WO2015118985A1 - Glass roll - Google Patents

Glass roll Download PDF

Info

Publication number
WO2015118985A1
WO2015118985A1 PCT/JP2015/052033 JP2015052033W WO2015118985A1 WO 2015118985 A1 WO2015118985 A1 WO 2015118985A1 JP 2015052033 W JP2015052033 W JP 2015052033W WO 2015118985 A1 WO2015118985 A1 WO 2015118985A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
glass sheet
resin coating
coating film
resin
Prior art date
Application number
PCT/JP2015/052033
Other languages
French (fr)
Japanese (ja)
Inventor
伊藤 昌宏
弘賢 山本
聡 白鳥
哲哉 小山
杉山 徳英
小金澤 光司
良太 中島
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2015560931A priority Critical patent/JPWO2015118985A1/en
Publication of WO2015118985A1 publication Critical patent/WO2015118985A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • C03C17/32Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material with synthetic or natural resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/06Interconnection of layers permitting easy separation

Definitions

  • the present invention relates to a glass roll.
  • a display device such as a liquid crystal display or a semiconductor element is provided with a cover glass to protect the surface.
  • the glass sheets used for these devices have been made extremely thin. Since the glass sheet thinned in this way has flexibility, it may be wound around the outer periphery of the core to be packed, conveyed, etc. in the state of a glass roll.
  • the strength of the glass sheet is reduced and the glass sheet is easily damaged.
  • the glass sheets may be blocked and may be damaged by applying a local force when the glass sheets are fed out.
  • a glass roll configured to protect the glass sheet and to prevent the glasses from contacting each other by wrapping a protective film on the glass sheet is disclosed (for example, see Patent Document 1 or 2).
  • the present invention has been made in view of the above, and an object thereof is to provide a glass roll in which blocking between glass sheets and contamination of the glass sheets are prevented.
  • a glass roll in which a glass sheet with a resin coating film in which a resin coating film is formed on one side of the glass sheet, the glass sheet having a thickness of 10 to 300 ⁇ m.
  • the glass sheet with a resin coating film is laminated and wound so that the resin coating film surface and the glass surface of another layer are in contact with each other.
  • a glass roll in which blocking between glass sheets and contamination of the glass sheet are prevented can be provided.
  • the state where “blocking” has occurred is necessary to peel the glass sheet from the glass roll when the glass sheet is unwound at a constant speed from the glass roll wound around the winding core.
  • the state where the strong force (peeling force) is not constant.
  • the inner surface of the glass sheet to be unwound (the surface facing the inner side (winding core side) of the glass roll) is an adjacent glass sheet (one turn of the glass sheet to be unwound from the glass roll). It means a state in close contact with the outer surface of the glass sheet located on the inner side (the surface facing the outer side of the glass roll (the side opposite to the winding core side)).
  • the peeling force for eliminating this close contact state locally increases. If the peeling force is locally increased, it will hinder the stable conveyance of the glass sheet. Specifically, “flutter” is likely to occur immediately after unwinding, and as a result, problems such as uneven tension, uneven transport speed, and misalignment are likely to occur. Further, when the peeling force becomes extremely large, the glass sheet is damaged.
  • the peeling force depends on the unwinding speed, the combination of the two materials to be in close contact, the surface roughness, the tension during winding, the elapsed time after winding the glass roll, and the like. Further, the locally increasing peeling force means that the surface characteristics of the surface where the peeling force is increased are different from those of the surroundings, and in general, it tends to cause defects by subsequent processing. Since various problems occur in this way, it is important that the glass roll can be unwound with low peeling force without blocking.
  • surface roughness means arithmetic average roughness (Ra) defined in JIS B0601.
  • FIG. 1 is a diagram illustrating a glass roll 100 in the embodiment.
  • a glass sheet 13 with a resin coating film 12 having a resin coating film 12 formed on one side of the glass sheet 11 is rolled on the outer periphery of the core 20 without interposing a protective film or a slip sheet. It is formed by being wound around.
  • the glass sheet 13 with a resin coating film is laminated so that the resin coating film surface and the glass surface of the other layer are in contact with each other because no protective film or slip paper is interposed.
  • the glass sheet 13 with a resin coating film is wound so that the glass surface is on the inner peripheral surface side and the resin coating film surface is on the outer peripheral surface side.
  • the glass roll 100 is preferably wound so that the glass surface is on the inner peripheral surface side and the resin coating film surface is on the outer peripheral surface side.
  • the glass roll 100 is formed of a glass sheet 13 with a resin coating film when unwound on a support means provided so that the transition length is 500 mm after a lapse of one week after the glass sheet 13 with a resin coating film is wound.
  • the runout width is preferably within 20 mm, more preferably within 10 mm, and particularly preferably within 5 mm. According to this embodiment, since blocking is suppressed, “flapping” immediately after unwinding of the glass sheet 13 with a resin coating film is suppressed. Moreover, 0.08% or less is preferable, as for the conveyance speed fluctuation
  • the glass sheet 13 with a resin coating film is wound up without using an interleaf paper to obtain a glass roll 100.
  • the winding tension is 1 N per 10 mm sheet width.
  • the obtained glass roll 100 is stored for one week.
  • the storage conditions are a temperature of 20 to 25 ° C. and a humidity of 30 to 80% relative humidity.
  • the transition length is 500 mm.
  • the transition length is the distance from the peeling point at which the glass sheet 13 with a resin coating film peels from the glass roll 100 to the point at which the unwound glass sheet 13 with a resin coating film is supported by the support means.
  • the support means is, for example, a roll or a turn bar.
  • the vibration of the surface direction of the glass sheet 13 with a resin coating film is controlled by the point supported.
  • the unwinding conditions of the glass sheet with a resin coating film are a tension of 1 N per 10 mm of the sheet width and a speed of 10 m / min. If fluttering occurs, the sheet vibrates in the surface direction at a place where the glass sheet having the transition length is not supported (approximately in the vicinity of the middle of the transition length). The maximum value of the swing width is measured and set as the “flapping” value.
  • the material and composition of the glass sheet 11 are not limited.
  • soda lime glass, alkali-borosilicate glass, non-alkali-borosilicate glass, non-alkali-aluminosilicate glass, or the like can be used.
  • alkali-free borosilicate glass and alkali-aluminosilicate glass are preferable in terms of excellent durability, high elastic modulus, and low linear expansion coefficient.
  • alkali-free borosilicate glass and alkali-aluminosilicate glass (hereinafter referred to as “alkali-free glass”) are preferable because when a semiconductor element is formed on the glass, an element defect due to alkali does not occur.
  • the alkali-free glass refers to a glass having an alkali metal oxide content of less than 1 mol% (may be 0 mol%) when the glass composition is represented by an oxide.
  • the thickness of the glass sheet 11 is 10 to 300 ⁇ m. If the thickness is less than 10 ⁇ m, even if the resin coating film 12 is formed, the impact resistance becomes insufficient, and it may be easily damaged, which is not preferable. Moreover, when thickness exceeds 300 micrometers, the softness
  • the thickness of the glass sheet 11 is more preferably 10 to 200 ⁇ m, and particularly preferably 20 to 100 ⁇ m.
  • the thickness of the glass sheet 11 is preferably uniform. Specifically, the thickness deviation is 15% or less in terms of PV (Peak to Valley) value (for example, the deviation with respect to the thickness of 100 ⁇ m). Is preferably 15 ⁇ m or less. When the thickness is uniform, the appearance of the glass sheet 11 is improved.
  • PV Peak to Valley
  • the surface of the glass sheet 11 is preferably flat.
  • the flatter the glass sheet 11, the higher the light transmittance, and the surface roughness is preferably 30 nm or less, more preferably 1 nm or less, in terms of arithmetic average roughness (Ra).
  • Ra arithmetic average roughness
  • the dielectric constant of the glass sheet 11 is preferably 5 to 7 at 10 kHz.
  • the Young's modulus of the glass sheet 11 is preferably 70 to 95 GPa, more preferably 75 to 90 GPa.
  • the linear expansion coefficient of the glass sheet 11 is preferably 3 ⁇ 10 ⁇ 6 to 5 ⁇ 10 ⁇ 6 / ° C. (3 to 5 ppm / ° C.) at 0 to 200 ° C.
  • the glass sheet 11 having these characteristics is suitable as a photoelectric conversion element, a protective plate such as a display member, a substrate of a semiconductor device, and the like.
  • the glass sheet 11 may be subjected to a tempering process.
  • a tempering process As the strengthening treatment, chemical strengthening is preferable. If it is chemical strengthening, the thin glass sheet 11 can be effectively strengthened.
  • the tempering treatment an effect is obtained that the glass sheet 11 with a resin coating film is not easily damaged even if the glass sheet 11 is thin and lightweight.
  • the resin coating 12 formed on the glass sheet 11 preferably contains a fluororesin.
  • the resin coating film 12 contains a fluororesin, the adhesion between the glass and the resin of the glass sheet 13 with a resin coating film to be laminated is suppressed, the peeling force is easily suppressed, and contamination of the glass surface is easily suppressed.
  • the resin coating 12 prevents blocking caused by the glass sheets 11 coming into contact with each other in the glass roll 100. Moreover, the surface of the glass sheet 11 is protected and the surface is prevented from being scratched or broken. Moreover, when the glass sheet 11 is broken, it is prevented that fragments are scattered.
  • the resin coating film 12 forms a glass sheet 13 with a resin coating film that is excellent in durability, weather resistance, water repellency, antifouling properties, transparency, and the like.
  • the fluororesin in the present invention means a fluororesin selected from the group consisting of a cured product of a solvent-soluble curable fluororesin, a solvent-soluble fluororesin, and a mixture thereof.
  • the “solvent-soluble curable fluororesin solution” and the “solvent-soluble fluororesin solution” may be collectively referred to as “fluororesin solution”.
  • the solvent solubility is not limited to a case where a solution in a strict sense can be obtained, but includes a state where a stably dispersed state can be maintained. Moreover, the state in which some turbidity is seen in a solution state may be sufficient.
  • the fluororesin solution is filtered. In particular, it is preferable to use a filter paper having a nominal opening of 5 ⁇ m or less because a smooth resin coating film 12 can be obtained by removing foreign substances.
  • the fluorine content of the fluororesin is preferably 5% by mass or more, and more preferably 10% by mass or more.
  • a high fluorine content is preferable in that the water absorption rate and relative dielectric constant of the resin are lowered, and the reliability and durability when an element is formed are increased.
  • the upper limit of the fluorine content is preferably 76% by mass or less and more preferably 70% by mass or less because it is easy to make a solution.
  • the fluorine content is the proportion of the molecular weight occupied by fluorine atoms, and is usually calculated based on the chemical formula of the monomer. When a plurality of polymers are mixed and used, the fluorine content is calculated from the mixing ratio (mass ratio) thereof.
  • fluororesin include a fluorinated olefin polymer and a fluorinated diene compound cyclized polymer.
  • Fluorinated olefins include vinyl fluoride, vinylidene fluoride, trifluoroethylene, chlorotrifluoroethylene, tetrafluoroethylene, hexafluoropropylene, fluoroalkyl (meth) acrylate, fluoroalkyl vinyl ether, perfluoro (alkyldioxole), etc. Is mentioned.
  • fluorine-containing diene compound that can be cyclopolymerized include perfluoro (allyl vinyl ether) and perfluoro (butenyl vinyl ether).
  • polymers may be homopolymers of the aforementioned monomers (such as fluorine-containing olefins) or copolymers.
  • a copolymer it may be a copolymer of the above fluorine-containing olefin and the like and a monomer not containing a fluorine atom.
  • the monomer not containing a fluorine atom include olefins, vinyl ethers such as alkyl vinyl ether, vinyl esters such as alkyl vinyl ester, and (meth) acrylates such as alkyl (meth) acrylate.
  • the monomer which does not contain a fluorine atom may be a compound having a reactive group such as a hydroxyl group. “(Meth) acrylate” is a combination of acrylate and methacrylate.
  • Solvent-soluble fluororesins include vinylidene fluoride homopolymers or copolymers, cyclic fluorine-containing monomers such as perfluoro (alkyldioxole) (carbons in which the carbon atoms of the polymerizable unsaturated groups constitute the ring) (Monomers that are atoms) homopolymers or copolymers, homopolymers or copolymers of fluorinated diene compounds that can be cyclopolymerized, copolymers of tetrafluoroethylene and vinyl alcohol, fluoroalkyl (meta And a copolymer of acrylate and (meth) acrylates containing no fluorine atom.
  • cyclic fluorine-containing monomers such as perfluoro (alkyldioxole) (carbons in which the carbon atoms of the polymerizable unsaturated groups constitute the ring)
  • Monomers that are atoms homopolymers or copoly
  • the homopolymer or copolymer of the cyclic fluorine-containing monomer and the homopolymer or copolymer of the fluorine-containing diene compound capable of cyclopolymerization are polymers having a ring structure in the main chain (mainly A polymer in which a part of the carbon atoms of the chain is a carbon atom constituting a ring).
  • Solvent-soluble fluororesins include homopolymers of vinylidene fluoride, copolymers of perfluoro (dimethyldioxole) and tetrafluoroethylene, cyclized polymers of perfluoro (butenyl vinyl ether), and tetrafluoroethylene and vinyl.
  • a copolymer with alcohol is preferable, and a homopolymer of vinylidene fluoride and a cyclized polymer of perfluoro (butenyl vinyl ether) are particularly preferable.
  • the homopolymer of vinylidene fluoride is a polymer that can be crosslinked by heat treatment, but in the present invention, it is a solvent-soluble fluororesin (not a curable fluororesin).
