制御し、許容温度は異なる半導体素子164、165,166を個別に冷却でき、許容温度以下にできる。 Thereby, the vapor temperature of the refrigerant in each room is controlled, and the semiconductor elements 164, 165, and 166 having different allowable temperatures can be individually cooled, and can be made lower than the allowable temperature.
 図3は、光信号を用いてデータ通信を行うデータ通信用電子機器5をラック1に搭載した場合の上面図である。構成要素をわかりやすく記載するため、上面のカバーを外した図である。電子基板10には外部との光信号の入出力を行う光入出力端子30、外部との電気信号の入出力を電気入出力端子120、電力を電子基板10に供給する電力供給端子140が端部に取り付けられている。これらの端子は雄型であり、ラックに取り付けられたバックボード140の雌型の端子に挿入し、信号入出力と電力供給をデータ通信用電子機器5内で容易に行うことができる。 FIG. 3 is a top view when the data communication electronic device 5 that performs data communication using an optical signal is mounted on the rack 1. It is the figure which removed the cover of the upper surface in order to describe a component clearly. The electronic board 10 has an optical input / output terminal 30 for inputting / outputting optical signals to / from the outside, an electric input / output terminal 120 for inputting / outputting electric signals to / from the outside, and a power supply terminal 140 for supplying electric power to the electronic board 10. It is attached to the part. These terminals are male and can be inserted into the female terminals of the backboard 140 attached to the rack, so that signal input / output and power supply can be easily performed in the data communication electronic device 5.
 また、電子基板10には、外部からの光信号を分配する複数の光インタコネクタ31、プログラム可能な複数の半導体素子(FPGA)である第1の制御回路40、ユーザが個別に光信号を用いてデータを通信できる複数のクライアント向け光モジュール150、光や電気信号の往来を制御する制御基板回路である第2の制御回路50、およびそれらに所要の電圧、電流を供給できる電源回路60が実装されている。 Further, the electronic substrate 10 includes a plurality of optical interconnectors 31 that distribute optical signals from the outside, a first control circuit 40 that is a plurality of programmable semiconductor elements (FPGAs), and a user individually uses the optical signals. A plurality of client optical modules 150 that can communicate data, a second control circuit 50 that is a control board circuit that controls the transmission and reception of light and electrical signals, and a power supply circuit 60 that can supply them with necessary voltages and currents are mounted. Has been.
 さらに、光インタコネクタ31は、光入出力端子30から入力された光信号を受信して電子基板10内に送信する動作、および電子基板10内の光信号を受信して光入出力端子30へ送信する動作のいずれかを行う。 Further, the optical interconnector 31 receives the optical signal input from the optical input / output terminal 30 and transmits it to the electronic substrate 10, and receives the optical signal in the electronic substrate 10 and supplies it to the optical input / output terminal 30. Perform one of the actions to send.
 また、第1の制御回路40は、それぞれの光インタコネクタ31が受信する動作および送信する動作を制御する。 Also, the first control circuit 40 controls the operations received and transmitted by the respective optical interconnectors 31.
 クライアント向け光モジュール150は、光インタコネクタ31と同様の機能を有するが、ユーザが用途に合わせて個別にクライアント向け光モジュール150と連結できる。 The client optical module 150 has the same function as the optical interconnector 31, but the user can individually connect to the client optical module 150 according to the application.
 さらに、各光インタコネクタ31と各第1の制御回路40との間を互いに光通信可能に接続する第1の光ファイバケーブル70が複数設けられている。 Furthermore, a plurality of first optical fiber cables 70 are provided to connect each optical interconnector 31 and each first control circuit 40 so as to be capable of optical communication with each other.
 また、各光インタコネクタ31と光入出力端子50との間を互いに光通信可能に接続する第2の光ファイバケーブル71が複数設けられている。 Also, a plurality of second optical fiber cables 71 are provided for connecting each optical interconnector 31 and the optical input / output terminal 50 so as to be capable of optical communication with each other.
 これらの構成により、光通信を高速かつ大容量で行うことができる。 These configurations enable optical communication to be performed at high speed and large capacity.
 次に、風路20の構成を説明する。電子基板10に隣接して配置され、電子基板10から発生した熱を外部に放出するための冷却風22が電子基板10を避けて直線的に通過する風路20を形成する。 Next, the configuration of the air passage 20 will be described. The cooling air 22 disposed adjacent to the electronic substrate 10 and for releasing the heat generated from the electronic substrate 10 to the outside forms an air passage 20 that passes straight through the electronic substrate 10.
 また、風路20には冷却風22を生成するためのファン21が搭載され、電子基板10と風路20とは相変化デバイスであるサーモサイフォン80によって互いに熱的に接続されている。 In addition, a fan 21 for generating cooling air 22 is mounted on the air passage 20, and the electronic substrate 10 and the air passage 20 are thermally connected to each other by a thermosiphon 80 that is a phase change device.
 ファン21はラック1に取り付けられており、データ通信用電子機器5を取り外した場合でも、ファン21はラック1にそのまま残る。 The fan 21 is attached to the rack 1, and the fan 21 remains in the rack 1 even when the data communication electronic device 5 is removed.
