WO2015118739A1 - Air conditioning control device, air conditioning control system, air conditioning control method, and program - Google Patents

Air conditioning control device, air conditioning control system, air conditioning control method, and program Download PDF

Info

Publication number
WO2015118739A1
WO2015118739A1 PCT/JP2014/079442 JP2014079442W WO2015118739A1 WO 2015118739 A1 WO2015118739 A1 WO 2015118739A1 JP 2014079442 W JP2014079442 W JP 2014079442W WO 2015118739 A1 WO2015118739 A1 WO 2015118739A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
building
unit
air conditioning
conditioning control
Prior art date
Application number
PCT/JP2014/079442
Other languages
French (fr)
Japanese (ja)
Inventor
和人 久保田
酢山 明弘
明弘 長岩
清高 松江
恭介 片山
卓久 和田
博司 平
Original Assignee
株式会社東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝 filed Critical 株式会社東芝
Publication of WO2015118739A1 publication Critical patent/WO2015118739A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2120/00Control inputs relating to users or occupants
    • F24F2120/10Occupancy

Definitions

  • Embodiments of the present invention relate to an air conditioning control device, an air conditioning control system, an air conditioning control method, and a program.
  • an air conditioner performs temperature control by feedback control that reduces a difference between a target temperature set by a user and a temperature measurement value measured by a temperature sensor provided in the air conditioner or the like.
  • the temperature measurement value measured by the temperature sensor is the temperature at the location where the temperature sensor is installed, and does not necessarily indicate the temperature at the location where the user exists. Therefore, it may be difficult to control the temperature of a desired place such as a place where the user actually exists so as to be a desired target temperature.
  • the problem to be solved by the present invention is to provide an air-conditioning control device, an air-conditioning control system, an air-conditioning control method, and a program capable of performing control so that the temperature of a specified place becomes a desired temperature.
  • the air conditioning control device of the embodiment includes an input unit, a temperature acquisition unit, an estimation unit, and a calculation unit.
  • the input unit receives input of position information in the building and a target temperature.
  • a temperature acquisition part acquires the information of the measured temperature in the said building.
  • the estimation unit estimates a temporal change in temperature for each divided space obtained by dividing the space in the building based on the structure data of the building and the temperature information acquired by the temperature acquisition unit.
  • Output The calculation unit extracts a temperature of the divided space corresponding to the position information in the building received by the input unit from the estimation result, and calculates an air conditioning control amount based on the extracted temperature and the target temperature. To do.
  • the block diagram which shows an example of a structure of the air-conditioning control system of 4th Embodiment.
  • the figure which shows the other example of the parallelization method of the process in 5th Embodiment The block diagram which shows an example of a structure of the air-conditioning control apparatus 1 of 6th Embodiment.
  • FIG. 1 is a block diagram illustrating an example of the configuration of the air conditioning control device 1 according to the first embodiment.
  • the air conditioning control device 1 includes an input / output unit 5, a temperature setting unit 10, a position setting unit 11, a room temperature extraction unit 12, a comparison unit 13, a temperature adjustment unit 14, a thermal factor acquisition unit 15, and a temperature acquisition.
  • Unit 16 room temperature distribution estimation unit 17, and storage unit 18.
  • the air conditioning control device 1 is configured by a computer including a CPU and a memory. At least a part of the temperature setting unit 10 to the room temperature distribution estimation unit 17 in FIG. 1 is a function provided when the CPU of the air conditioning control device 1 reads and executes a program from a storage unit such as a hard disk. Some or all of these functions may be hardware such as a microcomputer, LSI (Large Scale Integration), and ASIC (Application Specific Integrated Circuit).
  • the input / output unit 5 includes an input device such as a mouse, a keyboard, and a touch panel, and a display device such as a liquid crystal display.
  • the input / output unit 5 accepts input of position information in the building and a target temperature by the user.
  • the input / output unit 5 displays various images generated in the air conditioning control device 1.
  • the temperature setting unit 10 acquires the user-desired temperature (target temperature) set by the user from the input / output unit 5.
  • the position setting unit 11 acquires, from the input / output unit 5, information on the position of the place (target position) that should be controlled to the target temperature set by the user.
  • FIG. 2 is a diagram illustrating an example of a user interface of the air conditioning control device 1.
  • the interface illustrated in FIG. 2 is displayed on, for example, a touch panel screen (input / output unit 5) included in the air conditioning control device 1.
  • An interface image 201 displayed on the right side of FIG. 2 is a temperature setting user interface image.
  • the target temperature set by the user is displayed.
  • the button 201B the target temperature displayed in the display column 201A decreases, and when the user presses the button 201C, the target temperature increases.
  • the touch panel screen accepts the input and outputs the target temperature to the temperature setting unit 10.
  • the touch panel screen accepts the input and outputs the target temperature to the temperature setting unit 10.
  • the interface image 202 displayed on the left side of FIG. 2 is a user interface image for setting a target position. If the user refers to the floor plan of the interface image 202 and designates, for example, the position indicated by reference numeral 203 by a touch operation or the like, for example, a circle centered on the touched point is displayed in a color different from other regions. The area indicated by this circle indicates the target position. The size of the circle may be changed by a user pinch-in, pinch-out operation, or the like according to the accuracy with which temperature control is possible.
  • reference numerals 204 and 205 denote interfaces (height designation switches) for designating the height of the target position.
  • the position setting unit 11 calculates a target position in the building from the acquired coordinate information in consideration of the correspondence between the floor plan information displayed on the interface image 202 and the position information in the building.
  • the room temperature extraction unit 12 extracts the estimated temperature value at the target position acquired by the position setting unit 11 from the estimated temperature value for each location in the building calculated by the later-described room temperature distribution estimation unit 17.
  • the comparison unit 13 compares the target temperature acquired by the temperature setting unit 10 with the estimated temperature value at the target position extracted by the room temperature extraction unit 12, and calculates the difference between them.
  • the comparison unit 13 outputs the calculated temperature difference to the temperature adjustment unit 14.
  • the temperature adjustment unit 14 acquires a temperature difference from the comparison unit 13 and determines an air conditioning control amount based on the acquired difference.
  • the temperature adjustment unit 14 outputs the determined air conditioning control amount to the air conditioner 40.
  • the air conditioner 40 performs air conditioning on the building by performing an operation based on the acquired air conditioning control amount.
  • FIG. 3 is a diagram showing an example of the relationship between the temperature difference and the air conditioning control amount.
  • the horizontal axis in FIG. 3 indicates the temperature difference, and the vertical axis indicates the air conditioning control amount corresponding to the temperature difference.
  • the air conditioning control amount is set to a value of air conditioning intensity proportional to the temperature difference, for example.
  • the air conditioning control amount is set to a positive value proportional to the difference, and the room temperature is lower than the set temperature. Sometimes it is set to zero. The reverse is true for heating, and is set to 0 when the room temperature is higher than the set temperature, and set to a positive value proportional to the difference when the room temperature is lower than the set temperature.
  • the storage unit 18 included in the air conditioning control device 1 stores a table that defines the correlation between the temperature difference and the air conditioning control amount.
  • the temperature adjustment unit 14 searches the table using the temperature difference acquired from the comparison unit 13 to determine the air conditioning control amount.
  • FIG. 4 is a diagram illustrating an example of the configuration of the air conditioner 40.
  • the air conditioner 40 includes a heat exchanger (outdoor unit) 41, an expansion valve 42, a heat exchanger (indoor unit) 43, and a compressor 44.
  • Liquid and gaseous thermal refrigerant circulates through these devices, and exhibits a cooling or heating function.
  • the liquid refrigerant released from the heat in the heat exchanger (outdoor unit) 41 is reduced in pressure through the expansion valve 42 and vaporized in the heat exchanger (indoor unit) 43 to take away the heat in the room.
  • the vaporized refrigerant returns to a high-temperature liquid by the compressor 44, and heat is taken away by the heat exchanger (outdoor unit) 41.
  • It is the operation of the compressor 44 that determines the strength of the air conditioning, and the cooling and heating capabilities change according to the air conditioning control amount determined by the temperature adjustment unit 14.
  • the thermal factor acquisition unit 15 acquires factors (thermal factor information) that affect the temperature in the building from various sensors.
  • factors thermal factor information
  • thermal external factors such as the external temperature and the amount of heat due to solar radiation
  • thermal internal factors such as the amount of heat generated by home appliances and people existing in the building.
  • the thermal factor acquisition unit 15 acquires an external factor of temperature from the temperature sensor (outdoor) 101 and the pyranometer 102 provided outdoors.
  • the thermal factor acquisition unit 15 may calculate the amount of heat by solar radiation by calculation from the calorific value of a PV (Photovoltaics) panel instead of the solar radiation meter 102.
  • PV Photovoltaics
  • the thermal factor acquisition unit 15 acquires the calorific value of the home appliances 104 installed in the building from a calorimeter provided in each home appliance 104 or the like. Alternatively, the user may manually set the rated power consumption of each home appliance 104 in advance. In addition, when the presence of a person is detected by the human sensor 103 provided in the building, the thermal factor acquisition unit 15 may convert the amount of heat as, for example, 100 W per person and acquire the amount of heat generated by a person in the building. .
  • the temperature acquisition part 16 acquires the information of the temperature measured by the air conditioner 40 or the temperature sensor (indoor) 100 (temperature measurement part) attached in the building.
  • the room temperature distribution estimation unit 17 calculates the change in temperature for each space in the building by simulation based on the building structure data, the temperature information acquired by the temperature acquisition unit 16, the thermal external factor, and the thermal internal factor. To do.
  • the storage unit 18 stores various data such as specific data of the building wall, for example, the building structure data such as CAD data and the simulation of the room temperature distribution estimation unit 17.
  • FIG. 5 is a diagram illustrating an example of a hardware configuration of the air conditioning control device 1.
  • the air conditioning control device 1 includes an interface 1A, a CPU 1B, a memory 1C, a hard disk 1D, and an input / output unit 5. Each component is connected via a bus.
  • the interface 1A is connected to the temperature sensor (indoor) 100, the home appliance 104, and the like.
  • the CPU 1B reads and executes a program stored in the memory 1C or the hard disk 1D.
  • the calculation program constituting the room temperature distribution estimation unit 17 is stored in the hard disk 1D, expanded in the memory 1C at the time of execution, and then executed by the CPU 1B according to the procedure.
  • the input / output unit 5 is an input device such as a mouse, a keyboard, and a touch panel, and a display device such as a liquid crystal display.
  • the memory 1C and the hard disk 1D correspond to the storage unit 18 in FIG.
  • the room temperature distribution estimation unit 17 estimates a temporal change in temperature for each divided space based on, for example, CFD (Computation Flow Dynamics).
  • CFD is a simulation technique for calculating fluid movement.
  • FIG. 6 is an example of a CFD processing flow.
  • the room temperature distribution estimation unit 17 creates a two-dimensional or three-dimensional building model using structural data such as CAD data of a building to be simulated (step S1).
  • the room temperature distribution estimation unit 17 divides the modeled building into, for example, a lattice shape, and according to the air pressure, temperature, air volume, calorific value of an object existing in the building, and wall material for each lattice. Initial conditions necessary for calculation, such as specific heat, are given (step S2).
  • the divided space in the case of dividing the space in the building may not be a lattice shape.
  • the room temperature distribution estimation unit 17 may divide the space in the building into spaces having different sizes and shapes.
  • the room temperature distribution estimator 17 gives the heat input from the walls of the house, the heat generated by a person or home appliance as a boundary condition, and considers the influence of the elements of the surrounding grid while taking into account the effects of the surrounding grid temperature and air volume on each grid. Are analyzed (step S3).
  • Equation (1) is a continuous equation representing mass conservation of fluid.
  • Equation (2) is an incompressible Navier-Stokes equation corresponding to the momentum conservation equation.
  • Equation (3) is an advection diffusion equation representing the movement and diffusion of air in a building.
  • CFD simultaneous equations using these equations are solved to calculate the amount of heat of the gas flowing into each lattice, and the temperature, air volume, wind direction, etc. in each lattice after a unit time are calculated.
  • FIG. 7 is an example of a processing flow of air conditioning control by the air conditioning control device 1.
  • the processing of the first embodiment will be described with reference to FIG.
  • an initializing process for matching the initial value used for the simulation calculation with the actual environment is performed (steps S1 to S5).
  • the room temperature distribution estimation unit 17 reads out the building structure data from the storage unit 18 to create a model, and creates lattice data, for example, in a lattice form.
  • the room temperature distribution estimation unit 17 reads the initial value given to each grid from the storage unit 18 and sets the initial conditions for the simulation (step S1).
  • the thermal factor acquisition unit 15 acquires the amount of heat generated by solar radiation and the generation amount of the home appliance 104 and the person, and outputs the acquired amount to the room temperature distribution estimation unit 17 (step S2).
  • the room temperature distribution estimation unit 17 sets these values as estimation parameters (boundary conditions) in CFD.
  • the room temperature distribution estimation unit 17 performs simulation by CFD (step S3).
  • the room temperature distribution estimation unit 17 compares the temperature measurement value acquired from the temperature acquisition unit 16 with the temperature estimation value of the divided space corresponding to the target position in the simulation result (step S4).
  • step S5 No
  • the temperature setting unit 10 acquires the target temperature from the input / output unit 5 and outputs the target temperature to the comparison unit 13.
  • the position setting unit 11 acquires information indicating the target position from the input / output unit 5, converts the information into position information in the building, and outputs the information to the room temperature extraction unit 12 (step S6).
  • the target temperature and the target position are acquired.
  • the thermal factor acquisition part 15 acquires a thermal internal factor and a thermal external factor similarly to step S2, and outputs it to the room temperature distribution estimation part 17 (step S7). Thereby, a thermal factor is set.
  • the temperature acquisition unit 16 outputs the acquired room temperature to the room temperature distribution estimation unit 17.