  • solvent-soluble curable fluororesin examples include copolymers of chlorotrifluoroethylene or tetrafluoroethylene and alkyl vinyl ethers having a curable functional group such as a hydroxyl group, and fluorine-containing arylene ethers having a polymerizable functional group such as a vinyl group.
  • a polymer etc. are mentioned.
  • the copolymer of tetrafluoroethylene and vinyl alcohol can be reacted with an alkyl silicate oligomer to obtain a curable fluororesin.
  • the curable fluororesin having a reactive group can be made into a cured product using a compound having a functional group that reacts with the reactive group as a curing agent or a crosslinking agent.
  • a curable fluororesin having a hydroxyl group can be made into a cured product with a curing agent having an isocyanate group.
  • a fluororesin having a polymerizable functional group such as a vinyl group can be cured with a radical generator or the like.
  • solvent-soluble curable fluororesin examples include a hydroxyl group-containing fluororesin composed of a copolymer of chlorotrifluoroethylene and a hydroxyl group-containing vinyl ether, or a copolymer of tetrafluoroethylene and vinyl alcohol with an alkyl silicate oligomer. And a fluorinated arylene ether polymer having a vinyl group, particularly preferably a fluorinated arylene ether polymer having a vinyl group.
  • the glass transition temperature of the fluororesin is preferably 200 ° C. or lower, and more preferably 150 ° C. or lower. When the glass transition temperature is low, stress hardly remains in the resin coating film 12, and the warp of the glass sheet 13 with the resin coating film is suppressed, and flatness is maintained.
  • the transmittance of the fluororesin is preferably 80% or more and more preferably 90% or more in the wavelength range of 400 to 700 nm.
  • the glass sheet 13 with a resin coating film in which the resin coating film 12 is formed on one side of the glass sheet 11 preferably has a light transmittance of 80% or more at a wavelength of 400 to 700 nm, more preferably 90% or more. Preferably, it is 93% or more. It is preferable that the glass sheet 13 with a resin coating film is transparent in the said wavelength range, ie, the range of visible light. Since the glass sheet 13 with a resin coating film has transparency, it can be used, for example, as a protective plate disposed on the front surface of the display device. Further, for example, when used as a base material for a light emitting element, a power generation element, etc., the light emission efficiency and the power generation efficiency are not lowered.
  • the thickness of the glass sheet 13 with a resin coating film is preferably uniform because the appearance is good.
  • the standard deviation of the thickness is preferably 50% or less, and more preferably 35% or less.
  • the thickness of the resin coating film 12 is preferably 0.1 to 1000 ⁇ m, more preferably 0.1 to 500 ⁇ m, and particularly preferably 1 to 20 ⁇ m. Further, the thickness of the resin coating film 12 is preferably 0.001 to 10 with respect to the thickness of the glass sheet 11 when the thickness of the glass sheet 11 is 1, and is 0.01 to 5 More preferably, 0.1 to 1 is particularly preferable.
  • the surface roughness of the resin coating film 12 is an arithmetic average roughness (Ra), preferably 0.1 to 35 nm, more preferably 0.3 to 30 nm, and particularly preferably 0.3 to 20 nm. In general, it is preferable to increase the surface roughness in order to suppress blocking.
  • a method for roughening the surface roughness in general, a method of containing a filler such as inorganic particles in the resin coating film 12, and applying a resin to the surface using a mold such as a roll mold after applying the resin. And the like.
  • a filler such as inorganic particles in the resin coating film 12
  • the glass sheet 11 when using a shaping
  • the resin coating film 12 of the glass sheet 13 with a resin coating film is formed by, for example, directly applying a resin solution to the glass sheet 11.
  • the direct application method is preferable because the surface of the resin coating film 12 tends to be flat.
  • a resin solution may be applied to another substrate to form the resin coating film 12, and the formed resin coating film 12 may be transferred to the glass sheet 11.
  • a resin coating is formed by applying a resin solution to one side of the glass sheet 11 and then removing the solvent.
  • the resin solution is a curable fluororesin solution
  • the curable fluororesin is cured after removing the solvent to form the cured fluororesin resin coating 12.
  • the resin solution is not limited as long as it contains any of the resins described above and can be applied to the glass sheet 11.
  • the resin may be dissolved in a solvent, or the resin may be synthesized in a solvent and used.
  • the resin solution may contain components other than the resin and the solvent.
  • the resin solution reacts with the resin when forming a coating film, such as silanes such as alkoxysilane and alkylsilicate oligomer. May be included.
  • the solid content of the resin solution is preferably 0.1 to 70% by mass, and preferably 1 to 15% by mass.
  • solid content means the ratio by which the solid content obtained by drying a solution is contained in the whole solution.
  • 1 g of the solution can be put in an aluminum cup and dried in an oven at 100 ° C. for 10 minutes for measurement.
  • the solvent used in the resin solution is not particularly limited as long as it can dissolve the resin, and the boiling point is preferably 50 to 300 ° C, more preferably 100 to 250 ° C.
  • the surface suitability improvement treatment of the glass sheet 11 may be performed.
  • the surface suitability improving process include a cleaning process and an adhesion improving process.
  • the cleaning treatment include water cleaning, water vapor cleaning, solvent cleaning, UV / ozone cleaning, and the like.
  • the adhesive improvement treatment include corona treatment and primer treatment.
  • a primer used for the primer treatment for example, aminosilanes and epoxysilanes can be used.
  • the method for applying the resin solution is not particularly limited.
  • Examples of the coating method include dip coating, die coating, slit coating, spray coating, electrospray coating, ink jet coating, flexographic coating, and gravure coating.
  • the application of the resin solution may be performed once or may be performed in a plurality of times.
  • the resin coating film 12 is obtained by removing the solvent from the resin solution layer.
  • the curable fluororesin is cured to be a cured fluororesin almost simultaneously with the removal of the solvent or after the solvent is removed.
  • the removal of the solvent is performed, for example, by heating the resin solution layer to the boiling point of the solvent or higher to evaporate and remove the solvent.
  • the resin solution contains a curable fluororesin
  • the thermosetting curable fluororesin can be cured almost simultaneously with heating. Further, after the solvent is removed, it can be further heated and cured.
  • a continuous method is suitable.
  • the resin solution is applied and heated (solvent removal) continuously, and the resulting glass sheet 13 with a resin coating film is wound into a roll. It is a method of collecting.
  • Glass sheet A non-alkali glass (trade name: AN100) glass sheet manufactured by Asahi Glass Co., Ltd. (a long ribbon having a thickness of 50 ⁇ m and a width of 300 mm (length is 20 m or more)) was used.
  • Fluorine resin 1 N-methylpyrrolidone (NMP) solution (solid content: 12% by mass) of polyvinylidene fluoride (Kureha, KF-1120, fluorine content: 59.4% by mass) and fluororesin solution A1 did.
  • NMP N-methylpyrrolidone
  • PET1 Polyester film manufactured by Toyobo Co., Ltd. (biaxially stretched polyethylene terephthalate resin, product name: ester film E5000, thickness: 50 ⁇ m, width 350 mm)
  • PET2 Polyester film manufactured by Toyobo Co., Ltd. (biaxially stretched film of polyethylene terephthalate resin, trade name: Cosmo Shine A4100, thickness: 50 ⁇ m, width 350 mm)
  • Example 1 The glass sheet was thoroughly washed and dried, and the fluororesin solution A1 was applied to one side and dried. The thickness of the resin coating film was 1 ⁇ m.
  • the obtained glass sheet with a resin coating film was wound on a core having a diameter of 400 mm to obtain a glass roll, with the resin coating film as the outer surface, the tension at 300 mm width was adjusted to 30N.
  • a lead film (PET1) having a width of 350 mm was attached to the unwinding end using an adhesive tape and wound up. After winding, it was fixed with an adhesive tape so that the end would not loosen. After that, the core was fixed on the glass plate so that the weight of the core was not applied to the glass frame, and stored for a predetermined time (1 day, 7 days).
  • the storage conditions were a temperature of 23 ° C. and a humidity of 50% relative humidity.
  • FIG. 2 is a schematic diagram for explaining the unwinding test. As shown in FIG. 2, the unwinding test is performed using a sample glass roll 110, a winder 120, and a guide roll 130 as a support means.
  • the glass roll 110 is attached to an unwinding machine and rotates to unwind the glass sheet 140 with a resin coating film.
  • the guide roll 130 has a diameter of 300 mm, and is provided between the glass roll 110 and the winder 120 and at a position where the transition length L is 500 mm.
  • the guide roll 130 is provided so that the upper end is located 30 mm above a straight line connecting the upper end of the winding core of the unwinding machine 120 and the upper end of the winding core of the winding machine.
  • the glass sheet 13 with a resin coating film is unwound from the glass roll 110 at a tension of 30 N and a speed of 10 m / min, and the glass sheet 13 with a resin coating film flutters between the glass roll 110 and the guide roll 130.
  • the runout width W was observed.
  • the fluctuation width W of the fluttering of the glass sheet with a resin coating film unwound from the glass roll after storage for 1 day and after storage for 7 days was less than 1 mm, and no blocking occurred. Moreover, about the glass roll after storing for seven days, when the surface of the glass which was in contact with the resin coating film (fluororesin 1) was observed visually, contamination etc. did not generate
  • the surface roughness of the resin coating film before winding was 19 nm.
  • Example 2 In Example 1, the test was performed in the same manner as in Example 1 except that the fluororesin solution A2 was used instead of the fluororesin solution A1.
  • the thickness of the resin coating film was 1 ⁇ m.
  • the fluctuation width of fluttering was less than 1 mm after 1 day storage and after 7 days storage, and no blocking occurred. Moreover, about the glass roll after storing for seven days, when the surface of the glass which was in contact with the resin coating film (fluororesin 1) was observed visually, contamination etc. did not generate
  • the surface roughness of the resin coating film before winding was 7 nm.
  • Example 1 In Example 1, instead of applying the fluororesin solution A1, a glass roll was formed by winding a glass sheet on which nothing was applied, and the test was performed in the same manner as in Example 1.
  • the swinging fluctuation in the unwinding test was 20 mm or more after 1 day storage and after 7 days storage, and the glass sheet was broken only after unwinding several meters, and the test could not be continued. Moreover, the surface roughness of the glass sheet after washing was 7 nm.
  • Example 2 (Comparative Example 2) In Example 1, instead of applying the fluororesin solution A1, a resin film (PET1) was wound together with a glass sheet to form a glass roll, and the test was performed in the same manner as in Example 1. The glass sheet and the resin film were unwound together according to Example 1.
  • PET1 resin film
  • the fluctuation width of fluttering was less than 1 mm after 1 day storage and after 7 days storage, and no blocking occurred.
  • the surface of the glass which was in contact with the resin film (PET1) was observed visually, slight cloudiness was recognized. The cloudiness could be removed by wiping with acetone. This cloudiness is considered to be an oligomer that is a degradation product of polyester.
  • the surface roughness of the resin film before winding was 46 nm.
  • Comparative Example 3 In Comparative Example 2, instead of PET1, a resin film (PET2) was wound together with a glass sheet to form a glass roll, and the test was performed in the same manner as in Example 1. However, the rough surface of the resin film (PET2) was taken as the outer surface. The glass sheet and the resin film were unwound together according to Example 1. That is, unwinding was performed so that peeling occurred between the rough surface of the resin film and the glass sheet.
  • the swinging fluctuation width in the unwinding test was less than 1 mm after storage for 1 day and after storage for 7 days, and no blocking occurred. Moreover, about the glass roll after storing for 7 days, when the surface of the glass which was in contact with the resin film (PET2) was observed visually, slight cloudiness was recognized. The cloudiness could be removed by wiping with acetone. This cloudiness is considered to be an oligomer that is a degradation product of polyester.
  • the surface roughness of the resin film before winding was 37 nm.
  • Comparative Example 4 In Comparative Example 3, the surface of PET 2 was turned upside down, a glass roll was formed with the smooth surface as the outer surface, and the test was performed in the same manner as in Example 1. The glass sheet and the resin film were unwound together according to Example 1. That is, it was unwound so that peeling occurred between the smooth surface of the resin film and the glass sheet.
  • the fluctuation width of fluttering was 8 mm after storage for 1 day and 12 mm after storage for 7 days, and blocking occurred.
  • the surface of the glass which was in contact with the resin film (PET2) was observed visually, slight cloudiness was recognized.
  • the cloudiness could be removed by wiping with acetone.
  • This cloudiness is considered to be an oligomer that is a degradation product of polyester.
  • the surface roughness of the resin film before winding was 22 nm.
  • Table 1 below shows the unwinding test results of Examples 1-2 and Comparative Examples 1-4.
  • the evaluation results A to D of the swing width shown in Table 1 are as follows.
  • D The runout was 20 mm or more, very strong blocking occurred, and the glass sheet was damaged.
  • the surface roughness (Ra) is an average value of 20 measured values, and was measured using a surface roughness meter (manufactured by Tokyo Seimitsu Co., Ltd., SURFCOM 1400D).
  • the measurement conditions at each point are as follows.
  • the glass roll 100 has the resin coating-coated glass sheet 13 that does not block even when the resin coating surface and the glass surface are in close contact. It is formed by being wound around the core 20. Therefore, the glass roll 100 can be easily fed out without damaging the glass sheet 13 with a resin coating film, even if an interleaf or a protective film is not provided between the glass sheet 13 with a resin coating film to be wound. It is possible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Glass (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