 また、サーモサイフォン80は、電子基板10の光インタコネクタ31、第1の制御回路40、第2の制御回路50、および電源回路60の少なくともいずれか1つの近傍にはサーモサイフォン80の吸熱部の沸騰領域81がある。 In addition, the thermosiphon 80 is located near at least one of the optical interconnector 31, the first control circuit 40, the second control circuit 50, and the power supply circuit 60 of the electronic substrate 10. There is a boiling region 81.
 さらに、サーモサイフォン80は、風路20に放熱部のラジエータ82を含む凝縮領域83がある。 Furthermore, the thermosiphon 80 has a condensing region 83 including a radiator 82 of a heat radiating portion in the air passage 20.
 また、サーモサイフォン80には冷媒が封入され、その冷媒の相変化で沸騰領域81から凝縮領域83へ熱を移動させることができる。このサーモサイフォン80によって、電子基板10の光インタコネクタ31、第1の制御回路40、第2の制御回路50、および電源回路60で生じた熱をラジエータ82まで伝え、ファン21による冷却風22に伝熱し、ラック1の外へ放出させることができる。 Further, a refrigerant is enclosed in the thermosiphon 80, and heat can be transferred from the boiling region 81 to the condensation region 83 by the phase change of the refrigerant. The thermosiphon 80 transmits heat generated in the optical interconnector 31, the first control circuit 40, the second control circuit 50, and the power supply circuit 60 of the electronic substrate 10 to the radiator 82, and the cooling air 22 generated by the fan 21 is transmitted to the cooling air 22. Heat can be transferred and discharged out of the rack 1.
 これにより、複数の第1の光ファイバケーブル70および複数の第2の光ファイバケーブル71に冷却風22が流れずに、光ファイバケーブルの揺れによる光信号の誤動作、遅延を防ぐことができる。 Thus, the cooling air 22 does not flow through the plurality of first optical fiber cables 70 and the plurality of second optical fiber cables 71, and the malfunction and delay of the optical signal due to the shaking of the optical fiber cable can be prevented.
 また、特にクライアント向け光モジュール150の端子は、ユーザが個別に光ファイバケーブルを差し込むため、光ファイバケーブルを差し込まない場合、端子が剥き出しになる。これにより、冷却風が電子基板10に流れた場合、塵埃などが端子に入り込み、節点部の誤動作、節点不良を引き起こす。また、同様なことが電子基板10に実装された半導体素子、デバイスでも起こり得る。しかし、冷却風22を電子基板10外の風路20に流した場合、光ファイバケーブルを差し込まない端子や電子基板10に実装された半導体素子、デバイスには冷却風が流れない。このため、塵埃などよる節点部の誤動作、節点不良を防止できる。 In particular, since the user inserts the optical fiber cable individually, the terminal of the optical module 150 for clients is exposed when the optical fiber cable is not inserted. As a result, when cooling air flows through the electronic substrate 10, dust or the like enters the terminal, causing a malfunction of the node portion or a node failure. The same thing can occur with a semiconductor element or device mounted on the electronic substrate 10. However, when the cooling air 22 flows through the air path 20 outside the electronic substrate 10, the cooling air does not flow through the terminals into which the optical fiber cable is not inserted, the semiconductor element mounted on the electronic substrate 10, or the device. For this reason, it is possible to prevent a malfunction of the node portion due to dust or the like and a node failure.
 以上より、サーモサイフォン80および風路20を用いて、電子基板10を冷却することができる。一方、電子基板10を冷却できる冷却風が、直接電子基板10に供給された場合には、第1の光ファイバケーブル70、第2の光ファイバケーブル71での光信号の導通を阻害し、誤動作を招く。 As described above, the electronic substrate 10 can be cooled using the thermosiphon 80 and the air passage 20. On the other hand, when the cooling air that can cool the electronic substrate 10 is supplied directly to the electronic substrate 10, the optical signal conduction in the first optical fiber cable 70 and the second optical fiber cable 71 is obstructed, resulting in malfunction. Invite.
