WO2015117702A1 - An aerosol-generating system having a fluid-permeable heater assembly - Google Patents
An aerosol-generating system having a fluid-permeable heater assembly Download PDFInfo
- Publication number
- WO2015117702A1 WO2015117702A1 PCT/EP2014/077835 EP2014077835W WO2015117702A1 WO 2015117702 A1 WO2015117702 A1 WO 2015117702A1 EP 2014077835 W EP2014077835 W EP 2014077835W WO 2015117702 A1 WO2015117702 A1 WO 2015117702A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrically conductive
- aerosol
- filaments
- heater assembly
- generating system
- Prior art date
Links
- 239000000758 substrate Substances 0.000 claims abstract description 95
- 239000000463 material Substances 0.000 claims description 107
- 239000007788 liquid Substances 0.000 claims description 40
- 238000000034 method Methods 0.000 claims description 14
- 238000003860 storage Methods 0.000 claims description 13
- 238000004519 manufacturing process Methods 0.000 claims description 11
- 230000000391 smoking effect Effects 0.000 claims description 9
- 229920001721 polyimide Polymers 0.000 description 17
- 239000010935 stainless steel Substances 0.000 description 12
- 229910001220 stainless steel Inorganic materials 0.000 description 12
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 11
- 239000004642 Polyimide Substances 0.000 description 10
- -1 aluminium- titanium- zirconium- Chemical compound 0.000 description 10
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 9
- 239000000443 aerosol Substances 0.000 description 9
- 239000004744 fabric Substances 0.000 description 9
- 239000011889 copper foil Substances 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- 230000000712 assembly Effects 0.000 description 7
- 238000000429 assembly Methods 0.000 description 7
- 238000005979 thermal decomposition reaction Methods 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 230000009471 action Effects 0.000 description 6
- 239000010439 graphite Substances 0.000 description 6
- 229910002804 graphite Inorganic materials 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 238000007789 sealing Methods 0.000 description 6
- 241000208125 Nicotiana Species 0.000 description 5
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 5
- 239000000919 ceramic Substances 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 239000011888 foil Substances 0.000 description 5
- 238000003780 insertion Methods 0.000 description 5
- 230000037431 insertion Effects 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 235000019504 cigarettes Nutrition 0.000 description 4
- 235000011187 glycerol Nutrition 0.000 description 4
- 230000005499 meniscus Effects 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 235000019506 cigar Nutrition 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 239000000796 flavoring agent Substances 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- 239000005020 polyethylene terephthalate Substances 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 150000005846 sugar alcohols Polymers 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- 239000010964 304L stainless steel Substances 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- 0 C*(C)(C)NC#C Chemical compound C*(C)(C)NC#C 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 238000001994 activation Methods 0.000 description 2
- 238000004026 adhesive bonding Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 235000019437 butane-1,3-diol Nutrition 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- ZDJFDFNNEAPGOP-UHFFFAOYSA-N dimethyl tetradecanedioate Chemical compound COC(=O)CCCCCCCCCCCCC(=O)OC ZDJFDFNNEAPGOP-UHFFFAOYSA-N 0.000 description 2
- 239000011152 fibreglass Substances 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 229920001903 high density polyethylene Polymers 0.000 description 2
- 239000004700 high-density polyethylene Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 description 2
- 229910001092 metal group alloy Inorganic materials 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000003071 parasitic effect Effects 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 239000002985 plastic film Substances 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 230000001007 puffing effect Effects 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- SNICXCGAKADSCV-JTQLQIEISA-N (-)-Nicotine Chemical compound CN1CCC[C@H]1C1=CC=CN=C1 SNICXCGAKADSCV-JTQLQIEISA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910001006 Constantan Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910018487 Ni—Cr Inorganic materials 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229920004933 Terylene® Polymers 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000002386 air freshener Substances 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- KCZFLPPCFOHPNI-UHFFFAOYSA-N alumane;iron Chemical compound [AlH3].[Fe] KCZFLPPCFOHPNI-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- YXTPWUNVHCYOSP-UHFFFAOYSA-N bis($l^{2}-silanylidene)molybdenum Chemical compound [Si]=[Mo]=[Si] YXTPWUNVHCYOSP-UHFFFAOYSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- IZMOTZDBVPMOFE-UHFFFAOYSA-N dimethyl dodecanedioate Chemical compound COC(=O)CCCCCCCCCCC(=O)OC IZMOTZDBVPMOFE-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000006261 foam material Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 239000003779 heat-resistant material Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- DALUDRGQOYMVLD-UHFFFAOYSA-N iron manganese Chemical compound [Mn].[Fe] DALUDRGQOYMVLD-UHFFFAOYSA-N 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 238000007567 mass-production technique Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910021343 molybdenum disilicide Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229960002715 nicotine Drugs 0.000 description 1
- SNICXCGAKADSCV-UHFFFAOYSA-N nicotine Natural products CN1CCCC1C1=CC=CN=C1 SNICXCGAKADSCV-UHFFFAOYSA-N 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920003223 poly(pyromellitimide-1,4-diphenyl ether) Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 229910000601 superalloy Inorganic materials 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- ILJSQTXMGCGYMG-UHFFFAOYSA-N triacetic acid Chemical compound CC(=O)CC(=O)CC(O)=O ILJSQTXMGCGYMG-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F47/00—Smokers' requisites not otherwise provided for
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/40—Constructional details, e.g. connection of cartridges and battery parts
- A24F40/46—Shape or structure of electric heating means
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24B—MANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
- A24B15/00—Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
- A24B15/10—Chemical features of tobacco products or tobacco substitutes
- A24B15/16—Chemical features of tobacco products or tobacco substitutes of tobacco substitutes
- A24B15/167—Chemical features of tobacco products or tobacco substitutes of tobacco substitutes in liquid or vaporisable form, e.g. liquid compositions for electronic cigarettes
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/10—Devices using liquid inhalable precursors
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/40—Constructional details, e.g. connection of cartridges and battery parts
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/40—Constructional details, e.g. connection of cartridges and battery parts
- A24F40/42—Cartridges or containers for inhalable precursors
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/70—Manufacture
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M11/00—Sprayers or atomisers specially adapted for therapeutic purposes
- A61M11/04—Sprayers or atomisers specially adapted for therapeutic purposes operated by the vapour pressure of the liquid to be sprayed or atomised
- A61M11/041—Sprayers or atomisers specially adapted for therapeutic purposes operated by the vapour pressure of the liquid to be sprayed or atomised using heaters
- A61M11/042—Sprayers or atomisers specially adapted for therapeutic purposes operated by the vapour pressure of the liquid to be sprayed or atomised using heaters electrical
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M15/00—Inhalators
- A61M15/06—Inhaling appliances shaped like cigars, cigarettes or pipes
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/02—Details
- H05B3/06—Heater elements structurally combined with coupling elements or holders
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/10—Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
- H05B3/12—Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
- H05B3/14—Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
- H05B3/145—Carbon only, e.g. carbon black, graphite
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/10—Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
- H05B3/16—Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor the conductor being mounted on an insulating base
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/20—Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
- H05B3/34—Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/20—Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
- H05B3/34—Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs
- H05B3/342—Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs heaters used in textiles
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/20—Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
- H05B3/34—Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs
- H05B3/342—Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs heaters used in textiles
- H05B3/347—Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs heaters used in textiles woven fabrics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M15/00—Inhalators
- A61M15/0001—Details of inhalators; Constructional features thereof
- A61M15/0021—Mouthpieces therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M15/00—Inhalators
- A61M15/0028—Inhalators using prepacked dosages, one for each application, e.g. capsules to be perforated or broken-up
- A61M15/003—Inhalators using prepacked dosages, one for each application, e.g. capsules to be perforated or broken-up using capsules, e.g. to be perforated or broken-up
- A61M15/0043—Non-destructive separation of the package, e.g. peeling
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
- A61M16/0003—Accessories therefor, e.g. sensors, vibrators, negative pressure
- A61M2016/0015—Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors
- A61M2016/0018—Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors electrical
- A61M2016/0024—Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors electrical with an on-off output signal, e.g. from a switch
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/36—General characteristics of the apparatus related to heating or cooling
- A61M2205/3653—General characteristics of the apparatus related to heating or cooling by Joule effect, i.e. electric resistance
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/82—Internal energy supply devices
- A61M2205/8206—Internal energy supply devices battery-operated
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B2203/00—Aspects relating to Ohmic resistive heating covered by group H05B3/00
- H05B2203/011—Heaters using laterally extending conductive material as connecting means
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B2203/00—Aspects relating to Ohmic resistive heating covered by group H05B3/00
- H05B2203/014—Heaters using resistive wires or cables not provided for in H05B3/54
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B2203/00—Aspects relating to Ohmic resistive heating covered by group H05B3/00
- H05B2203/014—Heaters using resistive wires or cables not provided for in H05B3/54
- H05B2203/015—Heater wherein the heating element is interwoven with the textile
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B2203/00—Aspects relating to Ohmic resistive heating covered by group H05B3/00
- H05B2203/017—Manufacturing methods or apparatus for heaters
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B2203/00—Aspects relating to Ohmic resistive heating covered by group H05B3/00
- H05B2203/021—Heaters specially adapted for heating liquids
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B2203/00—Aspects relating to Ohmic resistive heating covered by group H05B3/00
- H05B2203/022—Heaters specially adapted for heating gaseous material
Definitions
- the present invention relates to aerosol-generating systems that comprise a heater assembly that is suitable for vapourising a liquid.
- the invention relates to handheld aerosol-generating systems, such as electrically operated smoking systems.
- Electrically operated smoking systems that vapourise a liquid by heating to form an aerosol typically comprise a coil of wire that is wrapped around a capillary material that holds the liquid. Electric current passing through the wire causes resistive heating of the wire which vaporises the liquid in the capillary material.
- the capillary material is typically held within an airflow path so that air is drawn past the wick and entrains the vapour. The vapour subsequently cools to form an aerosol.
- an aerosol-generating system comprising a fluid- permeable electric heater assembly, the heater assembly comprising: an electrically insulating substrate, an aperture being formed in the electrically insulating substrate; and a heater element fixed to the electrically insulating substrate, the heater element spanning the aperture and comprising a plurality of electrically conductive filaments connected to first and second electrically conductive contact portions, the first and second electrically conductive contact portions positioned on opposite sides of the aperture to one another, wherein the first and second electrically conductive contact portions are configured to allow contact with an external power supply.
- the plurality of electrically conductive filaments may form a mesh or array of filaments or may comprise a woven or non-woven fabric.
- the heater element has a first face that is fixed to the electrically insulating substrate and the first and second electrically conductive contact portions are configured to allow contact with an external power supply on a second face of the heater element opposite to the first face.
- the system may further comprise a liquid storage portion comprising a housing containing a liquid aerosol-forming substrate, wherein the heater assembly is fixed to the housing of the liquid storage portion.
- the housing is preferably a rigid housing and impermeable to fluid.
- rigid housing means a housing that is self- supporting.
- the rigid housing of the liquid storage portion preferably provides mechanical support to the heater assembly.
- the liquid storage portion may comprise a capillary material configured to convey liquid aerosol-forming substrate to the heater assembly.
- a heater element comprising a mesh or array of filaments allows for a greater area of the heater to be in contact with a liquid being vapourised.
- the heater assembly can be inexpensively produced, using readily available materials and using mass production techniques.
- the heater assembly is robust allowing it to be handled and fixed to other parts of the aerosol- generating system during manufacture, and in particular to form part of a removable cartridge.
- the provision of electrically conductive contact portions forming part of the heater element allows for reliable and simple connection of the heater assembly to a power supply.
- the electrically conductive filaments may be substantially flat. As used herein,
- substantially flat means formed in a single plane and not wrapped around or other conformed to fit a curved or other non-planar shape.
- a flat heater assembly can be easily handled during manufacture and provides for a robust construction.
- the electrically conductive filaments may define interstices between the filaments and the interstices may have a width of between 10 ⁇ and 100 ⁇ .
- the filaments give rise to capillary action in the interstices, so that in use, liquid to be vapourised is drawn into the interstices, increasing the contact area between the heater assembly and the liquid.
- the electrically conductive filaments may form a mesh of size between 160 and 600 Mesh US (+/- 10%) (i.e. between 160 and 600 filaments per inch (+/- 10%)).
- the width of the interstices is preferably between 75 ⁇ and 25 ⁇ .
- the percentage of open area of the mesh which is the ration of the area of the interstices to the total area of the mesh is preferably between 25 and 56%.
- the mesh may be formed using different types of weave or lattice structures.
- the electrically conductive filaments consist of an array of filaments arranged parallel to one another.
- the mesh, array or fabric of electrically conductive filaments may also be characterised by its ability to retain liquid, as is well understood in the art.
- the electrically conductive filaments may have a diameter of between 8 ⁇ and 100 ⁇ , preferably between 8 ⁇ and 50 ⁇ , and more preferably between 8 ⁇ and 39 ⁇ .
- the area of the mesh, array or fabric of electrically conductive filaments may be small, preferably less than or equal to 25 mm 2 , allowing it to be incorporated in to a handheld system.
- the mesh, array or fabric of electrically conductive filaments may, for example, be rectangular and have dimensions of 5 mm by 2 mm.
- the mesh or array of electrically conductive filaments covers an area of between 10% and 50% of the area of the heater assembly. More preferably, the mesh or array of electrically conductive filaments covers an area of between 15 and 25% of the area of the heater assembly.
- the electrically conductive filaments may comprise any suitable electrically conductive material.
- suitable materials include but are not limited to: semiconductors such as doped ceramics, electrically "conductive" ceramics (such as, for example, molybdenum disilicide), carbon, graphite, metals, metal alloys and composite materials made of a ceramic material and a metallic material.
- Such composite materials may comprise doped or undoped ceramics.
- suitable doped ceramics include doped silicon carbides.
- suitable metals include titanium, zirconium, tantalum and metals from the platinum group.
- suitable metal alloys include stainless steel, constantan, nickel-, cobalt-, chromium-, aluminium- titanium- zirconium-, hafnium-, niobium- , molybdenum-, tantalum-, tungsten-, tin-, gallium-, manganese- and iron-containing alloys, and super-alloys based on nickel, iron, cobalt, stainless steel, Timetal®, iron-aluminium based alloys and iron-manganese-aluminium based alloys. Timetal® is a registered trade mark of Titanium Metals Corporation.
- the filaments may be coated with one or more insulators.
- Preferred materials for the electrically conductive filaments are 304, 316, 304L, and 316L stainless steel, and graphite.
- the electrical resistance of the mesh, array or fabric of electrically conductive filaments of the heater element is preferably between 0.3 and 4 Ohms. More preferably, the electrical resistance of the mesh, array or fabric of electrically conductive filaments is between 0.5 and 3 Ohms, and more preferably about 1 Ohm.
- the electrical resistance of the mesh, array or fabric of electrically conductive filaments is preferably at least an order of magnitude, and more preferably at least two orders of magnitude, greater than the electrical resistance of the contact portions. This ensures that the heat generated by passing current through the heater element is localised to the mesh or array of electrically conductive filaments. It is advantageous to have a low overall resistance for the heater element if the system is powered by a battery.