[Problem] To provide a glass roll in which the blocking between of layers of a glass sheet and the contamination of the glass sheet are inhibited. [Solution] A glass roll produced by winding a resin-coated glass sheet obtained by forming a resin coating on one of the surfaces of a glass sheet, wherein: the glass sheet has a thickness of 10 to 300μm; and the resin-coated glass sheet is in such a laminated and wound state that the resin coating surface of a layer is in contact with the glass surface of other layer.

Description

ガラスロールGlass roll
 本発明は、ガラスロールに関する。 The present invention relates to a glass roll.
 液晶ディスプレイ等の表示装置や、半導体素子等には、表面を保護するためにカバーガラスが設けられている。近年では、表示装置や半導体素子等の小型化・軽量化に伴って、これらに用いられるガラスシートの極薄化が進められている。この様に極薄化されたガラスシートは、可撓性を有することから、巻芯の外周に巻き回されてガラスロールの状態で梱包、搬送等される場合がある。 A display device such as a liquid crystal display or a semiconductor element is provided with a cover glass to protect the surface. In recent years, with the miniaturization and weight reduction of display devices and semiconductor elements, the glass sheets used for these devices have been made extremely thin. Since the glass sheet thinned in this way has flexibility, it may be wound around the outer periphery of the core to be packed, conveyed, etc. in the state of a glass roll.
 ここで、ガラスシートは、薄化されることで強度が低下して破損し易くなる。また、ガラス面同士が密着すると、ガラスシート同士がブロッキングを起こし、ガラスロールからの繰り出し時に局所的な力が加わって破損する場合がある。 Here, the strength of the glass sheet is reduced and the glass sheet is easily damaged. In addition, when the glass surfaces are in close contact with each other, the glass sheets may be blocked and may be damaged by applying a local force when the glass sheets are fed out.
 そこで、ガラスシートに保護フィルムを重ねて巻き回すことで、ガラスシートを保護すると共に、ガラス同士を接触させない様に構成されたガラスロールが開示されている(例えば、特許文献1又は2参照)。 Therefore, a glass roll configured to protect the glass sheet and to prevent the glasses from contacting each other by wrapping a protective film on the glass sheet is disclosed (for example, see Patent Document 1 or 2).
特開2013-7981号公報JP 2013-7981 A 特開2011-201765号公報JP 2011-201765 A
 しかしながら、ガラスシートに保護フィルムを重ねると、保護フィルムからの揮散物、脱落物によってガラスシートが汚染される可能性がある。また、保護フィルムを用いることで、コストの増加を招く可能性がある。 However, when a protective film is stacked on the glass sheet, there is a possibility that the glass sheet is contaminated by volatilized material or fallen material from the protective film. Moreover, there exists a possibility of causing the increase in cost by using a protective film.
 本発明は上記に鑑みてなされたものであって、ガラスシート同士のブロッキング及びガラスシートの汚染が防止されたガラスロールを提供することを目的とする。 The present invention has been made in view of the above, and an object thereof is to provide a glass roll in which blocking between glass sheets and contamination of the glass sheets are prevented.
 本発明の一態様によれば、ガラスシートの片面に樹脂塗膜が形成された樹脂塗膜付きガラスシートが巻き回されたガラスロールであって、前記ガラスシートは、厚さが10~300μmであり、前記樹脂塗膜付きガラスシートは、積層されて樹脂塗膜面と他の層のガラス面とが接触する様に巻き回されている。 According to one aspect of the present invention, there is provided a glass roll in which a glass sheet with a resin coating film in which a resin coating film is formed on one side of the glass sheet, the glass sheet having a thickness of 10 to 300 μm. The glass sheet with a resin coating film is laminated and wound so that the resin coating film surface and the glass surface of another layer are in contact with each other.
 本発明の実施形態によれば、ガラスシート同士のブロッキング及びガラスシートの汚染が防止されたガラスロールを提供できる。 According to the embodiment of the present invention, a glass roll in which blocking between glass sheets and contamination of the glass sheet are prevented can be provided.
実施形態におけるガラスロールを例示する図である。It is a figure which illustrates the glass roll in embodiment. 試験方法を説明する概略図である。It is the schematic explaining a test method.
 以下の説明において、「ブロッキング」が発生した状態とは、ガラスシートが巻き芯に巻き回されたガラスロールからガラスシートを一定速度で巻き出す際に、ガラスシートをガラスロールから剥離するのに必要な力(剥離力)が一定でない状態をいう。具体的には、巻き出そうとしたガラスシートの内面(ガラスロールの内側(巻き芯側)を向いていた面)が、隣接するガラスシート(ガラスロールから巻き出そうとしたガラスシートの1周内側に位置するガラスシート)の外面(ガラスロールの外側(巻き芯側とは反対側)を向いている面)と密着している状態をいう。 In the following description, the state where “blocking” has occurred is necessary to peel the glass sheet from the glass roll when the glass sheet is unwound at a constant speed from the glass roll wound around the winding core. The state where the strong force (peeling force) is not constant. Specifically, the inner surface of the glass sheet to be unwound (the surface facing the inner side (winding core side) of the glass roll) is an adjacent glass sheet (one turn of the glass sheet to be unwound from the glass roll). It means a state in close contact with the outer surface of the glass sheet located on the inner side (the surface facing the outer side of the glass roll (the side opposite to the winding core side)).
 ブロッキングが発生すると、この密着している状態を解消するための剥離力が局所的に大きくなる。剥離力が局所的に大きくなると、ガラスシートの安定搬送に支障をきたす。具体的には、巻き出し直後に「ばたつき」(flutter)が生じやすく、その結果、張力ムラ、搬送速度ムラ、位置ずれなどの問題が生じやすい。さらに剥離力が極端に大きくなるとガラスシートの破損が生じることになる。 When blocking occurs, the peeling force for eliminating this close contact state locally increases. If the peeling force is locally increased, it will hinder the stable conveyance of the glass sheet. Specifically, “flutter” is likely to occur immediately after unwinding, and as a result, problems such as uneven tension, uneven transport speed, and misalignment are likely to occur. Further, when the peeling force becomes extremely large, the glass sheet is damaged.
 剥離力は、巻き出し速度、密着する2面の材料の組み合わせ、表面粗度、巻き取り時の張力、ガラスロールを巻いてからの経過時間等に左右される。また剥離力が局所的に大きくなるということは、当該剥離力が大きくなった面の表面特性が周辺と異なることを意味していて、一般的にはその後の加工により欠陥が生じる原因となりやすい。この様に種々の問題が発生するため、ガラスロールとしては、ブロッキングが発生せず、かつ、低剥離力で巻き出せることが重要である。 The peeling force depends on the unwinding speed, the combination of the two materials to be in close contact, the surface roughness, the tension during winding, the elapsed time after winding the glass roll, and the like. Further, the locally increasing peeling force means that the surface characteristics of the surface where the peeling force is increased are different from those of the surroundings, and in general, it tends to cause defects by subsequent processing. Since various problems occur in this way, it is important that the glass roll can be unwound with low peeling force without blocking.
 また、以下の説明において、「表面粗さ(粗度)」とは、JIS B0601で規定される算術平均粗さ(Ra)を意味する。 In the following description, “surface roughness (roughness)” means arithmetic average roughness (Ra) defined in JIS B0601.
 以下、図面を参照して発明を実施するための形態について説明する。各図面において、同一構成部分には同一符号を付し、重複した説明を省略する場合がある。 Hereinafter, embodiments for carrying out the invention will be described with reference to the drawings. In the drawings, the same components are denoted by the same reference numerals, and redundant description may be omitted.
 <ガラスロール>
 図1は、実施形態におけるガラスロール100を例示する図である。
<Glass roll>
FIG. 1 is a diagram illustrating a glass roll 100 in the embodiment.
 ガラスロール100は、ガラスシート11の片面に樹脂塗膜12が形成された樹脂塗膜付きガラスシート13が、保護フィルムや合い紙等を間に介在させることなく、巻芯20の外周にロール状に巻き回されることで形成されている。ガラスロール100において、樹脂塗膜付きガラスシート13は、保護フィルムや合い紙等が介在しないため、積層されて樹脂塗膜面と他の層のガラス面とが接触する様に巻き回されている。なお、図1に示す例において、樹脂塗膜付きガラスシート13は、ガラス面が内周面側となり、樹脂塗膜面が外周面側となる様に巻き回されているが、ガラス面が外周面側となり、樹脂塗膜面が内周面側となる様に巻き回されてもよい。樹脂塗膜付きガラスシート13が破損しにくいことから、ガラスロール100は、ガラス面が内周面側となり、樹脂塗膜面が外周面側となる様に巻き回されていることが好ましい。 In the glass roll 100, a glass sheet 13 with a resin coating film 12 having a resin coating film 12 formed on one side of the glass sheet 11 is rolled on the outer periphery of the core 20 without interposing a protective film or a slip sheet. It is formed by being wound around. In the glass roll 100, the glass sheet 13 with a resin coating film is laminated so that the resin coating film surface and the glass surface of the other layer are in contact with each other because no protective film or slip paper is interposed. . In the example shown in FIG. 1, the glass sheet 13 with a resin coating film is wound so that the glass surface is on the inner peripheral surface side and the resin coating film surface is on the outer peripheral surface side. It may be wound so that it becomes the surface side and the resin coating film surface becomes the inner peripheral surface side. Since the glass sheet 13 with a resin coating film is not easily damaged, the glass roll 100 is preferably wound so that the glass surface is on the inner peripheral surface side and the resin coating film surface is on the outer peripheral surface side.
 ガラスロール100は、樹脂塗膜付きガラスシート13が巻き回されてから一週間経過後に、渡り長さが500mmになる様に設けられた支持手段に巻き出す際の樹脂塗膜付きガラスシート13の振れ幅が、20mm以内であることが好ましく、10mm以内であることがより好ましく、5mm以内であることが特に好ましい。本実施形態によれば、ブロッキングが抑制されているため、樹脂塗膜付きガラスシート13の巻き出し直後の「ばたつき」が抑制される。またばたつきに由来する樹脂塗膜付きガラスシート13の搬送速度変動は、0.08%以下が好ましく、0.02%以下がより好ましく、0.005%以下が特に好ましい。 The glass roll 100 is formed of a glass sheet 13 with a resin coating film when unwound on a support means provided so that the transition length is 500 mm after a lapse of one week after the glass sheet 13 with a resin coating film is wound. The runout width is preferably within 20 mm, more preferably within 10 mm, and particularly preferably within 5 mm. According to this embodiment, since blocking is suppressed, “flapping” immediately after unwinding of the glass sheet 13 with a resin coating film is suppressed. Moreover, 0.08% or less is preferable, as for the conveyance speed fluctuation | variation of the glass sheet 13 with a resin coating film originating in flapping, 0.02% or less is more preferable, and 0.005% or less is especially preferable.
 ばたつきの評価は、例えば以下の方法で行われる。樹脂塗膜付きガラスシート13を、合い紙を用いずに巻き取り、ガラスロール100とする。巻き取り張力は、シート幅10mm当り1Nとする。得られたガラスロール100を1週間保管する。保管条件は、温度が20~25℃、湿度が相対湿度30~80%とする。渡り長さは500mmとする。ここで、渡り長さとは、樹脂塗膜付きガラスシート13がガラスロール100から剥離する剥離点から、巻き出された樹脂塗膜付きガラスシート13が支持手段により支持される点までの距離である。支持手段は、例えばロール、ターンバー等である。支持される点により、樹脂塗膜付きガラスシート13の面方向の振動が規制される。 Evaluation of fluttering is performed, for example, by the following method. The glass sheet 13 with a resin coating film is wound up without using an interleaf paper to obtain a glass roll 100. The winding tension is 1 N per 10 mm sheet width. The obtained glass roll 100 is stored for one week. The storage conditions are a temperature of 20 to 25 ° C. and a humidity of 30 to 80% relative humidity. The transition length is 500 mm. Here, the transition length is the distance from the peeling point at which the glass sheet 13 with a resin coating film peels from the glass roll 100 to the point at which the unwound glass sheet 13 with a resin coating film is supported by the support means. . The support means is, for example, a roll or a turn bar. The vibration of the surface direction of the glass sheet 13 with a resin coating film is controlled by the point supported.
 樹脂塗膜付きガラスシートの巻き出し条件は、張力をシート幅10mm当り1Nとし、速度を10m/分とする。ばたつきが発生すれば前記渡り長さのガラスシートが支持されていない場所(概ね渡り長さの中間付近)において、シートが面方向に振動する。この振れ幅の最大値を測定して「ばたつき」の値とする。 The unwinding conditions of the glass sheet with a resin coating film are a tension of 1 N per 10 mm of the sheet width and a speed of 10 m / min. If fluttering occurs, the sheet vibrates in the surface direction at a place where the glass sheet having the transition length is not supported (approximately in the vicinity of the middle of the transition length). The maximum value of the swing width is measured and set as the “flapping” value.
 <ガラスシート>
 ガラスシート11は、材質、組成に制限はなく、例えばソーダライムガラス、アルカリ-ホウケイ酸ガラス、無アルカリ-ホウケイ酸ガラス、無アルカリ-アルミノシリケートガラス等を用いることができる。このうち、無アルカリ-ホウケイ酸ガラス、無アルカリ-アルミノシリケートガラスは、耐久性に優れ、高い弾性率を有し、線膨張係数が低い点で好ましい。また、無アルカリ-ホウケイ酸ガラス及び無アルカリ-アルミノシリケートガラス(以下では、「無アルカリガラス」という)は、ガラスの上に半導体素子を形成する場合に、アルカリによる素子の不良が発生しないため好ましい。なお、無アルカリガラスとは、ガラス組成を酸化物で表した場合に、アルカリ金属酸化物の含有割合が1モル%未満(0モル%であってもよい)のガラスをいう。
<Glass sheet>
The material and composition of the glass sheet 11 are not limited. For example, soda lime glass, alkali-borosilicate glass, non-alkali-borosilicate glass, non-alkali-aluminosilicate glass, or the like can be used. Of these, alkali-free borosilicate glass and alkali-aluminosilicate glass are preferable in terms of excellent durability, high elastic modulus, and low linear expansion coefficient. In addition, alkali-free borosilicate glass and alkali-aluminosilicate glass (hereinafter referred to as “alkali-free glass”) are preferable because when a semiconductor element is formed on the glass, an element defect due to alkali does not occur. . The alkali-free glass refers to a glass having an alkali metal oxide content of less than 1 mol% (may be 0 mol%) when the glass composition is represented by an oxide.