 一方、電子基板10の発熱体である光インタコネクタ31、第1の制御回路40、第2の制御回路50、電源回路60、およびクライアント向け光モジュール150の許容温度は異なる。光インタコネクタ31、クライアント向け光モジュール150は光素子が組み込まれているため、許容温度が他の第1の制御回路40、電源回路60の許容温度よりも低い。そのため、サーモサイフォン80の冷媒の蒸気温度を光インタコネクタ31、クライアント向け光モジュール150では他の第1の制御回路40、電源回路60の冷媒の蒸発温度よりも低く抑える必要がある。そのため、サーモサイフォン80の内部には隔壁100が設けられ、沸騰領域81と凝縮領域83が分離されている。図3では沸騰領域81と凝縮領域83が許容温度区分毎に別々に設けられ、隔壁100により、3つの別々の密閉空間(部屋)に分かれている。隔壁100で分離された3つの部屋の凝縮領域83に設けたラジエータ82のうち、下流側の光インタコネクタ31の放熱用のラジエータ82は、その上流側には他の部屋の凝縮領域83に位置せず、ラジエータも搭載されない。これにより、下流側の光インタコネクタ31は上流側の第1の制御回路40、第2の制御回路50、電源回路60、およびクライアント向け光モジュール150からの発熱による風温上昇の影響を受けず、新鮮な冷却風22を供給できる。 On the other hand, the allowable temperatures of the optical interconnector 31, which is a heating element of the electronic substrate 10, the first control circuit 40, the second control circuit 50, the power supply circuit 60, and the client optical module 150 are different. Since the optical interconnector 31 and the optical module for client 150 incorporate optical elements, the allowable temperature is lower than the allowable temperatures of the other first control circuit 40 and power supply circuit 60. Therefore, it is necessary to keep the vapor temperature of the refrigerant in the thermosiphon 80 lower than the vaporization temperature of the refrigerant in the other first control circuit 40 and the power supply circuit 60 in the optical interconnector 31 and the optical module 150 for clients. Therefore, the partition wall 100 is provided inside the thermosiphon 80, and the boiling region 81 and the condensing region 83 are separated. In FIG. 3, the boiling region 81 and the condensing region 83 are provided separately for each allowable temperature section, and are divided into three separate sealed spaces (rooms) by the partition wall 100. Of the radiators 82 provided in the condensing regions 83 of the three rooms separated by the partition wall 100, the radiator 82 for heat dissipation of the downstream optical interconnector 31 is located in the condensing region 83 of another room on the upstream side. Without a radiator. As a result, the downstream optical interconnector 31 is not affected by the rise in air temperature due to heat generated from the upstream first control circuit 40, second control circuit 50, power supply circuit 60, and client optical module 150. The fresh cooling air 22 can be supplied.
 これにより、各部屋の冷媒の蒸気温度を制御し、許容温度は異なる光インタコネクタ31、第1の制御回路40、第2の制御回路50、電源回路60、およびクライアント向け光モジュール150、特に、許容温度が第1の制御回路40、電源回路60よりも低い、光インタコネクタ31、クライアント向け光モジュール150を許容温度以下にできる。 Thereby, the vapor temperature of the refrigerant in each room is controlled, and the allowable temperature is different, the optical interconnector 31, the first control circuit 40, the second control circuit 50, the power supply circuit 60, and the client optical module 150, The optical interconnector 31 and the client optical module 150 whose permissible temperature is lower than that of the first control circuit 40 and the power supply circuit 60 can be made below the permissible temperature.
 次に、図3のデータ通信用電子機器5の第2の制御回路50、クライアント向け光モジュール150を通るA-A断面を図4に示す。 Next, FIG. 4 shows an AA cross section passing through the second control circuit 50 and the client optical module 150 of the data communication electronic device 5 of FIG.
 データ通信用電子機器5には図3で説明したように、クライアント向け光モジュール150、第2の制御回路50、電源回路60が実装されている。クライアント向け光モジュール150、電源回路60はエラストマ90を介して、サーモサイフォン80が取り付けられている。クライアント向け光モジュール150、電源回路60の上で、サーモサイフォン80の内部には沸騰領域81が設けられている。この沸騰領域81は沸騰伝熱面と呼ばれ、沸騰伝熱を向上させる伝熱面が設けられている。沸騰伝熱面の形状は冷媒によっても異なり、沸騰核の生成を促進させる微細なフィン形状となっている。また、クライアント向け光モジュール150、第2の制御回路50と電源回路60のサーモサイフォン80は異なる部屋となるように、隔壁100が設けられている。 As described with reference to FIG. 3, the data communication electronic device 5 is mounted with the client optical module 150, the second control circuit 50, and the power supply circuit 60. The client-side optical module 150 and the power supply circuit 60 are provided with a thermosiphon 80 via an elastomer 90. On the client optical module 150 and the power supply circuit 60, a boiling region 81 is provided inside the thermosiphon 80. The boiling region 81 is called a boiling heat transfer surface, and is provided with a heat transfer surface that improves boiling heat transfer. The shape of the boiling heat transfer surface varies depending on the refrigerant, and has a fine fin shape that promotes the formation of boiling nuclei. Further, the partition wall 100 is provided so that the optical module 150 for clients, the second control circuit 50, and the thermosiphon 80 of the power supply circuit 60 are in different rooms.
 電子基板10の外側に位置する凝縮領域83にはラジエータ82がある。凝縮領域83は凝縮伝熱面であり、凝縮性能を向上させるために、たとえば平板形状のフィンが設けられている。凝縮領域83の真下のラジエータ82は、第2の制御回路50、クライアント向け光モジュール150の放熱用である。一方、凝縮領域83がないラジエータ82は、下流側に位置する光インタコネクタの放熱用である。このように冷却風の流れ方向で見た場合、ラジエータ82に平板形状を設けることで、風路20を仕切ることができる。これにより、各風路20では隣り合うラジエータからの放熱を受けない構造を実現できる。 There is a radiator 82 in the condensation region 83 located outside the electronic substrate 10. The condensation region 83 is a condensation heat transfer surface, and is provided with, for example, flat plate-shaped fins in order to improve the condensation performance. The radiator 82 directly below the condensing region 83 is for heat dissipation of the second control circuit 50 and the optical module 150 for clients. On the other hand, the radiator 82 without the condensing region 83 is for heat dissipation of the optical interconnector located on the downstream side. Thus, when viewed in the flow direction of the cooling air, the air passage 20 can be partitioned by providing the radiator 82 with a flat plate shape. Thereby, in each air path 20, the structure which does not receive the heat radiation from an adjacent radiator is realizable.
