WO2015119199A1 - Generating device for generating plasma in tube-shaped body - Google Patents

Generating device for generating plasma in tube-shaped body Download PDF

Info

Publication number
WO2015119199A1
WO2015119199A1 PCT/JP2015/053252 JP2015053252W WO2015119199A1 WO 2015119199 A1 WO2015119199 A1 WO 2015119199A1 JP 2015053252 W JP2015053252 W JP 2015053252W WO 2015119199 A1 WO2015119199 A1 WO 2015119199A1
Authority
WO
WIPO (PCT)
Prior art keywords
tubular body
film
raw material
body according
plasma
Prior art date
Application number
PCT/JP2015/053252
Other languages
French (fr)
Japanese (ja)
Inventor
大竹 尚登
雅貴 井上
Original Assignee
国立大学法人東京工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京工業大学 filed Critical 国立大学法人東京工業大学
Publication of WO2015119199A1 publication Critical patent/WO2015119199A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/045Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/515Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using pulsed discharges
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/47Generating plasma using corona discharges
    • H05H1/473Cylindrical electrodes, e.g. rotary drums

Definitions

  • the present invention relates to a generator for generating plasma in a tubular body and a film forming method on the inner surface of the tubular body.
  • Diamond-like carbon (DLC) film has high hardness among amorphous carbon films and has excellent tribological properties such as low friction coefficient and wear resistance. Yes.
  • DLC coating on the inner surface of metal pipes and high-pressure pipes used for hydraulic sliding.
  • DLC synthesis in plasma CVD is performed by exciting a gas in a synthesizer under an atmosphere with a pressure of about 10 -4 Pa to 50 Pa and supplying the substrate with a bias.
  • the conventional synthesis method has a plasma sheath of 10 mm to several tens of mm, so plasma cannot be generated inside the tube having an inner diameter that is twice or less the sheath length, and DLC coating is performed. This is because it cannot be done. This is a limitation from plasma physics. To overcome this, DLC synthesis under atmospheric pressure with a sheath length of about 0.1 mm has been attempted. Although this method is effective, since the synthesis area is limited and batch processing cannot be performed, a coating method is desired in which a substrate is placed in the whole chamber and batch processing can be performed simultaneously, as in normal low-pressure synthesis.
  • Patent Document 1 Those with different diameters cannot be processed at once, and the inner surface of a long object having an aspect ratio of 1:10 is difficult to process.
  • ECR microwave at low pressure
  • Patent Document 2 Uniform film is formed long (inner diameter 4mm x length 100mm), but microwaves must be put into individual circular tubes for mass production. However, it is hard to say that it can be fully satisfied.
  • JP 2006-199980 A Japanese Patent No. 4152135
  • the present inventor has overcome the above problems and aims to provide a generator for generating plasma in a long tubular body having various diameters, and a film forming method on the inner surface of the tubular body. Has reached
  • Tubular body comprising: a metal electrode inserted into a hollow portion of the tubular body; a raw material introduction port for introducing a raw material into the hollow portion of the tubular body; and a nano pulse power source for applying a pulse voltage;
  • the generator for generating plasma in the tubular body according to (1) or (2) above wherein the raw material is a raw material for forming a film on the inner surface of the tubular body.
  • the generator for generating plasma in the tubular body according to (3) wherein the raw material is diluted with an inert gas.
  • the ratio of the length of the film formation region to the diameter of the hollow portion is 0.5: 1 to 1000: 1.
  • a film-forming raw material is introduced into a hollow portion of a tubular body, and plasma is generated in the tubular body by applying a nanopulse to form a film on the inner surface of the tubular body. The film forming method.
  • the present invention makes it possible to coat DLC on the entire surface of a long tubular body with various diameters.
  • DLC can be formed on the inner surface of a long circular tube without being affected by the length of a tubular body such as a circular tube such as a vacuum chamber, and various diameters and aspect ratios can be formed.
  • DLC film can be formed on the inner surface of a metal tube by batch processing.
  • This plasma generation method is an epoch-making method that can generate uniform plasma in a circular tube by using nanopulse plasma.
  • DLC coating for example, 100 in a vacuum chamber.
  • the DLC coating on the inner surface of all the tubes can be realized simply by inserting the tube and wiring. It seems that the method of generating plasma in a circular tube itself has great utility value in the future.
  • produces plasma in the tubular body of this invention.
  • a generator for generating plasma in a tubular body of the present invention includes: a tubular body; a metal electrode inserted into a hollow portion of the tubular body; a raw material inlet for introducing a raw material into the hollow portion of the tubular body; and applying a pulse voltage
  • the tubular body is not limited to a circular tube, and may have various shapes having a hollow cross section, and may have a notch in a part thereof.
  • the material is selected from conductive metals, for example, stainless steel, mold steel, aluminum alloy and the like are suitable and form the cathode.
  • a metal electrode serving as an anode is inserted into the hollow portion of the tubular body, and the metal electrode is preferably selected from metals having a melting point of 1000 ° C. or higher, and more preferably titanium, tungsten, tantalum, niobium, copper, stainless steel. It is steel.
  • the shape of the metal electrode is preferably a rod shape parallel to the tubular body, but is not limited thereto, and may be an elongated mesh body parallel to the tubular body.
  • a hollow portion of the tubular body is provided with a raw material inlet for introducing the raw material.
  • the raw material is a raw material for forming a film on the inner surface of the tubular body, and preferably the raw material is diluted with an inert gas such as helium or nitrogen, preferably helium.
  • the generator of the present invention further includes a nano pulse power source for applying a pulse voltage.
  • a nano pulse power source for applying a pulse voltage.
  • the pulse width is preferably less than 1 ⁇ sec, more preferably 0.5 nsec to 500 nsec.
  • the pressure is selected from reduced pressure or normal pressure.
  • FIG. 2 is a conceptual diagram of the plasma sheath length, where 1 is a circular tube and 2 is a metal bar.
  • 1 is a circular tube and 2 is a metal bar.
  • a circular tube with a ground potential of 0 V electrons and ions flow from the plasma side at the interface with the plasma.
  • the mobility of electrons is greater than positive ions, more electrons than positive ions reach the tube surface. Therefore, the space in this region is positively charged and becomes a region (that is, a sheath) different from the plasma.
  • Plasma generation is possible in the process in which the plasma sheath diffuses from the tubular body wall (that is, the sheath length extends) by increasing the voltage in a short time. Plasma is not generated when it is diffused to a distance of 1/2 of the minor axis of the tubular body.
  • plasma can be generated also in the narrow tube.
  • the ratio of the length of the film formation region to the diameter of the hollow portion is 0.5: 1 to 1: 1000. That is, in the generator of the present invention, plasma can be generated uniformly over the inner surface of the long tubular body.
  • the tubular body is usually selected from a diameter (inner diameter) of about 2 mm to 40 mm and a length of about 100 to 300 mm.
  • a plurality of tubular bodies can be accommodated in the chamber in parallel, and the shapes of the plurality of tubular bodies may be different.