- Minimizing parasitic losses between the electrical contacts and the mesh or the filaments is also desirable to minimize parasitic power losses.
- a low resistance, high current system allows for the delivery of high power to the heater element. This allows the heater element to heat the electrically conductive filaments to a desired temperature quickly.
- the first and second electrically conductive contact portions may be fixed directly to the electrically conductive filaments.
- the contact portions may be positioned between the electrically conductive filaments and the electrically insulating substrate.
- the contact portions may be formed from a copper foil that is plated onto the insulating substrate. The contact portions may also bond more readily with the filaments than the insulating substrate would.
- the first and second electrically conductive contact portions may be integral with the electrically conductive filaments.
- the heater element may be formed by etching a conductive sheet to provide a plurality of filaments between two contact portions.
- the heater assembly may comprise at least one filament made from a first material and at least one filament made from a second material different from the first material. This may be beneficial for electrical or mechanical reasons.
- one or more of the filaments may be formed from a material having a resistance that varies significantly with temperature, such as an iron aluminium alloy. This allows a measure of resistance of the filaments to be used to determine temperature or changes in temperature. This can be used in a puff detection system and for controlling heater temperature to keep it within a desired temperature range.
- the electrically insulating substrate may comprise any suitable material, and is preferably a material that is able to tolerate high temperatures (in excess of 300°C) and rapid temperature changes.
- a suitable material is a polyimide film, such as Kapton®.
- the aerosol-forming substrate is a substrate capable of releasing volatile compounds that can form an aerosol.
- the volatile compounds may be released by heating the aerosol-forming substrate.
- the aerosol-forming substrate may comprise plant-based material.
- the aerosol-forming substrate may comprise tobacco.
- the aerosol-forming substrate may comprise a tobacco-containing material containing volatile tobacco flavour compounds, which are released from the aerosol-forming substrate upon heating.
- the aerosol-forming substrate may alternatively comprise a non-tobacco-containing material.
- the aerosol-forming substrate may comprise homogenised plant-based material.
- the aerosol-forming substrate may comprise homogenised tobacco material.
- the aerosol-forming substrate may comprise at least one aerosol-former.
- An aerosol-former is any suitable known compound or mixture of compounds that, in use, facilitates formation of a dense and stable aerosol and that is substantially resistant to thermal degradation at the operating temperature of operation of the system.
- Suitable aerosol-formers are well known in the art and include, but are not limited to: polyhydric alcohols, such as triethylene glycol, 1 ,3-butanediol and glycerine; esters of polyhydric alcohols, such as glycerol mono-, di- or triacetate; and aliphatic esters of mono-, di- or polycarboxylic acids, such as dimethyl dodecanedioate and dimethyl tetradecanedioate.
- Preferred aerosol formers are polyhydric alcohols or mixtures thereof, such as triethylene glycol, 1 ,3-butanediol and, most preferred, glycerine.
- the aerosol-forming substrate may comprise other additives and ingredients, such as flavourants.
- the capillary material may have a fibrous or spongy structure.
- the capillary material preferably comprises a bundle of capillaries.
- the capillary material may comprise a plurality of fibres or threads or other fine bore tubes. The fibres or threads may be generally aligned to convey liquid to the heater.
- the capillary material may comprise sponge-like or foam-like material.
- the structure of the capillary material forms a plurality of small bores or tubes, through which the liquid can be transported by capillary action.
- the capillary material may comprise any suitable material or combination of materials.
- suitable materials are a sponge or foam material, ceramic- or graphite-based materials in the form of fibres or sintered powders, foamed metal or plastics material, a fibrous material, for example made of spun or extruded fibres, such as cellulose acetate, polyester, or bonded polyolefin, polyethylene, terylene or polypropylene fibres, nylon fibres or ceramic.
- the capillary material may have any suitable capillarity and porosity so as to be used with different liquid physical properties.
- the liquid has physical properties, including but not limited to viscosity, surface tension, density, thermal conductivity, boiling point and vapour pressure, which allow the liquid to be transported through the capillary device by capillary action.
- the capillary material may be in contact with the electrically conductive filaments.
- the capillary material may extend into interstices between the filaments.
- the heater assembly may draw liquid aerosol-forming substrate into the interstices by capillary action.
- the capillary material may be in contact with the electrically conductive filaments over substantially the entire extent of the aperture.
- the housing may contain two or more different capillary materials, wherein a first capillary material, in contact with the heater element, has a higher thermal decomposition temperature and a second capillary material, in contact with the first capillary material but not in contact with the heater element has a lower thermal decomposition temperature.
- the first capillary material effectively acts as a spacer separating the heater element from the second capillary material so that the second capillary material is not exposed to temperatures above its thermal decomposition temperature.
- thermal decomposition temperature means the temperature at which a material begins to decompose and lose mass by generation of gaseous by products.
- the second capillary material may advantageously occupy a greater volume than the first capillary material and may hold more aerosol-forming substrate that the first capillary material.
- the second capillary material may have superior wicking performance to the first capillary material.
- the second capillary material may be a less expensive or have a higher filling capability than the first capillary material.
- the second capillary material may be polypropylene.
- the first capillary material may separate the heater assembly from the second capillary material by a distance of at least 1.5 mm, and preferably between 1 .5 and 2 mm in order to provide a sufficient temperature drop across the first capillary material.
- the liquid storage portion may be positioned on a first side of the electrically conductive filaments and an airflow channel positioned on an opposite side of the electrically conductive filaments to the liquid storage portion, such that air flow past the electrically conductive filaments entrains vapourised liquid aerosol-forming substrate.
- the system may further comprise electric circuitry connected to the heater element and to an electrical power source, the electric circuitry configured to monitor the electrical resistance of the heater element or of one or more filaments of the heater element, and to control the supply of power to the heater element from the power source dependent on the electrical resistance of the heater element or specifically the electrical resistance of the one or more filaments.
- the electric circuitry may comprise a microprocessor, which may be a programmable microprocessor, a microcontroller, or an application specific integrated chip (ASIC) or other electronic circuitry capable of providing control.
- the electric circuitry may comprise further electronic components.
- the electric circuitry may be configured to regulate a supply of power to the heater. Power may be supplied to the heater element continuously following activation of the system or may be supplied intermittently, such as on a puff by puff basis. The power may be supplied to the heater element in the form of pulses of electrical current.
- the system advantageously comprises a power supply, typically a battery such as a lithium iron phosphate battery, within the main body of the housing.
- the power supply may be another form of charge storage device such as a capacitor.
- the power supply may require recharging and may have a capacity that allows for the storage of enough energy for one or more smoking experiences.
- the power supply may have sufficient capacity to allow for the continuous generation of aerosol for a period of around six minutes, corresponding to the typical time taken to smoke a conventional cigarette, or for a period that is a multiple of six minutes.
- the power supply may have sufficient capacity to allow for a predetermined number of puffs or discrete activations of the heater.
- the system may comprise a main unit and a cartridge that is removably coupled to the main unit, wherein the liquid storage portion and heater assembly are provided in the cartridge and the main unit comprises a power supply.
- the cartridge being "removably coupled" to the device means that the cartridge and device can be coupled and uncoupled from one another without significantly damaging either the device or the cartridge.
- the system may be an electrically operated smoking system.
- the system may be a handheld aerosol-generating system.
- the aerosol-generating system may have a size comparable to a conventional cigar or cigarette.
- the smoking system may have a total length between approximately 30 mm and approximately 150 mm.
- the smoking system may have an external diameter between approximately 5 mm and approximately 30mm.
- a fluid-permeable electric heater assembly comprising: an electrically insulating substrate, an aperture being formed in the electrically insulating substrate; and a heater element spanning the aperture and having a first face fixed to the electrically insulating substrate, the heater element comprising a plurality of electrically conductive filaments connected to first and second electrically conductive contact portions, the first and second electrically conductive contact portions positioned on opposite sides of the aperture to one another, wherein the first and second electrically conductive, contact portions are configured to allow contact with an external power supply.
- a method of manufacturing a fluid-permeable electric heater assembly suitable for use in an aerosol-generating system comprising: providing an electrically insulating substrate;
- the heater element on the substrate spanning the one or more apertures, the heater element comprising a plurality of electrically conductive filaments and at least two electrically conductive contact portions on opposite sides of the one or more apertures to one another.
- a method of manufacturing a plurality of fluid- permeable electric heater assemblies suitable for use in an aerosol-generating system comprising:
- each heater assembly including one of the apertures.
- the electrically insulating substrate may be a flexible sheet material.
- the electrically conductive contact portions and electrically conductive filaments may be integrally formed with one another.
- electrically conductive means formed from a material having a resistivity of 1 x10 "4 Qm, or less.
- electrically insulating means formed from a material having a resistivity of 1x10 4 Qm or more.
- FIGS. 1 a to 1 d are schematic illustrations of a system, incorporating a cartridge, in accordance with an embodiment of the invention
- Figure 2 is a schematic illustration of a clasp mechanism for the mouthpiece portion of the system of Figure 1 ;
- Figure 3 is an exploded view of the cartridge of Figures 1 a to 1 d;
- Figure 4 is an exploded view of an alternative cartridge for use in a system as shown in Figures 1 a to 1 d;
- Figure 5a is a perspective underside view of the cartridge of Figure 2;
- Figure 5b is a perspective topside view of the cartridge of Figure 2, with the cover removed;
- FIG. 6 is a detail view of a heater assembly used in the cartridge shown in Figure
- FIG 7 is a detail view of an alternative heater assembly that can be used in the cartridge shown in Figure 2;
- FIG 8 is a detail view of a further alternative heater assembly that can be used in the cartridge shown in Figure 2;
- FIG 9 is a detail view of a still further alternative heater assembly that can be used in the cartridge shown in Figure 2;
- Figure 10 is a detail view of alternative mechanism for making electrical contact between the device and the heater assembly
- Figure 1 1 a and 1 1 1 b illustrate some cartridge housing shapes that can be used to ensure correct alignment of the cartridge in the device
- Figure 12a is a detailed view of the filaments of the heater, showing a meniscus of liquid aerosol-forming substrate between the filaments;
- Figure 12b is a detailed view of the filaments of the heater, showing a meniscus of liquid aerosol-forming substrate between the filaments and a capillary material extending between the filaments;
- FIGS. 13a, 13b and 13c illustrate alternative methods of manufacture for a heater assembly in accordance with the invention.
- Figure 14 illustrates an alternative design for a liquid storage portion incorporating a heater assembly.
- Figures 15a and 15b illustrate additional alternative embodiments of a liquid storage portion incorporating a heater assembly.
- Figure 16 illustrates an alternative embodiment of the airflow and cartridge orientation with the aerosol-generating device.
- Figures 1 a to 1 d are schematic illustrations of an aerosol-generating system, including a cartridge in accordance with an embodiment of the invention.
- Figure 1 a is a schematic view of an aerosol-generating device 10 and a separate cartridge 20, which together form the aerosol-generating system.
- the aerosol-generating system is an electrically operated smoking system.
- the cartridge 20 contains an aerosol-forming substrate and is configured to be received in a cavity 18 within the device. Cartridge 20 should be replaceable by a user when the aerosol-forming substrate provided in the cartridge is depleted.
- Figure 1 a shows the cartridge 20 just prior to insertion into the device, with the arrow 1 in Figure 1 a indicating the direction of insertion of the cartridge.
- the aerosol-generating device 10 is portable and has a size comparable to a conventional cigar or cigarette.
- the device 10 comprises a main body 1 1 and a mouthpiece portion 12.
- the main body 1 1 contains a battery 14, such as a lithium iron phosphate battery, control electronics 16 and a cavity 18.
- the mouthpiece portion 12 is connected to the main body 1 1 by a hinged connection 21 and can move between an open position as shown in Figure 1 and a closed position as shown in Figure 1 d.
- the mouthpiece portion 12 is placed in the open position to allow for insertion and removal of cartridges 20 and is placed in the closed position when the system is to be used to generate aerosol, as will be described.
- the mouthpiece portion comprises a plurality of air inlets 13 and an outlet 15.
- a user sucks or puffs on the outlet to draw air from the air inlets 13, through the mouthpiece portion to the outlet 15, and thereafter into the mouth or lungs of the user.
- Internal baffles 17 are provided to force the air flowing through the mouthpiece portion 12 past the cartridge, as will be described.
- the cavity 18 has a circular cross-section and is sized to receive a housing 24 of the cartridge 20.
- Electrical connectors 19 are provided at the sides of the cavity 18 to provide an electrical connection between the control electronics 16 and battery 14 and corresponding electrical contacts on the cartridge 20.
- Figure 1 b shows the system of Figure 1 a with the cartridge inserted into the cavity 18, and the cover 26 being removed. In this position, the electrical connectors rest against the electrical contacts on the cartridge, as will be described.
- Figure 1 c shows the system of Figure 1 b with the cover 26 fully removed and the mouthpiece portion 12 being moved to a closed position.
- Figure 1 d shows the system of Figure 1 c with the mouthpiece portion 12 in the closed position.
- the mouthpiece portion 12 is retained in the closed position by a clasp mechanism, as is schematically illustrated in Figure 2.
- Figure 2 illustrates the main body 1 1 and mouthpiece portion 12 connected by hinged connection 21 .
- the mouthpiece portion 12 comprises an inwardly extending tooth 8.
- the clasp 6 is biased by biasing spring 5 to engage the tooth 8.
- a button 4 is fixed to the clasp 6.
- Button 4 can be depressed by a user against the action of the biasing spring 5 to release the tooth 8 from the clasp 6, allowing the mouthpiece portion to move to an open position.
- the mouthpiece portion 12 in a closed position retains the cartridge in electrical contact with the electrical connectors 19 so that a good electrical connection is maintained in use, whatever the orientation of the system is.
- the mouthpiece portion 12 may include an annular elastomeric element that engages a surface of the cartridge and is compressed between a rigid mouthpiece housing element and the cartridge when the mouthpiece portion 12 is in the closed position. This ensures that a good electrical connection is maintained despite manufacturing tolerances.
- the housing 24 of the cartridge 20 may be provided with a thread or groove (not illustrated) that engages a corresponding groove or thread (not illustrated) formed in the wall of the cavity 18.
- a threaded engagement between the cartridge and device can be used to ensure the correct rotational alignment as well as retaining the cartridge in the cavity and ensuring a good electrical connection.
- the threaded connection may extend for only half a turn or less of the cartridge, or may extend for several turns.
- the electrical connectors 19 may be biased into contact with the contacts on the cartridge, as will be described with reference to Figure 8.
- FIG 3 is an exploded view of the cartridge 20.
- the cartridge 20 comprises a generally circular cylindrical housing 24 that has a size and shape selected to be received into the cavity 18.
- the housing contains a capillary material 22 that is soaked in a liquid aerosol-forming substrate.
- the aerosol-forming substrate comprises 39% by weight glycerine, 39% by weight propylene glycol, 20% by weight water and flavourings, and 2% by weight nicotine.
- a capillary material is a material that actively conveys liquid from one end to another, and may be made from any suitable material. In this example the capillary material is formed from polyester.
- the housing has an open end to which a heater assembly 30 is fixed.