 また、冷媒である冷却液110の量はサーモサイフォン80の各部屋の熱輸送量で異なる。たとえば、高い熱量を有する電源回路60の部屋では冷媒液110の量が多く、液面が高い。一方、比較的小さい熱量の第2の制御回路50、クライアント向け光モジュール150では冷媒液の液面が低い。 In addition, the amount of the coolant 110 that is a refrigerant varies depending on the amount of heat transported in each room of the thermosiphon 80. For example, in the room of the power supply circuit 60 having a high amount of heat, the amount of the refrigerant liquid 110 is large and the liquid level is high. On the other hand, in the second control circuit 50 and the client optical module 150 having a relatively small amount of heat, the liquid level of the refrigerant liquid is low.
 以上より、サーモサイフォン80および風路20を用いて、電子基板10、特に第2の制御回路50、クライアント向け光モジュール150の熱を電子基板10の外へ伝熱し、第2の制御回路50、クライアント向け光モジュール150を冷却することができる。 As described above, the thermosiphon 80 and the air passage 20 are used to transfer heat of the electronic substrate 10, particularly the second control circuit 50, and the optical module 150 for clients to the outside of the electronic substrate 10, and the second control circuit 50, The optical module 150 for clients can be cooled.
 次に、図3のデータ通信用電子機器5の第1の制御回路40、電源回路600を通るB-B断面を図5に示す。第1の制御回路40と光インタコネクタ間の光信号を繋ぐ第1の光ファイバケーブル70が見えている。 Next, FIG. 5 shows a BB cross section passing through the first control circuit 40 and the power supply circuit 600 of the data communication electronic device 5 of FIG. The first optical fiber cable 70 that connects the optical signal between the first control circuit 40 and the optical interconnector is visible.
 データ通信用電子機器5には図3で説明したように、第1の制御回路40、電源回路60が実装されている。電源回路60はエラストマ90を介して、サーモサイフォン80が取り付けられている。第1の制御回路40、電源回路60の上で、サーモサイフォン80の内部には沸騰領域81が設けられている。この沸騰領域81は沸騰伝熱面と呼ばれ、図3の場合と同様、沸騰伝熱を向上させる伝熱面が設けられている。沸騰伝熱面の形状は冷媒によっても異なり、沸騰核の生成を促進させる微細なフィン形状となっている。また、第1の制御回路40と電源回路60のサーモサイフォン80は同じ部屋であるが、隔壁100が見えるのは奥の光インタコネクタ31の部屋との仕切り用である。 As described with reference to FIG. 3, the first electronic control circuit 40 and the power supply circuit 60 are mounted on the data communication electronic device 5. A thermosiphon 80 is attached to the power supply circuit 60 via an elastomer 90. On the first control circuit 40 and the power supply circuit 60, a boiling region 81 is provided inside the thermosiphon 80. This boiling region 81 is called a boiling heat transfer surface, and is provided with a heat transfer surface that improves boiling heat transfer as in the case of FIG. The shape of the boiling heat transfer surface varies depending on the refrigerant, and has a fine fin shape that promotes the formation of boiling nuclei. Further, the thermosiphon 80 of the first control circuit 40 and the power supply circuit 60 are in the same room, but the partition 100 can be seen for partitioning from the room of the optical interconnector 31 in the back.
 電子基板10の外側に位置する凝縮領域83にはラジエータ82がある。凝縮領域83は凝縮伝熱面であり、凝縮性能を向上させるために、たとえば平板形状のフィンが設けられている。凝縮領域83の真下のラジエータ82は、第1の制御回路40、電源回路60の放熱用である。一方、凝縮領域83がないラジエータ82は、下流側に位置する光インタコネクタの放熱用である。このように冷却風の流れ方向で見た場合、ラジエータ82に平板形状を設けることで、風路20を仕切ることができる。これにより、各風路20では隣り合うラジエータからの放熱を受けない構造を実現できる。 There is a radiator 82 in the condensation region 83 located outside the electronic substrate 10. The condensation region 83 is a condensation heat transfer surface, and is provided with, for example, flat plate-shaped fins in order to improve the condensation performance. The radiator 82 directly below the condensation region 83 is for heat dissipation of the first control circuit 40 and the power supply circuit 60. On the other hand, the radiator 82 without the condensing region 83 is for heat dissipation of the optical interconnector located on the downstream side. Thus, when viewed in the flow direction of the cooling air, the air passage 20 can be partitioned by providing the radiator 82 with a flat plate shape. Thereby, in each air path 20, the structure which does not receive the heat radiation from an adjacent radiator is realizable.