  • DLC coating or the like can be formed on the inner surfaces of all the circular tubes by simply putting 100 circular tubes in a vacuum chamber and performing wiring.
  • a film forming material is introduced into the hollow portion of the tubular body, and plasma is generated in the tubular body by applying a nanopulse to form the film on the inner surface of the tubular body.
  • a uniform tubular film formation body can be obtained by the film forming method on the inner surface of the tubular body.
  • a tubular film-formed body is obtained in which diamond-like carbon having a hardness value measured by the nanoinjection method of 10 GPa or more is coated over the inner surface of the tubular body.
  • the inner wall of the pipe is measured by a nano-injection method (microhardness test method) using a Ficodenter hardness meter manufactured by Fischer. Measured 50 times each from the central part and 6 parts from the central part to 130 mm (a part from 20 mm to 130 mm from the end part), and arithmetically averaged the measured values to obtain the hardness value and A hardness distribution value can be obtained.
  • the tubular body forms a cathode
  • the metal electrode inserted into the hollow portion of the tubular body forms an anode.
  • the tubular body is not limited to a circular tube, and may have various shapes having a hollow cross section, and may have a notch in part.
  • the material is selected from conductive metals, for example, stainless steel, mold steel, aluminum alloy and the like are suitable and form the cathode.
  • a metal electrode serving as an anode is inserted into the hollow portion of the tubular body, and the metal electrode is preferably selected from metals having a melting point of 1000 ° C. or higher, and more preferably titanium, tungsten, tantalum, niobium, copper, stainless steel. It is steel.
  • the shape of the metal electrode is preferably a rod shape parallel to the tubular body, but is not limited thereto, and may be an elongated mesh body parallel to the tubular body.
  • a hollow portion of the tubular body is provided with a raw material inlet for introducing the raw material.
  • the raw material is a raw material for forming a film on the inner surface of the tubular body, and preferably the raw material is diluted with an inert gas such as helium or nitrogen, preferably helium.
  • a plurality of tubular bodies can be accommodated in the chamber in parallel, and the shapes of the plurality of tubular bodies may be different.
  • a diamond-like carbon film is formed on the inner surface of the tubular body using a carbon-containing gas diluted with an inert gas as a film forming material.
  • the carbon-containing gas is preferably a hydrocarbon gas, a plasma containing hydrocarbon is generated, and a DLC film is formed on the inner surface of the tubular body from the plasma.
  • a nano-pulse power source capable of applying a pulse voltage in nanosecond units and helium as a dilution gas can be used to achieve 4 mm even at a low pressure of about 10 Pa to 500 Pa.
  • Plasma can be generated in the tube.
  • a vacuum vessel can be formed by sealing both ends of a metal circular tube itself as a base material.
  • a metal rod (made of titanium or tungsten) serving as an electrode is inserted inside the circular tube, and the circular tube itself is grounded.
  • the pressure inside is reduced to about 20 Pa, and an a-SiC: H intermediate layer is synthesized by feeding a mixed gas of tetramethylsilane, methane, and helium, and then a DLC film is formed by feeding a mixed gas of methane and helium. To do.
  • an a-SiC: H intermediate layer is synthesized by feeding a mixed gas of tetramethylsilane, methane, and helium, and then a DLC film is formed by feeding a mixed gas of methane and helium.
  • a dilution gas at a low pressure of about 10 Pa to 600 Pa.
  • DLC can be formed on the inner surface of a long circular tube without being affected by the length of the circular tube as in an existing vacuum chamber.
  • the present invention generates a stable discharge in a narrow tube having an inner diameter of 4 mm and a length of 300 mm by controlling the nanopulse plasma by applying an extremely short voltage / current having a pulse width of less than 1 ⁇ s. , It succeeded in coating DLC uniformly.
  • the reason why a stable discharge was obtained is that the diffusion phenomenon of the unsteady sheath is assumed to contribute from the plasma physics.
  • PBII Pulsma Ion Implantation & Deposition
  • a method using microwaves a method using ECR
  • a method using a hollow cathode have been proposed. There is no one that can stably generate plasma by connecting electrodes as in this method.
  • the manufactured in-pipe DLC synthesizer is shown in FIG.
  • a SUS304 circular tube is grounded, and both ends are sealed with a polycarbonate insulator.
  • a metal rod (made of titanium or tungsten) serving as an electrode (anode) is inserted inside the circular tube, and the circular tube itself becomes a cathode.
  • discharge was attempted using a DC power supply, a high-frequency power supply, and a micro-pulse power supply (pulse width 20 to 50 ⁇ s), but in each case, only a partial arc discharge occurred and no stable plasma was generated. So we confirmed that DLC synthesis could not be realized.
  • the internal pressure was reduced to about 20 Pa, and a mixed gas of tetramethylsilane, methane, and helium was sent to synthesize an a-Si: C: H intermediate layer, and then a mixed gas of methane and helium was sent.
  • a DLC film was formed. With this apparatus, it is possible to form a DLC film on the inner surface of a long circular tube without being affected by the length of the circular tube as in an existing vacuum chamber. In addition, at low pressures of about 10 to 600 ⁇ Pa, it was possible to form a film with only tetramethylsilane or methane without using a diluent gas.
  • DLC could be uniformly formed on the inner surface of the circular tube having SUS304, inner diameter of 14 mm, and length of 300 mm.
  • the inner part of the inner wall of the pipe having an inner diameter of 14 mm and a length of 300 mm and a length of 300 mm from the center part to 130 mm by a nano-injection method (microhardness test method) using a Picco denter hardness meter manufactured by Fischer.
  • the location was measured 50 times, and the measured values were arithmetically averaged to obtain a hardness distribution value.
  • the result was 10 to 14 GPa when the pulse voltage was about 1.5 kV.
  • the hardness was the hardest at the center, and the hardness decreased according to the distance from the center.
  • the hardness distribution is ⁇ 17%.
  • the film thickness distribution was 0.9 ⁇ m to 1.1 ⁇ m at the same measurement location, and the film thickness distribution was ⁇ 10%.
  • the pulse voltage was as high as about 2.5 kV, the hardness distribution was ⁇ 11% at an average of 18 GPa.
  • DLC could be uniformly formed on the inner surface of the circular tube having an inner diameter of 4 mm and a length of 300 mm.
  • DLC film formation on the inner surface of a metal tube having various diameters and aspect ratios can be performed by batch processing.
  • DLC film formation is possible by batch processing.

Abstract

 The present invention provides a plasma-generating device able to perform DLC deposition by a batch process on an inner surface of tube-shaped bodies having various diameters and aspect ratios, and able to perform DLC deposition on the inner surface of a long circular tube without being affected by the length of the tube-shaped body having a circular tube shape or the like. The generating device for generating plasma in a tube-shaped body is characterized in being provided with: a tube-shaped body; a metal electrode inserted in an inner space portion of the tube-shaped body; a raw material insertion hole for inserting raw material into the inner space portion of the tube-shaped body; and a nanopulse power source for applying a pulse voltage, the tube-shaped body forming a cathode, and the metal electrode forming the anode.

