WO2015119112A1 - Dielectric ceramic composition, dielectric device and methods for producing same - Google Patents

Dielectric ceramic composition, dielectric device and methods for producing same Download PDF

Info

Publication number
WO2015119112A1
WO2015119112A1 PCT/JP2015/052983 JP2015052983W WO2015119112A1 WO 2015119112 A1 WO2015119112 A1 WO 2015119112A1 JP 2015052983 W JP2015052983 W JP 2015052983W WO 2015119112 A1 WO2015119112 A1 WO 2015119112A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric
mass
ceramic composition
dielectric ceramic
zno
Prior art date
Application number
PCT/JP2015/052983
Other languages
French (fr)
Japanese (ja)
Inventor
渡辺 篤
援 八木
義政 小林
川崎 真司
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to JP2015560985A priority Critical patent/JP6539589B2/en
Publication of WO2015119112A1 publication Critical patent/WO2015119112A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G13/00Apparatus specially adapted for manufacturing capacitors; Processes specially adapted for manufacturing capacitors not provided for in groups H01G4/00 - H01G11/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62685Treating the starting powders individually or as mixtures characterised by the order of addition of constituents or additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3248Zirconates or hafnates, e.g. zircon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3263Mn3O4
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6025Tape casting, e.g. with a doctor blade
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • C04B2235/85Intergranular or grain boundary phases
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/345Refractory metal oxides
    • C04B2237/346Titania or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/68Forming laminates or joining articles wherein at least one substrate contains at least two different parts of macro-size, e.g. one ceramic substrate layer containing an embedded conductor or electrode
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/704Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the ceramic layers or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors

Definitions

  • the present invention relates to a dielectric ceramic composition, a dielectric device, and a method for producing them.
  • Patent Documents 1 to 3 Conventionally, BaTiO 3 dielectric materials that can be sintered at low temperature have been proposed (see Patent Documents 1 to 3).
  • Patent Document 1 a dielectric material that is sintered at 900 ° C. to 1000 ° C. with BaTiO 3 as a main component, at least one selected from the group consisting of CuO, ZnO, and MgO and Bi 2 O 3 as a subcomponent.
  • Patent Document 2 proposes a dielectric material that is made of BaTiO 3 as a main component, CuBi 2 O 4 and ZnO—B 2 O 3 —SiO 2 glass as a minor component, and fired at 600 ° C. to 950 ° C. or the like. ing.
  • Patent Document 3 a composition containing BaTiO 3 , ZnO, Bi 2 O 3 , Nb 2 O 5 , and Re 2 O 3 is used as a main component, and SiO 2 glass is used as a subcomponent, and the temperature is 1160 ° C. or lower.
  • a fired dielectric material has been proposed.
  • the insulation resistance may be lowered by use due to remaining auxiliary components such as Bi 2 O 3 and CuO.
  • the temperature characteristic of the dielectric constant (for example, the rate of change in the temperature of the capacitance) may be poor due to the auxiliary component reacting with the glass component.
  • a dielectric particle raw material which is a compound containing a metal element other than Ba and Ti in a part of BaTiO 3 and a grain boundary raw material containing ZnO. It has been found that when the prepared powder containing is molded and sintered, a novel dielectric ceramic composition and dielectric device can be provided, and the present invention has been completed.
  • the dielectric ceramic composition of the present invention is A dielectric particle part which is a compound containing a metal element other than Ba and Ti in a part of BaTiO 3 ; A grain boundary portion that is present between the particles of the dielectric particle portion and contains ZnO; It is equipped with.
  • the dielectric device of the present invention is The dielectric ceramic composition described above; An electrode that is integrated with the dielectric ceramic composition and is Ag or an Ag alloy; It is equipped with.
  • the method for producing the dielectric ceramic composition of the present invention includes: A forming and sintering step of forming and sintering a prepared powder containing a dielectric particle raw material which is a compound containing a metal element other than Ba and Ti in a part of BaTiO 3 and a grain boundary raw material containing ZnO, Is included.
  • the dielectric device manufacturing method of the present invention includes: A molded body obtained by molding a prepared powder containing a dielectric particle raw material which is a compound containing a metal element other than Ba and Ti in a part of BaTiO 3 and a grain boundary raw material containing ZnO, and an electrode material containing Ag or an Ag alloy, , A molding and sintering step for sintering a molded body with an electrode integrated, Is included.
  • the present invention can provide a novel dielectric ceramic composition and dielectric device.
  • a compound in which a metal element other than Ba and Ti (auxiliary component) is included in a part of BaTiO 3 as a dielectric particle raw material the remaining auxiliary component can be reduced and element diffusion can be suppressed. It is done.
  • the reaction of a dielectric particle material impregnated with auxiliary components in a part of BaTiO 3, nobler and a grain boundary portion material and BaTiO 3, for using, as BaTiO 3 and auxiliaries component and a grain boundary portion material It is thought that it can be suppressed.
  • FIG. 1 is a schematic cross-sectional view of a dielectric ceramic composition 10.
  • FIG. 1 is a schematic cross-sectional view of a multilayer ceramic capacitor 50.
  • FIG. 4 is an SEM photograph of the fired body of Experimental Example 3.
  • 4 is an SEM photograph of a fired body of Experimental Example 36.
  • the dielectric ceramic composition of the present invention includes a dielectric particle part which is a compound containing a metal element other than Ba and Ti in a part of BaTiO 3 , a grain boundary part which exists between particles of the dielectric particle part and contains ZnO, including.
  • the dielectric particle part is composed of particles of a compound containing a metal element other than Ba and Ti in a part of BaTiO 3 , and the particles may be bonded to each other.
  • the general formula (Ba 1-x M1 x ) (Ti 1-y M2 y ) O 3 (wherein M1 and M2 are metal elements other than Ba and Ti, and x and y are greater than 0 and less than 1) (It is a numerical value).
  • a part of BaTiO 3 contains a metal element other than Ba and Ti means, for example, a compound containing BaTiO 3 , a metal element other than Ba and Ti, or a metal element other than Ba and Ti (such as an oxide). It is good also as what is dissolved.
  • metal elements other than Ba and Ti include alkaline earth metal elements, rare earth elements, Sb, Ni, Cu, Cr, Fe, Co, Mn, Ta, Nb, W, Mo, Zn, Bi, Zr, Ag, and Sn. Or one or more elements selected from the group consisting of Sr. Of these, one or more elements selected from the group consisting of Bi, Zn, Mn, Zr, Nb, Sn, and Sr may be used.
  • Bi, Zn, and Mn may be used, and Bi, Zn, Mn, and Zr may be used.
  • Metal elements other than Ba and Ti are contained as oxides such as Bi 2 O 3 , ZnO, Mn 3 O 4 , ZrO 2 , SnO 2 , Nb 2 O 5 , SrO, and SrTiO 3. Also good. Zr may be inevitably included in the manufacturing process.
  • the dielectric particle part may have one kind of compound particles containing a metal element other than Ba and Ti in a part of BaTiO 3 , or may have two or more kinds. Further, particles of a compound containing a metal element other than Ba and Ti in a part of BaTiO 3 may be single-phase particles having a constant composition and characteristics within the particles, or a plurality of particles having different compositions and characteristics within the particles. Multiphase particles having phases may be used.
  • Examples of multiphase particles include a core-shell structure in which the composition and properties differ between the part that becomes the core of the particle and the part that becomes the shell formed so as to cover the core, and the center part of the particle And a structure in which the composition and characteristics change continuously or intermittently from the outer periphery to the outer periphery.
  • a part of the phase may not be a phase containing a metal element other than Ba and Ti in a part of BaTiO 3 .
  • the dielectric particle portion has two or more kinds of phases having different compositions and characteristics (especially temperature characteristics of dielectric constant).
  • the temperature characteristics of the dielectric constant of the dielectric particle portion can be stabilized.
  • the dielectric particles portion is provided with two or more phases, for example, a BaTiO 3 phase consisting of BaTiO 3, Ba in BaTiO 3, oxides of metal elements other than Ti, for example, Bi 2 O 3, ZnO, Mn
  • a BaTiO 3 phase consisting of BaTiO 3, Ba in BaTiO 3, oxides of metal elements other than Ti, for example, Bi 2 O 3, ZnO, Mn
  • 3 O 4 , ZrO 2 , SnO 2 , Nb 2 O 5 , SrO, SrTiO 3 , and the like are included in a solid solution and / or substituted phase (solid solution / substituted phase).
  • a solid solution / substitution phase having a different solid solution / substitution amount such as Bi 2 O 3 , ZnO, Mn 3 O 4 , ZrO 2 , SnO 2 , Nb 2 O 5 , SrO, SrTiO 3 , or the BaTiO 3 phase It may be included instead.
  • This solid solution / substitution phase may include Bi 2 O 3 , ZnO and Mn 3 O 4 , or may include Bi 2 O 3 , ZnO, Mn 3 O 4 and ZrO 2 .
  • This solid solution / substitution phase may contain, for example, one or more selected from the group consisting of ZrO 2 , SrO, SrTiO 3 , Nb 2 O 5 , SnO 2 .
  • the solid solution / substitution phase does not contain CuO, and even when it contains CuO, it is preferable that it is a trace amount. Note that the phase characteristics can be changed by adjusting the phase composition, production conditions, and the like.
  • the grain boundary part contains ZnO.
  • the grain boundary part preferably contains 35% by mass or more of ZnO.
  • the grain boundary portion is preferably mainly composed of ZnO and B 2 O 3 , and may be composed mainly of ZnO.
  • the ZnO and B 2 O 3 as the main shows that among the components of the grain boundary, the largest total mass ratio of ZnO and B 2 O 3.
  • “mainly composed of ZnO” means that the mass ratio of ZnO is the largest among the constituent components of the first grain boundary part.
  • the grain boundary part may be based on a glass containing ZnO, and more specifically, the glass containing ZnO may be crystallized.
  • the glass containing ZnO examples include Zn—B—O glass.
  • the Zn—B—O-based glass is glass containing Zn, B, and O.
  • a glass containing ZnO and B 2 O 3 may be used.
  • the Zn—B—O-based glass may contain several other elements as secondary elements.
  • it may be a Zn—B—Si—O-based glass.
  • the Zn—B—Si—O-based glass may be glass containing Zn, B, Si, and O.
  • the Zn—B—O-based glass may contain, for example, ZnO in a range of 35 mass% to 80 mass%.
  • B 2 O 3 may be used as to include in the range of 50 mass% 10 mass% or more.
  • the present invention may be those containing SiO 2 in a range of 5 mass% to 15 mass%.
  • the grain boundary part preferably does not contain Bi or Mg. If Bi or Mg is not included in the grain boundary part, it is possible to further suppress a decrease in insulation resistance.
  • the proportion of the grain boundary part containing ZnO should be greater than 0% with respect to the entire dielectric ceramic composition, but is preferably 1% or more, preferably 2% or more. More preferred. Moreover, although it should just be less than 100%, 20% or less is preferable and 13% or less is more preferable.
  • the dielectric ceramic composition may further include oxide particles in addition to the dielectric particle part and the grain boundary part.
  • oxide particles include oxides of metal elements other than Ba and Ti described above.
  • the oxide particles may include, for example, one or more selected from the group consisting of Bi 2 O 3 , ZnO, Mn 3 O 4 , ZrO 2 , SnO 2 , Nb 2 O 5 , SrO, and SrTiO 3. 2 O 3 , ZnO and Mn 3 O 4 may be included, or Bi 2 O 3 , ZnO, Mn 3 O 4 and ZrO 2 may be included.
  • the oxide particles may contain one or more selected from the group consisting of ZrO 2 , SnO 2 , Nb 2 O 5 , SrO, and SrTiO 3 .
  • the dielectric ceramic composition has Bi 2 O 3 of 3.5% by mass to 11% by mass, ZnO of 0.6% by mass to 5.0% by mass, and Mn 3 O 4 of 0.01% by mass to 1%. It is preferable that the CuO content is within a range of 0.0 mass% or less, and the CuO content is within a range of 0.4 mass% or less.
  • the relative dielectric constant is high, for example, 1000 or more
  • the dielectric loss tangent tan ⁇ is low, such as 0.05 or less
  • the X7R characteristic (EIA standard: capacity change rate in the range of ⁇ 55 ° C. to 125 ° C. is 25 ° C.
  • the dielectric ceramic composition may include BaTiO 3 (which may be the sum of BaO and TiO 2 ) in the range of 70% by mass to 97% by mass, or in the range of 80% by mass to 95% by mass. It may be included.
  • the dielectric ceramic composition includes one or more selected from the group consisting of SnO 2 , ZrO 2 , Nb 2 O 5 , and SrO, the content of SnO 2 is 1.0 mass% or less, and the content of ZrO 2 May be 2.5% by mass or less, the Nb 2 O 5 content may be 1.0% by mass or less, and the SrO content may be 10% by mass or less. If containing at least one element selected from a group consisting of SnO 2, ZrO 2, Nb 2 O 5, SrO, the content thereof, each of which may be more than 0.01 mass%.
  • the dielectric ceramic composition may contain SiO 2 in the range of 0.01% by mass to 0.5% by mass. In addition, although content which converted each metal component into the oxide was shown here, each metal component may exist with forms other than the oxide mentioned above.
  • the dielectric ceramic composition may have a relative dielectric constant of 1000 or more and 3000 or less. Such a material can have a dielectric constant required for a BaTiO 3 dielectric.
  • the dielectric ceramic composition may have a dielectric loss tangent tan ⁇ of 0.05 or less, preferably 0.04 or less, and more preferably 0.03 or less. In such a case, the dielectric loss can be reduced.
  • the dielectric ceramic composition of the present invention forms, for example, a preparation powder containing a dielectric particle raw material which is a compound containing a metal element other than Ba and Ti in a part of BaTiO 3 and a grain boundary raw material containing ZnO. Then, it may be obtained by sintering. Such a dielectric ceramic composition may be obtained by a dielectric ceramic composition manufacturing method described later.
  • the dielectric ceramic composition of the present invention may be included in a low temperature co-fired ceramic (LTCC) multilayer substrate.
  • LTCC low temperature co-fired ceramic
  • the dielectric ceramic composition of the present invention may be, for example, the dielectric ceramic composition 10 shown in FIG. FIG. 1 is a schematic cross-sectional view of a dielectric ceramic composition 10.
  • the dielectric ceramic composition 10 includes dielectric particle portions 22 and grain boundary portions 24.
  • the dielectric particle part 22 is a compound containing a metal element other than Ba and Ti in a part of BaTiO 3 , and various aspects of the dielectric particle part described above can be applied.
  • the grain boundary part 24 exists between the particles of the dielectric particle part 22 and contains ZnO, and various aspects of the grain boundary part described above can be applied.
  • the dielectric device of the present invention includes the above-described dielectric ceramic composition and an electrode that is integrated with the dielectric ceramic composition and is Ag or an Ag alloy.
  • the Ag alloy preferably contains 50% by mass or more of Ag, and may contain 80% by mass or more of Ag. Examples of the metal constituting the alloy with Ag include Pd.
  • the dielectric ceramic composition preferably does not contain CuO or has a low CuO composition.
  • the CuO content is preferably in the range of 0.4% by mass or less. In this way, a multilayer ceramic capacitor or the like can be produced without damaging the Ag-based electrode.
  • the dielectric device of the present invention may be, for example, the multilayer ceramic capacitor 50 shown in FIG. 2.
  • FIG. 2 is a schematic cross-sectional view of the multilayer ceramic capacitor 50.
  • the multilayer ceramic capacitor 50 includes the dielectric ceramic composition 10 described above, an electrode (internal electrode) 52 that is integrated with the dielectric ceramic composition 10 and is Ag or an Ag alloy, and an external electrode 54.
  • the external electrode 54 may be omitted.
  • the method for producing a dielectric ceramic composition of the present invention forms a prepared powder containing a dielectric particle raw material which is a compound containing a metal element other than Ba and Ti in a part of BaTiO 3 and a grain boundary raw material containing ZnO.
  • the molding and sintering step may include, for example, (A) a preparation powder manufacturing step, (B) a molded body manufacturing step, and (C) a sintering step. Below, each process is demonstrated.
  • the dielectric particle material is a powder (particle) of a compound containing a metal element other than Ba and Ti in a part of BaTiO 3 .
  • the general formula (Ba 1-x M1 x ) (Ti 1-y M2 y ) O 3 (wherein M1 and M2 are metal elements other than Ba and Ti, and x and y are numerical values from 0 to 1) It is good also as what is represented by this.
  • a part of BaTiO 3 contains a metal element other than Ba and Ti means, for example, a compound containing BaTiO 3 , a metal element other than Ba and Ti, or a metal element other than Ba and Ti (such as an oxide). It is good also as what is dissolved.
  • metal elements other than Ba and Ti include those exemplified in the description of the dielectric particle portion.
  • the dielectric particle raw material may have one kind of compound powder containing a metal element other than Ba and Ti in a part of BaTiO 3 , or two or more kinds.
  • the dielectric particle material may be single-phase particles having a constant composition and characteristics within the particles, or multilayer particles having different compositions and characteristics within the particles, as in the case of the dielectric particle portion.
  • the multiphase particles for example, the core-shell structure described above, or those having a structure in which the composition and characteristics change continuously or intermittently from the center to the outer periphery of the particles can be suitably used.
  • the dielectric particle material has two or more kinds of phases having different compositions and characteristics (particularly, temperature characteristics of dielectric constant). When two or more phases having different dielectric constant temperature characteristics are mixed, it is considered that the temperature characteristics of the dielectric constant of the dielectric particle portion can be stabilized in the obtained dielectric ceramic composition. It is done.
  • the dielectric particle raw material is, for example, a product obtained through a synthetic powder manufacturing process (synthetic powder) in which a synthetic powder is manufactured by baking a mixed powder containing a BaTiO 3 raw material and a metal element other than Ba and Ti. Good.
  • synthetic powders synthesized in advance auxiliary substances containing glass elements and metal elements other than Ba and Ti at the time of production (for example, Bi 2 O 3 , ZnO, Mn 3 O 4 , ZrO 2 , SnO 2 , Nb 2 O 5 , SrO, SrTiO 3, etc.) are hardly generated, and a dielectric ceramic composition having good characteristics such as dielectric characteristics can be produced.
  • the same effect can be expected if it is a powder of a compound containing a metal element other than Ba and Ti in a part of BaTiO 3 .
  • the BaTiO 3 raw material may be BaTiO 3 itself, or may be obtained by firing BaTiO 3 , for example, a mixture of BaCO 3 and TiO 2 , or both of them. It is good. Metal elements other than Ba and Ti may be included in any form, but are preferably included as oxides.
  • the mixed powder is not only BaTiO 3 raw material but also metal elements other than Ba and Ti, such as Bi 2 O 3 , ZnO, Mn 3 O 4 , ZrO 2 , SrO, SrTiO 3 , Nb 2 O 5. And one or more selected from the group consisting of SnO 2 .
  • the mixed powder may include Bi 2 O 3 , ZnO, and Mn 3 O 4 , or may include Bi 2 O 3 , ZnO, Mn 3 O 4 , and ZrO 2 .
  • the mixed powder may contain one or more selected from the group consisting of ZrO 2 , SrO, SrTiO 3 , Nb 2 O 5 , and SnO 2 .
  • the mixed powder has Bi 2 O 3 of 3.5% by mass to 11% by mass, ZnO of 0.6% by mass to 5.0% by mass, and Mn 3 O 4 of 0.01% by mass to 1.0% by mass. It is preferable that the content of CuO is in the range of 0.4% by mass or less. By doing so, it is possible to easily obtain a dielectric ceramic composition that has a high relative dielectric constant, a low dielectric loss tangent tan ⁇ , satisfies the X7R characteristics, has little decrease in insulation resistance due to use, and has a long life. In the sintering process, simultaneous firing with an Ag-based electrode can be performed satisfactorily.
  • the mixed powder may contain the BaTiO 3 raw material in a range of 70% by mass or more and 97% by mass or less in terms of BaTiO 3 , or may contain 80% by mass or more and 95% by mass or less.
  • the mixed powder contains one or more selected from the group consisting of ZrO 2 , SnO 2 , Nb 2 O 5 , SrO, and SrTiO 3 , the ZrO 2 content is 25% by mass or less, and the SnO 2 content is 15
  • the content of Nb 2 O 5 may be 1.0% by mass or less
  • the content of SrO may be 10% by mass or less
  • the content of SrTiO 3 may be 18% by mass or less.
  • the content may be 0.01% by mass or more.
  • ZrO 2 may be supplied from, for example, ZrO 2 boulders used for pulverization when a mixed powder is prepared by pulverization and mixing.
  • the firing conditions are not particularly limited, but heat treatment is performed at a firing temperature of 700 ° C. to 1200 ° C. for 1 hour to 24 hours in an oxidizing atmosphere such as air or oxygen atmosphere. It is good.
  • one kind of synthetic powder may be produced, or two or more kinds of synthetic powders having different temperature characteristics of dielectric constant produced under different compositions and production conditions may be produced.
  • the grain boundary part raw material contains ZnO.
  • the grain boundary part raw material preferably contains 35% by mass or more of ZnO.
  • a grain boundary part raw material is mainly composed of ZnO and B 2 O 3 , and may be composed mainly of ZnO.
  • the ZnO and B 2 O 3 as the main shows that among the components of the grain boundary material, most often the total mass ratio of ZnO and B 2 O 3.
  • “mainly composed of ZnO” means that the mass ratio of ZnO is the largest among the constituent components of the grain boundary raw material.
  • the grain boundary raw material is not particularly limited as long as it can be melted in the subsequent sintering step to fill the space between the particles of the particle raw material, but is preferably glass, and Zn—B—O based glass (for example, Zn—B). —Si—O-based glass) is preferable. Since Zn—B—O-based glass does not easily react with BaTiO 3 , the characteristics of the dielectric ceramic composition can be further maintained. Note that since Zn—B—O and Zn—B—Si—O based glasses are the same as those described in the grain boundary portion, description thereof is omitted here.
  • the prepared powder preferably contains the grain boundary raw material in a range of 0.5% by volume or more and 15% by volume or less, and more preferably in a range of 1.5% by volume or more and 11% by volume or less.
  • the prepared powder may contain oxide particles different from these in addition to the dielectric particle raw material and the grain boundary raw material.
  • the oxide particles may have a relative dielectric constant in the range of 500 to 100,000, for example, and may be a double oxide such as SrTiO 3 or BaTiO 3 without additives.
  • the temperature characteristic of the dielectric constant can be improved in a wider temperature range, for example, the absolute value of the capacitance change rate can be reduced in a wider temperature range in the fired body.
  • a double oxide it is preferably included in the range of 1% by volume to 60% by volume, and more preferably in the range of 1% by volume to 50% by volume.
  • (B) Molded body manufacturing process In this process, a molded body obtained by molding the prepared powder is manufactured.
  • the method of molding the prepared powder is not particularly limited, but may be molded by press molding, mold molding, extrusion molding, printing, doctor blade, or the like.
  • the prepared powder may be used alone, or by adding an organic solvent such as toluene or isopropyl alcohol (IPA), an organic binder, a plasticizer, a dispersing agent, etc., green sheet, clay, paste, slurry It may be used as such.
  • IPA isopropyl alcohol
  • (C) Sintering step In this step, the above-mentioned formed body is fired (sintered) to produce a dielectric ceramic composition.
  • the sintering may be performed at a sintering temperature of 800 ° C. or higher and 1000 ° C. or lower. This is because BaTiO 3 -based materials are desired to be sintered at 1000 ° C. or lower. If sintering is possible at 1000 ° C. or lower, for example, simultaneous lamination firing with a low dielectric material sintered using an Ag electrode or glass having a low specific resistivity can be made possible. Also, if sintered at 800 ° C. or higher, a dielectric ceramic composition having a high density and excellent dielectric properties can be obtained.
  • the firing time can be, for example, in the range of 1 hour to 24 hours.
  • the dielectric particle material becomes the dielectric particle part and the grain boundary part material becomes the grain boundary part.
  • the dielectric particle part and the grain boundary part take in components other than the respective raw materials. Or may be obtained by discharging a part of each raw material.
  • the dielectric device manufacturing method of the present invention is a molded body obtained by molding a prepared powder containing a dielectric particle raw material which is a compound containing a metal element other than Ba and Ti in a part of BaTiO 3 and a grain boundary raw material containing ZnO. And an electrode material containing Ag or an Ag alloy, and a forming and sintering step of sintering a formed body with an electrode.
  • the molding and sintering step may include, for example, (A) a preparation powder manufacturing step, (B ′) a molded body with electrode manufacturing step, and (C) a sintering step.
  • A a preparation powder manufacturing step
  • B ′ a molded body with electrode manufacturing step
  • C a sintering step.
  • (B ′) Molded body manufacturing process with electrode In this step, the molded body molded with the prepared powder and the electrode material containing Ag or an Ag alloy are integrated to manufacture a molded body with an electrode. What is necessary is just to shape
  • the Ag alloy include those exemplified in the description of the dielectric device.
  • the electrode material may be formed, for example, by adding an organic solvent or the like to Ag or Ag alloy powder to form a paste or slurry, and then applying and molding.
  • the dielectric ceramic composition, dielectric device, and manufacturing method thereof of the present invention can provide a BaTiO 3 -based novel dielectric ceramic composition.
  • a compound containing a metal element (auxiliary component) other than Ba and Ti in part of BaTiO 3 as a dielectric particle material (for example, a solid solution)
  • the remaining auxiliary component is reduced, It is thought that element diffusion can be suppressed.
  • the insulation deterioration of the dielectric ceramic composition can be suppressed by the presence of the grain boundary portion containing ZnO between the particles of the dielectric particle portion.
  • the electrode is divided by diffusion of the CuO component, and the electrode It can suppress that an effective area becomes small.
  • the dielectric ceramic composition needs to be fired at a low temperature such as 1000 ° C. or less. Since it can be fired at such a low temperature, it can be manufactured relatively easily.
  • Experimental examples 1 to 31 and 42 to 52 correspond to examples of the present invention, and experimental examples 32 to 41 correspond to comparative examples.
  • the present invention is not limited to the following examples.
  • IPA isopropyl alcohol
  • zirconia cobblestone was used for wet pulverization and mixing for 48 hours in a ball mill, and the slurry passed through a 200 mesh sieve was dried and sized with a 100 mesh sieve.
  • the mixed powder was pre-synthesized in the air at a predetermined temperature shown in Table 1 for 2 hours to obtain a pre-synthesized powder (6.15 g / cm 3 ).
  • the specific surface area was measured by the N 2 -BET method (Table 1).
  • glasses having the respective compositions shown in Table 2 were prepared.
  • the above-mentioned pre-synthetic powder (dielectric particle raw material), the above-mentioned glass (grain boundary raw material), and in Examples 42 and 43, SrTiO 3 is further added in a predetermined amount shown in Tables 3 and 4, and IPA is further added.
  • zirconia cobblestone was used for wet grinding and mixing with a ball mill for 24 hours, and then the slurry passed through a 200 mesh sieve was dried and sized with a 100 mesh sieve to obtain a prepared powder.
  • SrTiO 3 a commercial product having a purity of 99%, an average particle diameter of 1 ⁇ m, and a specific surface area of 11.7 m 2 / g was used.
  • the body layers (portions sandwiched between the upper and lower electrodes) were stacked so as to form 16 layers, and thermocompression bonded to obtain a pressure-bonded body (molded body with electrodes).
  • the laminate was sintered in the atmosphere at the firing temperatures shown in Tables 3 and 2 for 2 hours to obtain a fired body.
  • An external electrode was formed on the fired body to establish electrical connection with the internal electrode, and a multilayer ceramic capacitor sample was obtained.
  • the thickness of the dielectric layer of the ceramic capacitor after firing was 15 ⁇ m, and the thickness of the Ag electrode was 2.5 ⁇ m.
  • FIG. 2 shows a schematic cross-sectional view of such a multilayer ceramic capacitor.
  • the multilayer ceramic capacitor 50 includes a dielectric layer (dielectric ceramic composition) 10, an internal electrode 52, and an external electrode 54.
  • grain boundary phase (grain boundary part) ratio derived from glass)
  • SEM scanning electron microscope
  • the area of the portion was calculated by image analysis, and the proportion of the total area was calculated.
  • the average value of the three visual fields was defined as the ratio of the grain boundary phase area occupied by the grain boundary phase.
  • Grain boundary phases having different contrasts were confirmed to have element distribution by FE-EPMA, and were derived from glass and contained ZnO.
  • composition of fired body Each fired body for chemical analysis was pulverized, dissolved in an acid solution, and each component was quantified by ICP emission spectroscopy. Incidentally, ZrO 2 detected at a level of ZrO 2 is not added, is presumed to be due to zirconia boulder. B 2 O 3 was expressed as 0 wt% because it was below the detection limit.
  • FIG. 3 shows a prepared powder obtained by mixing a pre-synthetic powder obtained by pre-baking a mixed powder containing BaTiO 3 , Bi 2 O 3 , ZnO, and Mn 3 O 4 and a Zn—B—Si—O-based glass. It was found that the dielectric particle part and the grain boundary part can be distinguished from those molded and sintered. In contrast, FIG.
  • Tables 5 and 6 show the density, relative dielectric constant, tan ⁇ , X7R characteristics, maximum capacity change rate, lifetime, grain boundary phase ratio, observation results of the Ag electrode, and the chemical composition of the fired bodies of Experimental Examples 1 to 52.
  • the present invention can be used in the field of electronic equipment.
  • dielectric ceramic composition 10 dielectric ceramic composition, 22 dielectric particle parts, 24 grain boundary parts, 50 multilayer ceramic capacitor, 52 internal electrode, 54 external electrode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

A dielectric ceramic composition (10) provided with: a dielectric particle section (22) which is a compound containing a metal element other than Ba or Ti in some of the BaTiO3; and a particle boundary section (24) containing ZnO and present between the particles of the dielectric particle section (22). This dielectric ceramic composition may be obtained, for example, by forming and sintering a powder preparation containing a dielectric-particle-section starting material which is a compound containing a metal element other than Ba or Ti in some of the BaTiO3, and a particle-boundary-section starting material containing ZnO.