 また、冷媒である冷却液110の量はサーモサイフォン80の各部屋の熱輸送量で異なる。図5では同じ部屋であるので、冷媒液110の液面はほぼ同じである。 In addition, the amount of the coolant 110 that is a refrigerant varies depending on the amount of heat transported in each room of the thermosiphon 80. Since it is the same room in FIG. 5, the liquid level of the refrigerant liquid 110 is substantially the same.
 以上より、サーモサイフォン80および風路20を用いて、電子基板10、特に第1の制御回路40、電源回路60の熱を電子基板10の外へ伝熱し、第1の制御回路40、電源回路60を冷却することができる。 As described above, the thermosiphon 80 and the air passage 20 are used to transfer the heat of the electronic substrate 10, particularly the first control circuit 40 and the power supply circuit 60, to the outside of the electronic substrate 10. 60 can be cooled.
 次に、図3のデータ通信用電子機器5の光インタコネクタ31を通るC-C断面を図6に示す。 Next, FIG. 6 shows a CC cross section passing through the optical interconnector 31 of the data communication electronic device 5 of FIG.
 データ通信用電子機器5には図3で説明したように、光インタコネクタ31、電源回路60が実装されている。光入出力端子30と光インタコネクタ31間の光信号を繋ぐ第2の光ファイバケーブル71、背面側の電気入出力端子120が見えている。 In the data communication electronic device 5, as described with reference to FIG. 3, the optical interconnector 31 and the power supply circuit 60 are mounted. The second optical fiber cable 71 for connecting the optical signal between the optical input / output terminal 30 and the optical interconnector 31, and the electrical input / output terminal 120 on the back side are visible.
 光インタコネクタ31、電源回路60はエラストマ90を介して、サーモサイフォン80が取り付けられている。光インタコネクタ31、電源回路60の上で、サーモサイフォン80の内部には沸騰領域81が設けられている。この沸騰領域81は沸騰伝熱面と呼ばれ、沸騰伝熱を向上させる伝熱面が設けられている。沸騰伝熱面の形状は冷媒によっても異なり、沸騰核の生成を促進させる微細なフィン形状となっている。また、光インタコネクタ31、電源回路60のサーモサイフォン80は異なる部屋となるように、隔壁100が設けられている。 A thermosiphon 80 is attached to the optical interconnector 31 and the power supply circuit 60 via an elastomer 90. A boiling region 81 is provided in the thermosiphon 80 on the optical interconnector 31 and the power supply circuit 60. The boiling region 81 is called a boiling heat transfer surface, and is provided with a heat transfer surface that improves boiling heat transfer. The shape of the boiling heat transfer surface varies depending on the refrigerant, and has a fine fin shape that promotes the formation of boiling nuclei. Further, a partition wall 100 is provided so that the optical interconnector 31 and the thermosiphon 80 of the power supply circuit 60 are in different rooms.
 電子基板10の外側に位置する凝縮領域83にはラジエータ82がある。凝縮領域83は凝縮伝熱面であり、凝縮性能を向上させるために、たとえば平板形状のフィンが設けられている。凝縮領域83の真下のラジエータ82は、光インタコネクタ31の放熱用である。このように冷却風の流れ方向で見た場合、ラジエータ82に平板形状を設けることで、風路20を仕切ることができる。これにより、各風路20では隣り合うラジエータからの放熱を受けない構造を実現できる。 There is a radiator 82 in the condensation region 83 located outside the electronic substrate 10. The condensation region 83 is a condensation heat transfer surface, and is provided with, for example, flat plate-shaped fins in order to improve the condensation performance. The radiator 82 directly under the condensation region 83 is for heat dissipation of the optical interconnector 31. Thus, when viewed in the flow direction of the cooling air, the air passage 20 can be partitioned by providing the radiator 82 with a flat plate shape. Thereby, in each air path 20, the structure which does not receive the heat radiation from an adjacent radiator is realizable.
 また、冷媒である冷却液110の量はサーモサイフォン80の各部屋の熱輸送量で異なる。たとえば、高い熱量を有する電源回路60の部屋では冷媒液110の量が多く、液面が高い。一方、比較的小さい熱量の光インタコネクタ31では冷媒液の液面が低い。 In addition, the amount of the coolant 110 that is a refrigerant varies depending on the amount of heat transported in each room of the thermosiphon 80. For example, in the room of the power supply circuit 60 having a high amount of heat, the amount of the refrigerant liquid 110 is large and the liquid level is high. On the other hand, in the optical interconnector 31 having a relatively small amount of heat, the liquid level of the refrigerant liquid is low.
 以上より、サーモサイフォン80および風路20を用いて、電子基板10、特に光インタコネクタ31の熱を電子基板10の外へ伝熱し、光インタコネクタ31を冷却することができる。 As described above, using the thermosiphon 80 and the air passage 20, the heat of the electronic substrate 10, particularly the optical interconnector 31, can be transferred to the outside of the electronic substrate 10, and the optical interconnector 31 can be cooled.