Description

管状体内にプラズマを発生させる発生装置Generator for generating plasma in a tubular body
 本発明は、管状体内にプラズマを発生させる発生装置および管状体の内側表面上への成膜方法に関する。 The present invention relates to a generator for generating plasma in a tubular body and a film forming method on the inner surface of the tubular body.
 ダイヤモンド状炭素(DLC)膜は、アモルファス炭素膜の中でも高硬度を有するものであり、低摩擦係数・耐摩耗性など優れたトライボロジー特性を有することから,機械部品の保護膜として需要が増大している。特に,油圧摺動に用いられる金属円管や高圧配管等の内面へのDLCコーティングは,需要が増している。しかし,円管内面にDLCを成膜することは金属管のアスペクト比に比例して困難であるため、平板面と異なり、比較的長く細い円管では十分な方法は実現していない。 Diamond-like carbon (DLC) film has high hardness among amorphous carbon films and has excellent tribological properties such as low friction coefficient and wear resistance. Yes. In particular, there is an increasing demand for DLC coating on the inner surface of metal pipes and high-pressure pipes used for hydraulic sliding. However, since it is difficult to form a DLC film on the inner surface of the circular tube in proportion to the aspect ratio of the metal tube, unlike a flat plate surface, a sufficient method cannot be realized with a relatively long and thin circular tube.
 通常,プラズマCVDにおけるDLC合成は合成装置内で圧力10-4 Pa~50 Pa程度の雰囲気下で気体を励起させ,バイアスで基板上に供給する。既に平板等へのDLC応用は確実に進んでいるが,特にショックアブソーバー,インジェクタなど自動車部品としての用途の多い比較的細い(直径1mmから40mm)円管内へのコーティングは実現していない。 Normally, DLC synthesis in plasma CVD is performed by exciting a gas in a synthesizer under an atmosphere with a pressure of about 10 -4 Pa to 50 Pa and supplying the substrate with a bias. Although DLC applications for flat plates have already progressed steadily, coating on relatively thin (1mm to 40mm in diameter) circular pipes, which are often used as automotive parts such as shock absorbers and injectors, has not been realized.
 これは,従来の合成方法では,プラズマシースが10 mm~数十 mm存在するため,シース長の2倍以下の内径を有する管の内側にはプラズマを発生させることができず,DLCコーティングを行うことができないためである.これはプラズマ物理からの制約であり,これを打破するために,シース長が0.1mm程度と短い大気圧下でのDLC合成が試みられている.この方法は有効ではあるが,合成面積が限られること,バッチ処理ができないことから,通常の低圧合成と同様にチャンバー内全体に基材をおき,同時にバッチ処理出来るコーティング法が望まれている。 This is because the conventional synthesis method has a plasma sheath of 10 mm to several tens of mm, so plasma cannot be generated inside the tube having an inner diameter that is twice or less the sheath length, and DLC coating is performed. This is because it cannot be done. This is a limitation from plasma physics. To overcome this, DLC synthesis under atmospheric pressure with a sheath length of about 0.1 mm has been attempted. Although this method is effective, since the synthesis area is limited and batch processing cannot be performed, a coating method is desired in which a substrate is placed in the whole chamber and batch processing can be performed simultaneously, as in normal low-pressure synthesis.
 従来、種々の内管へのDLCコーティング技術が提案されており、低圧でマイクロパルスプラズマを用いる方法(平坦な膜が生成しにくいため、膜厚分布が大きい難点がある。);低圧でホローカソードを用いる方法(特許文献1)(異なる径のものを一括に処理できず、アスペクト比1:10のような長尺物内面は処理が困難である難点がある。);低圧でECR(マイクロ波+磁界)を用いる方法(特許文献2)(均一な膜が長尺(内径4mm×長さ100mm)に形成されているが,マイクロ波を個々の円管に入れ込まなければならないので,量産に向かない難点がある。)等があるが、十分に満足し得るとは言い難い。 Conventionally, DLC coating technology for various inner pipes has been proposed, and a method using micropulse plasma at a low pressure (the flat film is difficult to form, so there is a difficulty in film thickness distribution); (Patent Document 1) (Those with different diameters cannot be processed at once, and the inner surface of a long object having an aspect ratio of 1:10 is difficult to process.); ECR (microwave at low pressure) + Magnetic field) method (Patent Document 2) (Uniform film is formed long (inner diameter 4mm x length 100mm), but microwaves must be put into individual circular tubes for mass production. However, it is hard to say that it can be fully satisfied.
特開2006-199980号公報JP 2006-199980 A 特許第4152135号公報Japanese Patent No. 4152135
 本発明者は、上記の難点を克服し、様々な径の長尺管状体内にプラズマを発生させる発生装置、ならびに管状体の内側表面上への成膜方法を提供することを目的とし、本発明に到達したものである。 The present inventor has overcome the above problems and aims to provide a generator for generating plasma in a long tubular body having various diameters, and a film forming method on the inner surface of the tubular body. Has reached
 本発明は上記の問題を解決するために、以下の発明を提供するものである。
(1)管状体;管状体の中空部分に挿入された金属電極;管状体の中空部分に原料を導入するための原料導入口;ならびにパルス電圧を印加するためのナノパルス電源;を備え、管状体は陰極を形成し、そして金属電極は陽極を形成してなる、ことを特徴とする管状体内にプラズマを発生させる発生装置。
(2)金属電極が、1000℃以上の融点を有する金属から選ばれる上記(1)に記載の管状体内にプラズマを発生させる発生装置。
(3)原料が管状体の内側表面上に成膜するための原料物質である上記(1)または(2)に記載の管状体内にプラズマを発生させる発生装置。
(4)原料物質が不活性ガスで希釈される上記(3)に記載の管状体内にプラズマを発生させる発生装置。
(5)原料物質が不活性ガスで希釈された炭素含有ガスである上記(3)または(4)に記載の管状体内にプラズマを発生させる発生装置。
(6)管状体において、成膜される領域の長さと中空部分の直径の比が0.5 :1~1000:1である上記(3)~(5)のいずれかに記載の管状体内にプラズマを発生させる発生装置。
(7)パルス幅が0.5nsec~500nsecである上記(1)~(6)のいずれかに記載の管状体内にプラズマを発生させる発生装置。
(8)複数本の管状体が並列にチャンバー内に収められる、上記(1)~(7)のいずれかに記載の管状体内にプラズマを発生させる発生装置。
(9)複数本の管状体の形状が異なっていてもよい上記(8)に記載の管状体内にプラズマを発生させる発生装置。
(10)管状体の中空部分に成膜原料を導入し、ナノパルス印加により管状体内にプラズマを発生させて、管状体の内側表面上に成膜することを特徴とする管状体の内側表面上への成膜方法。
(11)管状体は陰極を形成し、かつ管状体の中空部分に挿入された金属電極は陽極を形成してなる上記(10)に記載の管状体の内側表面上への成膜方法。
(12)成膜原料が不活性ガスで希釈される(10)または(11)に記載の管状体の内側表面上への成膜方法。
(13)複数本の管状体が並列にチャンバー内に収められる、上記(10)~(12)のいずれかに記載の管状体の内側表面上への成膜方法。
(14)複数本の管状体の形状が異なっていてもよい上記(13)に記載の管状体の内側表面上への成膜方法。
(15)成膜原料として不活性ガスで希釈された炭素含有ガスを用いて、管状体の内側表面上にダイヤモンド状炭素を成膜する上記(10)~(14)のいずれかに記載の管状体の内側表面上への成膜方法。
(16)炭素含有ガスが炭化水素ガスである上記(15)に記載の管状体の内側表面上への成膜方法。
(17)上記(10)~(16)のいずれかに記載の管状体の内側表面上への成膜方法により得られた管状成膜体。
(18)ナノインテーション法により測定された硬さ値が10GPa以上であるダイヤモンド状炭素が管状体内面にわたってコーティングされた管状成膜体。
The present invention provides the following inventions in order to solve the above problems.
(1) Tubular body comprising: a metal electrode inserted into a hollow portion of the tubular body; a raw material introduction port for introducing a raw material into the hollow portion of the tubular body; and a nano pulse power source for applying a pulse voltage; Is a generator for generating plasma in a tubular body, characterized in that it forms a cathode and the metal electrode forms an anode.
(2) The generator for generating plasma in the tubular body according to (1), wherein the metal electrode is selected from metals having a melting point of 1000 ° C. or higher.
(3) The generator for generating plasma in the tubular body according to (1) or (2) above, wherein the raw material is a raw material for forming a film on the inner surface of the tubular body.
(4) The generator for generating plasma in the tubular body according to (3), wherein the raw material is diluted with an inert gas.
(5) The generator for generating plasma in the tubular body according to (3) or (4) above, wherein the source material is a carbon-containing gas diluted with an inert gas.
(6) In the tubular body according to any one of the above (3) to (5), the ratio of the length of the film formation region to the diameter of the hollow portion is 0.5: 1 to 1000: 1. A generator that generates plasma.