 ガラスシート11の厚さは、10~300μmである。厚さが10μm未満では、樹脂塗膜12が形成された場合であっても耐衝撃性が不充分となり、破損し易くなる場合があり好ましくない。また、厚さが300μmを超える場合、樹脂塗膜付きガラスシート13の柔軟性が不足する場合があり好ましくない。ガラスシート11の厚さは、10~200μmがより好ましく、20~100μmが特に好ましい。 The thickness of the glass sheet 11 is 10 to 300 μm. If the thickness is less than 10 μm, even if the resin coating film 12 is formed, the impact resistance becomes insufficient, and it may be easily damaged, which is not preferable. Moreover, when thickness exceeds 300 micrometers, the softness | flexibility of the glass sheet 13 with a resin coating film may be insufficient, and it is unpreferable. The thickness of the glass sheet 11 is more preferably 10 to 200 μm, and particularly preferably 20 to 100 μm.
 また、ガラスシート11の厚さは、均一であることが好ましく、具体的には、厚さの偏差が、PV(Peak to Valley)値で15%以下(例えば厚さが100μmに対して、偏差が15μm以下)であることが好ましい。厚さが均一になることで、ガラスシート11の外観が良好になる。 Further, the thickness of the glass sheet 11 is preferably uniform. Specifically, the thickness deviation is 15% or less in terms of PV (Peak to Valley) value (for example, the deviation with respect to the thickness of 100 μm). Is preferably 15 μm or less. When the thickness is uniform, the appearance of the glass sheet 11 is improved.
 ガラスシート11の表面は、平坦であることが好ましい。ガラスシート11は、平坦であるほど光線透過率が高くなり、表面の粗度としては、算術平均粗さ(Ra)で、30nm以下が好ましく、1nm以下がより好ましい。また、ガラスシート11の表面が平坦であると、表面に透明導電膜等の電極を積層した場合に、膜抵抗が均一となり欠陥が生じにくくなるため好ましい。 The surface of the glass sheet 11 is preferably flat. The flatter the glass sheet 11, the higher the light transmittance, and the surface roughness is preferably 30 nm or less, more preferably 1 nm or less, in terms of arithmetic average roughness (Ra). Moreover, it is preferable that the surface of the glass sheet 11 is flat because when the electrode such as a transparent conductive film is laminated on the surface, the film resistance becomes uniform and defects are hardly generated.
 ガラスシート11の誘電率は、10kHzにおいて5~7が好ましい。またガラスシート11のヤング率は、70~95GPaが好ましく、75~90GPaがより好ましい。 The dielectric constant of the glass sheet 11 is preferably 5 to 7 at 10 kHz. The Young's modulus of the glass sheet 11 is preferably 70 to 95 GPa, more preferably 75 to 90 GPa.
 ガラスシート11の線膨張係数は、0~200℃において、3×10-6~5×10-6/℃(3~5ppm/℃)が好ましい。これらの特性を有するガラスシート11は、光電変換素子、表示部材等の保護板、半導体装置の基材等として好適である。 The linear expansion coefficient of the glass sheet 11 is preferably 3 × 10 −6 to 5 × 10 −6 / ° C. (3 to 5 ppm / ° C.) at 0 to 200 ° C. The glass sheet 11 having these characteristics is suitable as a photoelectric conversion element, a protective plate such as a display member, a substrate of a semiconductor device, and the like.
 なお、ガラスシート11は、強化処理が施されたものであってもよい。強化処理としては化学強化が好ましい。化学強化であれば、薄いガラスシート11に対しても有効な強化処理を施すことができる。ガラスシート11が強化処理を施されることで、薄く、軽量であっても樹脂塗膜付きガラスシート11が破損しにくくなるという効果が得られる。 The glass sheet 11 may be subjected to a tempering process. As the strengthening treatment, chemical strengthening is preferable. If it is chemical strengthening, the thin glass sheet 11 can be effectively strengthened. When the glass sheet 11 is subjected to the tempering treatment, an effect is obtained that the glass sheet 11 with a resin coating film is not easily damaged even if the glass sheet 11 is thin and lightweight.
 <樹脂塗膜>
 ガラスシート11に形成される樹脂塗膜12は、フッ素樹脂を含むことが好ましい。樹脂塗膜12がフッ素樹脂を含むことにより、積層される樹脂塗膜付きガラスシート13のガラスと樹脂の密着が抑制され、剥離力を低く抑えやすく、かつ、ガラス表面の汚染を抑制しやすくなる。樹脂塗膜12は、ガラスロール100においてガラスシート11同士が接触することによって生じるブロッキングを防止する。また、ガラスシート11の表面を保護し、表面に傷が付いたり、破損するのを防止する。また、ガラスシート11が割れた場合には、破片が飛散するのを防止する。
<Resin coating film>
The resin coating 12 formed on the glass sheet 11 preferably contains a fluororesin. When the resin coating film 12 contains a fluororesin, the adhesion between the glass and the resin of the glass sheet 13 with a resin coating film to be laminated is suppressed, the peeling force is easily suppressed, and contamination of the glass surface is easily suppressed. . The resin coating 12 prevents blocking caused by the glass sheets 11 coming into contact with each other in the glass roll 100. Moreover, the surface of the glass sheet 11 is protected and the surface is prevented from being scratched or broken. Moreover, when the glass sheet 11 is broken, it is prevented that fragments are scattered.
 (フッ素樹脂)
 樹脂塗膜12は、以下で説明するフッ素樹脂を含むことで、耐久性、耐候性、撥水性、防汚性、透明性等に優れた樹脂塗膜付きガラスシート13が形成される。
(Fluorine resin)
By including the fluororesin described below, the resin coating film 12 forms a glass sheet 13 with a resin coating film that is excellent in durability, weather resistance, water repellency, antifouling properties, transparency, and the like.
 本発明におけるフッ素樹脂とは、溶媒溶解性の硬化性フッ素樹脂の硬化物、溶媒溶解性のフッ素樹脂、及びそれらの混合物からなる群から選ばれるフッ素樹脂をいう。なお、「溶媒溶解性の硬化性フッ素樹脂の溶液」と「溶媒溶解性のフッ素樹脂の溶液」とをまとめて「フッ素樹脂溶液」という場合がある。ここで、溶媒溶解性であるとは、厳密な意味での溶液とすることが可能である場合のみに限定されず、安定に分散した状態が維持できている状態を含む。また、溶液状態で多少濁りが見られる状態であってもよい。さらに、フッ素樹脂溶液は、ろ過処理されたものであることが好ましい。特に公称の目開きが5μm以下のろ紙を用いてろ過処理されたものが、異物が除去されて平滑な樹脂塗膜12を得られるため好ましい。 The fluororesin in the present invention means a fluororesin selected from the group consisting of a cured product of a solvent-soluble curable fluororesin, a solvent-soluble fluororesin, and a mixture thereof. The “solvent-soluble curable fluororesin solution” and the “solvent-soluble fluororesin solution” may be collectively referred to as “fluororesin solution”. Here, the solvent solubility is not limited to a case where a solution in a strict sense can be obtained, but includes a state where a stably dispersed state can be maintained. Moreover, the state in which some turbidity is seen in a solution state may be sufficient. Furthermore, it is preferable that the fluororesin solution is filtered. In particular, it is preferable to use a filter paper having a nominal opening of 5 μm or less because a smooth resin coating film 12 can be obtained by removing foreign substances.
 フッ素樹脂のフッ素含量は、5質量%以上が好ましく、10質量%以上がより好ましい。フッ素含量が多いと、樹脂の吸水率及び比誘電率が低くなり、素子を形成した場合の信頼性、耐久性が高くなる点で好ましい。フッ素含量の上限は、溶液化がし易いことから76質量%以下が好ましく、70質量%以下がより好ましい。ここで、フッ素含量とは、分子量のうちのフッ素原子が占める割合であり、通常は単量体の化学式を基準に算出する。複数の重合体を混合して用いる場合には、それらの混合比(質量比)からフッ素含量を算出する。 The fluorine content of the fluororesin is preferably 5% by mass or more, and more preferably 10% by mass or more. A high fluorine content is preferable in that the water absorption rate and relative dielectric constant of the resin are lowered, and the reliability and durability when an element is formed are increased. The upper limit of the fluorine content is preferably 76% by mass or less and more preferably 70% by mass or less because it is easy to make a solution. Here, the fluorine content is the proportion of the molecular weight occupied by fluorine atoms, and is usually calculated based on the chemical formula of the monomer. When a plurality of polymers are mixed and used, the fluorine content is calculated from the mixing ratio (mass ratio) thereof.
 具体的なフッ素樹脂(重合体)としては、含フッ素オレフィンの重合体、含フッ素ジエン化合物の環化重合体等が挙げられる。含フッ素オレフィンとしては、フッ化ビニル、フッ化ビニリデン、トリフルオロエチレン、クロロトリフルオロエチレン、テトラフルオロエチレン、ヘキサフルオロプロピレン、フルオロアルキル(メタ)アクリレート、フルオロアルキルビニルエーテル、ペルフルオロ(アルキルジオキソール)等が挙げられる。環化重合しうる含フッ素ジエン化合物としては、ペルフルオロ(アリルビニルエーテル)、ペルフルオロ(ブテニルビニルエーテル)等が挙げられる。 Specific examples of the fluororesin (polymer) include a fluorinated olefin polymer and a fluorinated diene compound cyclized polymer. Fluorinated olefins include vinyl fluoride, vinylidene fluoride, trifluoroethylene, chlorotrifluoroethylene, tetrafluoroethylene, hexafluoropropylene, fluoroalkyl (meth) acrylate, fluoroalkyl vinyl ether, perfluoro (alkyldioxole), etc. Is mentioned. Examples of the fluorine-containing diene compound that can be cyclopolymerized include perfluoro (allyl vinyl ether) and perfluoro (butenyl vinyl ether).
 これらの重合体は、前述の単量体(含フッ素オレフィン等)の単独重合体であってもよく、共重合体であってもよい。共重合体の場合は、上記含フッ素オレフィン等とフッ素原子を含まない単量体との共重合体であってもよい。フッ素原子を含まない単量体としては、例えば、オレフィン類、アルキルビニルエーテル等のビニルエーテル類、アルキルビニルエステル等のビニルエステル類、アルキル(メタ)アクリレート等の(メタ)アクリレート類等が挙げられる。また、フッ素原子を含まない単量体は水酸基等の反応性基を有する化合物であってもよい。なお、「(メタ)アクリレート」とは、アクリレートとメタクリレートとを合わせての表記である。 These polymers may be homopolymers of the aforementioned monomers (such as fluorine-containing olefins) or copolymers. In the case of a copolymer, it may be a copolymer of the above fluorine-containing olefin and the like and a monomer not containing a fluorine atom. Examples of the monomer not containing a fluorine atom include olefins, vinyl ethers such as alkyl vinyl ether, vinyl esters such as alkyl vinyl ester, and (meth) acrylates such as alkyl (meth) acrylate. Moreover, the monomer which does not contain a fluorine atom may be a compound having a reactive group such as a hydroxyl group. “(Meth) acrylate” is a combination of acrylate and methacrylate.
 溶媒可溶性のフッ素樹脂としては、フッ化ビニリデンの単独重合体または共重合体、ペルフルオロ(アルキルジオキソール)等の環状含フッ素単量体(重合性不飽和基の炭素原子が環を構成する炭素原子である単量体)の単独重合体または共重合体、環化重合しうる含フッ素ジエン化合物の単独重合体または共重合体、テトラフルオロエチレンとビニルアルコールとの共重合体、フルオロアルキル(メタ)アクリレートとフッ素原子を含まない(メタ)アクリレート類との共重合体等が挙げられる。なお、上記環状含フッ素単量体の単独重合体または共重合体、及び、環化重合しうる含フッ素ジエン化合物の単独重合体または共重合体は、主鎖に環構造を有する重合体(主鎖の炭素原子の一部が環を構成する炭素原子である重合体)である。 Solvent-soluble fluororesins include vinylidene fluoride homopolymers or copolymers, cyclic fluorine-containing monomers such as perfluoro (alkyldioxole) (carbons in which the carbon atoms of the polymerizable unsaturated groups constitute the ring) (Monomers that are atoms) homopolymers or copolymers, homopolymers or copolymers of fluorinated diene compounds that can be cyclopolymerized, copolymers of tetrafluoroethylene and vinyl alcohol, fluoroalkyl (meta And a copolymer of acrylate and (meth) acrylates containing no fluorine atom. The homopolymer or copolymer of the cyclic fluorine-containing monomer and the homopolymer or copolymer of the fluorine-containing diene compound capable of cyclopolymerization are polymers having a ring structure in the main chain (mainly A polymer in which a part of the carbon atoms of the chain is a carbon atom constituting a ring).
 溶媒可溶性のフッ素樹脂としては、フッ化ビニリデンの単独重合体、ペルフルオロ(ジメチルジオキソール)とテトラフルオロエチレンとの共重合体、ペルフルオロ(ブテニルビニルエーテル)の環化重合体及びテトラフルオロエチレンとビニルアルコールとの共重合体が好ましく、特にフッ化ビニリデンの単独重合体とペルフルオロ(ブテニルビニルエーテル)の環化重合体が好ましい。なお、フッ化ビニリデンの単独重合体は加熱処理により架橋しうる重合体であるが、本発明では溶媒可溶性のフッ素樹脂(硬化性フッ素樹脂ではないもの)とする。 Solvent-soluble fluororesins include homopolymers of vinylidene fluoride, copolymers of perfluoro (dimethyldioxole) and tetrafluoroethylene, cyclized polymers of perfluoro (butenyl vinyl ether), and tetrafluoroethylene and vinyl. A copolymer with alcohol is preferable, and a homopolymer of vinylidene fluoride and a cyclized polymer of perfluoro (butenyl vinyl ether) are particularly preferable. The homopolymer of vinylidene fluoride is a polymer that can be crosslinked by heat treatment, but in the present invention, it is a solvent-soluble fluororesin (not a curable fluororesin).
 溶媒可溶性の硬化性フッ素樹脂としては、クロロトリフルオロエチレンまたはテトラフルオロエチレンと水酸基等の硬化性官能基を有するアルキルビニルエーテル類の共重合体、ビニル基等の重合性官能基を有する含フッ素アリーレンエーテル重合体等が挙げられる。また、前記テトラフルオロエチレンとビニルアルコールとの共重合体にアルキルシリケートオリゴマーを反応させて硬化性フッ素樹脂とすることもできる。 Examples of the solvent-soluble curable fluororesin include copolymers of chlorotrifluoroethylene or tetrafluoroethylene and alkyl vinyl ethers having a curable functional group such as a hydroxyl group, and fluorine-containing arylene ethers having a polymerizable functional group such as a vinyl group. A polymer etc. are mentioned. Alternatively, the copolymer of tetrafluoroethylene and vinyl alcohol can be reacted with an alkyl silicate oligomer to obtain a curable fluororesin.
 反応性基を有する硬化性フッ素樹脂は、その反応性基と反応する官能基を有する化合物を硬化剤や架橋剤として使用して硬化物とすることができる。例えば、水酸基を有する硬化性フッ素樹脂はイソシアネート基を有する硬化剤等で硬化物とすることができる。また、ビニル基等の重合性官能基を有するフッ素樹脂はラジカル発生剤等で硬化物とすることができる。 The curable fluororesin having a reactive group can be made into a cured product using a compound having a functional group that reacts with the reactive group as a curing agent or a crosslinking agent. For example, a curable fluororesin having a hydroxyl group can be made into a cured product with a curing agent having an isocyanate group. In addition, a fluororesin having a polymerizable functional group such as a vinyl group can be cured with a radical generator or the like.
 溶媒可溶性の硬化性フッ素樹脂としては、クロロトリフルオロエチレンと水酸基含有ビニルエーテル類等との共重合体からなる水酸基含有フッ素樹脂、テトラフルオロエチレンとビニルアルコールとの共重合体にアルキルシリケートオリゴマーを反応させて得られる硬化性フッ素樹脂、ビニル基を有する含フッ素アリーレンエーテル重合体が好ましく、特にビニル基を有する含フッ素アリーレンエーテル重合体が好ましい。 Examples of the solvent-soluble curable fluororesin include a hydroxyl group-containing fluororesin composed of a copolymer of chlorotrifluoroethylene and a hydroxyl group-containing vinyl ether, or a copolymer of tetrafluoroethylene and vinyl alcohol with an alkyl silicate oligomer. And a fluorinated arylene ether polymer having a vinyl group, particularly preferably a fluorinated arylene ether polymer having a vinyl group.