 次に、図7に本発明の一実施例であるファン21をラジエータ82の前面、及び背面に設けたサーバ等の電子機器500を上面から見た全体構造図を示す。ファン21をプッシュ、プルの並列に設置することで、冷却風22の風圧を増加することができ、ラジエータ82のフィン間すきまを狭くでき、高性能にすることができる。さらに前面、背面のファン21のいずれかが故障停止して場合でも他方のファン21を高速回転させることで電子機器500をシャットダウンさせずに稼動数することができる。 Next, FIG. 7 shows an overall structural view of an electronic device 500 such as a server in which the fan 21 according to an embodiment of the present invention is provided on the front surface and the back surface of the radiator 82 as viewed from above. By installing the fan 21 in parallel with the push and pull, the wind pressure of the cooling air 22 can be increased, the clearance between the fins of the radiator 82 can be narrowed, and high performance can be achieved. Further, even when one of the front and rear fans 21 is out of order, the number of operations can be increased without shutting down the electronic device 500 by rotating the other fan 21 at a high speed.
 次に、図8に、本発明になる相変化を利用したサーモサイフォンが搭載された光入出力を備えたデータ通信用電子機器5を、ラック1に複数台搭載される外観斜視図で示す。図において、ラック1は、筐体2と蓋体3、4(3は表扉、4は裏扉)とを含んでおり、その内部には、所定の形状・寸法で形成された複数台のデータ通信用電子機器5が、着脱自在に設けられている。図示していないが、図1で説明したようにラック1にはファンが背面側に取り付けられている。複数台のデータ通信用電子機器5間でデータ通信を行ったり、他のラックのデータ通信用電子機器と通信を行ったりする。光通信を設けることにより、高速でデータ転送を行うことができる。 Next, FIG. 8 is an external perspective view showing a plurality of data communication electronic devices 5 equipped with optical input / output equipped with thermosiphons using the phase change according to the present invention. In the figure, a rack 1 includes a housing 2 and lids 3 and 4 (3 is a front door and 4 is a back door), and a plurality of units formed in a predetermined shape and size are provided inside the rack 1. A data communication electronic device 5 is detachably provided. Although not shown, a fan is attached to the rack 1 on the back side as described with reference to FIG. Data communication is performed between a plurality of data communication electronic devices 5, or communication is performed with data communication electronic devices in other racks. By providing optical communication, data transfer can be performed at high speed.
 1…ラック、2…ラック筐体、3、4…蓋体、5…データ通信用電子機器、500…電子機器、10…電子基板、20…風路、21…ファン、22…冷却風、30…光入出力端子、31…光インタコネクタ、40…FPGA(field-programmable gate array)、50…制御基板回路、60…電源回路、70…光ファイバケーブル、71…高容量光ファイバケーブル、80…サーモサイフォン、801…A室、802…B室、803…C室、81…沸騰領域、82…ラジエータ、83…凝縮領域、90…エラストマ、91…金属板板、100…隔壁、110…冷媒液、120…電気信号入出力端子、130…電力供給端子、140…バックボード、150…クライアント向け光モジュール、161、162、163、164、165、166…半導体素子。 DESCRIPTION OF SYMBOLS 1 ... Rack, 2 ... Rack housing | casing, 3, 4 ... Cover body, 5 ... Electronic equipment for data communication, 500 ... Electronic equipment, 10 ... Electronic board, 20 ... Air path, 21 ... Fan, 22 ... Cooling air, 30 Optical input / output terminals 31 Optical connectors 40 Field-programmable gate array (FPGA) 50 Control board circuit 60 Power circuit 70 Optical fiber cable 71 High-capacity optical fiber cable 80 Thermosiphon, 801 ... A chamber, 802 ... B chamber, 803 ... C chamber, 81 ... boiling region, 82 ... radiator, 83 ... condensing region, 90 ... elastomer, 91 ... metal plate, 100 ... partition wall, 110 ... refrigerant liquid 120 ... Electric signal input / output terminal, 130 ... Power supply terminal, 140 ... Backboard, 150 ... Optical module for clients, 161, 162, 163, 164, 165, 166 ... Semiconductor element.

Claims (4)

  1.  電子基板部と、前記電子基板部に隣接して配置され、前記電子基板部から発生した熱を外部に放出するための風が前記電子基板部を避けて直線的に通過する風路を形成する風路部とを備えたデータ通信用電子機器であって、
     前記電子基板部は、複数の半導体素子を搭載し、前記複数の半導体素子は許容温度が互いに異なり、
     前記風路部は、前記風を生成するためのファンを搭載し、
     前記電子基板部と前記風路部とは相変化デバイスであるサーモサイフォンによって互いに熱的に接続され、
     前記電子基板部の前記半導体素子の近傍には前記サーモサイフォンの吸熱部である沸騰領域が配置され、
     前記風路部には前記サーモサイフォンの放熱部であってラジエータを含んで構成される凝縮領域が配置され、
     前記サーモサイフォンの前記沸騰領域と前記凝縮領域とが、前記半導体素子の許容温度区分毎に別々に設けられ、別々の密閉空間となる
    ことを特徴とするデータ通信用電子機器。
    An electronic board part is disposed adjacent to the electronic board part, and a wind path is formed through which air for releasing heat generated from the electronic board part passes through the electronic board part in a straight line. An electronic device for data communication provided with an air passage part,
    The electronic substrate portion is equipped with a plurality of semiconductor elements, and the plurality of semiconductor elements have different allowable temperatures from each other
    The air passage section is equipped with a fan for generating the wind,
    The electronic board part and the air path part are thermally connected to each other by a thermosiphon that is a phase change device,
    In the vicinity of the semiconductor element of the electronic substrate portion, a boiling region that is a heat absorbing portion of the thermosyphon is disposed,
    A condensing region that includes a radiator that is a heat radiating part of the thermosiphon is disposed in the air passage part,
    The electronic device for data communication, wherein the boiling region and the condensing region of the thermosyphon are provided separately for each allowable temperature section of the semiconductor element to form separate sealed spaces.