(7) The generator for generating plasma in the tubular body according to any one of (1) to (6), wherein the pulse width is 0.5 nsec to 500 nsec.
(8) The generator for generating plasma in the tubular body according to any one of (1) to (7), wherein a plurality of tubular bodies are accommodated in a chamber in parallel.
(9) The generator for generating plasma in the tubular body according to (8), wherein the plurality of tubular bodies may have different shapes.
(10) A film-forming raw material is introduced into a hollow portion of a tubular body, and plasma is generated in the tubular body by applying a nanopulse to form a film on the inner surface of the tubular body. The film forming method.
(11) The film forming method on the inner surface of the tubular body according to (10), wherein the tubular body forms a cathode, and the metal electrode inserted into the hollow portion of the tubular body forms an anode.
(12) The film forming method on the inner surface of the tubular body according to (10) or (11), wherein the film forming raw material is diluted with an inert gas.
(13) The film forming method on the inner surface of the tubular body according to any one of the above (10) to (12), wherein a plurality of tubular bodies are accommodated in the chamber in parallel.
(14) The method for forming a film on the inner surface of the tubular body according to (13), wherein a plurality of tubular bodies may have different shapes.
(15) The tubular tube according to any one of (10) to (14), wherein a diamond-like carbon film is formed on the inner surface of the tubular body using a carbon-containing gas diluted with an inert gas as a film forming material. A film formation method on the inner surface of the body.
(16) The film forming method on the inner surface of the tubular body according to (15), wherein the carbon-containing gas is a hydrocarbon gas.
(17) A tubular film-formation body obtained by the film-formation method on the inner surface of the tubular body according to any one of (10) to (16) above.
(18) A tubular film-formed body in which diamond-like carbon having a hardness value of 10 GPa or more measured by a nanoinjection method is coated over the inner surface of the tubular body.
 本発明は、様々な径の長尺管状体内全面にDLCをコーティングすることを可能とするものである。 The present invention makes it possible to coat DLC on the entire surface of a long tubular body with various diameters.
 本発明によれば、真空チャンバのような円管等の管状体の長さに影響されることなく,長尺の円管内面にもDLCの成膜が可能となり、様々な径,アスペクト比の金属円管内面へのDLC成膜がバッチ処理で可能となる。 According to the present invention, DLC can be formed on the inner surface of a long circular tube without being affected by the length of a tubular body such as a circular tube such as a vacuum chamber, and various diameters and aspect ratios can be formed. DLC film can be formed on the inner surface of a metal tube by batch processing.
 本プラズマ発生方法は,ナノパルスプラズマを用いることで円管内に均一なプラズマを発生させることができる画期的なものであり,これをDLCコーティングに適用することにより,例えば真空チャンバー内に100本の円管を入れ,配線をするだけで,全ての円管内面へのDLCコーティングを実現できるので,実用性に極めて優れている。円管内でのプラズマ発生の方法自身としても将来利用価値の大きいものと思われる。 This plasma generation method is an epoch-making method that can generate uniform plasma in a circular tube by using nanopulse plasma. By applying this to DLC coating, for example, 100 in a vacuum chamber. The DLC coating on the inner surface of all the tubes can be realized simply by inserting the tube and wiring. It seems that the method of generating plasma in a circular tube itself has great utility value in the future.
本発明の管状体内にプラズマを発生させる発生装置の一実施態様を示す図。The figure which shows one embodiment of the generator which generate | occur | produces plasma in the tubular body of this invention. プラズマシース長さの概念図。The conceptual diagram of plasma sheath length.
 本発明の管状体内にプラズマを発生させる発生装置は、管状体;管状体の中空部分に挿入された金属電極;管状体の中空部分に原料を導入するための原料導入口;ならびにパルス電圧を印加するためのナノパルス電源;を備え、管状体は陰極を形成し、そして金属電極は陽極を形成してなる。 A generator for generating plasma in a tubular body of the present invention includes: a tubular body; a metal electrode inserted into a hollow portion of the tubular body; a raw material inlet for introducing a raw material into the hollow portion of the tubular body; and applying a pulse voltage A tubular body forming a cathode and a metal electrode forming an anode.
 管状体は、円管に限定されず、断面が中空である種々の形状であり得、一部に切欠きを有するものであってもよい。材質は、導電性金属から選ばれ、例えばステンレス鋼、金型鋼、アルミニウム合金等が好適であり、陰極を形成する。 The tubular body is not limited to a circular tube, and may have various shapes having a hollow cross section, and may have a notch in a part thereof. The material is selected from conductive metals, for example, stainless steel, mold steel, aluminum alloy and the like are suitable and form the cathode.
 管状体の中空部分には陽極となる金属電極が挿入され、金属電極は、好適には1000℃以上の融点を有する金属から選ばれ、さらに好適にはチタン、タングステン、タンタル、ニオブ、銅、ステンレス鋼である。金属電極の形状は、管状体に平行な棒状が好適であるが、これに限定されず管状体に平行な細長いメッシュ体等であってもよい。管状体の中空部分には原料を導入するための原料導入口が備えられる。原料は、管状体の内側表面上に成膜するための原料物質であり、好適には原料物質は、ヘリウム、窒素等の不活性ガス、好ましくはヘリウムで希釈される。 A metal electrode serving as an anode is inserted into the hollow portion of the tubular body, and the metal electrode is preferably selected from metals having a melting point of 1000 ° C. or higher, and more preferably titanium, tungsten, tantalum, niobium, copper, stainless steel. It is steel. The shape of the metal electrode is preferably a rod shape parallel to the tubular body, but is not limited thereto, and may be an elongated mesh body parallel to the tubular body. A hollow portion of the tubular body is provided with a raw material inlet for introducing the raw material. The raw material is a raw material for forming a film on the inner surface of the tubular body, and preferably the raw material is diluted with an inert gas such as helium or nitrogen, preferably helium.
 管状体を真空チャンバとする場合には、後述の図1のように、両端を密封される。本発明の発生装置は、さらにパルス電圧を印加するためのナノパルス電源を備える。ナノパルス電源は、管状体に-500V~-10kV程度の負の直流単パルスを1kHz~10kHz程度の周波数で印加するのが好適である。パルス幅は、好適には1μsec未満、さらに好適には0.5nsec~500nsecである。 When the tubular body is a vacuum chamber, both ends are sealed as shown in FIG. The generator of the present invention further includes a nano pulse power source for applying a pulse voltage. In the nanopulse power source, it is preferable to apply a negative DC single pulse of about −500 V to −10 kV to the tubular body at a frequency of about 1 kHz to 10 kHz. The pulse width is preferably less than 1 μsec, more preferably 0.5 nsec to 500 nsec.
 圧力は、減圧または常圧から選ばれるが、たとえば200Pa以下の圧力でパルス幅1μs未満の直流単パルス印加により気体をプラズマ化させるのが好適である。 The pressure is selected from reduced pressure or normal pressure. For example, it is preferable to make the gas into a plasma by applying a DC single pulse with a pulse width of less than 1 μs at a pressure of 200 Pa or less.