Description

誘電体磁器組成物、誘電体デバイス及びそれらの製造方法DIELECTRIC CERAMIC COMPOSITION, DIELECTRIC DEVICE AND METHOD FOR PRODUCING THEM
 本発明は、誘電体磁器組成物、誘電体デバイス及びそれらの製造方法に関する。 The present invention relates to a dielectric ceramic composition, a dielectric device, and a method for producing them.
 従来、低温焼結可能なBaTiO3系の誘電材料が提案されている(特許文献1~3参照)。例えば、特許文献1では、BaTiO3を主成分としCuO、ZnOおよびMgOからなる群より選ばれた少なくとも一種とBi23とを副成分とし、900℃~1000℃で焼結される誘電材料が提案されている。また、特許文献2では、BaTiO3を主成分とし、CuBi24及びZnO-B23-SiO2系ガラスを副成分とし、600℃~950℃などで焼成される誘電材料が提案されている。また、特許文献3では、BaTiO3、ZnO、Bi23、Nb25、Re23を含む組成のものを主成分とし、SiO2系のガラスを副成分とし、1160℃以下で焼成される誘電材料が提案されている。 Conventionally, BaTiO 3 dielectric materials that can be sintered at low temperature have been proposed (see Patent Documents 1 to 3). For example, in Patent Document 1, a dielectric material that is sintered at 900 ° C. to 1000 ° C. with BaTiO 3 as a main component, at least one selected from the group consisting of CuO, ZnO, and MgO and Bi 2 O 3 as a subcomponent. Has been proposed. Further, Patent Document 2 proposes a dielectric material that is made of BaTiO 3 as a main component, CuBi 2 O 4 and ZnO—B 2 O 3 —SiO 2 glass as a minor component, and fired at 600 ° C. to 950 ° C. or the like. ing. In Patent Document 3, a composition containing BaTiO 3 , ZnO, Bi 2 O 3 , Nb 2 O 5 , and Re 2 O 3 is used as a main component, and SiO 2 glass is used as a subcomponent, and the temperature is 1160 ° C. or lower. A fired dielectric material has been proposed.
特開2007-290940号公報JP 2007-290940 A 特開2009-132606号公報JP 2009-132606 A 特開平7-37426号公報Japanese Patent Laid-Open No. 7-37426
 しかしながら、特許文献1の誘電材料では、助剤成分であるBi23やCuOが残存するなどして、使用により絶縁抵抗が低下することがあった。特許文献2の誘電材料では、助剤成分がガラス成分と反応するなどして、誘電率の温度特性(例えば静電容量の温度変化率など)が悪いことがあった。特許文献3の誘電材料では、1000℃以上で焼成する必要があり、比抵抗率が低いAg系電極などとの同時焼成が困難であった。このため、低温(例えば1000℃以下など)での焼結が可能で、助剤成分の残存や焼成時などにおける含有成分の拡散や反応を抑制して所望の特性が得られる、新規な誘電体磁器組成物及び誘電体デバイスが望まれていた。 However, in the dielectric material of Patent Document 1, the insulation resistance may be lowered by use due to remaining auxiliary components such as Bi 2 O 3 and CuO. In the dielectric material of Patent Document 2, the temperature characteristic of the dielectric constant (for example, the rate of change in the temperature of the capacitance) may be poor due to the auxiliary component reacting with the glass component. In the dielectric material of Patent Document 3, it is necessary to fire at 1000 ° C. or higher, and simultaneous firing with an Ag-based electrode having a low specific resistivity is difficult. For this reason, it is possible to sinter at low temperature (for example, 1000 ° C. or less), a novel dielectric material that can achieve desired characteristics by suppressing the diffusion and reaction of contained components during the remaining auxiliary components and firing. Porcelain compositions and dielectric devices have been desired.
 上述した課題を解決するために鋭意研究したところ、本発明者らは、BaTiO3の一部にBa、Ti以外の金属元素を含む化合物である誘電粒子原料とZnOを含む粒界部原料とを含む調製粉を成形して焼結すると、新規な誘電体磁器組成物及び誘電体デバイスを提供できることを見いだし、本発明を完成するに至った。 As a result of diligent research to solve the above-mentioned problems, the present inventors have found that a dielectric particle raw material which is a compound containing a metal element other than Ba and Ti in a part of BaTiO 3 and a grain boundary raw material containing ZnO. It has been found that when the prepared powder containing is molded and sintered, a novel dielectric ceramic composition and dielectric device can be provided, and the present invention has been completed.
 すなわち、本発明の誘電体磁器組成物は、
 BaTiO3の一部にBa、Ti以外の金属元素を含む化合物である誘電粒子部と、
 前記誘電粒子部の粒子間に存在しZnOを含む粒界部と、
 を備えたものである。
That is, the dielectric ceramic composition of the present invention is
A dielectric particle part which is a compound containing a metal element other than Ba and Ti in a part of BaTiO 3 ;
A grain boundary portion that is present between the particles of the dielectric particle portion and contains ZnO;
It is equipped with.
 また、本発明の誘電体デバイスは、
 上述した誘電体磁器組成物と、
 前記誘電体磁器組成物と一体化されAg又はAg合金である電極と、
 を備えたものである。
The dielectric device of the present invention is
The dielectric ceramic composition described above;
An electrode that is integrated with the dielectric ceramic composition and is Ag or an Ag alloy;
It is equipped with.
 また、本発明の誘電体磁器組成物の製造方法は、
 BaTiO3の一部にBa、Ti以外の金属元素を含む化合物である誘電粒子原料とZnOを含む粒界部原料とを含む調製粉を成形し焼結する成形焼結工程、
 を含むものである。
In addition, the method for producing the dielectric ceramic composition of the present invention includes:
A forming and sintering step of forming and sintering a prepared powder containing a dielectric particle raw material which is a compound containing a metal element other than Ba and Ti in a part of BaTiO 3 and a grain boundary raw material containing ZnO,
Is included.
 また、本発明の誘電体デバイスの製造方法は、
 BaTiO3の一部にBa、Ti以外の金属元素を含む化合物である誘電粒子原料とZnOを含む粒界部原料とを含む調製粉を成形した成形体と、Ag又はAg合金を含む電極材料と、を一体化した電極付き成形体を焼結する成形焼結工程、
 を含むものである。
The dielectric device manufacturing method of the present invention includes:
A molded body obtained by molding a prepared powder containing a dielectric particle raw material which is a compound containing a metal element other than Ba and Ti in a part of BaTiO 3 and a grain boundary raw material containing ZnO, and an electrode material containing Ag or an Ag alloy, , A molding and sintering step for sintering a molded body with an electrode integrated,
Is included.
 本発明では、新規な誘電体磁器組成物及び誘電体デバイスを提供することができる。例えば、誘電粒子原料としてBaTiO3の一部にBa、Ti以外の金属元素(助剤成分)を含ませた化合物を用いることで、残留する助剤成分を低減し、元素拡散を抑制できると考えられる。また、BaTiO3の一部に助剤成分を含ませた誘電粒子原料と、BaTiO3と反応しにくい粒界部原料と、を用いるため、BaTiO3や助剤成分と粒界部原料との反応を抑制することができると考えられる。 The present invention can provide a novel dielectric ceramic composition and dielectric device. For example, by using a compound in which a metal element other than Ba and Ti (auxiliary component) is included in a part of BaTiO 3 as a dielectric particle raw material, the remaining auxiliary component can be reduced and element diffusion can be suppressed. It is done. Further, the reaction of a dielectric particle material impregnated with auxiliary components in a part of BaTiO 3, nobler and a grain boundary portion material and BaTiO 3, for using, as BaTiO 3 and auxiliaries component and a grain boundary portion material It is thought that it can be suppressed.
誘電体磁器組成物10の概略の断面図。1 is a schematic cross-sectional view of a dielectric ceramic composition 10. FIG. 積層セラミックコンデンサ50の概略の断面図。1 is a schematic cross-sectional view of a multilayer ceramic capacitor 50. FIG. 実験例3の焼成体のSEM写真。4 is an SEM photograph of the fired body of Experimental Example 3. 実験例36の焼成体のSEM写真。4 is an SEM photograph of a fired body of Experimental Example 36.
(誘電体磁器組成物)
 本発明の誘電体磁器組成物は、BaTiO3の一部にBa、Ti以外の金属元素を含む化合物である誘電粒子部と、誘電粒子部の粒子間に存在しZnOを含む粒界部と、を含む。
(Dielectric porcelain composition)
The dielectric ceramic composition of the present invention includes a dielectric particle part which is a compound containing a metal element other than Ba and Ti in a part of BaTiO 3 , a grain boundary part which exists between particles of the dielectric particle part and contains ZnO, including.
 誘電粒子部は、BaTiO3の一部にBa、Ti以外の金属元素を含む化合物の粒子で構成されており、粒子同士が結合していてもよい。BaTiO3の一部にBa、Ti以外の金属元素を含むとは、例えば、BaTiO3のうち、BaやTiの一部が、Ba、Ti以外の金属元素で置換されているものとしてもよく、例えば、一般式(Ba1-xM1x)(Ti1-yM2y)O3(式中、M1及びM2はBa、Ti以外の金属元素であり、x及びyは0より大きく1未満の数値である)で表されるものとしてもよい。また、BaTiO3の一部にBa、Ti以外の金属元素を含むとは、例えば、BaTiO3に、Ba、Ti以外の金属元素や、Ba、Ti以外の金属元素を含む化合物(酸化物など)が固溶しているものとしてもよい。Ba、Ti以外の金属元素としては、アルカリ土類金属元素、希土類元素、Sb、Ni、Cu、Cr、Fe、Co、Mn、Ta、Nb、W、Mo、Zn、Bi、Zr、Ag、Sn、Srからなる群より選ばれる1以上の元素としてもよい。このうち、Bi、Zn、Mn、Zr、Nb、Sn、Srからなる群より選ばれる1以上の元素としてもよく、例えば、Bi、Zn及びMnとしてもよいし、Bi、Zn、Mn及びZrとしてもよい。Ba、Ti以外の金属元素は、例えば、Bi23、ZnO、Mn34、ZrO2、SnO2、Nb25、SrO、SrTiO3などのように、酸化物として含まれていてもよい。なお、Zrは、製造工程などで不可避的に含まれるものとしてもよい。 The dielectric particle part is composed of particles of a compound containing a metal element other than Ba and Ti in a part of BaTiO 3 , and the particles may be bonded to each other. Ba in a part of BaTiO 3, and comprises a metal element other than Ti, for example, of the BaTiO 3, a portion of Ba and Ti is, Ba, it may be those substituted with a metal element other than Ti, For example, the general formula (Ba 1-x M1 x ) (Ti 1-y M2 y ) O 3 (wherein M1 and M2 are metal elements other than Ba and Ti, and x and y are greater than 0 and less than 1) (It is a numerical value). In addition, the phrase “a part of BaTiO 3 contains a metal element other than Ba and Ti” means, for example, a compound containing BaTiO 3 , a metal element other than Ba and Ti, or a metal element other than Ba and Ti (such as an oxide). It is good also as what is dissolved. Examples of metal elements other than Ba and Ti include alkaline earth metal elements, rare earth elements, Sb, Ni, Cu, Cr, Fe, Co, Mn, Ta, Nb, W, Mo, Zn, Bi, Zr, Ag, and Sn. Or one or more elements selected from the group consisting of Sr. Of these, one or more elements selected from the group consisting of Bi, Zn, Mn, Zr, Nb, Sn, and Sr may be used. For example, Bi, Zn, and Mn may be used, and Bi, Zn, Mn, and Zr may be used. Also good. Metal elements other than Ba and Ti are contained as oxides such as Bi 2 O 3 , ZnO, Mn 3 O 4 , ZrO 2 , SnO 2 , Nb 2 O 5 , SrO, and SrTiO 3. Also good. Zr may be inevitably included in the manufacturing process.
 誘電粒子部は、BaTiO3の一部にBa、Ti以外の金属元素を含む化合物粒子を1種有していてもよいし、2種以上有していてもよい。また、BaTiO3の一部にBa、Ti以外の金属元素を含む化合物の粒子は、粒子内で組成や特性の一定な単相の粒子としてもよいし、粒子内で組成や特性の異なる複数の相を有する多相の粒子としてもよい。多相の粒子としては、例えば、粒子の核(コア)となる部分と、核を覆うように形成された殻(シェル)となる部分とで組成や特性の異なるコアシェル構造や、粒子の中心部から外周に向けて組成や特性が連続的又は断続的に変化する構造などが挙げられる。多相の粒子においては、一部の相がBaTiO3の一部にBa、Ti以外の金属元素を含む相でなくてもよい。2種以上の粒子を有している場合や、多相の粒子を有している場合等のように、誘電粒子部が組成や特性(特に誘電率の温度特性)の異なる2種以上の相を備えている場合、誘電率の温度特性が異なる2種以上の相が混在するため、誘電粒子部の誘電率の温度特性を安定化させることができると考えられる。誘電粒子部が2種以上の相を備えている場合、例えば、BaTiO3からなるBaTiO3相と、BaTiO3にBa、Ti以外の金属元素の酸化物、例えば、Bi23、ZnO、Mn34、ZrO2、SnO2、Nb25、SrO、SrTiO3からなる群より選ばれる1以上などが固溶及び/又は置換した相(固溶/置換相)とを含んでいてもよく、Bi23、ZnO、Mn34、ZrO2、SnO2、Nb25、SrO、SrTiO3などの固溶/置換量が異なる固溶/置換相をさらに又はBaTiO3相に代えて含んでいてもよい。この固溶/置換相は、Bi23、ZnO及びMn34を含むものとしてもよいし、Bi23、ZnO、Mn34及びZrO2を含むものとしてもよい。この固溶/置換相は、例えば、ZrO2、SrO、SrTiO3、Nb25、SnO2からなる群より選ばれる1以上を含んでいてもよい。また、固溶/置換相は、CuOを含んでいないことが好ましく、CuOを含んでいる場合でも微量であることが好ましい。なお、相の特性は、相の組成や作製条件などを調製することによって、変化させることができる。 The dielectric particle part may have one kind of compound particles containing a metal element other than Ba and Ti in a part of BaTiO 3 , or may have two or more kinds. Further, particles of a compound containing a metal element other than Ba and Ti in a part of BaTiO 3 may be single-phase particles having a constant composition and characteristics within the particles, or a plurality of particles having different compositions and characteristics within the particles. Multiphase particles having phases may be used. Examples of multiphase particles include a core-shell structure in which the composition and properties differ between the part that becomes the core of the particle and the part that becomes the shell formed so as to cover the core, and the center part of the particle And a structure in which the composition and characteristics change continuously or intermittently from the outer periphery to the outer periphery. In the multiphase particles, a part of the phase may not be a phase containing a metal element other than Ba and Ti in a part of BaTiO 3 . As in the case of having two or more kinds of particles or in the case of having multiphase particles, the dielectric particle portion has two or more kinds of phases having different compositions and characteristics (especially temperature characteristics of dielectric constant). When two or more phases having different dielectric constant temperature characteristics are mixed, it is considered that the temperature characteristics of the dielectric constant of the dielectric particle portion can be stabilized. If the dielectric particles portion is provided with two or more phases, for example, a BaTiO 3 phase consisting of BaTiO 3, Ba in BaTiO 3, oxides of metal elements other than Ti, for example, Bi 2 O 3, ZnO, Mn Even if one or more selected from the group consisting of 3 O 4 , ZrO 2 , SnO 2 , Nb 2 O 5 , SrO, SrTiO 3 , and the like are included in a solid solution and / or substituted phase (solid solution / substituted phase). Well, a solid solution / substitution phase having a different solid solution / substitution amount, such as Bi 2 O 3 , ZnO, Mn 3 O 4 , ZrO 2 , SnO 2 , Nb 2 O 5 , SrO, SrTiO 3 , or the BaTiO 3 phase It may be included instead. This solid solution / substitution phase may include Bi 2 O 3 , ZnO and Mn 3 O 4 , or may include Bi 2 O 3 , ZnO, Mn 3 O 4 and ZrO 2 . This solid solution / substitution phase may contain, for example, one or more selected from the group consisting of ZrO 2 , SrO, SrTiO 3 , Nb 2 O 5 , SnO 2 . Moreover, it is preferable that the solid solution / substitution phase does not contain CuO, and even when it contains CuO, it is preferable that it is a trace amount. Note that the phase characteristics can be changed by adjusting the phase composition, production conditions, and the like.
 粒界部は、ZnOを含むものである。粒界部は、ZnOを35質量%以上含むことが好ましい。また、粒界部は、ZnO及びB23を主とするものであることが好ましく、ZnOを主とするものとしてもよい。ZnO及びB23を主とするとは、粒界部の構成成分のうちで、ZnOとB23との合計の質量割合が最も多いことを示す。また、ZnOを主とするとは、第1粒界部の構成成分のうちで、ZnOの質量割合が最も多いことを示す。粒界部は、ZnOを含むガラスを元とするものとしてもよく、より詳しくは、ZnOを含むガラスが結晶化したものとしてもよい。ZnOを含むガラスが結晶化した成分が誘電粒子部の粒子間に存在することによって、絶縁劣化を抑制することができると考えられる。ZnOを含むガラスとしては、Zn-B-O系のガラスなどが挙げられる。ここで、Zn-B-O系のガラスは、Zn、B、Oを含むガラスである。例えば、ZnOとB23とを含むガラスとしてもよい。また、Zn-B-O系のガラスは、Zn、B、Oに加えて、他の元素を副次的に数種含んでもよく、例えば、Zn-B-Si-O系のガラスとしてもよい。ここで、Zn-B-Si-O系のガラスとは、Zn、B、Si、Oを含むガラスとしてもよい。例えば、ZnOとB23とSiO2とを含むガラスとしてもよい。Zn-B-O系のガラスは、例えば、ZnOを35質量%以上80質量%以下の範囲で含むものとしてもよい。また、B23を10量%以上50質量%以下の範囲で含むものとしてもよい。また、SiO2を5質量%以上15質量%以下の範囲で含むものとしてもよい。粒界部は、BiやMgなどを含んでいないことが好ましい。BiやMgが粒界部に含まれないものとすれば、絶縁抵抗の低下をより抑制することができる。ZnOを含む粒界部の割合は、誘電体磁器組成物の断面を観察したときに、誘電体磁器組成物全体に対して0%より多ければよいが、1%以上が好ましく、2%以上がより好ましい。また、100%より少なければよいが、20%以下が好ましく、13%以下がより好ましい。 The grain boundary part contains ZnO. The grain boundary part preferably contains 35% by mass or more of ZnO. The grain boundary portion is preferably mainly composed of ZnO and B 2 O 3 , and may be composed mainly of ZnO. And the ZnO and B 2 O 3 as the main shows that among the components of the grain boundary, the largest total mass ratio of ZnO and B 2 O 3. Further, “mainly composed of ZnO” means that the mass ratio of ZnO is the largest among the constituent components of the first grain boundary part. The grain boundary part may be based on a glass containing ZnO, and more specifically, the glass containing ZnO may be crystallized. It is considered that the deterioration of the insulation can be suppressed by the presence of the crystallized component of the glass containing ZnO between the particles in the dielectric particle part. Examples of the glass containing ZnO include Zn—B—O glass. Here, the Zn—B—O-based glass is glass containing Zn, B, and O. For example, a glass containing ZnO and B 2 O 3 may be used. In addition to Zn, B, and O, the Zn—B—O-based glass may contain several other elements as secondary elements. For example, it may be a Zn—B—Si—O-based glass. . Here, the Zn—B—Si—O-based glass may be glass containing Zn, B, Si, and O. For example, it may be a glass containing ZnO and B 2 O 3 and SiO 2. The Zn—B—O-based glass may contain, for example, ZnO in a range of 35 mass% to 80 mass%. Further, B 2 O 3 may be used as to include in the range of 50 mass% 10 mass% or more. The present invention may be those containing SiO 2 in a range of 5 mass% to 15 mass%. The grain boundary part preferably does not contain Bi or Mg. If Bi or Mg is not included in the grain boundary part, it is possible to further suppress a decrease in insulation resistance. When the cross section of the dielectric ceramic composition is observed, the proportion of the grain boundary part containing ZnO should be greater than 0% with respect to the entire dielectric ceramic composition, but is preferably 1% or more, preferably 2% or more. More preferred. Moreover, although it should just be less than 100%, 20% or less is preferable and 13% or less is more preferable.