- the heater assembly 30 comprises a substrate 34 having an aperture 35 formed in it, a pair of electrical contacts 32 fixed to the substrate and separated from each other by a gap 33, and a plurality of electrically conductive heater filaments 36 spanning the aperture and fixed to the electrical contacts on opposite sides of the aperture 35.
- the heater assembly 30 is covered by a removable cover 26.
- the cover comprises a liquid impermeable plastic sheet that is glued to the heater assembly but which can be easily peeled off.
- a tab is provided on the side of the cover to allow a user to grasp the cover when peeling it off.
- FIG 4 is an exploded view of an alternative exemplary cartridge.
- the cartridge of Figure 4 is the same size and shape as the cartridge of Figure 3 and has the same housing and heater assembly. However, the capillary material within the cartridge of Figure 4 is different to that of Figure 3.
- a disc of a first capillary material 27 is provided to contact the heater element 36, 32 in use.
- a larger body of a second capillary material 28 is provided on an opposite side of the first capillary material 27 to the heater assembly. Both the first capillary material and the second capillary material retain liquid aerosol-forming substrate.
- the first capillary material 27, which contacts the heater element, has a higher thermal decomposition temperature (at least 160°C or higher such as approximately 250 °C) than the second capillary material 28.
- the first capillary material 27 effectively acts as a spacer separating the heater element 36, 32 from the second capillary material 28 so that the second capillary material is not exposed to temperatures above its thermal decomposition temperature.
- the thermal gradient across the first capillary material is such that the second capillary material is exposed to temperatures below its thermal decomposition temperature.
- the second capillary material 28 may be chosen to have superior wicking performance to the first capillary material 27, may retain more liquid per unit volume than the first capillary material and may be less expensive than the first capillary material.
- the first capillary material is a heat resistant material, such as a fiberglass or fiberglass containing material and the second capillary material is a polymer such as suitable capillary material.
- suitable capillary materials include the capillary materials discussed herein and in alternative embodiments may include high density polyethylene (HDPE), or polyethylene terephthalate (PET).
- Figure 5a is a perspective underside view of the cartridge of Figure 3. It can be seen from Figure 5a that the heater assembly extends in a lateral plane and extends laterally beyond the housing 24 so that the heater assembly forms a lip around the top of the housing 24. Exposed portions of the electrical contacts 32 face in an insertion direction of the cartridge so that when the cartridge is fully inserted into the cavity 18, the exposed portions of the contacts 32 contact the electrical connectors 19. The tab, provided on the side of the cover 26 to allow a user to grasp the cover when peeling it off, can be clearly seen. Figure 5a also illustrates a locating portion 25 formed on the base of the cartridge for ensuring the correct orientation of the cartridge in the cavity of the device.
- the locating portion 25 is part of the injection moulded housing 24 and is configured to be received in a corresponding slot (not illustrated) in the base of the cavity 18. When the locating portion 25 is received in the slot in the cavity, the contacts 32 are aligned with the connectors 19.
- Figure 5b is a perspective topside view of the cartridge of Figure 3, with the cover removed.
- the heater filaments 36 are exposed through the aperture 35 in the substrate 34 so that vapourised aerosol-forming substrate can escape into the air flow past the heater assembly.
- the housing 24 is formed from a thermoplastic, such as polypropylene.
- the heater assembly 30 is glued to the housing 24 in this example. However, there are several possible ways in which to assembly and fill the cartridge.
- the cartridge housing may be formed by injection moulding.
- the capillary materials 22, 27, 28 may be formed by cutting suitable lengths of capillary material from a long rod of capillary fibres.
- the heater assembly may be assembled using a process as described with reference to Figures 13a, 13b and 13c In one embodiment the cartridge is assembled by first inserting the one or more capillary materials 22, 27, 28 into the housing 24. A predetermined volume of liquid aerosol-forming substrate is then introduced into the housing 24, soaking the capillary materials. The heater assembly 30 is then pushed onto the open end of the housing and fixed to the housing 24 by gluing, welding, heat sealing, ultrasonic welding, or other methods that will now be apparent to one of ordinary skill in the art.
- the temperature of the housing is preferably held below 160°C during any sealing operation to prevent unwanted volatising of the aerosol-forming substrate.
- the capillary material may be cut to a length such that it extends out of the open end of the housing 24 until it is compressed by the heater assembly. This promotes transport of aerosol-forming substrate into the interstices of the heater element in use.
- the heater assembly and the open end of the housing may first be flash heated and then pressed together to bond the heater assembly 30 to the housing 24.
- the heater assembly 30 may be fixed to the cartridge using any of the methods described.
- the heater assembly or housing is then pierced using a hollow needle and the aerosol-forming substrate injected into the capillary material 22, 27, 28. Any opening made by the hollow needle is then sealed by heat sealing or by using a sealing tape.
- FIG. 6 is an illustration of a first heater assembly 30 in accordance with the disclosure.
- the heater assembly comprises a mesh formed from 304L stainless steel, with a mesh size of about 400 Mesh US (about 400 filaments per inch).
- the filaments have a diameter of around 16 ⁇ .
- the mesh is connected to electrical contacts 32 that are separated from each other by a gap 33 and are formed from a copper foil having a thickness of around 30 ⁇ .
- the electrical contacts 32 are provided on a polyimide substrate 34 having a thickness of about 120 ⁇ .
- the filaments forming the mesh define interstices between the filaments.
- the interstices in this example have a width of around 37 ⁇ , although larger or smaller interstices may be used.
- Using a mesh of these approximate dimensions allows a meniscus of aerosol-forming substrate to be formed in the interstices, and for the mesh of the heater assembly to draw aerosol-forming substrate by capillary action.
- the open area of the mesh i.e. the ratio of the area of interstices to the total area of the mesh is advantageously between 25 and 56%.
- the total resistance of the heater assembly is around 1 Ohm.
- the mesh provides the vast majority of this resistance so that the majority of the heat is produced by the mesh. In this example the mesh has an electrical resistance more than 100 times higher than the electrical contacts 32.
- the substrate 34 is electrically insulating and, in this example, is formed from a polyimide sheet having a thickness of about 120 ⁇ .
- the substrate is circular and has a diameter of 8 mm.
- the mesh is rectangular and has side lengths of 5 mm and 2 mm. These dimensions allow for a complete system having a size and shape similar to a convention cigarette or cigar to be made.
- Another example of dimensions that have been found to be effective is a circular substrate of diameter 5mm and a rectangular mesh of 1 mmx4mm.
- Figure 7 is an illustration of an alternative, exemplary heater assembly in accordance with the disclosure.
- the heater assembly of Figure 7 is the same as that shown in Figure 6 but the mesh 36 is replaced by an array of parallel electrically conductive filaments 37.
- the array of filaments 37 are formed from 304L stainless steel and have a diameter of around 16 ⁇ .
- the substrate 34 and copper contact 32 are as described with reference to Figure 6.
- FIG 8 is an illustration of another alternative heater assembly in accordance with the disclosure.
- the heater assembly of Figure 8 is the same as that shown in Figure 7 but in the assembly of Figure 8, the filaments 37 are bonded directly to the substrate 34 and the contacts 32 are then bonded onto the filaments.
- the contacts 32 are separated from each other by insulating gap 33 as before, and are formed from copper foil of a thickness of around 30 ⁇ .
- the same arrangement of substrate filaments and contacts can be used for a mesh type heater as shown in Figure 6. Having the contacts as an outermost layer can be beneficial for providing reliable electrical contact with a power supply.
- FIG 9 is an illustration of an alternative heater assembly in accordance with the disclosure.
- the heater assembly of Figure 9 comprises a plurality of heater filaments 38 that are integrally formed with electrical contacts 39. Both the filaments and the electrical contacts are formed from a stainless steel foil that is etched to define filaments 38. The contacts 39 are separated by a gap 33 except when joined by filaments 38.
- the stainless steel foil is provided on a polyimide substrate 34. Again the filaments 38 provide the vast majority of this resistance, so that the majority of the heat is produced by the filaments. In this example the filaments 38 have an electrical resistance more than 100 times higher than the electrical contacts 39.
- Figure 10 illustrates an arrangement of this type.
- Figure 10 shows a heater assembly comprising a stainless steel mesh 56, fixed to copper foil contacts 52.
- the copper contacts 52 are fixed to a polyimide substrate 54.
- An aperture 55 is formed in the polyimide substrate 54.
- the polyimide substrate is welded to the housing 24 of the cartridge.
- the cartridge is shown received in the main body 1 1 of the device and held between electrical connectors 59 and mouthpiece portion 12.
- the connectors 59 are adapted to pierce the polyimide substrate 54, as shown.
- the electrical connectors are made with sharpened ends and are urged into contact with the heater assembly by springs 57.
- the polyimide substrate may be pre-scored to ensure a good electrical contact is made, or may even be provided with apertures so that piercing of the substrate is not necessary.
- the springs 57 also ensure that a good electrical contact between the contacts 52 and the connectors 59 is maintained whatever the orientation of the system with respect to gravity.
- FIG. 1 1 a is a base view of one possible cartridge housing 70, allowing the cartridge to be oriented in two possible orientations.
- the cartridge housing 70 includes two symmetrically disposed, grooves 72. The grooves may extend partially or fully up the side of the housing 70.
- Corresponding ribs may be formed on the walls of the cavity of the device, so that the cartridge can be received in the cavity in only two possible orientations.
- Figure 1 1 a it is possible to have only a single rib in the cavity so that one of the grooves 72 is not filled by a rib and can be used as an air flow channel within the device. It is of course possible to restrict the cartridge to a single orientation within the cavity by providing only a single groove in the housing. This is illustrated in Figure 1 1 b, which shows a cartridge housing 74 with a single groove 76.
- cartridge housings having a substantially circular cross section
- other shapes such as rectangular cross section or triangular cross section. These housing shapes would ensure a desired orientation within the corresponding shaped cavity, to ensure the electrical connection between the device and the cartridge.
- the capillary material 22 is advantageously oriented in the housing 24 to convey liquid to the heater assembly 30.
- the heater filaments 36, 37,38 may be in contact with the capillary material 22 and so aerosol-forming substrate can be conveyed directly to the mesh heater.
- Figure 12a is a detailed view of the filaments 36of the heater assembly, showing a meniscus 40 of liquid aerosol-forming substrate between the heater filaments 36. It can be seen that aerosol-forming substrate contacts most of the surface of each filament so that most of the heat generated by the heater assembly passes directly into the aerosol-forming substrate. In contrast, in conventional wick and coil heater assemblies only a small fraction of the heater wire is in contact with the aerosol-forming substrate.
- Figure 12b is a detailed view, similar to Figure 12a, showing an example of a capillary material 27 that extends into the interstices between the filaments 36.
- the capillary material 27 is the first capillary material shown in Figure 4. It can be seen that by providing a capillary material comprising fine threads of fibres that extend into the interstices between the filaments 36, transport of liquid to the filaments can be ensured.
- the heater assembly operates by resistive heating.
- Current is passed through the filaments 36, 37 38, under the control of control electronics 16, to heat the filaments to within a desired temperature range.
- the mesh or array of filaments has a significantly higher electrical resistance than the electrical contacts 32 and electrical connectors 19 so that the high temperatures are localised to the filaments.
- the system may be configured to generate heat by providing electrical current to the heater assembly in response to a user puff or may be configured to generate heat continuously while the device is in an "on" state.
- Different materials for the filaments may be suitable for different systems. For example, in a continuously heated system, graphite filaments are suitable as they have a relatively low specific heat capacity and are compatible with low current heating. In a puff actuated system, in which heat is generated in short bursts using high current pulses, stainless steel filaments, having a high specific heat capacity may be more suitable.
- the device may include a puff sensor configured to detect when a user is drawing air through the mouthpiece portion.
- the puff sensor (not illustrated) is connected to the control electronics 16 and the control electronics 16 are configured to supply current to the heater assembly 30 only when it is determined that the user is puffing on the device.
- Any suitable air flow sensor may be used as a puff sensor, such as a microphone.
- changes in the resistivity of one or more of the filaments 36, 38 or of the heater element as a whole may be used to detect a change in the temperature of the heater element. This can be used to regulate the power supplied to the heater element to ensure that it remains within a desired temperature range. Sudden changes in temperature may also be used as a means to detect changes in air flow past the heater element resulting from a user puffing on the system.
- One or more of the filaments may be dedicated temperature sensors and may be formed from a material having a suitable temperature coefficient of resistance for that purpose, such as an iron aluminium alloy, Ni-Cr, platinum, tungsten or alloy wire.
- the air flow through the mouthpiece portion when the system is used is illustrated in Figure 1 d.
- the mouthpiece portion includes internal baffles 17, which are integrally moulded with the external walls of the mouthpiece portion and ensure that, as air is drawn from the inlets 13 to the outlet 15, it flows over the heater assembly 30 on the cartridge where aerosol-forming substrate is being vapourised.
- vapourised substrate is entrained in the airflow and cools to form an aerosol before exiting the outlet 15. Accordingly, in use, the aerosol-forming substrate passes through the heater assembly by passing through the interstices between the filaments 36, 37, 38 as it is vapourised.
- Figure 13a is a schematic illustration of a first method of manufacture of a heater assembly.
- a roll of polyimide film 80 is provided with an array of apertures 82 in it.
- the apertures 82 may be formed by stamping.
- Bands of copper foil 84 are plated onto the polyimide film 80 between the apertures.
- Ribbons of stainless steel mesh 86 are then clad onto the polyimide film 80 on top of the copper foil 84 and over the apertures 82 in a direction orthogonal to the bands of copper foil.
- Individual heater assemblies 30 can then be cut or stamped out around each aperture 82.
- Each heater assembly 30 includes a portion of copper foil on opposite sides of the aperture, forming electrical contacts, and a strip of stainless steel mesh spans the aperture from one portion of copper to the other, as shown in Figure 6.
- Figure 13b illustrates another possible manufacturing process.
- a polyimide film 80 of the type used in the process of Figure 13a is clad with stainless steel foil 90.
- the polyimide film 80 has an array of apertures 82 formed in it but these apertures are covered by the stainless steel foil 90.
- the foil 90 is then etched to define filaments 38 spanning the apertures 82 and separate contact portions on opposite sides of the apertures.
- Individual heater assemblies 92 can then be cut or stamped out around each aperture 82. This provides a heater assembly of the type shown in Figure 9.
- FIG 13c illustrates a further alternative process.
- a graphite based fabric 100 is first prepared.
- the graphite based fabric 100 comprises bands of electrically resistive fibres, suitable for use as heater filaments, adjacent bands of relatively non-conductive fibres. These bands of fibres are woven together with bands of relatively electrically conductive fibres that extend perpendicular to the resistive and non- conductive fibres.
- This fabric 100 is then bonded to a layer of polyimide film 80 of the type described with reference to Figures 13a and 13b, having an array of apertures 82.
- Individual heater assemblies 102 can then be cut or stamped out around each aperture.
- Each heater assembly 102 includes a portion of a band of conductive fibres on opposite sides of the aperture and a band of electrically resistive fibres span the aperture.
- FIG. 14 illustrates an alternative cartridge design that is suited to a different pattern of airflow through the system.
- the cartridge 108 is configured to be inserted into the device in the direction indicated by the arrow 1 10.
- the cartridge 108 comprises a housing 1 12 which is shaped like a half cylinder and is open one side.
- a heater assembly 1 14 is provided across the open side and is glued or welded to the housing 1 12.
- the heater assembly 1 14 comprises an electrically insulating substrate 1 16, such as polyimide having an aperture formed in it.
- a heater element comprising a stainless steel mesh 1 18 and a pair of contact strips 120 is bonded to the electrically insulating substrate 1 16 and spans the aperture.
- the contact strips 120 are bent around the housing 1 12 to form contact pads on a curved surface of the housing.
- the electrical contact pads are configured to contact corresponding contacts (not illustrated) in the aerosol-generating device.
- the housing 1 12 is filled with a capillary material (not visible in Figure 14) soaked in aerosol-forming substrate, as described with reference to the embodiment shown in Figures 1 a to 1 d.
- the cartridge shown in Figure 14 is configured for airflow past the heater assembly 1 14 in a direction opposite to arrow 1 10. Air is drawn into the system through an air inlet provided in a main body of the device and is sucked past the heater assembly 1 14, into a mouthpiece portion of the device (or cartridge) and into a user's mouth. Air drawn into the system may be directed, for example, in a direction parallel along mesh 1 18 by appropriate placement of air inlets.
- Figure 15a further includes contract strips 120 spaced apart and running the length of the face having mesh 1 18.
- Figure 15b further includes contacts 120 having roughly an L shape. Both cartridge designs illustrated in Figures 15a and 15b may be used to provide even larger contact areas to further ensure easy contact to contacts 19 if required.
- Strips 120 as illustrated in Figure 15a may also configured to be slide into a contact 19 that is configured in a rail configuration (not illustrated) for receiving strips 120 to further position the cartridge.
- a rail-type configuration may advantageously provide a periodic cleaning of the contacts 19 as the insertion and removal of the cartridge will have a cleaning effect based on the friction of the contact sliding in and out of the rails.
- Figure 16 illustrates yet another embodiment of an aerosol-generating system comprising a fluid-permeable electric heater assembly.
- Figure 16 illustrates system where the heater assembly 30 is provided at an end of the cartridge 20 that is opposite to the mouthpiece portion 12. Airflow enters an air inlet 1601 and passes by the assembly and through an air outlet 1603 along a flow route 1605. Electrical contacts may be placed in any convenient location. Such a configuration is advantageous as it allows for shorter electrical connections within the system.
- the cartridge may include a mouthpiece portion, may include more than one heater assembly and may have any desired shape.
- a heater assembly in accordance with the disclosure may be used in systems of other types to those already described, such as humidifiers, air fresheners, and other aerosol-generating systems
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Textile Engineering (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Hematology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Biomedical Technology (AREA)
- Public Health (AREA)
- Heart & Thoracic Surgery (AREA)
- Anesthesiology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Pulmonology (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Resistance Heating (AREA)
- Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
Abstract
Description
Claims
Priority Applications (25)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES14812495T ES2831404T3 (en) | 2014-02-10 | 2014-12-15 | Aerosol generator system having a fluid-permeable heating unit |
MX2016010335A MX2016010335A (en) | 2014-02-10 | 2014-12-15 | An aerosol-generating system having a fluid-permeable heater assembly. |
CN201910709330.0A CN110236238B (en) | 2014-02-10 | 2014-12-15 | Aerosol-generating system with fluid permeable heater assembly |
BR112016017023-7A BR112016017023B1 (en) | 2014-02-10 | 2014-12-15 | AEROSOL GENERATOR SYSTEM HAVING A FLUID PERMEABLE HEATER ASSEMBLY AND METHOD FOR ITS MANUFACTURING |
EP14812495.1A EP3104721B1 (en) | 2014-02-10 | 2014-12-15 | An aerosol-generating system having a fluid-permeable heater assembly |
EP20201274.6A EP3782490A1 (en) | 2014-02-10 | 2014-12-15 | An aerosol-generating system having a fluid-permeable heater assembly |
KR1020237011093A KR102650793B1 (en) | 2014-02-10 | 2014-12-15 | An aerosol-generating system having a fluid-permeable heater assembly |
CA2937976A CA2937976C (en) | 2014-02-10 | 2014-12-15 | An aerosol-generating system having a fluid-permeable heater assembly |
RU2016136340A RU2657215C2 (en) | 2014-02-10 | 2014-12-15 | Generating aerosol system having assembled fluid permeable electric heater |
EP19174753.4A EP3549464B2 (en) | 2014-02-10 | 2014-12-15 | An aerosol-generating system having a fluid-permeable heater assembly |
KR1020167021288A KR102386955B1 (en) | 2014-02-10 | 2014-12-15 | An aerosol-generating system having a fluid-permeable heater assembly |
US15/116,652 US10842192B2 (en) | 2014-02-10 | 2014-12-15 | Aerosol-generating system having a fluid-permeable heater assembly |
AU2014381786A AU2014381786B2 (en) | 2014-02-10 | 2014-12-15 | An aerosol-generating system having a fluid-permeable heater assembly |
JP2016551281A JP6438967B2 (en) | 2014-02-10 | 2014-12-15 | Aerosol generation system with fluid permeable heater assembly |
UAA201608280A UA118776C2 (en) | 2014-02-10 | 2014-12-15 | An aerosol-generating system having a fluid-permeable heater assembly |
SG11201605856UA SG11201605856UA (en) | 2014-02-10 | 2014-12-15 | An aerosol-generating system having a fluid-permeable heater assembly |
CN201480074307.4A CN105934168B (en) | 2014-02-10 | 2014-12-15 | Aerosol with fluid penetrable heater assembly generates system |
KR1020227011581A KR102518749B1 (en) | 2014-02-10 | 2014-12-15 | An aerosol-generating system having a fluid-permeable heater assembly |
KR1020247009224A KR20240042543A (en) | 2014-02-10 | 2014-12-15 | An aerosol-generating system having a fluid-permeable heater assembly |
CN201910709368.8A CN110236239B (en) | 2014-02-10 | 2014-12-15 | Aerosol-generating system with fluid permeable heater assembly |
PH12016501300A PH12016501300B1 (en) | 2014-02-10 | 2016-06-30 | An aerosol-generating system having a fluid-permeable heater assembly |
ZA2016/04482A ZA201604482B (en) | 2014-02-10 | 2016-07-01 | An aerosol-generating system having a fluid-permeable heater assembly |
IL246570A IL246570A0 (en) | 2014-02-10 | 2016-07-03 | An aerosol-generating system having a fluid-permeable heater assembly |
US16/999,643 US11998051B2 (en) | 2014-02-10 | 2020-08-21 | Aerosol-generating system having a fluid-permeable heater assembly |
US18/643,783 US20240268461A1 (en) | 2014-02-10 | 2024-04-23 | Aerosol-generating system having a fluid-permeable heater assembly |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14154554.1 | 2014-02-10 | ||
EP14154554 | 2014-02-10 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/116,652 A-371-Of-International US10842192B2 (en) | 2014-02-10 | 2014-12-15 | Aerosol-generating system having a fluid-permeable heater assembly |
US16/999,643 Continuation US11998051B2 (en) | 2014-02-10 | 2020-08-21 | Aerosol-generating system having a fluid-permeable heater assembly |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015117702A1 true WO2015117702A1 (en) | 2015-08-13 |
Family
ID=50072951
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2014/077835 WO2015117702A1 (en) | 2014-02-10 | 2014-12-15 | An aerosol-generating system having a fluid-permeable heater assembly |
Country Status (22)
Country | Link |
---|---|
US (3) | US10842192B2 (en) |
EP (3) | EP3104721B1 (en) |
JP (5) | JP6438967B2 (en) |
KR (4) | KR102650793B1 (en) |
CN (3) | CN110236238B (en) |
AR (1) | AR099324A1 (en) |
AU (1) | AU2014381786B2 (en) |
BR (1) | BR112016017023B1 (en) |
CA (1) | CA2937976C (en) |
ES (1) | ES2831404T3 (en) |
HK (1) | HK1226258A1 (en) |
HU (1) | HUE051726T2 (en) |
IL (1) | IL246570A0 (en) |
MX (1) | MX2016010335A (en) |
MY (1) | MY178363A (en) |
PH (1) | PH12016501300B1 (en) |
RU (1) | RU2657215C2 (en) |
SG (1) | SG11201605856UA (en) |
TW (1) | TWI652021B (en) |
UA (1) | UA118776C2 (en) |
WO (1) | WO2015117702A1 (en) |
ZA (1) | ZA201604482B (en) |
Cited By (79)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016162446A1 (en) * | 2015-04-07 | 2016-10-13 | Philip Morris Products S.A. | Sachet of aerosol-forming substrate, method of manufacturing same, and aerosol-generating device for use with sachet |
WO2017072145A1 (en) * | 2015-10-30 | 2017-05-04 | British American Tobacco (Investments) Limited | Article for use with apparatus for heating smokable material |
WO2017072148A1 (en) * | 2015-10-30 | 2017-05-04 | British American Tobacco (Investments) Limited | Article for use with apparatus for heating smokable material |
WO2017125846A1 (en) * | 2016-01-22 | 2017-07-27 | Funai Electric Co., Ltd. | Vaporizing assembly and vapor generating device |
WO2017184834A1 (en) * | 2016-04-22 | 2017-10-26 | Intrepid Brands Llc | Oven assembly with a shaft element |
WO2017207195A1 (en) * | 2016-05-31 | 2017-12-07 | Philip Morris Products S.A. | Cartridge for an aerosol-generating system |
WO2017220340A1 (en) | 2016-06-20 | 2017-12-28 | Philip Morris Products S.A. | Vaporiser assembly for an aerosol-generating system |
WO2017220273A1 (en) | 2016-06-20 | 2017-12-28 | Philip Morris Products S.A. | Vaporiser assembly for an aerosol-generating system |
EP3272380A1 (en) * | 2016-07-18 | 2018-01-24 | Outstanding Healthcare Company Limited | Handheld nebulizer |
WO2018019485A1 (en) | 2016-07-25 | 2018-02-01 | Philip Morris Products S.A. | Cartridge for an aerosol-generating system with heater protection |
WO2018041063A1 (en) * | 2016-08-30 | 2018-03-08 | 常州聚为智能科技有限公司 | Atomizing assembly, atomizer and electronic cigarette |
WO2018050735A1 (en) * | 2016-09-15 | 2018-03-22 | Philip Morris Products S.A. | Aerosol-generating device |
WO2018153732A1 (en) | 2017-02-24 | 2018-08-30 | Philip Morris Products S.A. | Moulded mounting for an aerosol-generating element in an aerosol-generating system |
WO2018153608A1 (en) | 2017-02-24 | 2018-08-30 | Philip Morris Products S.A. | An aerosol-generating system and a cartridge for an aerosol generating system having a two-part liquid storage compartment |
KR20190004294A (en) * | 2016-05-31 | 2019-01-11 | 필립모리스 프로덕츠 에스.에이. | Fluid permeable heater assembly for aerosol generation system |
KR20190012157A (en) * | 2016-05-31 | 2019-02-08 | 필립모리스 프로덕츠 에스.에이. | Fluid permeable heater assembly for aerosol generating system and flat electrically conductive filament array for fluid permeable heater assembly |
KR20190022482A (en) * | 2016-06-20 | 2019-03-06 | 필립모리스 프로덕츠 에스.에이. | Heater assembly for aerosol generation system |
WO2019052748A1 (en) | 2017-09-18 | 2019-03-21 | Philip Morris Products S.A. | A cartridge for an aerosol-generating system |
US10244794B2 (en) | 2015-08-07 | 2019-04-02 | Altria Client Services Llc | Aerosol-generating system with enhanced airflow management |
EP3232834B1 (en) | 2014-12-15 | 2019-04-17 | Philip Morris Products S.a.s. | An aerosol-generating system using the venturi effect to deliver substrate to a heating element |
US10327477B2 (en) | 2016-07-25 | 2019-06-25 | Altria Client Services Llc | Cartridge for an aerosol-generating system with heater protection |
US10342262B2 (en) | 2016-05-31 | 2019-07-09 | Altria Client Services Llc | Cartridge for an aerosol-generating system |
EP3516973A1 (en) * | 2018-01-29 | 2019-07-31 | Tuanfang Liu | Electronic cigarette |
JP2019524114A (en) * | 2016-07-25 | 2019-09-05 | フィリップ・モーリス・プロダクツ・ソシエテ・アノニム | Fluid permeable heater assembly with cap |
JP2019526239A (en) * | 2016-07-25 | 2019-09-19 | フィリップ・モーリス・プロダクツ・ソシエテ・アノニム | Manufacture of fluid permeable heater assemblies with caps |
US10426197B2 (en) | 2015-08-07 | 2019-10-01 | Altria Client Services Llc | Aerosol-generating system with enhanced airflow management |
US10485267B2 (en) | 2016-07-25 | 2019-11-26 | Altria Client Services Llc | Fluid permeable heater assembly with cap |
WO2019229197A1 (en) | 2018-05-31 | 2019-12-05 | Philip Morris Products S.A. | Heater assembly with pierced transport material |
US10602777B2 (en) | 2014-07-25 | 2020-03-31 | Nicoventures Holdings Limited | Aerosol provision system |
WO2020064876A1 (en) | 2018-09-28 | 2020-04-02 | Philip Morris Products S.A. | Aerosol-generating system providing preferential evaporation of nicotine |
US10660369B2 (en) | 2016-07-14 | 2020-05-26 | Altria Client Services Llc | Fluid permeable heater assembly and cartridge for an aerosol-generating system |
WO2020115146A1 (en) * | 2018-12-06 | 2020-06-11 | Philip Morris Products S.A. | Mouthpiece with inner and outer tubular sections |
WO2020115322A1 (en) | 2018-12-07 | 2020-06-11 | Philip Morris Products S.A. | An atomiser and an aerosol-generating system comprising an atomiser |