  2.  請求項1において、
     前記ラジエータは、平行平板フィンを含んで構成される
    ことを特徴とするデータ通信用電子機器。
    In claim 1,
    The electronic device for data communication, wherein the radiator includes parallel plate fins.
  3.  光信号を用いてデータ通信を行うデータ通信用電子機器であって、
     前記データ通信用電子機器は、
     電子基板部と、
     前記電子基板部に隣接して配置され、前記電子基板部から発生した熱を外部に放出するための風が前記電子基板部を避けて直線的に通過する風路を形成する風路部と
    を備え、
     前記電子基板部は、
     光入出力端子と、
     前記光入出力端子から入力された光信号を受信して前記電子基板部内に送信する動作、および前記電子基板部内の光信号を受信して前記光入出力端子へ送信する動作の少なくともいずれか一方を行う複数の光インタコネクタと、
     前記複数の光インタコネクタのそれぞれにおける前記受信する動作および前記送信する動作の少なくともいずれか一方を制御する複数の第1の制御回路と、
     前記複数の光インタコネクタの相互間の通信を制御する第2の制御回路と、
     前記光インタコネクタ、前記第1の制御回路、および前記第2の制御回路に電源を供給する電源回路と、
     前記複数の光インタコネクタの各光インタコネクタと前記複数の第1の制御回路の各第1の制御回路との間を互いに光通信可能に接続する複数の第1の光ファイバケーブルと、
     前記各光インタコネクタと前記光入出力端子との間を互いに光通信可能に接続する複数の第2の光ファイバケーブルと
    を搭載し、
     前記各光インタコネクタの許容温度は前記第1の制御回路、前記第2の制御回路、および電源回路の許容温度よりも低く、
     前記風路部は、前記風を生成するためのファンを搭載し、
     前記電子基板部と前記風路部とは相変化デバイスであるサーモサイフォンによって互いに熱的に接続され、
     前記電子基板部の前記光インタコネクタ、前記第1の制御回路、前記第2の制御回路、および前記電源回路の少なくともいずれか1つの近傍には前記サーモサイフォンの吸熱部である沸騰領域が配置され、
     前記風路部には前記サーモサイフォンの放熱部であってラジエータを含んで構成される凝縮領域が配置され、
     前記サーモサイフォンの前記沸騰領域と前記凝縮領域が、前記光インタコネクタ、前記第1の制御回路、前記第2の制御回路、および前記電源回路の許容温度区分毎に別々に設けられ、別々の密閉空間となり、
     前記複数の第1の光ファイバケーブルおよび前記複数の第2の光ファイバケーブルは、前記サーモサイフォンおよび前記風路部を用いて前記電子基板部を冷却したのと同等に前記電子基板部を冷却可能な直接風が前記電子基板部に供給された場合には前記光信号の導通を阻害するような動揺を呈する
    ことを特徴とするデータ通信用電子機器。
    An electronic device for data communication that performs data communication using an optical signal,
    The electronic device for data communication is
    An electronic board part;
    An air passage portion that is disposed adjacent to the electronic substrate portion and forms an air passage through which air for discharging heat generated from the electronic substrate portion to the outside avoids the electronic substrate portion and linearly passes therethrough. Prepared,
    The electronic substrate part is
    An optical input / output terminal;
    At least one of an operation of receiving an optical signal input from the optical input / output terminal and transmitting it into the electronic substrate unit, and an operation of receiving an optical signal in the electronic substrate unit and transmitting it to the optical input / output terminal A plurality of optical interconnectors,
    A plurality of first control circuits for controlling at least one of the receiving operation and the transmitting operation in each of the plurality of optical interconnectors;
    A second control circuit for controlling communication between the plurality of optical interconnectors;
    A power supply circuit for supplying power to the optical interconnector, the first control circuit, and the second control circuit;
    A plurality of first optical fiber cables connecting the optical interconnectors of the plurality of optical interconnectors and the first control circuits of the plurality of first control circuits so as to be capable of optical communication with each other;
    A plurality of second optical fiber cables that connect each optical interconnector and the optical input / output terminal so as to be capable of optical communication with each other; and
    The allowable temperature of each optical interconnector is lower than the allowable temperatures of the first control circuit, the second control circuit, and the power supply circuit,
    The air passage section is equipped with a fan for generating the wind,
    The electronic board part and the air path part are thermally connected to each other by a thermosiphon that is a phase change device,
    In the vicinity of at least one of the optical interconnector, the first control circuit, the second control circuit, and the power supply circuit of the electronic board unit, a boiling region that is a heat absorption unit of the thermosyphon is disposed. ,
    A condensing region that includes a radiator that is a heat radiating part of the thermosiphon is disposed in the air passage part,
    The boiling region and the condensing region of the thermosyphon are provided separately for each allowable temperature section of the optical interconnector, the first control circuit, the second control circuit, and the power supply circuit, and are separately sealed. Become space,
    The plurality of first optical fiber cables and the plurality of second optical fiber cables can cool the electronic substrate unit in the same manner as the electronic substrate unit is cooled using the thermosiphon and the air passage unit. An electronic device for data communication, characterized in that when a direct wind is supplied to the electronic substrate part, the optical signal is oscillated to inhibit conduction of the optical signal.