 誘電体磁器組成物は、誘電粒子部及び粒界部の他に、さらに酸化物粒子を含むものとしてもよい。酸化物粒子としては、例えば、上述したBa、Ti以外の金属元素の酸化物などが挙げられる。酸化物粒子は、例えば、Bi23、ZnO、Mn34、ZrO2、SnO2、Nb25、SrO、SrTiO3からなる群より選ばれる1以上を含むものとしてもよく、Bi23、ZnO及びMn34を含むものとしてもよいし、Bi23、ZnO、Mn34及びZrO2を含むものとしてもよい。また、酸化物粒子は、ZrO2、SnO2、Nb25、SrO、SrTiO3からなる群より選ばれる1以上を含むものとしてもよい。 The dielectric ceramic composition may further include oxide particles in addition to the dielectric particle part and the grain boundary part. Examples of the oxide particles include oxides of metal elements other than Ba and Ti described above. The oxide particles may include, for example, one or more selected from the group consisting of Bi 2 O 3 , ZnO, Mn 3 O 4 , ZrO 2 , SnO 2 , Nb 2 O 5 , SrO, and SrTiO 3. 2 O 3 , ZnO and Mn 3 O 4 may be included, or Bi 2 O 3 , ZnO, Mn 3 O 4 and ZrO 2 may be included. The oxide particles may contain one or more selected from the group consisting of ZrO 2 , SnO 2 , Nb 2 O 5 , SrO, and SrTiO 3 .
 誘電体磁器組成物は、Bi23を3.5質量%以上11質量%以下、ZnOを0.6質量%以上5.0質量%以下、Mn34を0.01質量%以上1.0質量%以下の範囲で含み、CuOの含有量が0.4質量%以下の範囲内にあることが好ましい。こうしたものでは、比誘電率が例えば1000以上などと高く、誘電正接tanδが0.05以下などと低く、X7R特性(EIA規格:-55℃~125℃の範囲における容量変化率が25℃の容量に対して±15%以内)を満たし、Ag系の電極との同時焼成を良好に行うことができる。また、使用による絶縁抵抗の低下が少なく、寿命を長いものとすることができる。誘電体磁器組成物は、BaTiO3(BaOとTiO2との合計としてもよい)を70質量%以上97質量%以下の範囲で含むものとしてもよいし、80質量%以上95質量%以下の範囲で含むものとしてもよい。また、誘電体磁器組成物は、SnO2、ZrO2、Nb25、SrOからなる群より選ばれる1以上を含み、SnO2の含有量は1.0質量%以下、ZrO2の含有量は2.5質量%以下、Nb25の含有量は1.0質量%以下、SrOの含有量は10質量%以下であるものとしてもよい。SnO2、ZrO2、Nb25、SrOからなる群より選ばれる1以上を含む場合、その含有量は、それぞれ0.01質量%以上としてもよい。また、誘電体磁器組成物は、SiO2を0.01質量%以上0.5質量%以下の範囲で含むものとしてもよい。なお、ここでは、各金属成分を酸化物換算した含有量を示したが、各金属成分は、上述した酸化物以外の形態で存在していてもよい。 The dielectric ceramic composition has Bi 2 O 3 of 3.5% by mass to 11% by mass, ZnO of 0.6% by mass to 5.0% by mass, and Mn 3 O 4 of 0.01% by mass to 1%. It is preferable that the CuO content is within a range of 0.0 mass% or less, and the CuO content is within a range of 0.4 mass% or less. In such a case, the relative dielectric constant is high, for example, 1000 or more, the dielectric loss tangent tan δ is low, such as 0.05 or less, and the X7R characteristic (EIA standard: capacity change rate in the range of −55 ° C. to 125 ° C. is 25 ° C. In other words, the co-firing with the Ag-based electrode can be performed satisfactorily. In addition, there is little decrease in insulation resistance due to use, and the life can be extended. The dielectric ceramic composition may include BaTiO 3 (which may be the sum of BaO and TiO 2 ) in the range of 70% by mass to 97% by mass, or in the range of 80% by mass to 95% by mass. It may be included. The dielectric ceramic composition includes one or more selected from the group consisting of SnO 2 , ZrO 2 , Nb 2 O 5 , and SrO, the content of SnO 2 is 1.0 mass% or less, and the content of ZrO 2 May be 2.5% by mass or less, the Nb 2 O 5 content may be 1.0% by mass or less, and the SrO content may be 10% by mass or less. If containing at least one element selected from a group consisting of SnO 2, ZrO 2, Nb 2 O 5, SrO, the content thereof, each of which may be more than 0.01 mass%. The dielectric ceramic composition may contain SiO 2 in the range of 0.01% by mass to 0.5% by mass. In addition, although content which converted each metal component into the oxide was shown here, each metal component may exist with forms other than the oxide mentioned above.
 誘電体磁器組成物は、比誘電率が1000以上3000以下であるものとしてもよい。こうしたものでは、BaTiO3系の誘電体に求められる比誘電率を有するものとすることができる。また、誘電体磁器組成物は、誘電正接tanδが0.05以下であるものとしてもよく、0.04以下が好ましく、0.03以下がより好ましい。こうしたものでは、誘電損失の小さいものとすることができる。 The dielectric ceramic composition may have a relative dielectric constant of 1000 or more and 3000 or less. Such a material can have a dielectric constant required for a BaTiO 3 dielectric. The dielectric ceramic composition may have a dielectric loss tangent tan δ of 0.05 or less, preferably 0.04 or less, and more preferably 0.03 or less. In such a case, the dielectric loss can be reduced.
 本発明の誘電体磁器組成物は、例えば、BaTiO3の一部にBa、Ti以外の金属元素を含む化合物である誘電粒子原料と、ZnOを含む粒界部原料と、を含む調製粉を成形し焼結して得られたものとしてもよい。こうした誘電体磁器組成物は、後述する誘電体磁器組成物の製造方法によって得られるものとしてもよい。 The dielectric ceramic composition of the present invention forms, for example, a preparation powder containing a dielectric particle raw material which is a compound containing a metal element other than Ba and Ti in a part of BaTiO 3 and a grain boundary raw material containing ZnO. Then, it may be obtained by sintering. Such a dielectric ceramic composition may be obtained by a dielectric ceramic composition manufacturing method described later.
 本発明の誘電体磁器組成物は、低温同時焼成セラミックス(LTCC)多層基板内に含まれるものとしてもよい。 The dielectric ceramic composition of the present invention may be included in a low temperature co-fired ceramic (LTCC) multilayer substrate.
 本発明の誘電体磁器組成物は、例えば、図1に示す誘電体磁器組成物10としてもよい。図1は、誘電体磁器組成物10の概略の断面図である。誘電体磁器組成物10は、誘電粒子部22と粒界部24とを備えている。誘電粒子部22は、BaTiO3の一部にBa、Ti以外の金属元素を含む化合物であり、上述した誘電粒子部の種々の態様を適用できる。また、粒界部24は、誘電粒子部22の粒子間に存在しZnOを含むものであり、上述した粒界部の種々の態様を適用できる。 The dielectric ceramic composition of the present invention may be, for example, the dielectric ceramic composition 10 shown in FIG. FIG. 1 is a schematic cross-sectional view of a dielectric ceramic composition 10. The dielectric ceramic composition 10 includes dielectric particle portions 22 and grain boundary portions 24. The dielectric particle part 22 is a compound containing a metal element other than Ba and Ti in a part of BaTiO 3 , and various aspects of the dielectric particle part described above can be applied. Moreover, the grain boundary part 24 exists between the particles of the dielectric particle part 22 and contains ZnO, and various aspects of the grain boundary part described above can be applied.
(誘電体デバイス)
 本発明の誘電体デバイスは、上述した誘電体磁器組成物と、誘電体磁器組成物と一体化されAg又はAg合金である電極とを備えている。Ag合金は、Agを50質量%以上含むものであることが好ましく、Agを80質量%以上含むものとしてもよい。Agと合金を構成する金属としては、例えば、Pdなどが挙げられる。この誘電体デバイスでは、誘電体磁器組成物は、CuOを含まないか、CuOが少ない組成とすることが好ましい。例えば、CuOの含有量は、0.4質量%以下の範囲であることが好ましい。こうすれば、Ag系電極を損なうこと無く、積層セラミックスコンデンサ等を作製できる。
(Dielectric device)
The dielectric device of the present invention includes the above-described dielectric ceramic composition and an electrode that is integrated with the dielectric ceramic composition and is Ag or an Ag alloy. The Ag alloy preferably contains 50% by mass or more of Ag, and may contain 80% by mass or more of Ag. Examples of the metal constituting the alloy with Ag include Pd. In this dielectric device, the dielectric ceramic composition preferably does not contain CuO or has a low CuO composition. For example, the CuO content is preferably in the range of 0.4% by mass or less. In this way, a multilayer ceramic capacitor or the like can be produced without damaging the Ag-based electrode.
 本発明の誘電体デバイスは、例えば、図2に示す積層セラミックコンデンサ50としてもよい、図2は、積層セラミックコンデンサ50の概略の断面図である。積層セラミックコンデンサ50は、上述した誘電体磁器組成物10と、誘電体磁器組成物10と一体化されAg又はAg合金である電極(内部電極)52と、外部電極54とを備えている。なお、本発明の誘電体デバイスでは、外部電極54を省略してもよい。 The dielectric device of the present invention may be, for example, the multilayer ceramic capacitor 50 shown in FIG. 2. FIG. 2 is a schematic cross-sectional view of the multilayer ceramic capacitor 50. The multilayer ceramic capacitor 50 includes the dielectric ceramic composition 10 described above, an electrode (internal electrode) 52 that is integrated with the dielectric ceramic composition 10 and is Ag or an Ag alloy, and an external electrode 54. In the dielectric device of the present invention, the external electrode 54 may be omitted.
(誘電体磁器組成物の製造方法)
 本発明の誘電体磁器組成物の製造方法は、BaTiO3の一部にBa、Ti以外の金属元素を含む化合物である誘電粒子原料とZnOを含む粒界部原料とを含む調製粉を成形し焼結する成形焼結工程、を含む。
(Manufacturing method of dielectric ceramic composition)
The method for producing a dielectric ceramic composition of the present invention forms a prepared powder containing a dielectric particle raw material which is a compound containing a metal element other than Ba and Ti in a part of BaTiO 3 and a grain boundary raw material containing ZnO. A forming and sintering step for sintering.
 この成形焼結工程は、例えば、(A)調製粉製造工程、(B)成形体製造工程、(C)焼結工程、を含むものとしてもよい。以下では、各工程について説明する。 The molding and sintering step may include, for example, (A) a preparation powder manufacturing step, (B) a molded body manufacturing step, and (C) a sintering step. Below, each process is demonstrated.
(A)調製粉製造工程 
 この工程では、誘電粒子原料と粒界部原料とを混合して調製粉を製造する。
(A) Preparation powder manufacturing process
In this step, a dielectric powder material and a grain boundary material are mixed to produce a prepared powder.
 誘電粒子原料は、BaTiO3の一部にBa、Ti以外の金属元素を含む化合物の粉末(粒子)である。BaTiO3の一部にBa、Ti以外の金属元素を含むとは、例えば、BaTiO3のうち、BaやTiの一部が、Ba、Ti以外の金属元素で置換されているものとしてもよく、例えば、一般式(Ba1-xM1x)(Ti1-yM2y)O3(式中、M1及びM2はBa、Ti以外の金属元素であり、x及びyは0以上1以下の数値である)で表されるものとしてもよい。また、BaTiO3の一部にBa、Ti以外の金属元素を含むとは、例えば、BaTiO3に、Ba、Ti以外の金属元素や、Ba、Ti以外の金属元素を含む化合物(酸化物など)が固溶しているものとしてもよい。Ba、Ti以外の金属元素としては、誘電粒子部の説明で例示したものなどが挙げられる。 The dielectric particle material is a powder (particle) of a compound containing a metal element other than Ba and Ti in a part of BaTiO 3 . Ba in a part of BaTiO 3, and comprises a metal element other than Ti, for example, of the BaTiO 3, a portion of Ba and Ti is, Ba, it may be those substituted with a metal element other than Ti, For example, the general formula (Ba 1-x M1 x ) (Ti 1-y M2 y ) O 3 (wherein M1 and M2 are metal elements other than Ba and Ti, and x and y are numerical values from 0 to 1) It is good also as what is represented by this. In addition, the phrase “a part of BaTiO 3 contains a metal element other than Ba and Ti” means, for example, a compound containing BaTiO 3 , a metal element other than Ba and Ti, or a metal element other than Ba and Ti (such as an oxide). It is good also as what is dissolved. Examples of metal elements other than Ba and Ti include those exemplified in the description of the dielectric particle portion.
 誘電粒子原料は、BaTiO3の一部にBa、Ti以外の金属元素を含む化合物の粉末を1種有していてもよいし、2種以上有していてもよい。また、誘電粒子原料は、誘電粒子部と同様、粒子内で組成や特性の一定な単相の粒子としてもよいし、粒子内で組成や特性の異なる多層の粒子としてもよい。多相の粒子としては、例えば、上述したコアシェル構造や、粒子の中心部から外周に向けて組成や特性が連続的又は断続的に変化する構造を有するものなどを好適に用いることができる。2種以上の粒子を有している場合や、多相の粒子を有している場合等のように、誘電粒子原料が組成や特性(特に誘電率の温度特性)の異なる2種以上の相を備えている場合、誘電率の温度特性が異なる2種以上の相が混在するため、得られる誘電体磁器組成物において、誘電粒子部の誘電率の温度特性を安定化させることができると考えられる。 The dielectric particle raw material may have one kind of compound powder containing a metal element other than Ba and Ti in a part of BaTiO 3 , or two or more kinds. The dielectric particle material may be single-phase particles having a constant composition and characteristics within the particles, or multilayer particles having different compositions and characteristics within the particles, as in the case of the dielectric particle portion. As the multiphase particles, for example, the core-shell structure described above, or those having a structure in which the composition and characteristics change continuously or intermittently from the center to the outer periphery of the particles can be suitably used. As in the case of having two or more kinds of particles or in the case of having multiphase particles, the dielectric particle material has two or more kinds of phases having different compositions and characteristics (particularly, temperature characteristics of dielectric constant). When two or more phases having different dielectric constant temperature characteristics are mixed, it is considered that the temperature characteristics of the dielectric constant of the dielectric particle portion can be stabilized in the obtained dielectric ceramic composition. It is done.
 誘電粒子原料は、例えば、BaTiO3原料と、Ba、Ti以外の金属元素とを含む混合粉を焼成して合成粉を製造する、合成粉製造工程を経て得られたもの(合成粉)としてもよい。予め合成した合成粉を用いると、製造時におけるガラス成分とBa、Ti以外の金属元素を含む助剤(例えば、Bi23、ZnO、Mn34、ZrO2、SnO2、Nb25、SrO、SrTiO3等)との副反応が生じにくく、誘電特性などの特性が良好な誘電体磁器組成物を製造できる。なお、合成粉製造工程以外の製造方法で得られたものであっても、BaTiO3の一部にBa、Ti以外の金属元素を含む化合物の粉末であれば、同様の効果が期待できる。 The dielectric particle raw material is, for example, a product obtained through a synthetic powder manufacturing process (synthetic powder) in which a synthetic powder is manufactured by baking a mixed powder containing a BaTiO 3 raw material and a metal element other than Ba and Ti. Good. When synthetic powders synthesized in advance are used, auxiliary substances containing glass elements and metal elements other than Ba and Ti at the time of production (for example, Bi 2 O 3 , ZnO, Mn 3 O 4 , ZrO 2 , SnO 2 , Nb 2 O 5 , SrO, SrTiO 3, etc.) are hardly generated, and a dielectric ceramic composition having good characteristics such as dielectric characteristics can be produced. In addition, even if it is obtained by a production method other than the synthetic powder production process, the same effect can be expected if it is a powder of a compound containing a metal element other than Ba and Ti in a part of BaTiO 3 .
 合成粉製造工程において、BaTiO3原料としては、BaTiO3そのものとしてもよいし、焼成によってBaTiO3が得られるもの、例えばBaCO3とTiO2との混合物などとしてもよいし、これらの両方を含むものとしてもよい。Ba、Ti以外の金属元素は、どのような形態で含まれていてもよいが、酸化物として含まれることが好ましい。 In the synthetic powder manufacturing process, the BaTiO 3 raw material may be BaTiO 3 itself, or may be obtained by firing BaTiO 3 , for example, a mixture of BaCO 3 and TiO 2 , or both of them. It is good. Metal elements other than Ba and Ti may be included in any form, but are preferably included as oxides.