  • the room temperature distribution estimation unit 17 performs a simulation by the CFD method using the initial value determined in step S5, the estimation parameter acquired in step S7, equations (1) to (3), and the like (step S8).
  • the room temperature distribution estimation unit 17 outputs information including the temperature, the air volume, and the wind direction in each grid, which is a simulation result, to the room temperature extraction unit 12.
  • the room temperature extraction unit 12 specifies a divided space (lattice) corresponding to the target position from the simulation result based on the target position acquired from the position setting unit 11.
  • the room temperature extraction unit 12 acquires temperature information (temperature estimation value) in the specified grid and outputs the temperature information to the comparison unit 13.
  • the temperature adjustment unit 14 determines the air conditioning control amount for the air conditioner 40 from the temperature difference and outputs the air conditioning control amount to the air conditioner 40 (step S10).
  • the air conditioner 40 changes operating conditions such as the air-conditioning blowout temperature and the blowout amount based on the acquired air-conditioning control amount. This changes the temperature distribution of the building.
  • step S9 Yes
  • step S11 it is determined whether or not there is an end operation by the user.
  • step S11 No)
  • the thermal factor acquisition unit 15 acquires thermal external factors such as the outside air temperature and solar radiation that change from moment to moment, and thermal internal factors such as heat generated by home appliances and people.
  • the room temperature distribution estimation unit 17 calculates the temperature distribution of the building space at predetermined time intervals, taking those thermal factor information into account as boundary conditions.
  • the room temperature extraction unit 12 outputs a temperature estimation value corresponding to the target position designated by the user to the comparison unit 13 in the temperature distribution, and the temperature adjustment unit 14 performs air conditioning so that the temperature estimation value approaches the target temperature. Take control.
  • the air conditioning control device 1 calculates the temperature distribution in the building by simulation, and feedback of the air conditioner 40 based on the calculated temperature predicted value at each position and the temperature desired by the user. Control can be performed. Accordingly, even in a place where the temperature sensor (indoor) 100 is not attached, it is possible to estimate the temperature at that position and control the desired position to the desired temperature. Therefore, the air conditioning control device 1 according to the first embodiment can perform control so that the temperature of the designated place becomes a desired temperature.
  • feedback control of the air conditioner 40 is performed according to the temperature distribution in the building calculated by simulation based only on the initial value, the passage of time depends on the solar radiation situation at that time and the number of people existing in the building. At the same time, an error occurs.
  • the feedback control and the simulation that incorporates the parameters such as the thermal factor information at the time are linked, so that the air conditioner 40 is based on the simulation result that matches the actual environment. Control can be performed. As a result, the temperature at the target position can be controlled to a desired temperature more accurately.
  • Each unit constituting the air conditioning control device can be mounted on hardware such as the same PC. There may be a plurality of air conditioning sensors, and not only temperature but also humidity and other information may be collected and used as simulation input.
  • the position setting unit 11 does not acquire the target position from the user interface illustrated in FIG. 2, but acquires the position of the user detected by the human sensor provided in the building, The position is designated as the target position.
  • FIG. 8 is an example of a cross-sectional view of a building.
  • the position where the user exists is detected using the human sensor 81 which is a detection unit that detects the presence of a person provided in the building.
  • the human sensor 81 an array type human sensor or a camera can be used.
  • an array type human sensor When an array type human sensor is used, a position where the user exists can be calculated from the reacted human sensor.
  • a camera it is possible to calculate the position where the user exists by analyzing the captured image.
  • the human sensor 81 is not limited to this, and may be any sensor that can grasp the position where the user exists.
  • the second embodiment similarly to the first embodiment, it is possible to perform control so that the temperature of the designated place becomes a desired temperature. According to the second embodiment, it is not necessary for the user to specify the position where the user exists, and the temperature of the place where the user exists can be automatically controlled to a desired temperature.
  • the room temperature distribution estimation unit 17 performs a simulation of a plurality of cases in parallel while using a value different from the other simulation cases for the boundary condition. And run.
  • the room temperature distribution estimation unit 17 determines “different values” to be given to each simulation case, for example, according to a normal distribution.
  • FIG. 9 is a diagram illustrating an example of a normal distribution of boundary conditions. The horizontal axis of FIG. 9 is the value of a certain boundary condition, and the vertical axis is the probability that the value of the boundary condition becomes each value indicated by the horizontal axis.
  • the method for distributing the boundary condition values may be, for example, a method of selecting from the values such that the probability of the normal distribution centered on the initial value is a predetermined value or more.
  • the room temperature distribution estimation unit 17 performs a plurality of simulations using the boundary conditions thus determined in step S8 of FIG. Next, the room temperature distribution estimation part 17 acquires the temperature estimated value in the grating
  • the room temperature distribution estimation unit 17 compares, for example, the temperature measurement value acquired from the temperature acquisition unit 16 with the temperature estimation value by each simulation, and selects the temperature distribution estimation result by simulation that calculates the result closest to the temperature measurement value. And you may perform the process after step S9 of FIG.
  • FIG. 10 is an example of a flow diagram of a simulation case selection process using a particle filter.
  • the room temperature distribution estimation unit 17 performs a plurality of simulation cases (step S21).
  • the room temperature distribution estimation unit 17 calculates a likelihood using a predetermined likelihood function when comparing the estimation results obtained by a plurality of simulations with the measured temperature information (step S22).
  • the room temperature distribution estimation unit 17 leaves only the simulation case with a high likelihood, and discards the simulation case with a low likelihood (step S23).
  • the room temperature distribution estimation unit 17 generates new simulation cases for the number of simulation cases discarded, and repeats the same selection.
  • the setting of boundary conditions when the room temperature distribution estimation unit 17 newly generates a simulation case may be arbitrary.
  • the room temperature distribution estimation unit 17 may generate two new simulation cases by selecting two cases from the remaining simulation cases and combining the values of the boundary conditions used in the cases. This process is a so-called particle filter process. By this processing, simulation cases close to actual measurement remain with high probability, and those with low cases are deceived, and the accuracy of simulation can be improved.
  • the room temperature distribution estimation unit 17 calculates the temperature distribution, the temperature distribution may be calculated by weighting a plurality of simulation results with likelihood.
  • the temperature control by the air conditioner 40 can be performed more accurately by making the simulation result closer to reality.
  • FIG. 11 is a block diagram illustrating an example of a configuration of an air conditioning control system according to the fourth embodiment.
  • the room temperature distribution estimation unit 17 that performs the simulation is arranged in a separate device (simulation device 200) from the air conditioning control device 1 via the network NW.
  • the network NW includes, for example, various networks such as the Internet and a LAN.
  • Each of the air conditioning control device 1 and the simulation device 200 includes hardware such as a network card for connecting to the network NW.
  • the air conditioning control device 1 will be described.
  • the air conditioning control device 1 includes a simulation request unit 21.
  • the simulation request unit 21 transmits initial values, boundary conditions, temperature information acquired by the temperature acquisition unit 16, and the like to the plurality of simulation apparatuses 200 to request execution of the simulation. Moreover, the simulation request
  • the air conditioning control device 1 does not include the room temperature distribution estimation unit 17. Other configurations are the same as those of the first embodiment.
  • the simulation apparatus 200 includes a simulation request receiving unit 22.
  • the simulation request receiving unit 22 receives a boundary condition and a simulation execution request from the air conditioning control device 1 and instructs the room temperature distribution estimation unit 17 to execute the simulation.
  • the room temperature distribution estimation unit 17 records the simulation result in the storage unit 18.
  • the simulation request receiving unit 22 reads out the simulation result from the storage unit 18 and transmits it to the air conditioning control device 1.
  • the simulation requesting unit 21 of the air conditioning control device 1 acquires information indicating the divided space corresponding to the target position from the room temperature extracting unit 12.
  • the simulation request unit 21 transmits information indicating the divided space from the room temperature extraction unit 12 to the simulation request receiving unit 22 in addition to the boundary condition and the simulation execution request, and only the temperature information of the divided space corresponding to the target position Request.
  • the simulation apparatus 200 on the cloud to perform processing of the room temperature distribution estimation unit 17 that requires high processing capacity, for example, air conditioning control installed in each home
  • the processing load on the apparatus 1 can be reduced.
  • FIG. 12 is a block diagram illustrating an example of a configuration of an air conditioning control system according to the fifth embodiment.
  • a plurality of simulation apparatuses 200 are provided.
  • two simulation devices 200 200A and 200B
  • a larger number of simulation devices may be provided.
  • the simulation request unit 21 causes the simulation request reception unit 22 included in the plurality of simulation apparatuses 200 to perform simulation processing under different conditions in parallel, thereby increasing the processing speed. .
  • FIG. 13 is a diagram illustrating an example of a parallel processing method.
  • the simulation request unit 21 reads data related to the spatial model stored in the storage unit 18.
  • a spatial model created by dividing the grid into a grid by the CFD method is divided into four parts, which are defined as regions A, B, C, and D, respectively.
  • the simulation request unit 21 assigns the simulation for the area A to the simulation apparatus 200A, and similarly assigns the area B to the simulation apparatus 200B, the area C to the simulation apparatus 200C, and the area D to the simulation apparatus 200D.
  • FIG. 14 is a diagram illustrating another example of a parallel processing method.
  • the technique illustrated in FIG. 14 is a technique in which the simulation request unit 21 assigns and executes a process to each simulation apparatus 200 for each of several simulation cases. In FIG. 14, simulation of 20 cases is performed, and the simulation requesting unit 21 groups 5 groups and assigns them to the simulation apparatuses 200A to 200D. In the method of FIG.
  • the amount of calculation burdened by each simulation apparatus 200 can be reduced and the simulation process can be speeded up.
  • the mutually different conditions that the simulation requesting unit 21 requests from each of the simulation request receiving units 22 is that the simulation target is a different simulation case.
  • the processing after the processing by the plurality of simulation apparatuses 200 is performed as follows.
  • the configuration of FIG. 12 will be described as an example.
  • the simulation request receiving unit 22B of the simulation apparatus 200B reads the simulation result from the storage unit 18B and transmits the simulation result to the simulation apparatus 200A.
  • the simulation request receiving unit 22A receives the information and records it in the storage unit 18A.
  • the room temperature distribution estimation unit 17A reads the results of the processing performed by the simulation devices 200A and 200B from the storage unit 18A, and compares the temperature information acquired from the air conditioning control device 1 with those values.
  • the room temperature distribution estimation unit 17A selects a result indicating a value closer to the acquired temperature information and outputs the result to the simulation request reception unit 22A.
  • the simulation request receiving unit 22A transmits the result to the air conditioning control device 1.
  • the simulation requesting unit 21 can acquire the temperature distribution that best matches the reality among the simulation results executed by the plurality of simulation devices.
  • the air-conditioning control device 1 executes the subsequent process.
  • the fifth embodiment in addition to the same effects as those of the first embodiment, it is possible to obtain a highly accurate simulation result by speeding up the simulation process. As a result, highly accurate air conditioning control is possible.
  • the simulation is executed only on the simulation device 200.
  • the air conditioning control device 1 further includes the room temperature distribution estimation unit 17, and the air conditioning control device 1 is also configured to execute the simulation. May be.
  • FIG. 15 is a block diagram showing an example of the configuration of the air conditioning control device 1 according to the sixth embodiment.
  • the air conditioning control device 1 according to the sixth embodiment includes a visualization unit 23.
  • the visualization unit 23 generates an image in which the temperature distribution and the wind speed distribution calculated by the room temperature distribution estimation unit 17 are associated with building structure data such as a two-dimensional cross section and a three-dimensional model, and displays the image on the input / output unit 5.
  • FIG. 16 shows an example of a three-dimensional model output by the visualization unit 23.
  • the shades in FIG. 16 indicate the temperature distribution, indicating that the temperature at the bottom of the building space is low and the temperature at the top is high.
  • the lower right diagram in FIG. 16 is an enlarged view of the portion 70.
  • the visualization unit 23 may display the wind direction with an arrow and display the strength of the air volume with the length of the arrow line.
  • the temporal change in temperature for each divided space obtained by dividing the space in the building is estimated based on the building structure data and the temperature information acquired by the temperature acquisition unit.
  • the input / output unit 5 is an example of an input unit.
  • the room temperature distribution estimation unit 17 is an example of an estimation unit.
  • the room temperature extraction unit 12 and the temperature adjustment unit 14 are examples of a calculation unit.
  • the simulation request unit 21 is an example of a request unit.
  • the simulation request receiving unit 22 is an example of a receiving unit.

Abstract

This embodiment of an air conditioning control device has an input unit, a temperature acquisition unit, an estimation unit, and a calculation unit. The input unit receives an input of a target temperature and information of a position within a building. The temperature acquisition unit acquires information regarding a temperature measured within the building. On the basis of structure data of the building and the temperature information acquired by the temperature acquisition unit, the estimation unit estimates the change over time of the temperature for each divided space resulting from dividing the space within the building, and outputs the estimation results. The calculation unit extracts from the estimation results the temperature of the divided space corresponding to the information of the position within the building received by the input unit, and calculates an air conditioning control amount on the basis of the target temperature and the extracted temperature.

Description

空調制御装置、空調制御システム、空調制御方法及びプログラムAir conditioning control device, air conditioning control system, air conditioning control method, and program
 本発明の実施形態は、空調制御装置、空調制御システム、空調制御方法及びプログラムに関する。 Embodiments of the present invention relate to an air conditioning control device, an air conditioning control system, an air conditioning control method, and a program.
 従来、空調機は、ユーザにより設定された目標温度と、空調機などに備えられた温度センサが測定する温度測定値との乖離を小さくするようなフィードバック制御によって温度制御を行っている。しかし、この温度センサが測定する温度測定値とは、温度センサを設置した場所における温度であって、ユーザが存在する場所の温度を示しているとは限らない。従って、実際にユーザが存在する場所などの所望の場所の温度を、所望の目標温度になるように制御することが困難な場合があった。 Conventionally, an air conditioner performs temperature control by feedback control that reduces a difference between a target temperature set by a user and a temperature measurement value measured by a temperature sensor provided in the air conditioner or the like. However, the temperature measurement value measured by the temperature sensor is the temperature at the location where the temperature sensor is installed, and does not necessarily indicate the temperature at the location where the user exists. Therefore, it may be difficult to control the temperature of a desired place such as a place where the user actually exists so as to be a desired target temperature.
特開2013-2671号公報JP 2013-2671 A
 本発明が解決しようとする課題は、指定された場所の温度が所望の温度となるように制御をすることができる空調制御装置、空調制御システム、空調制御方法及びプログラムを提供することである。 The problem to be solved by the present invention is to provide an air-conditioning control device, an air-conditioning control system, an air-conditioning control method, and a program capable of performing control so that the temperature of a specified place becomes a desired temperature.
 実施形態の空調制御装置は、入力部と、温度取得部と、推定部と、算出部とを持つ。入力部は、建物内の位置の情報と、目標温度との入力を受け付ける。温度取得部は、前記建物内の測定された温度の情報を取得する。推定部は、前記建物の構造データと、前記温度取得部により取得された温度の情報とに基づいて、前記建物内の空間を分割した分割空間毎の温度の時間変化を推定し、推定結果を出力する。算出部は、前記推定結果から、前記入力部が受け付けた建物内の位置の情報に対応する前記分割空間の温度を抽出し、前記抽出した温度と前記目標温度とに基づいて空調制御量を算出する。 The air conditioning control device of the embodiment includes an input unit, a temperature acquisition unit, an estimation unit, and a calculation unit. The input unit receives input of position information in the building and a target temperature. A temperature acquisition part acquires the information of the measured temperature in the said building. The estimation unit estimates a temporal change in temperature for each divided space obtained by dividing the space in the building based on the structure data of the building and the temperature information acquired by the temperature acquisition unit. Output. The calculation unit extracts a temperature of the divided space corresponding to the position information in the building received by the input unit from the estimation result, and calculates an air conditioning control amount based on the extracted temperature and the target temperature. To do.
第1の実施形態の空調制御装置の構成の一例を示すブロック図。The block diagram which shows an example of a structure of the air-conditioning control apparatus of 1st Embodiment. 第1の実施形態の空調制御装置のユーザインタフェースの一例を示す図。The figure which shows an example of the user interface of the air-conditioning control apparatus of 1st Embodiment. 第1の実施形態の温度差と空調制御量の関係の一例を示す図。The figure which shows an example of the relationship between the temperature difference of 1st Embodiment, and an air-conditioning control amount. 第1の実施形態の空調機の構成の一例を示す図。The figure which shows an example of a structure of the air conditioner of 1st Embodiment. 第1の実施形態の空調制御装置のハードウェア構成の一例を示す図。The figure which shows an example of the hardware constitutions of the air-conditioning control apparatus of 1st Embodiment. 第1の実施形態のCFDの処理フローの一例を示す図。The figure which shows an example of the processing flow of CFD of 1st Embodiment. 第1の実施形態の空調制御装置による空調制御の処理フローの一例を示す図。The figure which shows an example of the processing flow of the air-conditioning control by the air-conditioning control apparatus of 1st Embodiment. 第2の実施形態の建物の断面の一例を示す図。The figure which shows an example of the cross section of the building of 2nd Embodiment. 第3の実施形態の境界条件の正規分布の一例を示す図。The figure which shows an example of the normal distribution of the boundary conditions of 3rd Embodiment. 第3の実施形態のパーティクルフィルタを利用したシミュレーションケースの選択処理のフローの一例を示す図。The figure which shows an example of the flow of the selection process of the simulation case using the particle filter of 3rd Embodiment. 第4の実施形態の空調制御システムの構成の一例を示すブロック図。The block diagram which shows an example of a structure of the air-conditioning control system of 4th Embodiment. 第5の実施形態の空調制御システムの構成の一例を示すブロック図。The block diagram which shows an example of a structure of the air-conditioning control system of 5th Embodiment. 第5の実施形態における処理の並列化手法の一例を示す図。The figure which shows an example of the parallelization method of the process in 5th Embodiment. 第5の実施形態における処理の並列化手法の他の例を示す図。The figure which shows the other example of the parallelization method of the process in 5th Embodiment. 第6の実施形態の空調制御装置1の構成の一例を示すブロック図。The block diagram which shows an example of a structure of the air-conditioning control apparatus 1 of 6th Embodiment. 第6の実施形態における可視化部が出力した3次元モデルの一例を示す図。The figure which shows an example of the three-dimensional model which the visualization part in 6th Embodiment output.
 以下、実施形態の空調制御装置、空調制御システム、空調制御方法及びプログラムを、図面を参照して説明する。 Hereinafter, an air conditioning control device, an air conditioning control system, an air conditioning control method, and a program according to embodiments will be described with reference to the drawings.
 (第1の実施形態)
 第1の実施形態を図面を用いて説明する。
 図1は、本第1の実施形態の空調制御装置1の構成の一例を示すブロック図である。空調制御装置1は、入出力部5と、温度設定部10と、位置設定部11と、室温抽出部12と、比較部13と、温度調節部14と、温熱要因取得部15と、温度取得部16と、室温分布推定部17と、記憶部18とを備えている。空調制御装置1は、CPUやメモリを備えるコンピュータによって構成される。図1の温度設定部10~室温分布推定部17の少なくとも一部は空調制御装置1の備えるCPUがハードディスクなどの記憶部からプログラムを読み出し実行することで備わる機能である。これらの機能の一部または全部は、マイコン、LSI(Large Scale Integration)やASIC(Application Specific Integrated Circuit)等のハードウェアであってもよい。
(First embodiment)
A first embodiment will be described with reference to the drawings.
FIG. 1 is a block diagram illustrating an example of the configuration of the air conditioning control device 1 according to the first embodiment. The air conditioning control device 1 includes an input / output unit 5, a temperature setting unit 10, a position setting unit 11, a room temperature extraction unit 12, a comparison unit 13, a temperature adjustment unit 14, a thermal factor acquisition unit 15, and a temperature acquisition. Unit 16, room temperature distribution estimation unit 17, and storage unit 18. The air conditioning control device 1 is configured by a computer including a CPU and a memory. At least a part of the temperature setting unit 10 to the room temperature distribution estimation unit 17 in FIG. 1 is a function provided when the CPU of the air conditioning control device 1 reads and executes a program from a storage unit such as a hard disk. Some or all of these functions may be hardware such as a microcomputer, LSI (Large Scale Integration), and ASIC (Application Specific Integrated Circuit).
 入出力部5は、マウス、キーボード、タッチパネルなどの入力装置や、液晶ディスプレイなどの表示装置を含む。入出力部5は、ユーザによる、建物内の位置の情報と、目標温度との入力を受け付ける。入出力部5は、空調制御装置1において生成される各種画像を表示する。
 温度設定部10は、入出力部5から、ユーザが設定したユーザの所望する温度(目標温度)を取得する。
 位置設定部11は、入出力部5から、ユーザが設定した目標温度に制御すべき場所(目的位置)の位置の情報を取得する。
The input / output unit 5 includes an input device such as a mouse, a keyboard, and a touch panel, and a display device such as a liquid crystal display. The input / output unit 5 accepts input of position information in the building and a target temperature by the user. The input / output unit 5 displays various images generated in the air conditioning control device 1.
The temperature setting unit 10 acquires the user-desired temperature (target temperature) set by the user from the input / output unit 5.
The position setting unit 11 acquires, from the input / output unit 5, information on the position of the place (target position) that should be controlled to the target temperature set by the user.
 図2を用いてユーザが目標温度と目的位置とを入力するインタフェースについて説明する。図2は、空調制御装置1のユーザインタフェースの一例を示す図である。図2が示すインタフェースは、例えば空調制御装置1の備えるタッチパネル画面(入出力部5)に表示される。図2の右側に表示されたインタフェース画像201は、温度設定用のユーザインタフェース画像である。表示欄201Aには、ユーザが設定した目標温度が表示される。ユーザがボタン201Bを押下すると、表示欄201Aに表示される目標温度が低下し、ボタン201Cを押下すると目標温度が上昇する。ユーザが目標温度を設定すると、タッチパネル画面(入出力部5)がその入力を受け付け、目標温度を温度設定部10へ出力する。ユーザがボタン201Dを押下すると、空調制御装置1による温度制御が開始され、ボタン201Eを押下すると温度制御が停止される。 The interface for the user to input the target temperature and the target position will be described with reference to FIG. FIG. 2 is a diagram illustrating an example of a user interface of the air conditioning control device 1. The interface illustrated in FIG. 2 is displayed on, for example, a touch panel screen (input / output unit 5) included in the air conditioning control device 1. An interface image 201 displayed on the right side of FIG. 2 is a temperature setting user interface image. In the display column 201A, the target temperature set by the user is displayed. When the user presses the button 201B, the target temperature displayed in the display column 201A decreases, and when the user presses the button 201C, the target temperature increases. When the user sets the target temperature, the touch panel screen (input / output unit 5) accepts the input and outputs the target temperature to the temperature setting unit 10. When the user presses the button 201D, the temperature control by the air conditioning control device 1 is started, and when the user presses the button 201E, the temperature control is stopped.
 図2の左側に表示されたインタフェース画像202は、目的位置設定用のユーザインタフェース画像である。ユーザがインタフェース画像202の間取り図を参照して、例えば符号203で示す位置をタッチ操作などによって指定すると、例えば接触した点を中心とする円が、他の領域とは異なる色で表示される。この円で表示された領域は、目標位置を示している。この円の大きさは、温度制御が可能な精度に応じて、ユーザのピンチイン、ピンチアウト操作などによって変化させることができてもよい。図2中、符号204、205は、目標位置の高さを指定するためのインタフェース(高さ指定スイッチ)を示している。例えば、ユーザが高さ指定スイッチ205上の1.5mに相当する位置をタップすると矢印206が表示され、目標位置の高さが1.5mに設定される。タッチパネル画面(入出力部5)は、これらの入力を受け付けると、ユーザが接触した位置の座標情報やユーザが指定した高さの情報を、位置設定部11へ出力する。位置設定部11は、取得した座標情報から、インタフェース画像202に表示された間取り情報と建物内の位置情報との対応関係を考慮して、建物内における目標位置を算出する。 The interface image 202 displayed on the left side of FIG. 2 is a user interface image for setting a target position. If the user refers to the floor plan of the interface image 202 and designates, for example, the position indicated by reference numeral 203 by a touch operation or the like, for example, a circle centered on the touched point is displayed in a color different from other regions. The area indicated by this circle indicates the target position. The size of the circle may be changed by a user pinch-in, pinch-out operation, or the like according to the accuracy with which temperature control is possible. In FIG. 2, reference numerals 204 and 205 denote interfaces (height designation switches) for designating the height of the target position. For example, when the user taps a position corresponding to 1.5 m on the height designation switch 205, an arrow 206 is displayed, and the height of the target position is set to 1.5 m. When the touch panel screen (input / output unit 5) receives these inputs, the coordinate information of the position touched by the user and the height information specified by the user are output to the position setting unit 11. The position setting unit 11 calculates a target position in the building from the acquired coordinate information in consideration of the correspondence between the floor plan information displayed on the interface image 202 and the position information in the building.
 図1に戻り機能部の説明を続ける。
 室温抽出部12は、後述する室温分布推定部17が算出した建物内の場所ごとの温度推定値から、位置設定部11が取得した目的位置における温度推定値を抽出する。
 比較部13は、温度設定部10が取得した目標温度と、室温抽出部12が抽出した目的位置における温度推定値とを比較し、これらの差分を計算する。比較部13は、計算した温度の差分を温度調節部14へ出力する。
Returning to FIG. 1, the description of the function unit will be continued.
The room temperature extraction unit 12 extracts the estimated temperature value at the target position acquired by the position setting unit 11 from the estimated temperature value for each location in the building calculated by the later-described room temperature distribution estimation unit 17.
The comparison unit 13 compares the target temperature acquired by the temperature setting unit 10 with the estimated temperature value at the target position extracted by the room temperature extraction unit 12, and calculates the difference between them. The comparison unit 13 outputs the calculated temperature difference to the temperature adjustment unit 14.
 温度調節部14は、比較部13から温度の差分を取得し、取得した差分に基づいて空調制御量を決定する。温度調節部14は、決定した空調制御量を空調機40へ出力する。空調機40は、取得した空調制御量に基づいた運転を行うことで建物に対する空調を実施する。次に図3、4を用いて、温度調節部14や空調機40の動作の一例について説明する。 The temperature adjustment unit 14 acquires a temperature difference from the comparison unit 13 and determines an air conditioning control amount based on the acquired difference. The temperature adjustment unit 14 outputs the determined air conditioning control amount to the air conditioner 40. The air conditioner 40 performs air conditioning on the building by performing an operation based on the acquired air conditioning control amount. Next, an example of the operation of the temperature adjustment unit 14 and the air conditioner 40 will be described with reference to FIGS.
 図3は、温度差と空調制御量の関係の一例を示す図である。図3の横軸は、温度差を示し、縦軸は、温度差に応じた空調制御量を示している。空調制御量は、例えば温度差分に比例する空調強度の値に設定され、冷房時であって室温が設定温度より高いときは、差分に比例した正の値に設定され、室温が設定温度より低いときは0に設定される。暖房についてはこの逆であり、室温が設定温度より高いときは0に設定され、室温が設定温度より低いときは、差分に比例した正の値に設定される。これらは、いわゆる比例制御に基づく設定手法であるが、この部分の制御にPI(Proportional Integral)制御やPID(Proportional Integral Derivative)制御を適用してもよい。比例制御により空調制御量を決定する場合、例えば、空調制御装置1の備える記憶部18には、温度差と空調制御量の相関関係を規定するテーブルが記憶されている。温度調節部14は、比較部13から取得した温度の差分を用いてこのテーブルを検索することで、空調制御量を決定する。 FIG. 3 is a diagram showing an example of the relationship between the temperature difference and the air conditioning control amount. The horizontal axis in FIG. 3 indicates the temperature difference, and the vertical axis indicates the air conditioning control amount corresponding to the temperature difference. The air conditioning control amount is set to a value of air conditioning intensity proportional to the temperature difference, for example. When the room temperature is higher than the set temperature during cooling, the air conditioning control amount is set to a positive value proportional to the difference, and the room temperature is lower than the set temperature. Sometimes it is set to zero. The reverse is true for heating, and is set to 0 when the room temperature is higher than the set temperature, and set to a positive value proportional to the difference when the room temperature is lower than the set temperature. These are setting methods based on so-called proportional control, but PI (Proportional Integral) control and PID (Proportional Integral Derivative) control may be applied to this part of control. When determining the air conditioning control amount by proportional control, for example, the storage unit 18 included in the air conditioning control device 1 stores a table that defines the correlation between the temperature difference and the air conditioning control amount. The temperature adjustment unit 14 searches the table using the temperature difference acquired from the comparison unit 13 to determine the air conditioning control amount.
 図4は、空調機40の構成の一例を示す図である。空調機40は、熱交換器(室外機)41、膨張弁42、熱交換器(室内機)43、圧縮機44を備えている。これらの機器を液体および気体の熱冷媒が循環し、冷房又は暖房の機能を発揮する。例えば、冷房時には、熱交換器(室外機)41で熱を放出した液体の冷媒が、膨張弁42を通じて低圧化され熱交換器(室内機)43で気化し、室内の熱を奪う。気化した冷媒は圧縮機44で温度の高い液体へと戻り、熱交換器(室外機)41で熱を奪われる。空調の強度を決めるのは圧縮機44の動作であり、温度調節部14が決定する空調制御量に応じて冷房や暖房の能力が変化する。 FIG. 4 is a diagram illustrating an example of the configuration of the air conditioner 40. The air conditioner 40 includes a heat exchanger (outdoor unit) 41, an expansion valve 42, a heat exchanger (indoor unit) 43, and a compressor 44. Liquid and gaseous thermal refrigerant circulates through these devices, and exhibits a cooling or heating function. For example, at the time of cooling, the liquid refrigerant released from the heat in the heat exchanger (outdoor unit) 41 is reduced in pressure through the expansion valve 42 and vaporized in the heat exchanger (indoor unit) 43 to take away the heat in the room. The vaporized refrigerant returns to a high-temperature liquid by the compressor 44, and heat is taken away by the heat exchanger (outdoor unit) 41. It is the operation of the compressor 44 that determines the strength of the air conditioning, and the cooling and heating capabilities change according to the air conditioning control amount determined by the temperature adjustment unit 14.
 図1に戻り空調制御装置1の各機能部の説明を続ける。
 温熱要因取得部15は、諸々のセンサ類から建物内の温度に影響を与える要因(温熱要因情報)を取得する。温熱要因情報には、外界の温度および日射による熱量などの温熱外部要因と、建物内に存在する家電機器や人などの発熱量などの温熱内部要因が存在する。温熱要因取得部15は、屋外に備えられた温度センサ(屋外)101や日射計102から温熱外部要因を取得する。温熱要因取得部15は、日射計102の代わりにPV(Photovoltaics)パネルの発熱量から計算によって日射による熱量を計算してもよい。温熱要因取得部15は、建物内に設置された家電機器104の発熱量を各家電機器104が備える熱量計などから取得する。あるいはユーザが、各家電機器104の定格消費電力を予め手入力で設定してもよい。また、温熱要因取得部15は、建物内に備えられた人感センサ103によって人の存在を検知すると、例えば1人100Wとして熱量に換算し、建物内の人が発する熱量を取得してもよい。
Returning to FIG. 1, description of each functional unit of the air conditioning control device 1 will be continued.
The thermal factor acquisition unit 15 acquires factors (thermal factor information) that affect the temperature in the building from various sensors. In the thermal factor information, there are thermal external factors such as the external temperature and the amount of heat due to solar radiation, and thermal internal factors such as the amount of heat generated by home appliances and people existing in the building. The thermal factor acquisition unit 15 acquires an external factor of temperature from the temperature sensor (outdoor) 101 and the pyranometer 102 provided outdoors. The thermal factor acquisition unit 15 may calculate the amount of heat by solar radiation by calculation from the calorific value of a PV (Photovoltaics) panel instead of the solar radiation meter 102. The thermal factor acquisition unit 15 acquires the calorific value of the home appliances 104 installed in the building from a calorimeter provided in each home appliance 104 or the like. Alternatively, the user may manually set the rated power consumption of each home appliance 104 in advance. In addition, when the presence of a person is detected by the human sensor 103 provided in the building, the thermal factor acquisition unit 15 may convert the amount of heat as, for example, 100 W per person and acquire the amount of heat generated by a person in the building. .
 温度取得部16は、空調機40や建物内に取り付けられた温度センサ(屋内)100(温度測定部)によって測定された温度の情報を取得する。
 室温分布推定部17は、建物の構造データと、温度取得部16が取得した温度情報と、温熱外部要因と、温熱内部要因とに基づいて、建物内の空間毎の温度の変化をシミュレーションによって算出する。
 記憶部18は、CADデータなどの建物の構造データや、室温分布推定部17のシミュレーションに必要な、例えば建物の壁の比熱などの諸々のデータを記憶している。
The temperature acquisition part 16 acquires the information of the temperature measured by the air conditioner 40 or the temperature sensor (indoor) 100 (temperature measurement part) attached in the building.
The room temperature distribution estimation unit 17 calculates the change in temperature for each space in the building by simulation based on the building structure data, the temperature information acquired by the temperature acquisition unit 16, the thermal external factor, and the thermal internal factor. To do.
The storage unit 18 stores various data such as specific data of the building wall, for example, the building structure data such as CAD data and the simulation of the room temperature distribution estimation unit 17.
 図5は、空調制御装置1のハードウェア構成の一例を示す図である。空調制御装置1は、インタフェース1Aと、CPU1Bと、メモリ1Cと、ハードディスク1Dと、入出力部5とを備えている。各構成要素はバスを介して接続されている。インタフェース1Aは、温度センサ(屋内)100や家電機器104などと接続される。CPU1Bは、メモリ1Cやハードディスク1Dが記憶するプログラムを読み出し実行する。例えば、室温分布推定部17を構成する計算プログラムは、ハードディスク1Dに格納され、実行時にメモリ1Cに展開された後、CPU1Bによって手順に従って実行される。入出力部5は、マウス、キーボード、タッチパネルなどの入力装置及び液晶ディスプレイなどの表示装置である。メモリ1Cとハードディスク1Dは、図1の記憶部18に対応する。 FIG. 5 is a diagram illustrating an example of a hardware configuration of the air conditioning control device 1. The air conditioning control device 1 includes an interface 1A, a CPU 1B, a memory 1C, a hard disk 1D, and an input / output unit 5. Each component is connected via a bus. The interface 1A is connected to the temperature sensor (indoor) 100, the home appliance 104, and the like. The CPU 1B reads and executes a program stored in the memory 1C or the hard disk 1D. For example, the calculation program constituting the room temperature distribution estimation unit 17 is stored in the hard disk 1D, expanded in the memory 1C at the time of execution, and then executed by the CPU 1B according to the procedure. The input / output unit 5 is an input device such as a mouse, a keyboard, and a touch panel, and a display device such as a liquid crystal display. The memory 1C and the hard disk 1D correspond to the storage unit 18 in FIG.
 次に図6を用いて、室温分布推定部17が建物内の空間を分割した分割空間毎の温度の時間変化を推定するために用いるシミュレーション手法の一例について説明する。室温分布推定部17は、例えばCFD(Computation Flow Dynamics)に基づいて、分割空間毎の温度の時間変化を推定する。CFDとは、流体の動きを計算するシミュレーション手法である。
 図6は、CFDの処理フローの一例である。まず、室温分布推定部17は、シミュレーション対象となる建物のCADデータなどの構造データを用いて2次元や3次元の建物モデルを作成する(ステップS1)。次に、室温分布推定部17は、モデル化した建物を例えば格子状に区切り、各格子に対して空気の圧力、温度、風量、建物内に存在する物体の発熱量、壁の材質に応じた比熱など、計算に必要な初期条件を与える(ステップS2)。建物内の空間を分割する場合の分割された空間は、格子状でなくてもよい。例えば、室温分布推定部17は、建物内の空間を、それぞれ大きさや形状が異なる空間に区切ってもよい。室温分布推定部17は、住宅の壁から入る熱、人や家電などが発する熱量を境界条件として与えながら、周りの格子の要素による影響を考慮しつつ時間発展的なそれぞれの格子における温度、風量などを解析する(ステップS3)。
Next, an example of a simulation method used by the room temperature distribution estimation unit 17 to estimate a temporal change in temperature for each divided space obtained by dividing the space in the building will be described with reference to FIG. The room temperature distribution estimation unit 17 estimates a temporal change in temperature for each divided space based on, for example, CFD (Computation Flow Dynamics). CFD is a simulation technique for calculating fluid movement.
FIG. 6 is an example of a CFD processing flow. First, the room temperature distribution estimation unit 17 creates a two-dimensional or three-dimensional building model using structural data such as CAD data of a building to be simulated (step S1). Next, the room temperature distribution estimation unit 17 divides the modeled building into, for example, a lattice shape, and according to the air pressure, temperature, air volume, calorific value of an object existing in the building, and wall material for each lattice. Initial conditions necessary for calculation, such as specific heat, are given (step S2). The divided space in the case of dividing the space in the building may not be a lattice shape. For example, the room temperature distribution estimation unit 17 may divide the space in the building into spaces having different sizes and shapes. The room temperature distribution estimator 17 gives the heat input from the walls of the house, the heat generated by a person or home appliance as a boundary condition, and considers the influence of the elements of the surrounding grid while taking into account the effects of the surrounding grid temperature and air volume on each grid. Are analyzed (step S3).
 解析には、例えば以下の計算式を用いる。
∇v=0   ・・・(1)
∂v/∂t+(v・∇)v = -∇p+(1/Re)Δv+(Gr/Re2)Tk   ・・・(2)
∂T/∂t+(v∇)T = (1/RePr)ΔT   ・・・(3)
 vは3次元の速度ベクトル、tは時間、pは圧力、Reはレイノルズ数、kは鉛直方向の単位ベクトル、Grはグラスホフ数、Tは温度、Prはプラントル数を示している。式(1)は、流体の質量保存を表す連続の式である。式(2)は、運動量保存式に相当する非圧縮性ナビエ・ストークス方程式である。式(3)は、建物内の空気の移動や拡散を表した移流拡散方程式である。CFDにおいては、これらの式を用いた連立方程式を解いて各格子に流入する気体の熱量などを算出し、単位時間後の各格子における温度や風量、風向などを算出する。
For example, the following calculation formula is used for the analysis.
∇v = 0 (1)
∂v / ∂t + (v · ∇) v = −∇p + (1 / Re) Δv + (Gr / Re2) Tk (2)
∂T / ∂t + (v∇) T = (1 / RePr) ΔT (3)
v is a three-dimensional velocity vector, t is time, p is pressure, Re is Reynolds number, k is a unit vector in the vertical direction, Gr is Grashof number, T is temperature, and Pr is Prandtl number. Equation (1) is a continuous equation representing mass conservation of fluid. Equation (2) is an incompressible Navier-Stokes equation corresponding to the momentum conservation equation. Equation (3) is an advection diffusion equation representing the movement and diffusion of air in a building. In CFD, simultaneous equations using these equations are solved to calculate the amount of heat of the gas flowing into each lattice, and the temperature, air volume, wind direction, etc. in each lattice after a unit time are calculated.
 図7は、空調制御装置1による空調制御の処理フローの一例である。図7を用いて第1の実施形態の処理について説明する。
 実際に空調制御を始める前に準備段階として、シミュレーション計算に用いる初期値を、実際の環境に合わせるためのイニシャライズ処理を行う(ステップS1~S5)。まず、図6で説明したように室温分布推定部17が、記憶部18から建物の構造データを読み出してモデルを作成し、例えば格子状に区切って格子データを作成する。室温分布推定部17が、記憶部18から各格子に与える初期値を読み取り、シミュレーションの初期条件に設定する(ステップS1)。次に、温熱要因取得部15が、日射による熱量や家電機器104及び人の発量を取得し、室温分布推定部17に出力する(ステップS2)。室温分布推定部17は、これらの値を、CFDにおける推定パラメータ(境界条件)に設定する。次に、室温分布推定部17は、CFDによるシミュレーションを行う(ステップS3)。次に、室温分布推定部17は、温度取得部16から取得した温度測定値と、シミュレーション結果における、目的位置に対応する分割空間の温度推定値とを比較する(ステップS4)。室温分布推定部17は、温度測定値と温度推定値との差分が許容範囲内に収まらない場合は(ステップS5=No)、初期値の値を所定の方法で変更し、差分が許容範囲内となるまでステップS2からの処理を繰り返す。室温分布推定部17は、差分が許容範囲内であれば空調制御の準備が完了したと判断し(ステップS5=Yes)、次のステップS6へ進む。
FIG. 7 is an example of a processing flow of air conditioning control by the air conditioning control device 1. The processing of the first embodiment will be described with reference to FIG.
As a preparatory stage before actually starting the air conditioning control, an initializing process for matching the initial value used for the simulation calculation with the actual environment is performed (steps S1 to S5). First, as described with reference to FIG. 6, the room temperature distribution estimation unit 17 reads out the building structure data from the storage unit 18 to create a model, and creates lattice data, for example, in a lattice form. The room temperature distribution estimation unit 17 reads the initial value given to each grid from the storage unit 18 and sets the initial conditions for the simulation (step S1). Next, the thermal factor acquisition unit 15 acquires the amount of heat generated by solar radiation and the generation amount of the home appliance 104 and the person, and outputs the acquired amount to the room temperature distribution estimation unit 17 (step S2). The room temperature distribution estimation unit 17 sets these values as estimation parameters (boundary conditions) in CFD. Next, the room temperature distribution estimation unit 17 performs simulation by CFD (step S3). Next, the room temperature distribution estimation unit 17 compares the temperature measurement value acquired from the temperature acquisition unit 16 with the temperature estimation value of the divided space corresponding to the target position in the simulation result (step S4). When the difference between the measured temperature value and the estimated temperature value does not fall within the allowable range (step S5 = No), the room temperature distribution estimation unit 17 changes the initial value by a predetermined method, and the difference is within the allowable range. The process from step S2 is repeated until If the difference is within the allowable range, the room temperature distribution estimation unit 17 determines that the preparation for air conditioning control has been completed (step S5 = Yes), and proceeds to the next step S6.
 以降は、イニシャライズ処理の最後のシミュレーションに使用した初期値を用いて空調制御を行う。まず、温度設定部10が、入出力部5から目標温度を取得し、比較部13へ出力する。位置設定部11が、入出力部5から目的位置を示す情報を取得し、建物内における位置の情報に変換し、室温抽出部12へ出力する(ステップS6)。これにより、目標温度と目的位置とが取得される。次に、温熱要因取得部15が、ステップS2と同様に温熱内部要因、温熱外部要因を取得し、室温分布推定部17に出力する(ステップS7)。これにより、温熱要因が設定される。温度取得部16が、取得した室温を室温分布推定部17に出力する。室温分布推定部17は、ステップS5で確定した初期値、ステップS7で取得した推定パラメータ、式(1)~(3)などを用いてCFDの手法でシミュレーションを行う(ステップS8)。室温分布推定部17は、シミュレーション結果である各格子における温度や風量及び風向を含む情報を室温抽出部12に出力する。室温抽出部12は、位置設定部11から取得した目的位置に基づいて、シミュレーション結果から目的位置に対応する分割空間(格子)を特定する。室温抽出部12は、特定した格子における温度情報(温度推定値)を取得し、比較部13へ出力する。 Hereafter, air conditioning control is performed using the initial values used for the last simulation of the initialization process. First, the temperature setting unit 10 acquires the target temperature from the input / output unit 5 and outputs the target temperature to the comparison unit 13. The position setting unit 11 acquires information indicating the target position from the input / output unit 5, converts the information into position information in the building, and outputs the information to the room temperature extraction unit 12 (step S6). Thereby, the target temperature and the target position are acquired. Next, the thermal factor acquisition part 15 acquires a thermal internal factor and a thermal external factor similarly to step S2, and outputs it to the room temperature distribution estimation part 17 (step S7). Thereby, a thermal factor is set. The temperature acquisition unit 16 outputs the acquired room temperature to the room temperature distribution estimation unit 17. The room temperature distribution estimation unit 17 performs a simulation by the CFD method using the initial value determined in step S5, the estimation parameter acquired in step S7, equations (1) to (3), and the like (step S8). The room temperature distribution estimation unit 17 outputs information including the temperature, the air volume, and the wind direction in each grid, which is a simulation result, to the room temperature extraction unit 12. The room temperature extraction unit 12 specifies a divided space (lattice) corresponding to the target position from the simulation result based on the target position acquired from the position setting unit 11. The room temperature extraction unit 12 acquires temperature information (temperature estimation value) in the specified grid and outputs the temperature information to the comparison unit 13.
 比較部13は、温度設定部10から取得した目標温度と室温抽出部12から取得した温度推定値との差分が許容範囲内であるか否かを判定する(ステップS9)。比較部13は、温度測定値と温度推定値との差分が許容範囲内に収まらない場合は(ステップS9=No)、温度差分を温度調節部14に出力する。温度調節部14は、温度差分から空調機40に対する空調制御量を決定し、空調機40へ出力する(ステップS10)。空調機40は、取得した空調制御量に基づいて空調の吹き出し温度や吹き出し量などの運転条件を変更する。これにより建物の温度分布が変化する。差分が許容範囲内であれば空調制御が順調であるとみなし(ステップS9=Yes)、ステップS11へ進む。ステップS11では、ユーザによる終了操作の有無を判定する。空調制御装置1が終了操作を受け付けた場合(ステップS11=Yes)、本処理フローは終了する。終了操作を受け付けていない場合(ステップS11=No)、所定の時間ごとにステップS7からの処理を繰り返す。つまり、温度取得部16は、温度センサ(屋内)100が設置された位置の温度情報を収集する。温熱要因取得部15が、時々刻々と変化する外気温、日射等の温熱外部要因、及び、家電や人による熱などの温熱内部要因を取得する。室温分布推定部17は、それらの温熱要因情報を境界条件として加味して、所定時間間隔で建物空間の温度分布を計算する。室温抽出部12は、この温度分布のうち、ユーザが指定した目的位置に対応する温度推定値を比較部13に出力し、温度調節部14は、当該温度推定値を目標温度に近付けるように空調制御を行う。 The comparison unit 13 determines whether or not the difference between the target temperature acquired from the temperature setting unit 10 and the estimated temperature value acquired from the room temperature extraction unit 12 is within an allowable range (step S9). When the difference between the measured temperature value and the estimated temperature value does not fall within the allowable range (step S9 = No), the comparison unit 13 outputs the temperature difference to the temperature adjustment unit 14. The temperature adjustment unit 14 determines the air conditioning control amount for the air conditioner 40 from the temperature difference and outputs the air conditioning control amount to the air conditioner 40 (step S10). The air conditioner 40 changes operating conditions such as the air-conditioning blowout temperature and the blowout amount based on the acquired air-conditioning control amount. This changes the temperature distribution of the building. If the difference is within the allowable range, the air conditioning control is regarded as being smooth (step S9 = Yes), and the process proceeds to step S11. In step S11, it is determined whether or not there is an end operation by the user. When the air conditioning control device 1 accepts an end operation (step S11 = Yes), this processing flow ends. When the end operation has not been received (step S11 = No), the processing from step S7 is repeated every predetermined time. That is, the temperature acquisition unit 16 collects temperature information of the position where the temperature sensor (indoor) 100 is installed. The thermal factor acquisition unit 15 acquires thermal external factors such as the outside air temperature and solar radiation that change from moment to moment, and thermal internal factors such as heat generated by home appliances and people. The room temperature distribution estimation unit 17 calculates the temperature distribution of the building space at predetermined time intervals, taking those thermal factor information into account as boundary conditions. The room temperature extraction unit 12 outputs a temperature estimation value corresponding to the target position designated by the user to the comparison unit 13 in the temperature distribution, and the temperature adjustment unit 14 performs air conditioning so that the temperature estimation value approaches the target temperature. Take control.
 このように、第1の実施形態による空調制御装置1は、シミュレーションによって建物内の温度分布を算出し、算出した各位置における温度予測値とユーザが所望する温度とに基づいて空調機40のフィードバック制御を行うことができる。これにより、温度センサ(屋内)100がついていない場所においても、その位置の温度を推定して、所望の位置を所望の温度にコントロールすることが可能となる。従って、第1の実施形態による空調制御装置1は、指定された場所の温度が所望の温度となるように制御をすることができる。初期値のみに基づいてシミュレーションを行って算出した建物内の温度分布に従って、空調機40のフィードバック制御を行った場合、その時々の日射状況や建物内に存在する人の人数などにより、時間の経過と共に誤差が生じてしまう。この点、第1の実施形態によれば、フィードバック制御とその時々の温熱要因情報などのパラメータを取り込んだシミュレーションとを連動させることで、実際の環境に合ったシミュレーション結果に基づいて空調機40の制御を行うことができる。この結果、目的位置の温度をより正確に所望の温度に制御することができる。
 空調制御装置を構成する各部は、同一のPCなどのハードウェア上に実装することが可能である。空調センサは複数あってもよく、温度だけでなく湿度やその他情報を収集してシミュレーションの入力としてもよい。
As described above, the air conditioning control device 1 according to the first embodiment calculates the temperature distribution in the building by simulation, and feedback of the air conditioner 40 based on the calculated temperature predicted value at each position and the temperature desired by the user. Control can be performed. Accordingly, even in a place where the temperature sensor (indoor) 100 is not attached, it is possible to estimate the temperature at that position and control the desired position to the desired temperature. Therefore, the air conditioning control device 1 according to the first embodiment can perform control so that the temperature of the designated place becomes a desired temperature. When feedback control of the air conditioner 40 is performed according to the temperature distribution in the building calculated by simulation based only on the initial value, the passage of time depends on the solar radiation situation at that time and the number of people existing in the building. At the same time, an error occurs. In this regard, according to the first embodiment, the feedback control and the simulation that incorporates the parameters such as the thermal factor information at the time are linked, so that the air conditioner 40 is based on the simulation result that matches the actual environment. Control can be performed. As a result, the temperature at the target position can be controlled to a desired temperature more accurately.
Each unit constituting the air conditioning control device can be mounted on hardware such as the same PC. There may be a plurality of air conditioning sensors, and not only temperature but also humidity and other information may be collected and used as simulation input.
 (第2の実施形態)
 第2の実施形態を、図面を用いて説明する。
 本第2の実施形態に係る位置設定部11は、図2で例示したユーザインタフェースから目的位置を取得するのではなく、建物内に備えられた人感センサが検出したユーザの位置を取得し、その位置を目的位置として指定する。
 図8は、建物の断面図の一例である。本第2の実施形態では、建物内に備えられた人の存在を検出する検出部である人感センサ81を利用して、ユーザが存在する位置を検出する。人感センサ81には、アレイ型人感センサやカメラを利用することができる。アレイ型人感センサを利用する場合、反応した人感センサからユーザが存在する位置を算出することができる。カメラを利用する場合、撮像した画像を解析して、ユーザが存在する位置を算出することができる。人感センサ81は、これらに限らず、ユーザが存在する位置を把握できるものであればよい。
(Second Embodiment)
A second embodiment will be described with reference to the drawings.
The position setting unit 11 according to the second embodiment does not acquire the target position from the user interface illustrated in FIG. 2, but acquires the position of the user detected by the human sensor provided in the building, The position is designated as the target position.
FIG. 8 is an example of a cross-sectional view of a building. In the second embodiment, the position where the user exists is detected using the human sensor 81 which is a detection unit that detects the presence of a person provided in the building. As the human sensor 81, an array type human sensor or a camera can be used. When an array type human sensor is used, a position where the user exists can be calculated from the reacted human sensor. When using a camera, it is possible to calculate the position where the user exists by analyzing the captured image. The human sensor 81 is not limited to this, and may be any sensor that can grasp the position where the user exists.
 本第2の実施形態によれば、第1の実施形態と同様、指定された場所の温度が所望の温度となるように制御をすることができる。本第2の実施形態によれば、ユーザが自分の存在する位置を指定する必要が無く、自動でユーザの存在する場所の温度を所望の温度に制御することができる。 According to the second embodiment, similarly to the first embodiment, it is possible to perform control so that the temperature of the designated place becomes a desired temperature. According to the second embodiment, it is not necessary for the user to specify the position where the user exists, and the temperature of the place where the user exists can be automatically controlled to a desired temperature.
 (第3の実施形態)
 第3の実施形態を、図面を用いて説明する。
 第1の実施形態では、CFDによるシミュレーションを1ケースだけ実行した。しかしながら、1ケースのみ実行する手法では、シミュレーションによって得た温度推定値が、入力した境界条件や誤差等によって実態と乖離している可能性がある。例えば、初期値として与えた壁の部材の比熱などは、個体差や気候条件によってばらつきが生じる。あるいは、前述したように、温熱内部要因のうち人の発熱量を100Wとした設定も、その人の体の大小や、室内での活動状況などにより実際には100Wとは異なる値であるかもしれない。このようなばらつきをシミュレーションの条件として考慮するために、本第3の実施形態では、室温分布推定部17が、境界条件に他のシミュレーションケースとは異なる値を用いつつ、複数ケースのシミュレーションを並行して実行する。室温分布推定部17は、各シミュレーションケースに与える「異なる値」を、例えば正規分布に従って決定する。図9は、境界条件の正規分布の一例を示す図である。図9の横軸はある境界条件の値であり、縦軸はその境界条件の値が横軸で示す各値となる確率である。境界条件の値を分散させる方法は、例えば、初期値を中心とする正規分布の確率が、所定以上となるような値から選択するという方法でもよい。室温分布推定部17は、図7のステップS8において、このようにして定めた境界条件を用いて複数のシミュレーションを実施する。次に室温分布推定部17は、温度センサ(屋内)100が備えられている位置に対応する格子における温度推定値を、各シミュレーション結果から取得する。室温分布推定部17は、例えば温度取得部16から取得した温度測定値と、各シミュレーションによる温度推定値とを比較し、最も温度測定値に近い結果を算出したシミュレーションによる温度分布の推定結果を選択し、図7のステップS9以降の処理を行ってもよい。
(Third embodiment)
A third embodiment will be described with reference to the drawings.
In the first embodiment, only one case of CFD simulation is executed. However, in the method of executing only one case, there is a possibility that the estimated temperature value obtained by the simulation is different from the actual condition due to the input boundary condition and error. For example, the specific heat of the wall member given as the initial value varies depending on individual differences and climatic conditions. Or, as described above, the setting of 100W as the amount of heat generated by a person among the thermal internal factors may actually be a value different from 100W depending on the size of the person's body and the indoor activity status. Absent. In order to consider such a variation as a simulation condition, in the third embodiment, the room temperature distribution estimation unit 17 performs a simulation of a plurality of cases in parallel while using a value different from the other simulation cases for the boundary condition. And run. The room temperature distribution estimation unit 17 determines “different values” to be given to each simulation case, for example, according to a normal distribution. FIG. 9 is a diagram illustrating an example of a normal distribution of boundary conditions. The horizontal axis of FIG. 9 is the value of a certain boundary condition, and the vertical axis is the probability that the value of the boundary condition becomes each value indicated by the horizontal axis. The method for distributing the boundary condition values may be, for example, a method of selecting from the values such that the probability of the normal distribution centered on the initial value is a predetermined value or more. The room temperature distribution estimation unit 17 performs a plurality of simulations using the boundary conditions thus determined in step S8 of FIG. Next, the room temperature distribution estimation part 17 acquires the temperature estimated value in the grating | lattice corresponding to the position where the temperature sensor (indoor) 100 is provided from each simulation result. The room temperature distribution estimation unit 17 compares, for example, the temperature measurement value acquired from the temperature acquisition unit 16 with the temperature estimation value by each simulation, and selects the temperature distribution estimation result by simulation that calculates the result closest to the temperature measurement value. And you may perform the process after step S9 of FIG.
 本第3の実施形態の変形例としてさらに次のようにしてもよい。本第3の実施形態の変形例を、図10を用いて説明する。図10は、パーティクルフィルタを利用したシミュレーションケースの選択処理のフロー図の一例である。まず、室温分布推定部17は、複数のシミュレーションケースを実施する(ステップS21)。次に、室温分布推定部17は、複数のシミュレーションによる推定結果と測定した温度情報とを比較する際に所定の尤度関数を用いて尤度を計算する(ステップS22)。室温分布推定部17は、尤度が高いシミュレーションケースだけを残し、尤度の低いシミュレーションケースは破棄する(ステップS23)。室温分布推定部17は、破棄したシミュレーションケースの数だけ新たにシミュレーションケースを生成し、同様の選択を繰り返す。室温分布推定部17は、このようにして尤度の高いシミュレーションケースだけを淘汰していく。室温分布推定部17が新たにシミュレーションケースを生成するときの境界条件の設定は、任意でよい。例えば、室温分布推定部17は、残ったシミュレーションケースの中から2つのケースを選択し、それらで用いられている各境界条件の値を組み合わせて、新たなシミュレーションケースを生成してもよい。本処理は、いわゆるパーティクルフィルタと呼ばれる処理である。この処理により、実測に近いシミュレーションケースが高い確率で残り、低いケースのものは淘汰されることになり、シミュレーションの精度を向上させることが可能となる。室温分布推定部17が温度分布を算出する場合、複数のシミュレーション結果に、尤度による重み付けを行って温度分布を算出してもよい。 As a modification of the third embodiment, the following may be further performed. A modification of the third embodiment will be described with reference to FIG. FIG. 10 is an example of a flow diagram of a simulation case selection process using a particle filter. First, the room temperature distribution estimation unit 17 performs a plurality of simulation cases (step S21). Next, the room temperature distribution estimation unit 17 calculates a likelihood using a predetermined likelihood function when comparing the estimation results obtained by a plurality of simulations with the measured temperature information (step S22). The room temperature distribution estimation unit 17 leaves only the simulation case with a high likelihood, and discards the simulation case with a low likelihood (step S23). The room temperature distribution estimation unit 17 generates new simulation cases for the number of simulation cases discarded, and repeats the same selection. In this way, the room temperature distribution estimation unit 17 hesitates only a simulation case with a high likelihood. The setting of boundary conditions when the room temperature distribution estimation unit 17 newly generates a simulation case may be arbitrary. For example, the room temperature distribution estimation unit 17 may generate two new simulation cases by selecting two cases from the remaining simulation cases and combining the values of the boundary conditions used in the cases. This process is a so-called particle filter process. By this processing, simulation cases close to actual measurement remain with high probability, and those with low cases are deceived, and the accuracy of simulation can be improved. When the room temperature distribution estimation unit 17 calculates the temperature distribution, the temperature distribution may be calculated by weighting a plurality of simulation results with likelihood.
 本第3の実施形態によれば、第1の実施形態と同様の効果を奏する他、シミュレーション結果をより現実に近づけることで、空調機40による温度制御をより正確に行うことができる。 According to the third embodiment, in addition to the same effects as those of the first embodiment, the temperature control by the air conditioner 40 can be performed more accurately by making the simulation result closer to reality.
 (第4の実施形態)
 第4の実施形態を、図面を用いて説明する。
 図11は、本第4の実施形態に係る空調制御システムの構成の一例を示すブロック図である。本第4の実施形態では、シミュレーションを実施する室温分布推定部17が、ネットワークNWを介して空調制御装置1と別装置(シミュレーション装置200)に配置されている。ネットワークNWは、例えば、インターネットやLAN等の各種ネットワークを含む。空調制御装置1とシミュレーション装置200のそれぞれは、ネットワークNWに接続するためのネットワークカード等のハードウェアを備えている。空調制御装置1について説明する。空調制御装置1は、シミュレーション要求部21を備えている。シミュレーション要求部21は、複数のシミュレーション装置200に対して初期値や境界条件、温度取得部16が取得した温度情報などを送信し、シミュレーションの実施を要求する。また、シミュレーション要求部21は、シミュレーション装置からシミュレーション結果を取得する。空調制御装置1は、室温分布推定部17を備えていない。その他の構成は、第1の実施形態と同様である。
(Fourth embodiment)
A fourth embodiment will be described with reference to the drawings.
FIG. 11 is a block diagram illustrating an example of a configuration of an air conditioning control system according to the fourth embodiment. In the fourth embodiment, the room temperature distribution estimation unit 17 that performs the simulation is arranged in a separate device (simulation device 200) from the air conditioning control device 1 via the network NW. The network NW includes, for example, various networks such as the Internet and a LAN. Each of the air conditioning control device 1 and the simulation device 200 includes hardware such as a network card for connecting to the network NW. The air conditioning control device 1 will be described. The air conditioning control device 1 includes a simulation request unit 21. The simulation request unit 21 transmits initial values, boundary conditions, temperature information acquired by the temperature acquisition unit 16, and the like to the plurality of simulation apparatuses 200 to request execution of the simulation. Moreover, the simulation request | requirement part 21 acquires a simulation result from a simulation apparatus. The air conditioning control device 1 does not include the room temperature distribution estimation unit 17. Other configurations are the same as those of the first embodiment.
 次にシミュレーション装置200について説明する。シミュレーション装置200は、シミュレーション要求受付部22を備えている。シミュレーション要求受付部22は、空調制御装置1から境界条件やシミュレーションの実施要求を受け付け、室温分布推定部17へ、シミュレーションの実行を指示する。シミュレーションが終了すると、室温分布推定部17は、シミュレーション結果を記憶部18へ記録する。シミュレーション要求受付部22は、記憶部18からシミュレーション結果を読み出して、空調制御装置1へ送信する。 Next, the simulation apparatus 200 will be described. The simulation apparatus 200 includes a simulation request receiving unit 22. The simulation request receiving unit 22 receives a boundary condition and a simulation execution request from the air conditioning control device 1 and instructs the room temperature distribution estimation unit 17 to execute the simulation. When the simulation is completed, the room temperature distribution estimation unit 17 records the simulation result in the storage unit 18. The simulation request receiving unit 22 reads out the simulation result from the storage unit 18 and transmits it to the air conditioning control device 1.
 本第4の実施形態の変形例としてさらに次のようにしてもよい。空調制御装置1のシミュレーション要求部21は、室温抽出部12から、目的位置に対応する分割空間を示す情報を取得する。シミュレーション要求部21は、境界条件やシミュレーションの実施要求に加え、室温抽出部12から分割空間を示す情報を、シミュレーション要求受付部22へ送信し、目的位置に対応した分割空間の温度の情報のみを要求する。 As a modification of the fourth embodiment, the following may be further performed. The simulation requesting unit 21 of the air conditioning control device 1 acquires information indicating the divided space corresponding to the target position from the room temperature extracting unit 12. The simulation request unit 21 transmits information indicating the divided space from the room temperature extraction unit 12 to the simulation request receiving unit 22 in addition to the boundary condition and the simulation execution request, and only the temperature information of the divided space corresponding to the target position Request.
 本第4の実施形態によれば、高い処理能力が要求される室温分布推定部17の処理を、例えば、クラウド上のシミュレーション装置200に行わせることによって、例えば各家庭に設置されている空調制御装置1に対する処理の負荷を低減させることができる。 According to the fourth embodiment, for example, by causing the simulation apparatus 200 on the cloud to perform processing of the room temperature distribution estimation unit 17 that requires high processing capacity, for example, air conditioning control installed in each home The processing load on the apparatus 1 can be reduced.
 (第5の実施形態)
 第5の実施形態を、図面を用いて説明する。
 図12は、本第5の実施形態に係る空調制御システムの構成の一例を示すブロック図である。本第5の実施形態の空調制御システムでは、シミュレーション装置200が、複数台備えられている。図12で例示する空調制御システムでは、シミュレーション装置200が2台(200A、200B)備えられているが、さらに多くの台数のシミュレーション装置が備えられていてもよい。本第5の実施形態における空調制御装置1とシミュレーション装置200の構成については、第4の実施形態と同じである。本第5の実施形態では、シミュレーション要求部21が、複数のシミュレーション装置200が備えるシミュレーション要求受付部22に対して、並列に、異なる条件のシミュレーション処理を行わせることで、処理の高速化を図る。次に図13、14を用いて、シミュレーション処理の実行を、複数のシミュレーション装置200に割り当て、処理を並列化する方法について説明する。
(Fifth embodiment)
A fifth embodiment will be described with reference to the drawings.
FIG. 12 is a block diagram illustrating an example of a configuration of an air conditioning control system according to the fifth embodiment. In the air conditioning control system of the fifth embodiment, a plurality of simulation apparatuses 200 are provided. In the air conditioning control system illustrated in FIG. 12, two simulation devices 200 (200A and 200B) are provided, but a larger number of simulation devices may be provided. About the structure of the air-conditioning control apparatus 1 in this 5th Embodiment, and the simulation apparatus 200, it is the same as 4th Embodiment. In the fifth embodiment, the simulation request unit 21 causes the simulation request reception unit 22 included in the plurality of simulation apparatuses 200 to perform simulation processing under different conditions in parallel, thereby increasing the processing speed. . Next, a method of assigning execution of simulation processing to a plurality of simulation apparatuses 200 and parallelizing the processing will be described with reference to FIGS.
 図13は、処理の並列化手法の一例を示す図である。以下、図13が示す処理の並列化手法を説明する。まず、シミュレーション要求部21が、記憶部18に記憶された空間モデルに関するデータを読み出す。この空間モデルに関するデータにおいては、CFDの手法によって格子状に区切って作成された空間モデルが4分割され、それぞれが領域A、B、C、Dと定義されている。次に、シミュレーション要求部21は、領域Aに対するシミュレーションをシミュレーション装置200Aに割り当て、同様に領域Bについてはシミュレーション装置200Bに、領域Cについてはシミュレーション装置200Cに、領域Dについてはシミュレーション装置200Dに割り当てる。このように領域ごとに分散して各シミュレーション装置200に処理を行わせることで各シミュレーション装置200が負担する計算量を減らし、シミュレーション処理全体を高速化することができる。この例において、シミュレーション要求部21が、各シミュレーション要求受付部22のそれぞれに要求する互いに異なる条件とは、シミュレーション対象となる領域を異なる領域とすることである。
 図14は、処理の並列化手法の他の例を示す図である。図14に示す手法は、シミュレーション要求部21が、いくつかのシミュレーションケースごとに各シミュレーション装置200に処理を割り当てて実行させる手法である。図14では20ケースのシミュレーションを実施しており、シミュレーション要求部21は、5つずつをグループ化し、それぞれをシミュレーション装置200A~200Dに割り当てている。図14の方法においても各シミュレーション装置200が負担する計算量を減らし、シミュレーション処理を高速化することができる。この例において、シミュレーション要求部21が、各シミュレーション要求受付部22のそれぞれに要求する互いに異なる条件とは、シミュレーション対象を異なるシミュレーションケースとすることである。
FIG. 13 is a diagram illustrating an example of a parallel processing method. Hereinafter, a method of parallelizing the processes shown in FIG. 13 will be described. First, the simulation request unit 21 reads data related to the spatial model stored in the storage unit 18. In the data related to this spatial model, a spatial model created by dividing the grid into a grid by the CFD method is divided into four parts, which are defined as regions A, B, C, and D, respectively. Next, the simulation request unit 21 assigns the simulation for the area A to the simulation apparatus 200A, and similarly assigns the area B to the simulation apparatus 200B, the area C to the simulation apparatus 200C, and the area D to the simulation apparatus 200D. In this way, by distributing each region and causing each simulation apparatus 200 to perform processing, the amount of calculation burdened by each simulation apparatus 200 can be reduced, and the entire simulation process can be speeded up. In this example, the mutually different conditions that the simulation requesting unit 21 requests from each of the simulation request receiving units 22 is that the regions to be simulated are different regions.
FIG. 14 is a diagram illustrating another example of a parallel processing method. The technique illustrated in FIG. 14 is a technique in which the simulation request unit 21 assigns and executes a process to each simulation apparatus 200 for each of several simulation cases. In FIG. 14, simulation of 20 cases is performed, and the simulation requesting unit 21 groups 5 groups and assigns them to the simulation apparatuses 200A to 200D. In the method of FIG. 14 as well, the amount of calculation burdened by each simulation apparatus 200 can be reduced and the simulation process can be speeded up. In this example, the mutually different conditions that the simulation requesting unit 21 requests from each of the simulation request receiving units 22 is that the simulation target is a different simulation case.
 複数のシミュレーション装置200で処理を行った後の処理については、例えば次のようにして行う。図12の構成を例に説明を行う。前提として、シミュレーション装置200A、200Bにおいて各装置が担当するシミュレーションの実行は完了しているものとする。シミュレーション装置200Bのシミュレーション要求受付部22Bは、シミュレーション結果を、記憶部18Bから読み出し、シミュレーション装置200Aへ送信する。シミュレーション装置200Aでは、シミュレーション要求受付部22Aが、その情報を受信し、記憶部18Aへ記録する。室温分布推定部17Aは、記憶部18Aからシミュレーション装置200A、200Bで行った処理の結果を読み出し、空調制御装置1から取得した温度情報とそれらの値とを比較する。室温分布推定部17Aは、例えば、取得した温度情報により近い値を示す結果を選択し、シミュレーション要求受付部22Aへ出力する。シミュレーション要求受付部22Aは、その結果を空調制御装置1へ送信する。空調制御装置1では、シミュレーション要求部21が、複数のシミュレーション装置で実行したシミュレーション結果のうち最も現実に合致した温度分布を取得することができる。空調制御装置1は後段の処理を実行する。 For example, the processing after the processing by the plurality of simulation apparatuses 200 is performed as follows. The configuration of FIG. 12 will be described as an example. As a premise, it is assumed that the simulation performed by each device in the simulation devices 200A and 200B has been completed. The simulation request receiving unit 22B of the simulation apparatus 200B reads the simulation result from the storage unit 18B and transmits the simulation result to the simulation apparatus 200A. In the simulation apparatus 200A, the simulation request receiving unit 22A receives the information and records it in the storage unit 18A. The room temperature distribution estimation unit 17A reads the results of the processing performed by the simulation devices 200A and 200B from the storage unit 18A, and compares the temperature information acquired from the air conditioning control device 1 with those values. For example, the room temperature distribution estimation unit 17A selects a result indicating a value closer to the acquired temperature information and outputs the result to the simulation request reception unit 22A. The simulation request receiving unit 22A transmits the result to the air conditioning control device 1. In the air conditioning control device 1, the simulation requesting unit 21 can acquire the temperature distribution that best matches the reality among the simulation results executed by the plurality of simulation devices. The air-conditioning control device 1 executes the subsequent process.
 本第5の実施形態によれば、第1の実施形態と同様の効果を奏する他、シミュレーション処理を高速化することで、精度の高いシミュレーション結果を得ることが可能である。それによって精度の高い空調制御が可能となる。
 上記の例では、シミュレーション装置200上でのみシミュレーションを実行する例を説明したが、空調制御装置1が、さらに室温分布推定部17を備えており、空調制御装置1においてもシミュレーションを実行させるようにしてもよい。
According to the fifth embodiment, in addition to the same effects as those of the first embodiment, it is possible to obtain a highly accurate simulation result by speeding up the simulation process. As a result, highly accurate air conditioning control is possible.
In the above example, the simulation is executed only on the simulation device 200. However, the air conditioning control device 1 further includes the room temperature distribution estimation unit 17, and the air conditioning control device 1 is also configured to execute the simulation. May be.
 (第6の実施形態)
 第6の実施形態を図面を用いて説明する。
 図15は、本第6の実施形態に係る空調制御装置1の構成の一例を示すブロック図である。本第6の実施形態における空調制御装置1は、可視化部23を備えている。可視化部23は、室温分布推定部17が算出した温度の分布や風速の分布を、2次元断面、3次元モデルなど建物の構造データに関連付けた画像を生成し、入出力部5に表示させる。他の構成については第1の実施形態と同様である。
 図16は、可視化部23が出力した3次元モデルの一例を示している。図16中の濃淡は温度分布を示しており、建物の空間の下部の温度は低く、上部の温度は高いことを示している。図16の右下図は、符号70の部分を拡大した図である。この図16が示すように、可視化部23は、風向を矢印で表示し、風量の強さを矢印の線の長さで表示してもよい。
(Sixth embodiment)
A sixth embodiment will be described with reference to the drawings.
FIG. 15 is a block diagram showing an example of the configuration of the air conditioning control device 1 according to the sixth embodiment. The air conditioning control device 1 according to the sixth embodiment includes a visualization unit 23. The visualization unit 23 generates an image in which the temperature distribution and the wind speed distribution calculated by the room temperature distribution estimation unit 17 are associated with building structure data such as a two-dimensional cross section and a three-dimensional model, and displays the image on the input / output unit 5. Other configurations are the same as those in the first embodiment.
FIG. 16 shows an example of a three-dimensional model output by the visualization unit 23. The shades in FIG. 16 indicate the temperature distribution, indicating that the temperature at the bottom of the building space is low and the temperature at the top is high. The lower right diagram in FIG. 16 is an enlarged view of the portion 70. As shown in FIG. 16, the visualization unit 23 may display the wind direction with an arrow and display the strength of the air volume with the length of the arrow line.
 本第6の実施形態によれば、第1の実施形態と同様の効果を奏する他、ユーザに対して省エネ化の行動を誘発したり、温度制御の根拠を示すことが可能となる。 According to the sixth embodiment, in addition to the same effects as those of the first embodiment, it is possible to induce energy-saving behavior for the user and to show the basis for temperature control.
 以上説明した少なくともひとつの実施形態によれば、建物の構造データと、温度取得部により取得された温度の情報とに基づいて、建物内の空間を分割した分割空間毎の温度の時間変化を推定し、指定された建物内の位置の情報に対応する分割空間の温度を推定結果から抽出し、抽出した温度と、指定された目標温度とに基づいて空調制御量を算出する機能を持つことにより、指定された場所の温度が所望の温度となるように制御をすることができる。 According to at least one embodiment described above, the temporal change in temperature for each divided space obtained by dividing the space in the building is estimated based on the building structure data and the temperature information acquired by the temperature acquisition unit. By extracting the temperature of the divided space corresponding to the position information in the specified building from the estimation result, and having the function of calculating the air conditioning control amount based on the extracted temperature and the specified target temperature , It is possible to control so that the temperature of the designated place becomes a desired temperature.
 入出力部5は、入力部の一例である。室温分布推定部17は、推定部の一例である。室温抽出部12及び温度調節部14は、算出部の一例である。シミュレーション要求部21は、要求部の一例である。シミュレーション要求受付部22は、受付部の一例である。 The input / output unit 5 is an example of an input unit. The room temperature distribution estimation unit 17 is an example of an estimation unit. The room temperature extraction unit 12 and the temperature adjustment unit 14 are examples of a calculation unit. The simulation request unit 21 is an example of a request unit. The simulation request receiving unit 22 is an example of a receiving unit.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Although several embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and the equivalents thereof.

Claims (11)

  1.  建物内の位置の情報と、目標温度との入力を受け付ける入力部と、
     前記建物内の測定された温度の情報を取得する温度取得部と、
     前記建物の構造データと、前記温度取得部により取得された温度の情報とに基づいて、前記建物内の空間を分割した分割空間毎の温度の時間変化を推定し、推定結果を出力する推定部と、
     前記推定結果から、前記入力部が受け付けた建物内の位置の情報に対応する前記分割空間の温度を抽出し、前記抽出した温度と前記目標温度とに基づいて空調制御量を算出する算出部と、
     を備える空調制御装置。
    An input unit for receiving information on the position in the building and the target temperature;
    A temperature acquisition unit for acquiring information of the measured temperature in the building;
    An estimation unit that estimates a temporal change in temperature for each divided space obtained by dividing the space in the building based on the structure data of the building and the temperature information acquired by the temperature acquisition unit, and outputs an estimation result When,
    A calculation unit that extracts the temperature of the divided space corresponding to the position information in the building received by the input unit from the estimation result, and calculates an air conditioning control amount based on the extracted temperature and the target temperature; ,
    An air conditioning control device.
  2.  前記推定部は、異なる推定パラメータを用いて推定した複数の推定結果と、前記温度取得部により取得された温度の情報とを比較し、前記温度取得部により取得された温度の情報に近い値を示す推定結果を出力する、請求項1に記載の空調制御装置。 The estimation unit compares a plurality of estimation results estimated using different estimation parameters with the temperature information acquired by the temperature acquisition unit, and calculates a value close to the temperature information acquired by the temperature acquisition unit. The air-conditioning control apparatus according to claim 1, which outputs an estimation result to be shown.
  3.  前記推定部は、異なる推定パラメータを用いて推定した複数の推定結果の尤度を計算し、前記尤度の高い推定結果をもたらす推定パラメータを保存する、請求項1又は請求項2に記載の空調制御装置。 The air conditioning according to claim 1 or 2, wherein the estimation unit calculates likelihoods of a plurality of estimation results estimated using different estimation parameters, and stores an estimation parameter that yields the estimation result having the high likelihood. Control device.
  4.  前記入力部は、人の存在を検出する検出部によって検出された人の位置を、前記建物内の位置の情報として入力する請求項1から請求項3の何れか1項に記載の空調制御装置。 The air conditioner control apparatus according to any one of claims 1 to 3, wherein the input unit inputs a position of a person detected by a detection unit that detects the presence of a person as position information in the building. .
  5.  前記推定部が算出した温度の分布と風速の分布を、前記建物の構造データに関連付けて表示する可視化部を、さらに備える請求項1から請求項4の何れか1項に記載の空調制御装置。 The air conditioning control device according to any one of claims 1 to 4, further comprising a visualization unit that displays the temperature distribution and the wind speed distribution calculated by the estimation unit in association with the building structure data.
  6.  建物内の位置の情報と、目標温度との入力を受け付ける入力部と、
     前記建物内の測定された温度の情報を取得する温度取得部と、
     前記建物内の空間を分割した分割空間毎の温度の情報を要求する要求部と、
     前記要求に対して取得した前記分割空間毎の温度から、前記入力部が受け付けた建物内の位置の情報に対応する温度を抽出し、前記抽出した温度と前記目標温度とに基づいて空調制御量を算出する算出部と、
     を備える空調制御装置。
    An input unit for receiving information on the position in the building and the target temperature;
    A temperature acquisition unit for acquiring information of the measured temperature in the building;
    A request unit for requesting temperature information for each divided space obtained by dividing the space in the building;
    The temperature corresponding to the position information in the building received by the input unit is extracted from the temperature for each divided space acquired in response to the request, and the air conditioning control amount is based on the extracted temperature and the target temperature. A calculation unit for calculating
    An air conditioning control device.
  7.  建物内の位置の情報と、目標温度との入力を受け付ける入力部と、
     前記建物内の測定された温度の情報を取得する温度取得部と、
     前記建物内の空間を分割した分割空間のうち、前記位置の情報に対応する分割空間の温度の情報を要求する要求部と、
     前記要求に対して取得した前記分割空間毎の温度と前記目標温度とに基づいて空調制御量を算出する算出部と、
     を備える空調制御装置。
    An input unit for receiving information on the position in the building and the target temperature;
    A temperature acquisition unit for acquiring information of the measured temperature in the building;
    Of the divided spaces obtained by dividing the space in the building, a request unit that requests information on the temperature of the divided space corresponding to the information on the position;
    A calculation unit that calculates an air conditioning control amount based on the temperature for each divided space acquired in response to the request and the target temperature;
    An air conditioning control device.
  8.  建物内の位置の情報と、目標温度との入力を受け付ける入力部と、
     前記建物内の測定された温度の情報を取得する温度取得部と、
     前記建物内の空間を分割した分割空間毎の温度の情報を要求する要求部と、
     前記要求に対して取得した前記分割空間毎の温度から、前記入力部が受け付けた建物内の位置の情報に対応する温度を抽出し、前記抽出した温度と前記目標温度とに基づいて空調制御量を算出する算出部と、
     を備える空調制御装置と、
     前記温度の情報の要求を受け付ける受付部と、
     前記受け付けた要求に対し、前記建物の構造データと、前記温度取得部により取得された温度の情報とに基づいて、前記建物内の空間を分割した分割空間毎の温度の時間変化を推定する推定部と、
     を備えるシミュレーション装置と、を備える空調制御システム。
    An input unit for receiving information on the position in the building and the target temperature;
    A temperature acquisition unit for acquiring information of the measured temperature in the building;
    A request unit for requesting temperature information for each divided space obtained by dividing the space in the building;
    The temperature corresponding to the position information in the building received by the input unit is extracted from the temperature for each divided space acquired in response to the request, and the air conditioning control amount is based on the extracted temperature and the target temperature. A calculation unit for calculating
    An air conditioning control device comprising:
    A reception unit that receives a request for the temperature information;
    In response to the received request, an estimation for estimating a time change of temperature for each divided space obtained by dividing the space in the building based on the structure data of the building and the temperature information acquired by the temperature acquisition unit And
    An air conditioning control system comprising: a simulation device comprising:
  9.  複数の前記シミュレーション装置を備え、前記要求部は、前記複数のシミュレーション装置が備える前記受付部それぞれに対して、互いに異なる条件で推定した前記温度の情報を要求する、請求項8に記載の空調制御システム。 The air conditioning control according to claim 8, comprising a plurality of the simulation devices, wherein the requesting unit requests the temperature information estimated under different conditions from each of the receiving units provided in the plurality of simulation devices. system.
  10.  建物内の位置の情報と、目標温度との入力を受け付けることと、
     前記建物内の測定された温度の情報を取得することと、
     前記建物の構造データと、前記取得された温度の情報とに基づいて、前記建物内の空間を分割した分割空間毎の温度の時間変化を推定し、推定結果を出力することと、
     前記推定結果から、前記受け付けた建物内の位置の情報に対応する前記分割空間の温度を抽出し、前記抽出した温度と前記目標温度とに基づいて空調制御量を算出することと、
     を含む、空調制御方法。
    Accepting information about location in the building and target temperature;
    Obtaining measured temperature information in the building;
    Based on the structure data of the building and the acquired temperature information, estimating a time change in temperature for each divided space obtained by dividing the space in the building, and outputting an estimation result;
    Extracting the temperature of the divided space corresponding to the received position information in the building from the estimation result, and calculating an air conditioning control amount based on the extracted temperature and the target temperature;
    Including an air conditioning control method.
  11.  空調制御装置のコンピュータに、
     建物内の位置の情報と、目標温度との入力を受け付けることと、
     前記建物内の測定された温度の情報を取得することと、
     前記建物の構造データと、前記取得された温度の情報とに基づいて、前記建物内の空間を分割した分割空間毎の温度の時間変化を推定し、推定結果を出力することと、
     前記推定結果から、前記受け付けた建物内の位置の情報に対応する前記分割空間の温度を抽出し、前記抽出した温度と前記目標温度とに基づいて空調制御量を算出することと、
    を実行させるためのプログラム。
    In the computer of the air conditioning control device,
    Accepting information about location in the building and target temperature;
    Obtaining measured temperature information in the building;
    Based on the structure data of the building and the acquired temperature information, estimating a time change in temperature for each divided space obtained by dividing the space in the building, and outputting an estimation result;
    Extracting the temperature of the divided space corresponding to the received position information in the building from the estimation result, and calculating an air conditioning control amount based on the extracted temperature and the target temperature;
    A program for running
PCT/JP2014/079442 2014-02-07 2014-11-06 Air conditioning control device, air conditioning control system, air conditioning control method, and program WO2015118739A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014022610A JP2015148410A (en) 2014-02-07 2014-02-07 Air conditioning control device, air conditioning control system, air conditioning control method and program
JP2014-022610 2014-02-07

Publications (1)

Publication Number Publication Date
WO2015118739A1 true WO2015118739A1 (en) 2015-08-13

Family

ID=53777558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/079442 WO2015118739A1 (en) 2014-02-07 2014-11-06 Air conditioning control device, air conditioning control system, air conditioning control method, and program

Country Status (2)

Country Link
JP (1) JP2015148410A (en)
WO (1) WO2015118739A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018146183A (en) * 2017-03-07 2018-09-20 富士ゼロックス株式会社 Environment measurement system and program
JP2018151095A (en) * 2017-03-10 2018-09-27 株式会社アドバンスドナレッジ研究所 Information processing system, program, environment management system, and facility management system
CN110325796A (en) * 2017-03-30 2019-10-11 松下知识产权经营株式会社 Air-conditioner control system and air conditioning control method
JPWO2021111617A1 (en) * 2019-12-06 2021-06-10
CN114963413A (en) * 2022-04-21 2022-08-30 日立楼宇技术(广州)有限公司 Control method, device and equipment of air conditioner and storage medium

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6581490B2 (en) * 2015-12-14 2019-09-25 株式会社東芝 Air conditioning parameter generation device, air conditioning operation evaluation device, air conditioning parameter generation method and program
WO2017195286A1 (en) * 2016-05-11 2017-11-16 三菱電機株式会社 Air conditioning visualization system
JP6562883B2 (en) * 2016-09-20 2019-08-21 株式会社東芝 Characteristic value estimation device and characteristic value estimation method
WO2018101225A1 (en) 2016-11-30 2018-06-07 パナソニックIpマネジメント株式会社 Home electrical appliance management system, outlet plug, home electrical appliance, and control terminal
CN110300874B (en) * 2017-03-28 2021-12-24 松下知识产权经营株式会社 Environment control system and environment control method
WO2018179731A1 (en) * 2017-03-29 2018-10-04 パナソニックIpマネジメント株式会社 Environment estimation device and environment estimation method
JP2019027602A (en) * 2017-07-25 2019-02-21 三菱重工サーマルシステムズ株式会社 Environment setting terminal, air-conditioning system, control method and program
JP7050590B2 (en) * 2018-06-14 2022-04-08 アズビル株式会社 Temperature distribution visualization device and method
JP2020086569A (en) * 2018-11-16 2020-06-04 株式会社MinD in a Device Device control system
JP7231403B2 (en) * 2018-12-26 2023-03-01 株式会社日立製作所 Air conditioning control system and method
JP7297473B2 (en) * 2019-03-08 2023-06-26 三菱重工サーマルシステムズ株式会社 Control device, air conditioner, control method and program
JP2021004680A (en) * 2019-06-25 2021-01-14 アズビル株式会社 Analyzer and analysis method
US20230161929A1 (en) 2020-04-06 2023-05-25 Nippon Telegraph And Telephone Corporation Estimation method, simulation method, estimation device, and estimation program
JP7389361B2 (en) * 2021-03-25 2023-11-30 ダイキン工業株式会社 Information processing equipment, air conditioning systems and programs
CN117242306A (en) * 2021-05-06 2023-12-15 三菱电机株式会社 Air conditioner control device
WO2022234814A1 (en) * 2021-05-07 2022-11-10 ダイキン工業株式会社 Method and apparatus for controlling environment adjusting apparatus, and intelligent environment adjusting system
JP2024031827A (en) * 2022-08-23 2024-03-07 ダイキン工業株式会社 Information processing device, information processing system, information processing method, and computer program
JP2024031861A (en) * 2022-08-23 2024-03-07 ダイキン工業株式会社 Information processing device, information processing system, information processing method, and computer program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005352999A (en) * 2004-06-14 2005-12-22 Fuji Heavy Ind Ltd Thermal liquid analysis support device
JP2008075973A (en) * 2006-09-21 2008-04-03 Toshiba Corp Sensor system for air-conditioning
JP2012037177A (en) * 2010-08-10 2012-02-23 Yamatake Corp Air conditioning controlling device and method
JP2012063055A (en) * 2010-09-15 2012-03-29 Taisei Corp Air conditioning environmental monitoring system
JP2013124809A (en) * 2011-12-14 2013-06-24 Mitsubishi Electric Building Techno Service Co Ltd Device, system and program for controlling air conditioning

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005352999A (en) * 2004-06-14 2005-12-22 Fuji Heavy Ind Ltd Thermal liquid analysis support device
JP2008075973A (en) * 2006-09-21 2008-04-03 Toshiba Corp Sensor system for air-conditioning
JP2012037177A (en) * 2010-08-10 2012-02-23 Yamatake Corp Air conditioning controlling device and method
JP2012063055A (en) * 2010-09-15 2012-03-29 Taisei Corp Air conditioning environmental monitoring system
JP2013124809A (en) * 2011-12-14 2013-06-24 Mitsubishi Electric Building Techno Service Co Ltd Device, system and program for controlling air conditioning

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018146183A (en) * 2017-03-07 2018-09-20 富士ゼロックス株式会社 Environment measurement system and program
CN108574944A (en) * 2017-03-07 2018-09-25 富士施乐株式会社 Environment measurement system and environment measurement method
US10908071B2 (en) 2017-03-07 2021-02-02 Fuji Xerox Co., Ltd. Environmental measurement system and non-transitory computer readable medium
JP2018151095A (en) * 2017-03-10 2018-09-27 株式会社アドバンスドナレッジ研究所 Information processing system, program, environment management system, and facility management system
CN110325796A (en) * 2017-03-30 2019-10-11 松下知识产权经营株式会社 Air-conditioner control system and air conditioning control method
JPWO2021111617A1 (en) * 2019-12-06 2021-06-10
JP7224494B2 (en) 2019-12-06 2023-02-17 三菱電機株式会社 Air conditioning controller
CN114963413A (en) * 2022-04-21 2022-08-30 日立楼宇技术(广州)有限公司 Control method, device and equipment of air conditioner and storage medium
CN114963413B (en) * 2022-04-21 2023-07-04 日立楼宇技术(广州)有限公司 Control method, device, equipment and storage medium of air conditioner

Also Published As

Publication number Publication date
JP2015148410A (en) 2015-08-20

Similar Documents

Publication Publication Date Title
WO2015118739A1 (en) Air conditioning control device, air conditioning control system, air conditioning control method, and program
KR101644697B1 (en) Air conditioning controlling apparatus and air conditioning controlling method
JP5674193B2 (en) Air conditioning environment monitoring system
Zuo et al. Coupling indoor airflow, HVAC, control and building envelope heat transfer in the Modelica Buildings library
US10705106B2 (en) System and method for monitoring a state of a fluid in an indoor space as well as a climate control system
JP6469231B2 (en) Air conditioning operation analysis device and program
US20140303789A1 (en) Automated technique of measuring room air change rates in hvac system
JPWO2007122677A1 (en) Design support method, design support system, and design support program for nonlinear heat / mass diffusion field with flow
Guo et al. Simulation and measurement of air temperatures and mean radiant temperatures in a radiantly heated indoor space
JP6181079B2 (en) Computational fluid dynamics system and method of use
JPWO2018179731A1 (en) Environment estimation apparatus and environment estimation method
JP2020106153A (en) Air-conditioning control system and method
Zhang et al. Convective heat transfer prediction in large rectangular cross-sectional area Earth-to-Air Heat Exchangers
Nasrabadi et al. Mathematical modeling of a low temperature low approach direct cooling tower for the provision of high temperature chilled water for conditioning of building spaces
WO2021131425A1 (en) Information processing device, information processing system, and information processing method
JP2013002672A (en) Air-conditioning control device and method
JP6245039B2 (en) Energy saving related information generation system
Liu et al. Estimating and visualizing thermal comfort level via a predicted mean vote in a BIM system
CN115344919A (en) Building internal environment analysis method, device, equipment and medium
JP2019215135A (en) Temperature distribution visualization device and method
Lowrey et al. A numerical model for a wet air-side economiser
Zhang et al. Compact modeling of data center air containment systems
EP4336114A1 (en) Air-conditioning control device
JP6370106B2 (en) Natural ventilation system
WO2024071257A1 (en) Program, information processing method, and information processing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14881450

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14881450

Country of ref document: EP

Kind code of ref document: A1