 図2は、プラズマシース長さの概念図を示し、1は円管、2は金属棒を示す。接地電位0Vの円管内において、プラズマとの境界面では、プラズマ側から電子とイオンが流入するが、電子の易動度が正イオンより大きいため正イオンより多くの電子が円管表面に到達するので、この領域の空間は正に帯電し、プラズマとは異なる領域(すなわち、シース)となる。 FIG. 2 is a conceptual diagram of the plasma sheath length, where 1 is a circular tube and 2 is a metal bar. In a circular tube with a ground potential of 0 V, electrons and ions flow from the plasma side at the interface with the plasma. However, since the mobility of electrons is greater than positive ions, more electrons than positive ions reach the tube surface. Therefore, the space in this region is positively charged and becomes a region (that is, a sheath) different from the plasma.
 プラズマ発生は、短時間で電圧が上昇することでプラズマシースが管状体壁から拡散する(すなわち、シース長さが伸長する)過程において可能である。プラズマは、管状体の短径の1/2の距離まで拡散すると発生しない。本発明方法においては、プラズマシースが管状体壁から成長し、管状体の短径の1/2の距離に至る前にパルス電圧印加を終了させると、細管内においてもプラズマを発生させ得る。 Plasma generation is possible in the process in which the plasma sheath diffuses from the tubular body wall (that is, the sheath length extends) by increasing the voltage in a short time. Plasma is not generated when it is diffused to a distance of 1/2 of the minor axis of the tubular body. In the method of the present invention, when the pulse voltage application is terminated before the plasma sheath grows from the tubular body wall and reaches the distance of 1/2 of the short axis of the tubular body, plasma can be generated also in the narrow tube.
 管状体において、成膜される領域の長さと中空部分の直径の比が0.5:1 ~1:1000であるのが好適である。すなわち、本発明の発生装置においては、長尺管状体において、その内面にわたって均一にプラズマを発生し得る。 In the tubular body, it is preferable that the ratio of the length of the film formation region to the diameter of the hollow portion is 0.5: 1 to 1: 1000. That is, in the generator of the present invention, plasma can be generated uniformly over the inner surface of the long tubular body.
 管状体は、通常、直径(内径)2mm~40mm程度,長さ100~300mm程度から選ばれる。管状体は、複数本を並列にチャンバー内に収めることができ、その複数本の管状体の形状が異なっていてもよい。例えば、真空チャンバー内に100本の円管を入れ,配線を行うだけで,全ての円管内面へのDLCコーティング等の成膜を行うことができる。 The tubular body is usually selected from a diameter (inner diameter) of about 2 mm to 40 mm and a length of about 100 to 300 mm. A plurality of tubular bodies can be accommodated in the chamber in parallel, and the shapes of the plurality of tubular bodies may be different. For example, DLC coating or the like can be formed on the inner surfaces of all the circular tubes by simply putting 100 circular tubes in a vacuum chamber and performing wiring.
 本発明の管状体の内側表面上への成膜方法においては、管状体の中空部分に成膜原料を導入し、ナノパルス印加により管状体内にプラズマを発生させて、管状体の内側表面上に成膜する。 In the method for forming a film on the inner surface of the tubular body of the present invention, a film forming material is introduced into the hollow portion of the tubular body, and plasma is generated in the tubular body by applying a nanopulse to form the film on the inner surface of the tubular body. Film.
 この管状体の内側表面上への成膜方法により均一な管状成膜体が得られる。たとえば、DLCの場合には、ナノインテーション法により測定された硬さ値が10GPa以上であるダイヤモンド状炭素が管状体内面にわたってコーティングされた管状成膜体が得られる。 A uniform tubular film formation body can be obtained by the film forming method on the inner surface of the tubular body. For example, in the case of DLC, a tubular film-formed body is obtained in which diamond-like carbon having a hardness value measured by the nanoinjection method of 10 GPa or more is coated over the inner surface of the tubular body.
 例えば、後述するように、内径14mm、長さ300mmの管内壁へのDLCコーティングの場合には、フィッシャー社製のピコデンター硬度計を用いたナノインテーション法(微小硬さ試験法)により、管内壁の中央部と中央部から130mm(端部から20mmの箇所~中央部までの130mmの箇所)までの6か所とを50回ずつ測定し、その測定値を算術平均して、硬さ値および硬さ分布値を得ることができる。 For example, as will be described later, in the case of DLC coating on the inner wall of a pipe having an inner diameter of 14 mm and a length of 300 mm, the inner wall of the pipe is measured by a nano-injection method (microhardness test method) using a Ficodenter hardness meter manufactured by Fischer. Measured 50 times each from the central part and 6 parts from the central part to 130 mm (a part from 20 mm to 130 mm from the end part), and arithmetically averaged the measured values to obtain the hardness value and A hardness distribution value can be obtained.
 ここで、管状体は陰極を形成し、かつ管状体の中空部分に挿入された金属電極は陽極を形成してなる。管状体は、円管に限定されず、断面が中空である種々の形状であり得、一部に切欠きを有するものであってもよい。材質は、導電性金属から選ばれ、例えばステンレス鋼、金型鋼、アルミニウム合金等が好適であり、陰極を形成する。 Here, the tubular body forms a cathode, and the metal electrode inserted into the hollow portion of the tubular body forms an anode. The tubular body is not limited to a circular tube, and may have various shapes having a hollow cross section, and may have a notch in part. The material is selected from conductive metals, for example, stainless steel, mold steel, aluminum alloy and the like are suitable and form the cathode.
 管状体の中空部分には陽極となる金属電極が挿入され、金属電極は、好適には1000℃以上の融点を有する金属から選ばれ、さらに好適にはチタン、タングステン、タンタル、ニオブ、銅、ステンレス鋼である。金属電極の形状は、管状体に平行な棒状が好適であるが、これに限定されず管状体に平行な細長いメッシュ体等であってもよい。管状体の中空部分には原料を導入するための原料導入口が備えられる。原料は、管状体の内側表面上に成膜するための原料物質であり、好適には原料物質は、ヘリウム、窒素等の不活性ガス、好ましくはヘリウムで希釈される。 A metal electrode serving as an anode is inserted into the hollow portion of the tubular body, and the metal electrode is preferably selected from metals having a melting point of 1000 ° C. or higher, and more preferably titanium, tungsten, tantalum, niobium, copper, stainless steel. It is steel. The shape of the metal electrode is preferably a rod shape parallel to the tubular body, but is not limited thereto, and may be an elongated mesh body parallel to the tubular body. A hollow portion of the tubular body is provided with a raw material inlet for introducing the raw material. The raw material is a raw material for forming a film on the inner surface of the tubular body, and preferably the raw material is diluted with an inert gas such as helium or nitrogen, preferably helium.
 上記のように、複数本の管状体を並列にチャンバー内に収められることができ、複数本の管状体の形状は異なっていてもよい。 As described above, a plurality of tubular bodies can be accommodated in the chamber in parallel, and the shapes of the plurality of tubular bodies may be different.
 成膜原料として不活性ガスで希釈された炭素含有ガスを用いて、管状体の内側表面上にダイヤモンド状炭素を成膜する。 A diamond-like carbon film is formed on the inner surface of the tubular body using a carbon-containing gas diluted with an inert gas as a film forming material.
 炭素含有ガスとしては、炭化水素ガスであるのが好適であり、炭化水素を含むプラズマを生成させ,そのプラズマからDLC膜が管状体の内側表面上に成膜される。 The carbon-containing gas is preferably a hydrocarbon gas, a plasma containing hydrocarbon is generated, and a DLC film is formed on the inner surface of the tubular body from the plasma.
 以上のように、本発明のプラズマ発生装置の一態様によれば、ナノ秒単位でパルス電圧を印加できるナノパルス電源と希釈ガスにヘリウムを用いることで,10 Pa~500 Pa程度の低圧でも4mmの管内にプラズマが発生させ得る。図1に示す様に基材となる金属円管自体を両端密閉することで真空容器とし得る。円管内部には電極となる金属棒(チタンまたはタングステン製)が挿入され,円管自体がアースとなる。内部を20Pa程度まで減圧し,テトラメチルシラン,メタン,ヘリウムの混合ガスを送り込むことでa-SiC:H中間層を合成し,その後にメタン,ヘリウムの混合ガスを送り込むことでDLC膜を成膜する。
また、本発明のもう1つの態様においては、後述するように、10 Pa~600 Pa程度の低圧において,希釈ガスを用いずにテトラメチルシランのみ,またはメタンのみでの成膜も可能である。