WO2020115321A1 (en) | 2018-12-07 | 2020-06-11 | Philip Morris Products S.A. | Aerosol generating system and cartridge with leakage protection |
WO2020115306A1 (en) | 2018-12-07 | 2020-06-11 | Philip Morris Products S.A. | Aerosol-generating system and cartridge with leakage protection |
WO2020115302A1 (en) | 2018-12-07 | 2020-06-11 | Philip Morris Products S.A. | Aerosol generating system and cartridge with leakage protection |
US10737419B2 (en) | 2016-07-25 | 2020-08-11 | Altria Client Services Llc | Manufacturing a fluid permeable heater assembly with cap |
US10806180B2 (en) | 2015-08-25 | 2020-10-20 | Nicoventures Holdings Limited | Electronic vapor provision system |
WO2020259961A1 (en) | 2019-06-25 | 2020-12-30 | Philip Morris Products S.A. | An aerosol-generating system and a cartridge for an aerosol-generating system having improved heating assembly |
WO2020260319A1 (en) | 2019-06-28 | 2020-12-30 | Philip Morris Products S.A. | System and method for testing a heating system for use in an aerosol |
WO2020259973A1 (en) | 2019-06-25 | 2020-12-30 | Philip Morris Products S.A. | An aerosol-generating system and a cartridge for an aerosol-generating system having particulate filter |
WO2020259977A1 (en) | 2019-06-25 | 2020-12-30 | Philip Morris Products S.A. | Cartridge comprising nicotine and a water-immiscible solvent |
WO2020260414A1 (en) | 2019-06-25 | 2020-12-30 | Philip Morris Products S.A. | Aerosol-generating device and system with conductivity sensor |
WO2020260416A1 (en) | 2019-06-25 | 2020-12-30 | Philip Morris Products S.A. | Carbonated liquid nicotine formulation |
US10881140B2 (en) | 2016-06-20 | 2021-01-05 | Altria Client Services Llc | Vaporiser assembly for an aerosol-generating system |
WO2021015413A1 (en) | 2019-07-23 | 2021-01-28 | Kt&G Corporation | Aerosol generating device |
WO2021123017A1 (en) | 2019-12-19 | 2021-06-24 | Philip Morris Products S.A. | A cartridge for an aerosol-generating system, an aerosol-generating system including a cartridge, and a method of manufacturing a heater assembly and cartridge for an aerosol-generating system |
WO2021122791A1 (en) * | 2019-12-18 | 2021-06-24 | Philip Morris Products S.A. | An aerosol-generating article comprising a barrier |
EP3756492A4 (en) * | 2018-02-21 | 2021-10-27 | KT&G Corporation | Aerosol generation device |
US11252992B2 (en) | 2015-10-30 | 2022-02-22 | Nicoventures Trading Limited | Article for use with apparatus for heating smokable material |
US11259370B2 (en) | 2017-12-08 | 2022-02-22 | Altria Client Services Llc | Multi-component aerosol-generating device with impact absorbing part |
US11272740B2 (en) | 2012-07-16 | 2022-03-15 | Nicoventures Holdings Limited | Electronic vapor provision device |
EP3928644A4 (en) * | 2019-03-20 | 2022-03-16 | O-Net Automation Technology (Shenzhen) Limited | Atomizing assembly and preparation method therefor |
WO2022078645A1 (en) | 2020-10-16 | 2022-04-21 | Philip Morris Products S.A. | Liquid nicotine formulation and cartridge for an aerosol-generating system |
RU2779428C2 (en) * | 2017-09-18 | 2022-09-07 | Филип Моррис Продактс С.А. | Cartridge for aerosol generating system |
GB2567348B (en) * | 2016-07-29 | 2022-09-28 | Pax Labs Inc | Methods and apparatuses for concentrate vaporization |
US11457664B2 (en) | 2016-06-29 | 2022-10-04 | Nicoventures Trading Limited | Apparatus for heating smokable material |
US11560271B2 (en) * | 2015-07-24 | 2023-01-24 | Fontem Holdings 1 B.V. | Liquid containers for electronic smoking device |
US11589614B2 (en) | 2015-08-31 | 2023-02-28 | Nicoventures Trading Limited | Cartridge for use with apparatus for heating smokable material |
WO2023041487A1 (en) * | 2021-09-17 | 2023-03-23 | Nerudia Limited | A smoking substitute device |
US11622580B2 (en) | 2017-10-30 | 2023-04-11 | Kt&G Corporation | Aerosol generation device and generation method |
US11622579B2 (en) | 2017-10-30 | 2023-04-11 | Kt&G Corporation | Aerosol generating device having heater |
US11696368B2 (en) | 2017-02-24 | 2023-07-04 | Altria Client Services Llc | Aerosol-generating system and a cartridge for an aerosol-generating system having a two-part liquid storage compartment |
US11700886B2 (en) | 2017-10-30 | 2023-07-18 | Kt&G Corporation | Aerosol generating device and heater assembly for aerosol generating device |
US11700884B2 (en) | 2017-10-30 | 2023-07-18 | Kt&G Corporation | Aerosol generation device and heater for aerosol generation device |
US11700885B2 (en) | 2017-10-30 | 2023-07-18 | Kt&G Corporation | Aerosol generation device including mainstream smoke passage and pressure detection passage |
WO2023152244A1 (en) | 2022-02-11 | 2023-08-17 | Philip Morris Products S.A. | Cartridge for an aerosol-generating system and an aerosol generating system with improved liquid delivery |
EP3615115B1 (en) | 2017-04-25 | 2023-08-30 | Imperial Tobacco Limited | Aerosol delivery system |
US11744287B2 (en) | 2017-10-30 | 2023-09-05 | Kt&G Corporation | Aerosol generating device and method for controlling same |
US11896055B2 (en) | 2015-06-29 | 2024-02-13 | Nicoventures Trading Limited | Electronic aerosol provision systems |
US11930848B2 (en) | 2018-02-16 | 2024-03-19 | Nicoventures Trading Limited | Aerosol generation article |
US11956879B2 (en) | 2017-09-15 | 2024-04-09 | Nicoventures Trading Limited | Apparatus for heating smokable material |
US11974611B2 (en) | 2017-10-30 | 2024-05-07 | Kt&G Corporation | Method for controlling temperature of heater included in aerosol generation device according to type of cigarette, and aerosol generation device for controlling temperature of heater according to type of cigarette |
US11998049B2 (en) | 2018-02-16 | 2024-06-04 | Nicoventures Trading Limited | Aerosol generation article |
WO2024126608A1 (en) | 2022-12-13 | 2024-06-20 | Philip Morris Products S.A. | Mouthpiece for an aerosol-generating system |
US12048328B2 (en) | 2017-10-30 | 2024-07-30 | Kt&G Corporation | Optical module and aerosol generation device comprising same |
US12070070B2 (en) | 2015-06-29 | 2024-08-27 | Nicoventures Trading Limited | Electronic vapor provision system |
US12082327B2 (en) | 2015-10-30 | 2024-09-03 | Nicoventures Trading Limited | Article for use with apparatus for heating smokable material |
US12082604B2 (en) | 2015-03-31 | 2024-09-10 | Nicoventures Trading Limited | Article for use with apparatus for heating smokable material |
Families Citing this family (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3104721B1 (en) * | 2014-02-10 | 2020-10-14 | Philip Morris Products S.a.s. | An aerosol-generating system having a fluid-permeable heater assembly |
CN203986095U (en) * | 2014-04-03 | 2014-12-10 | 惠州市吉瑞科技有限公司 | A kind of atomizer and electronic cigarette |
TWI660685B (en) | 2014-05-21 | 2019-06-01 | 瑞士商菲利浦莫里斯製品股份有限公司 | Electrically heated aerosol-generating system and cartridge for use in such a system |
GB2527597B (en) | 2014-06-27 | 2016-11-23 | Relco Induction Dev Ltd | Electronic Vapour Inhalers |
TR201901447T4 (en) * | 2014-11-21 | 2019-02-21 | Philip Morris Products Sa | Smoking product containing a frictional flammable carbon heat source. |
PL3288403T3 (en) * | 2015-04-30 | 2023-04-24 | Philip Morris Products S.A. | Cartridge for an aerosol-generating system |
US10010114B2 (en) | 2015-06-25 | 2018-07-03 | Altria Client Services Llc | Charger assembly and charging system for an electronic vaping device |
US10500354B2 (en) * | 2015-09-25 | 2019-12-10 | Sanmina Corporation | System and method for atomizing and monitoring a drug cartridge during inhalation treatments |
EP3487776A1 (en) * | 2016-07-22 | 2019-05-29 | Nicoventures Holdings Limited | Case for a vapour provision device |
CN113662278B (en) * | 2016-08-05 | 2024-08-27 | 尤尔实验室有限公司 | Wind speed auxiliary control of evaporator |
US10130122B2 (en) * | 2016-10-28 | 2018-11-20 | Funai Electric Co., Ltd. | Supply item for vapor generating device |
CN109890232B (en) * | 2016-11-14 | 2022-04-08 | 菲利普莫里斯生产公司 | Aerosol-generating system with variable airflow |
JP6765455B2 (en) | 2017-02-08 | 2020-10-07 | 日本たばこ産業株式会社 | Cartridge and aspirator |
CN107048484B (en) * | 2017-05-09 | 2019-11-12 | 苏州锐捷思精密制造有限公司 | Graphite heating component for electronic cigarette |
EP3735842A4 (en) * | 2018-01-03 | 2021-10-06 | KT&G Corporation | Aerosol-generating article and apparatus |
JP2021524237A (en) * | 2018-05-21 | 2021-09-13 | ジェイティー インターナショナル エス.エイ.JT International S.A. | Aerosol-generating articles, manufacturing methods for aerosol-generating articles, and aerosol-generating systems |
US11730199B2 (en) | 2018-06-07 | 2023-08-22 | Juul Labs, Inc. | Cartridges for vaporizer devices |
US10888125B2 (en) | 2018-06-27 | 2021-01-12 | Juul Labs, Inc. | Vaporizer device with subassemblies |
WO2020002689A1 (en) * | 2018-06-28 | 2020-01-02 | Philip Morris Products S.A. | Cartridge for an aerosol-generating system containing a nicotine source comprising a liquid nicotine formulation |
KR102513149B1 (en) * | 2018-08-01 | 2023-03-23 | 필립모리스 프로덕츠 에스.에이. | Heater with at least 2 adjacent metal meshes |
US11432581B2 (en) | 2018-09-07 | 2022-09-06 | Altria Client Services Llc | Capsule containing a matrix, device with the matrix, and method of forming the matrix |
JP1643514S (en) * | 2018-09-18 | 2019-10-15 | e-cigarette cartridge | |
JP1643249S (en) * | 2018-09-18 | 2019-10-15 | e-cigarette cartridge | |
KR20210064301A (en) | 2018-09-25 | 2021-06-02 | 필립모리스 프로덕츠 에스.에이. | Induction heating assembly for inductively heating an aerosol-forming substrate |
WO2020064686A1 (en) | 2018-09-25 | 2020-04-02 | Philip Morris Products S.A. | Heating assembly and method for inductively heating an aerosol-forming substrate |
KR20210072038A (en) | 2018-10-08 | 2021-06-16 | 쥴 랩스, 인크. | heating element |
US11502466B2 (en) | 2018-10-12 | 2022-11-15 | Rai Strategic Holdings, Inc. | Aerosol delivery device with improved connectivity, airflow, and aerosol paths |
US10791767B2 (en) | 2018-10-12 | 2020-10-06 | Rai Strategic Holdings, Inc. | Connectors for forming electrical and mechanical connections between interchangeable units in an aerosol delivery system |
US11974603B2 (en) | 2018-10-12 | 2024-05-07 | Rai Strategic Holdings, Inc. | Aerosol delivery device with visible indicator |
US10939702B2 (en) | 2018-10-12 | 2021-03-09 | Rai Strategic Holdings, Inc. | Connectors for forming electrical and mechanical connections between interchangeable units in an aerosol delivery system |
US11678700B2 (en) | 2018-10-12 | 2023-06-20 | Rai Strategic Holdings, Inc. | Aerosol delivery device with visible indicator |
US11291249B2 (en) | 2018-10-12 | 2022-04-05 | Rai Strategic Holdings, Inc. | Aerosol delivery device with visible indicator |
WO2020097078A1 (en) | 2018-11-05 | 2020-05-14 | Juul Labs, Inc. | Cartridges for vaporizer devices |
CA3118875A1 (en) | 2018-11-05 | 2020-05-14 | Juul Labs, Inc. | Cartridges for vaporizer devices |
JP7566734B2 (en) | 2018-11-05 | 2024-10-15 | ジュール・ラブズ・インコーポレイテッド | Cartridges for vaporizer devices |
CA3118504A1 (en) * | 2018-11-08 | 2020-05-14 | Juul Labs, Inc. | Vaporizer device with more than one heating element |
US12066654B2 (en) | 2018-11-19 | 2024-08-20 | Rai Strategic Holdings, Inc. | Charging control for an aerosol delivery device |
US11614720B2 (en) | 2018-11-19 | 2023-03-28 | Rai Strategic Holdings, Inc. | Temperature control in an aerosol delivery device |
US11592793B2 (en) | 2018-11-19 | 2023-02-28 | Rai Strategic Holdings, Inc. | Power control for an aerosol delivery device |
US11156766B2 (en) | 2018-11-19 | 2021-10-26 | Rai Strategic Holdings, Inc. | Aerosol delivery device |
US11372153B2 (en) | 2018-11-19 | 2022-06-28 | Rai Strategic Holdings, Inc. | Cartridge orientation for selection of a control function in a vaporization system |
CN109770438B (en) * | 2019-03-25 | 2023-07-25 | 云南中烟工业有限责任公司 | Film-coated silicon-based electronic cigarette atomization chip and preparation method thereof |
KR20200144049A (en) | 2019-06-17 | 2020-12-28 | 주식회사 케이티앤지 | An aerosol generating device and an aerosol generating article |
WO2021258286A1 (en) * | 2020-06-23 | 2021-12-30 | 深圳市华诚达精密工业有限公司 | Frame-type heating assembly, heating unit, and atomization system |
KR102605496B1 (en) * | 2020-08-21 | 2023-11-22 | 주식회사 케이티앤지 | Covection heater and aerosol-generating apparatus including the same |
US11856986B2 (en) | 2020-10-19 | 2024-01-02 | Rai Strategic Holdings, Inc. | Customizable panel for aerosol delivery device |
US11910826B2 (en) | 2021-01-18 | 2024-02-27 | Altria Client Services Llc | Heat-not-burn (HNB) aerosol-generating devices and capsules |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5408574A (en) * | 1989-12-01 | 1995-04-18 | Philip Morris Incorporated | Flat ceramic heater having discrete heating zones |
WO2010045671A1 (en) | 2008-10-23 | 2010-04-29 | Helmut Buchberger | Inhaler |
WO2013013808A1 (en) * | 2011-07-27 | 2013-01-31 | Batmark Limited | Inhaler component |
US20130213419A1 (en) | 2012-02-22 | 2013-08-22 | Altria Client Services Inc. | Electronic smoking article and improved heater element |
Family Cites Families (97)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3200819A (en) * | 1963-04-17 | 1965-08-17 | Herbert A Gilbert | Smokeless non-tobacco cigarette |