 フッ素樹脂のガラス転移温度としては、200℃以下が好ましく、150℃以下がより好ましい。ガラス転移温度が低いと樹脂塗膜12に応力が残りにくく、樹脂塗膜付きガラスシート13の反り等が抑えられて平坦性が維持される。フッ素樹脂の透過率としては、波長が400~700nmの範囲において、80%以上が好ましく、90%以上がより好ましい。 The glass transition temperature of the fluororesin is preferably 200 ° C. or lower, and more preferably 150 ° C. or lower. When the glass transition temperature is low, stress hardly remains in the resin coating film 12, and the warp of the glass sheet 13 with the resin coating film is suppressed, and flatness is maintained. The transmittance of the fluororesin is preferably 80% or more and more preferably 90% or more in the wavelength range of 400 to 700 nm.
 <樹脂塗膜付きガラスシート>
 ガラスシート11の片面に樹脂塗膜12が形成された樹脂塗膜付きガラスシート13は、波長が400~700nmにおける光線透過率が80%以上であることが好ましく、90%以上であることがより好ましく、93%以上であることが特に好ましい。樹脂塗膜付きガラスシート13は、上記波長範囲、すなわち可視光の範囲において透明であることが好ましい。樹脂塗膜付きガラスシート13は、透明性を有することで、例えば表示装置の前面に配置される保護板に用いられることが可能になる。また、例えば発光素子や発電素子等の基材として用いられた場合において、発光効率、発電効率を下げることがない。
<Glass sheet with resin coating>
The glass sheet 13 with a resin coating film in which the resin coating film 12 is formed on one side of the glass sheet 11 preferably has a light transmittance of 80% or more at a wavelength of 400 to 700 nm, more preferably 90% or more. Preferably, it is 93% or more. It is preferable that the glass sheet 13 with a resin coating film is transparent in the said wavelength range, ie, the range of visible light. Since the glass sheet 13 with a resin coating film has transparency, it can be used, for example, as a protective plate disposed on the front surface of the display device. Further, for example, when used as a base material for a light emitting element, a power generation element, etc., the light emission efficiency and the power generation efficiency are not lowered.
 また、樹脂塗膜付きガラスシート13の厚さは、外観が良好になるため均一であることが好ましい。具体的には、厚さの標準偏差が50%以下であることが好ましく、35%以下であることがより好ましい。 Further, the thickness of the glass sheet 13 with a resin coating film is preferably uniform because the appearance is good. Specifically, the standard deviation of the thickness is preferably 50% or less, and more preferably 35% or less.
 樹脂塗膜12の厚さは、0.1~1000μmが好ましく、0.1~500μmがより好ましく、1~20μmが特に好ましい。また、樹脂塗膜12の厚さは、ガラスシート11の厚さを1としたときに、ガラスシート11の厚さに対して0.001~10であることが好ましく、0.01~5であることがより好ましく、0.1~1が特に好ましい。 The thickness of the resin coating film 12 is preferably 0.1 to 1000 μm, more preferably 0.1 to 500 μm, and particularly preferably 1 to 20 μm. Further, the thickness of the resin coating film 12 is preferably 0.001 to 10 with respect to the thickness of the glass sheet 11 when the thickness of the glass sheet 11 is 1, and is 0.01 to 5 More preferably, 0.1 to 1 is particularly preferable.
 樹脂塗膜12の表面粗さは、算術平均粗さ(Ra)で、0.1~35nmが好ましく、0.3~30nmがより好ましく、0.3~20nmが特に好ましい。一般的にブロッキングの抑制のためには、表面粗さを粗くする方が好ましい。表面粗さを粗くする方法としては、一般的には、樹脂塗膜12に無機粒子等の充填剤を含有させる方法、樹脂を塗布した後にロール型等の成形型を用いて表面に凹凸を付与する方法等が挙げられる。しかし充填剤を樹脂に含有させた場合には、充填剤が樹脂塗膜から脱落するという問題がある。また成形型を用いる場合には、凹凸を付与する際にガラスシート11が破損する可能性がある。さらに、凹凸を付与する際にガラス表面に傷が付く可能性がある。傷が付くと後の工程での破損の原因になりやすい。このため本発明においては、樹脂塗膜12の表面粗さは上記範囲であり、平滑であることが好ましい。また樹脂塗膜12が充填剤を含まないことが好ましい。この実施態様であれば、樹脂塗膜12が平滑であってもブロッキングを抑制できる。 The surface roughness of the resin coating film 12 is an arithmetic average roughness (Ra), preferably 0.1 to 35 nm, more preferably 0.3 to 30 nm, and particularly preferably 0.3 to 20 nm. In general, it is preferable to increase the surface roughness in order to suppress blocking. As a method for roughening the surface roughness, in general, a method of containing a filler such as inorganic particles in the resin coating film 12, and applying a resin to the surface using a mold such as a roll mold after applying the resin. And the like. However, when the filler is contained in the resin, there is a problem that the filler falls off from the resin coating film. Moreover, when using a shaping | molding die, when providing an unevenness | corrugation, the glass sheet 11 may be damaged. Furthermore, there is a possibility of scratching the glass surface when the irregularities are imparted. Scratches tend to cause damage in later processes. For this reason, in this invention, the surface roughness of the resin coating film 12 is the said range, and it is preferable that it is smooth. Moreover, it is preferable that the resin coating film 12 does not contain a filler. If it is this embodiment, even if the resin coating film 12 is smooth, blocking can be suppressed.
 <樹脂塗膜付きガラスシートの製造方法>
 樹脂塗膜付きガラスシート13の樹脂塗膜12は、例えば、ガラスシート11に樹脂溶液を直接塗布することで形成される。直接塗布する方法は、樹脂塗膜12の表面が平坦になり易いため好ましい。また、例えば、別の基材に樹脂溶液を塗布して樹脂塗膜12を形成し、形成した樹脂塗膜12をガラスシート11に転写することで形成してもよい。
<Method for producing glass sheet with resin coating>
The resin coating film 12 of the glass sheet 13 with a resin coating film is formed by, for example, directly applying a resin solution to the glass sheet 11. The direct application method is preferable because the surface of the resin coating film 12 tends to be flat. Alternatively, for example, a resin solution may be applied to another substrate to form the resin coating film 12, and the formed resin coating film 12 may be transferred to the glass sheet 11.
 本実施形態では、ガラスシート11の片面に樹脂溶液を塗布し、その後に溶媒を除去することで樹脂塗膜を形成している。樹脂溶液が硬化性フッ素樹脂溶液の場合には、溶媒除去後に硬化性フッ素樹脂を硬化させ、硬化されたフッ素樹脂の樹脂塗膜12を形成する。 In this embodiment, a resin coating is formed by applying a resin solution to one side of the glass sheet 11 and then removing the solvent. When the resin solution is a curable fluororesin solution, the curable fluororesin is cured after removing the solvent to form the cured fluororesin resin coating 12.
 (樹脂溶液)
 樹脂溶液としては、上記した何れかの樹脂を含み、ガラスシート11に塗布可能なものであれば制限はない。樹脂溶液は、樹脂を溶媒に溶解してもよく、溶媒中で樹脂を合成して用いてもよい。また、樹脂溶液は、樹脂と溶媒以外の成分を含んでもよく、例えばフッ素樹脂を用いる場合には、アルコキシシラン、アルキルシリケートオリゴマー等のシラン類の様に、塗膜を形成する際に樹脂と反応しうる化合物を含んでもよい。
(Resin solution)
The resin solution is not limited as long as it contains any of the resins described above and can be applied to the glass sheet 11. For the resin solution, the resin may be dissolved in a solvent, or the resin may be synthesized in a solvent and used. In addition, the resin solution may contain components other than the resin and the solvent. For example, when a fluororesin is used, the resin solution reacts with the resin when forming a coating film, such as silanes such as alkoxysilane and alkylsilicate oligomer. May be included.
 樹脂溶液の固形分は、0.1~70質量%が好ましく、1~15質量%が好ましい。ただし固形分とは、溶液を乾燥させて得られる固形分が溶液全体に含まれる割合をいう。例えば、1gの溶液をアルミカップに入れ、100℃のオーブンで10分間乾燥させて測定することができる。樹脂溶液に用いる溶媒としては、樹脂を溶解可能なものであればよく、沸点は50~300℃が好ましく、100~250℃が好ましい。 The solid content of the resin solution is preferably 0.1 to 70% by mass, and preferably 1 to 15% by mass. However, solid content means the ratio by which the solid content obtained by drying a solution is contained in the whole solution. For example, 1 g of the solution can be put in an aluminum cup and dried in an oven at 100 ° C. for 10 minutes for measurement. The solvent used in the resin solution is not particularly limited as long as it can dissolve the resin, and the boiling point is preferably 50 to 300 ° C, more preferably 100 to 250 ° C.
 (樹脂溶液の塗布)
 ガラスシート11に樹脂溶液を塗布する際には、ガラスシート11の表面適性向上化処理を行ってもよい。表面適性向上化処理としては、例えば、洗浄処理、接着性向上処理等がある。洗浄処理としては、例えば、水洗浄、水蒸気洗浄、溶剤洗浄、UV/オゾン洗浄等である。接着性向上処理としては、例えば、コロナ処理、プライマ処理等である。プライマ処理に用いるプライマとしては、例えば、アミノシラン類、エポキシシラン類を用いることができる。
(Application of resin solution)
When the resin solution is applied to the glass sheet 11, the surface suitability improvement treatment of the glass sheet 11 may be performed. Examples of the surface suitability improving process include a cleaning process and an adhesion improving process. Examples of the cleaning treatment include water cleaning, water vapor cleaning, solvent cleaning, UV / ozone cleaning, and the like. Examples of the adhesive improvement treatment include corona treatment and primer treatment. As a primer used for the primer treatment, for example, aminosilanes and epoxysilanes can be used.
 樹脂溶液の塗布方法は特に制限されない。塗布方法としては、例えば、ディップコート、ダイコート、スリットコート、スプレーコート、エレクトロスプレーコート、インクジェットコート、フレキソコート、グラビアコート等が挙げられる。樹脂溶液の塗布は1回で行ってもよく、複数回に分けて行われてもよい。 The method for applying the resin solution is not particularly limited. Examples of the coating method include dip coating, die coating, slit coating, spray coating, electrospray coating, ink jet coating, flexographic coating, and gravure coating. The application of the resin solution may be performed once or may be performed in a plurality of times.
 ガラスシート11に樹脂溶液が塗布された後に、樹脂溶液の層から溶媒が除去されることで樹脂塗膜12となる。樹脂溶液が硬化性フッ素樹脂を含む場合には、溶媒の除去とほぼ同時、または、溶媒の除去後に、硬化性フッ素樹脂を硬化させて硬化したフッ素樹脂とする。溶媒の除去は、例えば、樹脂溶液の層を溶媒の沸点以上に加熱して溶媒を蒸発除去することで行われる。樹脂溶液が硬化性フッ素樹脂を含む場合には、加熱とほぼ同時に熱硬化性の硬化性フッ素樹脂を硬化させることができる。また、溶媒除去後にさらに加熱して硬化させることもできる。 After the resin solution is applied to the glass sheet 11, the resin coating film 12 is obtained by removing the solvent from the resin solution layer. When the resin solution contains a curable fluororesin, the curable fluororesin is cured to be a cured fluororesin almost simultaneously with the removal of the solvent or after the solvent is removed. The removal of the solvent is performed, for example, by heating the resin solution layer to the boiling point of the solvent or higher to evaporate and remove the solvent. When the resin solution contains a curable fluororesin, the thermosetting curable fluororesin can be cured almost simultaneously with heating. Further, after the solvent is removed, it can be further heated and cured.
 樹脂塗膜付きガラスシート13の製造方法としては、様々な方法を用いることができるが、本実施形態の様に長尺のガラスシート11を用いる場合には、連続法が好適である。連続法は、必要に応じて表面適正向上化処理を行ったあと、樹脂溶液の塗布、加熱(溶媒除去)を連続して行い、得られた樹脂塗膜付きガラスシート13をロール状に巻き取って回収する方法である。 Various methods can be used as a method for producing the glass sheet 13 with a resin coating film, but when the long glass sheet 11 is used as in the present embodiment, a continuous method is suitable. In the continuous method, after performing the surface appropriateness improvement treatment as necessary, the resin solution is applied and heated (solvent removal) continuously, and the resulting glass sheet 13 with a resin coating film is wound into a roll. It is a method of collecting.
 <実施例>
 以下に具体的な実施例を挙げて説明するが、本発明はこれらの実施例に限定されるものではない。
(材料)
 以下の材料を用いて、実施例1,2及び比較例1~4に示す条件で試験を行った。
<Example>
Specific examples will be described below, but the present invention is not limited to these examples.
(material)
Tests were conducted under the conditions shown in Examples 1 and 2 and Comparative Examples 1 to 4 using the following materials.
 ・ガラスシート:旭硝子社製の無アルカリガラス(商品名:AN100)のガラスシート(厚さが50μm、300mm幅の長尺リボン(長さは20m以上))を用いた。 Glass sheet: A non-alkali glass (trade name: AN100) glass sheet manufactured by Asahi Glass Co., Ltd. (a long ribbon having a thickness of 50 μm and a width of 300 mm (length is 20 m or more)) was used.
 ・フッ素樹脂1:ポリフッ化ビニリデン(クレハ社製、KF-1120、フッ素含有率:59.4質量%)のN-メチルピロリドン(NMP)溶液(固形分:12質量%)をフッ素樹脂溶液A1とした。 Fluorine resin 1: N-methylpyrrolidone (NMP) solution (solid content: 12% by mass) of polyvinylidene fluoride (Kureha, KF-1120, fluorine content: 59.4% by mass) and fluororesin solution A1 did.
 ・フッ素樹脂2:ペルフルオロブテニルビニルエーテル(CF=CFOCFCFCF=CF)を、ジイソプロピルペルオキシジカーボネート(((CHCHOCOO))を重合開始剤として用いて環化重合した。開始剤由来の不安定末端を熱処理により-COFとした後、加水分解して-COOHとした。ポリ(ペルフルオロ(ブテニルビニルエーテル))を得た。このポリマーのペルフルオロ(2-ブチルテトラヒドロフラン)溶液で測定した固有粘度[η]は0.23であった。またフッ素含有率は68.3質量%であった。このポリマーをペルフルオロトリブチルアミンに溶解し、フッ素樹脂溶液A2(固形分:14質量%)を得た。 -Fluororesin 2: Cyclopolymerization of perfluorobutenyl vinyl ether (CF 2 = CFOCF 2 CF 2 CF = CF 2 ) using diisopropyl peroxydicarbonate (((CH 3 ) 2 CHOCOO) 2 ) as a polymerization initiator . The unstable terminal derived from the initiator was converted to —COF by heat treatment and then hydrolyzed to —COOH. Poly (perfluoro (butenyl vinyl ether)) was obtained. The intrinsic viscosity [η] of this polymer measured with a perfluoro (2-butyltetrahydrofuran) solution was 0.23. The fluorine content was 68.3% by mass. This polymer was dissolved in perfluorotributylamine to obtain a fluororesin solution A2 (solid content: 14% by mass).
 ・PET1:東洋紡社製ポリエステルフィルム(ポリエチレンテレフタレート樹脂の2軸延伸フィルム、商品名:エステルフィルムE5000、厚さ:50μm、幅350mm)
 ・PET2:東洋紡社製ポリエステルフィルム(ポリエチレンテレフタレート樹脂の2軸延伸フィルム、商品名:コスモシャインA4100、厚さ:50μm、幅350mm)
 (実施例1)
 ガラスシートを充分に洗浄し、乾燥させ、片面にフッ素樹脂溶液A1を塗布し、乾燥させた。樹脂塗膜の厚さは1μmであった。得られた樹脂塗膜付きガラスシートを、樹脂塗膜を外面とし、300mm幅での張力を30Nに調整し、直径が400mmの芯に巻き取りガラスロールを得た。巻き出し端部には、幅が350mmのリードフィルム(PET1)を、粘着テープを用いて貼り付けて巻き取った。巻き取り後に端部が緩まない様に粘着テープで固定した。その後、専用架台にガラスシートに芯の重量がかからない様に載せて芯を固定し、所定時間(1日、7日)保管した。保管条件は、温度が23℃、湿度が相対湿度で50%とした。
PET1: Polyester film manufactured by Toyobo Co., Ltd. (biaxially stretched polyethylene terephthalate resin, product name: ester film E5000, thickness: 50 μm, width 350 mm)
PET2: Polyester film manufactured by Toyobo Co., Ltd. (biaxially stretched film of polyethylene terephthalate resin, trade name: Cosmo Shine A4100, thickness: 50 μm, width 350 mm)
Example 1
The glass sheet was thoroughly washed and dried, and the fluororesin solution A1 was applied to one side and dried. The thickness of the resin coating film was 1 μm. The obtained glass sheet with a resin coating film was wound on a core having a diameter of 400 mm to obtain a glass roll, with the resin coating film as the outer surface, the tension at 300 mm width was adjusted to 30N. A lead film (PET1) having a width of 350 mm was attached to the unwinding end using an adhesive tape and wound up. After winding, it was fixed with an adhesive tape so that the end would not loosen. After that, the core was fixed on the glass plate so that the weight of the core was not applied to the glass frame, and stored for a predetermined time (1 day, 7 days). The storage conditions were a temperature of 23 ° C. and a humidity of 50% relative humidity.
 所定時間(1日、7日)保管した後に、ガラスロールからの巻き出し時における樹脂塗膜付きガラスシートのばたつきを評価する巻き出し試験を行った。 After storing for a predetermined time (1 day, 7 days), an unwinding test for evaluating the fluttering of the glass sheet with a resin coating film when unwinding from the glass roll was performed.
 図2は、巻き出し試験を説明するための概略図である。巻き出し試験は、図2に示す様に、サンプルのガラスロール110、巻き取り機120、支持手段としてのガイドロール130を用いて行われる。 FIG. 2 is a schematic diagram for explaining the unwinding test. As shown in FIG. 2, the unwinding test is performed using a sample glass roll 110, a winder 120, and a guide roll 130 as a support means.
 ガラスロール110は、巻き出し機に取り付けられて回転して樹脂塗膜付きガラスシート140を巻き出す。ガラスロール110から約2m離れた位置に設けられている直径400mmの巻き芯を備える巻き取り機120は、ガラスロール110から巻き出された樹脂塗膜付きガラスシート140を巻き取って回収する。 The glass roll 110 is attached to an unwinding machine and rotates to unwind the glass sheet 140 with a resin coating film. A winder 120 having a winding core with a diameter of 400 mm provided at a position approximately 2 m away from the glass roll 110 winds up and collects the glass sheet 140 with a resin coating film unwound from the glass roll 110.
 ガイドロール130は、φ300mmであり、ガラスロール110と巻き取り機120との間であって、渡り長さLが500mmとなる位置に設けられている。ガイドロール130は、巻き出し機120の巻き芯の上端と巻き取り機の巻き芯の上端とを結ぶ直線から30mm上に上端が位置する様に設けられている。 The guide roll 130 has a diameter of 300 mm, and is provided between the glass roll 110 and the winder 120 and at a position where the transition length L is 500 mm. The guide roll 130 is provided so that the upper end is located 30 mm above a straight line connecting the upper end of the winding core of the unwinding machine 120 and the upper end of the winding core of the winding machine.
 上記構成において、樹脂塗膜付きガラスシート13を、張力30N、速度10m/分でガラスロール110から巻き出し、ガラスロール110とガイドロール130との間での樹脂塗膜付きガラスシート13のばたつきの振れ幅Wを観察した。 In the above configuration, the glass sheet 13 with a resin coating film is unwound from the glass roll 110 at a tension of 30 N and a speed of 10 m / min, and the glass sheet 13 with a resin coating film flutters between the glass roll 110 and the guide roll 130. The runout width W was observed.
 1日保管後及び7日保管後のガラスロールから巻き出された樹脂塗膜付きガラスシートのばたつきの振れ幅Wは、何れも1mm未満であり、ブロッキングは発生していなかった。また、7日間保管した後のガラスロールについて、樹脂塗膜(フッ素樹脂1)と接していたガラスの表面を目視で観察したところ汚染等は発生していなかった。巻き取る前における樹脂塗膜の表面粗さは19nmであった。 The fluctuation width W of the fluttering of the glass sheet with a resin coating film unwound from the glass roll after storage for 1 day and after storage for 7 days was less than 1 mm, and no blocking occurred. Moreover, about the glass roll after storing for seven days, when the surface of the glass which was in contact with the resin coating film (fluororesin 1) was observed visually, contamination etc. did not generate | occur | produce. The surface roughness of the resin coating film before winding was 19 nm.
 (実施例2)
 実施例1において、フッ素樹脂溶液A1の代わりにフッ素樹脂溶液A2を用いた以外は、実施例1と同様に試験を行った。樹脂塗膜の厚さは1μmであった。
(Example 2)
In Example 1, the test was performed in the same manner as in Example 1 except that the fluororesin solution A2 was used instead of the fluororesin solution A1. The thickness of the resin coating film was 1 μm.
 巻き出し試験におけるばたつきの振れ幅は、1日保管後、7日保管後とも1mm未満であり、ブロッキングは発生していなかった。また、7日間保管した後のガラスロールについて、樹脂塗膜(フッ素樹脂1)と接していたガラスの表面を目視で観察したところ汚染等は発生していなかった。巻き取る前における樹脂塗膜の表面粗さは7nmであった。 In the unwinding test, the fluctuation width of fluttering was less than 1 mm after 1 day storage and after 7 days storage, and no blocking occurred. Moreover, about the glass roll after storing for seven days, when the surface of the glass which was in contact with the resin coating film (fluororesin 1) was observed visually, contamination etc. did not generate | occur | produce. The surface roughness of the resin coating film before winding was 7 nm.
 (比較例1)
 実施例1において、フッ素樹脂溶液A1を塗布する代わりに、何も塗布しないガラスシートを巻き取ってガラスロールを形成し、実施例1と同様に試験を行った。
(Comparative Example 1)
In Example 1, instead of applying the fluororesin solution A1, a glass roll was formed by winding a glass sheet on which nothing was applied, and the test was performed in the same manner as in Example 1.
 巻き出し試験におけるばたつきの振れ幅は、1日保管後、7日保管後とも20mm以上であり、数m巻き出しただけでガラスシートが破損し、試験が継続できなかった。また、洗浄後のガラスシートの表面粗さは7nmであった。 The swinging fluctuation in the unwinding test was 20 mm or more after 1 day storage and after 7 days storage, and the glass sheet was broken only after unwinding several meters, and the test could not be continued. Moreover, the surface roughness of the glass sheet after washing was 7 nm.
 (比較例2)
 実施例1において、フッ素樹脂溶液A1を塗布する代わりに、樹脂フィルム(PET1)をガラスシートと一緒に巻き取ってガラスロールを形成し、実施例1と同様に試験を行った。巻き出しは実施例1に準じてガラスシートと樹脂フィルムとを一緒に巻き出した。
(Comparative Example 2)
In Example 1, instead of applying the fluororesin solution A1, a resin film (PET1) was wound together with a glass sheet to form a glass roll, and the test was performed in the same manner as in Example 1. The glass sheet and the resin film were unwound together according to Example 1.
 巻き出し試験におけるばたつきの振れ幅は、1日保管後、7日保管後とも1mm未満であり、ブロッキングは発生していなかった。また、7日間保管した後のガラスロールについて、樹脂フィルム(PET1)と接していたガラスの表面を目視で観察したところ、わずかに曇りが認められた。アセトンで拭き取ったところ、この曇りは除去できた。この曇りはポリエステルの分解物であるオリゴマーであると考えられる。また巻き取る前における樹脂フィルムの表面粗さは46nmであった。 In the unwinding test, the fluctuation width of fluttering was less than 1 mm after 1 day storage and after 7 days storage, and no blocking occurred. Moreover, about the glass roll after storing for 7 days, when the surface of the glass which was in contact with the resin film (PET1) was observed visually, slight cloudiness was recognized. The cloudiness could be removed by wiping with acetone. This cloudiness is considered to be an oligomer that is a degradation product of polyester. Further, the surface roughness of the resin film before winding was 46 nm.
 (比較例3)
 比較例2において、PET1の代わりに、樹脂フィルム(PET2)をガラスシートと一緒に巻き取ってガラスロールを形成し、実施例1と同様に試験を行った。ただし、樹脂フィルム(PET2)の粗面を外面とした。巻き出しは実施例1に準じてガラスシートと樹脂フィルムとを一緒に巻き出した。すなわち樹脂フィルムの粗面とガラスシートとの間で剥離が起きる様に巻き出した。
(Comparative Example 3)
In Comparative Example 2, instead of PET1, a resin film (PET2) was wound together with a glass sheet to form a glass roll, and the test was performed in the same manner as in Example 1. However, the rough surface of the resin film (PET2) was taken as the outer surface. The glass sheet and the resin film were unwound together according to Example 1. That is, unwinding was performed so that peeling occurred between the rough surface of the resin film and the glass sheet.
 巻き出し試験におけるばたつきの振れ幅は、1日保管後、7日保管後とも1mm未満であり、ブロッキングは発生していなかった。また、7日間保管した後のガラスロールについて、樹脂フィルム(PET2)と接していたガラスの表面を目視で観察したところ、わずかに曇りが認められた。アセトンで拭き取ったところ、この曇りは除去できた。この曇りはポリエステルの分解物であるオリゴマーであると考えられる。また巻き取る前における樹脂フィルムの表面粗さは37nmであった。
(比較例4)
 比較例3において、PET2の表裏を反対にし、平滑面を外面としてガラスロールを形成し、実施例1と同様に試験を行った。巻き出しは実施例1に準じてガラスシートと樹脂フィルムとを一緒に巻き出した。すなわち樹脂フィルムの平滑面とガラスシートとの間で剥離が起きる様に巻き出した。
The swinging fluctuation width in the unwinding test was less than 1 mm after storage for 1 day and after storage for 7 days, and no blocking occurred. Moreover, about the glass roll after storing for 7 days, when the surface of the glass which was in contact with the resin film (PET2) was observed visually, slight cloudiness was recognized. The cloudiness could be removed by wiping with acetone. This cloudiness is considered to be an oligomer that is a degradation product of polyester. The surface roughness of the resin film before winding was 37 nm.
(Comparative Example 4)
In Comparative Example 3, the surface of PET 2 was turned upside down, a glass roll was formed with the smooth surface as the outer surface, and the test was performed in the same manner as in Example 1. The glass sheet and the resin film were unwound together according to Example 1. That is, it was unwound so that peeling occurred between the smooth surface of the resin film and the glass sheet.
 巻き出し試験におけるばたつきの振れ幅は、1日保管後で8mm、7日保管後に12mmであり、ブロッキングが発生していた。また、7日間保管した後のガラスロールについて、樹脂フィルム(PET2)と接していたガラスの表面を目視で観察したところ、わずかに曇りが認められた。アセトンで拭き取ったところ、この曇りは除去できた。この曇りはポリエステルの分解物であるオリゴマーであると考えられる。また巻き取る前における樹脂フィルムの表面粗さは22nmであった。 In the unwinding test, the fluctuation width of fluttering was 8 mm after storage for 1 day and 12 mm after storage for 7 days, and blocking occurred. Moreover, about the glass roll after storing for 7 days, when the surface of the glass which was in contact with the resin film (PET2) was observed visually, slight cloudiness was recognized. The cloudiness could be removed by wiping with acetone. This cloudiness is considered to be an oligomer that is a degradation product of polyester. Moreover, the surface roughness of the resin film before winding was 22 nm.
 以下に示す表1に、実施例1~2、比較例1~4の巻き出し試験結果を示す。 Table 1 below shows the unwinding test results of Examples 1-2 and Comparative Examples 1-4.
Figure JPOXMLDOC01-appb-T000001
 表1に示す振れ幅の評価結果A~Dは、それぞれ以下の通りである。
A:振れ幅が1mm未満であり、ブロッキングが発生せず、スムースに巻き出すことができた。
B:振れ幅が1mm以上10mm未満であり、若干のブロッキングが発生して、スムースな巻き出しが困難であった。
C:振れ幅が10mm以上20mm未満であり、比較的強いブロッキングが発生して、スムースな巻き出しが非常に困難であった。
D:振れ幅が20mm以上であり、非常に強いブロッキングが発生して、ガラスシートが破損した。
Figure JPOXMLDOC01-appb-T000001
The evaluation results A to D of the swing width shown in Table 1 are as follows.
A: The deflection width was less than 1 mm, blocking did not occur, and it was possible to smoothly unwind.
B: The runout width was 1 mm or more and less than 10 mm, slight blocking occurred, and smooth unwinding was difficult.
C: The runout width was 10 mm or more and less than 20 mm, relatively strong blocking occurred, and smooth unwinding was very difficult.
D: The runout was 20 mm or more, very strong blocking occurred, and the glass sheet was damaged.
 表1に示すガラス表面観察(目視観察)結果A~Bは、以下の通りである。
A:汚染は認められず清浄であった。
B:汚染が認められた。
The glass surface observation (visual observation) results A to B shown in Table 1 are as follows.
A: Contamination was not recognized and it was clean.
B: Contamination was observed.
 表面粗さ(Ra)は、20点の測定値の平均値であり、表面粗さ計(東京精密社製、SURFCOM1400D)を用いて測定した。各点の測定条件は下記の通りである。 The surface roughness (Ra) is an average value of 20 measured values, and was measured using a surface roughness meter (manufactured by Tokyo Seimitsu Co., Ltd., SURFCOM 1400D). The measurement conditions at each point are as follows.
 カットオフ値λc:0.8mm
 カットオフ比λc/λs:1000
 カットオフフィルタ:ガウシアンフィルタ
 傾斜補正:両端補正
 測定長さ:10mm
 測定速度:0.15mm/秒
 以上で説明した様に、本実施形態に係るガラスロール100は、樹脂塗膜面とガラス面とが密着してもブロッキングが発生しない樹脂塗膜付きガラスシート13が巻芯20に巻き回されて形成されている。したがって、ガラスロール100は、巻き回される樹脂塗膜付きガラスシート13の間に合い紙や保護フィルム等が設けられなくても、樹脂塗膜付きガラスシート13を破損させることなく、容易に繰り出すことが可能になっている。
Cut-off value λc: 0.8 mm
Cut-off ratio λc / λs: 1000
Cut-off filter: Gaussian filter Tilt correction: Both end correction Measurement length: 10mm
Measurement speed: 0.15 mm / sec As explained above, the glass roll 100 according to the present embodiment has the resin coating-coated glass sheet 13 that does not block even when the resin coating surface and the glass surface are in close contact. It is formed by being wound around the core 20. Therefore, the glass roll 100 can be easily fed out without damaging the glass sheet 13 with a resin coating film, even if an interleaf or a protective film is not provided between the glass sheet 13 with a resin coating film to be wound. It is possible.
 以上、実施形態に係るガラスロールについて説明したが、本発明は上記実施形態に限定されるものではなく、本発明の範囲内で種々の変形及び改良が可能である。 As mentioned above, although the glass roll which concerns on embodiment was demonstrated, this invention is not limited to the said embodiment, A various deformation | transformation and improvement are possible within the scope of the present invention.
 本国際出願は、2014年2月6日に出願された日本国特許出願2014-021682号に基づく優先権を主張するものであり、日本国特許出願2014-021682号の全内容を本国際出願に援用する。 This international application claims priority based on Japanese Patent Application No. 2014-021682 filed on February 6, 2014, and the entire contents of Japanese Patent Application No. 2014-021682 are incorporated herein by reference. Incorporate.
11 ガラスシート
12 樹脂塗膜
13 樹脂塗膜付きガラスシート
20 巻芯
100 ガラスロール
11 Glass sheet 12 Resin coating film 13 Glass sheet with resin coating film 20 Core 100 Glass roll

Claims (5)

  1.  ガラスシートの片面に樹脂塗膜が形成された樹脂塗膜付きガラスシートが巻き回されたガラスロールであって、
     前記ガラスシートは、厚さが10~300μmであり、
     前記樹脂塗膜付きガラスシートは、積層されて樹脂塗膜面と他の層のガラス面とが接触する様に巻き回されている、ガラスロール。
    A glass roll in which a glass sheet with a resin coating film formed on one side of a glass sheet is wound,
    The glass sheet has a thickness of 10 to 300 μm,
    The said glass sheet with a resin coating film is a glass roll by which it is laminated | stacked and wound so that the resin coating film surface and the glass surface of another layer may contact.
  2.  前記樹脂塗膜付きガラスシートが巻き回されてから7日後に、渡り長さが500mmになる様に設けられた支持手段に巻き出す際の前記樹脂塗膜付きガラスシートの振れ幅が20mm以内である、請求項1に記載のガラスロール。 7 days after the glass sheet with the resin coating film is wound, the swing width of the glass sheet with the resin coating film is 20 mm or less when unrolling to the support means provided so that the transition length is 500 mm. The glass roll according to claim 1, wherein
  3.  前記樹脂塗膜の厚さが、0.1~1000μmである、請求項1又は2に記載のガラスロール。 The glass roll according to claim 1 or 2, wherein the resin coating film has a thickness of 0.1 to 1000 µm.
  4.  前記樹脂塗膜は、フッ素樹脂を含む、請求項1から3の何れか一項に記載のガラスロール。 The glass roll according to any one of claims 1 to 3, wherein the resin coating film includes a fluororesin.
  5.  前記樹脂塗膜付きガラスシートは、前記樹脂塗膜面の粗さが、0.1~35nmである、請求項1から4の何れか一項に記載のガラスロール。 The glass roll according to any one of claims 1 to 4, wherein the glass sheet with a resin coating film has a roughness of the resin coating film surface of 0.1 to 35 nm.
PCT/JP2015/052033 2014-02-06 2015-01-26 Glass roll WO2015118985A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015560931A JPWO2015118985A1 (en) 2014-02-06 2015-01-26 Glass roll