  4.  請求項3において、
     前記ラジエータは、平行平板フィンを含んで構成される
    ことを特徴とするデータ通信用電子機器。
    In claim 3,
    The electronic device for data communication, wherein the radiator includes parallel plate fins.
PCT/JP2014/053393 2014-02-14 2014-02-14 Data communication-use electronic apparatus WO2015121953A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/053393 WO2015121953A1 (en) 2014-02-14 2014-02-14 Data communication-use electronic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/053393 WO2015121953A1 (en) 2014-02-14 2014-02-14 Data communication-use electronic apparatus

Publications (1)

Publication Number Publication Date
WO2015121953A1 true WO2015121953A1 (en) 2015-08-20

Family

ID=53799720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053393 WO2015121953A1 (en) 2014-02-14 2014-02-14 Data communication-use electronic apparatus

Country Status (1)

Country Link
WO (1) WO2015121953A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6190563B1 (en) * 2016-11-17 2017-08-30 キヤノンアネルバ株式会社 X-ray generator and X-ray imaging system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09326576A (en) * 1996-06-05 1997-12-16 Pfu Ltd Cooling apparatus
JP2013077223A (en) * 2011-09-30 2013-04-25 Toshiba Corp Electronic equipment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09326576A (en) * 1996-06-05 1997-12-16 Pfu Ltd Cooling apparatus
JP2013077223A (en) * 2011-09-30 2013-04-25 Toshiba Corp Electronic equipment

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6190563B1 (en) * 2016-11-17 2017-08-30 キヤノンアネルバ株式会社 X-ray generator and X-ray imaging system
US9980357B1 (en) 2016-11-17 2018-05-22 Canon Anelva Corporation X-ray generating device and x-ray photography system
WO2018092174A1 (en) * 2016-11-17 2018-05-24 キヤノンアネルバ株式会社 X-ray generator and radiography system
CN109983847A (en) * 2016-11-17 2019-07-05 佳能安内华股份有限公司 X-ray generator and X-ray camera system
US10631390B2 (en) 2016-11-17 2020-04-21 Canon Anelva Corporation X-ray generating device and X-ray photography system
CN109983847B (en) * 2016-11-17 2023-02-17 佳能安内华股份有限公司 X-ray generating device and X-ray imaging system

Similar Documents

Publication Publication Date Title
EP3419400B1 (en) Thermal solution for transceiver module
US8929066B2 (en) Chassis with separate thermal chamber for solid state memory
US7400505B2 (en) Hybrid cooling system and method for a multi-component electronics system
US10694644B2 (en) Thermoelectric-enhanced, inlet air-cooled thermal conductors
EP2533281B1 (en) Heat radiation device and electronic equipment using the same
US9820407B2 (en) Electronic device and cooling system
US9504189B1 (en) Thermoelectric-enhanced, inlet air-cooled thermal conductors
JP6744719B2 (en) Cooling system with redundancy
CN110099533B (en) Computing device and rack server applying same
US11291143B2 (en) Cooling design for electronics enclosure
JP2019204498A (en) Cooling device and server device
JP2023550719A (en) Pluggable device, information communication device, heat dissipation system, and manufacturing method
JP6276959B2 (en) Phase change module and electronic device equipped with the same
EP3266290B1 (en) Routing a cooling member along a board
CA2734925A1 (en) Aircraft signal computer system having a plurality of modular signal computer units
JP2017005010A (en) Electronic device
US20050141200A1 (en) Backside cooling apparatus for modular platforms
WO2015121953A1 (en) Data communication-use electronic apparatus
US20240074091A1 (en) Directed cooling in heat producing systems
JP2016184657A (en) Heat dissipation structure of electronic apparatus casing
JP2016057997A (en) Electric communication computing module capable of housing printed circuit board
JP3195481U (en) Telecommunications computing module capable of accommodating printed circuit boards
WO2016174732A1 (en) Information device and information device blade
JP2005251916A (en) Cooling structure of electronic apparatus case
JP7065908B2 (en) Storage device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14882745

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14882745

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP