WO2015117421A1 - 热感应式触摸屏及基于该触摸屏的触控方法和终端设备 - Google Patents
热感应式触摸屏及基于该触摸屏的触控方法和终端设备 Download PDFInfo
- Publication number
- WO2015117421A1 WO2015117421A1 PCT/CN2014/089719 CN2014089719W WO2015117421A1 WO 2015117421 A1 WO2015117421 A1 WO 2015117421A1 CN 2014089719 W CN2014089719 W CN 2014089719W WO 2015117421 A1 WO2015117421 A1 WO 2015117421A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat
- touch
- thermal
- information
- touch screen
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K2217/00—Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
- H03K2217/94—Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00 characterised by the way in which the control signal is generated
- H03K2217/96—Touch switches
- H03K2217/96035—Touch switches by temperature detection, i.e. body heat
Definitions
- the present invention relates to the field of touch screen technologies, and in particular, to a heat sensitive touch screen, and a touch method and a terminal device based on the touch screen.
- the most used on the terminal equipment is a capacitive touch screen.
- the principle is to form a capacitor by using a finger close to the screen and a conductive layer of ITO (Indium Tin Oxides) to induce a change in the physical quantity of the ITO layer capacitance. location information.
- ITO Indium Tin Oxides
- touch screens there are many ways to implement touch screens.
- the resistive touch screen When the resistive touch screen is working, it is necessary to press the touch screen with an object such as a finger to cause a change in the physical quantity of the resistance at the point to determine the position information; when the infrared touch screen is working, it is necessary to densely horizontal and vertical infrared light strips on the surface of the touch screen, if any When touched, the finger or the like blocks the light, causing the physical quantity of the light at the receiver to change; the acoustic touch screen is similar, and the ultrasonic transmitting and receiving device needs to be arranged on the surface of the touch screen, and when the finger touches, the sound wave at the receiving device is changed to determine the position. Information; therefore, in general, the working principle of the touch screen is to determine the position information by touching a touch screen when a finger or the like touches the touch screen to realize the human-computer interaction.
- the related touch screens need to generate active excitation signals through touch, the energy consumption of the terminal is caused to some extent.
- the heat dissipation problems of the internal power management chip, the main chip, the power amplifier and the like of the terminal also plague the user experience.
- the technical problem to be solved by the present invention is to provide a heat-sensitive touch screen and a touch method and a terminal device based on the touch screen, which do not need to generate an active excitation signal and reduce energy consumption of the terminal device.
- a heat-sensitive touch screen includes: a display screen, the heat-sensitive touch screen further comprising heat conduction Layer and sample comparators, where:
- the heat conducting layer is disposed on the display screen, and configured to: receive a touch operation of the user, and transfer heat generated by the touch operation to the sampling comparator;
- the sampling comparator is configured to determine valid touch information based on the heat.
- the heat conducting layer is arranged to be arranged on the display screen as follows:
- the heat conductive material is uniformly disposed on the display screen from the horizontal direction and the vertical direction in the form of a heat conducting strip to form a heat conductive layer, and the heat conducting strips are not in contact with each other.
- the heat conductive material used for the heat conductive layer comprises: a polyimide film, a thermally conductive transparent mica plate, or a thermally conductive transparent silicon film.
- the sampling comparator is configured to determine valid touch information based on the heat as follows:
- the heat is compared with a preset reference constant temperature, and when the temperature difference satisfies a preset temperature change condition, the generated position of the temperature difference is output as the effective touch information.
- the thermal sensing touch screen further includes a touch chip, wherein:
- the touch chip is configured to determine location information of the touch operation according to the effective touch information.
- the touch chip is configured to determine location information of the touch operation according to the valid touch information as follows:
- the thermal-sensitive touch screen further includes: a heat storage device and a heat conversion device, wherein
- the heat conducting layer is configured to: transfer heat generated by the touch operation, heat generated inside the terminal device, and ambient heat to the heat storage device;
- the heat storage device is configured to: store heat transferred by the heat conductive layer, and output the heat to the heat conversion device when a set condition is reached;
- the heat conversion device is configured to convert the received heat into electrical energy.
- a terminal device comprising the thermal inductive touch screen as described above, further comprising a processor, wherein:
- the processor is configured to respond to a user's touch operation according to the location information determined by the thermal-sensitive touch screen.
- the thermal-sensitive touch screen determines that the display screen of the thermal-sensitive touch screen is illuminated after the effective touch information
- the touch chip of the thermal-sensitive touch screen determines that the display screen starts to work after being lit.
- a method for implementing thermal sensing of a thermal inductive touch screen comprising:
- the user's touch operation is received through the heat conduction layer on the display screen of the thermal sensor type touch screen, and the effective touch information is determined according to the heat generated by the touch operation.
- the step of determining valid touch information according to the heat generated by the touch operation includes:
- the heat is compared with a preset reference constant temperature, and when the temperature difference satisfies a preset temperature change condition, the generated position of the temperature difference is output as the effective touch information.
- the method further includes:
- the step of determining the location information of the touch operation according to the valid touch information includes:
- the method further includes:
- the heat conducting layer stores heat generated by the touch operation, heat generated inside the terminal device where the heat-sensitive touch screen is located, and ambient heat, and converts the received heat into electrical energy when the set condition is reached. Used by the terminal device where the heat-sensitive touch screen is located.
- a computer program comprising program instructions that, when executed by a thermal inductive touch screen, cause the thermal inductive touch screen to perform the above described method of effecting thermal sensing.
- the touch chip will generate an active excitation signal first, which is a waste of power. From the current test data, the touch screen is marked as a test case, and the operating current is generated. At around 100 mAh, this will be a small expense for battery-powered terminal equipment.
- the heat-sensitive touch screen proposed by the present invention does not use an active excitation signal, and relies on the heat of the limbs such as fingers to passively collect and receive, which greatly reduces power consumption and improves the endurance of the terminal device.
- the battery life is further improved. Regardless of whether the LCD of the terminal device is lit or not, the thermal strip of the new thermal-sensing touch screen will continuously transmit the energy source of the heat source higher than its own temperature to the heat storage device, and convert it into electric energy through the heat conversion device, which can be used. In order to charge the battery, the endurance of the terminal device is further improved. At the same time, the problem of poor user experience caused by the local temperature rise caused by the power management chip, the main chip and the power amplifier of the terminal device is solved, and the rational use of energy is achieved.
- FIG. 1 is a schematic structural diagram of a thermal induction type touch screen according to a first embodiment of the present invention
- FIG. 2 is a schematic structural diagram of an optional thermal sensing touch screen according to a first embodiment of the present invention
- FIG. 3 is a schematic structural diagram of a thermal induction type touch screen according to a second embodiment of the present invention.
- FIG. 4 is a schematic structural diagram of a terminal device according to a third embodiment of the present invention.
- FIG. 5 is a schematic structural diagram of an optional terminal device according to a third embodiment of the present invention.
- FIG. 6 is a flowchart of a touch method based on the thermal inductive touch screen according to a fourth embodiment of the present invention.
- FIG. 7 is a schematic structural diagram of a terminal device according to a fifth embodiment of the present invention.
- 8(a) and 8(b) are respectively the terminal device of the fifth embodiment of the present invention, the LCD is not lit and Schematic diagram of the working principle of the LCD lighting state;
- FIG. 9 is a flowchart of an overall scheduling operation of a terminal device according to a fifth embodiment of the present invention.
- the embodiment of the present invention provides a heat-sensitive touch screen, which uses a heat-conducting material to determine the touch position by using the physical quantity of the finger as the element for determining the position information. , to achieve the corresponding functions.
- the touch screen can save the active excitation signal by using the heat of touching the finger as the excitation signal, and the touch chip of the scanning position only needs to passively receive the excitation signal to obtain the position information, which will greatly save power. Improve the battery life of the terminal equipment.
- the heat conductive material can absorb the heat of the finger or the heat of the heat source in the surrounding environment, collect the heat energy storage device, convert the heat energy into electric energy through the heat conversion device, and replenish the battery, thereby further improving the endurance of the terminal device.
- the heat-conducting material can absorb the energy of the heat source in the surrounding environment, and can also absorb the heat generated by the terminal device's own heat source, such as the power management chip, the main chip, the power amplifier, etc., for storage conversion, for the battery or
- the peripheral device connected to the terminal device is charged, and at the same time, the heating problem of the terminal device that plagues the user experience is also relieved to some extent, and the heat-sensitive touch screen can be said to be multi-purpose.
- a first embodiment of the present invention includes a display screen 10, and a heat conducting layer 20 disposed on the display screen 10, wherein:
- the heat conducting layer 20 is configured to receive a touch operation of the user, and transfer the heat brought by the touch operation to the sampling comparator 30;
- the manner in which the heat conductive layer 20 is disposed on the display screen includes:
- the heat conductive material is uniformly arranged on the display screen in the form of a heat conducting strip from the horizontal direction and the vertical direction to form a heat conducting layer; the heat conducting strips are not in contact with each other.
- the thermal conductive material used in the thermal conductive layer includes:
- thermally conductive transparent mica plate or thermally conductive transparent silicone film.
- thermal conductive material must be transparent and have good thermal conductivity.
- the sampling comparator 30 is configured to determine valid touch information based on the heat.
- the sampling comparator 30 is configured to: compare the heat with a preset reference constant temperature, and when the temperature difference satisfies a preset temperature change condition, use the generated position of the temperature difference as an effective touch Information output.
- the temperature difference satisfies the preset temperature change condition, and can be understood as: the difference between the temperature corresponding to the heat and the preset reference constant temperature is within a preset temperature range, and the preset reference constant temperature can be Flexible settings based on ambient temperature or user needs.
- the thermal sensing touch screen of the embodiment further includes: a heat storage device 60 and a heat conversion device 70;
- the heat conducting layer 20 disposed on the display screen 10 is configured to: transfer heat generated by the touch operation, heat generated inside the terminal device, and ambient heat to the heat storage device;
- the heat storage device 60 is configured to: store the heat transferred from the heat conductive layer, and output it to the heat conversion device when the set condition is reached;
- the heat conversion device 70 is configured to convert the received heat into electrical energy.
- the thermal inductive touch screen of the present embodiment is substantially the same as that of the first embodiment. The difference is that, as shown in FIG. 3, the thermal inductive touch screen of the embodiment further includes :
- the touch chip 40 is configured to determine location information of the touch operation according to the valid touch information.
- the touch chip 40 is configured to: determine, according to the effective touch information, a corresponding touch range, and when the touch range reaches a preset effective area, determine the touch range as the Location information of the touch operation.
- the preset effective area can be flexibly set according to the needs of the user.
- the preset effective area can be determined according to the average value of the area when the user touches the screen, which is too large or too small. Both will be judged as invalid.
- the touch-sensitive touch screen is used in conjunction with the terminal device, if the touch-sensitive chip is not included in the heat-sensitive touch screen, the touch chip may be disposed in the terminal device, or the touch may be theoretically The function of the chip is done by a processor in the terminal device.
- a third embodiment of the present invention is a terminal device using the thermal inductive touch screen 80 of the first embodiment.
- the thermal inductive touch screen is provided with the reference numeral 80, and the terminal device includes The following components:
- the touch chip 40 is configured to: determine location information of the touch operation according to the effective touch information output by the thermal sensing touch screen;
- the touch chip 40 is configured to: when the display screen of the thermal-sensing touch screen is lit, determine location information of the touch operation according to the effective touch information output by the thermal-sensing touch screen.
- the processor 50 is configured to respond to the touch operation of the user according to the location information.
- the terminal device of this embodiment further includes: a heat storage device 60 and a heat conversion device 70;
- the heat-sensitive touch screen 80 is configured to: transfer heat generated by the touch operation, heat generated inside the terminal device, and ambient heat to the heat storage device 60 through the heat conductive layer;
- the heat storage device 60 is configured to: store the heat transferred from the heat conductive layer, and output it to the heat conversion device 70 when the set condition is reached;
- the heat conversion device 70 is configured to convert the received heat into electrical energy to charge the battery or even the peripheral of the terminal device.
- a fourth embodiment of the present invention includes the following steps:
- Step S101 when the touch screen of the thermal-sensing touch screen is lit, determining location information of the touch operation according to the valid touch information output by the thermal-sensing touch screen;
- the corresponding touch range is determined according to the valid touch information, and when the touch range reaches a preset effective area, the touch range is determined as the position information of the touch operation.
- Step S102 responding to the touch operation of the user according to the location information.
- the fifth embodiment of the present invention is based on the above embodiment, and an application example of the present invention is described with reference to Figs.
- a schematic structural diagram of a terminal device including a heat-sensitive touch screen the terminal device includes: a liquid crystal display (LCD) A heat conductive layer 101 on the LCD, a touch IC (Integrated Circuit) 102, a memory device 103, a heat to power conversion device 104, a CPU, and a battery.
- the touch IC 102 is similar to the functions performed by the touch chip 40 in the second and third embodiments.
- the storage device 103 is similar to the function performed by the heat storage device 60 in the third embodiment, and the conversion device 104 is similar to the third.
- the heat conducting layer 101 comprises a horizontal heat conducting layer and a vertical heat conducting layer.
- the heat conducting material is uniformly arranged on the display screen in a horizontal direction and a vertical direction in the form of a heat conducting strip to form a heat conducting layer; the heat conducting strips may be located differently.
- the level can also be on the same level, but it must be ensured that the heat conduction strips are not in contact with each other, otherwise it is impossible to judge which heat change occurs on the heat conduction strip.
- the thermally conductive layer 101 conducts heat rapidly to the touch IC 102 and the energy storage device.
- the touch IC 102 is a chip for collecting physical quantities of heat, and includes an acquisition comparator for continuously detecting changes in the physical quantity of heat in the horizontal and vertical directions. After quantitative screening, the touch position information is determined and uploaded to the CPU of the terminal device. Respond to the user's corresponding operation.
- the storage device 103 is a heat storage device for storing heat transferred from the heat conductive layer 101;
- the conversion device 104 converts the heat into a quantity of electricity, which is delivered to the battery after reaching the threshold to extend the life time of the terminal device.
- the touch IC 102 does not operate, but the storage device 103 will continue to operate.
- the process performed by the terminal device is as follows:
- step 201 the horizontal and vertical heat conduction strips will transmit energy of a heat source higher than its own temperature, which may come from outside the terminal device or from the heat generated by the internal chip of the terminal device.
- step 202 the storage device 103 receives and stores the heat transferred by the heat transfer strip.
- step 203 the converting device 104 converts the accumulated heat into electric quantity, and after reaching a certain threshold, the electric quantity is output to the battery to increase the endurance capability of the terminal device.
- the horizontal and vertical heat conduction strips will transmit energy of a heat source higher than its own temperature, which may come from outside the terminal device or from the heat generated by the internal chip of the terminal device.
- the thermal physical quantity will be transmitted through two paths, corresponding to steps 205 and 207:
- Step 205 when the thermal physical quantity is transmitted to the touch IC 102, the touch IC 102 receives the difference between the reference and the reference constant temperature, and filters the valid data through an algorithm to determine the position information of the user touch;
- step 206 the CPU is reported to respond.
- step 207 the storage device 103 receives and stores the heat transferred by the heat transfer strip.
- step 208 the converting device 104 converts the accumulated heat into electric quantity, and after reaching a certain threshold, the electric quantity is output to the battery to increase the endurance capability of the terminal device.
- the overall scheduling work flow chart of the terminal device is as follows:
- step 301 when the LCD is lit, the sampling comparator in the touch IC of the new touch screen works first, and in order to reduce power consumption, the interrupt operation is performed:
- sampling comparator finds that the temperature passed from the horizontal thermal strip and the vertical thermal strip is consistent with the reference temperature, then the sampling comparator will continue to wait;
- step 302 If the sampling comparator finds that the temperature and the reference temperature transmitted from the horizontal thermal strip and the vertical thermal strip are inconsistent, then the comparator will generate an interrupt signal, step 302;
- Step 302 after receiving the interrupt signal and the heat physical quantity data transmitted by the sampling comparator, the touch IC determines the position information, and filters the normal data according to the algorithm, and transmits the data to the CPU;
- a heat-sensitive touch screen includes: a display screen, the heat-sensitive touch screen further comprising a heat conductive layer and a sampling comparator, wherein:
- the heat conducting layer is disposed on the display screen, and configured to: receive a touch operation of the user, and transfer heat generated by the touch operation to the sampling comparator;
- the sampling comparator is configured to determine valid touch information based on the heat.
- the heat conducting layer is arranged to be arranged on the display screen as follows:
- the heat conductive material is uniformly disposed on the display screen from the horizontal direction and the vertical direction in the form of a heat conducting strip to form a heat conductive layer, and the heat conducting strips are not in contact with each other.
- the heat conductive material used for the heat conductive layer comprises: a polyimide film, a thermally conductive transparent mica plate, or a thermally conductive transparent silicon film.
- the sampling comparator is configured to determine valid touch information based on the heat as follows:
- the heat is compared with a preset reference constant temperature, and when the temperature difference satisfies a preset temperature change condition, the generated position of the temperature difference is output as the effective touch information.
- the thermal sensing touch screen further includes a touch chip, wherein:
- the touch chip is configured to determine location information of the touch operation according to the effective touch information.
- the touch chip is configured to determine location information of the touch operation according to the valid touch information as follows:
- the thermal-sensitive touch screen further includes: a heat storage device and a heat conversion device, wherein
- the heat conducting layer is configured to: transfer heat generated by the touch operation, heat generated inside the terminal device, and ambient heat to the heat storage device;
- the heat storage device is configured to: store heat transferred by the heat conductive layer, and output the heat to the heat conversion device when a set condition is reached;
- the heat conversion device is configured to convert the received heat into electrical energy.
- a terminal device comprising the thermal inductive touch screen as described above, further comprising a processor, wherein:
- the processor is configured to: respond to the user according to the location information determined by the thermal inductive touch screen Touch operation.
- the thermal-sensitive touch screen determines that the display screen of the thermal-sensitive touch screen is illuminated after the effective touch information
- the touch chip of the thermal-sensitive touch screen determines that the display screen starts to work after being lit.
- a method for implementing thermal sensing of a thermal inductive touch screen comprising:
- the user's touch operation is received through the heat conduction layer on the display screen of the thermal sensor type touch screen, and the effective touch information is determined according to the heat generated by the touch operation.
- the step of determining valid touch information according to the heat generated by the touch operation includes:
- the heat is compared with a preset reference constant temperature, and when the temperature difference satisfies a preset temperature change condition, the generated position of the temperature difference is output as the effective touch information.
- the method further includes:
- the step of determining the location information of the touch operation according to the valid touch information includes:
- the method further includes:
- the heat conducting layer stores heat generated by the touch operation, heat generated inside the terminal device where the heat-sensitive touch screen is located, and ambient heat, and converts the received heat into electrical energy when the set condition is reached. Used by the terminal device where the heat-sensitive touch screen is located.
- a computer program comprising program instructions that, when executed by a thermal inductive touch screen, cause the thermal inductive touch screen to perform the above described method of effecting thermal sensing.
- the above embodiments of the present invention all surround the touch screen of the terminal device, adopt a novel thermal conductive material, and design a new type of thermal sensing type touch screen.
- the thermal conductive material is used to ensure that the temperature of the touch screen is constant, and the heat generated by the terminal itself is caused. When a certain area is heated, the heat conductive material will quickly transfer the heat to the energy storage device, and the battery is supplied through the conversion device to ensure the constant temperature of the touch screen.