US3289949A (en) * | 1964-07-09 | 1966-12-06 | Geigy Chem Corp | Pushbutton dispenser for products in the fluid state |
US3514017A (en) * | 1969-03-03 | 1970-05-26 | Afa Corp | Pressure regulating structure for piston pump |
IL34841A (en) * | 1970-06-19 | 1974-12-31 | Ciba Geigy Ag | Ejection device for an aerosol dispenser for multi-component products |
US4273142A (en) * | 1979-07-16 | 1981-06-16 | Teledyne Industries, Inc. | Smoking filters |
US4462397A (en) * | 1981-04-03 | 1984-07-31 | Terumo Corporation | Breathing circuit |
US4594969A (en) * | 1981-09-29 | 1986-06-17 | Aleksander Przybylski | Method and apparatus for producing a fuel mixture |
US4805609A (en) * | 1987-07-17 | 1989-02-21 | Josephine A. Roberts | Pressurized ventilation system for patients |
JPH069497B2 (en) * | 1988-04-28 | 1994-02-09 | 大日精化工業株式会社 | Cigarette molding, manufacturing method thereof, and cigarette |
US5137034A (en) * | 1988-05-16 | 1992-08-11 | R. J. Reynolds Tobacco Company | Smoking article with improved means for delivering flavorants |
US4947874A (en) † | 1988-09-08 | 1990-08-14 | R. J. Reynolds Tobacco Company | Smoking articles utilizing electrical energy |
US4922901A (en) † | 1988-09-08 | 1990-05-08 | R. J. Reynolds Tobacco Company | Drug delivery articles utilizing electrical energy |
US4947875A (en) † | 1988-09-08 | 1990-08-14 | R. J. Reynolds Tobacco Company | Flavor delivery articles utilizing electrical energy |
US4993436A (en) * | 1989-12-21 | 1991-02-19 | Bloom Jr Walter L | Aspirating and volatilizing liquid dispenser |
US5095921A (en) | 1990-11-19 | 1992-03-17 | Philip Morris Incorporated | Flavor generating article |
US5665262A (en) | 1991-03-11 | 1997-09-09 | Philip Morris Incorporated | Tubular heater for use in an electrical smoking article |
US5530225A (en) * | 1991-03-11 | 1996-06-25 | Philip Morris Incorporated | Interdigitated cylindrical heater for use in an electrical smoking article |
DE9113446U1 (en) * | 1991-10-29 | 1992-01-16 | Kendall Medizinische Erzeugnisse GmbH, 8425 Neustadt | Hand nebulizer for atomizing therapeutic liquids |
US5587207A (en) * | 1994-11-14 | 1996-12-24 | Gorokhovsky; Vladimir I. | Arc assisted CVD coating and sintering method |
AR002035A1 (en) * | 1995-04-20 | 1998-01-07 | Philip Morris Prod | A CIGARETTE, A CIGARETTE AND LIGHTER ADAPTED TO COOPERATE WITH THEMSELVES, A METHOD TO IMPROVE THE DELIVERY OF A SPRAY OF A CIGARETTE, A CONTINUOUS MATERIAL OF TOBACCO, A WORKING CIGARETTE, A MANUFACTURING MANUFACTURING METHOD , A METHOD FOR FORMING A HEATER AND AN ELECTRICAL SYSTEM FOR SMOKING |
US5649554A (en) * | 1995-10-16 | 1997-07-22 | Philip Morris Incorporated | Electrical lighter with a rotatable tobacco supply |
FI112005B (en) * | 1995-11-24 | 2003-10-15 | Valtion Teknillinen | Electrically modulated thermal radiation source |
DE19854009C2 (en) | 1998-11-12 | 2001-04-26 | Reemtsma H F & Ph | Inhalable aerosol delivery system |
SE9900369D0 (en) * | 1999-02-04 | 1999-02-04 | Siemens Elema Ab | Ultrasonic nebuliser |
JP2001267048A (en) * | 2000-01-11 | 2001-09-28 | Tsuneji Sasaki | Insulation method of carbon filament and coaxial treatment of carbon filament and conductive wire |
JP3077410U (en) * | 2000-10-31 | 2001-05-18 | 林 京子 | Carbon fiber mixed sheet heating element |
JP2002146516A (en) * | 2000-11-07 | 2002-05-22 | Sony Corp | Vapor deposition method for organic thin film |
JP3666855B2 (en) * | 2001-03-16 | 2005-06-29 | 圭作 奥野 | Perfume evaporator |
US20030051728A1 (en) * | 2001-06-05 | 2003-03-20 | Lloyd Peter M. | Method and device for delivering a physiologically active compound |
US20090184107A1 (en) * | 2001-09-03 | 2009-07-23 | Michael Weiss | Heating element with stranded contact |
DE10142878C5 (en) * | 2001-09-03 | 2007-01-25 | W.E.T. Automotive Systems Ag | Heating element with stranded contact |
US6598607B2 (en) * | 2001-10-24 | 2003-07-29 | Brown & Williamson Tobacco Corporation | Non-combustible smoking device and fuel element |
US7189342B2 (en) * | 2002-05-09 | 2007-03-13 | Harmonics, Inc. | Tapecast electro-conductive cermets for high temperature resistive heating systems |
US20050172976A1 (en) * | 2002-10-31 | 2005-08-11 | Newman Deborah J. | Electrically heated cigarette including controlled-release flavoring |
US8012136B2 (en) * | 2003-05-20 | 2011-09-06 | Optimyst Systems, Inc. | Ophthalmic fluid delivery device and method of operation |
CA2526475A1 (en) * | 2003-05-21 | 2004-12-02 | Alexza Pharmaceuticals, Inc. | Optically ignited or electrically ignited self-contained heating unit and drug-supply unit employing same |
US8627828B2 (en) * | 2003-11-07 | 2014-01-14 | U.S. Smokeless Tobacco Company Llc | Tobacco compositions |
US7402777B2 (en) * | 2004-05-20 | 2008-07-22 | Alexza Pharmaceuticals, Inc. | Stable initiator compositions and igniters |
US7540286B2 (en) * | 2004-06-03 | 2009-06-02 | Alexza Pharmaceuticals, Inc. | Multiple dose condensation aerosol devices and methods of forming condensation aerosols |
JP5008207B2 (en) | 2005-05-16 | 2012-08-22 | ベイポーア・インコーポレイテッド | Improved capillary force vaporizer |
DE102005054344B3 (en) † | 2005-11-15 | 2007-06-28 | Dräger Medical AG & Co. KG | A liquid vaporizer |
FR2895644B1 (en) | 2006-01-03 | 2008-05-16 | Didier Gerard Martzel | SUBSTITUTE OF CIGARETTE |
US7913699B2 (en) * | 2006-01-31 | 2011-03-29 | U.S. Smokeless Tobacco Company Llc | Tobacco articles and methods |
US7819124B2 (en) * | 2006-01-31 | 2010-10-26 | U.S. Smokeless Tobacco Company | Tobacco articles and methods |
US7918231B2 (en) * | 2006-01-31 | 2011-04-05 | U.S. Smokeless Tobacco Company Llc | Tobacco articles and methods |
WO2007099019A1 (en) * | 2006-03-03 | 2007-09-07 | Nv Bekaert Sa | Glass-coated metallic filament cables for use in electrical heatable textiles |
WO2008028092A2 (en) * | 2006-08-30 | 2008-03-06 | Kurve Technology, Inc. | Aerosol generating and delivery device |
US8746357B2 (en) * | 2006-10-20 | 2014-06-10 | Ada Technologies, Inc. | Fine water mist multiple orientation discharge fire extinguisher |
WO2008107929A1 (en) | 2007-03-02 | 2008-09-12 | Ihi Corporation | Apparatus for controlling grain circulation amount in circulatory fluidized bed furnace |
CN100593982C (en) | 2007-09-07 | 2010-03-17 | 中国科学院理化技术研究所 | Electronic cigarette with nanometer scale hyperfine space heating atomization function |
US20090212133A1 (en) * | 2008-01-25 | 2009-08-27 | Collins Jr James F | Ophthalmic fluid delivery device and method of operation |
US8007286B1 (en) * | 2008-03-18 | 2011-08-30 | Metrospec Technology, Llc | Circuit boards interconnected by overlapping plated through holes portions |
US7980863B1 (en) * | 2008-02-14 | 2011-07-19 | Metrospec Technology, Llc | Printed circuit board flexible interconnect design |
EP2100525A1 (en) * | 2008-03-14 | 2009-09-16 | Philip Morris Products S.A. | Electrically heated aerosol generating system and method |
EP2110033A1 (en) * | 2008-03-25 | 2009-10-21 | Philip Morris Products S.A. | Method for controlling the formation of smoke constituents in an electrical aerosol generating system |
EP2110034A1 (en) * | 2008-04-17 | 2009-10-21 | Philip Morris Products S.A. | An electrically heated smoking system |
EP2113178A1 (en) | 2008-04-30 | 2009-11-04 | Philip Morris Products S.A. | An electrically heated smoking system having a liquid storage portion |
US20090192443A1 (en) * | 2008-10-06 | 2009-07-30 | Collins Jr James F | Ophthalmic fluid delivery device and method of operation |
CN101518361B (en) * | 2009-03-24 | 2010-10-06 | 北京格林世界科技发展有限公司 | High-simulation electronic cigarette |
US8844580B2 (en) * | 2009-03-31 | 2014-09-30 | Parker-Hannifin Corporation | Low fluid permeation rubber hose |
WO2011022431A1 (en) * | 2009-08-17 | 2011-02-24 | Chong Corporation | Vaporized tobacco product and methods of use |
PL2485792T3 (en) | 2009-10-09 | 2018-05-30 | Philip Morris Products S.A. | Aerosol generator including multi-component wick |
CN106267289B (en) | 2009-10-13 | 2020-07-31 | 菲利普莫里斯生产公司 | Aerosol generator |
EP2316286A1 (en) * | 2009-10-29 | 2011-05-04 | Philip Morris Products S.A. | An electrically heated smoking system with improved heater |
KR101039837B1 (en) * | 2010-11-23 | 2011-06-09 | 주식회사 에바코 | Appratus for vaporizing and inhaling and composition thereof |
EP2327318A1 (en) * | 2009-11-27 | 2011-06-01 | Philip Morris Products S.A. | An electrically heated smoking system with internal or external heater |
US8162921B2 (en) * | 2009-12-08 | 2012-04-24 | Medinvent, Llc | Method and device for nasal irrigation and drug delivery |
US8146587B2 (en) * | 2009-12-08 | 2012-04-03 | Medinvent, Llc | Method for nasal irrigation and drug delivery |
US9440020B2 (en) * | 2009-12-08 | 2016-09-13 | Medinvent, Llc | Nasal irrigator |
US8499766B1 (en) * | 2010-09-15 | 2013-08-06 | Kyle D. Newton | Electronic cigarette with function illuminator |
EP2460424A1 (en) * | 2010-12-03 | 2012-06-06 | Philip Morris Products S.A. | An aerosol generating system with leakage prevention |
EP2468116A1 (en) * | 2010-12-24 | 2012-06-27 | Philip Morris Products S.A. | An aerosol generating system having means for handling consumption of a liquid substrate |
EP2468117A1 (en) * | 2010-12-24 | 2012-06-27 | Philip Morris Products S.A. | An aerosol generating system having means for determining depletion of a liquid substrate |
US8757169B2 (en) * | 2010-12-29 | 2014-06-24 | David Gysland | Electronic cigarette refilling apparatus |
CA2824970C (en) | 2011-02-11 | 2016-05-03 | Batmark Limited | Inhaler component |
CN103460794B (en) * | 2011-04-04 | 2016-02-24 | 贝卡尔特公司 | Comprise the heating cable of steel monofilament |
US8528569B1 (en) * | 2011-06-28 | 2013-09-10 | Kyle D. Newton | Electronic cigarette with liquid reservoir |
EP2574247B1 (en) | 2011-09-28 | 2019-08-28 | Philip Morris Products S.A. | Permeable electric heat resistant foil for evaporating liquids out of disposable mouthpieces with evaporator nozzles |
US20130087160A1 (en) * | 2011-10-06 | 2013-04-11 | Alexandru Gherghe | Electronic pipe personal vaporizer with concealed removable atomizer/ cartomizer |
EP2599512B1 (en) * | 2011-12-01 | 2016-05-11 | Stobi GmbH & Co. KG | Warm air extraction inhaler with combined air and radiant heating |
WO2013083635A1 (en) † | 2011-12-07 | 2013-06-13 | Philip Morris Products S.A. | An aerosol generating device having airflow inlets |
UA113744C2 (en) * | 2011-12-08 | 2017-03-10 | DEVICE FOR FORMATION OF AEROSOL WITH INTERNAL HEATER | |
UA112883C2 (en) | 2011-12-08 | 2016-11-10 | Філіп Морріс Продактс С.А. | DEVICE FOR THE FORMATION OF AEROSOL WITH A CAPILLARY BORDER LAYER |
US9055770B2 (en) | 2011-12-23 | 2015-06-16 | Huizhou Kimree Technology Co., Ltd., Shenzhen Branch | Mouthpiece device of electronic cigarette |
US20130255702A1 (en) † | 2012-03-28 | 2013-10-03 | R.J. Reynolds Tobacco Company | Smoking article incorporating a conductive substrate |
KR101316347B1 (en) | 2012-04-03 | 2013-10-08 | 박선순 | Electronic cigarette |
GB2504074A (en) † | 2012-07-16 | 2014-01-22 | Nicoventures Holdings Ltd | Electronic cigarette |
AU2013299785B2 (en) † | 2012-08-06 | 2017-09-07 | Baylor College Of Medicine | Therapeutics dispensing device and methods of making same |
CN102861694A (en) * | 2012-10-18 | 2013-01-09 | 深圳市博格科技有限公司 | Plant essential oil mist atomizer and production method thereof |
US9226525B2 (en) † | 2012-11-22 | 2016-01-05 | Huizhou Kimree Technology Co., Ltd., Shenzhen Branch | Electronic cigarette and electronic cigarette device |
DE202013100606U1 (en) * | 2013-02-11 | 2013-02-27 | Ewwk Ug | Electronic cigarette or pipe |
US9657415B2 (en) * | 2013-08-05 | 2017-05-23 | Nanotek Instruments, Inc. | Fabric of continuous graphitic fiber yarns from living graphene molecules |
CN103932401B (en) † | 2013-09-29 | 2015-09-30 | 深圳麦克韦尔股份有限公司 | Electronic cigarette |
CN103533684B (en) * | 2013-10-20 | 2016-04-13 | 红塔烟草(集团)有限责任公司 | A kind of heater for electric heating cigarette |
EP3104721B1 (en) * | 2014-02-10 | 2020-10-14 | Philip Morris Products S.a.s. | An aerosol-generating system having a fluid-permeable heater assembly |
US10874142B2 (en) * | 2014-02-10 | 2020-12-29 | Philip Morris Products S.A. | Aerosol-generating system having a heater assembly and a cartridge for an aerosol-generating system having a fluid permeable heater assembly |
CN203986096U (en) † | 2014-04-03 | 2014-12-10 | 惠州市吉瑞科技有限公司 | A kind of atomizer and electronic cigarette |
-
2014
- 2014-12-15 EP EP14812495.1A patent/EP3104721B1/en active Active
- 2014-12-15 JP JP2016551281A patent/JP6438967B2/en active Active
- 2014-12-15 MX MX2016010335A patent/MX2016010335A/en unknown
- 2014-12-15 WO PCT/EP2014/077835 patent/WO2015117702A1/en active Application Filing
- 2014-12-15 SG SG11201605856UA patent/SG11201605856UA/en unknown
- 2014-12-15 ES ES14812495T patent/ES2831404T3/en active Active
- 2014-12-15 CN CN201910709330.0A patent/CN110236238B/en active Active
- 2014-12-15 AU AU2014381786A patent/AU2014381786B2/en active Active
- 2014-12-15 CA CA2937976A patent/CA2937976C/en active Active
- 2014-12-15 BR BR112016017023-7A patent/BR112016017023B1/en active IP Right Grant
- 2014-12-15 CN CN201910709368.8A patent/CN110236239B/en active Active
- 2014-12-15 US US15/116,652 patent/US10842192B2/en active Active
- 2014-12-15 KR KR1020237011093A patent/KR102650793B1/en active IP Right Grant
- 2014-12-15 KR KR1020167021288A patent/KR102386955B1/en active IP Right Grant
- 2014-12-15 UA UAA201608280A patent/UA118776C2/en unknown
- 2014-12-15 RU RU2016136340A patent/RU2657215C2/en active
- 2014-12-15 HU HUE14812495A patent/HUE051726T2/en unknown
- 2014-12-15 EP EP19174753.4A patent/EP3549464B2/en active Active
- 2014-12-15 KR KR1020247009224A patent/KR20240042543A/en not_active Application Discontinuation
- 2014-12-15 KR KR1020227011581A patent/KR102518749B1/en active IP Right Grant
- 2014-12-15 MY MYPI2016702590A patent/MY178363A/en unknown
- 2014-12-15 CN CN201480074307.4A patent/CN105934168B/en active Active
- 2014-12-15 EP EP20201274.6A patent/EP3782490A1/en active Pending
-
2015
- 2015-02-09 AR ARP150100370A patent/AR099324A1/en active IP Right Grant
- 2015-02-09 TW TW104104219A patent/TWI652021B/en active
-
2016
- 2016-06-30 PH PH12016501300A patent/PH12016501300B1/en unknown
- 2016-07-01 ZA ZA2016/04482A patent/ZA201604482B/en unknown
- 2016-07-03 IL IL246570A patent/IL246570A0/en active IP Right Grant
- 2016-12-23 HK HK16114661A patent/HK1226258A1/en unknown
-
2018
- 2018-11-19 JP JP2018216569A patent/JP6720277B2/en active Active
-
2020
- 2020-06-17 JP JP2020104215A patent/JP6995164B2/en active Active
- 2020-08-21 US US16/999,643 patent/US11998051B2/en active Active
-
2021
- 2021-12-14 JP JP2021202171A patent/JP7295929B2/en active Active
-
2023
- 2023-06-09 JP JP2023095526A patent/JP2023105245A/en active Pending
-
2024
- 2024-04-23 US US18/643,783 patent/US20240268461A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5408574A (en) * | 1989-12-01 | 1995-04-18 | Philip Morris Incorporated | Flat ceramic heater having discrete heating zones |
WO2010045671A1 (en) | 2008-10-23 | 2010-04-29 | Helmut Buchberger | Inhaler |
WO2013013808A1 (en) * | 2011-07-27 | 2013-01-31 | Batmark Limited | Inhaler component |
US20130213419A1 (en) | 2012-02-22 | 2013-08-22 | Altria Client Services Inc. | Electronic smoking article and improved heater element |
Cited By (159)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11272740B2 (en) | 2012-07-16 | 2022-03-15 | Nicoventures Holdings Limited | Electronic vapor provision device |
US10602777B2 (en) | 2014-07-25 | 2020-03-31 | Nicoventures Holdings Limited | Aerosol provision system |
EP3232834B1 (en) | 2014-12-15 | 2019-04-17 | Philip Morris Products S.a.s. | An aerosol-generating system using the venturi effect to deliver substrate to a heating element |
US11478807B2 (en) | 2014-12-15 | 2022-10-25 | Philip Morris Products S.A. | Aerosol-generating system using the venturi effect to deliver substrate to a heating element |
EP3232834B2 (en) † | 2014-12-15 | 2024-02-14 | Philip Morris Products S.A. | An aerosol-generating system using the venturi effect to deliver substrate to a heating element |
US12082604B2 (en) | 2015-03-31 | 2024-09-10 | Nicoventures Trading Limited | Article for use with apparatus for heating smokable material |
KR20170134376A (en) * | 2015-04-07 | 2017-12-06 | 필립모리스 프로덕츠 에스.에이. | A bag for an aerosol-forming substrate, a method of making the same, and an aerosol generating device for use with a bag |
US11026449B2 (en) | 2015-04-07 | 2021-06-08 | Philip Morris Products S.A. | Sachet of aerosol-forming substrate, method of manufacturing same, and aerosol-generating device for use with sachet |
KR102659812B1 (en) | 2015-04-07 | 2024-04-23 | 필립모리스 프로덕츠 에스.에이. | Pouches of aerosol-forming substrate, methods of making the same, and aerosol-generating devices for use with the pouches |
WO2016162446A1 (en) * | 2015-04-07 | 2016-10-13 | Philip Morris Products S.A. | Sachet of aerosol-forming substrate, method of manufacturing same, and aerosol-generating device for use with sachet |
US11896055B2 (en) | 2015-06-29 | 2024-02-13 | Nicoventures Trading Limited | Electronic aerosol provision systems |
US12070070B2 (en) | 2015-06-29 | 2024-08-27 | Nicoventures Trading Limited | Electronic vapor provision system |
US11560271B2 (en) * | 2015-07-24 | 2023-01-24 | Fontem Holdings 1 B.V. | Liquid containers for electronic smoking device |
US10426197B2 (en) | 2015-08-07 | 2019-10-01 | Altria Client Services Llc | Aerosol-generating system with enhanced airflow management |
US11969016B2 (en) | 2015-08-07 | 2024-04-30 | Altria Client Services Llc | Method of forming assembly with capillary medium and air impingement surface |
US11484061B2 (en) | 2015-08-07 | 2022-11-01 | Altria Client Services Llc | E-vaping system, a method of manufacturing a cartridge for use in e-vaping system, and a method of manufacturing an e-vaping system |
US11464258B2 (en) | 2015-08-07 | 2022-10-11 | Altria Client Services Llc | Aerosol-generating system with enhanced airflow management |
EP3331387B1 (en) | 2015-08-07 | 2020-02-19 | Philip Morris Products S.a.s. | An aerosol-generating system with enhanced airflow management |
US12004565B2 (en) | 2015-08-07 | 2024-06-11 | Altria Client Services Llc | Method of forming assembly with duct abutting air impingement structure |
US10244794B2 (en) | 2015-08-07 | 2019-04-02 | Altria Client Services Llc | Aerosol-generating system with enhanced airflow management |
US10806180B2 (en) | 2015-08-25 | 2020-10-20 | Nicoventures Holdings Limited | Electronic vapor provision system |
US11710848B2 (en) | 2015-08-25 | 2023-07-25 | Nicoventures Trading Limited | Electronic vapor provision system |
US11589614B2 (en) | 2015-08-31 | 2023-02-28 | Nicoventures Trading Limited | Cartridge for use with apparatus for heating smokable material |
RU2683801C1 (en) * | 2015-10-30 | 2019-04-03 | Бритиш Америкэн Тобэкко (Инвестментс) Лимитед | Article for use with device for heating smoking material |
EP4275520A3 (en) * | 2015-10-30 | 2024-03-06 | Nicoventures Trading Limited | Apparatus for inductive heating of smokable material |
WO2017072145A1 (en) * | 2015-10-30 | 2017-05-04 | British American Tobacco (Investments) Limited | Article for use with apparatus for heating smokable material |
US11252992B2 (en) | 2015-10-30 | 2022-02-22 | Nicoventures Trading Limited | Article for use with apparatus for heating smokable material |
WO2017072148A1 (en) * | 2015-10-30 | 2017-05-04 | British American Tobacco (Investments) Limited | Article for use with apparatus for heating smokable material |
US12082327B2 (en) | 2015-10-30 | 2024-09-03 | Nicoventures Trading Limited | Article for use with apparatus for heating smokable material |
JP2020062037A (en) * | 2015-10-30 | 2020-04-23 | ブリティッシュ アメリカン タバコ (インヴェストメンツ) リミテッドBritish American Tobacco (Investments) Limited | Article for use with apparatus for heating smokable material |
US12082606B2 (en) | 2015-10-30 | 2024-09-10 | Nicoventures Trading Limited | Article for use with apparatus for heating smokable material |
EP3811798A3 (en) * | 2015-10-30 | 2021-09-08 | Nicoventures Trading Limited | Apparatus for inductive heating of smokable material |
EP3984388A3 (en) * | 2015-10-30 | 2022-05-25 | Nicoventures Trading Limited | Apparatus for inductive heating of smokable material |
US11805818B2 (en) | 2015-10-30 | 2023-11-07 | Nicoventures Trading Limited | Article for use with apparatus for heating smokable material |
CN108347999A (en) * | 2015-10-30 | 2018-07-31 | 英美烟草(投资)有限公司 | For with the article that is used together for heating the device of smokeable material |
CN108430554A (en) * | 2016-01-22 | 2018-08-21 | 船井电机株式会社 | Vaporize assembly and steam generation device |
WO2017125846A1 (en) * | 2016-01-22 | 2017-07-27 | Funai Electric Co., Ltd. | Vaporizing assembly and vapor generating device |
CN108430554B (en) * | 2016-01-22 | 2021-12-28 | 船井电机株式会社 | Vaporization assembly and steam generation device and method |
WO2017184834A1 (en) * | 2016-04-22 | 2017-10-26 | Intrepid Brands Llc | Oven assembly with a shaft element |
KR102509676B1 (en) | 2016-05-31 | 2023-03-16 | 필립모리스 프로덕츠 에스.에이. | Fluid Permeable Heater Assemblies for Aerosol Generating Systems |
KR20190004294A (en) * | 2016-05-31 | 2019-01-11 | 필립모리스 프로덕츠 에스.에이. | Fluid permeable heater assembly for aerosol generation system |
KR102509677B1 (en) | 2016-05-31 | 2023-03-16 | 필립모리스 프로덕츠 에스.에이. | Fluid permeable heater assemblies for aerosol-generating systems and flat electrically conductive filament arrays for fluid permeable heater assemblies |
WO2017207195A1 (en) * | 2016-05-31 | 2017-12-07 | Philip Morris Products S.A. | Cartridge for an aerosol-generating system |
JP2019522964A (en) * | 2016-05-31 | 2019-08-22 | フィリップ・モーリス・プロダクツ・ソシエテ・アノニム | Cartridge for aerosol generation system |
US10342262B2 (en) | 2016-05-31 | 2019-07-09 | Altria Client Services Llc | Cartridge for an aerosol-generating system |
KR102468476B1 (en) | 2016-05-31 | 2022-11-18 | 필립모리스 프로덕츠 에스.에이. | Cartridges for aerosol-generating systems |
US10531695B2 (en) | 2016-05-31 | 2020-01-14 | Altria Client Services Llc | Cartridge for an aerosol-generating system |
US10667557B2 (en) | 2016-05-31 | 2020-06-02 | Altria Client Services Llc | Fluid permeable heater assembly for aerosol-generating systems and flat electrically conductive filament arrangement for fluid permeable heater assemblies |
US11737175B2 (en) | 2016-05-31 | 2023-08-22 | Altria Client Services Llc | Fluid permeable heater assembly for aerosol-generating systems and flat electrically conductive filament arrangement for fluid permeable heater assemblies |
RU2739174C2 (en) * | 2016-05-31 | 2020-12-21 | Филип Моррис Продактс С.А. | Cartridge for aerosol generating system |
KR20190012157A (en) * | 2016-05-31 | 2019-02-08 | 필립모리스 프로덕츠 에스.에이. | Fluid permeable heater assembly for aerosol generating system and flat electrically conductive filament array for fluid permeable heater assembly |
US10856584B2 (en) | 2016-05-31 | 2020-12-08 | Altria Client Services Llc | Cartridge for an aerosol-generating system |
KR20190012154A (en) * | 2016-05-31 | 2019-02-08 | 필립모리스 프로덕츠 에스.에이. | Cartridges for aerosol generation systems |
US10292429B2 (en) | 2016-06-20 | 2019-05-21 | Altria Client Services Llc | Heater assembly for an aerosol-generating system |
US10881140B2 (en) | 2016-06-20 | 2021-01-05 | Altria Client Services Llc | Vaporiser assembly for an aerosol-generating system |
KR102510187B1 (en) * | 2016-06-20 | 2023-03-16 | 필립모리스 프로덕츠 에스.에이. | Heater assembly for aerosol-generating system |
WO2017220340A1 (en) | 2016-06-20 | 2017-12-28 | Philip Morris Products S.A. | Vaporiser assembly for an aerosol-generating system |
WO2017220273A1 (en) | 2016-06-20 | 2017-12-28 | Philip Morris Products S.A. | Vaporiser assembly for an aerosol-generating system |
US12121652B2 (en) | 2016-06-20 | 2024-10-22 | Altria Client Services Llc | Heater assembly for an aerosol-generating system |
US11778696B2 (en) | 2016-06-20 | 2023-10-03 | Altria Client Services Llc | Vaporiser assembly for an aerosol-generating system |
KR20230062656A (en) | 2016-06-20 | 2023-05-09 | 필립모리스 프로덕츠 에스.에이. | Vaporiser assembly for an aerosol gernerating system |
RU2740704C2 (en) * | 2016-06-20 | 2021-01-20 | Филип Моррис Продактс С.А. | Assembly heater for aerosol generating system |
US10588358B2 (en) | 2016-06-20 | 2020-03-17 | Altria Client Services Llc | Heater assembly for an aerosol-generating system |
KR20190022482A (en) * | 2016-06-20 | 2019-03-06 | 필립모리스 프로덕츠 에스.에이. | Heater assembly for aerosol generation system |
US11707585B2 (en) | 2016-06-20 | 2023-07-25 | Altria Client Services Llc | Heater assembly for an aerosol-generating system |
JP7321708B2 (en) | 2016-06-20 | 2023-08-07 | フィリップ・モーリス・プロダクツ・ソシエテ・アノニム | Heater assemblies for aerosol generation systems |
JP2019525731A (en) * | 2016-06-20 | 2019-09-12 | フィリップ・モーリス・プロダクツ・ソシエテ・アノニム | Heater assembly for aerosol generation system |
US10888126B2 (en) | 2016-06-20 | 2021-01-12 | Altria Client Services Llc | Heater assembly for an aerosol-generating system |
US11457664B2 (en) | 2016-06-29 | 2022-10-04 | Nicoventures Trading Limited | Apparatus for heating smokable material |
US10660369B2 (en) | 2016-07-14 | 2020-05-26 | Altria Client Services Llc | Fluid permeable heater assembly and cartridge for an aerosol-generating system |
US12016999B2 (en) | 2016-07-14 | 2024-06-25 | Altria Client Services Llc | Fluid permeable heater assembly and cartridge for an aerosol-generating system |
EP3272380A1 (en) * | 2016-07-18 | 2018-01-24 | Outstanding Healthcare Company Limited | Handheld nebulizer |
JP7002532B2 (en) | 2016-07-25 | 2022-01-20 | フィリップ・モーリス・プロダクツ・ソシエテ・アノニム | Fluid permeable heater assembly with cap |
CN109475190A (en) * | 2016-07-25 | 2019-03-15 | 菲利普莫里斯生产公司 | The cylinder that system is generated for aerosol with heater protecting |
US10737419B2 (en) | 2016-07-25 | 2020-08-11 | Altria Client Services Llc | Manufacturing a fluid permeable heater assembly with cap |
JP2019524114A (en) * | 2016-07-25 | 2019-09-05 | フィリップ・モーリス・プロダクツ・ソシエテ・アノニム | Fluid permeable heater assembly with cap |
JP2019526238A (en) * | 2016-07-25 | 2019-09-19 | フィリップ・モーリス・プロダクツ・ソシエテ・アノニム | Cartridge for aerosol generation system with heater protection |
US11118732B2 (en) | 2016-07-25 | 2021-09-14 | Altria Client Services Llc | Fluid permeable heater assembly with cap |
US10485267B2 (en) | 2016-07-25 | 2019-11-26 | Altria Client Services Llc | Fluid permeable heater assembly with cap |
RU2731595C2 (en) * | 2016-07-25 | 2020-09-04 | Филип Моррис Продактс С.А. | Cartridge for aerosol generating system with heater protection |