As described above, according to one aspect of the plasma generator of the present invention, a nano-pulse power source capable of applying a pulse voltage in nanosecond units and helium as a dilution gas can be used to achieve 4 mm even at a low pressure of about 10 Pa to 500 Pa. Plasma can be generated in the tube. As shown in FIG. 1, a vacuum vessel can be formed by sealing both ends of a metal circular tube itself as a base material. A metal rod (made of titanium or tungsten) serving as an electrode is inserted inside the circular tube, and the circular tube itself is grounded. The pressure inside is reduced to about 20 Pa, and an a-SiC: H intermediate layer is synthesized by feeding a mixed gas of tetramethylsilane, methane, and helium, and then a DLC film is formed by feeding a mixed gas of methane and helium. To do.
In another embodiment of the present invention, as will be described later, it is possible to form a film only with tetramethylsilane or methane without using a dilution gas at a low pressure of about 10 Pa to 600 Pa.
 本発明装置では,既存の真空チャンバーのように円管の長さに影響されることなく,長尺の円管内面にもDLCの成膜が可能である。 In the apparatus of the present invention, DLC can be formed on the inner surface of a long circular tube without being affected by the length of the circular tube as in an existing vacuum chamber.
 このように、本発明は,1μs未満のパルス幅を有する極短電圧・電流を印加してナノパルスプラズマを制御することにより,内径4mm,長さ300mmに至る細管内に安定した放電を発生させ,DLCを均一にコーティングすることに成功したものである。安定な放電が得られた理由について,プラズマ物理からは非定常シースの拡散現象が寄与しているのではないかと想定される。なお,円管内でのプラズマ生成の方法には,PBII(Plasma Based Ion Implantation & Deposition)法,マイクロ波を用いた方法,ECRを用いた方法,ホローカソードを用いた方法が提案されているが,本方法のように電極を繋ぐだけで多数本に安定してプラズマを発生できるものはない。 As described above, the present invention generates a stable discharge in a narrow tube having an inner diameter of 4 mm and a length of 300 mm by controlling the nanopulse plasma by applying an extremely short voltage / current having a pulse width of less than 1 μs. , It succeeded in coating DLC uniformly. The reason why a stable discharge was obtained is that the diffusion phenomenon of the unsteady sheath is assumed to contribute from the plasma physics. For plasma generation in a circular tube, PBII (Plasma Ion Implantation & Deposition) method, a method using microwaves, a method using ECR, and a method using a hollow cathode have been proposed. There is no one that can stably generate plasma by connecting electrodes as in this method.
 製作した円管内DLC合成装置を図1に示す。SUS304製の円管をアースとし,両端はポリカーボネート製の絶縁体で密閉してある。
円管内部には電極(陽極)となる金属棒(チタンまたはタングステン製)が挿入され,円管自体が陰極となる。まず,直流電源,高周波電源,マイクロパルス電源(パルス幅20~50μs)を用いて放電を試みたが,何れもアーク放電が部分的に生ずるのみで安定したプラズマは発生せず,これまでの方法ではDLC合成は実現できないことを確認した。
The manufactured in-pipe DLC synthesizer is shown in FIG. A SUS304 circular tube is grounded, and both ends are sealed with a polycarbonate insulator.
A metal rod (made of titanium or tungsten) serving as an electrode (anode) is inserted inside the circular tube, and the circular tube itself becomes a cathode. First, discharge was attempted using a DC power supply, a high-frequency power supply, and a micro-pulse power supply (pulse width 20 to 50 μs), but in each case, only a partial arc discharge occurred and no stable plasma was generated. So we confirmed that DLC synthesis could not be realized.
 そこで,ナノ秒単位でパルス電圧を印加できるナノパルス電源と希釈ガスにヘリウムを用いたところ,表1の条件で,10Pa~600Pa程度の低圧でも内径14mm、4mm等の管内にプラズマが発生することを見出した。 Therefore, when a nanopulse power source capable of applying a pulse voltage in nanosecond units and helium as a diluent gas, plasma is generated in a tube having an inner diameter of 14 mm, 4 mm, etc. even under a low pressure of about 10 Pa to 600 Pa under the conditions shown in Table 1. I found it.
 そこで,内部を20 Pa程度まで減圧し,テトラメチルシラン,メタン,ヘリウムの混合ガスを送り込むことでa-Si:C:H中間層を合成し,その後にメタン,ヘリウムの混合ガスを送り込むことでDLCを成膜した。この装置では,既存の真空チャンバーのように円管の長さに影響されることなく,長尺の円管内面にもDLCの成膜が可能である。また,10 Pa~600 Pa程度の低圧においては,希釈ガスを用いずにテトラメチルシランのみ,またはメタンのみでの成膜も可能であった。 Therefore, the internal pressure was reduced to about 20 Pa, and a mixed gas of tetramethylsilane, methane, and helium was sent to synthesize an a-Si: C: H intermediate layer, and then a mixed gas of methane and helium was sent. A DLC film was formed. With this apparatus, it is possible to form a DLC film on the inner surface of a long circular tube without being affected by the length of the circular tube as in an existing vacuum chamber. In addition, at low pressures of about 10 to 600 成膜 Pa, it was possible to form a film with only tetramethylsilane or methane without using a diluent gas.
 さらに、SUS304,内径14mm,長さ300mmである円管内面にDLCを均一に成膜することができた。得られたDLCについて、フィッシャー社製のピコデンター硬度計を用いたナノインテーション法(微小硬さ試験法)により、内径14mm、長さ300mmの管内壁の中央部と中央部から130mmまでの6か所を50回ずつ測定し、その測定値を算術平均して、硬さの分布値を得た。その結果は、パルス電圧が1.5kV程度の場合に10~14GPaであった。中央部で硬さは最も硬く、中央部からの距離にしたがって、硬さは減少した。すなわち、±17%の硬さ分布である。膜厚の分布は、同じ測定箇所で0.9μm~1.1μmであり、±10%の膜厚分布であった。また,パルス電圧が2.5kV程度と高い場合には,平均18GPaで±11%の硬さ分布であった。 Furthermore, DLC could be uniformly formed on the inner surface of the circular tube having SUS304, inner diameter of 14 mm, and length of 300 mm. About the obtained DLC, the inner part of the inner wall of the pipe having an inner diameter of 14 mm and a length of 300 mm and a length of 300 mm from the center part to 130 mm by a nano-injection method (microhardness test method) using a Picco denter hardness meter manufactured by Fischer. The location was measured 50 times, and the measured values were arithmetically averaged to obtain a hardness distribution value. The result was 10 to 14 GPa when the pulse voltage was about 1.5 kV. The hardness was the hardest at the center, and the hardness decreased according to the distance from the center. That is, the hardness distribution is ± 17%. The film thickness distribution was 0.9 μm to 1.1 μm at the same measurement location, and the film thickness distribution was ± 10%. When the pulse voltage was as high as about 2.5 kV, the hardness distribution was ± 11% at an average of 18 GPa.
 また、電極に細径(0.8 mm)のワイヤーを用いることで,内径4 mm,長さ300mmの円管内面にもDLCを均一に成膜することができた。本方法を用いることで様々な径,アスペクト比の金属円管内面へのDLC成膜がバッチ処理で可能となる。 In addition, by using a wire with a small diameter (0.8 mm) for the electrode, DLC could be uniformly formed on the inner surface of the circular tube having an inner diameter of 4 mm and a length of 300 mm. By using this method, DLC film formation on the inner surface of a metal tube having various diameters and aspect ratios can be performed by batch processing.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明によれば、円管等の管状体の長さに影響されることなく,長尺の管状体内面にもDLCの成膜が可能となり、様々な径,アスペクト比の管状体内面へのDLC成膜がバッチ処理で可能となる。 According to the present invention, it becomes possible to form a DLC film on the inner surface of a long tubular body without being affected by the length of the tubular body such as a circular tube, and the inner surface of the tubular body having various diameters and aspect ratios. DLC film formation is possible by batch processing.
 1  円管
 2  金属棒
1 circular pipe 2 metal rod

Claims (18)

  1.  管状体;
    管状体の中空部分に挿入された金属電極;
    管状体の中空部分に原料を導入するための原料導入口;ならびに
    パルス電圧を印加するためのナノパルス電源;
    を備え、
     管状体は陰極を形成し、そして金属電極は陽極を形成してなる、
    ことを特徴とする管状体内にプラズマを発生させる発生装置。
    Tubular body;
    A metal electrode inserted into the hollow part of the tubular body;
    A raw material inlet for introducing the raw material into the hollow part of the tubular body; and a nano pulse power source for applying a pulse voltage;
    With
    The tubular body forms the cathode and the metal electrode forms the anode,
    A generator for generating plasma in a tubular body.
  2.  金属電極が、1000℃以上の融点を有する金属から選ばれる請求項1に記載の管状体内にプラズマを発生させる発生装置。 The generator for generating plasma in the tubular body according to claim 1, wherein the metal electrode is selected from metals having a melting point of 1000 ° C or higher.
  3.  原料が管状体の内側表面上に成膜するための原料物質である請求項1または2に記載の管状体内にプラズマを発生させる発生装置。 3. The generator for generating plasma in a tubular body according to claim 1 or 2, wherein the raw material is a raw material for forming a film on the inner surface of the tubular body.
  4.  原料物質が不活性ガスで希釈される請求項3に記載の管状体内にプラズマを発生させる発生装置。 4. The generator for generating plasma in a tubular body according to claim 3, wherein the raw material is diluted with an inert gas.
  5.  原料物質が不活性ガスで希釈された炭素含有ガスである請求項3または4に記載の管状体内にプラズマを発生させる発生装置。 The generator for generating plasma in the tubular body according to claim 3 or 4, wherein the raw material is a carbon-containing gas diluted with an inert gas.
  6.  管状体において、成膜される領域の長さと中空部分の直径の比が0.5:1~1000:1である請求項3~5のいずれか1項に記載の管状体内にプラズマを発生させる発生装置。 The plasma is generated in the tubular body according to any one of claims 3 to 5, wherein in the tubular body, the ratio of the length of the film formation region to the diameter of the hollow portion is 0.5: 1 to 1000: 1. Generator.
  7.  パルス幅が0.5nsec~500nsecである請求項1~6のいずれか1項に記載の管状体内にプラズマを発生させる発生装置。 The generator for generating plasma in a tubular body according to any one of claims 1 to 6, wherein the pulse width is 0.5 nsec to 500 nsec.
  8.  複数本の管状体が並列にチャンバー内に収められる、請求項1~7のいずれか1項に記載の管状体内にプラズマを発生させる発生装置。 The generator for generating plasma in a tubular body according to any one of claims 1 to 7, wherein a plurality of tubular bodies are accommodated in the chamber in parallel.
  9.  複数本の管状体の形状が異なっていてもよい請求項8に記載の管状体内にプラズマを発生させる発生装置。 The generator for generating plasma in the tubular body according to claim 8, wherein a plurality of tubular bodies may have different shapes.
  10.  管状体の中空部分に成膜原料を導入し、ナノパルス印加により管状体内にプラズマを発生させて、管状体の内側表面上に成膜することを特徴とする管状体の内側表面上への成膜方法。 Film formation on the inner surface of the tubular body, characterized in that a film forming raw material is introduced into the hollow portion of the tubular body, and plasma is generated in the tubular body by applying a nanopulse to form a film on the inner surface of the tubular body. Method.
  11.  管状体は陰極を形成し、かつ管状体の中空部分に挿入された金属電極は陽極を形成してなる請求項10に記載の管状体の内側表面上への成膜方法。 The method for forming a film on the inner surface of the tubular body according to claim 10, wherein the tubular body forms a cathode, and the metal electrode inserted into the hollow portion of the tubular body forms an anode.
  12.  成膜原料が不活性ガスで希釈される請求項10または11に記載の管状体の内側表面上への成膜方法。 The film forming method on the inner surface of the tubular body according to claim 10 or 11, wherein the film forming raw material is diluted with an inert gas.
  13.  複数本の管状体が並列にチャンバー内に収められる、請求項10~12のいずれか1項に記載の管状体の内側表面上への成膜方法。 The method for forming a film on the inner surface of the tubular body according to any one of claims 10 to 12, wherein a plurality of tubular bodies are accommodated in the chamber in parallel.
  14.  複数本の管状体の形状が異なっていてもよい請求項13に記載の管状体の内側表面上への成膜方法。 The method for forming a film on the inner surface of the tubular body according to claim 13, wherein the plurality of tubular bodies may have different shapes.
  15.  成膜原料として不活性ガスで希釈された炭素含有ガスを用いて、管状体の内側表面上にダイヤモンド状炭素を成膜する請求項10~14のいずれか1項に記載の管状体の内側表面上への成膜方法。 The inner surface of the tubular body according to any one of claims 10 to 14, wherein diamond-like carbon is deposited on the inner surface of the tubular body using a carbon-containing gas diluted with an inert gas as a film forming raw material. Method of film formation on top.
  16.  炭素含有ガスが炭化水素ガスである請求項15に記載の管状体の内側表面上への成膜方法。 The method for forming a film on the inner surface of the tubular body according to claim 15, wherein the carbon-containing gas is a hydrocarbon gas.
  17.  請求項10~16のいずれか1項に記載の管状体の内側表面上への成膜方法により得られた管状成膜体。 A tubular film-formation body obtained by the film-formation method on the inner surface of the tubular body according to any one of claims 10 to 16.
  18.  ナノインテーション法により測定された硬さ値が10GPa以上であるダイヤモンド状炭素が管状体内面にわたってコーティングされた管状成膜体。 A tubular film-formed body in which diamond-like carbon having a hardness value measured by a nano-injection method of 10 GPa or more is coated over the inner surface of the tubular body.
PCT/JP2015/053252 2014-02-06 2015-02-05 Generating device for generating plasma in tube-shaped body WO2015119199A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-021338 2014-02-06
JP2014021338A JP2015147974A (en) 2014-02-06 2014-02-06 Generator for generating plasma in tubular body

Publications (1)

Publication Number Publication Date
WO2015119199A1 true WO2015119199A1 (en) 2015-08-13

Family

ID=53778000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/053252 WO2015119199A1 (en) 2014-02-06 2015-02-05 Generating device for generating plasma in tube-shaped body

Country Status (2)

Country Link
JP (1) JP2015147974A (en)
WO (1) WO2015119199A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115287635A (en) * 2022-08-11 2022-11-04 上海征世科技股份有限公司 Method and device for performing MPCVD (multi-phase chemical vapor deposition) on inner surface of tubular material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6506787B2 (en) 2017-03-06 2019-04-24 ストローブ株式会社 Deposition method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003013225A (en) * 2001-06-27 2003-01-15 Matsushita Electric Ind Co Ltd Apparatus and method for manufacturing hard carbon film
JP2004270022A (en) * 2003-02-18 2004-09-30 Ngk Insulators Ltd Method for manufacturing thin film and thin film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003013225A (en) * 2001-06-27 2003-01-15 Matsushita Electric Ind Co Ltd Apparatus and method for manufacturing hard carbon film
JP2004270022A (en) * 2003-02-18 2004-09-30 Ngk Insulators Ltd Method for manufacturing thin film and thin film

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MASAKI INOUE ET AL.: "Synthesis of DLC films on metal substrate by Plasma CVD at Subatmospheric Pressure", THE JAPAN SOCIETY OF MECHANICAL ENGINEERS DAI 21 KAI KIKAI ZAIRYO ZAIRYO KAKO GIJUTSU KOENKAI CD-ROM RONBUNSHU, 7 November 2013 (2013-11-07) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115287635A (en) * 2022-08-11 2022-11-04 上海征世科技股份有限公司 Method and device for performing MPCVD (multi-phase chemical vapor deposition) on inner surface of tubular material

Also Published As

Publication number Publication date
JP2015147974A (en) 2015-08-20

Similar Documents

Publication Publication Date Title
JP5043657B2 (en) Method and system for on-site coating of internal surfaces of pre-assembled process piping
US7541069B2 (en) Method and system for coating internal surfaces using reverse-flow cycling
CN103320772B (en) Metal inner surface modification device and method
US20110111132A1 (en) System and method for depositing coatings on inner surface of tubular structure
EP2573047B1 (en) Method for producing onion-like carbon
JP2008532255A (en) Method and system for coating portions of an inner surface
US20200017960A1 (en) Plasma-enhanced chemical vapor deposition of carbon-based coatings on surfaces
US8691063B2 (en) Methods and apparatus for forming diamond-like coatings
JP2004323973A (en) Method of depositing dlc film, and dlc film-deposited product
EP2383366A1 (en) Method for producing diamond-like carbon membrane
US9175381B2 (en) Processing tubular surfaces using double glow discharge
CN109402612B (en) Device for depositing DLC film by self-derived bias hollow cathode discharge method and method for depositing DLC film based on device
Pillaca et al. DLC deposition inside of a long tube by using the pulsed-DC PECVD process
WO2015119199A1 (en) Generating device for generating plasma in tube-shaped body
CN113265642B (en) Method for depositing diamond-like film on inner wall surface of metal cylinder (or pipe) with large length-diameter ratio
Flege et al. Modification of diamond-like carbon films by nitrogen incorporation via plasma immersion ion implantation
JP4674091B2 (en) Inner surface coating method and inner surface coating apparatus
US20220170157A1 (en) Plasma-enhanced chemical vapor deposition of carbon-based coatings on surfaces
Nishimura et al. Uniform coating of thick DLC film on three-dimensional substrates
JP4502116B2 (en) High density plasma surface coating method and apparatus
JP5530962B2 (en) Carbon film forming apparatus and carbon film forming method
JP2017218624A (en) Film deposition method of hard film
JP5792986B2 (en) Surface treatment apparatus and surface treatment method
Matsui et al. Effect of plasma-on time on the axial distribution of film thickness in internal diamond-like carbon coating with microwave-excited high-density plasma
WO2023034972A1 (en) Plasma-enhanced chemical vapor deposition of carbon-based coatings on surfaces

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15746965

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15746965

Country of ref document: EP

Kind code of ref document: A1