- the heat conductive material absorbs heat of a finger or the like to cause a change in the physical quantity of the heat, that is, a change in temperature
- the touch chip that detects the position information can determine the position area of the touch according to the change, and can be determined by combining an algorithm. Whether it is valid data and determine the final location, and the transferred heat is stored as energy and converted to battery power.
- the heat conductive material layer can ensure that its own temperature is constant.
- the heat conductive material can quickly transfer the heat to the energy storage device, and then supply it to the energy storage device after conversion.
- the battery is used and achieves a constant temperature of its own.
- the heat-conducting material has a constant temperature, can store absorbed energy, enhances the battery life, and solves the problem of poor heat dissipation caused by the heat of the terminal device itself, and ensures that the touch area is always maintained at the user's comfortable touch temperature, thereby further improving the user. Experience.
- the touch chip will generate an active excitation signal first, which is a waste of power. From the current test data, the touch screen is marked as a test case, and the operating current is generated. 100 mA or so, for battery powered For the terminal equipment, this will be a small expense.
- the heat-sensitive touch screen proposed by the present invention does not use an active excitation signal, and relies on the heat of the limbs such as fingers to passively collect and receive, which greatly reduces power consumption and improves the endurance of the terminal device.
- the battery life is further improved. Regardless of whether the LCD of the terminal device is lit or not, the thermal strip of the new thermal-sensing touch screen will continuously transmit the energy source of the heat source higher than its own temperature to the heat storage device, and convert it into electric energy through the heat conversion device, which can be used. In order to charge the battery, the endurance of the terminal device is further improved. At the same time, the problem of poor user experience caused by the local temperature rise caused by the power management chip, the main chip and the power amplifier of the terminal device is solved, and the rational use of energy is achieved.
- the present invention has strong industrial applicability.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- User Interface Of Digital Computer (AREA)
- Position Input By Displaying (AREA)
Abstract
一种热感应式触摸屏及基于该触摸屏的触控方法和终端设备,一种热感应式触摸屏的实现热感应的方法,相应的计算机程序及相应的载体,该热感应式触摸屏包括:显示屏,以及:布设于显示屏上的导热层,用于接收用户的触控操作,将所述触控操作带来的热量传递给采样比较器;采样比较器,用于根据所述热量确定有效触碰信息。该终端设备包括:触控芯片,用于根据热感应式触摸屏输出的有效触碰信息,确定所述触控操作的位置信息;处理器,用于根据所述位置信息响应用户的触控操作。上述技术方案在节省能源、提升终端设备电池续航能力的同时,解决了终端设备自身发热导致的散热不良问题。
Description
本发明涉及触摸屏技术领域,尤其涉及一种热感应式触摸屏、以及基于该触摸屏的触控方法和终端设备。
目前,在终端设备上用的最多的是电容式触摸屏,其原理是依靠手指靠近屏幕与ITO(Indium Tin Oxides,纳米铟锡金属氧化物)导电层形成电容,引发ITO层电容物理量的变化而确定位置信息。其实触摸屏的实现方式有很多种,除了常见的电容式触摸屏之外,还有被电容式触摸屏淘汰的电阻式触摸屏、红外线触摸屏、声波触摸屏等等。电阻式触摸屏工作时,需要靠手指等物体按压触摸屏,引发该点处阻值物理量的变化,从而确定位置信息;红外线触摸屏工作时,需要在触摸屏表面密布水平的和垂直的红外线光条,若有触碰时,手指等阻隔光线,引发接收器处的光线物理量变化;声波触摸屏类似,需要在触摸屏表面布置超声波发射和接收装置,手指等触碰时,引发接收装置处声波的变化,从而确定位置信息;因此,总的来说,触摸屏的工作原理都是通过手指等触碰触摸屏时引发某种物理量的变化来确定位置信息,实现人机交互。
由于相关的触摸屏均需要通过触碰产生有源激励信号,在一定程度上造成终端的能量消耗,另外,终端内部电源管理芯片、主芯片、功放等的散热问题也困扰用户使用体验的难题。
发明内容
本发明要解决的技术问题是,提供一种热感应式触摸屏及基于该触摸屏的触控方法和终端设备,无须产生有源激励信号,减少终端设备的能源消耗。
为解决上述技术问题,采用如下技术方案:
一种热感应式触摸屏,包括:显示屏,所述热感应式触摸屏还包括导热
层和采样比较器,其中:
所述导热层布设于所述显示屏上,设置成:接收用户的触控操作,将所述触控操作带来的热量传递给所述采样比较器;
所述采样比较器设置成:根据所述热量确定有效触碰信息。
可选地,所述导热层设置成按照如下方式布设在所述显示屏上:
导热材料以导热条的形式,分别从水平方向和垂直方向均匀布设在所述显示屏上,形成导热层,且各导热条之间不接触。
可选地,导热层所采用的导热材料,包括:聚酰亚胺薄膜、导热透明的云母片、或者导热透明的硅胶薄膜。
可选地,所述采样比较器设置成按照如下方式根据所述热量确定有效触碰信息:
将所述热量与预设的基准恒定温度进行比较,当温度差异满足预设的温度变化条件时,将所述温度差异的产生位置作为所述有效触碰信息输出。
可选地,所述热感应式触摸屏还包括触控芯片,其中:
所述触控芯片设置成:根据所述有效触碰信息确定所述触控操作的位置信息。
可选地,所述触控芯片设置成按照如下方式根据所述有效触碰信息确定所述触控操作的位置信息:
根据所述有效触碰信息,确定出对应的触碰范围,当所述触碰范围达到预设的有效面积时,将所述触碰范围确定为所述触控操作的位置信息。
可选地,所述热感应式触摸屏还包括:热量存储装置和热量转化装置,其中;
所述导热层设置成:将所述触控操作带来的热量、终端设备内部发热的热量以及环境热量,传递给所述热量存储装置;
所述热量存储装置设置成:将所述导热层传递来的热量存储起来,当达到设定条件时输出给所述热量转化装置;
所述热量转化装置设置成:将接收到的热量转换成电能。
一种终端设备,包括如上所述的热感应式触摸屏,还包括处理器,其中:
所述处理器设置成:根据所述热感应式触摸屏确定的位置信息响应用户的触控操作。
可选地,所述热感应式触摸屏确定除有效触碰信息后,将所述热感应式触摸屏的显示屏点亮;
所述热感应式触摸屏的触控芯片确定所述显示屏点亮以后开始工作。
一种热感应式触摸屏的实现热感应的方法,包括:
通过热感应式触摸屏的显示屏上的导热层接收用户的触控操作,根据所述触控操作带来的热量确定有效触碰信息。
可选地,根据所述触控操作带来的热量确定有效触碰信息的步骤包括:
将所述热量与预设的基准恒定温度进行比较,当温度差异满足预设的温度变化条件时,将所述温度差异的产生位置作为所述有效触碰信息输出。
可选地,该方法还包括:
根据所述有效触碰信息确定所述触控操作的位置信息。
可选地,所述根据所述有效触碰信息确定所述触控操作的位置信息的步骤包括:
根据所述有效触碰信息,确定出对应的触碰范围,当所述触碰范围达到预设的有效面积时,将所述触碰范围确定为所述触控操作的位置信息。
可选地,该方法还包括:
所述导热层将所述触控操作带来的热量、所述热感应式触摸屏所在的终端设备内部发热的热量以及环境热量存储起来,当达到设定条件时,将接收到的热量转换成电能供所述热感应式触摸屏所在的终端设备使用。
一种计算机程序,包括程序指令,当该程序指令被热感应式触摸屏执行时,使得该热感应式触摸屏可执行上述的实现热感应的方法。
一种载有上述计算机程序的载体。
本发明技术方案所述的热感应式触摸屏及基于该触摸屏的触控方法和终端设备,至少具有下列优点:
1)低功耗,省电。对比目前最常用的电容式触摸屏,其触控芯片将产生一个有源激励信号在先,比较浪费电能,从目前的测试数据来看,以触摸屏上划线为测试用例,其引发的工作电流在100毫安左右,对于依靠电池供电的终端设备来说,这将是一笔不小的开支。而本发明提出的热感应式触摸屏,不采用有源激励信号,仅依靠手指等肢体的热量被动去采集接收,将大大减少电能消耗,提升终端设备的续航能力。
2)采用储能装置的情况下,进一步提升续航能力。无论终端设备的LCD是否点亮工作,该新型热感应式触摸屏的导热条将不间断的把高于自身温度的热源能量采集传递给热量储能装置,并通过热量转化装置转化为电能,可以用于为给电池充电,进一步提升了终端设备的续航能力。同时,解决了终端设备因电源管理芯片、主芯片、功放引发的局部温度过高而引发的用户体验不佳的问题,做到能量的合理利用。
附图概述
图1为本发明第一实施例的热感应式触摸屏的组成示意图;
图2为本发明第一实施例可选的热感应式触摸屏的组成示意图;
图3为本发明第二实施例的热感应式触摸屏的组成示意图;
图4为本发明第三实施例的终端设备的组成示意图;
图5为本发明第三实施例可选的终端设备的组成示意图;
图6为本发明第四实施例的基于该热感应式触摸屏的触控方法流程图;
图7为本发明第五实施例的终端设备的组成示意图;
图8(a)、(b)分别为本发明第五实施例的终端设备在LCD未点亮和
LCD点亮状态下的工作原理示意图;
图9为本发明第五实施例的终端设备的总体调度工作流程图。
本发明的较佳实施方式
以下结合附图及较佳实施例,对本发明进行详细说明如后。
先介绍一下本发明的实现原理:从触摸屏的底层原理出发,本发明实施例提出了一种热感应式触摸屏,采用导热材料,将手指的热量物理量作为确定位置信息的要素,从而确定触控位置,实现相应的功能。该触摸屏相比以往的各种触摸屏,采用触碰手指的热量作为激励信号,就可以节省有源激励信号,扫描位置的触控芯片仅需要被动接收该激励信号从而获知位置信息,将大大节省电能,提升终端设备的续航。同时导热材料可以把手指的热量、或者周围环境中热源的热量进行吸收,搜集到热量储能装置中,经热量转化装置将热能转化为电能后,补给电池,进一步提升了终端设备的续航。导热材料可以吸收导走周围环境中热源的能量,同时也可以将终端设备自身的热源,如:电源管理芯片、主芯片、功放等发出的热量吸收导走,进行存储转化,用于给电池或者连接终端设备的外设充电,同时也在一定程度上缓解了困扰用户体验的终端设备的发热问题,该热感应式触摸屏可谓是一举多得。
本发明第一实施例,一种热感应式触摸屏,如图1所示,包括显示屏10,以及布设于显示屏10上的导热层20,其中:
所述导热层20,设置成:接收用户的触控操作,将所述触控操作带来的热量传递给采样比较器30;
可选地,导热层20在显示屏上的布设方式,包括:
将导热材料以导热条的形式,分别从水平方向和垂直方向均匀布设在显示屏上,形成导热层;各导热条之间不接触。导热层所采用的导热材料,包括:
聚酰亚胺薄膜、导热透明的云母片、或者导热透明的硅胶薄膜。导热材料的选取须满足透明、且导热性能好的条件。
采样比较器30,设置成:根据所述热量确定有效触碰信息。
可选地,采样比较器30,设置成:将所述热量与预设的基准恒定温度进行比较,当温度差异满足预设的温度变化条件时,将所述温度差异的产生位置作为有效触碰信息输出。本实施例中,温度差异满足预设的温度变化条件,可以理解为:所述热量对应的温度与预设的基准恒定温度之差在预设的温度范围内,而预设的基准恒定温度可以根据环境温度或者用户的需要灵活设置。
可选的,如图2所示,本实施例的热感应式触摸屏,还包括:热量存储装置60和热量转化装置70;
布设于显示屏10上的导热层20,设置成:将所述触控操作带来的热量、终端设备内部发热的热量以及环境热量,传递给热量存储装置;
热量存储装置60,设置成:将导热层传递来的热量存储起来,当达到设定条件时输出给热量转化装置;
热量转化装置70,设置成:将接收到的热量转换成电能。
本发明第二实施例,一种热感应式触摸屏,本实施例的热感应式触摸屏与第一实施例大致相同,区别在于,如图3所示,本实施例的热感应式触摸屏,还包括:
触控芯片40,设置成:根据有效触碰信息确定所述触控操作的位置信息。
可选地,触控芯片40,设置成:根据有效触碰信息,确定出对应的触碰范围,当所述触碰范围达到预设的有效面积时,将所述触碰范围确定为所述触控操作的位置信息。在本实施例中,预设的有效面积可以根据用户需要灵活设置,可选的,可以根据用户手指触控屏幕时的面积统计平均值来确定预设的有效面积的范围,太大或者太小均会判定为无效。
需要说明的是,由于该热感应式触摸屏是配合终端设备使用的,若该热感应式触摸屏中不包含触控芯片,则可以在终端设备中设置触控芯片,或者,理论上可以将触控芯片的功能由终端设备中的处理器来完成。
本发明第三实施例,一种采用第一实施例中的热感应式触摸屏80的终端设备,如图4所示,设该热感应式触摸屏的附图标记为80,该终端设备包括
以下组成部分:
触控芯片40,设置成:根据热感应式触摸屏输出的有效触碰信息,确定所述触控操作的位置信息;
可选地,触控芯片40,设置成:当该热感应式触摸屏的显示屏点亮时,根据该热感应式触摸屏输出的有效触碰信息,确定所述触控操作的位置信息。
处理器50,设置成:根据所述位置信息响应用户的触控操作。
可选的,如图5所示,本实施例的该终端设备,还包括:热量存储装置60和热量转化装置70;
热感应式触摸屏80,设置成:通过导热层将所述触控操作带来的热量、终端设备内部发热的热量以及环境热量,传递给热量存储装置60;
热量存储装置60,设置成:将导热层传递来的热量存储起来,当达到设定条件时输出给热量转化装置70;
热量转化装置70,设置成:将接收到的热量转换成电能,为终端设备的电池、甚至外设充电。
本发明第四实施例,一种基于该热感应式触摸屏的触控方法,如图6所示,包括以下步骤:
步骤S101,当该热感应式触摸屏的触摸屏点亮时,根据所述热感应式触摸屏输出的有效触碰信息,确定所述触控操作的位置信息;
可选地,根据有效触碰信息,确定出对应的触碰范围,当所述触碰范围达到预设的有效面积时,将所述触碰范围确定为所述触控操作的位置信息。
步骤S102,根据所述位置信息响应用户的触控操作。
本发明第五实施例,本实施例是在上述实施例的基础上,结合附图7~9介绍一个本发明的应用实例。
参照附图7中所示的包含热感应式触摸屏的终端设备的组成结构示意图,该终端设备,包括:液晶显示器(LCD,Liquid Crystal Display)、位于
LCD上的导热层101、触控IC(Integrated Circuit,集成电路)102、存储装置103、热量到电量的转化装置104、CPU和电池。其中,触控IC102类似于第二、三实施例中的触控芯片40所完成的功能,存储装置103类似于第三实施例中热量存储装置60所完成的功能,转化装置104类似于第三实施例中热量转化装置70所完成的功能。
导热层101包括水平导热层和垂直导热层,具体是:将导热材料以导热条的形式,分别从水平方向和垂直方向均匀布设在显示屏上,形成导热层;各导热条之间可以位于不同的层面,也可以位于同一层面,但是须保证各导热条之间均互相不接触,否则不能判断是哪个导热条上发生的热量变化。该导热层101会将热量迅速的传导到触控IC102和储能装置处。
触控IC 102为采集热量物理量的芯片,其中包含采集比较器,用于不断的检测水平和垂直方向上热量物理量的变化,经过量化筛选后,确定触碰位置信息,上传给终端设备的CPU予以响应用户相应的操作。
存储装置103为热量储能装置,将导热层101传递过来的热量进行储存;
转化装置104将热量转化为电量,达到门限后传递给电池,以延长终端设备的续航时间。
参照附图8(a)、(b)的终端设备分别在LCD未点亮和LCD点亮状态下的工作原理示意图,详细阐述如下:
分两种情况:
如图8(a)所示,当LCD未点亮时,触控IC102不工作,但存储装置103仍将继续工作。该终端设备执行的流程如下:
步骤201,水平方向和垂直方向的导热条将传输比自身温度高的热源的能量,该能量可以来自于终端设备外部,也可以来自于终端设备内部芯片的发热。
步骤202,存储装置103接收存储导热条传递过来的热量并加以存储。
步骤203,转化装置104将积累的热量转化为电量,达到一定门限后将该电量输出给电池,以增加终端设备的续航能力。
如图8(b)所示,当LCD点亮时,触控IC102和存储装置103、转化装
置104同时开始工作。
步骤204,水平方向和垂直方向的导热条将传输比自身温度高的热源的能量,该能量可以来自于终端设备外部,也可以来自于终端设备内部芯片的发热。
该热量物理量将经两条路径传递,分别对应步骤205和步骤207:
步骤205,热量物理量传递到触控IC102处时,触控IC102接收比对出与基准恒定温度的差异,通过算法筛选出有效数据,确定用户触控的位置信息;
步骤206,上报CPU予以响应。
步骤207,存储装置103接收存储导热条传递过来的热量并加以存储。
步骤208,转化装置104将积累的热量转化为电量,达到一定门限后将该电量输出给电池,以增加终端设备的续航能力。
参照附图9,该终端设备的总体调度工作流程图如下:
步骤301,当LCD点亮时,该新型触摸屏的触控IC中的采样比较器先工作,为降低功耗,采用中断的方式进行工作:
若采样比较器发现从水平导热条和垂直导热条传递过来的温度和基准温度是一致的,那么该采样比较器将继续等待;
若采样比较器发现从水平导热条和垂直导热条传递过来的温度和基准温度是不一致的,那么该比较器将产生中断信号,调转步骤302;
步骤302,触控IC收到采样比较器传递过来的中断信号和热量物理量数据后,进行位置信息的判断,并且根据算法筛选出正常的数据,传递给CPU;
如此往复,就实现点触位置信息到CPU的传送。
本发明实施例还公开了如下技术方案:
一种热感应式触摸屏,包括:显示屏,所述热感应式触摸屏还包括导热层和采样比较器,其中:
所述导热层布设于所述显示屏上,设置成:接收用户的触控操作,将所述触控操作带来的热量传递给所述采样比较器;
所述采样比较器设置成:根据所述热量确定有效触碰信息。
可选地,所述导热层设置成按照如下方式布设在所述显示屏上:
导热材料以导热条的形式,分别从水平方向和垂直方向均匀布设在所述显示屏上,形成导热层,且各导热条之间不接触。
可选地,导热层所采用的导热材料,包括:聚酰亚胺薄膜、导热透明的云母片、或者导热透明的硅胶薄膜。
可选地,所述采样比较器设置成按照如下方式根据所述热量确定有效触碰信息:
将所述热量与预设的基准恒定温度进行比较,当温度差异满足预设的温度变化条件时,将所述温度差异的产生位置作为所述有效触碰信息输出。
可选地,所述热感应式触摸屏还包括触控芯片,其中:
所述触控芯片设置成:根据所述有效触碰信息确定所述触控操作的位置信息。
可选地,所述触控芯片设置成按照如下方式根据所述有效触碰信息确定所述触控操作的位置信息:
根据所述有效触碰信息,确定出对应的触碰范围,当所述触碰范围达到预设的有效面积时,将所述触碰范围确定为所述触控操作的位置信息。
可选地,所述热感应式触摸屏还包括:热量存储装置和热量转化装置,其中;
所述导热层设置成:将所述触控操作带来的热量、终端设备内部发热的热量以及环境热量,传递给所述热量存储装置;