US10327477B2 (en) | 2016-07-25 | 2019-06-25 | Altria Client Services Llc | Cartridge for an aerosol-generating system with heater protection |
EP3487325B1 (en) | 2016-07-25 | 2020-07-29 | Philip Morris Products S.a.s. | Cartridge for an aerosol-generating system with heater protection |
US10701983B2 (en) | 2016-07-25 | 2020-07-07 | Altria Client Services Llc | Cartridge for an aerosol-generating system with heater protection |
WO2018019485A1 (en) | 2016-07-25 | 2018-02-01 | Philip Morris Products S.A. | Cartridge for an aerosol-generating system with heater protection |
US11933454B2 (en) | 2016-07-25 | 2024-03-19 | Altria Client Services Llc | Fluid permeable heater assembly with cap |
US11641696B2 (en) | 2016-07-25 | 2023-05-02 | Altria Client Services Llc | Cartridge for an aerosol-generating system with heater protection |
KR102523285B1 (en) * | 2016-07-25 | 2023-04-20 | 필립모리스 프로덕츠 에스.에이. | Cartridges for aerosol-generating systems with heater protection |
US11980228B2 (en) | 2016-07-25 | 2024-05-14 | Altria Client Services Llc | Manufacturing a fluid permeable heater assembly with cap |
KR20190026774A (en) * | 2016-07-25 | 2019-03-13 | 필립모리스 프로덕츠 에스.에이. | A cartridge for an aerosol generating system having a heater guard |
JP2019526239A (en) * | 2016-07-25 | 2019-09-19 | フィリップ・モーリス・プロダクツ・ソシエテ・アノニム | Manufacture of fluid permeable heater assemblies with caps |
GB2567348B (en) * | 2016-07-29 | 2022-09-28 | Pax Labs Inc | Methods and apparatuses for concentrate vaporization |
US11951249B2 (en) | 2016-07-29 | 2024-04-09 | Pax Labs, Inc. | Methods and apparatuses for concentrate vaporization |
WO2018041063A1 (en) * | 2016-08-30 | 2018-03-08 | 常州聚为智能科技有限公司 | Atomizing assembly, atomizer and electronic cigarette |
US11825881B2 (en) | 2016-09-15 | 2023-11-28 | Philip Morris Products S.A. | Aerosol-generating device providing secure retention for aerosol-generating articles |
CN109640717B (en) * | 2016-09-15 | 2022-06-21 | 菲利普莫里斯生产公司 | Aerosol generating device |
RU2741537C2 (en) * | 2016-09-15 | 2021-01-26 | Филип Моррис Продактс С.А. | Aerosol generating device |
CN109640717A (en) * | 2016-09-15 | 2019-04-16 | 菲利普莫里斯生产公司 | Apparatus for aerosol creation |
WO2018050735A1 (en) * | 2016-09-15 | 2018-03-22 | Philip Morris Products S.A. | Aerosol-generating device |
US11696368B2 (en) | 2017-02-24 | 2023-07-04 | Altria Client Services Llc | Aerosol-generating system and a cartridge for an aerosol-generating system having a two-part liquid storage compartment |
WO2018153732A1 (en) | 2017-02-24 | 2018-08-30 | Philip Morris Products S.A. | Moulded mounting for an aerosol-generating element in an aerosol-generating system |
US11653419B2 (en) | 2017-02-24 | 2023-05-16 | Altria Client Services Llc | Cartridge with mount for an aerosol-generating element in an aerosol-generating system |
WO2018153608A1 (en) | 2017-02-24 | 2018-08-30 | Philip Morris Products S.A. | An aerosol-generating system and a cartridge for an aerosol generating system having a two-part liquid storage compartment |
EP3615115B1 (en) | 2017-04-25 | 2023-08-30 | Imperial Tobacco Limited | Aerosol delivery system |
US11956879B2 (en) | 2017-09-15 | 2024-04-09 | Nicoventures Trading Limited | Apparatus for heating smokable material |
RU2779428C2 (en) * | 2017-09-18 | 2022-09-07 | Филип Моррис Продактс С.А. | Cartridge for aerosol generating system |
EP4420543A2 (en) | 2017-09-18 | 2024-08-28 | Philip Morris Products S.A. | A cartridge for an aerosol-generating system |
EP4176741A1 (en) | 2017-09-18 | 2023-05-10 | Philip Morris Products S.A. | A cartridge for an aerosol-generating system |
RU2781999C2 (en) * | 2017-09-18 | 2022-10-21 | Филип Моррис Продактс С.А. | Aerosol generating system (options) and cartridge for aerosol generating system |
WO2019052748A1 (en) | 2017-09-18 | 2019-03-21 | Philip Morris Products S.A. | A cartridge for an aerosol-generating system |
US11700884B2 (en) | 2017-10-30 | 2023-07-18 | Kt&G Corporation | Aerosol generation device and heater for aerosol generation device |
US12048328B2 (en) | 2017-10-30 | 2024-07-30 | Kt&G Corporation | Optical module and aerosol generation device comprising same |
US11622580B2 (en) | 2017-10-30 | 2023-04-11 | Kt&G Corporation | Aerosol generation device and generation method |
US11622579B2 (en) | 2017-10-30 | 2023-04-11 | Kt&G Corporation | Aerosol generating device having heater |
US11744287B2 (en) | 2017-10-30 | 2023-09-05 | Kt&G Corporation | Aerosol generating device and method for controlling same |
US11974611B2 (en) | 2017-10-30 | 2024-05-07 | Kt&G Corporation | Method for controlling temperature of heater included in aerosol generation device according to type of cigarette, and aerosol generation device for controlling temperature of heater according to type of cigarette |
US11696600B2 (en) | 2017-10-30 | 2023-07-11 | Kt&G Corporation | Aerosol generating device having heater |
US11700886B2 (en) | 2017-10-30 | 2023-07-18 | Kt&G Corporation | Aerosol generating device and heater assembly for aerosol generating device |
US12016390B2 (en) | 2017-10-30 | 2024-06-25 | Kt&G Corporation | Aerosol generating device and heater assembly for aerosol generating device |
US11700885B2 (en) | 2017-10-30 | 2023-07-18 | Kt&G Corporation | Aerosol generation device including mainstream smoke passage and pressure detection passage |
US11259370B2 (en) | 2017-12-08 | 2022-02-22 | Altria Client Services Llc | Multi-component aerosol-generating device with impact absorbing part |
EP3516973A1 (en) * | 2018-01-29 | 2019-07-31 | Tuanfang Liu | Electronic cigarette |
US11998049B2 (en) | 2018-02-16 | 2024-06-04 | Nicoventures Trading Limited | Aerosol generation article |
US11930848B2 (en) | 2018-02-16 | 2024-03-19 | Nicoventures Trading Limited | Aerosol generation article |
US11839236B2 (en) | 2018-02-21 | 2023-12-12 | Kt&G Corporation | Aerosol generation device |
EP3756492A4 (en) * | 2018-02-21 | 2021-10-27 | KT&G Corporation | Aerosol generation device |
WO2019229197A1 (en) | 2018-05-31 | 2019-12-05 | Philip Morris Products S.A. | Heater assembly with pierced transport material |
EP4205581A1 (en) | 2018-05-31 | 2023-07-05 | Philip Morris Products S.A. | Heater assembly with pierced transport material |
US11974604B2 (en) | 2018-05-31 | 2024-05-07 | Philip Morris Products S.A. | Heater assembly with pierced transport material |
WO2020064876A1 (en) | 2018-09-28 | 2020-04-02 | Philip Morris Products S.A. | Aerosol-generating system providing preferential evaporation of nicotine |
EP4223164A2 (en) | 2018-09-28 | 2023-08-09 | Philip Morris Products S.A. | Aerosol-generating system providing preferential evaporation of nicotine |
EP3855961B1 (en) | 2018-09-28 | 2023-05-17 | Philip Morris Products S.A. | Aerosol-generating system providing preferential evaporation of nicotine |
KR20210054555A (en) * | 2018-12-06 | 2021-05-13 | 필립모리스 프로덕츠 에스.에이. | Mouthpiece with inner and outer tubular sections |
RU2767698C1 (en) * | 2018-12-06 | 2022-03-18 | Филип Моррис Продактс С.А. | Mouthpiece with inner and outer tubular sections |
WO2020115146A1 (en) * | 2018-12-06 | 2020-06-11 | Philip Morris Products S.A. | Mouthpiece with inner and outer tubular sections |
KR102593691B1 (en) | 2018-12-06 | 2023-10-26 | 필립모리스 프로덕츠 에스.에이. | Mouthpiece with inner and outer tubular sections |
US20220022536A1 (en) * | 2018-12-07 | 2022-01-27 | Philip Morris Products S.A. | Aerosol generating system and cartridge with leakage protection |
CN113015451A (en) * | 2018-12-07 | 2021-06-22 | 菲利普莫里斯生产公司 | Aerosol-generating system and cartridge with leakage protection |
US12089637B2 (en) * | 2018-12-07 | 2024-09-17 | Philip Morris Products S.A. | Aerosol generating system and cartridge with leakage protection |
WO2020115322A1 (en) | 2018-12-07 | 2020-06-11 | Philip Morris Products S.A. | An atomiser and an aerosol-generating system comprising an atomiser |
WO2020115321A1 (en) | 2018-12-07 | 2020-06-11 | Philip Morris Products S.A. | Aerosol generating system and cartridge with leakage protection |
WO2020115306A1 (en) | 2018-12-07 | 2020-06-11 | Philip Morris Products S.A. | Aerosol-generating system and cartridge with leakage protection |
RU2805451C2 (en) * | 2018-12-07 | 2023-10-17 | Филип Моррис Продактс С.А. | Nebulizer for electrically heated aerosol generating system, electrically heated aerosol generating system (embodiments) and cartridge for aerosol generating system |
WO2020115302A1 (en) | 2018-12-07 | 2020-06-11 | Philip Morris Products S.A. | Aerosol generating system and cartridge with leakage protection |
EP3928644A4 (en) * | 2019-03-20 | 2022-03-16 | O-Net Automation Technology (Shenzhen) Limited | Atomizing assembly and preparation method therefor |
WO2020260414A1 (en) | 2019-06-25 | 2020-12-30 | Philip Morris Products S.A. | Aerosol-generating device and system with conductivity sensor |
WO2020260416A1 (en) | 2019-06-25 | 2020-12-30 | Philip Morris Products S.A. | Carbonated liquid nicotine formulation |
WO2020259961A1 (en) | 2019-06-25 | 2020-12-30 | Philip Morris Products S.A. | An aerosol-generating system and a cartridge for an aerosol-generating system having improved heating assembly |
WO2020259977A1 (en) | 2019-06-25 | 2020-12-30 | Philip Morris Products S.A. | Cartridge comprising nicotine and a water-immiscible solvent |
WO2020259973A1 (en) | 2019-06-25 | 2020-12-30 | Philip Morris Products S.A. | An aerosol-generating system and a cartridge for an aerosol-generating system having particulate filter |
WO2020260319A1 (en) | 2019-06-28 | 2020-12-30 | Philip Morris Products S.A. | System and method for testing a heating system for use in an aerosol |
EP3817583A4 (en) * | 2019-07-23 | 2021-12-08 | KT&G Corporation | Aerosol generating device |
US12004562B2 (en) | 2019-07-23 | 2024-06-11 | Kt&G Corporation | Aerosol generating device |
WO2021015413A1 (en) | 2019-07-23 | 2021-01-28 | Kt&G Corporation | Aerosol generating device |
WO2021122791A1 (en) * | 2019-12-18 | 2021-06-24 | Philip Morris Products S.A. | An aerosol-generating article comprising a barrier |
WO2021123017A1 (en) | 2019-12-19 | 2021-06-24 | Philip Morris Products S.A. | A cartridge for an aerosol-generating system, an aerosol-generating system including a cartridge, and a method of manufacturing a heater assembly and cartridge for an aerosol-generating system |
WO2022078645A1 (en) | 2020-10-16 | 2022-04-21 | Philip Morris Products S.A. | Liquid nicotine formulation and cartridge for an aerosol-generating system |
WO2023041487A1 (en) * | 2021-09-17 | 2023-03-23 | Nerudia Limited | A smoking substitute device |
WO2023152244A1 (en) | 2022-02-11 | 2023-08-17 | Philip Morris Products S.A. | Cartridge for an aerosol-generating system and an aerosol generating system with improved liquid delivery |
WO2024126608A1 (en) | 2022-12-13 | 2024-06-20 | Philip Morris Products S.A. | Mouthpiece for an aerosol-generating system |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11998051B2 (en) | Aerosol-generating system having a fluid-permeable heater assembly | |
US11445576B2 (en) | Cartridge with a heater assembly for an aerosol-generating system | |
CA2937974C (en) | An aerosol-generating system comprising a device and a cartridge, in which the device ensures electrical contact with the cartridge |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14812495 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12016501300 Country of ref document: PH |
|
WWE | Wipo information: entry into national phase |
Ref document number: 246570 Country of ref document: IL |
|
REEP | Request for entry into the european phase |
Ref document number: 2014812495 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014812495 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2937976 Country of ref document: CA |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112016017023 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 20167021288 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15116652 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2016/010335 Country of ref document: MX |
|
ENP | Entry into the national phase |
Ref document number: 2016551281 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: A201608280 Country of ref document: UA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2016/0755.1 Country of ref document: KZ |
|
ENP | Entry into the national phase |
Ref document number: 2016136340 Country of ref document: RU Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2014381786 Country of ref document: AU Date of ref document: 20141215 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 112016017023 Country of ref document: BR Kind code of ref document: A2 Effective date: 20160722 |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01E Ref document number: 112016017023 Country of ref document: BR Kind code of ref document: A2 Free format text: EXPLIQUE A DIVERGENCIA NO NOME DE UM DOS INVENTORES (RUI NUNO BATISTA) QUE CONSTA NA PUBLICACAO INTERNACIONAL WO 2015/117702 E O CONSTANTE DA PETICAO INICIAL NO 870160038296 . |
|
ENP | Entry into the national phase |
Ref document number: 112016017023 Country of ref document: BR Kind code of ref document: A2 Effective date: 20160722 |