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-021682 2014-02-06
JP2014021682 2014-02-06

Publications (1)

Publication Number Publication Date
WO2015118985A1 true WO2015118985A1 (en) 2015-08-13

Family

ID=53777792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/052033 WO2015118985A1 (en) 2014-02-06 2015-01-26 Glass roll

Country Status (3)

Country Link
JP (1) JPWO2015118985A1 (en)
TW (1) TW201538313A (en)
WO (1) WO2015118985A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018079546A1 (en) 2016-10-26 2018-05-03 日東電工株式会社 Glass roll with resin film
WO2018079545A1 (en) 2016-10-26 2018-05-03 日東電工株式会社 Glass film-resin composite
WO2021131617A1 (en) * 2019-12-23 2021-07-01 日本電気硝子株式会社 Method for manufacturing glass film and device for manufacturing same
WO2022239740A1 (en) * 2021-05-10 2022-11-17 株式会社神鋼環境ソリューション Glass-lined product

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010105900A (en) * 2008-10-01 2010-05-13 Nippon Electric Glass Co Ltd Glass roll and method for producing the same
WO2011030716A1 (en) * 2009-09-08 2011-03-17 旭硝子株式会社 Glass/resin laminate, and electronic device using same
WO2011102271A1 (en) * 2010-02-17 2011-08-25 コニカミノルタビジネスエキスパート株式会社 Flexible thin glass film, method of manufacturing same, roll of thin glass film, and method of winding same
JP2011207721A (en) * 2010-03-30 2011-10-20 Nippon Electric Glass Co Ltd Method for cutting glass film, and method for production of glass roll
JP2014058052A (en) * 2012-09-14 2014-04-03 Gunze Ltd Glass film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010105900A (en) * 2008-10-01 2010-05-13 Nippon Electric Glass Co Ltd Glass roll and method for producing the same
WO2011030716A1 (en) * 2009-09-08 2011-03-17 旭硝子株式会社 Glass/resin laminate, and electronic device using same
WO2011102271A1 (en) * 2010-02-17 2011-08-25 コニカミノルタビジネスエキスパート株式会社 Flexible thin glass film, method of manufacturing same, roll of thin glass film, and method of winding same
JP2011207721A (en) * 2010-03-30 2011-10-20 Nippon Electric Glass Co Ltd Method for cutting glass film, and method for production of glass roll
JP2014058052A (en) * 2012-09-14 2014-04-03 Gunze Ltd Glass film

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018079546A1 (en) 2016-10-26 2018-05-03 日東電工株式会社 Glass roll with resin film
WO2018079545A1 (en) 2016-10-26 2018-05-03 日東電工株式会社 Glass film-resin composite
KR20190069483A (en) 2016-10-26 2019-06-19 닛토덴코 가부시키가이샤 Glass film-resin composite
KR20190069484A (en) 2016-10-26 2019-06-19 닛토덴코 가부시키가이샤 Glass roll with resin film attached
KR20210049191A (en) 2016-10-26 2021-05-04 닛토덴코 가부시키가이샤 Glass roll with resin film
US11241863B2 (en) 2016-10-26 2022-02-08 Nitto Denko Corporation Glass roll with resin film
US11738534B2 (en) 2016-10-26 2023-08-29 Nitto Denko Corporation Glass film-resin composite
US11926140B2 (en) 2016-10-26 2024-03-12 Nitto Denko Corporation Glass roll with resin film
WO2021131617A1 (en) * 2019-12-23 2021-07-01 日本電気硝子株式会社 Method for manufacturing glass film and device for manufacturing same
WO2022239740A1 (en) * 2021-05-10 2022-11-17 株式会社神鋼環境ソリューション Glass-lined product
JP2022173815A (en) * 2021-05-10 2022-11-22 株式会社神鋼環境ソリューション Glass-lined product
JP7299941B2 (en) 2021-05-10 2023-06-28 株式会社神鋼環境ソリューション glass lined products

Also Published As

Publication number Publication date
JPWO2015118985A1 (en) 2017-03-23
TW201538313A (en) 2015-10-16

Similar Documents

Publication Publication Date Title
WO2015118985A1 (en) Glass roll
JP7304129B2 (en) Antireflection film, manufacturing method thereof, and polarizing plate with antireflection layer
US20140166186A1 (en) Glass film laminate
JP7136275B2 (en) LAMINATED BODY, ELECTRONIC DEVICE MANUFACTURING METHOD, LAMINATED PRODUCTION METHOD
WO2005093464A1 (en) Method for producing antireflective film, antireflective film, polarizing plate and image display
JP6234798B2 (en) Transparent conductive film and use thereof
JP5515829B2 (en) Flexible thin film glass and manufacturing method thereof
JPWO2014024933A1 (en) Glass sheet fluoropolymer laminate
TW202028150A (en) Anti-reflection glass
JP6413289B2 (en) Optical laminate and method for producing the same
JP4755909B2 (en) Eyeglass lens cutting method and eyeglass lens
JP2017068509A (en) Transparent conductive film and unevenness suppression method thereof
JP5260578B2 (en) Application method of laminated film
US20220135471A1 (en) Glass film
JP2005313450A (en) Reflection preventing film
CN111372776A (en) Transparent conductive film
TW201945763A (en) Hard coating film, transparent conductive film, transparent conductive film laminate, and image display device including a transparent substrate and a hard coat layer disposed on one side in a thickness direction of the transparent substrate
KR20210134318A (en) optical laminate
WO2015118983A1 (en) Method for producing glass sheet with resin coating film
WO2023067900A1 (en) Transparent conductive piezoelectric film, touch screen, and production method for transparent conductive piezoelectric film
JP2010234675A (en) Laminated polyester film and manufacturing method for the same
TW202223441A (en) Polarizing plate provided with antireflective layer, and image display device
WO2015118984A1 (en) Glass-resin complex
JP2019136867A (en) Laminated film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15745906

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015560931

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15745906

Country of ref document: EP

Kind code of ref document: A1