 合成粉製造工程において、混合粉は、BaTiO3原料のほかに、Ba、Ti以外の金属元素として、Bi23、ZnO、Mn34、ZrO2、SrO、SrTiO3、Nb25、SnO2からなる群より選ばれる1以上を含むものとしてもよい。このうち、混合粉は、Bi23、ZnO、Mn34を含むものとしてもよいし、Bi23、ZnO、Mn34、ZrO2を含むものとしてもよい。また、混合粉は、ZrO2、SrO、SrTiO3、Nb25、SnO2からなる群より選ばれる1以上を含むものとしてもよい。混合粉は、Bi23を3.5質量%以上11質量%以下、ZnOを0.6質量%以上5.0質量%以下、Mn34を0.01質量%以上1.0質量%以下、の範囲で含み、CuOの含有量が0.4質量%以下の範囲内にあることが好ましい。こうすれば、比誘電率が高く、誘電正接tanδが低く、X7R特性を満たし、使用による絶縁抵抗の低下が少なく、寿命の長い誘電体磁器組成物を容易に得ることができる。また、焼結工程において、Ag系の電極との同時焼成を良好に行うことができる。混合粉は、BaTiO3原料をBaTiO3換算で70質量%以上97質量%以下の範囲で含むものとしてもよいし、80質量%以上95質量%以下の範囲で含むものとしてもよい。また、混合粉は、ZrO2、SnO2、Nb25、SrO、SrTiO3からなる群より選ばれる1以上を含み、ZrO2の含有量は25質量%以下、SnO2の含有量は15質量%以下、Nb25の含有量は1.0質量%以下、SrOの含有量は10質量%以下、SrTiO3の含有量は18質量%以下であるものとしてもよい。ZrO2、SnO2、Nb25、SrO、SrTiO3からなる群より選ばれる1以上を含む場合、その含有量は、それぞれ0.01質量%以上としてもよい。なお、ZrO2は、例えば、粉砕混合などにより混合粉を作製する場合、粉砕に用いるZrO2玉石などから供給されてもよい。 In the synthetic powder manufacturing process, the mixed powder is not only BaTiO 3 raw material but also metal elements other than Ba and Ti, such as Bi 2 O 3 , ZnO, Mn 3 O 4 , ZrO 2 , SrO, SrTiO 3 , Nb 2 O 5. And one or more selected from the group consisting of SnO 2 . Among these, the mixed powder may include Bi 2 O 3 , ZnO, and Mn 3 O 4 , or may include Bi 2 O 3 , ZnO, Mn 3 O 4 , and ZrO 2 . The mixed powder may contain one or more selected from the group consisting of ZrO 2 , SrO, SrTiO 3 , Nb 2 O 5 , and SnO 2 . The mixed powder has Bi 2 O 3 of 3.5% by mass to 11% by mass, ZnO of 0.6% by mass to 5.0% by mass, and Mn 3 O 4 of 0.01% by mass to 1.0% by mass. It is preferable that the content of CuO is in the range of 0.4% by mass or less. By doing so, it is possible to easily obtain a dielectric ceramic composition that has a high relative dielectric constant, a low dielectric loss tangent tan δ, satisfies the X7R characteristics, has little decrease in insulation resistance due to use, and has a long life. In the sintering process, simultaneous firing with an Ag-based electrode can be performed satisfactorily. The mixed powder may contain the BaTiO 3 raw material in a range of 70% by mass or more and 97% by mass or less in terms of BaTiO 3 , or may contain 80% by mass or more and 95% by mass or less. The mixed powder contains one or more selected from the group consisting of ZrO 2 , SnO 2 , Nb 2 O 5 , SrO, and SrTiO 3 , the ZrO 2 content is 25% by mass or less, and the SnO 2 content is 15 The content of Nb 2 O 5 may be 1.0% by mass or less, the content of SrO may be 10% by mass or less, and the content of SrTiO 3 may be 18% by mass or less. When one or more selected from the group consisting of ZrO 2 , SnO 2 , Nb 2 O 5 , SrO, and SrTiO 3 is included, the content may be 0.01% by mass or more. ZrO 2 may be supplied from, for example, ZrO 2 boulders used for pulverization when a mixed powder is prepared by pulverization and mixing.
 合成粉製造工程では、焼成条件は、特に限定されないが、大気や酸素雰囲気などの酸化性雰囲気下で、700℃以上1200℃以下の焼成温度で、1時間以上24時間以下の時間、熱処理するものとしてもよい。 In the synthetic powder manufacturing process, the firing conditions are not particularly limited, but heat treatment is performed at a firing temperature of 700 ° C. to 1200 ° C. for 1 hour to 24 hours in an oxidizing atmosphere such as air or oxygen atmosphere. It is good.
 合成粉製造工程では、1種の合成粉を製造してもよいし、異なる組成や作製条件で作製した誘電率の温度特性が異なる2種以上の合成粉を製造してもよい。 In the synthetic powder production process, one kind of synthetic powder may be produced, or two or more kinds of synthetic powders having different temperature characteristics of dielectric constant produced under different compositions and production conditions may be produced.
 粒界部原料は、ZnOを含むものである。粒界部原料は、ZnOを35質量%以上含むことが好ましい。また、粒界部原料は、ZnO及びB23を主とするものであることが好ましく、ZnOを主とするものとしてもよい。ZnO及びB23を主とするとは、粒界部原料の構成成分のうちで、ZnOとB23との合計の質量割合が最も多いことを示す。また、ZnOを主とするとは、粒界部原料の構成成分のうちで、ZnOの質量割合が最も多いことを示す。粒界部原料は、後の焼結工程において溶融して粒子原料の粒子間を埋め得るものであればよいが、ガラスであることが好ましく、Zn-B-O系のガラス(例えばZn-B-Si-O系のガラス)であることが好ましい。Zn-B-O系のガラスは、BaTiO3と反応しにくいため、誘電体磁器組成物の特性をより維持できる。なお、Zn-B-O系やZn-B-Si-O系のガラスについては、粒界部において説明したものと同様のため、ここでは説明を省略する。調製粉は、粒界部原料を0.5体積%以上15体積%以下の範囲で含むことが好ましく、1.5体積%以上11体積%以下の範囲で含むことがより好ましい。こうすれば、比誘電率が高く、誘電正接tanδが低く、X7R特性を満たし、使用による絶縁抵抗の低下が少なく、寿命の長い誘電体磁器組成物を容易に得ることができる。また、焼結工程において、比抵抗率が低いAg系の電極との同時焼成をなど良好に行うことができる。 The grain boundary part raw material contains ZnO. The grain boundary part raw material preferably contains 35% by mass or more of ZnO. Moreover, it is preferable that a grain boundary part raw material is mainly composed of ZnO and B 2 O 3 , and may be composed mainly of ZnO. And the ZnO and B 2 O 3 as the main shows that among the components of the grain boundary material, most often the total mass ratio of ZnO and B 2 O 3. Further, “mainly composed of ZnO” means that the mass ratio of ZnO is the largest among the constituent components of the grain boundary raw material. The grain boundary raw material is not particularly limited as long as it can be melted in the subsequent sintering step to fill the space between the particles of the particle raw material, but is preferably glass, and Zn—B—O based glass (for example, Zn—B). —Si—O-based glass) is preferable. Since Zn—B—O-based glass does not easily react with BaTiO 3 , the characteristics of the dielectric ceramic composition can be further maintained. Note that since Zn—B—O and Zn—B—Si—O based glasses are the same as those described in the grain boundary portion, description thereof is omitted here. The prepared powder preferably contains the grain boundary raw material in a range of 0.5% by volume or more and 15% by volume or less, and more preferably in a range of 1.5% by volume or more and 11% by volume or less. By doing so, it is possible to easily obtain a dielectric ceramic composition that has a high relative dielectric constant, a low dielectric loss tangent tan δ, satisfies the X7R characteristics, has little decrease in insulation resistance due to use, and has a long life. In the sintering process, simultaneous firing with an Ag-based electrode having a low specific resistivity can be performed satisfactorily.
 調製粉は、誘電粒子原料と粒界部原料のほかに、これらとは異なる酸化物粒子を含むものとしてもよい。酸化物粒子は、例えば、比誘電率が500以上100000以下の範囲内にあるものとしてもよく、SrTiO3や添加物のないBaTiO3などのような複酸化物としてもよい。こうした酸化物粒子を含む場合、焼成体において、静電容量の変化率の絶対値をより広い温度範囲で小さくできるなど、誘電率の温度特性をより広い温度範囲で良好なものとすることができる。複酸化物を含む場合、1体積%以上60体積%以下の範囲で含むことが好ましく、1体積%以上50体積%以下の範囲で含むことがより好ましい。 The prepared powder may contain oxide particles different from these in addition to the dielectric particle raw material and the grain boundary raw material. The oxide particles may have a relative dielectric constant in the range of 500 to 100,000, for example, and may be a double oxide such as SrTiO 3 or BaTiO 3 without additives. When such oxide particles are included, the temperature characteristic of the dielectric constant can be improved in a wider temperature range, for example, the absolute value of the capacitance change rate can be reduced in a wider temperature range in the fired body. . When a double oxide is included, it is preferably included in the range of 1% by volume to 60% by volume, and more preferably in the range of 1% by volume to 50% by volume.
(B)成形体製造工程
 この工程では、調製粉を成形した成形体を製造する。成形体製造工程において、調製粉を成形する方法は、特に限定されるものではないが、例えば、プレス成形や、金型成形、押出成形、印刷、ドクターブレードなどによって成形してもよい。調製粉は、単独で用いてもよいし、トルエンやイソプロピルアルコール(IPA)などの有機溶剤や、有機バインダー、可塑剤、分散剤などを加えて、グリーンシートや坏土状、ペースト状、スラリー状等にして用いてもよい。
(B) Molded body manufacturing process In this process, a molded body obtained by molding the prepared powder is manufactured. In the molded body manufacturing process, the method of molding the prepared powder is not particularly limited, but may be molded by press molding, mold molding, extrusion molding, printing, doctor blade, or the like. The prepared powder may be used alone, or by adding an organic solvent such as toluene or isopropyl alcohol (IPA), an organic binder, a plasticizer, a dispersing agent, etc., green sheet, clay, paste, slurry It may be used as such.
(C)焼結工程
 この工程では、上述した成形体を焼成(焼結)して誘電体磁器組成物を製造する。焼結工程では、800℃以上1000℃以下の焼結温度で焼結するものとしてもよい。BaTiO3系の材料は、1000℃以下で焼結することが望まれているからである。1000℃以下で焼結可能であれば、例えば、比抵抗率の低いAg電極やガラスを用いて焼結される低誘電材料と同時積層焼成を可能とすることができる。また、800℃以上で焼結すれば、密度が高く、誘電特性に優れた誘電体磁器組成物が得られるからである。焼成時間は、例えば、1時間以上24時間以下の範囲内とすることができる。なお、この焼結工程では、誘電粒子原料が誘電粒子部、粒界部原料が粒界部、となると考えられるが、この際、誘電粒子部、粒界部は、各原料以外の成分を取り込んだり、各原料の一部を放出したりして、得られたものとしてもよい。
(C) Sintering step In this step, the above-mentioned formed body is fired (sintered) to produce a dielectric ceramic composition. In the sintering step, the sintering may be performed at a sintering temperature of 800 ° C. or higher and 1000 ° C. or lower. This is because BaTiO 3 -based materials are desired to be sintered at 1000 ° C. or lower. If sintering is possible at 1000 ° C. or lower, for example, simultaneous lamination firing with a low dielectric material sintered using an Ag electrode or glass having a low specific resistivity can be made possible. Also, if sintered at 800 ° C. or higher, a dielectric ceramic composition having a high density and excellent dielectric properties can be obtained. The firing time can be, for example, in the range of 1 hour to 24 hours. In this sintering process, it is considered that the dielectric particle material becomes the dielectric particle part and the grain boundary part material becomes the grain boundary part. At this time, the dielectric particle part and the grain boundary part take in components other than the respective raw materials. Or may be obtained by discharging a part of each raw material.
(誘電体デバイスの製造方法)
 本発明の誘電体デバイスの製造方法は、BaTiO3の一部にBa、Ti以外の金属元素を含む化合物である誘電粒子原料とZnOを含む粒界部原料とを含む調製粉を成形した成形体と、Ag又はAg合金を含む電極材料と、を一体化した電極付き成形体を焼結する成形焼結工程を含む。
(Dielectric device manufacturing method)
The dielectric device manufacturing method of the present invention is a molded body obtained by molding a prepared powder containing a dielectric particle raw material which is a compound containing a metal element other than Ba and Ti in a part of BaTiO 3 and a grain boundary raw material containing ZnO. And an electrode material containing Ag or an Ag alloy, and a forming and sintering step of sintering a formed body with an electrode.
 この成形焼結工程は、例えば、(A)調製粉製造工程、(B’)電極付き成形体製造工程、(C)焼結工程、を含むものとしてもよい。なお、(B’)電極付き成形体製造工程以外の工程は、誘電体磁器組成物の製造方法と同様であるため、以下では、(B’)電極付き成形体製造工程について説明し、その他の工程については説明を省略する。 The molding and sintering step may include, for example, (A) a preparation powder manufacturing step, (B ′) a molded body with electrode manufacturing step, and (C) a sintering step. In addition, since processes other than the (B ′) electrode-formed molded body manufacturing process are the same as the method for manufacturing a dielectric ceramic composition, the (B ′) electrode-formed molded body manufacturing process will be described below, The description of the process is omitted.
(B’)電極付き成形体製造工程
 この工程では、調製粉を成形した成形体と、Ag又はAg合金を含む電極材料と、を一体化し、電極付き成形体を製造する。成形体については、上述した成形体製造工程と同様に成形すればよい。Ag合金としては、誘電体デバイスの説明で例示したものが挙げられる。電極材料は、例えば、AgやAg合金の粉末に有機溶剤などを加えてペースト状やスラリー状とし、塗布して成形してもよい。
(B ′) Molded body manufacturing process with electrode In this step, the molded body molded with the prepared powder and the electrode material containing Ag or an Ag alloy are integrated to manufacture a molded body with an electrode. What is necessary is just to shape | mold about a molded object similarly to the molded object manufacturing process mentioned above. Examples of the Ag alloy include those exemplified in the description of the dielectric device. The electrode material may be formed, for example, by adding an organic solvent or the like to Ag or Ag alloy powder to form a paste or slurry, and then applying and molding.
 以上説明した、本発明の誘電体磁器組成物、誘電体デバイス及びそれらの製造方法では、BaTiO3系の新規な誘電体磁器組成物を提供することができる。例えば、誘電粒子原料としてBaTiO3の一部にBa、Ti以外の金属元素(助剤成分)を含ませた(例えば固溶させた)化合物を用いることで、残留する助剤成分を低減し、元素拡散を抑制できると考えられる。また、BaTiO3の一部に助剤成分を含ませた誘電粒子原料と、BaTiO3と反応しにくい粒界部原料と、を用いるため、助剤成分と粒界部原料との反応を抑制することができると考えられる。また、誘電粒子部の粒子間にZnOを含む粒界部が存在することによって、誘電体磁器組成物の絶縁劣化を抑制することができると考えられる。また、例えば、CuOなどを添加しなくても1000℃以下などの低温で焼結できるため、Ag系の電極などと同時焼成を行った場合などでも、CuO成分の拡散によって電極が分断され電極の有効面積が小さくなってしまうことなどを抑制できる。また、一般に、誘電体磁器組成物とAg系の電極とを同時焼成して誘電体デバイスを製造する場合、例えば1000℃以下などの低温で焼成する必要があるが、この誘電体磁器組成物は、そうした低温で焼成可能なため、比較的容易に製造できる。 As described above, the dielectric ceramic composition, dielectric device, and manufacturing method thereof of the present invention can provide a BaTiO 3 -based novel dielectric ceramic composition. For example, by using a compound containing a metal element (auxiliary component) other than Ba and Ti in part of BaTiO 3 as a dielectric particle material (for example, a solid solution), the remaining auxiliary component is reduced, It is thought that element diffusion can be suppressed. Further, suppressing the dielectric particles material impregnated with auxiliary components in a part of BaTiO 3, nobler and a grain boundary portion material and BaTiO 3, for use, the reaction of the auxiliary component and a grain boundary portion material It is considered possible. In addition, it is considered that the insulation deterioration of the dielectric ceramic composition can be suppressed by the presence of the grain boundary portion containing ZnO between the particles of the dielectric particle portion. Further, for example, since sintering can be performed at a low temperature of 1000 ° C. or less without adding CuO or the like, even when co-firing with an Ag-based electrode or the like, the electrode is divided by diffusion of the CuO component, and the electrode It can suppress that an effective area becomes small. In general, when a dielectric device is manufactured by simultaneously firing a dielectric ceramic composition and an Ag-based electrode, the dielectric ceramic composition needs to be fired at a low temperature such as 1000 ° C. or less. Since it can be fired at such a low temperature, it can be manufactured relatively easily.
 なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。 It should be noted that the present invention is not limited to the above-described embodiment, and it goes without saying that the present invention can be implemented in various modes as long as it belongs to the technical scope of the present invention.
 以下には、誘電体磁器組成物を具体的に作製した例について、実験例として説明する。なお、実験例1~31、42~52が本発明の実施例に相当し、実験例32~41が比較例に相当する。なお、本発明は、以下の実施例に限定されるものではない。 Hereinafter, an example in which a dielectric ceramic composition is specifically manufactured will be described as an experimental example. Experimental examples 1 to 31 and 42 to 52 correspond to examples of the present invention, and experimental examples 32 to 41 correspond to comparative examples. The present invention is not limited to the following examples.
[実験例1~52]
(調製粉の作製)
 表1に示す各組成となるように、BaTiO3、Bi23、ZnO、Mn34、CuO、BaCO3、TiO2、Nb25、SnO2、ZrO2の各原料粉末を秤量した。なお、チタン酸バリウムについては、純度99.9%、平均粒径0.5μmの市販品を使用した。他の原料粉末についても、純度99.9%以上の市販品を用いた(平均粒径は、Bi23:5μm、ZnO:5μm、Mn34:5μm、CuO:5μm、BaCO3:1μm、TiO2:1μm、Nb25:5μm、SnO2:5μm、ZrO2:0.5μm)。さらに、イソプロピロアルコール(IPA)を適量加え、ジルコニア玉石を用いて、ボールミルにて48時間湿式粉砕混合し、200メッシュふるいを通したスラリーを乾燥し、100メッシュふるいにて整粒した。その混合粉を、大気中で表1に示す所定の温度で2時間事前合成し、事前合成粉(6.15g/cm3)を得た。事前合成前の混合粉については、N2-BET法により比表面積の測定を行った(表1)。
[Experimental Examples 1 to 52]
(Preparation of prepared powder)
Each raw material powder of BaTiO 3 , Bi 2 O 3 , ZnO, Mn 3 O 4 , CuO, BaCO 3 , TiO 2 , Nb 2 O 5 , SnO 2 , and ZrO 2 is weighed so as to have each composition shown in Table 1. did. For barium titanate, a commercial product having a purity of 99.9% and an average particle size of 0.5 μm was used. For other raw material powders, commercial products having a purity of 99.9% or more were used (average particle diameters were Bi 2 O 3 : 5 μm, ZnO: 5 μm, Mn 3 O 4 : 5 μm, CuO: 5 μm, BaCO 3 : 1 μm, TiO 2 : 1 μm, Nb 2 O 5 : 5 μm, SnO 2 : 5 μm, ZrO 2 : 0.5 μm). Further, an appropriate amount of isopropyl alcohol (IPA) was added, and zirconia cobblestone was used for wet pulverization and mixing for 48 hours in a ball mill, and the slurry passed through a 200 mesh sieve was dried and sized with a 100 mesh sieve. The mixed powder was pre-synthesized in the air at a predetermined temperature shown in Table 1 for 2 hours to obtain a pre-synthesized powder (6.15 g / cm 3 ). For the mixed powder before pre-synthesis, the specific surface area was measured by the N 2 -BET method (Table 1).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 また、表2に示す各組成のガラス(平均粒径10μm)を用意した。 Moreover, glasses (average particle diameter 10 μm) having the respective compositions shown in Table 2 were prepared.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上述した事前合成粉(誘電粒子原料)と、上述したガラス(粒界部原料)と、実験例42,43においてはさらにSrTiO3と、を表3,4に示す所定量添加し、さらにIPAを加え、ジルコニア玉石を用いて、ボールミルにて24時間湿式粉砕混合後、200メッシュふるいを通したスラリーを乾燥し、100メッシュふるいにて整粒し、調製粉を得た。SrTiO3については、純度99%、平均粒径1μm、比表面積11.7m2/gの市販品を使用した。なお、実験例32~36では、事前合成粉ではなく、事前合成前の混合粉をそのまま用いた。また、実験例36~39では、ガラスを添加しなかった。さらに、実験例40,41では、Zn-B-Si-O系以外のガラスを添加した。 The above-mentioned pre-synthetic powder (dielectric particle raw material), the above-mentioned glass (grain boundary raw material), and in Examples 42 and 43, SrTiO 3 is further added in a predetermined amount shown in Tables 3 and 4, and IPA is further added. In addition, zirconia cobblestone was used for wet grinding and mixing with a ball mill for 24 hours, and then the slurry passed through a 200 mesh sieve was dried and sized with a 100 mesh sieve to obtain a prepared powder. For SrTiO 3 , a commercial product having a purity of 99%, an average particle diameter of 1 μm, and a specific surface area of 11.7 m 2 / g was used. In Experimental Examples 32 to 36, the pre-synthesized mixed powder was used as it was instead of the pre-synthesized powder. In Experimental Examples 36 to 39, no glass was added. Further, in Experimental Examples 40 and 41, glass other than Zn—B—Si—O-based was added.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
(セラミックコンデンサの作製)
 前述の調製粉に、ポリビニルブチラール等の有機バインダーや可塑剤、トルエン,エチルアルコールなどの有機溶剤を適量加えて、ボールミルで12時間湿式混合した後、ドクターブレード法によって、厚み20μmのグリーンシートを得た。このグリーンシートに内部電極パターンとして、表3,4に示すAg/Pd(質量比85wt%/15wt%)、もしくはAgのペーストを用いて、厚み4μmとなるように印刷したのち、グリーンシートを誘電体層(上下を電極に挟まれた部分)が16層になるように積み重ねて、熱圧着し、圧着体(電極付き成形体)を得た。この圧着体から長さ6mm,幅2mmの成形体を切り出した。その積層体を大気中、表3,4に示す焼成温度で2時間焼結を行い、焼成体を得た。その焼成体に外部電極を形成して、内部電極と導通を取り、積層セラミックコンデンサのサンプルを得た。焼成後のセラミックコンデンサの誘電体一層の厚みは15μmであり、Ag電極の厚みは2.5μmであった。図2に、こうした積層セラミックスコンデンサの概略の断面図を示す。積層セラミックスコンデンサ50は、誘電体層(誘電体磁器組成物)10と、内部電極52と、外部電極54とを備えている。
(Production of ceramic capacitors)
An appropriate amount of an organic binder such as polyvinyl butyral, a plasticizer, an organic solvent such as toluene and ethyl alcohol is added to the above prepared powder, and wet mixed with a ball mill for 12 hours, and then a green sheet having a thickness of 20 μm is obtained by a doctor blade method. It was. This green sheet is printed with an Ag / Pd (mass ratio 85 wt% / 15 wt%) or Ag paste shown in Tables 3 and 4 as an internal electrode pattern to a thickness of 4 μm. The body layers (portions sandwiched between the upper and lower electrodes) were stacked so as to form 16 layers, and thermocompression bonded to obtain a pressure-bonded body (molded body with electrodes). A molded body having a length of 6 mm and a width of 2 mm was cut out from the pressure-bonded body. The laminate was sintered in the atmosphere at the firing temperatures shown in Tables 3 and 2 for 2 hours to obtain a fired body. An external electrode was formed on the fired body to establish electrical connection with the internal electrode, and a multilayer ceramic capacitor sample was obtained. The thickness of the dielectric layer of the ceramic capacitor after firing was 15 μm, and the thickness of the Ag electrode was 2.5 μm. FIG. 2 shows a schematic cross-sectional view of such a multilayer ceramic capacitor. The multilayer ceramic capacitor 50 includes a dielectric layer (dielectric ceramic composition) 10, an internal electrode 52, and an external electrode 54.
(密度測定・化学分析用の焼成体作製)
 前述の調製粉をφ30で100kg/cm2にて一軸プレス成形し、さらに各サンプルの成形密度がグリーンシートの成形密度とほぼ同等な51-56%の範囲内になる圧力で冷間等方加圧法を行った。この成形体を表3,4に示す焼成温度で2時間焼結を行い、密度測定、および化学分析用焼成体のサンプルを得た。
(Production of sintered body for density measurement and chemical analysis)
The above prepared powder is uniaxially pressed at 100 kg / cm 2 with φ30, and cold isotropically applied at a pressure where the molding density of each sample is in the range of 51-56%, which is almost the same as the green sheet molding density. The pressure method was performed. This molded body was sintered for 2 hours at the firing temperatures shown in Tables 3 and 4 to obtain a sample of a fired body for density measurement and chemical analysis.
(比誘電率・tanδ測定)
 各積層セラミックコンデンサのサンプルを恒温層に入れ、25℃で保持した後に、LCRメーターにて1kHz、1Vrmsにおける静電容量、およびtanδを測定した。容量、電極寸法、および誘電層の厚みから比誘電率を算出した。また、同様に、測定温度を-55℃~125℃の範囲で、静電容量を測定し、X7R特性(EIA規格:-55℃~125℃の範囲における容量変化率が、25℃の容量に対して±15%以内)を満たすか評価し、25℃での静電容量を基準として、-55℃~125℃の間における静電容量変化率の絶対値が最大である値を求めた(容量最大変化率)。X7R特性を満たす場合は「A」、X7R特性を満たさない場合は「B」とした。
(Specific permittivity / tan δ measurement)
Each multilayer ceramic capacitor sample was placed in a constant temperature layer and held at 25 ° C., and then the capacitance at 1 kHz and 1 Vrms and tan δ were measured with an LCR meter. The relative dielectric constant was calculated from the capacitance, the electrode dimensions, and the thickness of the dielectric layer. Similarly, the capacitance is measured at a measurement temperature in the range of −55 ° C. to 125 ° C., and the X7R characteristic (EIA standard: the capacity change rate in the range of −55 ° C. to 125 ° C. has a capacity of 25 ° C. (Within ± 15%), and the value at which the absolute value of the rate of change in capacitance between −55 ° C. and 125 ° C. is the maximum is obtained based on the capacitance at 25 ° C. ( Capacity change rate). When the X7R characteristic was satisfied, “A” was set, and when the X7R characteristic was not satisfied, “B” was set.
(信頼性試験(高温加速寿命))
 各積層セラミックコンデンサのサンプルを、170℃にて、8V/μmの電界下で加速試験を行い、絶縁抵抗が1MΩ以下になるまでの時間を寿命時間とした。なお、絶縁抵抗に劣化がみられず、1MΩ以上を1000時間以上維持した場合、寿命時間を1000h以上とした。また、加速試験開始直後に1MΩ以下となった場合、寿命時間を0hとした。
(Reliability test (high temperature accelerated life))
Each multilayer ceramic capacitor sample was subjected to an acceleration test at 170 ° C. under an electric field of 8 V / μm, and the time until the insulation resistance became 1 MΩ or less was defined as the lifetime. When the insulation resistance was not deteriorated and 1 MΩ or higher was maintained for 1000 hours or longer, the lifetime was set to 1000 hours or longer. In addition, when it became 1 MΩ or less immediately after the start of the acceleration test, the lifetime was set to 0 h.
(ガラス由来の粒界相(粒界部)割合)
 走査型電子顕微鏡(SEM)の10000倍の像における、誘電粒子部とはコントラストの異なる粒界相について、画像解析によりその部分の面積を算出し、全体の面積に占める割合を算出した。各実験例について、3視野の平均値を粒界相の占める粒界相面積の割合とした。コントラストの異なる粒界相は、FE-EPMAで元素分布を確認し、ガラス由来であり、ZnOを含むものであると判断した。
(Grain boundary phase (grain boundary part) ratio derived from glass)
For the grain boundary phase having a contrast different from that of the dielectric particle portion in the 10,000 times image of the scanning electron microscope (SEM), the area of the portion was calculated by image analysis, and the proportion of the total area was calculated. For each experimental example, the average value of the three visual fields was defined as the ratio of the grain boundary phase area occupied by the grain boundary phase. Grain boundary phases having different contrasts were confirmed to have element distribution by FE-EPMA, and were derived from glass and contained ZnO.
(Ag電極及び焼成体の観察)
 研磨により、積層セラミックコンデンサの断面を出し、走査型電子顕微鏡(SEM)にて、Ag電極及び焼成体の観察を行った。Ag電極の観察では、電極部位の電極成分以外の異物や空孔の観察を行った。電極層中のAgの占める面積が95%以上の場合は「A」、90%以上95%未満の場合は「B」、90%未満の場合は「C」とした。
(Observation of Ag electrode and fired body)
The cross section of the multilayer ceramic capacitor was taken out by polishing, and the Ag electrode and the fired body were observed with a scanning electron microscope (SEM). In the observation of the Ag electrode, foreign matters other than the electrode components at the electrode site and vacancies were observed. When the area occupied by Ag in the electrode layer is 95% or more, it is “A”, when it is 90% or more and less than 95%, it is “B”, and when it is less than 90%, it is “C”.
(密度測定)
 密度測定用の各焼成体を用意し、アルキメデス法により密度を測定した。
(Density measurement)
Each fired body for density measurement was prepared, and the density was measured by Archimedes method.
(焼成体の組成)
 化学分析用の各焼成体を粉砕し、酸溶液で溶解させ、ICP発光分光分析法により、各成分を定量した。なお、ZrO2未添加の水準で検出されたZrO2は、ジルコニア玉石に起因するものと推察される。B23については、検出限界以下のため、0wt%と表記した。
(Composition of fired body)
Each fired body for chemical analysis was pulverized, dissolved in an acid solution, and each component was quantified by ICP emission spectroscopy. Incidentally, ZrO 2 detected at a level of ZrO 2 is not added, is presumed to be due to zirconia boulder. B 2 O 3 was expressed as 0 wt% because it was below the detection limit.
(実験結果)
 図3に、本発明の実施例の一例として実験例3の焼成体のSEM写真を示す。また、図4に、本発明の比較例の一例として実験例36のSEM写真を示す。図3より、BaTiO3、Bi23、ZnO、Mn34を含む混合粉を事前に焼成した事前合成粉と、Zn-B-Si-O系のガラスと、を混合した調製粉を成形して焼結したものでは、誘電粒子部と粒界部とが区別できることがわかった。これに対して、図4より、事前合成粉やZnOを含む粒界部原料を用いない場合には、誘電粒子部と粒界部との区別がなく、互いに反応してしまうことがわかった。実験例1~52の密度、比誘電率、tanδ、X7R特性、容量最大変化率、寿命時間、粒界相割合、Ag電極の観察結果、焼成体の化学組成を表5,6に示した。表5,6に示すように、BaTiO3、Bi23、ZnO、Mn34を含む混合粉を事前に焼成した事前合成粉と、Zn-B-Si-O系のガラスと、を混合した調製粉を成形して焼結した実験例1~31、42~52のものでは、新規な誘電体磁器組成物が得られた。このうち、Bi23を3.5質量%以上11質量%以下、ZnOを0.6質量%以上5.0質量%以下、Mn34を0.01質量%以上1.0質量%以下、SiO2を0.01質量%以上0.5質量%以下の範囲で含む実験例1~23、42~52のものでは、比誘電率が1000以上と高く、誘電正接tanδが0.05以下などと低く、X7R特性を満たし、Ag系の電極との同時焼成を良好に行うことができ、また、使用による絶縁抵抗の低下が少なかった。なお、混合粉を事前に焼成せずにそのまま用いた実験例32~36では、Bi23やCuOがBaTiO3に固溶及び/又は置換することなく残留しており、これにより、寿命時間が短くなり、使用により絶縁抵抗が低下したものと推察された。また、このうち、実験例32~35では、ガラスを用いたものの、誘電粒子部と粒界部との区別ができなかった。これは、Bi23、ZnO、Mn34などの助剤成分が、BaTiO3と反応固溶する前にガラス成分と反応してしまい、そのため、誘電率の温度特性(静電容量の温度変化率)を所望のものとすることができなかったと推察された。また、CuO成分を含む実験例9,10,26,35,36では、Ag電極の分断及びそれに伴う電極の有効面積の減少が確認され、それ以外では、そうした現象が確認されなかった。このことから、本願では、例えば、CuOを添加しなくても低温で焼結できるため、こうしたAg電極の分断などを抑制でき、好ましいことがわかった。
(Experimental result)
In FIG. 3, the SEM photograph of the sintered body of Experimental example 3 is shown as an example of the Example of this invention. FIG. 4 shows an SEM photograph of Experimental Example 36 as an example of the comparative example of the present invention. FIG. 3 shows a prepared powder obtained by mixing a pre-synthetic powder obtained by pre-baking a mixed powder containing BaTiO 3 , Bi 2 O 3 , ZnO, and Mn 3 O 4 and a Zn—B—Si—O-based glass. It was found that the dielectric particle part and the grain boundary part can be distinguished from those molded and sintered. In contrast, FIG. 4 shows that when the pre-synthetic powder and the raw material for the grain boundary part containing ZnO are not used, there is no distinction between the dielectric particle part and the grain boundary part, and they react with each other. Tables 5 and 6 show the density, relative dielectric constant, tan δ, X7R characteristics, maximum capacity change rate, lifetime, grain boundary phase ratio, observation results of the Ag electrode, and the chemical composition of the fired bodies of Experimental Examples 1 to 52. As shown in Tables 5 and 6, a pre-synthetic powder obtained by firing a mixed powder containing BaTiO 3 , Bi 2 O 3 , ZnO, and Mn 3 O 4 in advance, and a Zn—B—Si—O-based glass, In Examples 1 to 31 and 42 to 52 in which the mixed prepared powder was molded and sintered, a novel dielectric ceramic composition was obtained. Among, Bi 2 O 3 and 3.5 wt% to 11 wt% or less, a ZnO 0.6 wt% 5.0 wt% or less, Mn 3 O 4 of 0.01 mass% to 1.0 mass% Hereinafter, in Experimental Examples 1 to 23 and 42 to 52 containing SiO 2 in the range of 0.01% by mass to 0.5% by mass, the relative dielectric constant is as high as 1000 or more, and the dielectric loss tangent tan δ is 0.05. The following was low, the X7R characteristics were satisfied, and simultaneous firing with an Ag-based electrode could be performed satisfactorily, and the decrease in insulation resistance due to use was small. In Experimental Examples 32 to 36 where the mixed powder was used as it was without firing in advance, Bi 2 O 3 and CuO remained without being dissolved and / or substituted in BaTiO 3 , and thus life time It was speculated that the insulation resistance decreased with use. Of these, in Examples 32 to 35, although glass was used, the dielectric particle portion and the grain boundary portion could not be distinguished. This is because auxiliary components such as Bi 2 O 3 , ZnO, and Mn 3 O 4 react with the glass component before reacting and dissolving with BaTiO 3, and therefore the temperature characteristics of the dielectric constant (capacitance of the capacitance). It was inferred that the temperature change rate) could not be achieved. Further, in Experimental Examples 9, 10, 26, 35, and 36 containing a CuO component, it was confirmed that the Ag electrode was divided and the effective area of the electrode was reduced, and otherwise, such a phenomenon was not confirmed. From this, in this application, since it can sinter at low temperature, for example, without adding CuO, it turned out that such division | segmentation etc. of Ag electrode can be suppressed and it is preferable.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 この出願は、2014年2月4日に出願された米国仮出願第61/935,412号を優先権主張の基礎としており、引用によりその内容の全てが本明細書に含まれる。 This application is based on US provisional application 61 / 935,412 filed on February 4, 2014, claiming priority, and the entire contents thereof are incorporated herein by reference.
 本発明は、電子機器の分野に利用可能である。 The present invention can be used in the field of electronic equipment.
 10 誘電体磁器組成物、22 誘電粒子部、24 粒界部、50 積層セラミックコンデンサ、52 内部電極、54 外部電極。  10 dielectric ceramic composition, 22 dielectric particle parts, 24 grain boundary parts, 50 multilayer ceramic capacitor, 52 internal electrode, 54 external electrode.

Claims (21)

  1.  BaTiO3の一部にBa、Ti以外の金属元素を含む化合物である誘電粒子部と、
     前記誘電粒子部の粒子間に存在しZnOを含む粒界部と、
     を備えた、誘電体磁器組成物。
    A dielectric particle part which is a compound containing a metal element other than Ba and Ti in a part of BaTiO 3 ;
    A grain boundary portion that is present between the particles of the dielectric particle portion and contains ZnO;
    A dielectric ceramic composition comprising:
  2.  前記誘電体磁器組成物は、Bi23、ZnO、Mn34、ZrO2、SnO2、Nb25、SrOからなる群より選ばれる1以上を含む、請求項1に記載の誘電体磁器組成物。 2. The dielectric according to claim 1, wherein the dielectric ceramic composition includes one or more selected from the group consisting of Bi 2 O 3 , ZnO, Mn 3 O 4 , ZrO 2 , SnO 2 , Nb 2 O 5 , and SrO. Body porcelain composition.
  3.  前記誘電体磁器組成物は、Bi23、ZnO及びMn34を含む、請求項1又は2に記載の誘電体磁器組成物。 The dielectric ceramic composition according to claim 1, wherein the dielectric ceramic composition includes Bi 2 O 3 , ZnO, and Mn 3 O 4 .
  4.  BaTiO3の一部にBa、Ti以外の金属元素を含む化合物である誘電粒子原料と、ZnOを含む粒界部原料と、を含む調製粉を成形し焼結して得られた、請求項1~3のいずれか1項に記載の誘電体磁器組成物。 2. A powder obtained by molding and sintering a prepared powder containing a dielectric particle raw material which is a compound containing a metal element other than Ba and Ti in a part of BaTiO 3 and a grain boundary raw material containing ZnO. 4. The dielectric ceramic composition according to any one of items 1 to 3.
  5.  Bi23を3.5質量%以上11質量%以下、ZnOを0.6質量%以上5.0質量%以下、Mn34を0.01質量%以上1.0質量%以下の範囲で含み、CuOの含有量が0.4質量%以下である、請求項1~4のいずれか1項に記載の誘電体磁器組成物。 Bi 2 O 3 is 3.5 mass% or more and 11 mass% or less, ZnO is 0.6 mass% or more and 5.0 mass% or less, and Mn 3 O 4 is 0.01 mass% or more and 1.0 mass% or less. The dielectric ceramic composition according to any one of claims 1 to 4, wherein the dielectric ceramic composition has a CuO content of 0.4 mass% or less.
  6.  SnO2、ZrO2、Nb25、SrOからなる群より選ばれる1以上を含み、前記SnO2の含有量は1.0質量%以下、前記ZrO2の含有量は2.5質量%以下、前記Nb25の含有量は1.0質量%以下、前記SrOの含有量は10質量%以下である、請求項1~5のいずれか1項に記載の誘電体磁器組成物。 1 or more selected from the group consisting of SnO 2 , ZrO 2 , Nb 2 O 5 , SrO, the SnO 2 content is 1.0 mass% or less, and the ZrO 2 content is 2.5 mass% or less. 6. The dielectric ceramic composition according to claim 1, wherein the Nb 2 O 5 content is 1.0 mass% or less and the SrO content is 10 mass% or less.
  7.  比誘電率が1000以上3000以下である、請求項1~6のいずれか1項に記載の誘電体磁器組成物。 The dielectric ceramic composition according to any one of claims 1 to 6, wherein the dielectric constant is 1000 or more and 3000 or less.
  8.  誘電正接tanδが0.05以下である、請求項1~7のいずれか1項に記載の誘電体磁器組成物。 The dielectric ceramic composition according to any one of claims 1 to 7, wherein a dielectric loss tangent tan δ is 0.05 or less.
  9.  請求項1~8のいずれか1項に記載の誘電体磁器組成物と、
     前記誘電体磁器組成物と一体化されAg又はAg合金である電極と、
     を備えた誘電体デバイス。
    The dielectric ceramic composition according to any one of claims 1 to 8,
    An electrode that is integrated with the dielectric ceramic composition and is Ag or an Ag alloy;
    A dielectric device comprising:
  10.  BaTiO3の一部にBa、Ti以外の金属元素を含む化合物である誘電粒子原料とZnOを含む粒界部原料とを含む調製粉を成形し焼結する成形焼結工程、
     を含む、誘電体磁器組成物の製造方法。
    A forming and sintering step of forming and sintering a prepared powder containing a dielectric particle raw material which is a compound containing a metal element other than Ba and Ti in a part of BaTiO 3 and a grain boundary raw material containing ZnO,
    A method for producing a dielectric ceramic composition, comprising:
  11.  前記誘電粒子原料は、BaTiO3原料と、Ba、Ti以外の金属元素とを含む混合粉を焼成したものである、請求項10に記載の誘電体磁器組成物の製造方法。 The dielectric particles raw material, a BaTiO 3 material, Ba, is obtained by calcining a mixed powder containing a metal element other than Ti, the production method of the dielectric ceramic composition of claim 10.
  12.  前記混合粉は、Bi23、ZnO、Mn34、ZrO2、SnO2、Nb25、SrTiO3からなる群より選ばれる1以上を含む、請求項11に記載の誘電体磁器組成物の製造方法。 The dielectric ceramic according to claim 11, wherein the mixed powder includes one or more selected from the group consisting of Bi 2 O 3 , ZnO, Mn 3 O 4 , ZrO 2 , SnO 2 , Nb 2 O 5 , and SrTiO 3. A method for producing the composition.
  13.  前記混合粉は、Bi23、ZnO及びMn34を含む、請求項11又は12に記載の誘電体磁器組成物の製造方法。 The method for producing a dielectric ceramic composition according to claim 11 or 12, wherein the mixed powder contains Bi 2 O 3 , ZnO, and Mn 3 O 4 .
  14.  前記混合粉は、Bi23を3.5質量%以上11質量%以下、ZnOを0.6質量%以上5.0質量%以下、Mn34を0.01質量%以上1.0質量%以下の範囲で含み、CuOの含有量が0.4質量%以下である、請求項11~13のいずれか1項に記載の誘電体磁器組成物の製造方法。 The mixed powder has Bi 2 O 3 of 3.5 mass% to 11 mass%, ZnO of 0.6 mass% to 5.0 mass%, and Mn 3 O 4 of 0.01 mass% to 1.0 mass%. The method for producing a dielectric ceramic composition according to any one of claims 11 to 13, wherein the dielectric ceramic composition is contained in a range of not more than mass% and the content of CuO is not more than 0.4 mass%.
  15.  前記混合粉は、SnO2、ZrO2、Nb25からなる群より選ばれる1以上を含み、前記SnO2の含有量は15質量%以下、前記ZrO2の含有量は25質量%以下、前記Nb25の含有量は1.0質量%以下である、請求項11~14のいずれか1項に記載の誘電体磁器組成物の製造方法。 The mixed powder contains one or more selected from the group consisting of SnO 2 , ZrO 2 , and Nb 2 O 5 , the SnO 2 content is 15% by mass or less, and the ZrO 2 content is 25% by mass or less, The method for producing a dielectric ceramic composition according to any one of claims 11 to 14, wherein a content of the Nb 2 O 5 is 1.0 mass% or less.
  16.  前記調製粉は、前記粒界部原料を0.5体積%以上15体積%以下の範囲で含む、請求項10~15のいずれか1項に記載の誘電体磁器組成物の製造方法。 The method for producing a dielectric ceramic composition according to any one of claims 10 to 15, wherein the prepared powder contains the grain boundary part raw material in a range of 0.5 vol% to 15 vol%.
  17.  前記調製粉において、前記粒界部原料は、Zn-B-O系のガラスである、請求項10~16のいずれか1項に記載の誘電体磁器組成物の製造方法。 The method for producing a dielectric ceramic composition according to any one of claims 10 to 16, wherein in the prepared powder, the grain boundary raw material is a Zn-BO glass.
  18.  前記調製粉は、前記誘電粒子原料として、組成の異なる2種以上の粒子を含む、請求項10~17のいずれか1項に記載の誘電体磁器組成物の製造方法。 The method for producing a dielectric ceramic composition according to any one of claims 10 to 17, wherein the prepared powder includes two or more kinds of particles having different compositions as the dielectric particle raw material.
  19.  前記調製粉は、さらに、SrTiO3を含む、請求項10~18のいずれか1項に記載の誘電体磁器組成物の製造方法。 The method for manufacturing a dielectric ceramic composition according to any one of claims 10 to 18, wherein the prepared powder further contains SrTiO 3 .
  20.  前記成形焼結工程では、800℃以上1000℃以下の焼結温度で焼結する、請求項10~19のいずれか1項に記載の誘電体磁器組成物の製造方法。 The method for manufacturing a dielectric ceramic composition according to any one of claims 10 to 19, wherein in the forming and sintering step, sintering is performed at a sintering temperature of 800 ° C or higher and 1000 ° C or lower.
  21.  BaTiO3の一部にBa、Ti以外の金属元素を含む化合物である誘電粒子原料とZnOを含む粒界部原料とを含む調製粉を成形した成形体と、Ag又はAg合金を含む電極材料と、を一体化した電極付き成形体を焼結する成形焼結工程、
     を含む、誘電体デバイスの製造方法。
    A molded body obtained by molding a prepared powder containing a dielectric particle raw material which is a compound containing a metal element other than Ba and Ti in a part of BaTiO 3 and a grain boundary raw material containing ZnO, and an electrode material containing Ag or an Ag alloy, , A molding and sintering step for sintering a molded body with an electrode integrated,
    A method for manufacturing a dielectric device, comprising:
PCT/JP2015/052983 2014-02-04 2015-02-03 Dielectric ceramic composition, dielectric device and methods for producing same WO2015119112A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015560985A JP6539589B2 (en) 2014-02-04 2015-02-03 Dielectric ceramic composition, dielectric device and method for manufacturing them

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201461935412P 2014-02-04 2014-02-04
US61/935412 2014-02-04

Publications (1)

Publication Number Publication Date
WO2015119112A1 true WO2015119112A1 (en) 2015-08-13

Family

ID=53777917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/052983 WO2015119112A1 (en) 2014-02-04 2015-02-03 Dielectric ceramic composition, dielectric device and methods for producing same

Country Status (2)

Country Link
JP (1) JP6539589B2 (en)
WO (1) WO2015119112A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022264626A1 (en) * 2021-06-16 2022-12-22 株式会社村田製作所 Dielectric ceramic composition and multilayer ceramic capacitor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11278926A (en) * 1998-03-30 1999-10-12 Kyocera Corp Dielectric porcelain
JP2009132606A (en) * 2007-11-29 2009-06-18 Samsung Electro Mech Co Ltd Dielectric composition and laminated ceramic capacitor built-in low temperature co-fired ceramic substrate using the same
JP2010235327A (en) * 2009-03-30 2010-10-21 Tdk Corp Dielectric ceramic composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11278926A (en) * 1998-03-30 1999-10-12 Kyocera Corp Dielectric porcelain
JP2009132606A (en) * 2007-11-29 2009-06-18 Samsung Electro Mech Co Ltd Dielectric composition and laminated ceramic capacitor built-in low temperature co-fired ceramic substrate using the same
JP2010235327A (en) * 2009-03-30 2010-10-21 Tdk Corp Dielectric ceramic composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022264626A1 (en) * 2021-06-16 2022-12-22 株式会社村田製作所 Dielectric ceramic composition and multilayer ceramic capacitor

Also Published As

Publication number Publication date
JP6539589B2 (en) 2019-07-03
JPWO2015119112A1 (en) 2017-03-23

Similar Documents

Publication Publication Date Title
JP7124528B2 (en) multilayer ceramic electronic components
JP4591448B2 (en) Dielectric ceramic and manufacturing method thereof, and multilayer ceramic capacitor
JP6801707B2 (en) Dielectric composition, dielectric elements, electronic components and laminated electronic components
US8445396B2 (en) Dielectric ceramic and laminated ceramic capacitor
JP6881433B2 (en) Dielectric compositions, dielectric elements, electronic components and laminated electronic components
JP2004224653A (en) Dielectric ceramic and its manufacturing method as well as multilayer ceramic capacitor
KR20130122781A (en) Derivative ceramics and laminated ceramic capacitor
WO2014097678A1 (en) Laminated ceramic capacitor and method for producing same
JP6651351B2 (en) Dielectric ceramic composition and ceramic electronic component containing the same
JP5409443B2 (en) Multilayer ceramic capacitor
WO2012053316A1 (en) Multilayer ceramic capacitor
US9922766B2 (en) Ceramic electronic component
JP2004214539A (en) Dielectric ceramic and laminated ceramic capacitor
JP2004155649A (en) Dielectric ceramic, method of producing the same, and multilayer ceramic capacitor
JP2006232629A (en) Dielectric ceramic, method for manufacturing the same, and multilayer ceramic capacitor
JP2019099427A (en) Dielectric composition, electronic component, and laminate electronic component
JP4775583B2 (en) Dielectric particle aggregate, low-temperature sintered dielectric ceramic composition using the same, and low-temperature sintered dielectric ceramic manufactured using the same
JP5951910B2 (en) Laminated body, laminated device and manufacturing method thereof
JP4487371B2 (en) Dielectric composition and ceramic capacitor using the same
JP2006213575A (en) Reduction-resistant dielectric ceramic composition, electronic component, and laminated ceramic capacitor
US10186379B2 (en) Dielectric composition and electronic component
WO2015119112A1 (en) Dielectric ceramic composition, dielectric device and methods for producing same
JP2007223872A (en) Dielectric ceramic, its producing method and multilayer ceramic capacitor
JP2006111468A (en) Method for production of dielectric ceramic composition, electronic component, and laminated ceramic capacitor
JP4463095B2 (en) Multilayer ceramic capacitor and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15746611

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015560985

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15746611

Country of ref document: EP

Kind code of ref document: A1