所述热量存储装置设置成:将所述导热层传递来的热量存储起来,当达到设定条件时输出给所述热量转化装置;
所述热量转化装置设置成:将接收到的热量转换成电能。
一种终端设备,包括如上所述的热感应式触摸屏,还包括处理器,其中:
所述处理器设置成:根据所述热感应式触摸屏确定的位置信息响应用户
的触控操作。
可选地,所述热感应式触摸屏确定除有效触碰信息后,将所述热感应式触摸屏的显示屏点亮;
所述热感应式触摸屏的触控芯片确定所述显示屏点亮以后开始工作。
一种热感应式触摸屏的实现热感应的方法,包括:
通过热感应式触摸屏的显示屏上的导热层接收用户的触控操作,根据所述触控操作带来的热量确定有效触碰信息。
可选地,根据所述触控操作带来的热量确定有效触碰信息的步骤包括:
将所述热量与预设的基准恒定温度进行比较,当温度差异满足预设的温度变化条件时,将所述温度差异的产生位置作为所述有效触碰信息输出。
可选地,该方法还包括:
根据所述有效触碰信息确定所述触控操作的位置信息。
可选地,所述根据所述有效触碰信息确定所述触控操作的位置信息的步骤包括:
根据所述有效触碰信息,确定出对应的触碰范围,当所述触碰范围达到预设的有效面积时,将所述触碰范围确定为所述触控操作的位置信息。
可选地,该方法还包括:
所述导热层将所述触控操作带来的热量、所述热感应式触摸屏所在的终端设备内部发热的热量以及环境热量存储起来,当达到设定条件时,将接收到的热量转换成电能供所述热感应式触摸屏所在的终端设备使用。
一种计算机程序,包括程序指令,当该程序指令被热感应式触摸屏执行时,使得该热感应式触摸屏可执行上述的实现热感应的方法。
一种载有上述计算机程序的载体。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
本发明上述实施例均围绕着终端设备的触摸屏,采用新型的导热材料,设计一种新型的热感应式触摸屏,依靠该导热材料,保证该触摸屏的温度是恒定的,若终端自身产生的热量导致某块区域发热,该导热材料将会将该热量迅速传递到储能装置中,并通过转化装置供给电池,保证了触摸屏的恒温。当有手指等触摸时,该导热材料吸收手指等的热量,引发热量物理量的变化,即温度的变化,检测位置信息的触控芯片就可以根据变化确定触碰的位置区域,结合算法就可以确定是否为有效数据并确定最终位置,并且把传递过来的热量作为能量搜集存储并转化给电池供电。
该导热材料层可以保证自身的温度是恒定的,对于高于自身温度的热辐射体,包括外界的和自身的,该导热材料可以迅速的将该热量传递到能量储存装置中,转化后供给自身的电池使用,并实现了自身温度的恒定。该导热材料自身温度恒定,可以储存吸收能量,提升续航的同时,也解决了终端设备自身发热导致的散热不良问题,同时可以保证触碰区域始终保持在用户舒适的触碰温度,更加提升了用户体验。
通过具体实施方式的说明,应当可对本发明为达成预定目的所采取的技术手段及功效得以更加深入且具体的了解,然而所附图示仅是提供参考与说明之用,并非用来对本发明加以限制。
本发明技术方案所述的热感应式触摸屏及基于该触摸屏的触控方法和终端设备,至少具有下列优点:
1)低功耗,省电。对比目前最常用的电容式触摸屏,其触控芯片将产生一个有源激励信号在先,比较浪费电能,从目前的测试数据来看,以触摸屏上划线为测试用例,其引发的工作电流在100毫安左右,对于依靠电池供电
的终端设备来说,这将是一笔不小的开支。而本发明提出的热感应式触摸屏,不采用有源激励信号,仅依靠手指等肢体的热量被动去采集接收,将大大减少电能消耗,提升终端设备的续航能力。
2)采用储能装置的情况下,进一步提升续航能力。无论终端设备的LCD是否点亮工作,该新型热感应式触摸屏的导热条将不间断的把高于自身温度的热源能量采集传递给热量储能装置,并通过热量转化装置转化为电能,可以用于为给电池充电,进一步提升了终端设备的续航能力。同时,解决了终端设备因电源管理芯片、主芯片、功放引发的局部温度过高而引发的用户体验不佳的问题,做到能量的合理利用。
因此本发明具有很强的工业实用性。
Claims (16)
- 一种热感应式触摸屏,包括:显示屏,所述热感应式触摸屏还包括导热层和采样比较器,其中:所述导热层布设于所述显示屏上,设置成:接收用户的触控操作,将所述触控操作带来的热量传递给所述采样比较器;所述采样比较器设置成:根据所述热量确定有效触碰信息。
- 根据权利要求1所述的热感应式触摸屏,其中,所述导热层设置成按照如下方式布设在所述显示屏上:导热材料以导热条的形式,分别从水平方向和垂直方向均匀布设在所述显示屏上,形成所述导热层,其中,各导热条之间不接触。
- 根据权利要求1所述的热感应式触摸屏,其中,所述导热层所采用的导热材料,包括:聚酰亚胺薄膜、导热透明的云母片、或者导热透明的硅胶薄膜。
- 根据权利要求1所述的热感应式触摸屏,其中,所述采样比较器设置成按照如下方式根据所述热量确定有效触碰信息:将所述热量与预设的基准恒定温度进行比较,当温度差异满足预设的温度变化条件时,将所述温度差异的产生位置作为所述有效触碰信息输出。
- 根据权利要求1所述的热感应式触摸屏,所述热感应式触摸屏还包括触控芯片,其中:所述触控芯片设置成:根据所述有效触碰信息确定所述触控操作的位置信息。
- 根据权利要求5所述的热感应式触摸屏,其中,所述触控芯片设置成按照如下方式根据所述有效触碰信息确定所述触控操作的位置信息:根据所述有效触碰信息,确定出对应的触碰范围,当所述触碰范围达到预设的有效面积时,将所述触碰范围确定为所述触控操作的位置信息。
- 根据权利要求1~6中任一项所述的热感应式触摸屏,所述热感应式触摸屏还包括:热量存储装置和热量转化装置,其中;所述导热层设置成:将所述触控操作带来的热量、终端设备内部发热的热量以及环境热量,传递给所述热量存储装置;所述热量存储装置设置成:将所述导热层传递来的热量存储起来,当达到设定条件时输出给所述热量转化装置;所述热量转化装置设置成:将接收到的热量转换成电能。
- 一种终端设备,包括如权利要求1-7中任一项所述的热感应式触摸屏,还包括处理器,其中:所述处理器设置成:根据所述热感应式触摸屏确定的位置信息响应用户的触控操作。
- 根据权利要求8所述的终端设备,其中,所述热感应式触摸屏确定除有效触碰信息后,将所述热感应式触摸屏的显示屏点亮;所述热感应式触摸屏的触控芯片确定所述显示屏点亮以后开始工作。
- 一种热感应式触摸屏的实现热感应的方法,包括:通过热感应式触摸屏的显示屏上的导热层接收用户的触控操作,根据所述触控操作带来的热量确定有效触碰信息。
- 根据权利要求10所述的实现热感应的方法,其中,根据所述触控操作带来的热量确定有效触碰信息的步骤包括:将所述热量与预设的基准恒定温度进行比较,当温度差异满足预设的温度变化条件时,将所述温度差异的产生位置作为所述有效触碰信息输出。
- 根据权利要求10所述的实现热感应的方法,该方法还包括:根据所述有效触碰信息确定所述触控操作的位置信息。
- 根据权利要求12所述的实现热感应的方法,其中,所述根据所述有效触碰信息确定所述触控操作的位置信息的步骤包括:根据所述有效触碰信息,确定出对应的触碰范围,当所述触碰范围达到预设的有效面积时,将所述触碰范围确定为所述触控操作的位置信息。
- 根据权利要求10~13中任一项所述的实现热感应的方法,该方法还包括:所述导热层将所述触控操作带来的热量、所述热感应式触摸屏所在的终端设备内部发热的热量以及环境热量存储起来,当达到设定条件时,将接收到的热量转换成电能供所述热感应式触摸屏所在的终端设备使用。
- 一种计算机程序,包括程序指令,当该程序指令被热感应式触摸屏执行时,使得该热感应式触摸屏可执行权利要求10-14中任一项所述的实现热感应的方法。
- 一种载有权利要求15所述计算机程序的载体。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410349853.6 | 2014-07-22 | ||
CN201410349853.6A CN105302348A (zh) | 2014-07-22 | 2014-07-22 | 热感应式触摸屏及基于该触摸屏的触控方法和终端设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015117421A1 true WO2015117421A1 (zh) | 2015-08-13 |
Family
ID=53777238
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2014/089719 WO2015117421A1 (zh) | 2014-07-22 | 2014-10-28 | 热感应式触摸屏及基于该触摸屏的触控方法和终端设备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN105302348A (zh) |
WO (1) | WO2015117421A1 (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106406640B (zh) * | 2016-09-30 | 2019-07-26 | 维沃移动通信有限公司 | 一种触摸操作确定方法及移动终端 |
CN108062175B (zh) * | 2016-11-07 | 2021-11-23 | 中兴通讯股份有限公司 | 屏幕操作控制方法、装置及终端 |
CN112764581A (zh) * | 2021-01-26 | 2021-05-07 | 维沃移动通信有限公司 | 触摸屏和电子设备 |
CN115877989A (zh) * | 2022-11-14 | 2023-03-31 | 北京深光科技有限公司 | 触控识别方法、装置、电子设备及存储介质 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101882017A (zh) * | 2009-05-08 | 2010-11-10 | 瑞鼎科技股份有限公司 | 输入装置及输入方法 |
CN103186260A (zh) * | 2011-12-27 | 2013-07-03 | 联想(北京)有限公司 | 一种信息处理方法和电子设备 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101012305B1 (ko) * | 2008-04-22 | 2011-02-08 | 삼성전자주식회사 | 터치 입력장치의 동작 방법 및 이를 이용하는 휴대 단말기 |
CN103294233A (zh) * | 2012-02-27 | 2013-09-11 | 富泰华工业(深圳)有限公司 | 触摸屏和具有该触摸屏的触摸显示装置 |
CN202904518U (zh) * | 2012-07-31 | 2013-04-24 | 宸鸿科技(厦门)有限公司 | 温感式触控面板 |
CN103576956B (zh) * | 2012-07-31 | 2016-08-24 | 宸鸿科技(厦门)有限公司 | 温感式触控面板及其制造方法与侦测方法 |
-
2014
- 2014-07-22 CN CN201410349853.6A patent/CN105302348A/zh not_active Withdrawn
- 2014-10-28 WO PCT/CN2014/089719 patent/WO2015117421A1/zh active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101882017A (zh) * | 2009-05-08 | 2010-11-10 | 瑞鼎科技股份有限公司 | 输入装置及输入方法 |
CN103186260A (zh) * | 2011-12-27 | 2013-07-03 | 联想(北京)有限公司 | 一种信息处理方法和电子设备 |
Also Published As
Publication number | Publication date |
---|---|
CN105302348A (zh) | 2016-02-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015117421A1 (zh) | 热感应式触摸屏及基于该触摸屏的触控方法和终端设备 | |
TWI297432B (zh) | ||
US20160146492A1 (en) | Remote controller | |
TWM393739U (en) | Optical touch control apparatus | |
CN102253770A (zh) | 电容式触摸屏及具有该触摸屏的空调器 | |
WO2012155470A1 (zh) | 一种界面控制方法、装置和移动终端 | |
WO2015184702A1 (zh) | 一种触控面板及触控显示装置 | |
WO2018201755A1 (zh) | 柔性显示面板及其操作方法和柔性显示装置 | |
TWI471783B (zh) | 觸控面板與觸控裝置 | |
CN105700649A (zh) | 散热系统及电子设备 | |
WO2015003498A1 (zh) | 触摸屏及移动终端 | |
CN104000323A (zh) | 一种智能测温手套 | |
CN203386150U (zh) | 一种智能感应加热鼠标 | |
CN106775319A (zh) | 一种基于移动终端的功能标识待机识别方法及移动终端 | |
US20150120076A1 (en) | Electronic device having intelligent temperature adjusting function | |
TWI448940B (zh) | 調整觸控面板靈敏度之方法 | |
CN206792207U (zh) | 一种具有水温提示功能的水杯 | |
JP3193767U (ja) | タッチパネル | |
TWI485583B (zh) | 溫控式滑鼠 | |
CN204143375U (zh) | 一种多功能智能腕带 | |
CN201174805Y (zh) | 指示灯控制装置 | |
KR20080069410A (ko) | 휴대 디스플레이 장치의 백라이트 제어 방법 및 장치 | |
CN204206666U (zh) | 一种温感变色的手持电子设备 | |
TW201510795A (zh) | 觸控面板及其使用方法 | |
CN206548491U (zh) | 一种新型非接触式额温枪 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14881867 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14881867 Country of ref document: EP Kind code of ref document: A1 |